
Centralized Fabric Management Using Puppet, Git, and GLPI

Jason A. Smith, John S. De Stefano Jr., John Fetzko, Christopher Hollowell,
Hironori Ito, Mizuki Karasawa, James Pryor, Tejas Rao, William Strecker-
Kellogg

Brookhaven National Laboratory, PO Box 5000, Upton, NY 11973, USA

E-mail: smithj4@bnl.gov, jd@bnl.gov, jfetzko@bnl.gov, hollowec@bnl.gov,
hito@bnl.gov, mizuki@bnl.gov, pryor@bnl.gov, raot@bnl.gov, willsk@bnl.gov

Abstract. Managing the infrastructure of a large and complex data center can be extremely
difficult without taking advantage of recent technological advances in administrative
automation. Puppet is a seasoned open-source tool that is designed for enterprise class
centralized configuration management. At the RHIC and ATLAS Computing Facility (RACF)
at Brookhaven National Laboratory, we use Puppet along with Git, GLPI, and some custom
scripts as part of our centralized configuration management system. In this paper, we discuss
how we use these tools for centralized configuration management of our servers and services,
change management requiring authorized approval of production changes, a complete version
controlled history of all changes made, separation of production, testing and development
systems using puppet environments, semi-automated server inventory using GLPI, and
configuration change monitoring and reporting using the Puppet dashboard. We will also
discuss scalability and performance results from using these tools on a 2,000+ node cluster and
400+ infrastructure servers with an administrative staff of approximately 25 full-time
employees (FTEs).

1. Motivation

As recently as two years ago, most of the administrative work at the RACF was performed
via a combination of tools developed in-house, and manual editing of files on live production servers,
including a great deal of SSH loop commands and scripts deployed from a secure administrator
gateway. This type of time-consuming work kept our staff operating in a reactive, fire-fighting mode
of preventive administration. Since we have a staff of about 25 FTEs, split into roughly four different
groups, each group and sometimes each person had their own way of doing things. There was very
little sharing of work and experience, which resulted in segregated, highly-specialized administrative
domains and afforded very little backup expertise among staff during off-hours and vacation and sick
time.

To improve this situation, about two years ago, a few of us decided to look for some tools to
help make our daily work more efficient, and to centralize and standardize fabric management across
the entire facility as much as possible. We evaluated many of the available tools, mostly free and open-
source, and selected several which we could use to build into a new, centralized configuration
management system. We were looking for a solution with an easy to understand configuration
language that would provide a self-documenting system build and configuration system. Other

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 042056 doi:10.1088/1742-6596/396/4/042056

Published under licence by IOP Publishing Ltd 1

requirements included the ability to track all changes that were made for auditing purposes, and a
modular design, which would allow us to replicate our production server configurations to test and
development servers with little extra effort.

2. Components

The various requirements were broken down into basic functional components: provisioning
new systems, configuration management of the systems (after initial install and throughout the entire
life cycle of the server), asset management, source code management of the entire configuration
catalog, and various web-based user interfaces needed for controlling and monitoring systems.

Cobbler and Red Hat Enterprise Virtualization (RHEV) were chosen for building new
systems with a standard “golden image,” or a carefully-curated and immutable operating system
image. FusionInventory Agent and GLPI were chosen for semi-automated asset management and can
also be used to help configure our servers. Puppet was chosen as our centralized configuration
management system, and Git was selected as the source code revision control system for our Puppet
catalog. Puppet also comes with web-based “dashboard” user interface for easy monitoring of all
managed systems.

Together, these components provide an almost completely automated system build and
configuration system. Under normal circumstances, the only manual steps required are to sign each
system's Puppet client certificate request (which is not required but implemented for added security),
assigning the configuration classes and parameters needed for each server, and restoring any user data
as necessary. Aside from any initial development work required to create a new Puppet configuration,
new servers can be provisioned and configured in a matter of minutes using this centralized system.

2.1. Provisioning

Two different systems are used for provisioning new servers: Cobbler for bare-metal
hardware installations, and RHEV for virtual machines (VMs). Each system uses a standard minimal
“golden image” for the initial OS install, and bootstraps the rest of the centralized management system
by installing the fusioninventory-agent and puppet client packages. The initial “golden
images” are, for the most, part identical, since the VM template used in RHEV is based on the same
minimal installation used for hardware installations done by Cobbler.

2.1.1. Cobbler[1]. Cobbler is used for deploying hardware installations; see poster #539[2] for more
details. We chose Cobbler because of its powerful Cheetah template language, and configuration and
code reuse with “Snippets”. These features enabled the creation of a single kickstart template that can
be used for nearly all hardware installations, since it can be used on almost all of the facility's various
hardware configurations. In the Cobbler web interface, we simply specify the desired operating system
(OS) version and architecture, network information (MAC address, IP address, etc.), and possibly
some template metadata in order to install the base OS, including the necessary client packages.

A single Cobbler master node serves three Cobbler slave servers that manage systems on
some of our external firewalled networks, all of which are synchronized using Cobbler's master-slave
automated replication. The Cobbler server also manages local Yum package repository mirrors of
external, third-party repositories, including package collections for OSG and XRootD.

2.1.2. RHEV[3]. RedHat Enterprise Virtualization version 3.0 is used for provisioning and managing
our VM images. A single template image is used for the installation of nearly all new systems. Our
current RHEV installation consists of a 10 node cluster with 4 TB of shared fiber storage, which can

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 042056 doi:10.1088/1742-6596/396/4/042056

2

support several hundred VMs. We also have a similar RHEV cluster to support RHIC computing; both
clusters can be easily expanded as needed to accommodate future growth.

2.2. GLPI[4] and FusionInventory[5]

These software tools serve both for asset management and as our primary node classification
system for Puppet. The FusionInventory Agent automatically collects and updates common hardware
and OS level configuration metadata for all of our servers. The GLPI software is a central database
that collects the FusionInventory Agent data, and provides a web interface for displaying and
searching of the asset inventory database. GLPI provides support for change management and auditing
with a historical record of all changes made to each system. It's also used to specify the Puppet
environment assigned to each node using its "Status" field and, using a Custom Fields plug-in, can
define Puppet classes and parameters that get assigned to each node by our custom ENC (External
Node Classifier) script. While GLPI is currently our primary ENC for most servers, our Linux Farm's
worker node cluster uses a separate, custom MySQL DB for asset management, which they've
maintained separately for several years. Our ENC script can query both the Puppet dashboard and the
worker node database. However, the functionality of the Puppet dashboard is currently somewhat
limited, as it does not support parameterized classes, parameter array values, or selection of non-
production environments; some of these features may be added to a future Puppet version.

2.3. Git[6]

Git serves as our source code management system. Our Puppet master server uses the git-
http-backend over authenticated HTTPS to serve our Git repositories, which, for added security,
are also only available from within the local BNL network. We chose Git over other alternatives for
several reasons, including: distributed workflow; the ability to do almost all work offline; a complete
history contained in the local copy; reduced single point of repository failure; flexibility in merging
changes between many branches or repositories; and simple, fast, and clean branching and merging,
which facilitate a workflow in which different code change sets are isolated in different branches.

2.4. Puppet[7]

Previous attempts to use CFEngine version 2 proved it to be a cumbersome tool. Other
automated management systems (chef, etch, bcfg2, AutomateIt), were not chosen for various reasons:
little code reuse (copy and paste required instead of Puppet's class and modular architecture), non-
uniform configuration language, and a procedural methodology (which is good only in the case of a
known initial system state) instead of a declarative one with a dependency graph model for
determining execution order and incomplete functionality (no central server, and reliance on other
means, such as a shared filesystem, to distribute configuration catalogs). Puppet was selected for
several reasons, including: its simple yet powerful DSL Domain-Specific Language (DSL) and
Resource Abstraction Layer (RAL); explicitly declared dependencies, which provide better
deterministic state convergence from unknown initial conditions; a central configuration catalog and
dependency resolution (which provide better security, conflict resolution, and logic analysis); an
included web dashboard and GraphViz configuration visualization; a long development history; a
stable codebase and large user base; and the fact that it's a free, open-source project with optional
commercial support.

3. Puppet server configuration and scalability

We are currently using the latest version (2.6.16) of Puppet from the 2.6 maintenance release
on a RHEL-5 server with Ruby 1.8.5. The server runs on a Dell PowerEdge R410 with 32 GB of

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 042056 doi:10.1088/1742-6596/396/4/042056

3

memory and 4x15k RPM SAS disks. In addition to Puppet, the server is also running primary
instances of Cobbler, GLPI, Git, Apache, and MySQL. For added scalability, Puppet is configured to
run behind Apache with Phusion Passenger (via mod_rails). Puppet's storeconfigs feature
enables support for exported resources in our Puppet modules, which are used for things like
automated Nagios server configuration, SSH host-based authentication configuration, and Cobbler
master/slave configuration. To optimize this feature, Puppet is configured to use the queue daemon
with ActiveMQ for fast database updates. The Puppet inventory service is also enabled, but is
viewable only through the Puppet dashboard. Over 2,000 agents are currently reporting via Puppet.
The only scalability issue seen thus far is an occasional MySQL error updating the inventory service
when clients connect to the server at a rate higher than one per second. To address this issue, we
increased and staggered our update intervals to reduce the risk of concurrent connections. We are also
testing an upgrade to Puppet to the latest version (2.7) on a RHEL-6 server with Ruby 1.8.7, on similar
hardware. In the future, we may investigate running Puppet behind with Tomcat and JRuby, since early
tests by others show promising signs of improved scalability, but currently this deployment scheme
still has a few problems that make it unusable in a production environment.

3.1. Puppet Environments

The Puppet server uses the recommended and standard practice of a three-environment
configuration, which can be easily expanded via Git as needed. Git hooks are configured to
automatically update the Puppet environment directories to obviate the need for manual Puppet
configuration edits to match environmental changes. This also prevents mistakes that might occur if
administrators were permitted to manually modify files directly in Puppet on the live production
server. To promote rapid development, it is also very easy to run puppet apply against the
working copy of a modified Git cloned repository using an appropriately modified Puppet client
configuration. This saves time and and effort, and allows administrators the opportunity to test
changes without having to push all changes to the Puppet and Git server, and then run the agent
manually only to discover that a simple and avoidable mistake was made and must be corrected
through a similar push process through Git and Puppet.

Our three Puppet environments are directly linked to three synonymous Git branches:
development is used for extensive module creation and editing; testing is used for small changes and to
stage all changes to production, so they can be manually tested by a wider audience before being
merged into production use; and production is used for live server management. Pushed changes to
Puppet's Git repository are first verified by the Git update hook, which validates code syntax and file
size limits, and also blocks the deletion of environment branches. Attempted updates to the production
branch are also trapped and diverted into a temporary branch, which alerts a select group of
administrators to a pending peer review and approval of the code change. After review and manual
approval, the temporary branch is automatically merged and synchronized into production. The post-
update Git hook syncs changes to Puppet and records the metadata of the merged change to the server
system log.

3.2. Production Approval

As mentioned above, users and administrators are not permitted to push code changes
directly into production: a Git server hook traps these changes into a new branch. After the requested
changes to the production environment are diverted into a temporary branch, a custom Puppet
approval CGI script isolates the proposed changes, and alerts code reviewers to review and either
approve or reject the change set. Links on the web page open to the appropriate cgit [8] website to make
it easy for administrators to view the commit logs and code differences in the pending changes, and
enable approved staff members to accept and merge or reject and delete the pending changes. When

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 042056 doi:10.1088/1742-6596/396/4/042056

4

changes are approved, a commit log is automatically added to git showing who approved the change
and any comment they wish to add. This combination of the review and approval CGI script and Git
log audit trail will ease the implementation of a full change management system when we are ready in
the future.

3.3. Puppet Dashboard

Puppet provides a dashboard web interface, which is useful for monitoring all Puppet clients
in one central location. This dashboard includes a summary view on the top page and provides a “drill
down” mechanism to view individual hosts and reports for specific Puppet agent runs. In addition to
monitoring, the dashboard presents Puppet's inventory data and can be used as an External Node
Classifier to configure hosts with assigned classes and parameters.

4. Future Plans

In the near future, as we create more Puppet modules and convert more production servers to
our Puppet infrastructure, we will operate under a more formal change management system, using
these technologies as a base. We will also investigate using our RHEV cluster to create a miniature
replica of all production servers, and create an automated testing and validation system of our Puppet
manifests.

4.1. Change Management

Basically this is all about creating policies and procedures that are used to control changes
made to production systems. Some common terminology used to describe the methods and best
practices used to implement such policies are the Information Technology Infrastructure Library
(ITIL)[9] and Development and Operations (DevOps)[10]. Some of the main principals are: changes
made only during officially designated time periods; absolutely no unauthorized changes; no
"cowboy" type behavior tolerated (i.e., no administrators swooping in and out of the production
environment to make unannounced and uncoordinated changes to live systems); a full testbed
environment to vet changes before putting them into production; and document all changes that are
made with comments and a full audit trail. The tools discussed in this paper, including Puppet, Git, and
GLPI, can not only help make the changes in a central and organized way, but also help in keeping a
complete historical change record.

4.2. Automated Validation

We are in the initial stages of designing an automated validation system using our test Puppet
2.7 server. The basic idea is to have a validation Git branch and Puppet environment automatically
created and populated with the contents of production, with the addition of any and all changes
pending production approval. We will also create a replica of all important production services using
RHEV VMs. Changes to the validation environment can only be made by the automated approval
system and will initiate Puppet runs on all of the VMs to validate that everything is still working as
expected, and that the proposed changes don't create problems with unrelated modules used in
different combinations on different hosts. We will also implement a complete Nagios monitoring
system to further validate that the proposed changes do not cause any problems to related services in
the complete production replica environment. A custom dashboard will also be created to summarize
all VM status results (both Puppet agent runs and Nagios monitoring) to give administrators an
automated confirmation that their proposed changes to production won't cause any unforeseen
problems.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 042056 doi:10.1088/1742-6596/396/4/042056

5

5. Benefits

Our prior mode of operation consisted of uncontrolled and undocumented change, unless
someone remembered to take notes while working feverishly to put out the current administrative fire
and fixing a problem. Using this centralized management infrastructure will allow us to use a common
set of standard modules and make changes when necessary and in only one place, instead of the old
method of manual changes by each administrator on the servers they were responsible for, often in
different ways, and sometimes leaving these changes undocumented. Uncontrolled and undocumented
change can work sometimes, but will often cause self-inflicted problems, future firefighting episodes,
and upgrade nightmares. Our ultimate goal is to stop duplicating work and effort, standardize across
our administrators and servers, and stop making manual, time-consuming changes. Without this,
servers become like snowflakes: they may all start out identical, but over time, configuration drift will
eventually make each one unique and more difficult to manage.

As more system administration and configuration automation processes are implemented,
administrative staff can start devoting time to more interesting projects and planning for the future,
such as improving our overall monitoring infrastructure, ensuring more reliable services, and
deploying smooth upgrades. The end result will be a shift of staff time from a perpetually reactive
mode (“firefighting”) that only addresses problematic symptoms, to more proactive work that
addresses the root causes of problems (fire prevention). Another benefit is a repeatable and standard
build and configuration process, which often makes it faster and easier to rebuild problematic servers,
rather than wasting hours or days troubleshooting and trying to fix them.

References

[1] Cobbler - Linux install and update server, http://cobbler.github.com
[2] Pryor, James. Automating Linux Deployment with Cobbler presented at CHEP 2012, NY, NY
[3] Red Hat Enterprise Virtualization, http://www.redhat.com/products/virtualization
[4] GLPI - Gestionnaire libre de parc informatique, http://www.glpi-project.org
[5] FusionInventory - The opensource IT inventory solution, http://fusioninventory.org/wordpress
[6] Git - distributed-is-the-new-centralized, http://git-scm.com
[7] Puppet Labs: IT Automation Software for System Administrators, http://puppetlabs.com
[8] cgit – CGI for Git, http://hjemli.net/git/cgit
[9] ITIL - Information Technology Infrastructure Library, http://www.itil-officialsite.com
[10] DevOps - portmanteau of development and operations, http://devops.com

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 042056 doi:10.1088/1742-6596/396/4/042056

6

