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We review recent work in which compactifications of string and M theory are constructed in
which all scalar fields (moduli) are massive, and supersymmetry is broken with a small positive
cosmological constant, features needed to reproduce real world physics. We explain how this work
implies that there is a “landscape” of string/M theory vacua, perhaps containing many candidates
for describing real world physics, and present the arguments for and against this idea. We discuss
statistical surveys of the landscape, and the prospects for testable consequences of this picture,
such as observable effects of moduli, constraints on early cosmology, and predictions for the scale
of supersymmetry breaking.
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I. INTRODUCTION

It is an old idea that unification of the fundamental
forces may be related to the existence of extra dimen-
sions of space-time. Its first successful realization appears
in the works of Kaluza (1921) and Klein (1926), which
postulated a fifth dimension of space-time, invisible to
everyday experience.

In this picture, all physics is described at a funda-
mental level by a straightforward generalization of gen-
eral relativity to five dimensions, obtained by taking
the metric tensor gµν to depend on five-dimensional in-
dices µ = 0, 1, 2, 3, 4, and imposing general covariance in
five dimensions. Such a theory allows five-dimensional
Minkowski space-time as a solution, a possibility in ev-
ident contradiction with experience. However, it also
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allows many other solutions with different or less sym-
metry. As a solution which could describe our universe,
consider a direct product of four-dimensional Minkowski
space-time, with a circle of constant periodicity, which we
denote 2πR. It is easy to check that at distances r >> R,
the gravitational force law reduces to the familar inverse
square law. Furthermore, at energies E << ~/Rc, all
quantum mechanical wave functions will be independent
of position on the circle, and thus if R is sufficiently small
(in 1926, subatomic), the circle will be invisible.

The point of saying this is that the five dimensional
metric gµν , regarded as a field in four dimensions, con-
tains additional, non-metric degrees of freedom. In par-
ticular, the components gµ5 transform as a vector field,
which turns out to obey the Maxwell equations in a
curved background. Thus, one has a unified theory of
gravitation and electromagnetism.

The theory contains one more degree of freedom, the
metric component g55, which parameterizes the radius R
of the extra-dimensional circle. Since the classical Ein-
stein equations are scale invariant, in the construction as
described, there is no preferred value for this radius R.
Thus, Kaluza and Klein simply postulated a value for it
consistent with experimental bounds.

Just like the other metric components, the g55 com-
ponent is a field, which can vary in four-dimensional
space-time in any way consistent with the equations of
motion. We will discuss these equations of motion in
detail later, but their main salient feature is that they
describe a (non-minimally coupled) massless scalar field.
We might expect such a field to lead to physical effects
just as important as those of the Maxwell field we were
trying to explain. Further analysis bears this out, and
quickly leads to effects such as new long range forces, or
time dependence of parameters, in direct conflict with
observation.

All this would be a historical footnote were it not for
the discovery, which emerged over the period 1975–1985,
that superstring theory provides a consistent quantum
theory of gravity coupled to matter in ten space-time
dimensions (Green et al., 1987a,b). At energies low com-
pared to its fundamental scale (the string tension), this
theory is well described by ten-dimensional supergravity,
a supersymmetric extension of general relativity coupled
to Yang-Mills theory. But the nonrenormalizability of
that theory is cured by the extended nature of the string.

Clearly such a theory is a strong candidate for a higher
dimensional unified theory of the type postulated by
Kaluza and Klein. Around 1985, detailed arguments
were made, most notably by Candelas et al. (1985), that
starting from the heterotic superstring theory, one could
derive supersymmetric grand unified theories (GUTs) of
the general class which, for completely independent rea-
sons, had already been postulated as plausible extensions
of the Standard Model up to very high energies. This
construction, the first quasi-realistic string compactifi-
cation, took ten-dimensional space-time to be a direct
product of four-dimensional Minkowski space-time, with

a six dimensional Ricci flat manifold, one of the so-called
Calabi-Yau manifolds. Performing a Kaluza-Klein type
analysis, one obtains a four-dimensional theory unifying
gravity with a natural extension of the Standard Model,
from a single unified theory with no free parameters.

However, at this point, the problem we encountered
above rears its ugly head. Just like the classical Einstein-
Maxwell equations, the classical supergravity equations
are scale invariant. Thus, if we can find any solution
of the type we just described, by rescaling the size R
of the compactification manifold, we can obtain a one-
parameter family of solutions, differing only in the value
of R. Similarly, by making a rescaling of R with a weak
dependence on four-dimensional position, one obtains ap-
proximate solutions. Thus, again R corresponds to a
massless field in four dimensions, which is again in fatal
conflict with observation.

In fact, the situation is even worse. Considerations
we will discuss show that typical solutions of this type
have not just one but hundreds of parameters, called
moduli. Each will lead to a massless scalar field, and
its own potential conflict with observation. In addition,
the interaction strength between strings is controlled by
another massless scalar field, which by a long-standing
quirk of terminology is called the dilaton. Since this field
is present in all string theories and enters directly into
the formulas for observable couplings, many proposals for
dealing with the other moduli problems, such as looking
for special solutions without parameters, founder here.

On further consideration, the moduli are tied up with
many other interesting physical questions. The simplest
of these is just the following: given the claim that all
of known physics can arise from a fundamental theory
with no free parameters, how do the particular values
we observe for the fundamental parameters of physics,
such as the electron mass or the fine structure constant,
actually emerge from within the theory? This question
has always seemed to lie near the heart of the matter and
has inspired all sorts of speculations and numerological
observations, some verging on the bizarre.

This question has a clear answer within superstring
theory, and the moduli are central to this answer. The
answer may not be to every reader’s liking, but let us
come back to this in due course.

To recap, we now have a problem, a proliferation of
massless scalar fields; and a question, the origin of fun-
damental parameters. Suppose we ignore the dynamics
of the massless scalar fields for a moment, and simply
freeze the moduli to particular values, in other words re-
strict attention to one of the multi-parameter family of
possible solutions in an ad hoc way. Now, if we carry
out the Kaluza-Klein procedure on this definite solution,
we will be able to compute physical predictions, includ-
ing the fundamental parameters. Of course, the results
depend on the details of the assumed solution for the ex-
tra dimensions of space, and the particular values of the
moduli.

Now returning to the problem of the massless scalar
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fields, a possible solution begins with the observation
that the equations of motion of general relativity and su-
pergravity are scale invariant only at the classical level.
Defining a quantum theory of gravity (in more than two
space-time dimensions) requires introducing a preferred
scale, the Planck scale, and thus there is no reason that
the quantum theory cannot prefer a particular value of
R, or of the other moduli. Indeed, this can be demon-
strated by simple considerations in quantum field theory.
For example, given a conducting cavity, even one con-
taining vacuum, one can measure an associated Casimir
energy, which depends its size and shape. This agrees
with the theoretically predicted vacuum energy of the
zero-point fluctuations of the quantum electromagnetic
field. Very similar computations show that a quantum
field in a compactified extra dimensional theory will have
a Casimir energy which depends on the size and other
moduli parameters of the extra dimensions, and which
contributes to the four-dimensional stress-energy tensor.

In a more complete treatment, this Casimir energy
would be the first term in a systematic expansion of the
quantum vacuum energy, to be supplemented by higher
order perturbative and nonperturbative contributions. In
higher dimensional theories, it is also possible to turn on
background field strengths in the extra dimensions with-
out breaking Lorentz invariance, and these contribute to
the vacuum energy as well. All of these effects can be
summarized in an effective potential, defined as the to-
tal vacuum energy, considered as a function of assumed
constant values for the moduli fields.

We now work on the assumption that this effective
potential, defined in precise analogy to the effective po-
tentials of conventional quantum field theory and many-
body physics, can be used in a very similar way: to deter-
mine the possible (metastable) vacuum states of the the-
ory, as the local minima of the effective potential. Any
configuration not at such a minimum will roll down to
one, converting its excess potential energy into other en-
tropically favored forms, such as radiation. This argu-
ment is very general and applies to all known physical
systems with many degrees of freedom; it is widely ac-
cepted in cosmology as well, so there is no evident reason
not to accept it in the present context.

Almost all effective potentials for systems in the real
world have more than one local minimum. The conse-
quences of this fact depend on the time scales of tran-
sitions between minima (quantum or thermally induced)
compared to the time scales under study. If transitions
proceed rapidly, the system will find the global mini-
mum of the potential, and if this changes upon vary-
ing parameters the system undergoes a phase transition.
On the other hand, if transitions between vacua proceed
slowly, local minima are effectively stable, and one speaks
of a system with multiple configurations. Both phe-
nomena are ubiquitous; examples of extremely long-lived
metastable configurations include most organic molecules
(which “decay” to hydrocarbons and carbon dioxide),
and all nuclei except 62Ni, the nucleus which minimizes

the binding energy per nucleon.

The structure of effective potentials responsible for
multiple minima, metastability and transitions is central
to a good deal of real world physics and chemistry. Al-
though details are always essential, there are also prin-
ciples which apply with some generality, which make up
the theory of energy landscapes (Wales, 2003). The pic-
turesque term “landscape” actually originated in evolu-
tionary biology (Wright, 1932).

For reasons we will discuss in Sec. II, string vacua with
small positive cosmological constant, as would fit present
astronomical observations, are believed to be metastable
and extremely long-lived even compared to cosmologi-
cal time scales. Thus, if we find multiple local minima
of the effective potentials derived from string/M theory
compactification, the appropriate interpretation is that
string/M theory has multiple configurations, the vacua.

Now, ever since the first studies of string compactifi-
cation, it has appeared that choices were involved, at the
very least the choice of compactification manifold, and
other discrete choices, leading to multiple vacua. How-
ever, it was long thought that this might be an artifact of
perturbation theory, or else not very interesting, as the
constraints of fitting the data would pick out a unique
candidate solution. While occasional suggestions to the
contrary were made, as in Banks (1995b); Linde (2005);
Schellekens (1998); Smolin (1997), these were not sup-
ported by enough evidence to attract serious attention.

This has changed in recent years, as increasingly de-
tailed arguments have been developed for the existence
of a large number of candidate vacua within string/M
theory. (The bulk of our review will be devoted to these
arguments, so we defer the references to there.) These
vacua realize different values of the cosmological term,
enabling an “anthropic” solution of the cosmological con-
stant problem, along the lines set out by Banks (1984);
Bousso and Polchinski (2000); Linde (1984b); Weinberg
(1987), which can naturally accomodate the growing ev-
idence for dark energy (see Copeland et al. (2006) for a
recent overview).

Does anything pick out one or a subset of these vacua
as the preferred candidates to describe our universe? At
this point, we do not know. But, within the consider-
ations we discuss in this review, there is no sign that
any of the vacua are preferred. So far as we know, any
sufficiently long-lived vacuum which fits all the data,
including cosmological observations, is an equally good
candidate to describe our universe. This is certainly
how we proceed in analogous situations in other areas
of physics. The analogy leads to the term “landscape of
string vacua” and a point of view in which we are willing
to consider a wide range of possibilities for what selected
“our vacuum.” Indeed, an extreme point of view might
hold that, despite the evident centrality of this choice to
all that we will ever observe, nevertheless it might turn
out to be an undetermined, even “random” choice among
many equally consistent alternatives.

Of course, such a claim would be highly controver-
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sial. And, while in our opinion the idea must be taken
very seriously, it is far outrunning the present evidence.
String/M theory is a theory of quantum gravity, and
given our present limited understanding both of general
principles of quantum gravity and of its microscopic def-
inition, it is too early to take any definite position about
such claims. Rather, in this review, we will try to state
the evidence from various sides. To start with, since there
is as yet no precise definition of the effective potential in
string theory, we need to state our working definition,
and justify it within our present understanding of the
theory. Then, there are important differences between
other physical theories and quantum gravity, which sug-
gest various speculations about why some of the vacua
which appear consistent at the level of our discussion, ac-
tually should not be considered. Another point in which
quantum gravity plays an essential role is the idea that
early cosmology leads to a “measure factor,” an a pri-

ori probability distribution on the vacua which must be
taken into account in making predictions.

We discuss all of these points in Sec. III. While point-
ing out many incomplete aspects of the theory, whose
development might significantly change our thinking,
we conclude that at present there is no clear evidence
against, or well-formulated alternative to, the “null hy-
pothesis” which states that each of these vacua is a pri-
ori a valid candidate to describe our universe. In fact,
many of the suggested alternatives, at least within the
general framework of string theory, would themselves re-
quire a significant revision of current thinking about ef-
fective field theory, quantum mechanics, or inflationary
cosmology. Compared to these, the landscape hypothesis
appears to us to be a fairly conservative option. We will
argue as well that it can lead to testable predictions, per-
haps by finding better selection principles, or perhaps by
thinking carefully about the situation as it now appears.

To summarize the situation, while we have a criterion
that determines preferred values for the size and other
moduli, namely that our vacuum is a long-lived local
minimum of the effective potential, this criterion does
not determine the moduli uniquely, but instead gives us
a set of possibilities, the vacua. Let us make an ad hoc

choice of one of these vacua, and ask what physics it
would predict.

To first address the question of massless scalar fields,
while the moduli would still be fluctuating scalar fields,
as in other physical problems, their effects could be es-
timated by a linearized analysis. As always, this allows
for small fluctuations with frequency ω proportional to
the second derivatives of the effective potential. Then,
by quantum mechanics, the minimum energy of such a
fluctuation is E = ~ω, and thus we might expect to need
to do experiments at energies at least E or at distances
less than c/ω in order to see their effects. These are
standard ideas in particle physics, summarized by the
phrase that the effective potential could “lift” (give mass
to) the moduli fields and make them unobservable at en-
ergies less than E. Their only remaining effect is that

this physics, referred to as “moduli stabilization,” sets
the parameters in the actual solution, which enter into
computing physical predictions.

What do we expect for the energy scale E? Although
detailed computations may not be easy, the energy scales
which enter into such a computation include the Planck
scale, the string tension, and the inverse size of the extra
dimensions ~c/R (often referred to as the “Kaluza-Klein
scale” or MKK). There is no obvious need for the lower
energy scales of present-day physics to enter, and thus
it seems plausible that a detailed analysis would lead to
all moduli gaining masses comparable to the new scales
of string theory. In this case, the prospects for direct
observation of physical effects of the moduli would be
similar to those for direct observation of excited string
modes or of the extra dimensions, in other words a real
possibility but not a particularly favored one.

It is possible that some moduli might gain lower masses
and thus have more direct experimental consequences.
One class of observational bounds on the masses of mod-
uli arise from from fifth-force experiments; these are im-
portant for masses less than about 10−3eV. A stronger
bound comes from cosmology; masses up to 10TeV or
more are constrained by the requirement that energy
trapped in oscillations of the moduli fields should re-
lax before primordial nucleosynthesis (Banks et al., 1994;
de Carlos et al., 1993). Both bounds admit loopholes,
and thus this theoretical possibility is of particular inter-
est for phenomenology.

How does one compute the effective potential in string
theory? For a long time, progress in this direction was
very slow, due to the belief that in the supersymmetric
compactifications of most interest, the effective potential
would arise entirely from nonperturbative effects. This
brought in the attractive possibility of using asymptotic
freedom and dimensional transmutation to solve the hi-
erarchy problem (Witten, 1981a), but also the difficulty
that such effects could only be computed in the simplest
of theories.

Other possibilities were occasionally explored. A par-
ticularly simple one is to turn on background magnetic
fields (or generalized p-form magnetic fields) in the ex-
tra dimensions. These contribute the usual B2 term to
the energy, but since they transform as scalars in the ob-
servable four dimensions this preserves Poincaré symme-
try, and thus such configurations still count as “vacua.”
Furthermore, writing out the B2 term in a curved back-
ground, one sees that it depends non-trivially on the
metric and thus on the moduli, and thus it is an inter-
esting contribution to the effective potential for moduli
stabilization. However, while this particular construc-
tion, usually called the flux potential, is simple, the lack
of understanding of other terms in the effective potential
and of any overall picture inhibited work in this direction.

Over the last few years, this problem has been solved,
by combining this simple idea with many others: the con-
cepts of superstring duality, other techniques for comput-
ing nonperturbative effects such as brane instantons, and
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mathematical techniques developed in the study of mir-
ror symmetry, to compute a controlled approximation to
the effective potential in a variety of string and M theory
vacua. The basic result is that these effective potentials
can stabilize moduli and lead to supersymmetry breaking
with positive cosmological constant, just as is required to
get a vacuum which could describe our universe. One can
go on to get more detailed results, with applications in
particle physics and cosmology which we will discuss.

We have now finished the non-technical summary of
the basic material we will cover in this review, and turn
to an outline. In Sec. II, we assume a general familiarity
with particle physics concepts, but not necessarily with
string theory. Thus, we begin with an overview of the ba-
sic ingredients present in the different 10d string theories,
and the known types of compactification. We then dis-
cuss some of the data needed to specify a vacuum, such as
a choice of Calabi-Yau manifold, and a choice of moduli.
We then explain in general terms how the fluxes can be
expected to induce potentials for moduli of the metric of
the extra-dimensional manifold, M . Finally, we describe
some of the current applications of flux vacua: to models
of the cosmological constant, to particle physics, and to
early universe cosmology.

In Sec. III, we begin to assume more familiarity with
string theory, and critically examine the general frame-
work we will use in the rest of the paper: that of 10d
and 4d effective field theory. While our present day un-
derstanding of physics fits squarely into this framework,
there are conceptual reasons to worry about its validity
in a theory of quantum gravity.

In Sec. IV, we turn to detailed examples of concrete
constructions of flux vacua. These include the simplest
constructions which seem to fix all moduli, in both the
IIb and the IIa theories. We also comment on recent
progress, which suggests that there are many extensions
of these stories to unearth.

It will become clear, from both the general arguments
in Sec. II, and the concrete examples in Sec. IV, that the
number of apparently consistent quasi-realistic flux vacua
is extremely large, perhaps greater than 10500. There-
fore, we will need to use statistical reasoning to survey
broad classes of vacua. In Sec. V, we describe a general
framework for doing this, and give an overview of the
results.

We conclude with a discussion of promising directions
for further research in Sec. VI.

II. A QUALITATIVE PICTURE

We begin by briefly outlining the various known classes
of quasi-realistic compactifications, to introduce termi-
nology, give the reader a basic picture of their physics,
and explain how observed physics (the Standard Model)
is supposed to sit in each. A more detailed discussion of
each class will be given in Sec. IV, while far more com-
plete discussions can be found in (Green et al., 1987a,b;

Johnson, 2003; Polchinski, 1998a,b; Zwiebach, 2004).
We then introduce some of the mathematics of the

compactification manifolds, particularly the Calabi-Yau
manifolds, to explain why moduli are more or less in-
evitable in these constructions. Even more strikingly,
this mathematics suggests that the number of types of
matter in a typical string/M theory compactification is
of order hundreds or thousands, far more than the 15 or
so (counting the quarks, leptons and forces) which we
have observed to date. Thus, a central problem in string
compactification is to explain why most of this matter is
either very massive or hidden (so far), and give us a good
reason to believe in this seemingly drastic exception to
Occam’s razor.

In the next subsection, we explain flux compactifica-
tion, and how it solves the problem of moduli stabiliza-
tion. In particular, it becomes natural that almost all
moduli fields should be very massive, explaining why they
are not seen.

We then explain, following Bousso and Polchinski
(2000), why flux compactifications in string theory lead
to large numbers of similar vacua with different values
of the cosmological constant, leading to an “anthropic”
solution of the cosmological constant problem. This so-
lution depends crucially on having the many extra types
of unobserved matter we just mentioned and might be
regarded as the “justification” of this generic feature of
string compactification.

Finally, we outline some of the testable consequences
this picture might lead to. These include not just observ-
able effects of the moduli, but also calculable models of
inflation, and new mechanisms for solving the hierarchy
problem of particle physics.

A. Overview of string and M theory compactification

String/M theory is a theory of quantum gravity, which
can at present be precisely formulated in several weakly
coupled limits. There are six such limits; five of these
are the superstring theories in ten space-time dimensions
(Polchinski, 1998a,b), called type IIa, type IIb, heterotic
E8 ×E8, heterotic SO(32) and type I. In addition, there
is an eleven dimensional limit, usually called M theory
(Duff, 1996). All of these limits are described at low en-
ergies by effective higher dimensional supergravity theo-
ries. Arguments involving duality (Bachas et al., 2002;
Polchinski, 1996) as well as various partial nonpertur-
bative definitions (Aharony et al., 2000; Banks, 1999)
strongly suggest that this list of these weakly coupled
limits is complete, and that all are limits of a single uni-
fied theory.

A quasi-realistic compactification of string/M theory is
a solution of the theory, which looks to a low energy ob-
server like a four dimensional approximately Minkowski
space-time, with physics roughly similar to that of the
Standard Model coupled to general relativity. The mean-
ing of “roughly similar” will become apparent as we pro-
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ceed, but certainly requires obtaining the correct gauge
group, charged matter content and symmetries, as well
as arguments that the observed coupling constants and
masses can arise.

Now, of the six weakly coupled limits, the type II the-
ories and M theory have 32 supercharges and (at least at
first sight) do not include Yang-Mills sectors, a problem
which must be solved to get quasi-realistic compactifica-
tions. The other three theories have 16 supercharges and
include Yang-Mills sectors, SO(32) from the open strings
in type I, and either E8 × E8 or SO(32) in the heterotic
strings. On the other hand, by ten-dimensional super-
symmetry, the only fermions with Yang-Mills quantum
numbers are the gauginos, transforming in the adjoint of
the gauge group. Thus, we must explain how such mat-
ter can give rise to the observed quarks and leptons, to
claim we have a quasi-realistic compactification.

Although there is a rich theory of string compactifica-
tion to diverse dimensions, here we restrict attention to
quasi-realistic compactifications. The original models of
this type, the E8 ×E8 heterotic string compactified on a
Calabi-Yau manifold (Candelas et al., 1985), have N = 1
supersymmetry, and unify SU(3) × SU(2) × U(1) into a
simple grand unified gauge group such as SU(5), SO(10)
or E6.

Let us briefly discuss the important physical scales in
a compactification. Of course, one of the main goals is
to explain the observed four dimensional Planck scale,
which we denote MP,4 or simply MP . By elementary
Kaluza-Klein reduction of D-dimensional supergravity,

MD−2
P,D

∫

M×IR3,1

dDx
√
gR(D) →

(VolM)MD−2
P,D

∫

IR3,1

d4x
√
gR(4) + · · · ,

this will be related to the D-dimensional Planck scale
MP,D, and the volume of the compactification manifold
Vol(M). Instead of the volume, let us define the Kaluza-
Klein scale

MKK = 1/V ol(M)1/(D−4),

at which we expect to see Kaluza-Klein excitations; the
relation then becomes

M2
P,4 =

MD−2
P,D

MD−4
KK

. (1)

In the simplest (or “small extra dimension”) picture, used
in the original work on string compactification, all of
these scales are assumed to be roughly equal. If the Yang-
Mills sector is also D-dimensional, this is forced upon us,
to obtain an order one four-dimensional gauge coupling;
there are other possibilities as well.

1. Supersymmetry

There are many reasons to focus on compactifica-
tions with low energy N = 1 supersymmetry.1 The
best reasons to focus on supersymmetric candidates for
weak scale physics, come from the bottom-up perspec-
tive. SUSY suggests natural extensions of the Standard
Model such as the minimal supersymmetric Standard
Model (MSSM) (Dimopoulos and Georgi, 1981), or non-
minimal SSM’s with additional fields. These models can
solve the hierarchy problem, can explain coupling unifica-
tion, can contain a dark matter candidate, and have other
attractive features. But so far, all this is only suggestive,
and these models tend to have other problems, such as
reproducing precision electroweak measurements and a
(presumed) Higgs mass MH ≥ 113GeV. Thus, many al-
ternative models which can explain the hierarchy, and
even the original “desert” scenario which postulates no
new matter below the GUT scale, are at this writing still
in play.

Since collider experiments with a good chance of de-
tecting TeV scale supersymmetry are in progress at Fer-
milab and scheduled to begin soon at Cern, the question
of what one can expect from theory has become very
timely. We have just given the standard bottom-up ar-
guments for low energy SUSY, and these were the orig-
inal motivation for the large effort devoted to studying
such compactifications of string/M theory over the past
twenty years. From this study, other top-down reasons
to focus on SUSY have emerged, having more to do with
the calculational power it provides. Let us summarize
some of these motivations.

First, there are fairly simple scenarios in which an as-
sumed high scale N = 1 supersymmetry, is broken by
dynamical effects at low energy. In such compactifica-
tions, supersymmetry greatly simplifies the computation
of the four dimensional effective Lagrangian, as powerful
physical and mathematical tools can be brought to bear.
Now this may be more a question of theoretical conve-
nience than principle, as in many models (such as the
original GUT’s) perturbation theory works quite well at
high energy. But, within our present understanding of
string/M theory, it is quite important.

Second, as we will discuss in Sec. II.F.2, supersymme-
try makes it far easier to prove metastability, in other
words that a given vacuum is a local minimum of the ef-
fective potential. In particle physics terms, metastability
is the condition that the scalar field mass terms satisfy
M2

i ≥ 0. Now in supersymmetric theories, there is a
bose-fermi mass relation, M2

Bose = MFermi(MFermi −
X), where X is a mass scale related to the scale of super-
symmetry breaking. Thus, all one needs is |MFermi| >>
X , to ensure metastability.

1 As is well known, N > 1 supersymmetry in d = 4 does not allow
for chiral fermions.
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At first, this argument may not seem very useful, as
in many realistic models the observed fermions all have
MFermi ≤ X . But, of course, this is why these fermions
have already been observed. As it will turn out, typical
string compactifications have many more particles, and
this type of genericity argument will become very pow-
erful.

Note that neither of these arguments refers directly to
the electroweak scale and the solution of the hierarchy
problem. As we formulate them more carefully, we will
find that their requirements can be met even if supersym-
metry is broken so far above the electroweak scale that
it is irrelevant to the hierarchy problem.

This will lead to one of the main conclusions of the
line of work we are reviewing, which is that TeV scale
supersymmetry is not inevitable in string/M theory com-
pactification. Rather, it is an assumption with a variety
of good theoretical motivations, which we can expect to
hold in some string/M theory compactifications. How-
ever, there are a priori three other qualitatively distinct
classes of models. There are models where supersym-
metry is broken at scales which are well described by
four-dimensional effective field theory, allowing us to use
4d tools to control the analysis, but in which it is not
directly relevant to solving the hierarchy problem; there
are models where SUSY is broken at the KK scale, and
there are even arguments in self-consistent perturbation
theory, such as (Silverstein, 2001), for other classes of
models, in which supersymmetry is broken at the string
scale.

In any case, for the reasons we just discussed, we will
proceed with the assumption that our compactification
preserves d = 4, N = 1 supersymmetry at the KK scale,
and ask what this implies for the compactification man-
ifold M . In the compactifications we discuss, this is re-
lated to the existence of covariantly constant spinors on
M , which is determined by its holonomy group, denote
this Hol(M). We omit the details of this standard ar-
gument for lack of space (see Green et al. (1987b)), but
cite the main result. This is that the number of super-
symmetries in d = 4, is equal to the number of super-
charges in the higher dimensional theory, divided by 16,
times the number of singlets in the decomposition of a
spinor 4 of SO(6) under Hol(M). In the generic case of
Hol(M) ∼= SO(6) this is zero, so to get low energy super-
symmetry we require Hol(M) ⊂ SO(6), a condition on
the manifold and metric referred to as special holonomy.

All possible special holonomy groups were classified by
Berger (1955), and the results relevant for supersymme-
try in d = 4 are the following. For dim M = 6, as
would be needed to compactify the string theories, the
special holonomy groups are U(3) and SU(3), and sub-
groups thereof. The only choice of Hol(M) for which
the spinor of SO(6) contains a unique singlet is SU(3).
Spaces which admit a metric with this special holonomy
are known as Calabi-Yau manifolds; their existence was
proven in Yau (1977), and we will discuss some of their
properties later. One can show that the special holon-

omy metric is Ricci flat, and thus this choice takes us a
good part of the way towards solving the ten-dimensional
supergravity equations of motion.

For dim M = 7, as would be used in compactifying
M theory, the only choice leading to a unique singlet is
Hol(M) ∼= G2. Again, manifolds of G2 holonomy carry
Ricci flat metrics, so this leads to another new class of
compactifications.

These are two of three classes of manifold which are
of particular interest for quasi-realistic string/M theory
compactification, the G2 holonomy manifolds and the
Calabi-Yau threefolds (these are complex manifolds, and
the standard nomenclature refers to their complex di-
mension, which is three). The third class are the “el-
liptically fibered Calabi-Yau fourfolds,” used in F the-
ory compactification. We will defer discussion of these
to Sec. IV; physically they are closely related to certain
type IIb compactifications.

The outcome of the discussion so far, reflecting the
state of the field in the late 1980’s, is that the three
theories with 16 supercharges and Yang-Mills sectors,
all admit compactification on Calabi-Yau manifolds to
d = 4 vacua with N = 1 supersymmetry, and gauge
groups of roughly the right size to produce GUT’s. On
the other hand, the theories with 32 supercharges have
various problems; the type II theories seem to lead to
N = 2 supersymmetry and too small gauge groups, while
M theory on a smooth seven dimensional manifold can-
not lead to chiral fermions (Witten, 1981b). In fact all of
these problems were later solved, but let us here follow
the historical development.

2. Heterotic string

The starting point for Candelas et al. (1985) (CHSW)
was the observation that the grand unified groups are
too large to obtain from the Kaluza-Klein construction
in ten dimensions, forcing one to start with a theory
containing ten-dimensional Yang-Mills theory; further-
more the matter representations 5+1̄0, 16 and 27 can be
easily obtained by decomposing the E8 adjoint (and not
from SO(32)), forcing the choice of the E8×E8 heterotic
string.

General considerations of effective field theory make it
natural for the two E8’s to decouple at low energy, so in
the simplest models, the Standard Model is embedded in
a single E8, leaving the other as a “hidden sector.” But
what leads to spontaneous symmetry breaking from E8

to E6 or another low energy gauge group? This comes
because we can choose a non-trivial background Yang-
Mills connection on M , let us denote this V . Such a con-
nection is not invariant under E8 gauge transformations
and thus will spontaneously break some gauge symmetry,
at the natural scale of the compactification MKK . The
remaining unbroken group at low energies is the comm-
mutant in E8 of the holonomy group of V . Simple group
theory, which we will see in an example below, implies
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that to realize the GUT groups E6, SO(10) and SU(5),
the holonomy of V must be SU(3), SU(4) or SU(5) re-
spectively.

Not only is E8 gauge symmetry breaking possible, it is
actually required for consistency. As part of the Green-
Schwarz anomaly cancellation mechanism, the heterotic
string has a three-form field strength H̃3 with a modified
Bianchi identity,

dH̃3 =
α′

4
(Tr(R ∧R) − Tr(F2 ∧ F2)) . (2)

In the simplest solutions, H̃3 = 0, and then consistency
requires the right hand side of (2) to vanish identically.
The solutions of Candelas et al. (1985) accomplish this by
taking the “standard embedding,” in which one equates
the E8 gauge connection on M (in one of the two E8’s)
with the spin connection ω, i.e. considers an E8 vector
bundle V → M which is V = TM . In this case, since
F = R for one of the E8’s, and vanishes for the other,
(2) is trivially satisfied, and (by considerations we give
in Sec. IV) so are the Yang-Mills equations.

Thus, any Calabi-Yau threefoldM , gives rise to at least
one class of heterotic string compactifications, the CHSW
compactifications. The holonomy of V is the same as that
of M , namely SU(3), and thus this construction leads to
an E6 GUT. Below the scale MKK , there is a 4d N = 1
supersymmetric effective field theory governing the light
fields. In the CHSW models, these include

• A pure E8 N = 1 SYM theory, the hidden sector.

• An “observable” E6 gauge group. One can also
make simple modifications to V (tensoring with
Wilson lines) to accomplish the further breaking
to SU(3) × SU(2) × U(1) at MKK , so typically in
these models MGUT ∼MKK .

• Charged matter fields. The reduction of the E8

gauginos will give rise to chiral fermions in various
4d matter (chiral) multiplets. The adjoint of E8

decomposes under E6 × SU(3) as

248 = (27,3) ⊕ (27, 3̄) ⊕ (78,1) ⊕ (1,8) . (3)

Thus we need the spectrum of massless modes aris-
ing from charged matter on M in various SU(3)
representations. As explained in Green et al.
(1987b), this is determined by the Dolbeault co-
homology groups of M ; thus

n27 = h2,1(M), n27 = h1,1(M) (4)

are the numbers of chiral multiplets in the 27 and
27 representations of E6. Since for a Calabi-Yau
manifold the Euler character χ = 2(h1,1−h2,1), we
see that the search for three-generationE6 GUTs in
this framework will be transformed into a question
in topology: the existence of Calabi-Yau threefolds
with |χ| = 6. This problem was quickly addressed,

and quasi-realistic models were constructed, be-
ginning with Greene et al. (1986); Tian and Yau
(1986).

• Numerous gauge neutral moduli fields. The Ricci-
flat metric on the Calabi-Yau space M is far from
unique. By Yau’s theorem (Yau, 1977), it comes in
a family of dimension 2h2,1(M) + h1,1(M). As we
will describe at much greater length below, the pa-
rameters for this family, along with h1,1(M) axionic
partners, are moduli corresponding to infinitesi-
mal deformations of the complex structure and the
Kähler class of M . In addition, there is also the
dilaton chiral multiplet, containing the field which
controls the string coupling, and an axion partner.

• More model dependent modes arising from the
(1,8) in (3). These correspond to infinitesimal de-
formations of the solutions to the Yang-Mills field
equations, and thus are also moduli, in this case
moduli for the gauge connection V . By giving vac-
uum expectation values to these scalars, one moves
out into a larger space of compactifications with
V 6= TM .

It should be emphasized that the CHSW models, based
on the standard embedding V ∼= TM , are a tiny frac-
tion of the heterotic Calabi-Yau compactifications. More
generally, a theorem of Donaldson, Uhlenbeck and Yau
relates supersymmetric solutions of the Yang-Mills equa-
tions (equivalently, solutions of the hermitian Yang-Mills
equations) to stable holomorphic vector bundles V over
M . Many such bundles exist which are not in any way
related to TM .

Solutions of the Bianchi identity (2) then become more
involved. Instead of solving it exactly, one can argue
that if one solves (2) in cohomology, then there is no
obstruction to extending the solution order-by-order in
an expansion in the inverse radius of M (Witten and
Witten, 1987).

These more general models are of great interest be-
cause they allow for more general phenomenology. In-
stead of GUTs based on E6, which contain many unob-
served particles per generation, one can construct SO(10)
and SU(5) models. The technology involved in con-
structing such bundles is quite sophisticated; some state
of the art constructions appear in Donagi et al. (2005)
and references therein.

One can then go on to compute couplings in the ef-
fective field theory at the compactification scale. Per-
haps the most characteristic feature of weakly coupled
heterotic models is a universal relation between the four
dimensional Planck scale, the string scale, and the gauge
coupling, which follows because all interactions are de-
rived from the same closed string diagram. At tree level,
this relation is

M2
Planck,4 ∼ M2

KK

g
8/3
Y M

. (5)
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Since the observed gauge couplings are order one, this
clearly requires the extra dimensions to be very small.
Actually, if we put in the constants, this relation leads
to a well known problem, as discussed in Witten (1996c)
and references there: if we take a plausible grand unified
coupling g2

Y M ∼ 1/25, one finds MKK ∼ 1018GeV which
is far too large for the GUT scale. Various solutions to
this problem have been suggested, such as large one-loop
corrections to Eq. (5) (Kaplunovsky, 1988).

Perhaps the most interesting of these proposed solu-
tions is in the so-called “heterotic M theory” (Horava
and Witten, 1996; Witten, 1996c). Arguments from su-
perstring duality suggest that the strong coupling limit
of the ten-dimensional E8×E8 heterotic string is eleven-
dimensional M theory compactified on an interval; the
two ends of the interval provide ten-dimensional “end of
the world branes” each carrying an E8 super Yang-Mills
theory. In this theory, while much of the previous dis-
cussion still applies, the relation Eq. (5) is drastically
modified.

Finally, there are “non-geometric” heterotic string con-
structions, based on world-sheet conformal field theory,
such as (Antoniadis et al., 1987; Kawai et al., 1986, 1987;
Narain et al., 1987). In some cases these can be argued to
be equivalent to geometric constructions (Gepner, 1987).
The full picture is not at all clear at present.

3. Brane models

Following the same logic for type II theories leads to
N = 2 supersymmetric theories. Until the mid 1990s, the
only known way to obtain N = 1 supersymmetry from
type II models was through “stringy” compactifications
on asymmetric orbifolds (Narain et al., 1987). A powerful
theorem of Dixon et al. (1987) demonstrated that this
would never yield the Standard Model, and effectively
ended the subject of type II phenomenology for 8 years.

After the discovery of Dirichlet branes (Polchinski,
1995) this lore was significantly revised, and quasi-
realistic compactifications can also arise in both type IIa
and type IIb theories. A recent review with many ref-
erences appears in Blumenhagen et al. (2005a). Since
it is in the type II case that flux compactifications are
presently most developed, we need to discuss this in some
detail.

Dirichlet branes provide a new origin for non-abelian
gauge symmetries (Witten, 1996a). Furthermore, inter-
secting branes (or branes with worldvolume fluxes) can
localize chiral matter representations at their intersection
locus (Berkooz et al., 1996). And finally, an appropri-
ate choice of D-branes can preserve some but not all of
the supersymmetry present in a type II compactification.
Thus, type II strings on Calabi-Yau manifolds, with ap-
propriate intersecting brane configurations, can give rise
to chiral N = 1 supersymmetric low energy effective field
theories.

There are three general classes of type II N = 1 brane

compactifications on Calabi-Yau manifolds:

• IIa orientifold compactifications with D6 branes.

• IIb orientifold compactifications with D7 and D3
branes.

• Generalized type I compactifications; in other
words IIb orientifold compactifications with D9 and
D5 branes.

After the choice of Calabi-Yau, a particular compactifica-
tion is specified by a choice of orientifold projection (Gi-
mon and Polchinski, 1996), and a choice of how the vari-
ous Dirichlet branes are embedded in space-time. Each of
the branes involved is “space-filling,” meaning that they
fill all four Minkowski dimensions; the remaining spatial
dimensions (p − 3 for a Dp-brane) must embed in a su-
persymmetric cycle of the compactification manifold (to
be further discussed in Sec. IV). Finally, since Dirichlet
branes carry Yang-Mills connections, just as in the het-
erotic construction one must postulate the background
values for these fields. The nature of this last choice de-
pends on the class of model; it is almost trivial for IIa,
and for the generalized type I model with D9 branes one
uses essentially the same vector bundles as in the het-
erotic construction, while in the IIb model with D7 and
D3 branes, the number of choices here are intermediate
between these extremes.

In a full analysis, a central role is played by the so-
called tadpole conditions. We will go into more de-
tail about one of these (the D3 tadpole condition) later.
These conditions have more than one physical interpreta-
tion. In a closed string language, they express the condi-
tion that the total charge on the compactification man-
ifold, including Dirichlet branes, orientifold planes and
all other sources, must vanish, generalizing the Gauss’
law constraint that the total electric charge in a closed
universe must vanish. In an open string language, they
are related to anomalies, and generalize the condition (2)
related to anomaly cancellation in heterotic strings. In
any case, a large part of the general problem of finding
and classifying brane models, is to list the possible su-
persymmetric branes, and then to find all combinations
of such branes which solve the tadpole conditions.

The collection of all of these choices (orientifold,
Dirichlet branes and vector bundles on branes) is directly
analogous to and generalizes the choice of vector bundle
in heterotic string compactification. In some cases, such
as the relation between heterotic SO(32) and type I com-
pactification, there is a precise relation between the two
sets of constructions, using superstring duality. There are
also clear relations between the IIa and both IIb brane
constructions, based on T-duality and mirror symmetry
between Calabi-Yau manifolds.

The predictions of the generic brane model are rather
different from the heterotic models. Much of this is be-
cause the relation between the fundamental scale and the
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gauge coupling, analogous to Eq. (5), takes the form

g2
Y M =

gsl
p−3
s

VolX
,

where VolX is the volume of the cycle wrapped by the
particular branes under consideration. Since a priori,
volumes of cycles have no direct relation to the total
volume of the compactification manifold, one can have
many more possible scenarios for the fundamental scales
in these theories, including large extra dimension mod-
els. A related idea is that the branes responsible for
the observed (standard model) degrees of freedom can
be localized to a small subregion of the compactification
manifold, allowing its energy scales to be influenced by
“warping” (Randall and Sundrum, 1999a).

Even if one has small extra dimensions, coupling uni-
fication is generally not expected in brane models. This
is because the different gauge groups typically arise from
stacks of branes wrapping different cycles, with different
volumes, so the couplings have no reason to be equal.

To conclude this overview, let us mention two more
classes of compactification which can be thought of as
strong coupling limits of the brane constructions, and
share many of their general properties. First, there are
compactifications of M theory on manifolds of G2 holon-
omy; these are related to IIa compactification with D6-
branes by following the general rules of IIa–M theory
duality. Second, there are F theory compactifications
on elliptically fibered fourfolds; these can be obtained as
small volume limits of M theory on Calabi-Yau fourfolds,
or by varying parameters in IIb compactification with D7
and D3 branes. Both of these more general classes have
duality relations with the heterotic string constructions,
so that (in a still only partially understood sense) all
of the N = 1 compactifications are connected via su-
perstring dualities, supporting the general idea that all
are describing vacuum states of a single all-encompassing
theory.

B. Moduli fields

In making any of the string compactifications we just
described, in order to solve the Einstein equations, we
must choose a Ricci-flat metric gij on the compactifica-
tion manifoldM . Now, given such a metric, it will always
be the case that the metric λgij obtained by an over-
all constant rescaling is also Ricci-flat, because the Ricci
tensor transforms homogeneously under a scale transfor-
mation. Thus, Ricci-flat metrics are never unique, but
always come in families with at least one parameter.

Mathematically, the parameter space of distinct (dif-
feomorphism inequivalent) Ricci-flat metrics is by defi-
nition the moduli space of Ricci-flat metrics. This is a
manifold, possibly with singularities, and thus we to fully
describe it we would need to introduce charts and local
coordinates in each chart. Let us work locally, and call
these coordinates tα with 1 ≤ α ≤ n.

What is the physics of this? In general treat-
ments of Kaluza-Klein reduction, one decomposes the
D-dimensional equations of motion as a sum of terms,
say for a massless scalar field as φ

0 = (ηµν∂µ∂ν + ∆M )φ,

where ∆M is the scalar Laplacian on M . One then writes
the higher dimensional field φ as a sum over eigenfunc-
tions fk of ∆M ,

φ(x, y) =
∑

k

φk(x)fk(y).

Substituting, one finds that the eigenvalues λk become
the masses squared of an infinite set of fields, the
“Kaluza-Klein modes.”

Doing the same in the presence of moduli, we might
consider the parameters ti as undetermined, and write

∫

M×IR3,1

dDx
√
GR(D)

[

G(~t) + δG
]

,

where G(~t) is an explicit parameterized family of Ricci
flat metrics on M , and δG are the small fluctuations
around it. We then expand δG in eigenfunctions, to find
the spectrum of the resulting low energy effective field
theory.

However in doing this, we should be careful not to
double count degrees of freedom. Variations δG which
correspond to varying moduli,

δGα ≡ ∂G(~t)

∂tα

are perfectly good variations – which must therefore cor-
respond to fields in the four-dimensional theory. Working
out the linearized equations, one finds that each coordi-
nate ti becomes a massless field. Rather than do this
computation explicitly, one can simply note that com-
patibility between the equations of motion in D dimen-
sions and four dimensions, requires that a small constant
variation of ti must lead to a solution in four dimensions.
This will only be the case if it is massless.

Intuitively, since we get a valid compactification for
any particular choice of Ricci-flat metric, locality de-
mands that we should be able to vary this choice at dif-
ferent points in four dimensional space-time. By general
principles, such a local variation must be described by
a field. The situation is analogous to that of a sponta-
neously broken symmetry. By locality, we can choose the
symmetry breaking parameter to vary in space-time, and
if the parameter was continuous it will lead to a massless
field, a Goldstone mode.

However, this is only an analogy; there is a crucial dif-
ference between the two situations. The origin of the
Goldstone mode in symmetry breaking implies of course
that the physics of any constant configuration of this field
must be the same (since all are related by a symmetry).
On the other hand, moduli can exist without a symmetry.
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In this case, physics can and usually will depend on its
value. Thus, one finds a parameterized family of physi-

cally distinct vacua, the moduli space M, connected by
simply varying massless fields.

While this situation is almost never encountered in real
world physics, this is not because it is logically inconsis-
tent. Rather, it is because in the absence of symmetry,
there is no reason the effective potential should not de-
pend on all of the fields. Thus, even if we were to find
a family of vacua at some early stage of our analysis, in
practice the vacuum degeneracy would always be broken
by corrections at some later stage.

A well known loophole to this statement is provided
by supersymmetric quantum field theories. Due to non-
renormalization theorems, such moduli spaces often per-
sist to all orders in perturbation theory or even beyond.
These theories manifest different low energy physics at
distinct points in M, and thus provide a theoretical ex-
ample of the phenomenon we are discussing here. 2

Conversely, one might argue that, given that super-
symmetry is broken in the real world, any moduli we
find at this early stage will be lifted after supersymme-
try breaking. We will come back to this idea later, once
we have more of the picture. We will eventually argue
that while this is true, in models with low energy su-
persymmetry breaking, it is more promising to consider
stabilization of many of the moduli above the scale of
supersymmetry breaking. However, this is a good illus-
tration of the general idea that it is acceptable to have
moduli at an early stage in the analysis, which can be
lifted by corrections to the potential at some lower en-
ergy scale.

Finally, we should note that, whether or not the mod-
uli play an important role in observable physics, they are
very important in understanding the configuration space
of string theory. In particular, in many of the explicit
constructions we discussed above, as well as in the ex-
plicit non-geometric constructions we briefly mentioned,
one finds that apparently different constructions in fact
lead to vacua which differ only in the values of mod-
uli, and thus one can be turned into another by varying
moduli. In this situation, there need be no direct rela-
tion between the number of constructions, and the final
number of vacua after moduli stabilization.

In early exploratory work, this point was not fully ap-
preciated. As a relevant example, in Lerche et al. (1987),
the number of lattice compactifications was estimated to
be 101500. Thus already this work raised the possibil-
ity that the number of string vacua might be very large.
However, these were very simple vacua with unbroken su-

2 Some have argued that this is in fact a good reason to consider
models with high-energy supersymmetry breaking, where non-
renormalization theorems do not interfere with the perturbative
generation of sufficiently generic potentials to stabilize all moduli
at a high scale (Silverstein, 2004b).

persymmetry,3 and at the time it was generally thought
that the number of quasi-realistic vacua would be much
smaller. An argument to this effect was that since mod-
uli were not stabilized in these models, it might be (as
is now thought to be the case) that this large number of
compactifications were simply special points contained
in a far smaller number of connected moduli spaces of
vacua. Then, in similar quasi-realistic models with bro-
ken supersymmetry and an effective potential, the num-
ber of actual vacua would be expected to be comparable
to the (perhaps small) number of these connected moduli
spaces.

Such debates could not be resolved at that time. To
make convincing statements about the number and dis-
tribution of vacua, one needs to understand the effective
potential and moduli stabilization.

C. Calabi-Yau manifolds and moduli spaces

While our main concern is moduli spaces of Ricci flat
metrics, we should first give the reader some examples of
Calabi-Yau threefolds, so the discussion is not completely
abstract. Let us describe the simplest known construc-
tions, as discussed in Green et al. (1987b).

1. Examples

The simplest example to picture mentally is the
“blown-up T 6/ZZ3 orbifold.” We start with a six-torus
with a flat metric and volume V , chosen to respect a dis-
crete ZZ3 symmetry. To be more precise, we take three
complex coordinates z1, z2, and z3, and define the torus
by the identifications

zi ∼= zi + 1 ∼= zi + e2πi/3.

We then identify all sets of points related by the symme-
try

zi → e2πi/3zi for all i.

A generic orbit of this action contains 3 points (the or-
der of the group) and thus the resulting manifold has
volume V/3. One can easily show that if all orbits had
this property (the group is freely acting), the quotient
space would be a manifold. However, it is not so; for
example the point (0, 0, 0) is a fixed point. In fact there
are 27 such fixed points.

While one can use such an “orbifold” directly for string
compactification, one can also modify it to get a smooth
Calabi-Yau, the “blown-up orbifold.” To do this, one re-
moves a neighborhood of each of the fixed points, and

3 Or with supersymmetry broken at the string scale with vanish-
ing dilaton potential, so that the perturbative construction is
unstable against loop corrections.
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replaces it with a Ricci flat space whose metric asymp-
totes to that of the original quotient space. One can then
“smooth out” this metric to achieve Ricci flatness every-
where. In a sense, the string does this automatically, so
the blow-up is a correct guide to the resulting physics.

The blow-up process introduces topology at each
of the fixed points; as it turns out, a two-cycle and a
four-cycle. Thus, the final result is a smooth Calabi-Yau
with second Betti number b2 = dim H2(M, IR) = 27.
One can also show that the third Betti number b3 = 2.

A second simple example is the “quintic hypersurface”
in IP4. This is the space of solutions of a complex equa-
tion of degree five in five variables zi, such as

z5
1 + z5

2 + z5
3 + z5

4 + z5
5 = 0, (6)

where the variables are interpreted as coordinates on
complex projective space, i.e. we count the vectors
(z1, z2, z3, z4, z5) and (λz1, λz2, λz3, λz4, λz5) as repre-
senting the same point, for any complex λ 6= 0. One
can show that the Euler character χ = −200 for this
manifold by elementary topological arguments ((Green
et al., 1987b), vol. II, 15.8). With a bit more work, one
finds all the Betti numbers, b0 = b2 = b4 = b6 = 1, and
b3 = 204. We omit this here, instead computing b3 by
other means in the next subsection.

The main point we take from these examples is that
it is easy to find Calabi-Yau threefolds with Betti num-
bers in the range 20–300; indeed, as we will see later in
Sec. V.D.3, this is true of most known Calabi-Yau three-
folds.

2. Moduli space - general properties

The geometry of a moduli space of Calabi-Yau man-
ifolds as they appear in string theory has been nicely
described in Candelas and de la Ossa (1990) (see also
Seiberg (1988); Strominger (1990)). Locally, it takes a
product form

M = MC ×MK (7)

where the first factor is associated with the complex
structure deformations of M and the second is associ-
ated with the Kähler deformations of M , complexified
by the B-field moduli.

These two factors enter into physical string compact-
ifications in rather different ways. At the final level of
the effective N = 1 theory, the most direct sign of this
is that the gauge couplings are primarily controlled by a
subset of the moduli:

• MK for heterotic and IIb compactifications;

• MC for IIa compactifications.

The main results we need for the discussion in this
section, are the relations between the Betti numbers of

the Calabi-Yau manifold M , and the dimensions of these
moduli spaces:

b2 = dim MK ; b3 = 2dim MC + 2. (8)

The first relation follows from Yau’s theorem, and is not
hard to explain intuitively. Since the Ricci flatness con-
dition is a second order PDE, at a linearized level, it
reduces to the condition that a deformation of a Ricci
flat metric must be a harmonic form. The Kähler mod-
uli space parameterizes deformations which come from
deforming the Kähler form, and thus its dimension is
the same as that of the space of harmonic two-forms,
which by Hodge’s theorem is b2. The second relation can
be understood similarly by relating the remaining metric
deformations to harmonic three-forms, given a bit more
complex geometry.

Mathematically, one can understand these moduli
spaces in great detail, and in principle exactly compute
many of the quantities which enter into the flux poten-
tial we will discuss shortly. Without going into the details
of this, let us at least look at an example, the complex
structure moduli space of the quintic hypersurfaces we
just discussed.

The starting point is the observation that we do not
need to take the precise equation Eq. (6), to get a Calabi-
Yau manifold. In fact, a generic equation of degree five
in the variables,

f(z) ≡
∑

1≤i,j,k,l,m≤5

cijklmzizjzkzlzm = 0, (9)

can be used. This equation contains 5 ·6 ·7 ·8 ·9/5! = 126
adjustable coefficients, denoted cijklm , and varying these
produces Calabi-Yau manifolds with different complex
structures. To be precise, there is some redundancy at
this point. One can make linear redefinitions zi → gj

i zj

using an arbitrary 5 × 5 matrix gj
i , to absorb 25 of the

coefficients. This leaves 101 undetermined coefficients, so
dim MC = 101. By Eq. (8), this implies that the Betti
number b3 = 2 · 101 + 2 = 204.

One can continue along these lines, defining the mean-
ing of a “generic equation,” and taking into account the
redundancy we just mentioned, to get a precise definition
of the 101-dimensional moduli space MC for the quin-
tic, and results for the moduli space metric, periods and
other data we will call on in Sec. IV and Sec. V. Similar
results can be obtained for more or less any Calabi-Yau
moduli space, and many examples can be found in the
literature on mirror symmetry. While the techniques are
rather intricate, it seems fair to say that at present this
is one of the better understood elements of the theory.

D. Flux compactification: Qualitative overview

Each of the weakly coupled limits of string/M theory
has certain preferred “generalized gauge fields,” which
are sourced by the elementary branes. For example, all
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closed string theories (type II and heterotic) contain the
“universal Neveu-Schwarz (NS) 2-form potential” Bij or

B(2) (henceforth, the superscript notation will always in-
dicate the degree of a form). Just as a one-form Maxwell
potential can minimally couple to a point particle, this
two-form potential minimally couples to the fundamen-
tal string world sheet. At least in a quadratic (free field)
approximation, the space-time action for the B field is a
direct generalization of the Maxwell action; we define a
field strength

H(3) = dB(2),

in terms of which the action is

S =

∫

d10x
√
g
(

R− (H(3))ijk(H(3))ijk + . . .
)

,

leading to an equation of motion

∂iH
(3)
ijk = δjk + . . .

where δjk is a source term localized on the world-sheets
of the fundamental strings.

The analogy with Maxwell theory goes very far. For
example, recall that some microscopic definitions of
Maxwell theory contain magnetic monopoles, particles
which are surrounded by a two-sphere on which the total
magnetic flux g =

∫

F (2) is non-vanishing. This mag-
netic monopole charge must satisfy the Dirac quantiza-
tion condition, e · g = 2π (in units ~ = 1). So too,
closed string theories contain five-branes, which are mag-
netically charged. A five-brane in ten space-time dimen-
sions can be surrounded by a three-sphere, on which the
total generalized magnetic flux

∫

H(3) is non-vanishing.
Again, it must be quantized, in units of the inverse elec-
tric charge (Nepomechie, 1985; Teitelboim, 1986).

Besides the NS two-form, the type II string theories
also contain generalized gauge fields which are sourced by
the Dirichlet branes, denoted C(p+1) with p = 0, 2, 4, 6 for
the IIa theory, and C(p+1) with p = 1, 3, 5 for the IIb. We
denote their respective field strengths F (p+2); these are
not all independent but satisfy the general “self-duality”
condition

∗F (p+2) = F (10−p−2) + non − linear terms.

To complete the catalog, the type I theory has C(2) (as
it has a D-string), while M theory has a three-form po-
tential C(4), which minimally couples to the supermem-
brane.

We are now ready to discuss flux compactification. The
general idea makes sense for any higher dimensional the-
ory containing a p+ 1 form gauge field for any p. Let us
denote its field strength as F (p+2).

Now, suppose we compactify on a manifold with a non-
trivial p+ 2 cycle Σ; more precisely the homology group
Hp+2(M) should be non-trivial, and Σ should be a non-
trivial element of homology. In this case, we can consider

a configuration with a non-zero flux of the field strength,
defined by the condition

∫

Σ

F (p+2) = n 6= 0 (10)

As a simple illustration – not directly realized in string
theory – we might imagine starting with Maxwell’s the-
ory in six dimensions, and compactifying on M = S2. In
this case, H2(S

2,ZZ) ∼= ZZ, and we can take a generator σ
to be the S2 itself. Thus, we are claiming that there ex-
ists a field configuration whose magnetic flux integrated
over S2 is non-zero. Indeed there is; we can see this by
considering the field of an ordinary magnetic monopole
at the origin of IR3, and restricting attention to an S2 at
constant radius R, to obtain the field strength

Bθφ = g sin θ dθ dφ.

While this solves Maxwell’s equations in three dimensions
by construction, one can easily check that such a mag-
netic field actually solves Maxwell’s equations restricted
to the S2.4 Thus, this is a candidate background field
configuration for compactification on S2.

Note that we have defined a flux which threads a non-
trivial cycle in the extra dimensions, with no charged
source on the S2. The monopole is just a pictorial device
with which to construct it. Appealing to the monopole
also allows us to call on Dirac’s argument, to see that
quantum mechanical consistency requires the flux n to
be integrally quantized (in suitable units).

The same construction applies for any p. Furthermore,
if we have a larger homology group, we can turn on an in-
dependent flux for each basis element σi of Hp+2(M, IR),

∫

σi

F (p+2) = ni, (11)

where 1 ≤ i ≤ dim Hp+2(M, IR) ≡ bp+2, the p+2’th Betti
number of the manifold M . In the case p = 0 of Maxwell
theory, one can see that any vector of integers ni is a
possible field configuration, by appealing to the mathe-
matics of vector bundles (these numbers define the first
Chern class of the U(1) bundle). Equally precise state-
ments for p > 0, or for the case in which the homology
includes torsion, are in the process of being formulated
(Moore, 2003).

Now, in Maxwell’s theory and its generalizations, turn-
ing on a field strength results in a potential energy pro-
portional to B2, the square of the magnetic field. Of
course, the presence of nontrivial E or B in our observed
four dimensions would imply spontaneous breaking of
Lorentz symmetry. By contrast, in our case, we can turn

4 One can avoid this (short) computation by noting that while the
magnetic field is a rotationally symmetric two-form on S2, there
is no rotationally symmetric one-form, so ∂iFij must vanish.
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on magnetic fluxes in the extra dimensions without di-
rectly breaking 4d Lorentz invariance. However, there
will still be an energetic cost, now proportional to F 2,
the square of the flux.

Now, the key point is that because the fluxes are
threading cycles in the compact geometry, this energetic
cost will depend on the precise choice of metric on M .
In other words, it will generate a potential on the moduli
space M. If this potential is sufficiently generic, then
minimizing it will fix the metric moduli.

In principle, this potential can be computed by start-
ing from the standard Maxwell lagrangian coupled to a
curved metric. One finds for the potential energy

V =

∫

M

dDy
√
GGijGklF

(2)
ik F

(2)
jl (12)

=

∫

M

F (2) ∧ (∗F )(D−2) (13)

where G is the metric on M . The second version, in
differential form notation and where ∗ denotes the D-
dimensional Hodge star, applies for any F (p+2) with the
replacement 2 → p + 2; here the metric enters in the
definition of ∗.

Now, if we substitute for G the family of Ricci flat
metrics G(~t) introduced in Sec. II.B, and do the integrals,
we will get an explicit expression for V (t), which we can
minimize. This is the definition of the flux potential; we
now have the technical problem of computing it.

At first, it is not clear that this can be done at all;
indeed we cannot even get started as no closed form ex-
pression is known for any Ricci flat metric on a com-
pact Calabi-Yau manifold. In principle the computations
could be done numerically, but working with solutions of
six dimensional nonlinear PDE’s is not very easy either,
and this approach is in its infancy (Douglas et al., 2006a;
Headrick and Wiseman, 2005). Fortunately, by building
on many mathematical and physical works, we now have
an approach which leads to a complete analytical solution
of this problem, as we will discuss in Sec. IV.

1. Freund-Rubin compactification

There are other Kaluza-Klein theories in which the
technical problem of computing Eq. (12) is far simpler,
and was solved well before string theory became a pop-
ular candidate for a unified theory. While these theories
are too simple to be quasi-realistic, they serve as good
illustrations. Let us consider one here, leaving more de-
tailed discussion to Sec. IV.

After it was realized that Nature employs non-abelian
gauge fields, the earliest idea of 5d unification was aug-
mented. Instead, theorists considered 4 +D dimensional
theories, with D of the dimensions compactified on a
space with a non-abelian isometry group. In this case,
dimensional reduction leads to a gauge group which con-
tains the isometry group. One can even find seven di-
mensional manifolds for which this is the Standard Model

gauge group, although chiral fermions remain a problem
for this idea.

In any case, the problem of explaining how and why the
extra D dimensions were stabilized in whatever configu-
ration was required to obtain 4d physics was first studied
in this context. A collection of historically significant ar-
ticles on Kaluza-Klein theory, with modern commentary,
can be found in Appelquist et al. (1987).

The first serious attempt we know of to explain
the “spontaneous compactification” of the extra D-
dimensions appeared in the work of Cremmer and Scherk,
who realized that by including extra fields beyond grav-
ity in 4 + D dimensions, stabilization of the compact
dimensions could be achieved in a reliable classical ap-
proximation (Cremmer and Scherk, 1976). This work
was extended by Luciani (1978) and reached more or less
modern form with the seminal paper of Freund and Ru-
bin (1980).

Let us see how the Freund-Rubin mechanism works
by again considering six dimensions, now in Einstein-
Maxwell theory. Compactifying to 4d on an S2, they
found that inclusion of a magnetic flux piercing the S2

allows one to stabilize the sphere. One can understand
this result by a scaling argument; such arguments are dis-
cussed in modern contexts in Giddings (2003); Kachru
et al. (2006); Silverstein (2004b). We start with a 6d
Einstein/Yang-Mills Lagrangian

S =

∫

d6x
√

−G6

(

R6 − |F (2)|2
)

, (14)

where all dimensions are made up with powers of the
fundamental scale M6. We then consider reduction to 4d
on a sphere of radius R:

ds2 = ηµνdx
µdxν +R2gmn(y)dymdyn (15)

where m,n run over the two extra dimensions, and g is
the metric on a two-sphere of unit radius. Let us then
thread the S2 with N units of F (2) flux

∫

S2

F = N . (16)

In the 4d description, R(x) should be viewed as a field.
Naively reducing, we will find a Lagrangian where R2(x)
multiplies the curvature tensor R4. To disentangle the
graviton kinetic term from the kinetic term for the modu-
lus R(x), we should perform a Weyl rescaling. After this
rescaling, we find an effective potential with two sources:

• Before the rescaling, the 6d Einstein term would
contribute to the action a term proportional to the
integrated curvature of the S2, which gives the Eu-
ler character. In particular, the positive curvature
makes a negative contribution to the potential. Af-
ter the rescaling, this term is no longer a constant;
instead it scales like −R−4.
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• The N units of magnetic flux through the S2, of
course, contribute a positive energy. It arises by
reducing

∫

d6x− Fmn
gmp

R2

gnq

R2
Fpq . (17)

By flux quantization, F ∼ N
R2 , while the integral

over the internal space contributes a factor of R2.
Therefore, the flux potential scales like N2/R6.
The dimensions are made up by powers of the fun-
damental scale, in terms of which the flux quantum
is defined.

Therefore, the potential as a function of R(x) takes the
schematic form

V (R) ∼ N2

R6
− 1

R4
. (18)

It is not hard to see that this function has minima where
R ∼ N . So with moderately large flux, one can achieve
radii which are large in fundamental units, and curva-
tures which are small. This means that the vacua found
in this way are reliable.

Strictly speaking, the original Freund-Rubin vacua are
not compactifications which yield lower-dimensional ef-
fective field theories. The vacuum energy following from
(18) is negative, and gives rise to a 4d curvature scale
comparable to the curvature of the S2. Therefore, 4d ef-
fective field theory is not obviously a valid approximation
scheme in these vacua. In Sec. IV of the review, we will
focus on models where over some range of energies, the
effective description of physics really is four-dimensional.
It is plausible, however, that by using more complicated
manifolds and tuning parameters to decrease the 4d vac-
uum energy, one could use the Freund-Rubin idea to ob-
tain quasi-realistic vacua (Acharya et al., 2003).

E. A solution of the cosmological constant problem

Einstein’s equations, relating the curvature of space-
time to the stress-energy of matter, admit an additional
term on the right hand side,

gij = 8πGN (Tij + Λgij) .

The additional “cosmological constant” term Λ is a
Lorentz-invariant vacuum energy and is believed to be
generically present in any theory of quantum gravity; it
receives corrections from known quantum effects (some-
what analogous to the Casimir effect) at least of or-
der (100GeV)4. On the other hand, elementary con-
siderations in cosmology show that any value |Λ| >
1(eV)4 or so is in violent contradiction with observa-
tion. More recently, there is observational evidence of
various types (the acceleration of the expansion of the
universe; and detailed properties of the cosmic microwave
background spectrum) which can be well fit by assuming
Λ ∼ 10−10(eV)4 > 0.

This is by now a very long-standing question with
which most readers will have some familiarity; we refer to
(Carroll, 2001; Nobbenhuis, 2004; Padmanabhan, 2003;
Weinberg, 1989) for introductory overviews, and the his-
tory of the problem. A very recent discussion from the
same point of view we take here is in Polchinski (2006),
along with general arguments against many of the other
approaches which have been taken towards the problem.

One approach which cannot be ruled out on general
grounds is to simply assert that the fundamental theory
contains the small observed parameter Λ. More precisely,
the large quantum contributions Λq from all types of vir-
tual particles (known and unknown), are almost precisely
compensated by an adjustable “bare cosmological con-
stant” Λbare ∼ −Λq. However, besides being unesthetic,
this idea cannot be directly realized in string/M theory,
which is formulated without free parameters. Rather, to
address this problem, we must find out how to compute
the vacuum energy, and argue that the energy of the vac-
uum we observe takes this small value.

Of course, taken purely as a problem in microscopic
physics, the prospects for accurately computing such a
small vacuum energy seem very distant; furthermore it
seems very unlikely that any vacuum would exhibit the
remarkable cancellations between the large known con-
tributions to the vacuum energy, and unknown contribu-
tions, required to make such an argument. But here is
precisely the loophole; what is indeed very unlikely for a
single vacuum, can be a likely property for one out of a
large set of vacua.

Simple toy models in which this is the case were pro-
posed in Abbott (1985); Banks et al. (1991). The general
idea is to postulate a potential with a large number of
roughly equally spaced minima, for example

V (φ) = aφ− b sinφ+ Λq,

whose minima φ = 2πn have energies Λn = Λq + 2πan−
b. Thus, if a is very small, then no matter what value
Λq takes, at least one minimum will realize the small
observed Λ. By postulating more fields, one can even
avoid having to postulate a small number a (Banks et al.,
1991). For example, consider

V (φ) = a1φ1 + a2φ2 − sinφ1 − sinφ2 + Λq.

The reader may enjoy checking that if the ratio a1/a2

is irrational, any Λ can be approximated to any desired
accuracy.

While in effective field theory terms these models
might be reasonable, the actual potentials arising from
string/M theory compactification appear not to take this
form. Besides verifying this in explicit expressions (for
example coming from Eq. (12)), there is a conceptual
problem. This is that these models assume that the field
φ can take extremely large values, of order 1/Λ. How-
ever, taking a modulus φ to be so large, implies that the
Calabi-Yau manifold is decompactifying, or undergoing
some similar limit. In such a limit, the potential can be
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computed more directly and (at least in known examples)
does not take the required form.

However, there is another mechanism for producing
potentials with large numbers of minima, introduced by
Bousso and Polchinski (2000), which relies on having a
very large number of degrees of freedom.5 Let us consider
a toy model of flux compactification, where there are N
different p-cycles in the compact geometry that may be
threaded by the flux of some p-form field F

∫

Σi

F = ni, i = 1, · · · , N (19)

Let us also assume a simple ad hoc cutoff on the allowed
values of the fluxes, of the form

∑

i

n2
i ≤ L (20)

where L is some maximal amount of flux. One can view
Eq. (20) as a toy model of the more complicated tadpole
conditions that arise in real string models. Finally, let us
assume that for each value of the fluxes F , the resulting
potential function for moduli admits a minimum with
energy

V ∼ −V0 + cin
2
i (21)

Here we take the ci to be distinct order one constants,
while −V0 is assumed to be a large fixed negative energy
density, for example representing the quantum contribu-
tion to the cosmological constant Λq we discussed earlier.

A striking fact follows from these simple assumptions
and known facts about compactification topologies – the
number of vacua will be huge. As we discussed, typical
Calabi-Yau threefolds have betti numbers of order 100.
For a space with N = 100 and L = 100, Eq. (20) in-
dicates that the number of vacua can be approximated
by the volume of a sphere of radius

√
L ∼ 10 in a 100-

dimensional space. This is roughly π50

50! × 10100 ∼ 1060.

Here it was important that
√
L is much larger than the

unit of flux quantization, so that one can approximate the
number of possible flux choices by computing the volume
in flux space of the region defined by Eq. (20).

We will justify this toy model in detail in Sec. V, by
showing that the real counting of flux vacua – while dif-
fering in details – is similar, that concrete examples with
significantly larger N and L exist, and that the fractions
of flux choices for which vacua exist in some approxima-
tion scheme are large enough not to significantly alter the
estimate above.

Now, let us consider the cosmological constant in this
model. In a vacuum with flux vector ni, this will be
given by Eq. (21). Thinking of the quadratic term in Eq.
(21) as defining a squared distance from the origin in N -
dimensional space, we see that to have a small vacuum

5 Amazingly, this idea was anticipated in Sakharov (1984).

energy of order ǫ, a flux vacuum must sit within a shell
bounded by two ellipsoids, of radius

√
V0 and

√
V0 + ǫ.

(These are ellipsoids because the ci are not all equal,
though we assume them all to be O(1)).)

As argued in Bousso and Polchinski (2000), if the num-
ber of vacua exceeds ∼ 10120, quite plausibly this shell
is populated by some choices of flux. The simplest argu-
ment for this is that, given that the fluxes ni and the pos-
tulated coefficients ci are independent, we can expect the
values of the vacuum energy attained by Eq. (21) to be
roughly uniformly distributed over scales much smaller
than the coefficients ci. Thus, in a set of Nvac vacua, we
might expect the typical “level spacing” to be 1/Nvac,
and that a vacuum energy of order 1/Nvac will be real-
ized by at least one vacuum. We will make more precise
arguments of this type in Sec. V.

Thus, this toy model can explain why at least some
vacua exist with the very small cosmological constant
consistent with observation. Furthermore, the essential
features of the toy model, namely a very large number
of vacua with widely distributed vacuum energies, dis-
tinguished by the values of hundreds of microscopic pa-
rameters, seem to be shared by more realistic stringy
flux compactifications. This energy landscape of poten-
tial string vacua has been called the “string landscape”
(Susskind, 2003); a detailed and very clear qualitative
discussion can be found in Susskind (2005).

1. Anthropic selection

Suppose we grant that a few, rare vacua will have small
Λ. How do we go on to explain why we find ourselves in
such a vacuum?

There have been many attempts to find dynamical
mechanisms which strongly prefer the small Λ solu-
tions (including relaxation mechanisms (Brown and Teit-
elboim, 1987, 1988; Feng et al., 2001; Steinhardt and
Turok, 2006), peaking of the wave-function of the Uni-
verse (Coleman, 1988; Hawking, 1984), and many others
(Itzhaki, 2006; Rubakov, 2000)). Each seems in some
sense problematic: for instance the relaxation propos-
als typically suffer from an “empty universe problem,”
whereby they favor completely empty vacuum solutions
with small Λ, incompatible with our cosmological history
which presumably includes inflationary, radiation domi-
nated, and matter dominated epochs. For a much more
detailed discussion of the problems that bedevil various
dynamical selection mechanisms, and possible loopholes,
see Polchinski (2006).

Absent a dynamical selection mechanism, one can try
to use so-called “anthropic” criteria to explain why we
inhabit a vacuum with small Λ. Perhaps a better term
for the generally accepted criteria of this type is selection

effect; in other words we take the evident fact that the
circumstances of a particular experiment or observation
might skew the distribution of observed outcomes, and
apply it to the problem at hand of why we observe “our
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universe” instead of another.

In practice, what is meant by this, is an argument
which focuses on some macroscopic property of our uni-
verse, and derives constraints on microphysics by requir-
ing the microphysics to be consistent with the macro-
scopic phenomenon. The most famous example, and the
one we will cite here, is Weinberg’s argument (Weinberg,
1987) that the existence of structure (i.e. galaxies) puts
stringent bounds on the magnitude of the cosmological
term.6 For positive cosmological constant, the bound
arises due to two competing effects. On the one hand,
primordial density perturbations gravitate and attract
each other; in a universe with vanishing Λ, the Jeans
instability will then eventually lead to the formation of
large scale structure. On the other hand, a large Λ and
the consequent accelerated expansion, could lead to such
rapid dilution of matter that structure can never form.
The requirement that structure have time to form before
the accelerated expansion takes over, leads to a bound on
Λ within an order of magnitude or two of the observed
value.

Weinberg’s logic suggests that if structure is required
for observers, and if there are many possible vacua with
different values of Λ, then selection effects will explain
why any given observer sees an atypically small value of
Λ. It is also important that since the scales of micro-
physics differ so drastically from the scale of the required
Λ, one can expect the distribution of vacua in Λ-space
to be reasonably flat over the anthropically acceptable
range. Hence, all else being equal, one should expect to
find a value of Λ close to the upper bound compatible
with structure formation.

Indeed, this seems to be true in our universe. It is
notable that Weinberg’s bound was published well be-
fore the detection of dark energy, and the amount of
dark energy is very close to his estimate of the maximal
value compatible with the formation of structure. There
is some controversy about how close our universe is to
the bound (which of course depends on the precise for-
mulation of the macroscopic requirement); see e.g. Loeb
(2006) and references therein.

An important question which must be asked before ac-
cepting this logic is: are these vacua all part of a single
theory, and a single cosmology, or does superselection op-
erate to make the choice of vacuum a unique initial con-
dition? In this context, inflation and particularly eter-
nal inflation (see Guth (2000) for a nice discussion with
further references) suggests strongly that the correct pic-
ture involves a “multiverse” with many different inflating
regions, corresponding to the different de Sitter critical
points in the set of vacua.

From this point of view, it is important to ask whether

6 While we cannot fully review the history here, important earlier
works along these lines include (Banks, 1984, 1985; Barrow and
Tipler, 1988; Linde, 1984a).

different flux vacua can be connected by physical pro-
cesses in string theory. The answer is yes; the fluxes are
dynamical variables in the full string theory, so vacua
with different discrete choices can tunnel to one another.
For instance, in any set of de Sitter flux vacua obtained
from a single compactification manifold in the IIb the-
ory, one can connect vacua with different values of F3

flux through a 3-cycle, by considering the domain bub-
ble formed by wrapping a D5 brane on the dual 3-cycle
(times a 2+1 dimensional slice of dS4).

Anthropic arguments are typically met with suspicion
for the simple reason that it seems hard to convinc-
ingly and quantitatively verify a physical theory based
on such arguments. There are many reasons (discussed
in e.g. Arkani-Hamed et al. (2005b); Banks et al. (2004);
Wilczek (2005)) to believe that more traditional, dynam-
ical explanations will be required to resolve some of the
outstanding mysteries of physics. But unless another
convincing solution to the cosmological constant prob-
lem is found, this one is likely to stay with us.

F. Other physical consequences

While explaining the cosmological constant would be
an important achievement, the resolution provided by the
landscape of flux vacua does not suggest immediate tests.
Furthermore, anthropic arguments are (understandably)
not considered clean ways to test or verify a theory.

Happily, the same techniques which are used in the
study of flux vacua, and which make it natural to con-
sider the anthropic explanation of the CC problem, also
allow one to derive new string models of particle physics
and cosmology. Much of the interest in studying flux
vacua has indeed been driven by the goal of finding new
classes of explicit models which make testable predic-
tions. Over the past few years, these studies have moti-
vated new testable models of TeV scale particle physics
(Arkani-Hamed and Dimopoulos, 2005; Arkani-Hamed
et al., 2005b; Giudice and Rattazzi, 2006; Giudice and
Romanino, 2004), new models of inflation (Kachru et al.,
2003; Silverstein and Tong, 2004) which can have testable
signatures via cosmic strings (Copeland et al., 2004; Dvali
and Vilenkin, 2004b; Jones et al., 2003; Sarangi and Tye,
2002) or non-gaussianities of the spectrum of density per-
turbations (Alishahiha et al., 2004; Babich et al., 2004;
Chen et al., 2006), and new testable proposals for the
mediation of supersymmetry breaking (Choi et al., 2005).
Of course, one should not view these models as inevitable
top-down consequences of string theory, which they cer-
tainly aren’t. Instead, they are special choices made out
of a wide range of possibilities in the fundamental theory,
proposed in part because they have clearly identifiable
or at least unusual characteristic signatures. The hope is
that the influx of new data on TeV scale particle physics
and inflationary cosmology expected in the next decade,
will help select between these ideas or (more likely) sug-
gest new, testable proposals.
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Here, we briefly describe, at a very qualitative level,
three areas where studies of flux vacua may be directly
relevant to phenomenological questions in string theory.
We will need to call upon some basic results from the the-
ory of supersymmetry breaking, so we review this first.

1. Overview of spontaneous supersymmetry breaking

By spontaneous supersymmetry breaking, we mean
that although the vacuum breaks supersymmetry, at
some high energy scale dynamics is described by an effec-
tive N = 1 supergravity theory. As discussed in Wess and
Bagger (1992), the effective potential in such a theory
is determined by the superpotential W , a holomorphic
“function” of the chiral fields,7 and the Kähler potential
K, a real-valued function of these fields. Let us denote
the chiral fields as φi, then the effective potential takes
the form

V = eK

(

∑

i

|Fi|2 − 3
|W |2
M2

Pl,4

)

+
1

2

∑

α

D2
α (22)

where Fi = DW/Dφi ≡ ∂W/∂φi + (∂K/∂φi)W are the
so-called F terms, associated to chiral fields, while the D
terms Dα ∼∑φ†tαφ are associated to generators of the
gauge group.

While any solution of ∂V/∂φi = 0 with ∂2V/∂φi∂φj

positive definite is a metastable vacuum, spontaneous su-
persymmetry breaking is characterized by non-zero val-
ues for some of Fi and Dα. The most basic conse-
quence of this is that the gravitino gains a mass m3/2 =

eK |W |/M2
Pl,4 by a super-Higgs mechanism. If we assume

that the cosmological constant V ∼ 0, |W | and thus m3/2

are determined by Eq. (22) in terms of |F |2 and |D|2.
Another common although model-dependent conse-

quence of supersymmetry breaking is the generation of
soft supersymmetry breaking terms, such as masses for
the gauginos and scalars. One fairly generic source for
scalar masses is coupling through irrelevant terms in the
Kähler potential, with the general structure

∫

d2θd2θ̄
c2

M2
P

X†X(φi)†φi (23)

Such terms are not forbidden by any symmetry (unless
φi is a Goldstone boson, but compactification moduli in
general are not, with the notable exception of axions). If
they are present and FX 6= 0, the field φi obtains a mass

mi ∼
c FX

MP
. (24)

7 To be more precise, the superpotential in supergravity is a section
of a holomorphic line bundle.

Similarly, if X appears in the gauge-coupling function f
for some gauge group G, i.e. in the term

∫

d4x d2θf(X)Tr(WαW
α), (25)

then FX 6= 0 gives rise to a gaugino mass as well. Another
generic source of masses for charged particles is anomaly
mediation (Giudice et al., 1998; Randall and Sundrum,
1999b); in particular this produces gaugino masses

m1/2 ∼ b g2
Y M m3/2

where b is a beta function coefficient. Quite generally,
these effects lead to masses proportional to F/MP .

Finally, given a soft mass term for charged fields X ,
their one loop diagrams produce soft mass terms for
charged gauginos, and at higher loop order soft masses
for all charged particles. This is known as gauge media-
tion; for references and a review see Giudice and Rattazzi
(1999). Unlike the previous mechanisms, this effect is not
suppressed by MP , but by MX , the mass of the X fields.

Let us now consider a quasi-realistic model which
solves the hierarchy problem by spontaneous supersym-
metry breaking. In general, one expects the EFT to be a
sum of several parts; a supersymmetric Standard Model
(SSM); a sector responsible for supersymmetry breaking;
possibly a messenger sector which couples supersymme-
try breaking to the SSM; and finally sectors which are
irrelevant for this discussion. After integrating out all
non-SSM fields, one obtains an SSM with soft supersym-
metry breaking terms, such as masses for the gauginos
and scalars. The first test of the model is that the result-
ing potential leads to electroweak symmetry breaking.
This depends on two general features of the supersym-
metric extension. Recall that an SSM must have at least
two Higgs doublets; let us suppose there are two, Hu and
Hd. First, the Higgs doublets can get a supersymmetric
mass term

W = . . .+ µHuHd,

the so-called µ term. This must be small, µ ∼ MEW .
In addition, one must get soft supersymmetry breaking
masses coupling the two Higgs doublets (the b term),
also of order MEW . Of course, there are many, many
more constraints to be satisfied by a realistic model, most
notably on flavor changing processes.

Now, one can distinguish two broad classes of super-
symmetry breaking models. In the first class, generally
known as “gravity mediated” models,8 supersymmetry
breaking is mediated only by effects which are suppressed
by powers of MP . In this case, to obtain soft masses at
MEW , the natural expectation is F ∼ (1011GeV)2, the
so-called intermediate scale, and m3/2 ∼MEW .

8 We are oversimplifying here.
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On the other hand, if the SSM soft masses come from
gauge mediation, the sparticle masses are suppressed by
powers of MX , not MP . Therefore, depending on MX ,
one can get by with a much smaller F breaking, perhaps
as low as F ∼ (100 TeV)2. Such a gauge mediated model
will have m3/2 << MEW as well as many other differ-
ences from the first class.

This more or less covers the basic facts we will need
for this review; further discussion can be found in many
good reviews such as Giudice and Rattazzi (1998); Luty
(2005); Martin (1997)

2. The moduli problem

As we discussed, string compactifications preserving
4d N = 1 supersymmetry typically come with dozens or
hundreds of moduli fields. These are chiral multiplets
φi which have gravitational strength couplings and a flat
potential to all orders in perturbation theory.

In general, all scalar fields, including the moduli, will
receive mass after supersymmetry breaking. In a few
cases, namely the moduli which control the Standard
Model (or grand unified) gauge couplings, we can put
a lower bound on this mass, around 100GeV, just by
considering quantum effects in the Standard Model. As
pointed out in Banks et al. (2002), this precludes any ob-
servable variation of the fine structure constant (and the
other SM gauge couplings), even on cosmological time
scales. Thus, while the underlying theory allowed for
such time variation in principle, it is inconsistent with
known properties of our vacuum combined with the ef-
fective potential hypothesis. This is perhaps the simplest
testable prediction of string/M theory for which contrary
evidence has ever been reported (Murphy et al., 2003);
the present status is discussed in Uzan (2003, 2005).9

More generally, one can estimate moduli masses in
particular models of supersymmetry breaking. Using
Eq. (24), and assuming a gravity mediated model with
F ∼ (1011GeV)2, we find a rough upper bound

mmoduli ∼ 1 TeV.

As for gauge mediated models, since moduli which do
not couple directly to the Standard Model also get their
leading masses from Eq. (24), their masses will be far
lower, even down to the eV range.

In general, such particles would not be subject to direct
detection, because of their very weak (nonrenormaliz-
able) coupling to the Standard Model. One can construct
optimistic scenarios (including the large-extra dimen-
sions scenario (Arkani-Hamed et al., 1998) and models of

9 String/M theory also leads to many testable predictions for which
we have no reason at present to expect contrary evidence, for ex-
ample CPT conservation, unitarity bounds in high energy scat-
tering, and so forth.

gauge mediation with very low SUSY breaking scale) in
which the moduli masses come down to 10−3 eV, so that
one could hope to detect such fields in fifth-force experi-
ments studying the strength of gravity at short distances
(Dimopoulos and Giudice, 1996). Of course the moduli
must be coupled gravitationally to the SUSY breaking
sector to obtain such a small mass ∼ (TeV)2/MP .

However, granting the usual discussion of inflationary
cosmology, scalar fields masses less than about 100TeV
will cause significant phenomenological problems. In par-
ticular, they cause a Polonyi problem – the oscillations
of such scalars about the minima of their potential, in a
cosmological setting, will overclose the universe (Banks
et al., 1994; de Carlos et al., 1993). One way of under-
standing this is as follows. The equation of motion for a
modulus φ in the early universe is

φ̈+ 3Hφ̇ = −∂V
∂φ

. (26)

Taylor expanding V (φ) ∼ m2φ2 + · · ·, we see that the
“Hubble friction” (the second term on the LHS) domi-
nates over the restoring force from the potential energy,
if H >> m. Via the relaton H2M2

P ∼ Vtot (where Vtot

is the total energy density of the Universe), we see that
in the early Universe, Hubble friction will dominate for
light fields. This means that untilH decreases to H < m,
such fields will not reach the minima of their potential;
they will be trapped by Hubble friction at some random
point.10 After the Hubble constant drops below m, the
energy density in these fields can dominate the Universe,
leading to a variety of possible problems (overclosure,
modifications of the successful predictions of BBN, etc.).

There are scenarios with moduli in this mass range
where the cosmological problems are avoided, say by
a stage of low-scale inflation (Dvali, 1995; Randall and
Thomas, 1995)). In general, however, this suggests that
the idea that string moduli get their mass through ra-
diative corrections after SUSY breaking is disfavored.
Rather, we should look for the physics of moduli sta-
bilization at higher energy scales.

As we discussed, we can expect the flux potential to
produce moduli masses. A first naive estimate for the
energy scale of this potential would be MKK , since this is
an effect of compactification. However, this neglects the
fact that the unit of quantization of the fluxes is set by
the fundamental scales, in string theory the string scale.
This discussion is somewhat model dependent (Kachru
et al., 2006); in Sec. IV we will discuss the case of IIb flux
vacua. In general in such vacua, the complex structure

10 This discussion is oversimplified, since V itself may receive signif-
icant thermal corrections. The point then is that for a modulus
field, the true minimum only appears, typically very far away
(∼ MP in field space) from the finite-temperature minimum,
after H drops below the typical scales of the zero-temperature
potential.
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moduli which get a mass from fluxes end up with a typical
mass MF

MF ∼ α′

R3
(27)

which satisfies MF << MKK at moderately large ra-
dius, but is still well above the supersymmetry breaking
scale MSUSY (and far above the even smaller gravitino
mass M3/2 ∼M2

SUSY /MP ) for low energy supersymmet-
ric models with moderate R.

In a top-down discussion, one must check that these
masses squared are positive, i.e. metastability. Actu-
ally, one can argue that this is generic in supersymmetric
theories, in the following sense. The mass matrix V ′′

following from Eq. (22) takes the form

M2
boson = Mfermion(Mfermion − αM3/2) (28)

for some order one α.11 Thus, any bosonic partner
to a fermion with |Mfermion| >> M3/2 will automat-
ically have positive mass squared. Since for moduli,
Mfermion ∼ MF >> M3/2, this entire subsector will be
stable.

a. Quintessence There is one cosmological situation in
which the existence of an extremely light, weakly cou-
pled scalar field has been proposed as a feature instead
of a bug. One of the standard alternatives to a cosmo-
logical constant in explaining the observed dark energy
is “quintessence” (Peebles and Ratra, 1988). In this pic-
ture, a slowly rolling scalar field dominates the potential
energy of the Universe, in a sort of late-time analogue of
early Universe inflation (though perhaps lasting only for
O(1) e-foldings). In light of our discussion, it is natural
to ask, can string theory give rise to natural candidates
for quintessence?

The observational constraints on time variation of cou-
pling constants make it necessary to keep the relevant
scalar very weakly coupled to observable physics. The
necessary mass scale of the scalar, comparable to the
Hubble constant today, means also that this scalar must
not receive the standard ∼M2

SUSY /MP mass from SUSY
breaking. The most natural candidate is therefore a
pseudo Nambu-Goldstone boson, and in string theory,
these arise plentifully as axions. An axion with weak
enough couplings and whose shift symmetry is broken by
dynamics at very low energies, could conceivably serve
as quintessence; it has been Hubble damped on the side
of its potential until the present epoch, and may just be
beginning its descent.

11 The reader should not confuse this with formulae governing the
sparticle partners of standard model excitations, for which the
soft-breaking terms give the dominant effects, and can lead to
splittings much larger than this estimate in various scenarios.

The prospects for this scenario are described in the
recent paper Svrcek (2006). While it is plausible, the
scenario suffers from all of the tuning problems of the
cosmological constant scenario, and an additional “why
now” problem – there is no good reason for the field to
become undamped only in the recent past. Still, the
special case of axion quintessence does seem possible in
string theory.

3. The scale of supersymmetry breaking

Perhaps the most fundamental question in string phe-
nomenology is the scale of supersymmetry breaking. As
we discussed, there are many hints in the present data
which point towards TeV scale supersymmetry. It has
long been thought that low energy supersymmetry would
also follow from a top-down point of view. One of the
simplest arguments to this effect uses the concept of “nat-
uralness,” according to which an effective field theory can
contain a small dimensionful parameter, only if it gains
additional symmetry upon taking the parameter to zero.
This is not true of the Higgs mass in the Standard Model,
but can be true for supersymmetric theories.

On the other hand, the solution we just described
for the cosmological constant problem seems to have
little to do with this sense of naturalness; indeed it
may seem in violent conflict with it.12 Should this not
give us pause? How do we know that the small ratio
M2

EW /M2
Pl,4 ∼ 10−33 might not have a similar expla-

nation? Following this line of thought, one might seek
an anthropic explanation for the hierarchy, as has been
done in several works (Arkani-Hamed and Dimopoulos,
2005; Arkani-Hamed et al., 2005a,b; Giudice and Rat-
tazzi, 2006; Giudice and Romanino, 2004). While in-
teresting, the possibility of such an explanation would
not bear directly on whether the underlying theory has
low energy supersymmetry, unless we could argue that
our existence required this property (or was incompati-
ble with it), which seems implausible.

However, there is a different set of arguments, which we
will now describe, that low energy supersymmetry, and
the naturalness principle which suggested it, may not be
the prediction of string/M theory. Rather, one should de-
fine a concept of stringy naturalness, based on the actual
distribution of vacua of string/M theory, which leads to
a rather different intuition about fine-tuning problems.

The starting point is the growing evidence that there
are many classes of string vacua with SUSY breaking at
such high scales that it does not solve the hierarchy prob-
lem, starting with early works such as (Alvarez-Gaume

12 Actually, in Sec. V, we will show that the c.c. is uniformly dis-
tributed in some classes of vacua, in a way consistent with tradi-
tional naturalness. In our opinion, anthropic arguments are not

in contradiction with naturalness, rather they presuppose some
idea of naturalness.
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et al., 1986; Dixon and Harvey, 1986; Scherk and Schwarz,
1979; Seiberg and Witten, 1986), and more recently mod-
els with stabilized moduli such as (Saltman and Silver-
stein, 2006; Silverstein, 2001). Despite their disadvan-
tage in not solving the hierarchy problem, might such
vacua “entropically” overwhelm the vacua with low-scale
breaking? Let us illustrate how one can study this ques-
tion with the following top-down approach to deriving
the expected scale of supersymmetry breaking, along the
lines advocated in Douglas (2004b); Susskind (2004).

Suppose for a moment that one has classified the full
set of superstring vacua, obtaining some set with ele-
ments labelled by i. Suppose, for sake of argument, that
we had a complete model of how early cosmology pro-
duces these vacua, which leads to the claim that “the
probability to observe vacuum i is P (i).” Finally, sup-
pose that the SUSY breaking scale in the i’th vacuum is
Fi. Then, we could use this data to define a probability
distribution over SUSY breaking scales. Similarly, if we
have more observables for each vacuum we could define
a joint distribution over all of them.

To make a simple discussion, let us focus on two param-
eters, the supersymmetry breaking scale F , and the scale
of electroweak symmetry breaking MEW ∼ 100GeV.
Now, imagine that we are about to do an experiment
which will detect superpartners if F < Fexp = 1TeV.
Then, the probability with which we expect to discover
supersymmetry would be

Psusy =
∑

Fi≤Fexp,MEW,i=100GeV

P (i). (29)

If this probability were high, we would have derived a
top-down prediction of TeV scale supersymmetry.

But, from what we know about string theory, do we
know it will be high? Might it instead be low, so that
the discovery of TeV scale supersymmetry would in some
sense be evidence against string theory?

Before continuing, we hasten to say that any top-down
“prediction” of this sort would only be as good as the as-
sumptions which went in, and furthermore would prob-
ably rely on drastic simplifications of the full problem.
We fully expect that the problem of testing string the-
ory, like any other theory, will involve the same sort of
interaction between theory and experiment which char-
acterizes all successful science. Our goal here is to make
an idealization of this complex problem, in order to gain
understanding. We will discuss the assumptions and sim-
plifications which would go into any such prediction in
Sec. V, here let us continue in order to make the point
that given what we know now, TeV scale supersymmetry

is not an inevitable prediction of string theory.
First, given our ignorance of the correct probabilities

P (i), a simple hypothesis to get a feel for the problem is
to set the probability P (i) = 1/N for each of the N vacua
in the landscape. In other words, we assume that the
more string/M theory vacua realize a certain property,
the more likely we are to observe it. In Sec. V, we will
critically examine this hypothesis, and see how far one

can go without making any appeal to probabilities at
this point, but let us grant it for the moment.

Now, let us rephrase the usual argument from natural-
ness in this language. We focus attention on the subset
of string/M theory vacua which, while realizing all the
other properties of the Standard model, may have a dif-
ferent value for the electroweak scale MEW . Since this is
quadratically renormalized, in the absence of any other
mechanism, we expect that the fraction of theories with
MEW < MEW,max should be roughly

M2
EW,max

M2
cutoff

∼ 10−30

taking Mcutoff ∼ MGUT for definiteness. While small,
of course given enough vacua, we will find vacua in which
the hierarchy is a result of fine tuning.13

Let us now grant that we have some subset of the string
theory vacua in which the Higgs mass is determined by
supersymmetry breaking in the general way we discussed
in Sec. II.F.1. More specifically, let us grant that the
Higgs mass satisfies a relation like Eq. (24), with FX ∼
1011GeV, the intermediate scale, so that we can expect
to see supersymmetry at the TeV scale. Then, while
there are further conditions to check, one might expect
an order one fraction of these models to work.

Now, the naturalness argument is the claim that, since
most of the TeV scale supersymmetry vacua work (fit
the data), while only 10−30 of the fine tuned vacua work,
we should expect to live in a universe with TeV scale
supersymmetry, or at least prefer this alternative to the
fine-tuned models.

Of course, we arranged our discussion in order to make
the essential gap in this argument completely evident.
It is that, even though the fraction of fine-tuned vacua
which work is relatively small, if their number is large, we
might find in the end that far more of these vacua work
than the supersymmetric vacua. Given our hypothesis,
string theory would then predict that we should not see
supersymmetry at the TeV scale.

Is this what we expect or not? Before taking a posi-
tion, one should realize that the additional structures be-
ing postulated in the supersymmetric models – the scale
of susy breaking, a solution to the µ problem, a media-
tion mechanism in which FCNC and the other problems
of generic supersymmetric models are solved, and so on –
each come with a definite cost, not in terms of some sub-
jective measure of the complexity or beauty of the theory,
but in terms of what fraction of the actual string/M the-
ory vacua contain these features. Is this cost greater than
10−30 or not?

We will describe some results bearing on this question
in Sec. V, but at present we are still far from having
sufficient knowledge of the set of string vacua to make

13 See Silverstein (2004a) for a toy model of how fluxes can do this.
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convincing statements. But given toy models which in-
corporate some of the detailed structure of flux vacua in
computable limits, there are already interesting sugges-
tions about how the computation might turn out (Dine
et al., 2004; Douglas, 2004c; Silverstein, 2004a; Susskind,
2004)

What is already clear, is that claims that string theory
naturally ‘prefers’ low energy supersymmetry are, as yet,
far from being justified. Indeed, the simplest toy mod-
els suggest the opposite. It would be very important to
improve our understanding of this point.

4. Early universe cosmology

There is substantial and growing evidence for a period
of early universe inflation to explain the homogeneity,
isotropy, and large-scale structure of our Hubble volume
(Linde, 2005; Spergel et al., 2006). However, obtaining
a reasonable model of inflation in string theory requires
a detailed understanding of moduli stabilization (Kachru
et al., 2003). The reason is as follows.

The dynamics of scalar fields φi evolving in a scalar
potential in an FRW cosmology with Hubble constant
H = ( ȧ

a ), is governed by the equations

φ̈i + 3Hφ̇i = − ∂V

∂φi
(30)

where V is the potential for the scalar fields. To obtain
slow-roll inflation, one needs to require that the steepest
gradient in the potential is not very steep, since (30) ba-
sically describes gradient flow in V . However, in string
models at moderately weak coupling gs → 0 and/or large
volume R >> ls for the internal dimensions, one knows
that this is not true. All known sources of potential
energy fall rapidly to zero as R−n with n ≥ 6 in mod-
els that are well described by 10d supergravity (see e.g.
(Giddings, 2003; Kachru et al., 2006; Silverstein, 2004b)).
Similarly all known sources vanish as a positive power gs.
These power laws are far too fast to allow slow-roll infla-
tion (or late-time acceleration for that matter (Fischler
et al., 2001; Hellerman et al., 2001)).

The lesson is that in order to achieve inflation, one
must either work in a regime of strong coupling/small ra-
dius where it is difficult at present to compute (Brustein
et al., 2003), or one must find models where the
radii/dilaton and other rapidly rolling moduli, have been
stabilized by a computable potential. Even then, achiev-
ing inflation in a controlled manner is quite challenging
(Kachru et al., 2003). But given our earlier comments
about flux vacua and moduli stabilization, this makes
flux vacua a logical place to try to construct models of
slow-roll inflation in string theory.

Let us illustrate these issues by discussing a concrete
proposal for inflation. Dvali and Tye proposed that nat-
ural models of inflation may be obtained by consider-
ing branes and anti-branes (or more generally, branes

which do not preserve the same supersymmetry), sep-
arated on a compact space M (Dvali and Tye, 1999).
The branes and anti-branes attract one another via the
higher-dimensional analogue of Coulomb exchange of RR
and gravitational forces. The candidate inflaton is the
brane separation mode on M , while the exit from in-
flation can occur when the brane and anti-brane reach
a distance ∼ ls from one another, where the lightest
stretched string becomes tachyonic. This picture is thor-
oughly reminiscent of hybrid inflation (Linde, 1994), with
the tachyon playing the role of the “waterfall field” that
causes the exit from inflation. Such brane inflation mod-
els were generalized and explored in Alexander (2002);
Burgess et al. (2002, 2001); Dasgupta et al. (2002); Dvali
et al. (2001); Garcia-Bellido et al. (2002); Gomez-Reino
and Zavala (2002); Herdeiro et al. (2001); Jones et al.

(2002); Shiu and Tye (2001) without addressing the issue
of moduli stabilization; a review of these models appears
in Quevedo (2002).

It was argued in Kachru et al. (2003) that considering
brane inflation in the absence of moduli stabilization does
not make sense; that is, that the predictions derived from
considerations of the open string potential ignoring the
closed string modes, would be corrected very significantly
by inclusion of the closed strings. The interbrane poten-
tial, for D3 and anti-D3 branes separated by a distance
d in M , is given by

V (d) = 2T3

(

1 − 1

(2π)3
T3

M8
10d

4

)

(31)

where T3 is the brane tension and d is the interbrane dis-
tance. Note that d is related to a canonically normalized
scalar field via the relation φ =

√
T3d.

It is well known that to obtain standard slow-roll in-
flation, the inflaton potential must satisfy the slow-roll
conditions, that

ǫ =
M2

P

2
(
V ′

V
)2 << 1, η = M2

P

V
′′

V
<< 1 . (32)

Primes denote derivatives with respect to the inflaton
φ; the first condition roughly guarantees that the Uni-
verse will undergo accelerated expansion, while the sec-
ond guarantees that this period of accelerated expan-
sion will last sufficiently long to explain the horizon and
flatness problems (for reviews of basic facts about in-
flationary cosmology, see Linde (2005); Lyth and Riotto
(1999)).

Can (31) plausibly satisfy these conditions? There is a
well known problem. On a space of radius R, using the
relation between M10 and the 4d Planck scale MP , one
can quickly see

η ∼ (R/d)6 ×O(1) . (33)

Since one expects d ≤ R, such models will have trou-
ble giving rise to slow-roll inflation. Many clever model
building tricks were postulated to surmount this kind of
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difficulty in the papers cited previously; arguments pre-
sented in Kachru et al. (2003) show that generically , the
problem persists.

However, it masks an even more basic problem. Even
supposing one did engineer a flat inter-brane potential,
the correct 4d Einstein frame potential is not quite given
by (31). Instead, it is rescaled by the Weyl-rescaling
to reach 4d Einstein frame, which multiplies (31) by an
overall factor of 1

R12 . Now regardless of the interbrane
potential, when the manifold M is in the R >> 1 regime
where the potential is expected to take this form, the
system of equations (30) will lead to rapid decompactifi-
cation!

A similar argument would show that one must find a
way to avoid relaxing to gs → 0. It is believed that both
of these problems can be solved, by stabilizing the radion
and the dilaton, in some classes of flux compactifications.

This will leave the problems involved in engineering a
flat enough interbrane potential to satisfy (32), and in-
deed generic mechanisms of moduli stabilization do not
yield sufficiently flat interbrane potentials. It has be-
come a problem of great interest in recent years to find
natural models of flat inflationary potentials in string
theory. While some tuning is involved, construction of
pseudo-realistic models seems well within reach in many
scenarios. The state of the art in engineering concrete
examples of brane inflation where one can hope to find
such flat potentials is described in Baumann et al. (2006).

We have focused on brane inflation here as an illustra-
tion of the issues which tie inflation to moduli stabiliza-
tion, but similar issues arise in other inflationary models
using moduli fields (Banks, 1995a; Binetruy and Gail-
lard, 1986; Blanco-Pillado et al., 2004, 2006) or axions
(Adams et al., 1993; Arkani-Hamed et al., 2003; Banks
et al., 2003; Dimopoulos et al., 2005; Easther and McAl-
lister, 2006; Freese et al., 1990) to inflate in string com-
pactifications.

III. QUANTUM GRAVITY, THE EFFECTIVE
POTENTIAL AND STABILITY

As the subsequent discussion will be quite technical,
before going more deeply into details we should ask more
basic questions, such as

• What are our implicit assumptions? Can we trust
them, and the formalism which they lead to?

• Might there be a priori arguments that the type of
vacuum we seek (with stabilized moduli and pos-
itive cosmological constant) does not exist, or is
extremely rare?

• Related to this, might there be unknown additional
consistency conditions, which are satisfied by only
a few of the vacua?

Since as yet we have no fully satisfactory nonperturba-
tive definition of any string theory or M theory, clearly

our discussion cannot start from first principles; we need
to make assumptions about how the theory works and
what constitutes a “solution” to proceed. Thus, our ar-
guments will not be conclusive, but rather are meant to
summarize existing work and suggest new approaches to
addressing these questions.

A. The effective potential

Our point of view, as we explained in the introduction
and implicitly assumed throughout Sec. II, is that the
vacuum structure of string/M theory is determined by an
effective potential Veff . This is a function of the many
scalar fields which parameterize the local choices (mod-
uli) determining a particular solution, and whose value is
the exact vacuum energy of that solution. Granting this,
our problem is to define Veff incorporating all classical
and quantum contributions to the energy, compute it in
a controlled way, and find its local minima.

While this is how all known physical theories work,
there are good reasons not to accept this uncritically in
a quantum theory of gravity, as has been particularly
emphasized in Banks (2004); Banks et al. (2004); Dine
(2004a). Let us cite a few of these reasons, and then con-
sider the various candidates we have for complete defini-
tions of the theory, to try to evaluate them.

We begin by asking whether the concepts which enter
into the effective potential are really well defined. First,
as is well known, there is no universal way to define en-
ergy in a generally covariant theory. The standard formal
definition of energy is the dynamical variable conjugate
to time translation, in the sense of Hamiltonian mechan-
ics, or in quantum commutation relations. However, in a
generally covariant theory, time translation invariance is
simply an arbitrariness of the choice of global time coor-
dinate, on which no observable can depend. The logical
conclusion is therefore that the energy, and thus the ef-
fective potential, in any such theory must be identically
zero.

Of course, this conclusion is not really acceptable in a
theory which can describe conventional non-gravitational
physics, as clearly the concept of energy is sensible and
useful in that context. Formally, the simplest way around
it is to consider only asymptotically flat solutions, which
at large distances (in any space-like direction) approach
Minkowski space-time (or its product with the internal
dimensions). In such a solution, one can define the gener-
ators of the Poincaré group purely in terms of the asymp-
totic fields; in particular the energy E is related to the
term in the metric g00 ∼ −2E/r which expresses the
Newtonian potential of a source with mass E. Since
the vacuum solutions we are interested in as models of
our universe in the present epoch are extremely close to
asymptotically flat, this definition would seem entirely
adequate.

Actually, there are major loopholes in the argument we
just made, coming from caveats such as “in the present
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epoch,” and “extremely close to asymptotically flat.” We
will discuss these below in Sec. III.C, with the conclusion
that they all rely on some sort of non-locality in the the-
ory. While this does not make them unthinkable, let us
postpone this discussion and proceed to discuss the defi-
nition of the effective potential in Minkowski space-time.

Let us recall the standard definition of the effective po-
tential in a quantum field theory, for definiteness a theory
of a single scalar field φ. We first couple φ to a source J ,
and compute (say using the functional integral) the par-
tition function Z(J), to define the generating function of
connected Green’s functions F (J) = logZ(J). We then
set the expectation value φ0 of φ by solving the equation

∂F

∂J
= φ0,

which formally amounts to a Legendre transform. The
resulting functional Γ(φ0), specialized to constant φ0, is
the effective potential.

In trying to repeat this definition in string theory, we
face the problem that it is not possible to couple a string
theory to a local source, nor to a local current; this was
one of the main problems with the early proposals for
using strings to describe hadronic physics. This led to
the general observation that the theory tends not to pro-
vide natural definitions of “off-shell” quantities, meaning
quantities defined in terms of space-time histories which
are not solutions. For example, computations of scat-
tering amplitudes using the string world-sheet formalism
are unambiguous only if all of the external states are on
mass shell. While off-shell amplitudes can be defined,
these depend on additional arbitrary choices (the world-
sheet conformal factor), which leads to ambiguous re-
sults. This is not considered a flaw in the theory, as the
S-matrix is defined purely in terms of scattering of on-
shell external states. However, the effective potential is
an off-shell quantity.

Two general ways around this problem are known. The
first approach is to do without the coupling to a local
source, instead manipulating the value of φ0 by adjusting
the boundary conditions. This is not completely general,
but can be satisfactory in some situations. For example,
if the effective potential is zero, any constant φ0 will be a
solution, and we can pick a particular solution by choice
of boundary conditions. More generally, if we know the
effective potential in advance, we can find the solutions
of the effective field theory, and pick one by choice of
boundary conditions.

This is implicitly what is done in most work on string
compactifications with extended supersymmetry. For ex-
ample, in a family of compactifications to Minkowski
space, supersymmetry guarantees that the effective po-
tential is zero, so there is no difficulty in adjusting moduli
by varying boundary conditions. This is relevant for us
as our type II flux compactifications have extended su-
persymmetry at a high scale, broken by the fluxes, and
we can appeal to this argument to justify our computa-
tions of other quantities in the effective Lagrangian, such

as the kinetic terms.
Another class of examples is flux compactifications

with N ≥ 4 supersymmetry in anti-de Sitter space.
Again, supersymmetry determines the effective potential
uniquely, so that one can study solutions with prescribed
boundary conditions without detailed string theoretic
computation. This is used implicitly in many works on
the AdS/CFT correspondence.

While at first this definition seems inadequate for
the problem at hand, in which we want to compute a
non-trivial effective potential which we do not know in
advance, one can still try to follow this route. One
would start with a known extended supersymmetry back-
ground, and then postulate boundary conditions (prob-
ably time-dependent) which, if it were the case that
the effective potential described a second non-trivial
metastable vacuum, would lead to a solution matching
on to this solution in the interior. However, this ap-
proach generally fails, for an interesting reason which we
will discuss in Sec. III.C.

This brings us to the second approach, which is sim-
ply to couple the string theory to a non-local source. For
example, one can do this in string field theory, the frame-
work which is most directly analogous to quantum field
theory (Zwiebach, 1993). Just as QFT can defined in
terms of an operator φ(x) which creates or destroys a
particle at a point in space-time x, here one introduces
a string field operator, call it Φ[L], which creates or de-
stroys a string on a one-dimensional loop L in space-time.
One can then introduce a source J [L] for the string field
into the action in the standard way, say as

S = S0 +

∫

dL Φ[L]J [L],

where the definition of the integral over loops is taken
from the string field theory framework. One then follows
the same reasoning which led to the field theory defi-
nition, to get a string field theoretic effective potential
Γ[Φ0].

While such a definition would be rather difficult to use
in practical computations, the point is to have a precise
definition which underlies and could be used to justify
our approximate considerations. To do this, the next
step would be to identify the light modes in Γ[Φ0], and
solve for all of the others, to obtain an effective potential
which is a function of a finite number of fields. To the
extent that we could do this, we would have made precise
the intuition that string theory reduces to field theory at
long distances, where the effective potential is a valid
concept.

However, there are formidable obstacles to making
such a definition precise. At present there is very little
understanding of string field theory beyond its pertur-
bative expansion, and just as for quantum field theory,
this expansion is only asymptotic (Shenker, 1990). It is
also not obvious that all of the nonperturbative effects we
will call upon below are contained in string field theory,
see Schnabl (2005) for relevant progress on this. In any
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case, verifying or refuting the approximate discussion we
will make below would be an important application of a
nonperturbative definition.

For four-dimensional quantum field theory, such a defi-
nition is made by appealing to the renormalization group.
One must find some asymptotically free UV completion
of the theory of interest, and then find some approximate
finite description of the weakly coupled short distance
theory, such as lattice field theory.

While we have no comparable theoretical understand-
ing of string theory, there is a widely shared intuition
that, at least in considering low energy processes and vac-
uum structure, string theory is weakly coupled at short
distances (the string scale and below). This intuition has
several sources: first, the extended nature of the string
cuts off interactions at these distances. Second, asymp-
totic supersymmetry makes the leading contributions of
massive states to the effective action cancel. Finally,
other effects of massive states are suppressed by inverse
powers of the fundamental scales. Presumably, this intu-
ition justifies matching on to a field theoretic description
at distances around the string scale, and then following
the standard RG paradigm.

B. Approximate effective potential

Let us now grant that the problems we just discussed
are only technical, and consider how we would make a
precise definition of the effective potential we use in this
review, namely in weakly coupled string field theory, tak-
ing into account nonperturbative effects in a semiclassical
expansion.

We start with ten-dimensional effective field theory,
i.e. supergravity with α′ and gs corrections. We then
compactify to get a four-dimensional effective action with
massive KK modes, string modes and the like. At this
level, the discussion is precise. Even in the presence of
fluxes, in many models, the leading results can be inferred
from supersymmetry and considerations of 4d N = 2
supergravity.

We then need to add in semiclassical nonperturbative
effects, such as instantons and wrapped branes. Our con-
trol and understanding of such computations improved
dramatically in the mid 1990s. The first computations of
instanton effects in 4d supersymmetric field theories were
made in the 1980s (Affleck et al., 1984), when the vac-
uum structure of supersymmetric QCD was elucidated.
By the mid 1990s, it became possible to find exact su-
perpotentials for a wide variety of N = 1 field theories
(Intriligator et al., 1994). In N = 2 field theories, in-
finite series of instanton contributions to the prepoten-
tial were also summed using holomorphy arguments and
symmetries, starting with the seminal work of Seiberg
and Witten (1994).

In string theory, mirror symmetry relates exact pre-
potentials in type IIa Calabi-Yau models and type IIb
Calabi-Yau models, where an infinite (worldsheet) in-

stanton sum in the prepotential on one side maps to a
completely classical geometric computation on the other
(Candelas et al., 1991). In the duality revolution, it was
found that in suitable circumstances, string duality maps
these worldsheet instanton sums to spacetime instanton
sums, allowing one to recover directly string theory and
(in the decoupling limit) field theory non-perturbative ef-
fects from string duality (Kachru et al., 1996; Kachru and
Vafa, 1995). This grew into the realization that one could
design stringy configurations of branes or singularities to
give rise to a given low energy field theory, and compute
the instanton sums via string techniques, in both N = 2
and N = 1 field theories (Katz et al., 1997; Katz and
Vafa, 1997).

More generally, holomorphy arguments allow one to
classify which kinds of Euclidean branes, wrapping which
kinds of topologies, can contribute to a holomorphic su-
perpotential. With the introduction and understanding
of D-branes in the mid 1990s (Polchinski, 1995), the full
list of possible BPS instantons relevant for a variety of
N ≥ 1 vacua was known. A prototypical example of
a macroscopic argument classifying (under some clearly
stated assumptions) which kinds of branes and topologies
are relevant for instanton effects in F-theory, appears in
Witten (1996b). While exact computation of the super-
potential in a general compactification is highly nontriv-
ial and still beyond our reach, this does allow for prin-
cipled estimates of the leading instanton contributions
in many backgrounds. In the particular cases where the
instanton effect can be re-interpreted in the low energy
effective theory as a dynamical effect in quantum field
theory, even the coefficient can be estimated with some
confidence, by matching to exact field theory results. In
many examples, even this crude level of understanding
suffices to exhibit vacua in the reliable regime of weak
coupling and large volume, under moderate assumptions
about the precise coefficients appearing in the nonper-
turbative superpotential.

The main issue we now have to address, is that we
want to take the sum of various terms, some inferred
directly from supergravity or world-sheet physics, and
others computed (or even inferred) from nonperturbative
effects. Typically, a solution of ∂Veff/∂φ

i = 0 for the
full effective potential will not be a critical point of the
various terms which enter into Veff , so these terms will
be ambiguous. But if there are ambiguities, how can
we be sure that we have fixed them for every term in a
consistent way?

Our eventual answer to this question in this review
will be to exhibit examples of solutions in which contri-
butions to the effective potential with different origins
have parametrically different scales. Thus, although in-
dividual terms may have some ambiguity, a very weak
control over this ambiguity will suffice to prove that the
full effective potential has minima.

We see no reason that such a separation of scales
should be needed for consistency, so this type of argu-
ment is not completely satisfactory; it does not apply to
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large numbers (perhaps the vast majority) of solutions.
A fully satisfactory argument has to be based on a com-
plete formulation of string theory in which the effective
potential has a precise definition, as we discussed earlier.
However, already within the limits of this argument, we
will find sufficiently many stabilized vacua to justify the
basic claims of Sec. II.

Even restricting attention to these solutions, we are
still not done. Another pitfall to guard against in extrap-
olating results for the effective potential is the possibility
of phase transitions. This is especially worrisome for first
order transitions, which unlike second order transitions
have no clear signal such as a field or order parameter
becoming massless. Such transitions are not possible in
global supersymmetry, in which the energy of a super-
symmetric vacuum is always zero; however this is not
true after supersymmetry breaking and in supergravity.
Should we worry about this possibility?

Actually, the rules here are somewhat different from
equilibrium statistical mechanics and field theory, in
that sufficiently long-lived metastable configurations will
count as vacua. However, a possibility which needs to be
considered is that additional fields, perhaps arising from
the Kaluza-Klein modes of dimensional reduction, or
composite fields expressing quantum correlations, might
destabilize our candidate vacua.

The first possibility, that Kaluza-Klein modes destabi-
lize vacua, will be considered in Sec. IV. The basic argu-
ment that this generically does not happen was given in
Sec. II.F.2.

The second possibility is handled by a combination of
arguments. In most of the effective field theory, quan-
tum fluctuations are controlled by the string coupling,
which we have assumed to be small. Thus, mass shifts
for composite fields will be small, so given that the mod-
uli are all massive, we do not expect phase transitions.
This argument has the flaw that some subsectors of the
theory must be strongly coupled at low energy (after all
we know this is the case for QCD). For these sectors, we
appeal to existing field theory analyses, and the assump-
tion that the supersymmetry breaking scale is smaller
than the fundamental scale, so that supergravity effects
are a small correction.

C. Subtleties in semiclassical gravity

In our discussion so far, we assumed that our local re-
gion of the universe can be well modelled as Minkowski
space-time. Of course, no matter how slow the time evo-
lution of the universe, or how small the cosmological con-
stant, if these are non-zero, at sufficiently large scales
the nature of the solution will be radically different from
Minkowski space-time. Thus, we might wonder whether
even if a solution looks consistent on cosmological scales,
it could be inconsistent as a full solution of the theory.

At first this might sound like it could only happen if the
underlying framework were non-local. However, while

string/M theory is believed to be in some sense non-local
at the fundamental (Planck and string) length scales, in
all known formalisms and computations these effects are
either exponentially small at longer distances, or appear
to be gauge artifacts, analogous to the apparent instan-
taneous force at a distance one finds in Coulomb gauge.
Thus it is hard to see how they could be relevant. Still,
some feel that paradoxes involving black hole evaporation
and entropy point to non-locality (Giddings, 2006).

Even in a local theory, a solution which is consistent
on short time scales, can in principle be inconsistent on
longer time scales, by developing a singularity with no
consistent physical interpretation or “resolution.” Al-
though one often hears the slogan that “string theory
resolves space-time singularities,” there are examples of
space-like singularities with no known resolution, nor any
proof that this cannot be done, making this an active field
of research.

Now in an ordinary physical theory, one would say
that the possibility of developing a singularity with no
consistent interpretation shows that the theory is not
fundamental; rather it should be derived from a more
fundamental theory in which the corresponding solution
is not singular. Familiar examples include Navier-Stokes
and other phenomenological many-body theories, and of
course classical general relativity.

In the present context, one might attempt a different
interpretation. If it turned out here that some subset
of vacua generically led to singularities, while another
subset did not, it might be reasonable to exclude the
first set of vacua as inconsistent. Now it seems strange
to us, indeed acausal, to throw out a solution because

of an inconsistency which appears (say) 101010

years in
the future. Still, if such an approach led to interesting
claims, it might be worth pursuing.

Another idea along these lines is that there might be
approximately Minkowski solutions which, while them-
selves consistent, cannot be embedded in a solution with
a sensible cosmological origin. This test seems better as
it is consistent with causality. It could be further refined
by asking not just that the cosmology be theoretically
consistent, but that it agree with observation. Of course,
we will eventually need to address this issue in the course
of testing any given solution, but we might ask if there
are simple arguments that some solutions cannot be re-
alized cosmologically, or cannot satisfy the constraints
discussed in Sec. II.F.4, before going into details. We
know of no results in this direction however.

Let us now come back to a point raised in Sec. III.A,
and explain the obstacles to performing thought exper-
iments which prove the existence of multiple (isolated)
vacua of an effective potential (Banks, 2000; Farhi et al.,
1990). For instance, suppose the effective potential for
a single scalar φ has two vacua at φ±. One can make
a vacuum bubble interpolating between the two vacua,
whose surface tension we can call σ. Starting from the
φ+ vacuum, suppose one nucleates a bubble of radius R
in the φ− phase. The Schwarzschild radius of the bub-



27

ble is σ(R/MP )2. So the bubble will be smaller than its
Schwarzschild radius unless R > σ(R/MP )2, i.e. unless

R <
M2

P

σ
. (34)

This is interesting for the following reason. A φ+ ex-
perimentalist can only use the bubble to infer the exis-
tence of the φ− vacuum and study its properties, if (34)
is satisfied. We would expect that the potential barrier
between two typical vacua in a quantum gravity theory
should be ∼MP , as there is no small parameter to change
the scaling in typical solutions. Then, one would also
find σ ∼ M3

P , and only bubbles smaller than the Planck
length would be outside their Schwarzschild radius! Of
course such bubbles are not a priori meaningful solutions,
and could not be used by an experimentalist to verify the
existence of other vacua.

This argument is a bit quick, for example because the
vacua we will discuss in Sec. IV do have small parameters,
but the conclusion is largely correct, as explained further
in (Banks, 2000; Farhi et al., 1990).

D. Tunneling instabilities

We have argued that in string theory, the effective po-
tentials one infers from direct computation typically have
many minima. It then makes sense to discuss physics in
any of the metastable vacua, only if the lifetime τ of such
a vacuum is parametrically long compared to the string
time. While for generic vacua arising at radii or cou-
plings of O(1) this may rarely be the case, it is believed
that there are very large numbers of vacua that in fact
easily satisfy this criterion, and even the more stringent
criterion τ > τtoday, which is roughly 15 billion years.

The quantitative theory of the decay of false vacua in
field theories with many vacuum states was worked out
by Coleman and collaborators in a series of classic pa-
pers (Callan and Coleman, 1977; Coleman, 1977; Cole-
man and De Luccia, 1980). Let us consider a toy model
consisting of a single scalar field φ, with a metastable de
Sitter vacuum of height V0 at φ0, and a second Minkowski
vacuum at infinity in field space. This can be thought
of as a rough toy model of the potential for a volume
modulus in a string compactification, where the second
vacuum represents the decompactification limit (Kachru
et al., 2003a). Suppose the barrier height separating the
dS vacuum from infinity is V1.

The tension of the bubble wall for the bubble of false
vacuum decay is easily computed to be

T =

∫ ∞

φ0

dφ
√

2V (φ) (35)

The dominant tunneling process differs depending on
whether V0M

2
P >> T 2 or V0M

2
P << T 2.

Since we see that T ∼ √
V1∆φ, this translates into the

question of whether ∆φ <<
√

V0

V1
or ∆φ >>

√

V0

V1
. The

former regime is called the “thin wall limit” for obvious
reasons. In this limit, the analysis of Coleman et al ap-
plies. The tunneling probability, is given by

P = exp

(

−27π2T 4

2V 3
0

)

(36)

For dS vacua with small V0 << V1, the rate is clearly
highly suppressed, easily yielding a lifetime in excess of
1010 years.

In the opposite regime of a low but thick potential
barrier, V0M

2
P << T 2, the dominant instanton govern-

ing vacuum decay would instead be the more enigmatic
Hawking-Moss instanton (Hawking and Moss, 1982).
The physical interpretation of this instanton is unclear; a
description in terms of thermal fluctuations of the φ field
which yields the same estimate for the rate can be found
in Linde (2005) and references therein. The action of
this instanton is the difference between the dS entropies
of dS vacua with vacuum energies V0 and V1, resulting in
a tunneling rate

P ≃ exp (−S(φ0)) = exp

(

−24π2

V0

)

. (37)

For small V0, this again is completely negligible. The for-
mula Eq. (37) neglects a small multiplicative correction

factor of exp(24π2

V1
) which accounts for the entropy at the

“top of the hill.”
For V0 << V1, this factor is not numerically impor-

tant, but its presence serves to prove a conceptual point.
Because of the existence of the Hawking-Moss instan-
ton, any dS vacuum which is accessible in the effective
field theory approximation to string theory, will have a
lifetime which is parametrically short compared to the
Poincare recurrence time of de Sitter space (considered
as a thermal system with a number of degrees of free-
dom measured by the de Sitter entropy) (Kachru et al.,
2003a).

This discussion illustrates how, within the regime of
effective field theory, one can find long-lived vacua. How-
ever, a point which already appeared in Bousso and
Polchinski (2000), and has not been settled in more real-
istic models, is that besides the approximate Minkowski
vacua at infinity we just discussed, there are many other
possible endpoints for the decay of a vacuum, both dS
and AdS vacua. Some of these tunneling rates have been
computed in Ceresole et al. (2006); Frey et al. (2003);
Kachru et al. (2003a, 2002), and generically they are
also very small. However, one might wonder whether the
large degeneracy of possible targets could lead to enough
“accidentally” low barriers to substantially increase the
overall decay rates. This might be addressed using the
statistical techniques of Sec. V.

E. Early cosmology and measure factors

In any theory with many vacua, one could ask: are
some vacua preferred over others? A natural answer in
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the present context is that if so, it will be for cosmologi-
cal reasons: perhaps the “big bang” provides a preferred
initial condition, or perhaps the subsequent dynamics fa-
vors the production of certain vacua.

This type of question has been studied by cosmolo-
gists for many years; some recent reviews include Guth
(2000); Linde (2005); Tegmark (2005); Vilenkin (2006).
At present the subject is highly controversial and thus
we are only going to sketch a few of the basic ideas here.

One general idea is that a theory of quantum grav-
ity will have a preferred initial condition. The most fa-
mous example is the wave function of Hartle and Hawk-
ing (1983), which is defined in terms of the Euclidean
functional integral. Presumably, time evolving this wave
function and squaring it would lead to a probability dis-
tribution on vacua. In the present context, this suggests
looking for a natural wave function on moduli space, or
on some larger configuration space of string/M theory.
An idea in this direction appears in Ooguri et al. (2005).

Another idea, more popular in recent times, is that the
distribution of vacua is largely determined by the dynam-
ics of inflation. Inflation involves an exponential expan-
sion of spatial volume, which tends to wash away any
dependence on initial conditions. In particular, many of
the standard arguments for inflation in our universe, such
as the explanations of homogeneity, flatness, and the non-
observation of topological defects, rely on this property.
While these standard arguments do not in themselves
bear on the selection of a particular vacuum, it is widely
believed that inflation also washes away all dependence
on the initial conditions relevant for vacuum selection
(say the choice of compactification manifold, moduli and
fluxes), because of the phenomenon of eternal inflation
(Linde, 1986a,b; Vilenkin, 1983).

Without going into details, eternal inflation leads to a
picture in which any initial vacuum, will eventually nu-
cleate bubbles containing all the other possible vacua,
sometimes called “pocket universes.” Because of the
exponential volume growth, the number distribution of
these pocket universes will “very quickly” lose memory
of the initial conditions and, one hopes, converge on some
universal distribution.

For this to happen, the microscopic theory must satisfy
certain conditions. First, the effective potential must ei-
ther contain multiple de Sitter vacua, or contain regions
in which inflation leads to large quantum fluctuations
(essentially, one needs δρ/ρ ∼ 1). Then, to populate all
vacua from any starting point, and thus have any hope to
get a universal distribution, all vacua must be connected
by transitions. These conditions are fairly weak and very
likely to be true in string/M theory. The first can al-
ready be satisfied by models of the type we discussed in
Sec. II.F.4. One can find much evidence for the second
condition, that all vacua are connected through transi-
tions, from the theory of string/M theory duality. For
example, it is true for a wide variety of models with ex-
tended supersymmetry (for example, N = 2 type II com-
pactifications on Calabi-Yau (Avram et al., 1996; Greene

et al., 1995)), and thus will be true for flux compactifi-
cations built from these, since the potential goes to zero
in the large volume limit.

Either way, the result of such considerations would be
a probability distribution on vacua, usually referred to as
a “measure factor.” This probability distribution would
then be used to make probabilistic predictions, along the
lines we suggested in an example in Sec. II.F.3.

At this point, many difficult conceptual questions arise.
After all, our (the observable) universe is a unique event,
and most statisticians and philosophers would agree that
the standard “frequentist” concept of probability, which
assumes that an experiment can be repeated an indef-
inite number of times, is meaningless when applied to
unique events. While this may at first seem to be only
a philosophical difficulty, it will become practical at the
moment that our theoretical framework produces a claim
such as “the probability with which our universe appears
within our theory is .01”, or perhaps 10−10, or perhaps
10−1000. How should we interpret such results?

A serious discussion of this question would be lengthy,
and would require calling upon many topics out of the
main line of our review. In particular, many cosmologists
have argued that the interpretation of a measure factor
requires taking into account the selection effects we dis-
cussed in Sec. II.E.1 in a quantitative way, estimating the
“expected number of observers” contained in each pocket
universe, to judge whether a “typical observer” should
expect to make a certain observation. Doing this would
involve a good deal of astrophysics, and perhaps even in-
put from other disciplines such as chemistry, biology and
so on. Indeed, the complexity of actually implementing
such a program has led many to doubt that any generally
accepted conclusions could be reached this way.

It may be better to restrict one’s ambitions, to avoid
this complexity. One step in this direction would be to
restrict attention to vacua which can reproduce all ob-
servations to date (e.g. the Standard Model and relevant
cosmological observations), as we know this is anthropi-
cally allowed, and not ask why we do not see something
else, instead only deriving predictions for yet to be mea-
sured observables. Of course, if we go on to see something
new with “small probability,” we will be left wondering
what this means.

Another would be to consider a probability as signifi-
cant only if it is extremely small, and consider such un-
likely vacua as “impossible.” In other words, we choose
some ǫ, and if our observations can only be reproduced by
vacua with probability less than ǫ, we consider the the-
ory with this choice of measure factor as falsified. While
one might debate the appropriate choice of ǫ, since some
ideas for measure factors lead to extremely small prob-
abilities for some vacua (say proportional to tunneling
rates, which as we saw in Sec. III.D are extremely small),
this might be interesting even with an ǫ so small as to
meet general acceptance.

Another answer, which is probably the most sound
philosophically, is not to try to interpret absolute proba-
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bilities defined by individual theories, but only compare
probabilities between different theories, considering the
theory which gives the largest probability as preferred.
Even without a competitor to string/M theory, this might
be useful in judging among proposed measure factors, or
dealing with other theoretical uncertainties. Following
up this line of thought would lead us into Bayesian statis-
tics; see MacKay (2003) for an entertaining and down-
to-earth introduction to this topic.

Anyhow, these questions are somewhat academic at
this point, as general agreement has not yet been reached
about how to define a measure factor, or what structure
the result might have. In particular, doing this within
eternal inflation is notoriously controversial, though re-
cent progress is reported in Bousso (2006); Vilenkin
(2006) and references there, and perhaps generally ac-
cepted candidate definitions will soon appear.

Thus let us conclude this subsection by simply listing a
few of the claims for measure factors which appear in ex-
isting literature. One such is the entropy exp 24π2M4

P /E
of de Sitter space with vacuum energy E. This is the
leading approximation to the Hartle-Hawking wave func-
tion, where E is usually interpreted as the vacuum energy
in some initial stage of inflation. Since such a factor is
extremely sharply peaked at small E, its presence is more
or less incompatible with observed inflation, ruling this
wave function out. There are some ideas for how correc-
tions in higher powers in E could fix this, see Firouzjahi
et al. (2004); Sarangi and Tye (2006).

Another common result is exp 24π2M4
P /Λ, formally the

same entropy factor, but now as a function of the cosmo-
logical constant at the present epoch. This arose in the
early attempts to derive a measure from eternal infla-
tion, and has a simple interpretation there: the proba-
bility that a randomly chosen point sits in some vacuum,
includes a factor of the average lifetime of that vacuum,
as predicted by Eq. (37). This interpretation suggests
that this measure factor is also incorrect, as during al-
most all of this lifetime the universe is cold and empty, so
this factor has no direct bearing on the expected number
of observers. More technical arguments have also been
made against it.

If we ignore this problem, since this measure is heavily
peaked on small Λ, we might claim to have a dynamical
solution to the c.c. problem (one also needs to argue that
Λ < 0 is not possible). From the point of view we are tak-
ing, this proposal has the amusing feature that it predicts
that the total number of Λ > 0 vacua is roughly 10120,
which presumably could be checked independently. If so,
this would seem superficially attractive, as in principle it
predicts a unique overwhelmingly preferred vacuum, the
one with minimum positive Λ. On the other hand, the
prospects for computing Λ accurately enough to find this
vacuum seem very dim. Even if we could get exact results
for Λ, there are arguments from computational complex-
ity theory that the problem of finding its minimum is
inherently intractable (Denef and Douglas, 2006), mak-
ing this measure factor nearly useless in practical terms.

Perhaps a better response to the problem is to define
away the entropy factor. There are various closely re-
lated ways to do this (Vilenkin, 2006); for example in
Vanchurin and Vilenkin (2006) it is argued that it can be
done by restricting attention to the world-line of a single
“eternal observer,” and counting the number of bubbles
it enters. This leads to a prescription in terms of the
stationary distribution of a Markov process constructed
from intervacuum tunneling rates; its detailed properties
are being explored, but at first sight this appears to lead
to a wildly varying probability factor P (i) which, since it
is determined by the structure of high energy potential
barriers, would have little correlation to most observ-
able properties of the vacua themselves. As we discuss
in Sec. V.F, this might still allow making probabilistic
predictions.

Other factors which have appeared in such proposals,
and while probably subleading to the ones we covered
might be important, include a volume expansion factor
(the overall growth in volume during slow-roll inflation),
the volume in configuration space of the basin of attrac-
tion leading to the local minimum (Horne and Moore,
1994), a canonical measure on phase space (Gibbons and
Turok, 2006), dynamical symmetry enhancement factors
(Kofman et al., 2004), and the volume of the extra di-
mensions (Firouzjahi et al., 2004).

F. Holographic and dual formulations

The advent of string/M theory duality in the mid-90’s
led to an entirely novel perspective on many questions,
and several new candidate nonperturbative frameworks,
such as matrix models, Matrix theory, and the AdS/CFT
correspondence. While at present it is not known how
to use any of them to directly address the problem at
hand, perhaps the most general of these (and certainly
the best-studied one) is the AdS/CFT correspondence,
which bears on the definition of solutions with negative
cosmological constant.

Specializing to the case of present interest, consider a
maximally symmetric four-dimensional solution of string
theory with negative cosmological constant, in other
words a product of 3+1 dimensional anti-de Sitter space-
time with a 6 dimensional internal space. According to
AdS/CFT, there will exist a dual 2 + 1-dimensional con-
formal field theory (without gravity), which is precisely
equivalent to the quantum string theory in this space-
time. This can be made more concrete for questions
which only involve observables on the boundary of AdS;
for example a scattering amplitude in AdS maps into
a correlation function in the CFT, and boundary condi-
tions of the fields in AdS map into the values of couplings
in the CFT.

This dictionary has been much studied. The most
important entries for present purposes are the relation
between the 3 + 1 dimensional AdS c.c. and the num-
ber of degrees of freedom of the CFT, and the relation
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between masses in AdS and operator dimensions in the
CFT. For example, in Freund-Rubin compactification of
IIb string theory on AdS5 × S5, the curvature radius
R4/(α′)2 ∼ gsN , so the number of degrees of freedom
N2 scales to very large values for weakly curved, weakly
coupled vacua. Similarly, the map between operators
and gravity modes shows that operators with dimension
∆ ∼ O(1) map to KK modes with masses ∼ 1/R.

For the Freund-Rubin examples, the AdS curvature ra-
dius and the radius of the internal sphere are equal. For
the AdS4 vacua which arise in discussions of the land-
scape, one is usually interested instead in theories with
compact dimensions having RKK << RAdS, so there is
an effective 4d description. Such theories will have dual
CFTs that differ qualitatively from those appearing in
standard examples of AdS/CFT. By the mapping from
gravity modes to field theory operators, we see for in-
stance that the number of operators with ∆ ∼ O(1) will
be much smaller in these theories. Instead of an infinite
tower of operators with regularly spaced conformal di-
mension (dual to the KK tower in Freund-Rubin models),
these dual CFTs will have a sporadic set of low dimen-
sion operators (dual to the compactification moduli), and
then a much larger spacing between the operators dual
to KK modes.

So, given a class of AdS vacua in the landscape, it
seems reasonable to search for candidate dual CFTs that
could provide their exact definition. Further thought
leads to difficulties with this idea. First, the AdS vacua
whose existence is established using effective potential
techniques, by definition lie in the regime in which the
gravity description is weakly coupled. Since they have
no moduli, they do not extrapolate (along lines of fixed
points) to a dual regime where the field theory would be
weakly coupled. So trying to find the dual field theory,
involves working on the wrong (strongly coupled) side of
the duality, a difficult procedure at best.

Second, we are not primarily interested in typical land-
scape vacua. Rather, we are most interested in those
highly atypical vacua in which fortuitous cancellations
gives rise to small Λ, as in the Bousso-Polchinski ar-
gument. Such vacua rely on complicated cancellations
between many terms, and there are reasons to think
they are exceedingly hard to find explicitly even in the
more computable gravity description. This is the famil-
iar problem, that one would need to include Standard
Model and other loop corrections to very high orders in
perturbation theory, to claim that one had found a spe-
cific vacuum with small Λ. Even worse, a small variation
to one of these complicated solutions (such as changing
a flux by one unit) will spoil the cancellation and give a
large cosmological term. This suggests that the CFT’s
we would be most interested in finding (which are dual to
the AdS vacua with atypically small Λ) are also compli-
cated, and furthermore that we might need to compute
very precisely to see the cancellations which single out
the few solutions with small cosmological term.

Nevertheless, in principle we should be able to get the

general features of the problem to agree on both sides.
The basic picture would seem to be that we start with
QFT’s with many, many degrees of freedom, perhaps the
dual theory of Silverstein (2003), and then flow down to
CFT. To recover agreement with our effective potential
analyses, we would need to find that a generic RG flow
either loses almost all the degrees of freedom, and thus is
dual to large Λ, or else has no weakly coupled space-time
interpretation at all. On the other hand, given appropri-
ate tunings in the bare theory, more degrees of freedom
would survive the flow, leading to a theory whose dual
had a tuned small Λ. It would be very interesting to have
a quantitative version of this argument.

IV. EXPLICIT CONSTRUCTIONS

We now add some flesh to our previous qualitative
considerations by describing how flux vacua can be con-
structed in type II string theories. The most studied case
involves IIb/F-theory vacua, so we will begin there. We
then present more recent results about IIa flux vacua,
discuss mirror symmetry in this setting, and provide
some definite indications that many new classes of vacua
are waiting to be explored. We make no pretense to
completeness in reviewing all approaches to the subject;
rather, we hope that this review, together with the excel-
lent reviews (Frey, 2003; Grana, 2006; Silverstein, 2004b),
will provide a good overview of various approaches and
classes of models. In particular, for discussions of mod-
els without low energy supersymmetry, the reader should
consult Silverstein (2004b).

A. Type IIb D3/D7 vacua

In this subsection, we consider type IIb / F-theory
vacua whose 4d N = 1 supersymmetry is of the type
preserved by D3/D7 branes in a Calabi-Yau orientifold.
The N = 1 vacua which preserve D5/D9 type super-
symmetry are less explored, though some examples will
appear in a later subsection.

1. 10d solutions

Here, we describe the 10d picture of flux compactifi-
cations in the supergravity limit. We follow the treat-
ment in Giddings et al. (2002). Closely related solutions
(related to the IIb solutions via the F-theory lift of M-
theory) were first found in M-theory compactifications
on Calabi-Yau fourfolds in Becker and Becker (1996),
and some aspects of their F-theory lift were described
in Dasgupta et al. (1999); Gukov et al. (2000).

The type IIb string in 10 dimensions has a string frame
action

L =
1

2κ2
10

∫

d10x (−G)1/2e−2S (R+ 4∂µS∂
µS
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−1

2
|F1|2 −

1

12
G3 ·G3 −

1

4 · 5!
F̃ 2

5

)

+
1

8iκ2
10

∫

eSC4 ∧G3 ∧G3 + Sloc . (38)

The theory has an NS field strength H3 (with potential
B2) and RR field strengths F1,3,5 (with corresponding
potentials C0,2,4).

G3 = F3 − φH3 (39)

is a combination of the RR and NS three-form fields,

φ = C0 + ie−S (40)

is the axio-dilaton, and

F̃5 = F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3 . (41)

The 5-form field is actually self-dual; one must impose
the constraint

F̃5 = ∗F̃5 (42)

by hand when solving the equations of motion. Finally,
Sloc in (38) allows for the possibility that we include the
action of any localized thin sources in our background;
possible objects which could appear there in string theory
include D-branes and orientifold planes.

We will start by looking for solutions with 4d Poincare
symmetry. The Einstein frame metric should take the
form

ds210 = e2A(y)ηµνdx
µdxν + e−2A(y)g̃mn(y)dymdyn (43)

µ, ν run over 0, · · · , 3 while m,n take values 4, · · · , 9 and
g̃mn is a metric on the compactification manifold M . We
have allowed for the possibility of a warp factor A(y). In
addition one should impose

φ = φ(y), F̃5 = (1 + ∗)[dα(y) ∧ dx0 · · · ∧ dx3] (44)

and allow only compact components of the G3 flux

F3, H3 ∈ H3(M,ZZ) . (45)

The G3 equation of motion then tells one to choose a
harmonic representative in the given cohomology class.

One can show by using the trace-reversed Einstein
equations for the IR4 components of the metric, that

∇̃2e4A = e2AGmnpG
mnp

)

12Im(τ)
+ e−6A[∂mα∂

mα+ ∂me
4A∂me4A]

+κ2
10e

2A(Tm
m − T µ

µ )loc . (46)

We have denoted the stress-energy tensor of any localized
objects (whose action appears in Sloc) by Tloc.

This equation already tells us something quite inter-
esting. The first two terms on the right hand side are

≥ 0, but on a compact manifold, the left hand side in-
tegrates to zero (being a total derivative). Therefore, in
compact models, and in the absence of localized sources,
there is a no-go theorem: the only solutions have G3 = 0
and eA = constant, and IIb supergravity does not allow
nontrivial warped compactifications. This is basically the
no-go theorem proved in various ways in Gibbons (1984);
Maldacena and Nunez (2001); de Wit et al. (1987).

This does not mean that one cannot find warped solu-
tions in the full string theory. String theory does allow
localized sources. It was emphasized already in Verlinde
(2000) that one can make warped models by considering
compactifications with N D3 branes, and stacking the
D3 branes at a point on the compact space; then as is
familiar from the derivation of the AdS/CFT correspon-
dence (Maldacena, 1998), the geometry near the branes
can become highly warped.

For this loophole to be operative, one needs

(Tm
m − T µ

µ )loc < 0 (47)

to evade the global obstruction to solving Eq. (46). Be-
fore finding nontrivial warped solutions with flux, we will
also need one more fact. The Bianchi identity for F̃5 gives
rise to a constraint

dF̃5 = H3 ∧ F3 + 2κ2
10T3ρ

loc
3 (48)

where T3 is the D3-brane tension, and ρloc
3 is the local

D3 charge density on the compact space. The integrated
Bianchi identity then requires, for tadpole cancellation,

1

2κ2
10T3

∫

M

H3 ∧ F3 +Qloc
3 = 0 (49)

where Qloc
3 is the sum of all D3 charges arising from lo-

calized objects.
Now, one can re-write the equation (48) more explicitly

in terms of the function α(y) as

∇̃2α = ie2AGmnp ∗6 G
mnp

12Im(τ)
+2e−6A∂mα∂

mα+2κ2
10e

2AT3ρ
loc
3 .

(50)
Subtracting this from the Einstein equation (46), one
finds

∇̃2(e4A − α) =
e2A

24Im(τ)
|iG3 − ∗6G3|2 + e−6A|∂(e4A − α)|2

+2κ2
10e

2A[
1

4
(Tm

m − T µ
µ )loc − T3ρ

loc
3 ]. (51)

Let us make the assumption

1

4
(Tm

m − T µ
µ )loc ≥ T3ρ

loc
3 . (52)

This serves as a constraint on the kind of localized sources
we will want to consider in finding solutions. The inequal-
ity is saturated by D3 branes and O3 planes, as well as
by D7 branes wrapping holomorphic cycles; it is satisfied
by D3 branes; and it is violated by O5 and O3 planes.
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Assuming we restrict our sources as above, it follows
from (51) that G3 must be imaginary self-dual

∗6G3 = iG3, (53)

that the warp factor and C4 are related

e4A = α, (54)

and that the inequality (52) is actually saturated. So so-
lutions to the tree-level equations should include only D3,
O3 and D7 sources. In the quantum theory, one can ob-
tain solutions on compact M with D3 sources as well; we
will describe this when we discuss supersymmetry break-
ing.

We did not write out the extra-dimensional Einstein
equation and the axio-dilaton equation of motion yet;
their detailed form will not be important for us. Impos-
ing them, we find that this class of solutions describes
F-theory models (Vafa, 1996) in the supergravity approx-
imation, including the possibility of background flux. As
noted earlier, these solutions are closely related to those
of Becker and Becker (1996), whose F-theory interpreta-
tion has also been described in Dasgupta et al. (1999);
Gukov et al. (2000).

The simplest examples of such solutions are perturba-
tive IIb orientifolds. An argument of Sen (1997) shows
that every compactification of F-theory on a Calabi-Yau
fourfold has, in an appropriate limit, an interpretation as
a IIb orientifold of a Calabi-Yau threefold. We will there-
fore develop the story in the language of IIb orientifolds,
but the formulae generalize in a straightforward way to
the more general case. In this special case of perturbative
orientifolds, at leading order, the metric on the internal
space is conformally Calabi-Yau; it differs by the warp
factor e2A. For this reason, these flux vacua are often
described as Calabi-Yau compactifications with flux, al-
though strictly speaking the metric on the internal space
is not Calabi-Yau (and in the case of general F-theory
models, is related indirectly only to the base of an ellip-
tic Calabi-Yau fourfold, not a Calabi-Yau threefold).

2. 4d effective description

In this section we describe the construction of the
4d effective action for IIb orientifolds with RR and NS
flux, following Giddings et al. (2002). The main result
will be an explicit and computable result for the 4d ef-
fective potential, which can be analyzed using analyti-
cal, numerical or statistical techniques. Earlier work in
this direction appeared in Dasgupta et al. (1999); Gukov
et al. (2000); Mayr (2001); Taylor and Vafa (2000)), while
related results in gauged supergravity were presented
in Andrianopoli et al. (2002a,b,c, 2003a,b); Angelantonj
et al. (2004, 2003); Dall’Agata (2001, 2004a,b); D’Auria
et al. (2003a,b, 2002); Ferrara (2002); Ferrara and Por-
rati (2002); Michelson (1997); Polchinski and Strominger
(1996). Generalizations of this formalism to include ef-
fects of the warp factor appear in DeWolfe and Giddings

(2003); Frey and Maharana (2006); Giddings and Maha-
rana (2006).

We consider a Calabi-Yau threefold M with h2,1 com-
plex structure deformations, and choose a symplectic ba-
sis {Aa, Bb} for the b3 = 2h2,1 + 2 three-cycles a, b =
1, · · · , h2,1+1, with dual cohomology elements αa, β

b such
that:
∫

Aa

αb = δa
b ,

∫

Bb

βa = −δa
b ,

∫

M

αa ∧ βb = δb
a . (55)

Fixing a normalization for the holomorphic three-form
Ω, we then define the periods

za =

∫ a

A

Ω, Gb =

∫

Bb

Ω (56)

and the period vector Π(z) = (Gb, z
a). The za are projec-

tive coordinates on the complex structure moduli space of
the Calabi-Yau threefold, with Gb = ∂bG(z). The Kähler
potential K for the za as well as the IIb axio-dilaton
φ = C0 + i

gs
is given by

K = −log

(

i

∫

M

Ω ∧ Ω̄

)

− log(−i(φ− φ̄)) (57)

Note that given the period vector, one can re-write

∫

M

Ω ∧ Ω̄ = −Π†ΣΠ (58)

where Σ is the symplectic matrix. This structure on the
complex structure moduli space follows from so-called
special geometry, as derived in Candelas and de la Ossa
(1991); Dixon et al. (1990); Strominger (1990). The spe-
cial geometry governs the moduli space of vector multi-
plets in N = 2 supersymmetric compactifications. How-
ever, it also governs the complex structure moduli space
of N = 1 orientifolds of these models, which is the appli-
cation of interest here. (In general, some of the complex
structure moduli could be projected out in any given ori-
entifold construction; in this circumstance, one should
appropriately restrict the various quantities to the sur-
viving submanifold of the moduli space).

Now, we consider turning on fluxes of the RR and
NS-NS 3-form field strengths F3 and H3. In a self-
explanatory notation, we define these via integer-valued
b3-vectors f, h:

F3 = −(2π)2α′(faα
a + fa+h2,1+1βa), (59)

H3 = −(2π)2α′(haα
a + ha+h2,1+1βa) . (60)

These fluxes generate a superpotential for the complex
structure moduli as well as the axio-dilaton (Gukov et al.,
2000)

W =

∫

M

G3 ∧ Ω(z) = (2π)2α′(f − φh) · Π(z) (61)
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where G3 = F3 − φH3.
To write down a general expression for the potential,

we need to introduce one more ingredient. Thus far, we
have described only a Kähler potential on the complex
structure moduli space. In general models, there are also
Kähler moduli (up to h1,1(M) of them, depending on
how many survive the orientifold projection). However,
they will cancel out of the tree-level effective potential in
the IIb supergravity, in the following way. The Kähler
potential for these moduli is

Kk = −2log(V ) (62)

Given a basis of divisors {Sα}, α = 1, · · · , h1,1, the
volume V is determined in terms of the Kähler form
J = tαSα by

V =
1

6
Sαβγt

αtβtγ (63)

Note however that for this class of vacua, the flux super-
potential (61) does not depend explicitly on the Kähler
moduli.

Now, on general grounds, the expression for the po-
tential in N = 1 supergravity takes the form (Freedman
et al., 1976)

V = eK+Kk





∑

i,j

gij̄DiWDjW − 3|W |2


 (64)

where i, j runs over a, φ, α. DiW is the Kähler covari-
antized derivative DiW = ∂iW + K,iW . At this point,
because of the special structure where W is independent
of the ts at tree level, in the expression (64) the −3|W |2
term precisely cancels the terms where i, j run over α, β.
Therefore, one can express the full tree-level flux poten-
tial as (Giddings et al., 2002)

V = eKtot





∑

a,b

gab̄DaWDbW



 (65)

where here the sum over a also includes φ.
So surprisingly, despite the fact that we are working in

an N = 1 supergravity, the potential is positive semi-
definite with vacua precisely when V = 0! Further-
more, one sees immediately that generic vacua are not
supersymmetric; supersymmetric vacua have DaW =
DφW = DαW = 0, while non-supersymmetric vacua
have DαW 6= 0 for some α. This is precisely a realiza-
tion of the cancellation that occurs in a general class of
supergravities known as no-scale supergravities (Crem-
mer et al., 1983; Ellis et al., 1984). Unfortunately, the
miracle of vanishing cosmological constant for the non-
supersymmetric vacua depended on the tree-level struc-
ture of the Kähler potential (62) which is not radiatively
stable. Therefore this miracle, while suggestive, does not
lead to any mechanism of attacking the cosmological con-
stant problem. The potential (65) receives important

corrections both in perturbation theory and nonpertur-
batively.

A simple characterization of the points in moduli space
which give solutions to V = 0 for a given flux arises as
follows. We need to solve the equations

DφW = DaW = 0 (66)

which, more explicitly, means

(f − φ̄h) · Π(z) = (f − φh) · (∂aΠ + Π∂aK) = 0 . (67)

In fact, these equations have a simple geometric interpre-
tation: for a given choice of the integral fluxes f, h, they
require the metric to adjust itself (by motion in complex
structure moduli space) so that the (3,0) and (1,2) parts
of G3 vanish, leaving a solution where G3 is “imaginary
self-dual” (ISD), as in (53).

At this stage, since we are solving h2,1 + 1 equations
in h2,1 + 1 variables for each choice of integral flux, it
seems clear that generic fluxes will fix all of the complex
structure moduli as well as the axio-dilaton. Further-
more, one might suspect that the number of vacua will
diverge, since we have not yet constrained the fluxes in
any way.

However, the fluxes also induce a contribution to the
total D3-brane charge, arising from the term in the 10d
IIb supergravity Lagrangian

L = · · · + 1

8iκ2
10

∫

C(4) ∧G3 ∧G3

Imφ
+ · · · (68)

where C4 is the RR four-form potential which couples to
D3 branes. This results in a tadpole for D3-brane charge,
in the presence of the fluxes:

Nflux =
1

(2π)4(α′)2

∫

M

F3 ∧H3 = f · Σ · h (69)

This is important because: i) one can easily check that
for ISD fluxes Nflux ≥ 0, and ii) in a given orientifold of
M , there is a tadpole cancellation condition (49), which
we can write in the form

Nflux +ND3 = L (70)

where L is some total negative D3 charge which needs
to be cancelled, arising by induced charge on D7 and O7
planes (Giddings et al., 2002), and/or explicit O3 planes.
In practice, for an orientifold which arises in the Sen limit
(Sen, 1997) of an F-theory compactification on elliptic
fourfold Y , one finds (Sethi et al., 1996)

L =
χ(Y )

24
. (71)

What this means is that the allowed flux choices in an
orientifold compactification on M , and hence the num-
bers of flux vacua, are stringently constrained by the re-
quirement Nflux ≤ L. This will be important later in the
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review, when we discuss vacuum statistics for this class
of models.

We note here that in describing this classical story,
we have simplified matters by turning on only the back-
ground closed string fluxes. In general orientifold or
F-theory models, D7 branes with various gauge groups
are also present, and one can turn on background field
strengths of the D7 gauge fields, generating additional
contributions to the tadpole condition (70) and the space-
time potential energy. Because our story is rich enough
without considering these additional ingredients, we pro-
ceed with the development without activating them, but
discussions which incorporate them in this class of vacua
can be found in e.g. Burgess et al. (2003); Haack et al.

(2006); Jockers and Louis (2005a,b); Garcia del Moral
(2006).

a. Example: The conifold We now exemplify our previ-
ous considerations by finding flux vacua in one of the
simplest non-compact Calabi-Yau spaces, the deformed
conifold. The metric of this space is known explicitly
(Candelas and de la Ossa, 1990). The vacua we discuss
below have played an important role in gauge/gravity
duality (Klebanov and Strassler, 2000), the study of ge-
ometric transitions (Vafa, 2001), and warped compactifi-
cations of string theory (Giddings et al., 2002), including
models of supersymmetry breaking (Kachru et al., 2002).
We will encounter some of these applications as we pro-
ceed.

The deformed conifold is a noncompact Calabi-Yau
space, defined by the equation

P (x, y, v, w) = x2 + y2 + v2 + w2 = ǫ2 (72)

in C4. As ǫ → 0, the geometry becomes singular: the
origin is non-transverse, since one can solve P = dP = 0
there. It is not difficult to see that an S3 collapses to
zero size at this point in moduli space; e.g. for real ǫ2,
the real slice of (72) defines such an S3. In this limit, the
geometry can be viewed as a cone over S3×S2. There are
two topologically nontrivial three-cycles; the A-cycle S3

we have already discussed, which vanishes when ǫ → 0,
and a dual B-cycle swept out by the S2 times the radial
direction of the cone.

The singularity (72) arises locally in many compact
Calabi-Yau spaces (at codimension one in the complex
structure moduli space). In such manifolds, the B-cycle is
also compact; the behavior of the periods of Ω is partially
universal, being given by

∫

A

Ω = z,

∫

B

Ω =
z

2πi
log(z) + regular = G(z) . (73)

Here z → 0 is the singular point in moduli space where
A collapses, and the regular part of the B-period is non-
universal.

We can now study flux vacua using the periods (73)
and the explicit formulae (61), (65) for the superpotential

and potential energy function. Choosing

∫

A

F3 ∼M,

∫

B

H3 ∼ −K (74)

we find that the superpotential takes the form

W (z) = −Kφz +MG(z) (75)

Given the logarithmic singularity in G, this superpo-
tential bears a striking resemblance to the Veneziano-
Yankielowicz superpotential of pure N = 1 supersym-
metric SU(M) gauge theory, conjectured many years ago
(Veneziano and Yankielowicz, 1982). We’ll see that this
is no accident.

The Kähler potential can be determined using the
equation (57). We will be interested in vacua which arise
close to the conifold point where z is exponentially small;
to obtain such vacua we will consider K/gs to be large.
In this limit, the dominant terms in the equation for clas-
sical vacua are

DzW =
M

2πi
log(z) − i

K

gs
+ · · · (76)

where · · · are O(1) terms that will be negliible in a self-
consistent manner. For K/gs large, one finds that

z ∼ exp(−2πK/gsM) (77)

So there are flux vacua exponentially close to the conifold
point in moduli space. In fact, due to the ambiguity
arising from the logarithm when one exponentiates to
solve for z, there are M vacua, distributed in phase but
with z of the magnitude given above.

For the noncompact Calabi-Yau, these are good flux
vacua. In fact, the conifold with fluxes (74) is dual, via
gauge/gravity duality, to a certain N = 1 supersymmet-
ric SU(N +M) × SU(N) gauge theory, with N = KM
(Klebanov and Strassler, 2000). While it is beyond the
scope of our review to discuss this duality in detail, the IR
physics of the gauge theory involves gluino condensation
in pure SU(M) N = 1 SYM. This fact, together with
the duality, explains the appearance of the Veneziano-
Yankielowicz superpotential in (75). The M vacua we
found in the z-plane, are the M vacua which saturate
the Witten index of pure SU(M) SYM.

In a compact Calabi-Yau, the dilaton φ is also dynam-
ical and we would need to solve the equation DφW = 0
as well. Naively, one would find an obstruction to doing
this in the limit described above (large K/gs and expo-
nentially small z). In fact, one can do this even in com-
pact situations, as described in Giddings et al. (2002).
The details do not matter for us here, however.

While this example is quite simple, we will use it to il-
lustrate many points in our review. In later subsections,
we will re-encounter these solutions in constructing ex-
amples of warped compactification, novel models of su-
persymmetry breaking, and attractors in the space of flux
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vacua. In the literature, one can find many other exam-
ples of explicit vacua, both in toroidal orientifolds (Blu-
menhagen et al., 2003; Cascales and Uranga, 2003a,b;
Dasgupta et al., 1999; Frey and Polchinski, 2002; Greene
et al., 2000; Kachru et al., 2003c) and in more nontriv-
ial Calabi-Yau threefolds (Aspinwall and Kallosh, 2005;
Conlon and Quevedo, 2004; Curio et al., 2002, 2001;
DeWolfe, 2005; DeWolfe et al., 2005a; Giryavets et al.,
2004a,b; Tripathy and Trivedi, 2003).

3. Quantum IIb flux vacua

At the classical level, the Kähler moduli of IIb orien-
tifolds with flux remain as exactly flat directions of the
no-scale potential. However, quantum corrections will
generally generate a potential for these moduli. This po-
tential will have at least two different sources:

1. In every model, there will be corrections to the
Kähler potential which depend on Kähler moduli.
The leading such corrections have been computed
in e.g. Becker et al. (2002); Berg et al. (2005, 2006).
As soon as Kk takes a more general form than (62),
the no-scale cancellation disappears and the scalar
potential will develop dependence on the Kähler
moduli.

2. The superpotential in these models enjoys a non-
renormalization theorem to all orders in perturba-
tion theory (Burgess et al., 2006). Nonperturba-
tively, it can be violated by Euclidean D3-brane
instantons. The conditions for such instantons to
contribute in the absence of G3 flux, and assuming
they have smooth worldvolumes, with vanishing in-
tersection with other branes in the background, are
described in Witten (1996b). The basic condition
is familiar also from supersymmetric gauge theory:
there should be precisely two fermion zero modes
in the instanton background. Witten argues that
these zero modes can be counted as follows. One
can lift the Euclidean D3 brane to an M5 brane
wrapping a divisor D in the M-theory dual com-
pactification on a Calabi-Yau fourfold. Then, the
number of fermion zero modes can be related to the
holomorphic Euler character χ of the divisor:

number of zero modes = 2χ(D) = 2

3
∑

p=0

h0,p(D) . (78)

In the simplest case of an isolated divisor with
h0,0 = 1 and other h0,p vanishing, the contribu-
tion is definitely nonzero. For more elaborate cases
where χ = 1 but the divisor has a moduli space, it
is conceivable that the integral over the instanton
moduli could vanish.

The conditions under which such instantons contribute
in the presence of various fluxes and/or space-filling D-
branes (whose worldvolumes they may intersect) remain

a subject of active investigation (Blumenhagen et al.,
2006; Florea et al., 2006; Gorlich et al., 2004; Haack et al.,
2006; Ibanez and Uranga, 2006; Kallosh et al., 2005;
Lust et al., 2006c; Saulina, 2005). The condition (78)
is certainly modified. More generally, there can be con-
tributions from nonperturbative dynamics in field theo-
ries arising on D7-brane worldvolumes, whose gauge cou-
pling is Kähler-modulus dependent (Gorlich et al., 2004;
Kachru et al., 2003a).

It was argued in Kachru et al. (2003a) (KKLT) that
such corrections will allow one to find flux compactifica-
tions of the IIb theory that manifest landscapes of vacua
with all moduli stabilized. As a simple toy model for
how such corrections may be important let us consider a
model with a single Kähler modulus ρ, with

Kk = −3 log(−i(ρ− ρ̄)) (79)

Here one should think of Im(ρ) ∼ R4

(α′)2 where R is the

radius of M , while Re(ρ) is related to the period of an
axion arising from C4 (Giddings et al., 2002). If there is
a D7 stack which gives rise to a pure SYM sector, whose
gauge coupling depends on ρ, one finds a superpotential
of the general form

W = W0 +Aeiaρ . (80)

One should view W0 as being the constant arising from
evaluating the flux superpotential (61) at its minimum
in complex structure moduli space. A is a determinant
which a priori depends on complex structure moduli, and
a is a constant depending on the rank of the D7 gauge
group. We noted above that A would generally depend
on complex structure moduli. However, the scales in the
flux superpotential make it clear that complex structure

moduli receive a mass at order α′

R3 , while any Kähler mod-
ulus potential arising from the correction in (80) will be
significantly smaller. Therefore, one can view the su-
pergravity functions above as summarizing the effective
field theory of the light mode ρ, having integrated out the
heavy complex structure modes and dilaton. For a de-
tailed discussion of possible issues with such a procedure,
see e.g. de Alwis (2005); Choi et al. (2004).

It is then straightforward to show that one can solve
the equation DρW = 0, yielding a vacuum with all mod-
uli stabilized and with unbroken supersymmetry (Kachru
et al., 2003a). For small W0, this vacuum moves into the
regime of control (large Im(ρ)) with logarithmic speed.
(Small a arising from large rank gauge groups also helps).
Given the expectations for which kinds of gauge theories
we can realize in string compactifications, this provides a
loose proof-of-principle that one can find models with
all moduli stabilized. This picture has been substan-
tially fleshed out and extended in further work; the most
explicit examples to date appear in Denef et al. (2004,
2005); Lust et al. (2006b, 2005a).

Before moving on to summarize further detailed con-
siderations, we discuss here two important questions
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which may concern the reader. Firstly, under the as-
sumptions above, one requires an exponentially small
value of W0 to obtain a vacuum which is in the regime
of computational control, where further corrections are
expected to be small. Is it reasonable to expect such a
small value? We would like to point out that in all string
models of SUSY GUTs, such a tune of the “constant” in
the superpotential is inevitable, for other reasons. The
vacuum energy in supergravity is of the schematic form

V ∼
(

|F |2 − 3
|W |2
M2

P

)

(81)

The largest F term which is allowed in a model
where SUSY explains the gauge hierarchy is roughly
(1011GeV)2. Therefore, to get moderately small vacuum
energy (not the full cancellation required for the absurdly
small CC), one clearly requires

|W |2 ≤M2
P (1011GeV)4 → (

W

M3
P

) ≤ 10−14 (82)

For models of gauge mediation with low-scale breaking,
the tune becomes even larger. This tune is absolutely
necessary in the standard supergravity picture of unifica-
tion, and enters directly into cosmology via the gravitino
mass. It is therefore an inevitable problem in standard
SUSY scenarios with high string scale, that one will be
required to tune W to be small at any minimum.

This does not answer the question of whether such
small values of W0 are in fact attainable in actual flux
vacua. For this, the statistical theory to be developed in
the next section is a useful tool; it indicates that given
the impressively large number of flux vacua, and the dis-
tribution of W0 within that set, very small values should
be attainable. We will be more quantitative about this in
later sections, since it is an important point for making
contact with the phenomenology of SUSY GUTs regard-
less of our technique of moduli stabilization.

As an aside, we note here that 〈W 〉 serves as the order
parameter for R-symmetry breaking in supersymmetric
models. Therefore, it is suggested by ’t Hooft naturalness
that there will exist classes of models which naturally
manifest very small values of 〈W 〉. Such flux vacua have
only, thus far, been constructed in non-compact Calabi-
Yau models.

A second interesting question is: when is one justified
in using the tree-level Kähler potential while including
the nonperturbative correction to W? Clearly, at very
large volume, corrections to Kk (which are power-law
suppressed) are more important than instanton effects.
However, in the spirit of self-consistent perturbation the-
ory, this is not the relevant question. The relevant ques-
tion is, given the estimates above, if one then includes
a first correction to Kk and then re-expands around the
solution one has obtained with the tree level Kk, how
much does the solution shift? It is easy to verify that
for large Im(ρ), the perturbative corrections to Kk (ex-
panded around the minimum to the potential) shift the

solution by a small amount, which can be tuned by tun-
ing W0.

Naturally, however, this suggests that the corrections
to K themselves may cause interesting new features at
large volume, giving rise to further critical points in the
potential distinct from the KKLT minima. Such criti-
cal points have indeed been observed (Balasubramanian
and Berglund, 2004; Balasubramanian et al., 2005; Berg
et al., 2006; von Gersdorff and Hebecker, 2005), using es-
timates for the first few quantum corrections to K. These
can yield vacua with very large volume, even realizing the
large-extra dimensions scenario of Arkani-Hamed et al.

(1998). The phenomenology of such models has been
described in Conlon and Quevedo (2006); Conlon et al.

(2005).

4. Supersymmetry Breaking

The vacua we have discussed so far are supersymmet-
ric. One would hope to learn also about vacua which
have supersymmetry breaking at or above the TeV scale,
and have positive cosmological constant. Here we discuss
three ideas in this direction: one in some detail (largely
because it is novel and uses stringy ingredients), and two
more standard ideas quite briefly. We will be parochial in
our interests, focusing on theories with low energy break-
ing (i.e. breaking far below the KK scale, possibly rele-
vant to explaining the electroweak hierarchy). There are
also a host of interesting theories manifesting supersym-
metry breaking at the KK scale (Saltman and Silverstein,
2006) or even higher scales (Silverstein, 2001). Examples
of this type are discussed in a pedagogical way in the
excellent review (Silverstein, 2004b).

We will also only discuss the mechanisms of SUSY-
breaking that have been explored in the IIb landscape.
One of the most important consequences of SUSY-
breaking is of course the generation of soft terms. For
flux-induced breaking, these terms have been investi-
gated in the important works (Allanach et al., 2005; Ca-
mara et al., 2004, 2005b; Font and Ibanez, 2005; Ibanez,
2005; Lawrence and McGreevy, 2004a,b; Lust et al.,
2006a, 2005b,c; Marchesano et al., 2005). More gener-
ally, constructions of models incorporating a standard-
like model together with flux stabilization have appeared
in Cvetic et al. (2005); Cvetic and Liu (2005); March-
esano and Shiu (2004, 2005).

a. Warped Supersymmetry Breaking The idea originally
presented in Kachru et al. (2003a), making use of Kachru
et al. (2002) and Giddings et al. (2002), is as follows.
Calabi-Yau compactification, at leading order in α′, gives
rise to a compactification metric of the form

ds2 = ηµνdx
µdxν + gmndy

mdyn (83)

with µ, ν running over coordinates in our IR4, and m,n =
1, · · · , 6 parametrizing the coordinates on the “extra” six
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dimensions.
However, in the presence of fluxes, one finds a more

general metric of the form

ds2 = e2A(y)ηµνdx
µdxν + e−2A(y)gmndy

mdyn . (84)

A(y) is a warp factor, which allows the “scale” in the 4d
Minkowski space to vary as one moves along the compact
dimensions ym. 14 The equation determining A(y) in
terms of the flux compactification data (the CY metric,
the choice of fluxes, and the value of the axio-dilaton)
can be found in Giddings et al. (2002). Compactifica-
tions where A(y) varies significantly as one moves over
the compact six-manifold M , are often called “warped
compactifications.”

An important toy model of warped compactification
is the Randall-Sundrum model (Randall and Sundrum,
1999a). This is a 5d model where a warp factor which
varies by an exponential amount over the 5th dimension
(which is compactified on an interval), can be used to
explain exponential hierarchies in physics. The basic idea
is that scales at the end of the 5th dimension where eA

has a minimum, are exponentially smaller than those at
the UV end where eA is maximized.

The simplest realization of this idea in string the-
ory uses precisely the same kinds of (deformed) conical
throats that arise in describing string duals of confining
gauge theories (Klebanov and Strassler, 2000). We found
for instance that in the conifold geometry, one can sta-
bilize moduli exponentially close to a conifold point in
moduli space without tuning

∫

A

F3 = M,

∫

B

H3 = −K, z = exp(−2πK/gsM) .

(85)
But the fluxes here are precisely those of the warped de-
formed conifold solution which appears in gauge/gravity
duality; hence the warp factor e2A(y) at the “tip” of the
deformed conifold, will take the same value it does there.
This gives rise to an exponential warping

eA ∼ e−2πK/3gsM . (86)

As a result, compactifications of the conifold with flux,
can give rise to string theory models which accomo-
date the exponential warping of scales used in Randall-
Sundrum scenarios (Giddings et al., 2002). The possi-
bilities for making realistic R-S models in this general
context have been investigated in much more detail in
the interesting works (Cascales et al., 2004, 2005; Franco
et al., 2005; Gherghetta and Giedt, 2006) and references
therein.

14 The fact that fluxes generate warping was described in Becker
and Becker (1996); Strominger (1986), this was discussed in the
IIb context in Dasgupta et al. (1999); Greene et al. (2000), and
concrete ideas about Randall-Sundrum scenarios in string theory
were first developed in Chan et al. (2000); Verlinde (2000).

Instead of using the redshifting of scales to explain the
Higgs mass directly, this warping can also be used in
another way. Imagine now that instead of engineering
the Standard Model in the region of minimal warp fac-
tor, one arranges for SUSY breaking to occur there. The
Standard Model, or a supersymmetric GUT extension
thereof, can be localized in the bulk of the Calabi-Yau
space, where eA ∼ O(1). In this situation, the expo-
nentially small scale of supersymmetry breaking can be
explained by warping, instead of by instanton effects. It
can be transmitted via gravity mediation or other mech-
anisms to the observable sector. Precisely this scenario,
combined with other assumptions, has been explored in a
phenomenological context in e.g. Brummer et al. (2006);
Choi et al. (2005); Kitano and Nomura (2005).

To justify and flesh out such scenarios, finding explicit
microscopic models of such SUSY breaking is an inter-
esting question. In fact, such a model was proposed al-
ready in Kachru et al. (2002). The idea is to consider
the conifold with flux, in the presence of a small num-
ber p << M of anti-D3 branes. While the throat carries
∫

H ∧ F = KM units of D3 brane charge, this is not
obviously available to perturbatively annihilate with the
anti-branes. It then becomes interesting to work out the
dynamics of this non-supersymmetric but controlled sys-
tem.

For p << M , we can consider the p anti-branes
as probes of the exact solution given in Klebanov and
Strassler (2000). Then their dynamics will be gov-
erned by their worldvolume action in the fixed super-
gravity background. This action is a function of the six
matrix-valued fields Φi, which are adjoints of SU(p) and
parametrize the brane positions on M . In an appropri-
ate duality frame, it is given by the sum of two terms: a
Born-Infeld term

SBI = −µ3

gs

∫

d4xTr
√

det(G||)det(Q) (87)

and a Chern-Simons term

SCS = −µ3

∫

d4xTr(2πiΦiΦB6 + C4) . (88)

Here µ3

gs
= T3, G|| is the pullback of the induced metric

along the anti-branes, iΦ is the interior derivative so

iΦiΦB6 = ΦnΦmBmnpqrs
1

4!
dyp ∧ · · · ∧ dys, (89)

Q is the matrix

Qi
j = δi

j +
2πi

gs
[Φi,Φk](Gkj + gsCkj) (90)

and B6 is given in an ISD flux background by

dB6 =
1

g2
s

∗10 H3 = − 1

gs
dV4 ∧ F3 (91)

where dV4 is the volume form on IR4 at the brane location
in the compact dimensions.

It is best to summarize the dynamics in three steps
(DeWolfe et al., 2004; Kachru et al., 2002).
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1. Weight loss The non-commutator terms in the
ISD flux background yield the action

−µ3

gs

∫

d4x
√
g4e

4ATr

(

2 +
1

2
e−2A∂µΦi∂µΦjgij

)

.

(92)
Therefore, the leading potential is

V (y) = 2e4A(y) . (93)

It arises by adding the BI and CS terms; for a D3-brane
these would instead cancel, as D3-branes in the ISD flux
backgrounds feel no force.

It is a feature of the Klebanov-Strassler solution (Kle-
banov and Strassler, 2000) (and a wide class of other
conical and deformed conical geometries) that the warp
factor depends only the “radial” direction in the cone,
A(y) = A(r) for some radial direction r. Then the po-
tential (93) simply yields a force in the radial direction

Fr(r) = −2
µ3

gs
∂re

4A(r) . (94)

The warp factor monotonically decreases as one goes
towards the smooth (deformed) tip of the cone, so in
the first step of evolution, the p anti-branes are drawn
quickly to the region of minimal warp factor, the tip of
the deformed conifold. This result is intuitively clear;
the branes wish to minimize their energy, and the mini-
mal energy can be obtained by going to the region where
eA << 1, where the branes enjoy maximal weight loss.

2. Embiggening Now, let us analyze the dynamics
of the p anti-D3 branes at the tip. The metric at the tip
of the warped deformed conifold is given by

ds2 ≃ (e−2πK/3Mgs)2dxµdx
µ+R2dΩ2

3+(dr2+r2dΩ̃2
2)×b20 .

(95)
Here, b0 is a number of order 1, and R2 ∼ gsM . In partic-
ular at the tip r = 0, the geometry is well approximated
by an S3 of radius

√
gsM .

The flux is also easy to determine; the H3 flux is spread
over the radial direction, while the F3 flux threads the S3

at the tip. In the supergravity regime where gsM >> 1,
we can solve

∫

A F3 = M by just setting F proportional

to the warped volume form ǫ on the S3:

Fmnp = fǫmnp, f ∼ 1
√

g3
sM

. (96)

So the system we are studying consists of p anti-D3
branes transverse to a diffuse magnetic 3-form flux, or
equivalently, p anti-D3 branes in an electric 7-form flux.

This system is T-dual to D0-branes in an electric 4-
form flux. But these D0-branes undergo the famous My-
ers effect (Myers, 1999); p D0-branes in a background flux
expand into a fuzzy D2-brane carrying p units of world-
volume gauge flux (to encode the D0 charge). Similarly
here, the anti-D3 branes should be expected to expand

into 5-branes, carrying p units of worldvolume flux. Be-
cause we are working in a duality frame where SCS con-
tains a coupling to B6, in fact the anti-D3s will expand
into an NS 5 brane.

We can see this in equations as follows. On the large
S3, one can approximate

Ckj ∼ 2π

3
FkjlΦ

l, Gkj ∼ ∆kj . (97)

Therefore

Qi
j = δi

j +
2πi

gs
[Φi,Φj ] + i

4π2

3
Fkjl[Φ

i,Φk]Φl . (98)

Then

Tr(
√

detQ) ≃ p−i2π
2

3
FkjlTr

(

[Φk,Φj ]Φl
)

−π
2

g2
s

Tr[Φi,Φj ]2 .

(99)
Now the B6 term in SCS would cancel the cubic term

in the potential if we were considering D3 branes; they
do not undergo a Myers effect in this background. On
the other hand, for anti-D3 branes, the B6 term adds and
we find an effective potential

Veff (Φ) = e−8πK/3Mgs
µ3

gs

(

p− i
4π2f

3
ǫkjlTr[Φ

k,Φj ]Φl

−π
2

g2
s

Tr[Φi,Φj ]2 + · · ·
)

. (100)

It is important to emphasize that this potential is expo-
nentially small, due to the warp factor at the tip of the
cone.

Now, demanding
∂Veff

∂Φ = 0, we find the equation

[[Φi,Φj ],Φj ] − ig2
sfǫijk[Φj ,Φk] = 0 . (101)

We can solve this equation by choosing constant matrices
Φi that satisfy

[Φi,Φj ] = −ig2
sfǫijkΦk . (102)

This is a very familiar equation. Up to a rescaling
of fields, (102) is just the commutation relation satisfied
by p× p matrix representations of the SU(2) generators!
Therefore, we can find extrema of the anti-brane poten-
tial, by simply choosing (generally reducible) p×pmatrix
representations of SU(2), i.e. there is an extremum for
each partition of p. The full “landscape” of these ex-
trema is somewhat complicated (see e.g. DeWolfe et al.

(2004); Jatkar et al. (2002) for some remarks about its
structure, and Gomis et al. (2005) for a more general dis-
cussion of open string landscapes). What is clear is that
the energetically preferred solution is the p dimensional
irreducible representation, for which

Veff ≃ e−8πK/3Mgs × p
µ3

gs

(

1 − 8π2

3

(p2 − 1)

M

1

b120

)

.

(103)
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The radius of the fuzzy S2 the branes unfurl into, is given
by

R̃2 =
4π2

b80

(p2 − 1)

M2
×R2 (104)

where R2 ∼ gsM controls the size of the S3 at the tip of
the geometry.

It is clear from (104) that we can only trust this solu-

tion for p << M ; for larger p, the radius R̃ approaches
the radius of the S3, and global features of the geometry
may become important.

3. Deflation We now comment on the ultimate
fate of these non-supersymmetric anti-D3 states in the
Klebanov-Strassler throat. The throat is characterized
by
∫

A F3 = M,
∫

B H3 = −K. At very large values of
the radial coordinate r (the UV of the dual quantum
field theory), the charge Qtot characterizing the throat
with the p probe antibranes is then:

∫

A

F3 = M,

∫

B

H3 = −K,ND3 = p

→ Qtot = KM − p . (105)

But there are also supersymmetric states carrying this
same total charge; for instance, one could consider

∫

A

F3 = M,

∫

B

H3 = −(K − 1), ND3 = M − p

→ Qtot = KM − p . (106)

Since the two charge configurations (105) and (106) have
the same behavior at infinity in the radial coordinate,
they should be considered as two distinct states in the
same theory. In fact, one can explicitly write down a
vacuum bubble interpolating between them; it consists
of an NS 5-brane wrapping the A-cycle, and was studied
in detail in DeWolfe et al. (2004); Kachru et al. (2002).
This bubble can be interpreted as a bubble of false vac-
uum decay, carrying the metastable non-supersymmetric
vacuum (105) to a stable supersymmetric vacuum. Be-
cause the scale of supersymmetry breaking in the ini-
tial vacuum is exponentially small, one can control these
states quite well for 1 << p << M . A detailed study
shows that as p approaches M , the metastable vacuum
disappears; the critical value of p/M is O(1/10).

This situation is reminiscent of some recent exam-
ples where direct study of 4d supersymmetric field theo-
ries has uncovered metastable non-supersymmetric vacua
(Intriligator et al., 2006). There, Seiberg duality plays a
crucial role in unveiling the non-supersymmetric vacua,
while here it is gauge/gravity duality. Inasmuch as the
large gM gravity solution is dual to a field theory, how-
ever, this system can probably be thought of as an ex-
ample of the same phenomenon, now in strongly coupled
field theory. Extending our knowledge of such states (us-
ing either gauge/gravity duality or 4d field theory tech-
niques), and the interrelations between them, remains a
very active area of research.

In addition to their interest as an example of the
intricate dynamics that can occur with branes in flux
backgrounds, these states have also been used in the
KKLT proposal to obtain de Sitter vacua in string the-
ory (Kachru et al., 2003a), and play an important role
in some models of string inflation (Kachru et al., 2003).
15 Of course, for the former role, other mechanisms of
supersymmetry breaking could serve as well. We now
discuss two less stringy, but very well motivated, ideas.

b. Dynamical Supersymmety Breaking An alternative to
using warped compactification to obtain an exponen-
tially small scale of supersymmetry breaking, is to use di-
mensional transmutation and instanton effects (Witten,
1981a). Many examples of field theories which dynam-
ically break supersymmetry have been discovered over
the years, starting with the work of Affleck, Dine and
Seiberg summarized in Affleck et al. (1985). More recent
reviews include (Poppitz and Trivedi, 1998; Shadmi and
Shirman, 2000).

It is clear that one can incorporate these dynamical
breaking sectors as part of the low energy physics of a
string compactification. The extra-dimensional picture
then does not a priori add much to the 4d discussion, al-
though to some extent it can be useful in “geometrizing”
criteria for different mediation mechanisms to dominate
(Diaconescu et al., 2006). Discussions of DSB with gauge
or gravity mediation of SUSY breaking to the Standard
Model, in fairly concrete pseudo-realistic string compact-
ifications, appear in Braun et al. (2006); Diaconescu et al.

(2006); Franco and Uranga (2006); Garcia-Etxebarria
et al. (2006).

c. Breaking by fluxes Perhaps the most direct analog of
the original Bousso-Polchinski proposal, in the IIb flux
landscape, is the following. We saw in the previous
subsection that one can supersymmetrically stabilize all
moduli after including nonperturbative corrections to the
superpotential which depend on Kähler moduli. Previ-
ous to stabilizing Kähler moduli, it would have seemed
that one must solve the no-scale equation V = 0 to find
a IIb flux vacuum. However, given that one will stabilize
Kähler moduli anyway, it is no longer necessary to do
this. Instead, consider the potential Vflux(za, φ) arising
from the three-form fluxes. If one finds a critical point
of this potential in the a, φ directions, with

∂aV = ∂φV = 0, ∂2V ≥ 0 (107)

15 The argument of section IV.A.1 that one cannot solve the IIb
equations of motion in warped Calabi-Yau flux compactifica-
tions if one includes anti-D3 sources, is true only at tree level.
The same effects which allow one to stabilize the Kähler moduli,
also allow the incorporation of anti-branes with sufficiently small
(warped) tension, as shown in Kachru et al. (2003a).
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then the vacuum would be stable in the a, φ directions
(despite the tree-level instability in the Kähler modulus
directions). Now, including the instanton contributions
to V , it becomes clear that one may stabilize the Kähler
moduli and complex/dilaton moduli while using a “flux
vacuum” for the complex/dilaton moduli which is not

of the ISD type, as long as the departure from the ISD
condition is not too severe. However, any violation of the
ISD equations yields, via (61), a nonzero F-term for some
complex/dilaton modulus. This means that the resulting
vacuum will yield spontaneous supersymmetry breaking.
A toy model vacuum of this type has been exhibited in
Saltman and Silverstein (2004).

Because the effects being used to stabilize Kähler mod-
uli are exponentially small, this mechanism is only vi-
able if one “tunes” in flux space to find proto-vacua with
a very small violation of the ISD condition. This was
shown to be generic in IIb vacua in Denef and Douglas
(2005), as we will discuss in Sec. V.C. It is also pos-
sible that some classes of fluxes would naturally yield
exponentially small F-terms for complex/dilaton mod-
uli; while such flux vacua have yet to be exhibited, they
would be expected to arise via geometric transitions from
simple wrapped D-brane gauge theories with dynamical
supersymmetry breaking. It would be very interesting to
exhibit such flux vacua.

B. Type IIa flux vacua

In this section, we briefly discuss the construction of
Calabi-Yau flux vacua in type IIa string theory. Our
exposition follows the notation and strategy of De-
Wolfe et al. (2005b), using the N = 1 supersymmet-
ric formalism developed in Grimm and Louis (2005).
Closely related work developing the basic formalism for
IIa flux compactification and presenting explicit exam-
ples also appears in Acharya et al. (2006b); Aldaz-
abal et al. (2006); Benmachiche and Grimm (2006);
Bovy et al. (2005); Camara et al. (2005a); Derendinger
et al. (2005a,b); House and Palti (2005); Ihl and Wrase
(2006); Kachru and Kashani-Poor (2005); Saueressig
et al. (2006); Villadoro and Zwirner (2005). Candidate
M-theory vacua which are in many ways similar to these
IIa models were first described in Acharya (2002).

1. Qualitative considerations

Before we launch into a detailed study, it is worth con-
trasting the present case with the class of IIb vacua we
just described. In the IIa string compactified on a Calabi-
Yau space M , one can imagine turning on background
fluxes of both the NS three-form field H3 and the RR
2p form fields F0,2,4,6. The basic intuition that 3-form
fluxes should yield complex structure dependent poten-
tials, while even-form fluxes should yield Kähler structure
dependent potentials, then suggests that the IIa flux su-

perpotential will depend on all geometric moduli already
at tree level. This is correct, and is in stark contrast to
the no-scale structure which governs IIb flux vacua.

This suggests that it may be possible to stabilize all
moduli in IIa compactification just by turning on fluxes.
If we focus for a moment on just the dilaton and the vol-
ume modulus, which are normally two of the more vexing
moduli in string constructions, we can see by a simple
scaling argument that the flux potential will suffice to
stabilize them in a regime of control.

To find the potentials due to fluxes, one should reduce
the flux kinetic and potential terms from 10d to 4d, re-
membering to perform the necessary Weyl rescalings to
move to 4d Einstein frame. These are discussed in a
pedagogical way in Silverstein (2004a). The results are
as follows. If the compactification manifold has radius R
and string coupling gs = eφ, then:
• N units of RR p-form flux contributes to the scalar
potential with the scaling

VRR = N2 e4φ

R6+2p
(108)

• N units of NS 3-form flux contribute

VNS = N2 e
2φ

R12
(109)

• N orientifold p+3 planes wrapping a p-cycle in the com-
pact manifold and filling spacetime, contribute

VO(p+3) = −N e3φ

R12−p
(110)

(while of course N D-branes would, up to an overall coef-
ficient, make the same contribution with a positive sign).

The simplest class of N = 1 supersymmetric IIa ori-
entifolds arise by acting with an anti-holomorphic invo-
lution I on a Calabi-Yau space M . The fixed locus of I
is some collection of special Lagrangian cycles, which are
wrapped by O6 planes. Let us assume for a moment that
there are O(1) O6 planes in our construction. The tad-
pole condition for D6-brane charge takes the schematic
form

ND6 +

∫

Σ

F0 ∧H3 = 2N06 . (111)

where Σ is the three-cycle pierced by H3 flux. We can
therefore cancel the tadpole by introducing O(1) units of
F0 and H3 flux, without adding D6 branes. The other
fluxes are unconstrained by tadpole conditions; so we can,
for instance, also turn on N units of F4 flux. The overall
result is a potential that takes the schematic form

V =
e4φ

R6
− e3φ

R9
+
e2φ

R12
+N2 e

4φ

R14
. (112)

This potential has minima with R ∼ N1/4 and gs ∼
N−3/4. Hence, as emphasized in DeWolfe et al. (2005b),
the IIa theory can be expected to admit flux vacua with



41

parametrically large values of the compactification vol-
ume and parametrically weak string coupling, in a 1/N
expansion. Unlike standard Freund-Rubin vacua (Fre-
und and Rubin, 1980), these theories are effectively four-
dimensional; the 4d curvature scale is parametrically less
than the compactification radius.

It is still important to verify that the qualitative con-
siderations here are born out in detail in real Calabi-Yau
models. We now describe the relevant formalism.

2. 4d multiplets and Kähler potential

To find the chiral multiplets in a 4d N = 1 super-
symmetric orientifold of M , we proceed as follows. The
N = 2 compactification on M gives rise to h1,1 N = 2
vector multiplets and h2,1 + 1 hypermultiplets (includ-
ing the universal hyper). The projection will choose an
N = 1 vector or chiral multiplet from each N = 2 vector,
and an N = 1 chiral multiplet from each hyper.

Let us first analyze the projected vector multiplet mod-
uli space. If in a basis of (1,1) forms on M there are h1,1

−
that are odd under the involution, then the surviving
moduli space of Kähler forms is h1,1

− dimensional. (The
even basis elements give rise to N = 1 vector multiplets,
which contain no moduli and will not enter in our dis-
cussion). We can write the complexified Kähler form on
the quotient as

Jc = B2 + iJ =

h1,1
−
∑

a=1

taωa (113)

where ta = ba + iva are complex numbers, and ωa form
a basis for H1,1

− .
The Kähler potential for the reduced moduli space is

inherited from the N = 2 parent Calabi-Yau theory, and
is given by

KK(ta) = −log

(

4

3

∫

M

J ∧ J ∧ J
)

= −log

(

4

3
κabcv

avbvc

)

(114)
where κabc is the triple intersection form

κabc =

∫

M

ωa ∧ ωb ∧ ωc . (115)

Now, we turn to the projected hypermultiplet moduli
space. Here, the formalism is more intricate (Grimm
and Louis, 2005). Choose a basis for the harmonic three-
forms {αA, βB} where A,B = 0, · · · , h2,1 and

∫

M

αA ∧ βB = δAB . (116)

Without loss of generality, one can expand Ω as

Ω =
∑

A

ZAαA −GBβB . (117)

The ZA are homogeneous coordinates on complex struc-
ture moduli space; we will denote by zC (C = 1, · · · , h2,1)
the inhomogeneous coordinates on this same space.

The complex structure moduli are promoted to quater-
nionic multiplets in the N = 2 parent theory by adjoining
RR axions. If we expand the C3 gauge potential whose
field strength is F4

C3 = ξAαA − ξ̃BβB (118)

then we get h2,1+1 axions. The axions from ξ0, ξ̃0 join the
axio-dilaton to yield the universal hypermultiplet, while
the other h2,1 axions quaternionize the zC .

The orientifold involution splits H3 = H3
+⊕H3

−. Each
of these eigenspaces is of (real) dimension h2,1+1. Let us
split the basis for H3 so {αk, βλ} span the even subspace,

while {αλ, βk} span the odd subspace. Here k = 0, · · · , h̃
while λ = h̃ + 1, · · · , h2,1. Then the orientifold restricts
one to the subspace of moduli space (Grimm and Louis,
2005)

ImZk = Regk = ReZλ = Imgλ = 0 . (119)

C3 is also even under the orientifold action; this projects
in the axions ξk and ξ̃λ while projecting out the others.
In addition, the orientifold projects in the dilaton φ and
one of ξ0, ξ̃0. So as expected, from each hypermultiplet,
we get a single chiral multiplet, whose scalar components
are the real or imaginary part of the complex structure
modulus, and an RR axion.

We can summarize the surviving hypermultiplet mod-
uli in terms of the object

Ωc = C3 + 2iRe (CΩ) . (120)

Here, C is a “compensator” which incorporates the dila-
ton dependence via

C = e−D+Kcs/2, eD =
√

8eφ+KK/2 . (121)

One should think of eD as the four-dimensional dilaton;
Kcs is the Kähler potential for complex structure moduli

Kcs = −log

(

i

∫

M

Ω ∧ Ω̄

)

= −log 2(ImZλRegλ −ReZkImgk) . (122)

The surviving chiral multiplet moduli are then the ex-
pansion of Ωc in a basis for H3

+:

Nk =
1

2

∫

M

Ωc ∧ βk =
1

2
ξk + iRe(CZk) (123)

and

Tλ = i

∫

M

Ωc ∧ αλ = iξ̃λ − 2Re(Cgλ) . (124)

The Kähler potential which governs the metric on this
moduli space is

KQ = −2log

(

2

∫

M

Re(CΩ) ∧ ∗Re(CΩ)

)

. (125)
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3. Fluxes and superpotential

Now, we can contemplate turning on the fluxes which
are projected in by the anti-holomorphic involution. It
turns out that H3 and F2 must be odd, while F4 should
be even. So we can write

H3 = qλαλ − pkβk, F2 = −maωa, F4 = eaω̃
a (126)

where ω̃a are the 4-form duals of theH1,1
− basis ωa. There

are in addition two parameters m0 and e0, parametrizing
the F0 and F6 flux on M .

In the presence of these fluxes, one can write the 4d
potential after dimensional reduction as (DeWolfe et al.,
2005b; Grimm and Louis, 2005)

V = eK





∑

ta,Nk,Tλ

gij̄DiWDjW − 3|W |2


 (127)

Here the total Kähler potential is

K = KK +KQ. (128)

and DiW = ∂iW + W∂iK is the Kähler covariantized
derivative.

The superpotential W is defined as follows. Let

WQ(Nk, Tλ) =

∫

M

Ωc ∧H3 = −2pkNk − iqλTλ (129)

and

WK(ta) = e0+

∫

M

Jc∧F4−
1

2

∫

M

Jc∧Jc∧F4−
m0

6

∫

M

Jc∧Jc∧Jc .

(130)
The full superpotential is then

W (ta, Nk, Tλ) = WQ(Nk, Tλ) +WK(ta) . (131)

Our first qualitative point is now clear: the potential
depends, in general, on all geometric moduli at tree level.
Detailed examination of the system of equations govern-
ing supersymmetric vacua

Dta
W = DNk

W = DTλ
W = 0 (132)

shows that under reasonable assumptions of genericity,
one can stabilize all geometric moduli in these construc-
tions (DeWolfe et al., 2005b). These same considera-

tions show that in the leading approximation, h2,1
+ axions

will remain unfixed. An orientifold of a rigid Calabi-Yau
model (i.e., one with h2,1 = 0) was studied in detail in
DeWolfe et al. (2005b), where it was shown that this flux
potential gives rise to an infinite number of 4d vacua with
all moduli (including all axions) stabilized. Furthermore,
as suggested by the scaling argument in (IV.B.1), these
solutions can be brought into a regime where gs is arbi-
trarily weak and the volume is arbitrarily large.

4. Comments on 10d description

The 10d description of the IIa solutions is less well un-
derstood than the description of their IIb counterparts.
That is because in the IIb case, one special class of so-
lutions is conformally Calabi-Yau, at leading order (Gid-
dings et al., 2002). In the IIa case, on the other hand,
the metrics of the supersymmetric compactifications are
those of half − flat manifolds with SU(3) structure. The
definition of such spaces can be found in Chiossi and
Salamon (2002), and their relation to supersymmetric
IIa compactification is described in Behrndt and Cvetic
(2005a,b); House and Palti (2005); Lust and Tsimpis
(2005).

It is natural to wonder what relation these half-flat
solutions bear to the Calabi-Yau flux vacua we have
been discussing, where the fluxes are viewed as a per-
turbation of a IIa Calabi-Yau compactification. This is-
sue has been considerably clarified in the beautiful work
(Acharya et al., 2006b). The description in terms of a
Calabi-Yau metric perturbed by backreaction from the
flux (and inclusion of thin-wall brane sources) is valid
at asymptotically large volume. Finite (but large) vol-
ume analysis of the supergravity solution with localized
O6-planes, indicates that the backreaction deforms the
metric to a half-flat, non Calabi-Yau metric with SU(3)
structure, outside a small neighborhood of the O-planes.
The detailed formulae for the stabilization of moduli de-
rived from the considerations of the previous subsection,
can be recovered precisely from the supergravity solution
in the approximation that the O6 charge is smeared.

C. Mirror symmetry and new classes of vacua

The constructions we have reviewed in detail here,
are based at the start on type II Calabi-Yau models.
Such models famously enjoy mirror symmetry, a dual-
ity exchanging the IIb string on M with a IIa string
on a “mirror manifold” W . Dual theories must give
rise to the same 4d physics (though in different regimes
of parameter space one or the other may be a better
description). Therefore, we see immediately that sim-
ply to match dimensions of hyper and vector multiplet
moduli spaces, one must have h1,1(M) = h2,1(W ) and
h2,1(M) = h1,1(W ). This can be viewed as a mirror
reflection on the hodge diamond of a Calabi-Yau space,
which explains the name of the duality.

It is natural to wonder whether, since the parent
Calabi-Yau theories enjoy mirror symmetry, the classes
of flux vacua we have constructed above also come in
mirror pairs. Are they dual to one another in some way?
This seems unlikely, given the qualitative differences be-
tween the two classes of 4d effective field theories. We
will see that it isn’t the case, but that nevertheless ex-
ploring analogues of mirror symmetry for these vacua
may lead us to interesting conclusions. In fact, it pro-
vides a strong indication that the known portion of the
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landscape (even when restricting consideration to com-
pactifications with a useful description in the language
of traditional differential geometry) is a small piece of a
much larger structure.

While mirror symmetry was used to great effect al-
ready in the early 1990s (Candelas et al., 1991), methods
of constructing W given M were known only for very
special classes of models (Greene and Plesser, 1990). An
important advance came during the duality revolution,
when it was realized that in fact, mirror symmetry is
a simple generalization of T-duality (Strominger et al.,
1996). The known examples of Calabi-Yau spaces admit,
in some limit, a fibration structure where T 3 fibers vary
over an S3 base. By matching of BPS states (in partic-
ular, the D3 wrapping the T 3 fiber of M with the D0
brane on W ), it was shown that mirror symmetry can
be considered as a generalization of T-duality, where one
T-dualizes the T 3 fibers ofM to obtainW and vice-versa.

Since the study of these T 3 fibrations is in its infancy, it
may seem surprising that this construction will be of use
to us. However, it is a conceptually simple relation of a
space and its mirror, and it will allow us to check whether
the mirrors of IIb Calabi-Yau flux vacua are IIa Calabi-
Yau flux vacua. This general subject has been explored in
Bouwknegt et al. (2004); Chiantese et al. (2006); Fidanza
et al. (2004, 2005); Grana et al. (2006a); Gurrieri et al.
(2003); Kachru et al. (2003b); Tomasiello (2005).

1. A warm-up: The twisted torus

Before moving on to real vacua and their duals, we pro-
vide an illustrative example that should make our con-
clusions intuitively clear. We follow the discussion in
Kachru et al. (2003b). Imagine string compactification
on a square T 3, M , with metric

ds2 = dx2 + dy2 + dz2 (133)

and a nonzero NS three-form flux
∫

M

H3 = N . (134)

Since H = dB, we are free to choose a gauge in which

Byz = Nx (135)

with other components vanishing. It will not escape the
reader’s attention that this configuration is not a static
solution of the equations of motion; the T 3 is flat so there
is no curvature contribution to the lower-dimensional ef-
fective potential, while the H3 flux energy can be diluted
by expanding the volume of the T 3. We ignore this for
now; we will use this setup as a module in a more com-
plicated configuration that provides a static solution of
the full equations of motion momentarily.

With the data at hand, we can proceed to T-dualize
in the z direction. Applying Buscher’s T-duality rules
(Buscher, 1987, 1988) (their generalizations to include

RR fields (Bergshoeff et al., 1995; Hassan, 2000) will also
play a role momentarily), we find a new background with:

B = 0, ds2 = dx2 + dy2 + (dz +Nxdy)2 (136)

The coordinate identifications to be made in interpreting
the metric are

(x, y, z) ≃ (x, y+ 1, z) ≃ (x, y, z+ 1) ≃ (x+ 1, y, z−Ny)
(137)

This space is an example of a Nilmanifold – it has h1 = 2,
and in particular is topologically distinct from T 3, which
would have been the expected T-dual target space in the
absence of H3 flux. So, we see that T-dualizing along a
leg of an H3 flux, one can exchange the NS flux for other
NS data – namely, topology, as encoded by the metric.
Here, loosely speaking, the nontrivial topology arises be-
cause as one winds around the x circle, one performs an
SL(2,ZZ) transformation mixing the y, z directions.

If we are foolish enough to T-dualize again, now along
the y direction, straightforward application of the rules
leads us to the metric

ds2 =
1

1 +N2x2
(dz2 + dy2) + dx2 (138)

and the B-field

Byz =
Nx

1 +N2x2
. (139)

Making sense of this data is not as simple as interpret-
ing the Nilmanifold metric above. In particular, as you
wind around the circle coordinatized by x, the metric
g and B are not periodic in any obvious sense. There
is a “stringy” sense in which they are periodic; there is
an O(2, 2; ZZ) transformation that relates the values at
x = 1 to the values at x = 0. However, this O(2, 2; ZZ)
transformation is not an element of SL(2,ZZ), and so
this data can at best make sense as the target space
of a “stringy” sigma model. Discussions of such non-
geometric backgrounds (including and generalizing asym-
metric orbifolds) are a subject of current interest; see for
instance Dabholkar and Hull (2003, 2006); Flournoy et al.
(2005); Flournoy and Williams (2006); Hellerman et al.

(2004); Hull (2005, 2006a,b); Hull and Reid-Edwards
(2005); Lawrence et al. (2006); Shelton et al. (2005); Sil-
verstein (2001).

In the following, we will focus our discussion on open
questions about the geometric vacua. Clearly, however,
these considerations suggest that once one considers gen-
eral vacua, novel “stringy” geometric structures will play
an important role in obtaining a thorough understand-
ing. This was also clear already in the discussion of IIb
flux vacua, where presumably generic vacua arise at radii
of O(1) where stringy geometry will be important, and
only tuning in flux space (e.g. to obtain small W0) allows
one to obtain vacua in the geometric regime.
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2. A full example

We will now provide full string solutions which incor-
porate the previous phenomena. We follow Kachru et al.

(2003b); see also (Grana et al., 2006b; Schulz, 2004, 2006)
for further discussion of these models.

Consider IIb string theory on the T 6/ZZ2 orientifold,
where the ZZ2 inverts all six circles (and is composed with
the operation of worldsheet parity reversal). For sim-
plicity, focus attention on a (T 2)3, with complex moduli
τ1,2,3:

dzi = dxi + τidy
i, Ω = Πidz

i (140)

Flux vacua in this model were studied in e.g. Dasgupta
et al. (1999); Frey and Polchinski (2002); Kachru et al.
(2003c). One example from Kachru et al. (2003b) will
suffice for us. Let

F3 = 2
(

dx1 ∧ dx2 ∧ dy3 + dy1 ∧ dy2 ∧ dy3
)

(141)

and

H3 = 2
(

dx1 ∧ dx2 ∧ dx3 + dy1 ∧ dy2 ∧ dx3
)

. (142)

The factor of 2 is inserted in order to avoid subtleties
with flux quantization of the sort described in Frey and
Polchinski (2002). We can easily read off the flux super-
potential

W = 2(τ1τ2τ3 + 1) + 2φ(τ1τ2τ3 + τ3) . (143)

It is easy to see that along the locus

φτ3 = −1, τ1τ2 = −1 (144)

the equations ∂W
∂τi

= ∂W
∂φ = 0 are satisfied, as is W = 0.

Therefore, there is a moduli space M of supersymmetric
vacua. In fact, these vacua preserved N = 2 supersym-
metry – this is a special feature which arises because
the torus is a non-generic Calabi-Yau space. The non-
genericity of the torus also implies that one should im-
pose primitivity conditions J∧G3 = 0 on the Kähler form
(these are trivially satisfied in generic Calabi-Yau orien-
tifolds). This leaves a moduli space of Kähler structures
parametrizing M as well.

We have chosen our fluxes so that in appropriate re-
gions of M, the best description (which involves the
weakest couplings and largest KK masses) is either the
model above, or its T-dual on one, two or three circles.
In the gauge

Bx1x3 = 2x2, By1x3 = 2y2 (145)

the relevant T-dual descriptions are the following.

One T-duality along x1:

This gives rise to a IIa model with metric

ds2 =
1

R2
x1

(dx1 +2x2dx3)2 +R2
x2(dx2)2 +R2

x3(dx3)2 + · · ·
(146)

Here, x1,2,3 sweep out a Nilmanifold over the T 3 spanned
by the yi. There are also nonzero fluxes remaining:

By1x3 = 2y2 (147)

in the NS sector and

F2 = 2dx2∧dy3, F4 = 2(dx1 +2x2dx3)∧dy1 ∧dy2∧dy3

(148)
in the RR sector.

This manifold has h1,1 = 5 and is Non-Kähler. In par-
ticular, it isn’t just that one does not use a Calabi-Yau
metric in describing the physical theory (that is true even
for Calabi-Yau compactification, where α′ corrections de-
form the metric even in the absence of flux). There is a
topological obstruction to putting such a metric on this
space.

Second T-duality along y1:

Now we find the IIb theory with metric

ds2 = R̃2
x1(dx1 + 2x2dx3)2 +R2

x2(dx2)2

+R2
x3(dx3)2 +

1

R2
y1

(dy1 + 2y2dx3)2

+R2
y2(dy2)2 +R2

y3(dy3)2 (149)

and with fluxes

B = 0, F3 = 2(dx1 + 2x2dx3) ∧ dy2 ∧ dy3

+2(dy1 + 2y2dx3) ∧ dx2 ∧ dy3 .(150)

This space is also Non-Kähler.

Third T-duality along y3:

This just flips the radius of the y3 circle in (149) and
changes the flux to

F2 = 2(dx1+2x2dx3)∧dy2+2(dy1+2y2dx3)∧dx2 . (151)

At this point, we have T-dualized on some T 3 in the
original starting model, and so we can consider this a
(somewhat trivial) analog of mirror symmetry in the
spirit of Strominger et al. (1996). We see that this ex-
ample suggests that the IIb Calabi-Yau flux vacua of the
general class studied in (IV.A) are not mirror to the IIa
Calabi-Yau flux vacua described in (IV.B). In less simple
examples, we expect that dualizing flux vacua with one
leg of the H3 flux along the T 3 fiber could lead to a geo-
metric but non Calabi-Yau dual, while duals of theories
with more legs of H3 on the T 3 fiber will in general be
“non-geometric” vacua. It is important to keep in mind
that such duals should only be considered (and will only
in general be meaningful) when they are, in some regime
of moduli, the best description of the low energy physics.

One might wonder whether every geometric flux vac-
uum admits some dual description that brings it into one
of the two large classes we’ve explored in the IIb and IIa
theories in the previous subsections. A study of exam-
ples strongly suggests that this is false; we have seen only
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the tip of the iceberg so far. For instance, the class of
vacua described in Chuang et al. (2005) does not admit
a dual description involving IIa, IIb or heterotic Calabi-
Yau compactification, to the best of our knowledge. Fur-
thermore, Grana et al. (2006b) exhibit an explicit vac-
uum based on Nilmanifold compactification that is not
dual (via any known duality) to a Calabi-Yau with flux.

V. STATISTICS OF VACUA

Given a systematic construction of a set of string
vacua, besides working out individual examples, one can
try to get some understanding of the possibilities from
statistical studies. As we mentioned earlier, such stud-
ies date back to the late 1980’s, and while at that time
moduli stabilization was not understood, still interesting
results were obtained. Perhaps the most influential of
these came out of the related study of the set of Calabi-
Yau threefolds, which provided the first evidence that
mirror symmetry was a general phenomenon (Candelas
et al., 1995; Kreuzer et al., 1992). We will briefly review
some of these results in V.D.3.

The systematic constructions we have discussed of flux
superpotentials and other effective potentials enable us
for the first time to find statistics of large, natural classes
of stabilized vacua. In this section, we describe a general
framework for doing this (Douglas, 2003), and some of
these results. See Douglas (2004a); Kumar (2006) for
other recent reviews.

The large number of flux vacua suggests looking for
commonalities with other areas of physics involving large
numbers, such as statistical mechanics. As it turns out,
there are very close analogies with the theory of disor-
dered systems, in which one constructs idealized models
of crystals with impurities, spin glasses and other dis-
ordered systems, by taking a “random potential.” In
other words, one chooses the potential randomly from an
ensemble of potentials chosen to reflect general features
of the microscopic physics, and does statistical studies.
Given a simple choice of ensemble, one can even get an-
alytic results, which besides adding understanding, are
particularly important in studying rare phenomena. As
we will explain, by treating the ensemble of flux super-
potentials as a random potential, one can get good an-
alytical results for the distribution of flux vacua, which
bear on questions of phenomenological interest.

We begin our treatment with a careful explanation of
the definitions, as while they are simple, they are differ-
ent from those commonly used in statistical mechanics
and quantum cosmology. This is so that we can avoid
ever having to postulate that a given vacuum “exists” or
“is created” with a definite probability, an aspect of the
theory which, as we discussed in Sec. III.E, is not well
understood at present. Rather than a probability dis-
tribution, we will discuss vacuum counting distributions,
which can be unambiguously defined.

One reason to be careful about these definitions, is that

the need for making theoretical approximations will lead
us to introduce approximate vacuum counting distribu-
tions, which are also interpreted in probabilistic terms.
However, the underlying definition of probability in this
case is clear; it expresses our confidence in the particu-
lar theoretical arguments being used, and in this sense is
subjective. The payoff for this methodological interlude
will be a clear understanding of how statistics of string
theory vacua can lead to a precise definition of stringy
naturalness, as introduced in Sec. II.F.3.

We proceed to describe counting of flux vacua, and
some of the exact results. This will enable us to con-
tinue the discussion of Sec. II.F.3 on the scale of super-
symmetry breaking. We continue with a brief survey
of what is known about other distributions, such as of
Calabi-Yau manifolds, and distributions governing the
matter content. We then survey various simpler distri-
butions which have been suggested as models for the ac-
tual distributions coming from string theory. Finally, we
discuss the general interpretation of statistical results,
and the prospects for making arguments such as those in
Sec. II.F.3 precise.

A. Methodology and basic definitions

Suppose we have a large class of vacua, constructed
along the lines of Sec. IV or otherwise. As we discussed,
we have no a priori reason to prefer one over the other.
While we have many a posteriori ways to rule out vacua,
by fitting data, computing measure factors, or otherwise,
this requires detailed analysis to do. In this situation, we
may need to know the distributions of vacua, or of their
observable properties, to make theoretical progress.

As in Sec. II.F.3, it is useful to motivate the subject as
an idealization of the problem of testing string theory: if
we had a list of the observables for every single vacuum,
call these Vi, then all we would need to do this, is to
check whether the actual observables appear on this list.

To be a bit more concrete, let us grant that each of our
vacua can be described in terms of some four-dimensional
effective field theory (EFT) T defined at an energy scale
E. This is presently true, and until fairly recently we
would have said T is the Standard Model; the more re-
cent observations of neutrino mixings, etc. need not con-
cern us at the moment.16 In this situation, our list of
predictions could be replaced by a list of the EFT’s Ti

which are low energy limits of the string vacua Vi, and
we want to know whether T appears on this list.

To be even more concrete, let us consider the data
which goes into explicitly specifying a particle physics
EFT. This will include both discrete and continuous

16 Of course, a string vacuum might predict phenomena which are
not best described using four-dimensional EFT, such as extra
dimensions. We leave the necessary generalizations of our dis-
cussion as an exercise for the interested reader.
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choices. Discrete choices include the gauge group G
and matter representation R of fermions and bosons.
Choices involving parameters include the effective poten-
tial, Yukawa couplings, kinetic terms and so on; let us de-
note the vector containing these parameters as ~g. While
we will not do it here, in a complete discussion, we would
need to specify the cutoff prescription used in defining the
EFT as well. In any case, we can regard the sum total
of these choices as defining a point Ti = (G,R,~g) in a
“theory space” T .

Now, given a set of vacua {Ti}, the corresponding vac-
uum counting distribution is a density on T ,

dNvac(G,R,~g) =
∑

i

δ(G,Gi)δ(R,Ri)δ
(n)(~g−~gi), (152)

or, for conciseness,

dNvac(T ) =
∑

i

δ(T − Ti). (153)

Its integral over a subset of theory space R ⊂ T is the
number of vacua contained in this subset,

N(R) =

∫

R

dNvac (154)

It should be clear that Eq. (152) contains the same
information as the set of vacua {Ti}. What may be less
obvious, but will emerge from the discussion below, is
that one can find useful approximations to such distri-
butions, which are far easier to compute than the actual
vacuum counting distribution. This is because these dis-
tributions show a great deal of structure, which is not
apparent if one restricts attention to quasi-realistic mod-
els from the start. This observation is the primary formal
motivation for introducing the definition.

At this point, if the definition Eq. (152) is clear, one
can proceed to the next subsection. However, since many
similar but different definitions can be made, and the
issue of interpretation may confuse some readers, let us
briefly expand on these points.

To eliminate one possible source of confusion at the
start, the list we are constructing is of “possible uni-
verses” within string theory. Our own universe at the
present epoch is supposed to correspond to one of these
universes, not some sort of superposition or dynamical
system which explores multiple vacua. The point of the
list, or the equivalent distribution Eq. (152), is simply
to have a precise way to think about the totality of pos-
sibilities.

Another possible confusion is between Eq. (152), and
the definition of a measure factor used in quantum cos-
mology. As we discussed in Sec. III.E, to define a measure
factor, we need to assign a “probability factor” to each
vacuum, call this P (i). The measure factor correspond-
ing to a given list {Ti} and probability factor P (i) is then

dµP (T ) =
∑

i

P (i) δ(T − Ti). (155)

Its integral over a region R, gives the probability with
which we expect a vacuum in R to be produced by the
cosmological model which gave rise to this measure fac-
tor.

We already discussed some aspects of the interpreta-
tion of such distributions in Sec. III.E, and we will con-
tinue this in Sec. V.F. The main point we want to make
here is simply that, unlike a measure factor, a vacuum
counting distribution is not a probability distribution,
and does not require any concept of a “probability that
a universe of type T exists” for its definition. Rather, it
summarizes information about the set of consistent vacua
of the theory.

1. Approximate distributions and tuning factors

A reason to be careful about the difference between a
vacuum counting distribution and a measure factor, is so
that we can properly introduce the idea of an approx-
imate vacuum counting distribution. To motivate this,
suppose that we know how to construct a set of vacua
Vi, but that our theoretical technique is not adequate
to compute the exact value of a coupling g in each vac-
uum, only some approximation to it. In practice this will
always be true, but it gains particular significance for pa-
rameters which we must fit to an accuracy far better than
our computational abilities, with the prime example be-
ing the cosmological constant as we discussed earlier.

Suppose for sake of discussion that we are interested in
the cosmological constant Λ, but can compute it only to
an accuracy roughly ∆Λ. We might model our relative
ignorance by modifying our definition Eq. (152) to

dNvac(Λ) =
∑

i

1√
π∆Λ

exp− (Λ − Λi)
2

(∆Λ)2
, (156)

a sum of Gaussian distributions of unit weight. The
choice of the Gaussian, while not inevitable, would fol-
low if the total error was the sum of many independent
terms, which is reasonable as the cosmological constant
receives corrections from many sectors in the theory.

If we use the resulting approximate vacuum counting
distribution as before to compute integrals like Eq. (154),
we will get results like “we expect region R to contain
half a vacuum,” or perhaps 10−10 vacua. What could
this mean?

Of course, given that string theory and the effective
potential have a precise definition, any particular vac-
uum has some definite cosmological constant Λi,true. The
problem is just that we don’t know it. In modelling our
ignorance with a Gaussian (or any other distribution), we
have again introduced probabilities into the discussion –
but note that this is a different and less problematic sense
of probability than the P (i) we introduced in discussing
the measure factor. It is not intrinsic to string theory or
cosmology, but rather it expresses our judgement of how
accurate we believe our theoretical computations to be,
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and nothing else. As such, it is a technical device, but a
useful one as we shall see.

Having understood this, the meaning of results like
“we expect region R to contain 10−10 vacua” in this con-
text becomes clear. In actual fact, the region must con-
tain zero, one or some other definite number of vacua.
While given the theoretical information to hand, we do
not know the actual number, we now have good reasons
to think R probably does not contain any vacua. How-
ever, this conclusion is not ironclad; perhaps numerical
coincidences in the computations will put one or more
vacua into R. If our model for the errors is correct, the
probability of this happening is 10−10, in the usual “fre-
quentist” sense: if we have 1010 similar regions to con-
sider, we expect one of them to actually contain a vac-
uum.

The reader will probably have already realized that
what we have just discussed, gives a precise sense within
string theory to the usual discussion of fine tuning made
in effective field theory. Although in principle every cou-
pling constant in every string vacuum has some definite
value, and in this sense is “tuned” to arbitrary preci-
sion, in practice we cannot compute to this precision,
and need to work with approximations. The preceding
discussion gives us a way to do this and to combine the
results of various approximations. This could be used to
justify the style of discussion we made in II.F.3, where we
compared hypothetical numbers of vacua with and with-
out low energy supersymmetry. In combining the various
ingredients of an approximate vacuum counting distribu-
tion, small tuning factors can be compensated by mul-
tiplicity factors, to produce apparently counterintuitive
results. We will come back to this idea after discussing
some concrete results.

Of course, the specific ansatz Eq. (156) was a way
to feed in explicit knowledge about computational accu-
racy and tuning. As we will see, there are many other
approximations one might make in computing a vacuum
counting distribution, sometimes with explicit control pa-
rameters and sometimes not, but with the same general
interpretation. We will discuss the “continuous flux ap-
proximation” in some detail below.

Finally, let us cite the standard statistical concept of
a representative sample. This is a sample from a larger
population, in which the distribution of properties of in-
terest well approximates the distribution in the larger
population. Given a representative sample ofNrep vacua,
their distribution dNrep, and the total number of vacua
Nvac, we could infer an approximation to the total vac-
uum counting distribution,

dNvac(T ) ∼ Nvac

Nrep
dNrep(T ).

While elementary, this idea is probably our main hope of
ever characterizing the true dNvac of string/M theory in
practice, so making careful use of it is likely to become
an increasingly important element of the discussion.

B. Counting flux vacua

The simplest example of the general framework we are
about to describe is the counting of supersymmetric IIb
flux vacua for a Calabi-Yau with no complex structure
moduli. This leads to flux vacua with stabilized dilaton-
axion, and a one-parameter distribution which can be
worked out using elementary arguments. One can explic-
itly see the nature of the continuous flux approximation.

To go further, we need to introduce some formalism.
This is modelled after similar problems in random poten-
tial theory, as well as the mathematical theory of random
sections of holomorphic line bundles. We then discuss
general results for supersymmetric vacua, and some ex-
plicit two parameter distributions. We then give similar
results for nonsupersymmetric vacua. Finally, we sum-
marize some of the most important general conclusions
from this type of analysis.

1. IIb vacua on a rigid CY

This problem was studied in Ashok and Douglas
(2004); Denef and Douglas (2004). We write τ for the
dilaton-axion; by definition it must satisfy Im τ > 0, in
other words it takes values in the upper half plane. A
rigid CY, for example the resolved T 6/ZZ3 orbifold, has
b2,1 = 0 and thus b3 = 2; thus there are two NS fluxes
ai and two RR fluxes bi, which we take to be integrally
quantized.

The flux superpotential Eq. (61) is

W = (a1 + Πa2)τ + b1 + Πb2 ≡ Aτ +B,

where we group the NS and RR fluxes into two complex
combinations A and B. Here

Π ≡
∫

B Ω
∫

A
Ω

is a complex number which is determined by the geome-
try of the CY; let us take Π = i for simplicity.

The Kähler potential on this moduli space is K =
log Im τ , and it is very easy to solve DW = 0 for the
location of the supersymmetric vacuum as a function of
the fluxes; it is

DW = 0 ↔ τ̄ = −B
A
, (157)

so there will be a unique vacuum if Im B/A > 0, and
otherwise none.

The tadpole condition Eq. (70) becomes

Im A∗B ≤ L. (158)

Finally, the SL(2,ZZ) duality symmetry of IIb superstring
theory acts on the dilaton and fluxes as
(

a b
c d

)

: τ → τ ′ =
aτ + b

cτ + d
;

(

A
B

)

→
(

aA+ bB
cA+ dB

)

.

(159)
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Two flux vacua which are related by an SL(2,ZZ) trans-
formation are physically equivalent, and should only be
counted once. Since the duality group is infinite, gauge
fixing this symmetry is essential to getting a finite result.

A direct way to classify these flux vacua, is to first
enumerate all choices of A and B satisfying the bound
Eq. (158), taking one representative of each orbit of Eq.
(159), and then to list the flux vacua for each. Now it is
not hard to see (Ashok and Douglas, 2004) that this can
be done by taking a2 = 0, 0 ≤ b1 < a1 and a1b2 ≤ L. By
Eq. (157), each choice of flux stabilizes a unique vacuum,
and thus the total number of vacua is finite,

Nvac(L) = 2σ(L) = 2
∑

k|L
k, (160)

where σ(L) is a standard function discussed in textbooks
on number theory, with the asymptotics

∑

L≤N

σ(L) =
π2

12
N2 + O(NlogN)

Finally, we can use Eq. (157) to get the distribution of
vacua in configuration space. Let us suppose that in the
resulting low energy theory, τ controls a gauge coupling,
but there is no direct dependence on the values A,B of
the fluxes. In this case, it is useful to use SL(2,ZZ) trans-
formations to bring all of the vacua into the fundamental
region |τ | ≥ 1 and |Re τ | ≤ 1/2, as this is the moduli
space of physically distinct theories, ignoring the flux.

We plot the results for L = 150 in Figure V.B.1. Each
point on this graph is a possible value of τ in some
flux vacuum; many of the points correspond to multiple
vacua.

While the figure clearly displays a great deal of struc-
ture, one might worry about its intricacy and ask: if this
is what comes out of the simplest class of models, what
hope is there for understanding the general distribution
of vacua in string theory? Fortunately, there is a very
simple approximate description, which captures much of
the structure of this distribution. It is a uniform distri-
bution, modified by a sort of “symmetry enhancement”
phenomenon.

We first discuss the uniform distribution. A very naive
first guess might be d2τ , but of course this is not invari-
ant under field redefinitions; rather we must look at the
geometry of the configuration space to decide what is a
natural “uniform” distribution. Now the configuration
space of an effective field theory always carries a metric,
the “sigma model metric,” defined by the kinetic terms
in the Lagrangian,

L = Gij∂φ
i∂φj + . . . . (161)

Thus, the natural definition of a “uniform measure” on
configuration space, is just the volume form associated
to the sigma model metric,

dµ = dnφ
√

detG(φ). (162)
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FIG. 1 Values of τ for rigid CY flux vacua with Lmax = 150.
From Denef and Douglas (2004).

In the problem at hand, this is

dµ =
d2τ

4(Im τ)2
. (163)

Of course, this is a continuous distribution, unlike the
actual vacuum counting distributions which are sums of
delta functions. However, if we take a limit in which
the number of vacua becomes arbitrarily large, it might
be that the limiting distribution of vacua could be ap-
proximated by a continuous distribution. Since the dis-
creteness of the allowed moduli values was due to flux
quantization, and it is intuitively clear that the effects
of this should become less important as L increases, a
reasonable conjecture would be that in the limit L→ ∞,
the distribution of flux vacua in moduli space approaches
Eq. (163).

If we are a bit more precise and keep track of the total
number of vacua, we can make a similar conjecture for
the vacuum counting distribution itself. Normalizing Eq.
(163) so that its integral over a fundamental region is Eq.
(160), we find

lim
L→∞

dNvac = π L
d2τ

(Im τ)2
. (164)

For example, a disc of area A should contain 4πAL vacua
in the large L limit.

While this is true, as can be deduced from the for-
malism we will describe shortly, at first glance the finite
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L distribution may not look very uniform. Comparing
with the L = 150 figure, we see that around points such
as τ = ni with n ∈ ZZ, there are holes of various sizes
containing no vacua. Where do these holes come from,
and how can they be consistent with the claim?

In fact, at the center of each of these holes, there is
a large degeneracy of vacua, which after averaging over
a sufficiently large region recovers the uniform distribu-
tion. For example, there are 240 vacua at τ = 2i, which
compensate for the lack of vacua in the hole. As dis-
cussed in Denef and Douglas (2004), while this leads to
a local enhancement, just beyond the radius of the hole
the uniform approximation becomes good.

This behavior can be understood as coming from align-
ments between the lattice of quantized fluxes and the
constraints following from the equations DW = 0. Using
this, one can argue that the continuous flux approxima-
tion will well approximate the total number of vacua in
a region of radius r satisfying

L >
K

r2
. (165)

Another rough model for the approximation might be
a Gaussian error model as in Eq. (156), with variance
σ ∼ K/L. Finally, one can also understand the correc-
tions to the large L approximation as a series in inverse
fractional powers of L, using mathematics discussed in
Douglas et al. (2006b).

2. General theory

The result we just discussed is a particular case of a
general formula for the large L limit of the index den-
sity of supersymmetric flux vacua in IIb theory on an
arbitrary Calabi-Yau manifold M (Ashok and Douglas,
2004),

∑

L≤Lmax

dIvac(L) =
(2πLmax)b3

πb3/2b3!
det(−R− ω). (166)

We will explain what we mean by “index density” shortly;
like the vacuum counting distribution, it is a density on
moduli space, here a b3/2 complex dimensional space
which is the product of axion-dilaton and complex struc-
ture moduli spaces. The prefactor depends on the tad-
pole number L defined in Eq. (70), and on b3, the third
Betti number M . Instead of the density for a single L,
we have added in all L ≤ Lmax; in the large L limit the
relation between these is the obvious one, but such a sum
converges to the limiting density far more quickly than
results at fixed L.

The density det(−R − ω · 1) is entirely determined by
the metric on moduli space Eq. (161); all the depen-
dence on the other data entering the flux superpotential
Eq. (61) cancels out of the result. It is a determinant of
a (b3/2) × (b3/2) dimensional matrix of two-forms, con-
structed from the Kähler form ω on M, with the matrix

-3 -2 -1 1 2 3
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FIG. 2 The susy vacuum number density per unit ψ coordi-
nate volume, on the real ψ-axis, for the mirror quintic. From
Denef and Douglas (2004).

valued curvature two-formR constructed from the metric
on M.

Thus, while the volume form Eq. (162) was a natural
first guess for the distribution of flux vacua, as we will
see the actual distribution can be rather different. The
agreement between Eq. (164) and Eq. (163) in the exam-
ple of Sec. V.B.1 was particular to this case, and follows
from R ∝ ω for that moduli space. Similar, though more
complicated, explicit results can be obtained for the ac-
tual vacuum counting distribution (Denef and Douglas,
2004; Douglas et al., 2006b), and distributions of non-
supersymmetric flux vacua (Denef and Douglas, 2005).

Let us plot the number density in another example,
compactification on the mirror of the quintic CY (Cande-
las et al., 1991; Greene and Plesser, 1990). Here MC(M)
is one complex dimensional and thus the distribution de-
pends on two parameters; however it is a product distri-
bution whose dependence on the dilaton-axion is again
Eq. (163) for symmetry reasons. The dependence on the
complex structure modulus is non-trivial; if we plot it
along a real slice, we get Figure V.B.2.

The striking enhancement as ψ → 1 is because this
limit produces a conifold singularity as discussed in Sec.
IV.A.2.a. As discussed in Denef and Douglas (2004), near
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the conifold point Eq. (166) becomes17

dNvac ∼ d2ψ

|ψ − 1|2(log |ψ − 1|)3 (167)

As discussed in Sec. IV.A.2.a, under flux-gauge duality,
the parameter ψ − 1 is dual to the dynamically induced
scale µ in the gauge theory, and thus dimensional trans-
mutation explains the leading dµ/µ dependence here.
However the log factors have to do with details of the
sum over fluxes.

This distribution is (just barely) integrable; doing so
over a disc, the number of susy vacua with L ≤ L∗ and
|ψ − 1| ≤ R is

Nvac =
π4L4

∗
18 ln µ2

R2

. (168)

The logarithmic dependence on R implies that a substan-
tial fraction of vacua are extremely close to the conifold
point. For example when L∗ = 100 and µ = 1, there are
still about one million susy vacua with |v| < 10−100.

Despite this enhancement, from the figure one sees that
the majority of vacua are not near the conifold point. On
the other hand, in many parameter models, a sizable frac-
tion of vacua can be expected to contain conifold limits,
by a simple probabilistic argument we give in Sec. V.E.3.

Many of the other general results for flux vacuum dis-
tributions which we called upon in Sec. IV also follow
from Eq. (166), by inserting known behaviors of moduli
space metrics, introducing further constraints and so on.
For example,

• The fraction of flux vacua with string coupling gs ≤
ǫ << 1 goes as ǫ. This follows from the expression
Eq. (163) for the tree level metric on dilaton-axion
moduli space.

• The fraction of weakly coupled vacua with
eK |W |2 ≤ ǫ goes as ǫ. This is particular to IIb
flux vacua, for reasons we discuss at the end of this
subsection.

a. Definition of the index density This is a sum over
vacua, weighed by ±1 factors,

dNvac(T ) =
∑

i

δ(T − Ti)(−1)F
i . (169)

17 While in general this formula is the index density Eq. (169),
it is not hard to show that all vacua near the conifold point
have (−1)F = +1, so that in this case it is also the number
density. More generally, globally supersymmetric vacua (which
do not depend on the (∂K)W term in DW ) always have (−1)F =
+1. Conversely, the (−1)F = −1 vacua are in a sense “Kähler
stabilized.”

The factor (−1)F
i will be defined shortly; it is essentially

the sign of the determinant of the fermionic mass matrix.
The primary reason to consider this quantity is that

it leads to much simpler explicit results than Eq. (152).
To explain why, we recall the general formula for the
distribution of critical points of a random potential V .
As is well-known in the theory of disordered systems,
this is

dNvac(z) = 〈δ(V ′(z))| detV ′′(z)|〉, (170)

where the expectation value is taken in the ensemble of
random potentials; here the ensemble of flux potentials.
Formally, such a density is proportional to the delta func-
tion δ(V ′(z)), however the integral of such a delta func-
tion over field space is not 1. To get a normalized density
in which each vacuum has unit weight, we multiply by
the Jacobian factor.

Now, upon incorporating the sign factor in Eq. (169),
this becomes

dIvac(z) = 〈δ(V ′(z)) detV ′′(z)〉, (171)

and the somewhat troublesome absolute value sign from
the Jacobian is removed. The virtue of this is that the
index turns out to be much simpler to compute than
dNvac, yet provides a lower bound for the actual number
of vacua. There is some evidence that the ratio of the
index to the actual number of vacua is of order 1/cK for
some order one c (Douglas et al., 2004).

We can use essentially the same formulae Eq. (170)
and Eq. (171) to count supersymmetric vacua, by re-
placing V with a flux superpotential W (z), taking into
account that it and the chiral fields are complex. Com-
bining these ideas, and taking the continuous flux limit as
in the previous subsection, leads to the integral formula

lim
L→∞

dIvac(z;L) = (172)
∫

d2KNNηN=L δ(2n)(DW (z)) det

(

DiD̄jW DiDjW
D̄iD̄jW̄ D̄iDjW̄

)

(173)

where the tadpole constraint was schematically written
NηN = L in terms of a known quadratic form η.

b. Computational techniques Without going into the de-
tails of the subsequent computations leading to Eq.
(166), two general approaches have been used. One is
to formally represent the integral over fluxes satisfying
the tadpole constraint as a Laplace transform of a Gaus-
sian integral with weight exp−NηN . In this way, one
can think of the random superpotential as defined by its
two-point function,

〈W (z1) W̄ (z̄2)〉 = exp−K(z1, z̄2),

where K(z1, z̄2) is the formal continuation of the Kähler
potential K(z, z̄) to independent holomorphic and anti-
holomorphic variables. In this sense, the flux superpoten-
tial is a Gaussian random field, however a rather peculiar
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one as its correlations can grow with distance. Still, one
can proceed formally despite this, and then justify the
final results.

The other approach (Denef and Douglas, 2004) is to
make a direct change of variables from the original fluxes
F,H to the relevant derivatives of the superpotential.
Since this provides more physical intuition for the results,
let us discuss it a bit.

One of the main simplifications which allows obtaining
explicit results for a density such as Eq. (166), is that
its definition restricts attention to the neighborhood of
a point in configuration space, the point z. Because of
this, we only need a finite amount of information about
the effective potential, namely the superpotential W (z)
and some finite number of its derivatives at z, to compute
it.

For example, to evaluate Eq. (172), we only need
DiW (z), DiDjW (z), DiD̄jW (z), and their complex con-
jugates. Standard results in supergravity (or, the fact
that W is a holomorphic section), imply that DiD̄jW =
gij̄W , so this is known in terms of W . Thus, we only
need the joint distribution of 1 + n + n(n + 1)/2 =
(n+1)(n+2)/2 independent parameters derived from the
potential to compute the vacuum counting index. Let us
give these names; in addition to W ≡W (z) we have18

FA = DAW (z); ZAB = DADBW (z). (174)

By substituting Eq. (61) into these expressions and fixing
z, we get F and Z as functions of the fluxes N ; in fact
they are linear in the N .

Now, we can rewrite Eq. (172) as

lim
L→∞

dIvac(z;L) = (175)
∫

[d2W d2F d2Z]L δ(2n)(Fi) det

(

gij̄W Zij

Z̄īj̄ gījW̄

)

,(176)

where the notation [d2W d2F d2Z]L symbolizes the inte-
gral over whatever subset of these variables corresponds
to the original integral over fluxes satisfying the tadpole
condition.

What makes this rewriting very useful, is that the
change of variables N → (W,F,Z) turns out to be very
simple (Denef and Douglas, 2004); it is just
∫

NηN=L

d2KN →
∫

L=|W |2−|F |2+|Z|2
d2W d2nF d2n−2Z0i

(177)
where the index i = 0 denotes the dilaton-axion. In par-
ticular, the Jacobian det ∂N/∂(W,F,Z) is a constant (in

18 Strictly speaking, one needs to include the Kähler potential in
these definitions, to get quantities which are invariant under
Kähler-Weyl transformations. An alternate convention, which
saves a good deal of notation and which we follow here, is to do
a Kähler-Weyl transformation to set K(z, z̄) = 0 at the point z

under consideration, and use an orthonormal frame for the tan-
gent space to z; see Denef and Douglas (2004) for more details.

appropriate conventions, unity), and the only constraint
is the tadpole constraint, which is also simple. Of course,
since we have only 4n fluxes, only a subset of n − 1 of
the Z variables can appear; however the others are also
simple:

Zij = Fijkg
kl̄Z̄l̄,

where Fijk are the standard “Yukawa couplings” of spe-
cial geometry (Candelas et al., 1991). It is a fairly short
step from these formulae to Eq. (166) and its generaliza-
tions.

The rewriting Eq. (177) is the simplest way to de-
scribe the ensemble of IIb flux vacua, if one only needs
to find distributions of single vacua and their properties
(formally, one-point functions). On the other hand, the
approach in which W is a generalized Gaussian random
field, could also be used to compute distributions depend-
ing on the properties of more than one vacuum, or on the
effective potential away from its critical points, for exam-
ple average barrier heights between vacua, or the average
number of e-foldings of slow-roll inflationary trajectories.
In fact, modelling the inflationary potential as a Gaus-
sian random field has been tried in cosmology (Tegmark,
2005); it would be interesting to do the same with this
more accurate description of the effective potentials for
flux vacua.

All of these precise results are in the continuous flux
approximation. As before, the general theory suggests
that this should be good for L >> K. The results have
been checked to some extent by numerical study (Con-
lon and Quevedo, 2004; Giryavets et al., 2004a), finding
agreement with the distribution in z, and usually (though
not always) the predicted scaling with L. It should be
said that numerous subtleties had to first be addressed in
the works which eventually found agreement; such as the
need to avoid double-counting flux configurations related
by duality, and the need to consider fairly large values of
the flux.

c. Other ensembles of flux vacua These can be treated by
similar methods, say by working out the analog to Eq.
(177). This was done forG2 compactifications in Acharya
et al. (2005). A useful first picture can be formed by
considering the ratio (DeWolfe et al., 2005b)

η ≡ number of independent fluxes

number of (real) moduli
,

as this determines the number of parameters
(W,Fi, Zij , . . .) which can be considered as roughly
independent. While for IIb flux vacua η = 2, for all
of the other well understood flux ensembles (M theory,
IIa,heterotic) η = 1 as there is only one type of flux.

For η = 1, one generally finds the uniform distribution
Eq. (162), and |W | is of order the cutoff scale. This is
because the conditions DiW = Fi = 0 already set almost
all of the fluxes, so there are too few fluxes to tune W
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to a small value. This is perhaps the main reason why
controlled small volume compactifications are easier to
discuss in the IIb theory. Of course, it may yet turn
out that additional choices in the other theories, less well
understood at present, allow similar constructions there.

C. Scale of supersymmetry breaking

Let us now resume the discussion of Sec. II.F.3, com-
bining results from counting flux vacua with various gen-
eral observations, to try to at least identify the impor-
tant questions here. We would like some estimate of the
number distribution of vacua described by spontaneously
broken supergravity,19

dNvac[Msusy,MEW ,Λ] (178)

at the observed values of Λ and MEW . If this were ap-
proximately a power law,

dNvac[Msusy, 100GeV, 0] ∼ dMsusyM
α
susy,

then for α < −1 we would predict low scale susy, while
for α ≥ 1 we would not. Here we will define

M4
susy =

∑

i

|Fi|2 +
1

2

∑

α

D2
α,

the energy scale associated to supersymmetry breaking
in the microscopic theory. Note that many authors use a
different definition in which Msusy ∼ m3/2.

For purposes of comparison, let us begin with the pre-
diction of field theoretic naturalness. This is

dNFT
vac ∼

(

M2
EW M2

Pl

M4
susy

)(

Λ

M4
susy

)

f(Msusy), (179)

where the first factor follows from Eq. (24). As for
f(Msusy), if we grant that this is set by strong gauge
dyanmics, a reasonable ansatz might be dMsusy/Msusy,
analogous to Eq. (167). This would lead to α = −9 and
a clear prediction.

Now, while we cannot say we have a rigorous disproof
of Eq. (179), the approach we are discussing gives us
many reasons to disbelieve it, based both on computation
in toy models, and on simple intuitive arguments. Let us
explain these in turn.

The simplest problem with Eq. (179) is the factor
Λ/M4

susy. Instead, distributions of flux vacua gener-

ally predict Λ/M4
KK , Λ/M4

Pl or some other fundamental
scale. In other words, tuning the cosmological constant is
not helped by supersymmetry.

19 There are also vacua with no such description, because super-
symmetry is broken at the fundamental scale. While these might
further disfavor TeV scale supersymmetry, at present it is hard
to be quantitative about this.

To see this, we start from Eq. (22), and the claim
that Λ is the value of the potential at the minimum, so
that Λ = M4

susy − 3|W |2/M2
Pl,4. Intuitively, this formula

expresses the cancellation between positive energies due
to supersymmetry breaking (the F and D terms), and a
negative “compensating” energy from the −3|W |2 term.
However, one should not fall into the trap of thinking
that any of these terms are going to “adjust themselves”
to cancel the others. Rather, there is simply some com-
plete set of vacua with some distribution of Λ values,
out of which a Λ ∼ 0 vacuum will be selected by some
other consideration (anthropic, cosmological, or just fit-
ting the data). For the purpose of understanding this
distribution, it is best to forget about this later selection
effect, only bringing it in at the end.

On general grounds, since the cosmological constant is
a sum of many quasi-independent contributions, it is very
plausible that it is roughly uniformly distributed out to
some cutoff scale M , so that the basic structure we are
looking for in Eq. (178) is this scale. Clearly by Eq. (22)
this is set by the cutoffs in the F , D and W distributions;
more specifically by the largest of these.

Let us now focus on the W distribution, coming back
to the F and D distributions shortly. According to the
definition Eq. (61), the effective superpotential W re-
ceives contributions from all the fluxes, including those
which preserve supersymmetry. Because of this, the dis-
tribution ofW values has little to do with supersymmetry
breaking; rather it is roughly uniform (as a complex vari-
able) out to a cutoff scale set by flux physics, namely MF

as defined in Sec. II.F.2. Since

d(|W |2) = 2|W |d|W | =
1

π
d2W,

this implies that |W |2 is uniformly distributed out to this
scale, and thus that Λ will be uniformly distributed at
least out to this scale, leading to a tuning factor Λ/M4

F .
To summarize, the distribution of the cosmological

constant is not directly tied to supersymmetry break-
ing, because it receives contributions from supersymmet-
ric sectors as well. This correction to Eq. (179) would
result in α = −5, still favoring low scale supersymmetry,
but rather less so.

Now, there is a clear loophole in this argument, namely
that there might be some reason for the supersymmet-
ric contributions to W to be small. In fact, one can
get this by postulating an R symmetry, which is only
broken along with supersymmetry breaking. However,
within the framework we are discussing, it is not enough
just to say this to resolve the problem. Rather, one now
has to count the vacua with the proposed mechanism
(here, R symmetry), and compare this to the total num-
ber of vacua, to find the cost of assuming the mechanism.
Only if this cost is outweighed by the gain (here a factor
M4

F /M
4
susy) will the mechanism be relevant for the final

prediction. We will come back and decide this shortly.
Before doing this, since the correction we just discussed

would by itself not change the prediction of low scale
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supersymmetry, we should discuss the justification of the
other factors in Eq. (179). First, we will grant the factor
M2

EW /M4
susy, not because it is beyond question – after

all this assumes some generic mechanism to solve the
µ problem – but because the information we would need
about vacuum distributions has not yet been worked out.

On the other hand, the claim that the distribution of
supersymmetry breaking scales among string/M theory
vacua is dMsusy/Msusy, can also be questioned. While
this sounds like a reasonable expectation for theories
which break supersymmetry dynamically, one has to ask
whether there are other ways to break supersymmetry,
what distributions these lead to, and how many vacua
realize these other possibilities.

Given the definition of supersymmetry breaking vac-
uum we used in Sec. II.F.1, namely a metastable min-
imum of the effective potential with F or D 6= 0, one
might well expect a generic effective potential to contain
many supersymmetry breaking vacua, not because of any
“mechanism,” but simply because generic functions have
many minima. We discussed this idea in IV.A.4.c, and it
was shown to be generic for IIb flux vacua in Denef and
Douglas (2005), leading to the distribution

dNvac[Msusy ] ∼
(

Msusy

MF

)12

. (180)

Although the high power 12 may be surprising at first, it
has a simple explanation (Dine et al., 2005; Giudice and
Rattazzi, 2006). Let us consider a generic flux vacuum
with Msusy << MF . Since one needs a goldstino for
spontaneous susy breaking, at least one chiral superfield
must have a low mass; call it φ. Generically, the flux
potential gives order MF masses to all the other chiral
superfields, so they can be ignored, and we can analyze
the constraints in terms of an effective superpotential re-
duced to depend on the single field φ,

W = W0 + aφ+ bφ2 + cφ3 + . . . .

The form of the Kähler potential K(φ, φ̄) is also impor-
tant for this argument; however one can simplify this by
replacing (a, b, c) by invariant variables generalizing Eq.
(174),

F ≡ DφW ; Z ≡ DφDφW ; U ≡ Dφ DφDφW.

In terms of these, the conditions for a metastable su-
persymmetric vacuum are |F | = M2

susy (by definition),
|Z| = 2|F | (this follows from the equation V ′ = 0), and
finally |U | ∼ |F | (as explained in Denef and Douglas
(2005) and many previous discussions, this is necessary
so that V ′′ > 0. This also requires a lower bound on the
curvature of the moduli space metric).

Now, the distribution of the (F,Z, U) parameters in
flux superpotentials can be worked out; we gave the re-
sult for F and Z in Eq. (175), and one can also find U
in terms of (F,Z) and moduli space geometry. A good
zeroth order picture of the result is that (F,Z, U) are

independent and uniformly distributed complex parame-
ters, up to the flux potential cutoff scale MF . All three
complex parameters must be tuned to be small in mag-
nitude, leading directly to Eq. (180).

The upshot is that “generic” supersymmetry break-
ing flux vacua exist, but with a distribution heavily fa-
voring the high scale, enough to completely dominate
the 1/M4

susy benefit from solving the hierarchy problem.
Indeed, this would be true for any set of vacua arising
from generic superpotentials constructed according to the
rules of traditional naturalness with a cutoff scale MF .

The flaw in the naturalness argument in this case is
very simple; one needs to tune several parameters in the
microscopic theory to accomplish a single tuning at the
low scale. Of course, if the underlying dynamics cor-
related these parameters, one could recover natural low
scale breaking. This would be a reasonable expectation
if W was entirely produced by dynamical effects, or per-
haps in some models in which it is a combination of
dynamical and high scale contributions. Besides mod-
els based on gauge theory, it is entirely possible that a
more careful analysis of the distribution of flux vacua
on Calabi-Yau, going beyond the “zeroth order picture”
we just described by taking into account more of the
structure of the actual moduli spaces, would predict such
vacua as well.

Of course, even if such vacua exist, we must go on to
decide how numerous they are. Following Dine (2004b);
Dine et al. (2004, 2005), we can summarize the picture so
far by dividing the set of supersymmetry breaking vacua
into “three branches,”

1. Generic vacua; i.e. with all of the F , D and W dis-
tributions as predicted by the flux vacuum counting
argument we just discussed.

2. Vacua with dynamical supersymmetry break-
ing (DSB). Here we assume the distribution
dMsusy/Msusy for the breaking parameters; how-
ever W is uniformly distributed out to high scales.

3. Vacua with DSB and tree level R symmetry. Be-
sides the dMsusy/Msusy distribution, we also as-
sume W is produced by the supersymmetry break-
ing physics.

In option (1), TeV scale supersymmetry would seem very
unlikely. While both (2) and (3) lead to TeV scale super-
symmetry, they can differ in their expectations for |W |
and thus the gravitino mass: in (3) this should be low,
while in (2) the prior distribution is neutral, so the pre-
diction depends on the details of mediation as discussed
in Sec. II.F.1.

What can we say about which type of vacuum is more
numerous in string/M theory? There is a simple argu-
ment against (3), and indeed against most discrete sym-
metries in flux vacua (Dine and Sun, 2006). First, a dis-
crete symmetry which acts on Calabi-Yau moduli space,
will have fixed points corresponding to particularly sym-
metric Calabi-Yau manifolds; at one of these, it acts as a
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discrete symmetry of the Calabi-Yau. Such a symmetry
of the Calabi-Yau will also act on the fluxes, trivially on
some and non-trivially others. To get a flux vacuum re-
specting the symmetry, one must turn on only invariant
fluxes. Now, looking at examples, one finds that typi-
cally an order one fraction of the fluxes transform non-
trivially; for definiteness let us say half of them. Thus,
applying Eq. (166) and putting in some typical numbers
for definiteness, we might estimate

Nvac symmetric

Nvac all
∼ LK/2

LK
∼ 10100

10200
.

Thus, discrete symmetries of this type come with a huge
penalty. While one can imagine discrete symmetries with
other origins for which this argument might not apply,
since W receives flux contributions, it clearly applies to
the R symmetry desired in branch (3), and probably leads
to suppressions far outweighing the (MF /Msusy)4 gain.

Thus, R symmetry appears to be heavily disfavored,
with the exception of R parity: since the superpotential
has R charge 2, it is invariant under a ZZ2 R symmetry.
While crucial for other phenomenology, R parity does not
force small W .

What about branches (1) versus (2) ? Among the
many issues, we must estimate what fraction of vacua
realize dynamical supersymmetry breaking. Looking at
the literature on this, much of it adopts a very strong def-
inition of supersymmetry breaking, in which one requires
that no supersymmetric vacua exist. And, although the
situation is hardly clear, it appears that very few models
work according to this criterion. This might be regarded
as evidence against (2).

However, this is a far stronger definition of supersym-
metry breaking than we used elsewhere in our review.
Rather, the question we want to answer is the difficulty
of realizing metastable dynamical supersymmetry break-
ing vacua. Recent work such as (Dine et al., 2006; Intrili-
gator et al., 2006) suggests that this is not so difficult,
but it is still a bit early to evaluate this point.

Again, according to the point of view taken here, the
goal is to show that metastable dynamical supersymme-
try breaking vacua are generic in a quantitative sense.
Doing this requires having some knowledge about the
distributions of gauge theories among string/M theory
vacua, to which we turn.

D. Other distributions

Understanding the total number and distribution of
vacua requires combining information from all sectors of
the theory. Here we discuss some of the other sectors,
while the problem of combining information from differ-
ent sectors is discussed in Douglas (2003).

1. Gauge groups and matter content

By now, the problem of trying to realize the Standard
Model has been studied in many classes of constructions.
Let us consider type IIa orientifolds of a Calabi-Yau M ,
(see Blumenhagen et al. (2005a) for a recent review). In
the vast majority of such vacua which contain the SM,
one finds that the tadpole and other constraints force
the inclusion of “exotic matter,” charged matter with
unusual Standard Model quantum numbers or with ad-
ditional charges under other gauge groups. One also finds
hidden sectors, analogous to the second E8 of the orig-
inal CHSW models. While less well studied, other con-
structions such as more general heterotic vacua, F and
M theory vacua, often contain exotic matter as well.

All this might lead to striking predictions for new
physics, if we could form a clear picture of the possi-
bilities, and which of them were favored within string/M
theory. One is naturally led to questions like: Should
we expect to see such exotic matter at low energies?
Could the extra matter be responsible for supersymme-
try breaking? Could the hidden sectors be responsible for
some or all of the dark matter, or have other observable
consequences?

A systematic base for addressing these questions would
be to have a list of all vacua, with their gauge groups and
matter content, as well as the other EFT data. While
this is a tall order, finding statistics of large sets of
vacua, such as the number of vacua with a given low
energy gauge group G and matter representation R, is
within current abilities (Blumenhagen et al., 2005b; Di-
enes, 2006; Dijkstra et al., 2005; Douglas and Taylor,
2006; Gmeiner, 2006a,b; Gmeiner et al., 2006; Kumar
and Wells, 2005a,b). Besides providing a rough picture
of the possibilities, such statistics can guide a search for
interesting vacua, or used to check that samples are rep-
resentative.

Thus, let us consider a vacuum counting distribution

Nvac(G,R). (181)

To be precise, G and R should refer to all matter with
mass below some specified energy scale µ. The existing
results count N = 1 supersymmetric vacua and ignore
quantum effects, considering gauge groups which remain
unbroken at all scales, and massless matter.

Most systematic surveys treat intersecting brane mod-
els (IBM’s), in which the possible gauge groups G are
products of the classical groups U(N), SO(N) and
Sp(N), while all charged matter transforms as two-index
tensors: adjoint, symmetric and anti-symmetric tensors,
and bifundamentals. In a theory with r factors in the
gauge group, the charged matter content can be largely
summarized in an r × r matrix Iij , whose (i, j) entry
denotes the number of bifundamentals in the (Ni, N̄j),
called the “generalized intersection matrix.” Thus, we
can rewrite Eq. (181) as

Nvac({Ni}, Iij). (182)
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Following the procedure outlined in Sec. II.A.3, one
can make lists of models, and compute Eq. (182). The
results from the studies so far are rather intricate, so a
basic question is to find some simple approximate de-
scription of the result. In particular, one would like to
know to what extent the data (Ni, Iij) shows structure,
such as preferred patterns of matter content, or other
correlations, which might lead to predictions.

Alternatively, one might propose a very simple model,
such as that the (Ni, Iij) are (to some approxima-
tion) independent random variables.20 While one might
be tempted to call this a “negative” claim, of course
we should not be prejudiced about the outcome, and
methodologically it is useful to try to refute “null hy-
potheses” of this sort. Actually, since even in this case
there would be preferred distributions of the individual
ranks and multiplicities, such a result would carry im-
portant information.

The studies so far (Blumenhagen et al., 2005b; Dijk-
stra et al., 2005; Douglas and Taylor, 2006) in general
are consistent with the null hypothesis, but suggest some
places to look for structure. As yet they are rather ex-
ploratory and show only partial agreement, even about
distributions within the same model classes.

In Blumenhagen et al. (2005b), the T 6/ZZ2×ZZ2 orien-
tifold (and simpler warm-up models) were studied, and
all gauge sectors enumerated. Simple analytical models
were proposed in which Eq. (182) is governed by the
statistics of the number of ways of partitioning the to-
tal tadpole among supersymmetric branes. For example,
the total number of vacua with tadpole L goes roughly21

as exp
√
L, and the fraction containing an SU(M) gauge

group goes as exp−M/
√
L. Computer surveys supported

these claims, and found evidence for a anticorrelation
between total gauge group rank and the signed number
of chiral matter fields, and for a relative suppression of
three generation models. However, it is not clear whether
these surveys used representative samples, for reasons
discussed in Douglas and Taylor (2006).

In Douglas and Taylor (2006), algorithms were devel-
oped to perform complete enumerations of “k-stack mod-
els,” in other words the distribution of k of the gauge
groups and associated matter. These obey power law
distributions such as Nvac ∼ Ln/Nα

i with α depending
on the types of branes involved.

The work (Dijkstra et al., 2005) enumerated orien-
tifolds of Gepner models, and restricted attention to the
SM sector, again finding that the majority of models had
exotic matter, and multiple Higgs doublets.

20 While this cannot literally be true of the entire spectrum as this
must cancel anomalies, these constraints are relatively simple for
brane models, so the simplest model of the actual distribution
is to take a distribution of matter contents generated by taking
these parameters independent, and then keeping only anomaly
free spectra.

21 There are log L corrections in the exponent.

An element not fully discussed in any of these works
is that to compute Eq. (181) as defined in Sec. V.A,
one needs to stabilize all other moduli, and incorporate
multiplicities from these sectors. One can try to estimate
these multiplicities in terms of the number of degrees
of freedom in the “hidden” (non-enumerated) sectors by
using generic results such as Eq. (166), for example as is
done in Kumar and Wells (2005a).

To state one conclusion on which all of these works
agree, the fraction of brane models containing the Stan-
dard Model gauge group and matter representations is
somewhere around 10−10, as first suggested by heuristic
arguments in Douglas (2003). In this sense, reproduc-
ing the SM is not the hard part of model construction,
and indeed has been done in all model classes with “suf-
ficient complexity” (for example, enough distinct homol-
ogy classes) which have been considered.

Among the many open questions, it would be very in-
teresting to know if the heterotic constructions, which
one might expect to favor GUTs and thus work more
generically, are in fact favored over the brane mod-
els. The one existing survey (Dienes, 2006), of non-
supersymmetric models, indeed finds GUT and SM gauge
groups with far higher frequency. However a mere 1010

advantage here might well be swamped by multiplicities
from fluxes and other sectors.

2. Yukawa couplings and other potential terms

These terms have a variety of sources in explicit con-
structions: world-sheet instantons in IIa models; over-
lap between gauge theoretic wave functions in IIb and
heterotic models; all with additional space-time instan-
ton corrections. While clearly very interesting for phe-
nomenology, at this point none of this is understood in
the generality required to do statistical surveys.

However one can suggest interesting pictures. As an
example, one might ask the following question. Suppose,
as might fit with the type of results we are discussing,
that in some large class of vacua, quark and lepton masses
were independent “random” variables, each with distri-
bution dµ(m). Is there any dµ(m) with both plausi-
ble top-down and bottom-up motivations? In Donoghue
(2004); Donoghue et al. (2006), the distribution dµ(m) ∼
dm/m was proposed, both as a best fit among power law
distributions to the observed masses, and as naturally
arising from the combination of (1) uniform distributions
of moduli z, and (2) the general dependence of Yukawa
couplings

m ∼ λ ∼ exp−z
expected if they arise from world-sheet instantons.

3. Calabi-Yau manifolds

All the explicit results we discussed assumed a choice
of Calabi-Yau manifold. Now we do not know this choice
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a priori, so to count all vacua we need to sum over it, and
thus we need the distribution of Calabi-Yau manifolds.
Of course, we might also use statistics to try to decide
a priori what is the most likely type of Calabi-Yau to
contain realistic models, or use this data in other ways.
In any case it is very fundamental to this whole topic.

Unfortunately, we do not at present know this distri-
bution. The only large class of Calabi-Yau manifolds
which is understood in any detail at present is the sub-
set which can be realized as hypersurfaces in toric vari-
eties. In more physical terms, these are the Calabi-Yau
manifolds which can be realized as linear sigma models
with a superpotential of the form W = Pf(Z), leading
to a single defining equation. Mathematically, the toric
varieties which can be used are in one-to-one correspon-
dence with reflexive polytopes in four dimensions. Such a
polytope encodes the geometry and determines the Betti
numbers, intersection forms, prepotential and flux su-
perpotential, and supersymmetric cycles; for examples of
how this information is used in explicitly constructing
vacua see Denef et al. (2004, 2005).

We leave the definitions for the references, but the
main point for our present discussion is that this is a
combinatorial construction, so that the set of such poly-
topes can be shown to be finite, and in principle listed.
In practice, the number of possibilities makes this rather
challenging. Nevertheless, this was done by Kreuzer and
Skarke (2002a,b), who maintain databases and software
packages to work with this information (Kreuzer and
Skarke, 2004).

This data, as illustrated by Figure V.D.3, is the ev-
idence for our earlier assertion that “most Calabi-Yau
manifolds have b ∼ 20 − 300,” in the range needed to
solve the cosmological constant problem along the lines
of Bousso and Polchinski (2000), but not leading to dras-
tically higher vacuum multiplicities.

At present, the number of topologically distinct toric
hypersurface Calabi-Yau manifolds is not known. While
the 15122 points on this plot are clearly distinct, one
point can correspond to several polytopes; furthermore
the correspondence betweena polytopes and Calabi-Yau
manifolds is not one-to-one; thus one has only lower and
upper bounds. Furthermore, this set is known not to in-
clude all Calabi-Yau manifolds. One can at least hope
that it is a representative subset; most but not all math-
ematicians would agree that this is reasonable.

4. Absolute numbers

Combining the various sectors and multiplicities we
discussed, leads to rough estimates for numbers of vacua
arising in different classes of constructions. The ex-
ploratory nature of much of the discussion, combined
with the theoretical uncertainties outlined in Sec. III,
make these estimates rather heuristic at present. Let
us quote a few numbers anyways.

To the extent that we can estimate numbers of other

-
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FIG. 3 The toric hypersurfaces with χ ≥ 0, from Kreuzer
and Skarke (2002a). The vertical axis is h1,1 +h2,1, while the
horizontal axis is χ = 2(h1,1

−h2,1). The full set also contains
the mirror manifolds obtained from these by taking χ→ −χ.

choices in heterotic and IIa, they are subleading to num-
bers of IIb flux vacua. One can get a lower bound on
this from Eq. (166), if one can compute the integral over
moduli space. This has only been done in one and two
parameter examples, and for T 6 moduli space in Ashok
and Douglas (2004), and in these cases gave πdim MC

times order one factors (one over the order of a discrete
symmetry group), and thus were subleading to the pref-
actor. We will assume this is generally true, but it would
be worth checking, as it is not inconceivable that CY
moduli spaces have very large symmetry groups, and this
would drastically reduce the numbers.

The number L can be computed either by choosing a
IIb orientifolding, or using the relation to F theory on an
elliptically fibered fourfold N , for which L = χ(N)/24.
While it would be interesting to survey the expected
number of flux vacua over all the manifolds we discussed
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in Sec. V.D.3, at present it is not entirely clear that all of
these allow stabilizing Kähler moduli. For the three ex-
amples which were shown to do so in Denef et al. (2004),
one finds 10307, 10393, and 10506. While this does not
take into account the need for small |W0| and gs, to check
metastability under varying moduli, and so on, these are
comparatively small factors. Thus, one can take 10500

as a reasonable estimate at present, unless and until we
can argue that further conditions of the sort discussed in
Sec. III are required.

One might worry that this is an underestimate, as we
have left out many other known (and unknown) construc-
tions. The only handle we have on this is the set of F
theory compactifications, which are so similar to IIb that
the same formulas might be applied. Since typical four-
folds have K ∼ 1000, this could drastically increase the
numbers, to say 101000. On the other hand, the addi-
tional moduli (compared to IIb orientifolds) correspond
to charged matter, and one should take their superpoten-
tial and gauge dynamics into account in counting these
vacua, so it is not clear that this is correct. More gener-
ally, while one might expect that as more constructions
come under control the estimate will increase, this need
not be, as new dualities between these constructions will
also come into play.

E. Model distributions and other arguments

As we have seen, the computation of any distribution
from microscopic string theory considerations is a lot of
work. Since it is plausible that many results will have
simple explanations, having to do with statistics and gen-
eral features of the problem, it is tempting to try to guess
them in advance.

The simplest examples are the uniform distributions,
such as Eq. (162). At first these may not look very
interesting; for example Eq. (163) for the dilaton-axion
prefers order one couplings. Another well-known example
is a mass parameter in an EFT, such as a boson mass
m2φ2. The standard definition of naturalness includes
the idea that in a natural theory, this parameter will
be uniformly distributed up to the cutoff scale. To some
extent, this is a good model of one parameter flux vacuum
distributions away from singular points.

Even so, on combining many such simply distributed
parameters, one finds structure, which can lead to peak-
ing and predictions.

1. Central limit theorem

As is very familiar, random variables which arise by
combining many different independent sources of ran-
domness, tend to be Gaussian (or normally) distributed.
This observation is made mathematically precise by cen-
tral limit theorems. Thus, if we find that some observ-
able in string theory is the sum (or combination) of many

moduli, or many independent choices in our definition of
vacuum, it becomes plausible that this observable will be
normally distributed as well.

One can design model field theory landscapes in which
this postulate holds (Arkani-Hamed et al., 2005b; Dienes
et al., 2005; Distler and Varadarajan, 2005). A simple
example is to take a large number N of scalar fields φi,
with scalar potential

V =
∑

i

Vi(φi) (183)

and where each Vi is a quartic potential with two vacua,
at φ±i . This kind of model would arise if the N fields
are localized at distinct points in extra dimensions, for
instance, so their small wavefunction overlaps highly sup-
press cross terms in the potential. For simplicity, we will
further take the quartics to be identical, though our con-
siderations would hold more generally.

It follows immediately from the central limit theorem
that, despite the fact that there are 2N vacua, it is very
hard to find vacua of this system with small cosmological
constant! More concretely, let Vav be the average of the
energies of the φ± vacua, and Vdiff be the difference.
Then the distribution governing the vacuum energies of
the vacua is

ρ(Λ) =
2N

√

2πNVdiff

exp

(

− (Λ −NVav)
2

2NV 2
diff

)

(184)

In a non-supersymmetric system with UV cutoff M∗, we
would a priori expect Vav ∼ M4

∗ , and therefore the dis-
tribution of vacua peaks at cosmological constant NM4

∗ ,

with a width of order
√
NM4

∗ . Vacua around zero cos-
mological constant are not scanned. In some fraction of
such ensembles of order 1/

√
N , where for some reason

one fortuitously found Vav ≤ 1√
N
M4

∗ , one would be able

to scan around zero cosmological constant. In a trivial
supersymmetric generalization of this landscape, with an
unbroken R-symmetry (which guarantees that V = 0 is
special), again one would be able to scan around zero cos-
mological constant, while supersymmetric theories with-
out R-symmetry would not in general be expected to al-
low such scanning.

Suppose now the vevs φ±i characterizing a given vac-
uum also enter in the physical coupling constants ca gov-
erning low energy physics (as e.g. the moduli do in the
couplings of standard-like models in string theory). The
same logic would teach one that despite the vast land-
scape of 2N vacua, the coupling constants don ′t scan
very much – they fluctuate by δca

ca
∼ 1√

N
around their

mean value.
In a landscape with this behavior, despite the large

number of vacua, many physical quantities could be pre-
dicted with 1/

√
N precision. Since in nature only a few

quantities seem plausibly to be environmentally deter-
mined, while many others beg for explanations based on
dynamics and symmetries, one could hope that the cos-
mological term is one of a few variables that is scanned,
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while other quantities of interest do not scan (Arkani-
Hamed et al., 2005b).

To decide whether this is a good model for a particu-
lar parameter, one must look at microscopic details. As
we mentioned, it is very plausible that the cosmological
constant works this way. On the other hand, there is no
obvious sense in which a modulus is a sum of indepen-
dent random variables, and indeed the AD distribution
Eq. (166) does not look like this. This would also be true
for an observable which was a simple function of one or
a few moduli, for example a gauge coupling in a brane
model, proportional to the volume of a cycle. On the
other hand, a hypothetical observable which was a sum
or combination of many moduli, might be well modelled
in this way. These observables would be the ones that
are most clearly amenable to prediction (or post-diction)
using statistical techniques.

2. Random matrix theory

Other universal distributions which appear very often
in physics are the random matrix ensembles such as the
GUE, GOE and so on. In the largeN limit, these “peak”
and exhibit universal properties such as the semicircle
law, level repulsion and so on.

On general grounds, one might expect moduli masses
to be modelled by a random matrix distribution. This
was made more precise in Denef and Douglas (2005), who
observed that since the matrix of fermion massesDiDjW
in supersymmetric field theories is a complex symmetric
matrix, it can be modelled by the CI distribution of Alt-
land and Zirnbauer (1997). This leads to level repulsion
between eigenvalues, characterized by the distribution

dµ[λ] =
∏

a

d(λ2
a)
∏

a<b

|λ2
a − λ2

b |. (185)

In particular, degenerate eigenvalues are non-generic.
This was important in the arguments for Eq. (180) as
degenerate eigenvalues would have led to an even larger
exponent.

Another model for moduli masses was proposed in Eas-
ther and McAllister (2006). They considered the large
volume limit, in which the superpotential is a sum of
a flux term with nonperturbative corrections, as in Eq.
(80). In this limit, while most fields (complex structure
moduli, dilaton and others) obtain large masses, the ax-
ionic parts of the Kähler moduli obtain small masses,
depending on the expectation values of the first set of
fields. Taking the number of Kähler moduli as K and
the number of the others as N , a reasonable model for
the resulting mass matrix is

(M2)ij =
∑

α≤K+N

HiαH
†
αj ,

where H is a K × (K + N) matrix with randomly dis-
tributed entries. For largeK,N , the limiting distribution

for M2 is very generally the Marcenko-Pastur distribu-
tion, a simple distribution depending on the ratio K/N .

While these are interesting universal predictions, they
apply to moduli masses at scales MF , and it is not
completely obvious how they would relate to observable
physics. In Easther and McAllister (2006) it was pro-
posed that they favor “N-flation,” a mechanism for slow-
roll inflation (Dimopoulos et al., 2005).

Similar ansatzes assuming less structure appear in
Aazami and Easther (2006); Holman and Mersini-
Houghton (2005); Kobakhidze and Mersini-Houghton
(2004); Mersini-Houghton (2005).

3. Other concentrations of measure

This is the general term in mathematics for the “large
N limits” and other universal phenomena exhibited by
integrals over high dimensional spaces.

As a simple example, recall from Figure V.B.2 that in
a one parameter model, most flux vacua are not near a
conifold point. Suppose the probability of a given mod-
ulus being away from a conifold point is 1 − ǫ, then the
probability of n moduli being away from conifold points
should be (1 − ǫ)n, which for nǫ >> 1 will be small.
In this sense, most vacua with many moduli will be near
some conifold point; some numbers are given in Hebecker
and March-Russell (2006).

Another example is that the vast bulk of an n-
parameter CY moduli space is at order one volume (of
the CY itself); the fraction which sits at volume greater
than Vol falls off as (Vol)−n/3 (Denef et al., 2004). This
applies for example to the large volume regime we dis-
cussed in Sec. V.E.2; it is also relevant for IIb flux vacua
in its mirror interpretation.

4. Non-existence arguments

Instead of doing statistics on explicit constructions, an-
other approach to constrain the set of vacua is to find
consistency conditions or other a priori arguments that
vacua with certain properties cannot exist.

Perhaps the best known example is the statement that
vacua of string theory cannot have continuous global
symmetries (Banks et al., 1988). One argument for this is
based on general properties of theories of quantum grav-
ity, specifically the fact that absorption and radiation of
particles by black holes will violate these symmetries. A
very different argument, from string world-sheet pertur-
bation theory, is that such a symmetry must correspond
to a world-sheet conserved current, and such a current
can be used to construct a vertex operator for a vector
boson gauging the symmetry.

Recently, Arkani-Hamed et al. (2006) have proposed
that this result can be made quantitative: in any theory
of quantum gravity containing a U(1) gauge theory sec-
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tor, there should be a lower bound on the gauge coupling,

g >
m

MP
,

where m is the mass of the lightest charged particle. Be-
sides verifying this in examples, they argue for this by
considering entropy bounds on the end states of charged
black holes; see also (Banks et al., 2006). It may be
that such arguments, using only general features of quan-
tum gravity, can lead to further interesting constraints
(Ooguri and Vafa, 2006; Vafa, 2005).

5. Finiteness arguments

In counting vacua, one is implicitly assuming that the
number of quasi-realistic vacua of string/M theory is fi-
nite. As it is easy to write down effective potentials with
an infinite number of local minima, clearly this is a non-
trivial hypothesis, which must be checked. Actually, if
interpreted too literally, it is probably not true: there
are many well established infinite series of compactifi-
cations, such as the original Freund-Rubin example of
Sec. II.D.1. While the well-established examples are not
quasi-realistic, at first one sees no obvious reason that
such series cannot exist.

A basic reason to want a finite number of quasi-realistic
vacua, under some definition, is that if this is not true,
one runs a real risk that the theory can match any set
of observations, and in this sense will not be falsifiable.
Again, this may not be obvious at first, and one can pos-
tulate hypothetical series which would not lead to a prob-
lem, or even lead to more definite predictions. Suppose
for example that the infinite series had an accumulation
point, so that almost all vacua made the same predic-
tions; one might argue that this accumulation point was
the preferred prediction (Dvali and Vilenkin, 2004a).

However, the problem which one will face at this point,
is that any general mechanism leading to infinite series
of vacua in the observable sector, would also be expected
to lead to infinite sets of choices in every other sector of
the theory, including hidden sectors. Now, while a hid-
den sector is not directly observable, still all sectors are
coupled (at least through gravity; in our considerations
through the structure of the moduli space as well), so
choices made there do have a small influence on observed
physics. For example, the precise values of stabilized
moduli in flux vacua, will depend on flux values in the
hidden sector. Thus, an infinite-valued choice in this sec-
tor, would be expected to lead to a set of vacua which
densely populates even the observable sector of theory
space, and eliminates any chance for statistical predic-
tions.

This argument comes with loopholes of course; one of
the most important is that the measure factor can sup-
press infinite series. Still, finiteness is one of the most
important questions about the distribution of vacua.

Let us consider the example of Sec. II.D.1, in which
the flux N can be an arbitrary positive integer. Analo-

gous infinite series exist in its generalizations to the G2

holonomy and IIa examples of Sec. IV.B, and so on. In
all of these series, the compactification volume goes as a
positive power of N . Thus, if our definition of “quasi-
realistic” includes an upper bound on this volume, these
infinite series will not pose a problem. Such a bound fol-
lows from Eq. (1) and a phenomenological lower bound
on the fundamental scale, say MP,D > 1TeV.

Various arguments have been given that the number of
choices arising from a particular part of the problem are
finite in this sense: the number of generations (Douglas
and Zhou, 2004); the number of IIb flux vacua (Douglas
and Lu, 2006; Eguchi and Tachikawa, 2006); the choice of
compactification manifold (Acharya and Douglas, 2006),
and the choice of brane configuration (Douglas and Tay-
lor, 2006). This rules out postulated infinite series such
as that of Dvali and Vilenkin (2004a), as well as various
others which have been suggested. However at present
there is no completely general argument for finiteness, so
this is an important point to check in each new class of
models.

F. Interpretation

We come finally to the question of how to use distri-
butions such as Eq. (152) or Eq. (155). One straight-
forward answer is that that they are useful in guiding
the search for explicit vacua. For example, if it appears
unlikely that a vacuum of some type exists, one should
probably not put a major effort into constructing it.

Going beyond this, distributions give us a useful short-
cut to finding explicit vacua with desired properties. As
one example, in the explicit construction of Sec. IV.A.3,
we needed to assert that IIb flux vacua exist with a speci-
fied small upper bound on |W0|. For many purposes, one
does not need to know an explicit set of fluxes with this
property; a statistical argument that one exists would be
enough. The cosmological constant itself is a very im-
portant example because, for the reasons we discussed
earlier, there is little hope in this picture to find the ac-
tual vacua with small Λ.

Going further, it would be nice to know to what extent
arguments such as those in Sec. II.F.3 and Sec. V.C could
be made precise, and what assumptions we would need
to rely on. At first, one may think that such arguments
require knowing the measure factor, plunging us into the
difficulties of Sec. III.E. However, if the absolute num-
ber of vacua is not too large, this is not so; one could get
strong predictions which are independent of this. After
all, if we make an observation X , and one has a convinc-
ing argument that no vacuum reproducing X exists, one
has falsified the theory, no matter what the probabilities
of the other vacua might be.

These comments may seem a bit general, but when
combined with the formalism we just discussed, and un-
der the hypothesis that there are not too many vacua,
could have force. Let us return to the problem of the
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scale of supersymmetry breaking. According to the argu-
ments of Sec. II.E and the distribution results of Sec. V.B,
tuning the cosmological constant requires having 10120

vacua which, while realizing a discretuum of cosmologi-
cal constants, are otherwise identical. Now suppose we
found only 10100 vacua with high scale supersymmetry
breaking; since finding the observed c.c. would require
an additional 10−20 tuning, we would have a good rea-
son to believe that high scale supersymmetry breaking is
not just disfavored, but inconsistent with string/M the-
ory. While there would be a probabilistic aspect to this
claim, it would not be based on unknowns of cosmology
or anthropic considerations, but the theoretical approx-
imations which were needed to get a definite result. If
this were really the primary source of uncertainty in the
claim, one would have a clear path to improving it.

This argument is a simple justification for defining the
“stringy naturalness” of a property in terms of the num-
ber of string/M theory vacua which realize it, or theo-
retical approximations to this number. Of course, to the
extent that one believes in a particular measure factor
or can bring in other considerations, one would prefer
a definition which takes these into account; however at
present one should probably stick to the simplest version
of the idea.

The downside of this type of argument is, not having
made additional probabilistic assumptions, if there are
“too many” vacua, so that each alternative is represented
by at least one vacuum, one gets no predictions at all.
How many is “not too many” for this to have any chance
of succeeding? A rough first estimate is, fewer than 10230.
This comes from multiplying together the observed ac-
curacies of dimensionless couplings, the tuning factors
of the dimensionful parameters, and the estimated 10−10

difficulty of realizing the Standard Model spectrum. This
produces roughly22 10−70−120−30−10 ∼ 10−230. Neglect-
ing all the further structure in the problem, one might
say that, if string/M theory has more than 10230 vacua,
there is no obvious barrier to reproducing the SM purely
statistically, so one should not be able to falsify the the-
ory, on the basis of present data, using statistical reason-
ing. Conversely, if there are fewer vacua, in principle this
might be possible.

The number 10230 is a lower bound; if the actual distri-
bution of vacua were highly peaked, or if we were inter-
ested in a rare property, we could argue similarly with
more vacua. Let us illustrate this by supposing that
we find good evidence for a varying fine structure con-
stant. As we discussed in Sec. II.F.2, fitting this would
require an effective potential which is almost indepen-
dent of αEM , and this is highly non-generic; in Banks
et al. (2002), it was argued that the first 8 coefficients in

22 The exponent 70 includes α1 (10), α2 (6), α3 (2), mproton (10),
mn (10), and 14 less well measured SM parameters, contributing
say 32.

the series expansion of V (αEM ) would have to be tuned
away. However, in a large enough landscape, even this
might happen statistically. Taking the cutoff at a hypo-
thetical Msusy ∼ 10TeV, this is a tuning factor of order
10−600, so if string/M theory had fewer than 10800 or so
vacua, such an observation would rule it out with some
confidence, while if it had more, we would be less sure.

This is an instructive example, both because the point
is clear, and because the stated conclusions taken lit-
erally sound absurd. If we really thought the observa-
tions required a varying fine structure constant, we would
quickly proceed to the hypothesis that the framework we
are discussing based on the effective potential is wrong,
that there is some other mechanism for adjusting the c.c.,
or perhaps some mechanism other than varying moduli
for varying the apparent fine structure constant. Any
such prediction depends on all of the assumptions, in-
cluding the basic ones, which should be suspected first.
However, we can start to see how statistical and/or prob-
abilistic claims of this sort, might unavoidably enter the
discussion.

But what if there are 101000 vacua? And what hope is
there for estimating the actual number of vacua? All one
can say about the second question is that, while there are
too many uncertainties to make a convincing estimate
at present, we have a fairly good record of eventually
answering well-posed formal questions about string/M
theory.

Regarding the first question, in this case one probably
needs to introduce the measure factor, which will increase
the predictivity. This might be quantified by the stan-
dard concept of the entropy of a probability distribution,

S =
∑

i

Pi log(1/Pi).

The smaller the entropy, the more concentrated the mea-
sure, and the more predictive one expects the theory to
be. To some extent, one can repeat the preceding discus-
sion in this context, by everywhere replacing the number
of vacua with the total statistical weight eS. However,
justifying this would require addressing the issues raised
in Sec. III.E.

There is another reason to call on the measure factor,
namely the infinite series of M theory and IIa vacua dis-
cussed in Sec. IV.B. Since these run off to large volume,
all but a finite number are already ruled out, as discussed
in Sec. V.E.5. However, since their number appears to
grow with volume, any sort of probabilistic reasoning is
likely to lead to the prediction that extra dimensions are
just about to be discovered, an optimistic but rather sus-
picious conclusion.

An alternate hypothesis (Douglas, 2005) is that the
correct measure factor suppresses large extra dimen-
sions, which would be true for example if it had a factor
exp−vol(M). Possible origins for such a factor might
be whatever dynamics selects 3 + 1 dimensions (some of
the many suggestions include Brandenberger and Vafa
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(1989); Easther et al. (2005)), or decoherence effects as
suggested in Firouzjahi et al. (2004).

One cannot go much further in the absence of more
definite information about the measure factor. But an
important hypothesis to confirm or refute, is that its
only important dependence is on the aspects of a vac-
uum which are important in early cosmology, while for
all other aspects one can well approximate it by a uni-
form measure, in which the probability that one of a set
of N similar vacua appears, is taken to be 1/N .

The former clearly include the scale of inflation and
the size of the extra dimensions, and may include other
couplings which enter into the physics of inflation and
reheating. However, since the physics of inflation must
take place at energy scales far above the scales of the
Standard Model, most features of the Standard Model,
such as the specific gauge group and matter content, the
Yukawa couplings, and perhaps the gauge couplings, are
probably decorrelated from the measure factor. For such
parameters, the uniform measure P (i) ∼ 1/N should be
a good approximation. Regarding selection effects, we
can try to bypass this discussion with the observation
that we know that the Standard Model allows for our ex-
istence, and we will not consider the question of whether
in some other vacuum the probability or number of ob-
servers might have been larger.

It is not a priori obvious whether a measure factor will
depend on two particularly important parameters, the
cosmological constant and the supersymmetry breaking
scale. As we discussed in Sec. III.E, the cosmological con-
stant does enter into some existing claims, but this leads
to its own problems. As for supersymmetry breaking,
one might argue that this should fall into the category of
physics below the scale of inflation and thus not enter the
measure factor, but clearly the importance of this point
makes such pat arguments unsatisfying. See Kallosh and
Linde (2004) for arguments suggesting a link between
these two scales.

Let us conclude by suggesting that, while an under-
standing of the measure factor is clearly essential to
put these arguments on any firm footing, it might turn
out that the actual probabilities of vacua are essentially
decorrelated from almost all low energy observables, per-
haps because they are determined by the high scale
physics of eternal inflation, perhaps because they are con-
trolled by the value of the c.c. which is itself decorrelated
from other observables, or perhaps for other genericity
reasons. In any of these cases, decorrelation and the
large number of vacua would justify using the uniform
measure, and the style of probabilistic reasoning we used
in Sec. II.F.3 would turn out to be appropriate.

VI. CONCLUSIONS

The primary goal of superstring compactification is
to find realistic or quasi-realistic models. Real world
physics, both the Standard Model and its various well

motivated extensions, is rather complicated, and thus it
should not be surprising that this goal is taking time to
achieve.

Already when the subject was introduced in the mid-
1980’s, good plausibility arguments were given that the
general framework of grand unified theories and low en-
ergy supersymmetry could come out of string theory.
While there were many gaps in the picture, and some
of the most interesting possibilities from a modern point
of view were not yet imagined, it seems fair to say that
the framework we have discussed in this review is the re-
sult of the accumulation of many developments built on
that original picture.

In this framework, we discussed how recent develop-
ments in flux compactification and superstring duality,
along with certain additional assumptions such as the
validity of the standard interpretation of the effective po-
tential, allow one to construct models which solve more
of the known problems of fundamental physics. Most
notably, this includes models with a small positive cos-
mological constant, but also models of inflation and new
models which solve the hierarchy problem.

We emphasize that our discussion rests on assumptions
which are by no means beyond question. We have done
our best in this review to point out many of these as-
sumptions, so that they can be critically examined. But
we would also say that they are not very radical or daring
assumptions, but rather simply follow general practice in
the study of string compactification, and more generally
in particle physics and other areas. Any of them might
be false, but in our opinion that would in itself be a sig-
nificant discovery.

Even assuming that the general framework we have dis-
cussed is correct, there are significant gaps in our knowl-
edge of even the most basic facts about the set of string
vacua. Our examples were largely based on Calabi-Yau
compactification of type II theories, where there are tools
inherited from N = 2 supersymmetry that make the cal-
culations particularly tractable. General N = 1 flux
vacua in these theories, which involve “geometric flux”
(discretely varying away from the Calabi-Yau metric)
or even non-geometric compactifications (as briefly dis-
cussed in IV.C), are poorly understood. In the heterotic
string, Calabi-Yau models do not admit a sufficiently rich
spectrum of fluxes to stabilize moduli in a regime of con-
trol. The more general Non-Kähler compactifications,
which are dual to our type II constructions and should
eventually lead to similar moduli potentials, are being
intensely investigated as of this writing (Becker et al.,
2003a,b, 2006, 2004; Fu and Yau, 2005, 2006; Goldstein
and Prokushkin, 2004; Li and Yau, 2004; Lopes Cardoso
et al., 2004, 2003). There has been less work on moduli
potentials in G2 compactifications of M-theory, though
these also provide a promising home for SUSY GUTs;
see e.g. Acharya et al. (2006a); Acharya (2002); Beasley
and Witten (2002).

In fact, these investigations may still be of too lim-
ited a scope: in a full survey of models which stabilize



62

moduli, not requiring a strict definition in terms of world-
sheet conformal field theory, other limits of string theory
such as non-critical strings (Myers, 1987) and their com-
pactifications, should also be explored. There have been
some interesting investigations in this direction (Maloney
et al., 2002), but as yet little is yet known about the pos-
sible phenomenology of these models.

We think many readers will agree that what has
emerged has at least answered Pauli’s famous criticism of
a previous attempt at unification. The picture is strange,
perhaps strange enough to be be true. But is it true?
That is the question we now face.

Let us briefly recap a few areas in which we might
find testable predictions of this framework, as outlined
in Sec. II.F. Perhaps the most straightforward applica-
tion, at least conceptually, is to inflation, as the physics
we are discussing determines the structure of the infla-
tionary potential. There are by now many promising
inflationary scenarios in string theory, involving brane
motion, moduli, or axions as inflatons. In each scenario,
however, there are analogues of the infamous eta prob-
lem (Copeland et al., 1994), where Planck-suppressed
corrections to the inflaton potential spoil flatness and re-
quire mild (1 part in 100) tuning to achieve 60 e-foldings.
While this may be a small concern relative to other hi-
erarchies we have discussed, it has nevertheless made it
difficult to exhibit very explicit inflationary models in
string theory. In addition to surmounting these obsta-
cles through explicit calculation in specific examples, it
will be important to develop some intuition for which
classes of models are most generic; this will involve sort-
ing out the vexing issues of measure that were discussed
in III.E. Even lacking this top-down input, clear signa-
tures for some classes of models have been found, via
cosmic string production (Copeland et al., 2004; Sarangi
and Tye, 2002) or non-Gaussianities of the perturbation
spectrum (Alishahiha et al., 2004); perhaps our first clue
will come from experiment.

Moduli could in principle lead to observable physics at
later times, such as a varying fine structure constant, or
quintessence. The first is essentially ruled out, while the
second appears even less natural than a small cosmolog-
ical term, with no comparable “anthropic” motivation.

Implicit in the word “natural,” is the fact that many
predictions in this framework are inherently statistical,
referring to properties of large sets but not all vacua. The
statistics of vacua provides precise definitions of “stringy
naturalness,” which take into account not just values of
couplings and the renormalization group, but all of the
choices involved in string compactification. This shares
some features of “traditional naturalness,” but may differ
dramatically in others.

In particular, TeV scale supersymmetry is not an in-
evitable prediction of string/M theory in this framework.
While we discussed many of the ingredients which would
go into making a well motivated string/M theory pre-
diction, we are not at present taking a position as to
what the eventual prediction might be. Conceivably, af-

ter much further theoretical development, we might find
that TeV scale supersymmetry is disfavored. Of course,
a successful prediction that Cern and Fermilab will pre-
cisely confirm the Standard Model would be something
of a Pyrrhic victory. As physicists, we would clearly be
better off with new data and new physics.

For the near term, the main goal here is not really
prediction, but rather to broaden the range of theories
under discussion, as we will need to keep an open mind
in confronting the data. The string phenomenology liter-
ature contains many models with TeV scale signatures;
as examples inspired by this line of work, we can cite
Arkani-Hamed and Dimopoulos (2005); Arkani-Hamed
et al. (2005b); Giudice and Rattazzi (2006); Giudice and
Romanino (2004); Kane et al. (2006). In the longer term,
a statistical approach may become an important element
in bridging the large gap between low energy data and
fundamental theory.

We may stand at a crossroads; perhaps much more di-
rect evidence for or against string/M theory will be found
before long, making statistical predictions of secondary
interest. Or perhaps not; nature has hidden her cards
pretty well for the last twenty years, and perhaps we will
have to play the odds for some time to come.
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