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Abstract
Simulating quantum systems is believed to be one of the most important applications of quantum
computers. On noisy intermediate-scale quantum (NISQ) devices, the high-level circuit designed
by quantum algorithms for Hamiltonian simulation needs to consider hardware limitations such
as gate errors and circuit depth before it can be efficiently executed. In this work, we develop a
hardware-agnostic circuit optimization algorithm to reduce the overall circuit cost for
Hamiltonian simulation problems. Our method employ a novel sub-circuit synthesis in
intermediate representation and propose a greedy ordering scheme for gate cancellation to
minimize the gate count and circuit depth. To quantify the benefits of this approach, we
benchmark proposed algorithm on different Hamiltonian models. Compared with state-of-the-art
generic quantum compilers and specific quantum simulation compiler, the benchmarking results
of our algorithm show an average reduction in circuit depth by 16.5× (up to 64.1×) and in gate
count by 7.8× (up to 23.7×). This significant improvement helps enhance the performance of
Hamiltonian simulation in the NISQ era.

1. Introduction

While building a fault-tolerant quantum computer is still infeasible, recent progress in quantum hardware
reveals a significant outperformance of a quantum processor on certain computational tasks which would
take thousands of years on a state-of-the-art classical supercomputer [1]. Quantum computers are reaching
the stage where specific problems can be achieved within desirable accuracy [2]. We are entering into the
noisy intermediate-scale quantum (NISQ) era, which is characterized by quantum computers with noisy
qubits range from 50 to 100 and lacking full scale quantum error correction [3]. In order to make the best
use of current quantum hardware, several restrictions must be taken into account: (1) limited numbers of
qubits, (2) connective constraints of qubits, (3) two-qubit gate errors and limited circuit depth resulted
from coherent and incoherent errors. So the most important question is how to find useful applications of
NISQ-era hardware. For reaching this goal, quantum algorithms that can be executed on current quantum
devices are developed to deal with practical problems [4–10].

Quantum simulation is possibly to be one of the first practical applications of quantum computing, it
has broad applications in quantum many-body physics [11] and quantum chemistry [12–14]. Simulating
the dynamics of quantum systems is extremely hard for classical computers as a result of the exponential
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growth of the system size. Quantum computers promise to efficiently solve this problem, however, the gate
cost of simulating quantum systems is still prohibitive [15]. The main challenge for quantum simulation is
to construct an efficient circuit that closely approximates the time evolution of the Hamiltonian of a
quantum system.

Different approaches have been proposed for efficient quantum simulation, including product formulas
[11, 16–18], linear-combination-of-unitaries [19, 20], truncated Taylor series [21, 22], quantum walk [23],
quantum signal processing [24], and multi-product formulas [25, 26]. Product formulas are utilized, as is
most common, when the Hamiltonian can be decomposed as a sum of separate terms (H =

∑
j Hj), such

that the time evolution of each Hj is easily implemented. Then the time evolution of the system can be

described by U = e−it
∑

jHj . A standard approach in product formulas is Trotter–Suzuki decomposition

e−itH ≈ lim
k→∞

⎛
⎝

L∏
j=1

e−i(t/k)Hj

⎞
⎠

k

, (1)

this Trotter–Suzuki formula is referred to as first-order approximation. Each individual time evolution
operator e−i(t/k)Hj is made up of efficiently implementable quantum gates, which can be run on a quantum
computer. The approximation errors, which scale as O

(
t2/k

)
, arise from noncommutative terms in the

Hamiltonian. If all the terms in the Hamiltonian commute, the exponent of sum of all terms is equal to
products of the separate exponents (i.e., e−it

∑
jHj =

∏
je
−itHj ). If some terms do not commute, which

naturally exists in physical systems,
(∏

j e−i(t/k)Hj

)k
asymptotically approximate e−itH for large k.

∏
j e−i(t/k)Hj is called one Trotter step, and the circuit will repeat k times.
To make Trotter error arbitrarily small, one can increase the repetition number. However, this also

increases the depth of the circuit which is limited on NISQ devices. For saving the simulation cost without
losing accuracy, one can reduce k by using high-order approximation. For instance, the second-order
approximation

U2 =

⎛
⎝

L∏
j=1

exp
(
−itHj/2k

) 1∏
j=L

exp
(
−itHj/2k

)
⎞
⎠

k

(2)

can reduce k from O
(
(tLΛ)2/ε

)
(first-order) to O

(
(tLΛ)1+ 1

2 /ε
1
2

)
[27, 28], where Λ is the magnitude of the

strongest term and ε is the desired error threshold. An alternative way of decreasing cost is to find methods
of reducing depth and gate count in one Trotter step, which is of most concern in this paper.

Here, we propose several techniques to address this problem. First of all, we develop a novel sub-circuit
synthesis based on [29] to decompose k-local Hamiltonian in Pauli intermediate representation (IR). Then
follows the technique which exploits the advantages of reordering Trotter sequences. By rearranging the
individual terms in Trotter formula, we search for a superior ordering scheme that minimizes the circuit
depth and the gate count. The method for reordering is based on greedy algorithm and provides great
benefits in gate cancellation which contributes to the reduction of circuit depth. Further, we parallelize the
operations, leaving the removed gate count unchanged but additionally reducing the circuit depth.
Moreover, by combining the strategy proposed in [30] for reducing CNOT gates with our ordering scheme,
we further decrease the amount of CNOT gates. The techniques we developed are applicable to quantum
simulation kernels (i.e., the circuit that implement the operator of equation (1)), which appear in a wide
range of algorithms [11–14], and are independent of the underlying hardware.

This paper is organized as follows. In section 2 we introduce proposed sub-circuit synthesis in Pauli IR.
In section 3 we explains how the error of Trotter–Suzuki approximation and the gate cancellation procedure
depend on the Trotter ordering scheme, both of which influence the depth of overall circuit. Section 4
illustrates the proposed method for order search based on greedy algorithm. We introduce further
optimizations of the circuit in section 5. Evaluation and benchmarking are exhibited in section 6. After
discussion we conclude in section 7.

2. Sub-circuit synthesis in Pauli IR

For efficiently executing a quantum simulation circuit on NISQ devices, the Hamiltonian evolution
operator in equation (1) need to be decomposed into executable single- and two-qubit operations, and
compilers carry out this routine for every local Hamiltonians. The state-of-the-art generic compilers (e.g.,
Qiskit [31], t|ket〉 [32]) will convert the multi-qubit operator into a sequence of their elementary gates such
as single-qubit rotations and CNOT gates. Due to the lack of high-level IR of Pauli strings, they fail to
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Figure 1. Intermediate circuit synthesis for X0Y1Y2Z4 operator, the X1Y2Z4 operators are further decomposed in figure 2.

Figure 2. Intermediate circuit synthesis for X1Y2Z4 operator.

leverage the optimization opportunities of synthesizing Pauli IR. Some compiler-level IR optimization
frameworks such as Paulihedral [33] are designed to settle this problem, and quality improvement can be
seen. Therefore, we capitalize on the intermediate optimization, proposing a novel sub-circuit synthesis in
Pauli IR to better optimize quantum simulation kernels.

First, we introduce some analytic identities found by Clinton et al [29]. According to supplementary
lemmas 7 and 8 in [29], for a Hamiltonian H = 1

2i [h1, h2] where h1 and h2 anti-commute and both square
to identity, the evolution operator U(t) = eitH can be decomposed in two ways:

U(t) = eit1h1 eit2h2 eit2h1 eit1h2 , (3)

or
U(t) = eit1h2 e−iφh1 eit2h2 eiφh1 eit1h2 (4)

where t1, t2,φ are pulse times given by evolution time t. Note that equation (3) satisfies under conditions
but equation (4) does not. Followed by the demonstration in [29], we can decompose an evolution operator
eitH recursively using equation (4) decomposition then end with equation (3) decomposition, we apply this
principle in our synthesis techniques.

Before introducing our intermediate circuit synthesis, let us define some notations that are used in this
paper. The Hamiltonians in quantum simulation kernel we need to synthesize are expressed in the form of
tensor product of Pauli matrices H = σ0 ⊗ σ1 ⊗ · · · ⊗ σn−1, where σi ∈ {I, X, Y, Z} describes the Pauli
operator acting on the ith qubit, and n is number of qubits. For simplicity, in the rest of the paper we omit
the identity operators and denote a time-evolution operator of the Hamiltonian by a Pauli string. For
example, we denote the evolution operator exp (itX0 ⊗ Y1 ⊗ Y2 ⊗ I3 ⊗ Z4) as X0Y1Y2Z4 which
corresponding to a four-local Hamiltonian X0 ⊗ Y1 ⊗ Y2 ⊗ Z4.

Following the decomposition schemes we described above, our intermediate circuit synthesis works as
described below:

(a) For a k-local Hamiltonian H, we decompose eitH using equation (4) while choosing h1 as a two-local
Hamiltonian and h2 as a (k − 1)-local Hamiltonian then implement the same decomposition procedure
for (k − 1)-local Hamiltonian iteratively until k − 1 = 3. For the rest three-local Hamiltonians, we
apply equation (3) decomposition picking both h1 and h2 as two-local Hamiltonians so that all the
decomposed operators are two-local interactions.

(b) For each Hamiltonian need to be synthesized (k � 3), h1, h2 are computed by Pauli algebra.

We synthesize X0Y1Y2Z4 as an example. In the first iteration, we rewrite X0 ⊗ Y1 ⊗ Y2 ⊗ Z4 as
X0 ⊗

(
1
2i [Z1, X1]

)
⊗ Y2 ⊗ Z4 such that we can choose h1 = X0 ⊗ Z1, h2 = X1 ⊗ Y2 ⊗ Z4, then utilize the

equation (4) decomposition.
In the second iteration, the procedure is repeated for h2 = X1 ⊗ Y2 ⊗ Z4, and we select

h′
1 = X1 ⊗ Z2, h′

2 = X2 ⊗ Z4. As a result, a k-local operator is decomposed into two-local operators. The
circuit that explains this decomposition flow is depicted in figures 1 and 2.

After the proposed intermediate circuit synthesis, quantum simulation kernel is converted into two-local
interaction sequences. The advantage of this synthesis is that it provides an opportunity for optimizing
circuit by flexibly adjust the order of these two-local operators. The techniques will be described in the
following sections.
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Figure 3. Circuit of a two-local Z ⊗ Z interaction operator.

3. Impact of Trotter terms ordering

The choice of ordering scheme has formerly been demonstrated to hold a great impact on the Trotterization
[12–14, 17, 18]. Specific tasks determine the utilization of the Trotter ordering scheme, which affects the
performance of Trotterization in terms of the circuit length. In the context of quantum chemistry, a
magnitude ordering is physically meaningful, due to the fact that terms with higher magnitude are more
likely to correspond to stronger interactions. Utilizing this ordering scheme can significantly reduce the
error in one Trotter step but is not optimal in gate count [12, 17, 18]. Alternatively, a lexicographic ordering
is applied for saving as much gate cost as possible through cancellation, as it maximizes the similarity of
adjacent terms [12–14, 17, 18].

Choosing incompatible Trotter ordering schemes will differ in the length of the circuit. Minimizing the
Trotter error may potentially acquire an order which is not optimal in terms of the circuit depth, where a
lexicographic ordering holds a great advantage. Since we aim at optimizing the circuit of an arbitrary k-local
Hamiltonian simulation, where the minimization of Trotter error which is useful to specific molecular
Hamiltonians could possibly be outweighed by the effect of gate cancellation, we devote to addressing the
latter one.

As the number of all possible orderings grows factorially with the amount of individual Trotter terms, it
is difficult to find an optimal ordering scheme by performing an exhaustive search. However, for gate
cancellation procedures, it is possible to find a superior order that minimizes the gate count as well as the
circuit length, when the Hamiltonian is specified. Several approaches have been developed to this end
[12–14, 17, 18], but they are simply based on the lexicographic ordering. Combining the greedy algorithm
with the basic lexicographic ordering, we establish a method which significantly outperforms the previous
ones.

After the sub-circuit synthesis we have discussed above, quantum simulation kernel is divided into
two-local interaction sequences. So we first introduce the decomposition of the evolution operators for
two-local Hamiltonians, which helps illustrate our techniques. A two-qubit Z ⊗ Z interaction operator can
be decomposed as

e−iδZj⊗Zk = CNOTjk

(
Ij ⊗ Rz(2δ)k

) (
CNOTjk

)
, (5)

where j, k indicate the qubits on which the operator act. To make it more explicit, we give the gate level
implementation as shown in figure 3.

This is one of the commonly used decompositions, which is also our choice, and we term the whole
circuit in figure 3 as a two-local Z ⊗ Z interaction gate.

Here, we state some preliminary knowledge. Considering a Hermitian operator M with its spectral
decomposition M = SΛS† =

∑
j λj

∣∣mj

〉 〈
mj

∣∣, it holds that exponentiation of the operator M is equivalent
to the sum of exponentiation of its eigenvalues,

eiθM = S eiθΛS† =
∑

i

eiθλj
∣∣mj

〉 〈
mj

∣∣ . (6)

We focus on the diagonalization matrices D = S† (i.e., DMD† = Λ). Pauli Z operator is already diagonal,
which means Dz = I. The other two Pauli operators X and Y can be diagonalized to Λ = Z with
diagonalization matrices Dx and Dy separately. And it follows that

eiθX = eiθD†
xZDx = D†

x eiθZDx = D†
xRz(θ)Dx (7)

eiθY = eiθD†
yZDy = D†

y eiθZDy = D†
yRz(θ)Dy. (8)

A general n-Pauli operator can be exponentiated in the same way by conducting tensor product of the
diagonalization matrices corresponding to each of the terms, i.e.
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Figure 4. Circuit of a two-local X ⊗ X interaction operator.

Figure 5. Circuit of a two-local Y ⊗ Y interaction operator.

Figure 6. Original circuit.

Figure 7. Circuit after reordering.

eiθP⊗P... = eiθ(D†
p⊗D†

p...)(Z⊗Z...)(Dp⊗Dp...)

= (D†
p ⊗ D†

p . . .)eiθ(Z⊗Z...)(Dp ⊗ Dp . . .), (9)

where P ∈ {X, Y, Z}. It implies that we can decompose any k-local interaction operators by this formula.
In the case of two-local interaction, for example, the Pauli X ⊗ X and Y ⊗ Y interaction operators can be

decomposed to gate level as shown below in figures 4 and 5 (and likewise for other two-local interaction
operators).

Here we choose diagonalization operators Dx = H and Dy = Rx(π/2) (where H is Hadamard transform
operator and Rx(θ) is single-qubit rotation operator about the x̂ axis, both of which are also corresponding
quantum gates), but note it is not the only choice. The benefits of this form of decomposition are manifest,
since the adjacent Dx and D†

x (or Dy and D†
y) in the circuit will be canceled out immediately. It should be

noted that all the diagonalization gates of a two-local interaction are possibly to be canceled out, which
results in a significant reduction of the gate count. An example is shown in figure 7.

After rearranging the two-local gate sequences, the 10 diagonalization gates in the dashed box of figure 7
can all be canceled out, which will reduce the depth of circuit by 4. While with the ordering of original
circuit in figure 6, the circuit depth can be reduced only by 2. As we can see in figure 7, the deposition of a
two-local gate determines the cancellation on both the left side and the right side of it, and will affect the
rest of the circuit. The problem of finding a superior order which maximizes the gate cancellation of the
overall circuit is tricky. In the next section, we will illustrate our strategies to address this problem.
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Figure 8. The layout of one layer before parallelization, where the order of Trotter terms now is Z0X1 → X1Y2 → Y2X3.

Figure 9. Parallelized circuit of one layer, where the order of Trotter terms in this layer is Z0X1 → Y2X3 → X1Y2.

4. Order search strategies

Since exhaustively searching all possible orders is impractical, alternatives need to be found. We cope with
this problem by applying a greedy algorithm based heuristic search method. In our scenario, the reduction
of gate count is the target of the optimization problem. Previous works have shown that a lexicographic
ordering is beneficial for the purpose of gate cancellation. This ordering scheme intends to derive a
maximum similarity of adjacent Pauli strings. But it is basically a numerical ordering either with respect to
the fermionic operators or with respect to the individual Pauli operators [17, 18]. As we have shown above,
the placement of a two-local gate influences the cancellation on both the left side and the right side of it.
Merely sorting the Trotter sequences lexicographically may probably not give rise to the maximum amount
of gate cancellation. Here we propose our ordering strategies and explain how it comes from greedy
algorithm.

4.1. Trotter layers partition procedure
In the first stage of the algorithm, we partition the circuit into layers such that the reduction of gate count is
locally optimal in each layer. That’s where the greedy algorithm comes in. For reaching this goal, we develop
several strategies.

First, we group two-local gates into different local Pauli-index pools in terms of the similarity of Pauli
strings. Here we use a sequence X0Y2 to denote a two-local gate eiθX0Y2 (qubit indices start at 0). A sequence
X0X3 has the same Pauli string with X0Y2 on qubit 0, so they are both grouped into the {}X0 index pool.
X0Y2 and Y2Z3 will both be grouped into the {}Y2 index pool consequently. Note that a two-local gate is
labeled by two Pauli-index pools.

Next, we pick out the gates from Pauli-index pools one by one for each layer, following a strategy that
adjacent gates in one layer are chosen from one Pauli-index pool where the second index of last gate and the
first index of next gate in. Subsequently, all the two-local gates in a single layer are arrayed in a stepped
arrangement from smallest qubit number to the largest, so that the operations in this layer can be easily
parallelized for further optimization. To make it concrete, we demonstrate a layout of one layer before
parallelization in figure 8, where we chose sequences [Z0X1, X1Y2, Y2X3] for this layer.

These strategies we proposed are determined by the following two considerations. First, the
diagonalization gates on the one side of a two-local gate in the intermediate qubits will be canceled out
immediately (see dashed boxes in figure 8). Second, we can parallelize two operations in every three
adjacent operations without changing the amount of removed gates (where operations are shown in figure 9
as numbered blocks), which maximizes the decrease of circuit depth.

In addition, we give priority to choosing the gates from Pauli-index pools where there are other gates
remained in the corresponding pools can be chosen in the next layer, which means that the diagonalization
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Algorithm 1. Order search algorithm.

Input: a list of sequences of two-local interaction gates [
(

PjPk

)(n)
]

Output: a list of ordered sequences of two-local interaction gates [
(

PjPk

)(n)
]ordered

1: function OrderSearch ([
(

PjPk

)(n)
])

2: for all PjPk ∈
(

PjPk

)(n)
do

3: IndexPools: {}Pj , {}Pk
← PjPk (�) Group two-local gates PjPk into Pauli-index pools {}Pj , {}Pk

.

4: end for

5: [
(

PjPk

)(n)
]ordered ←∅ (�) Set [

(
PjPk

)(n)
]ordered to empty-list

6: nextlayer← true
7: {}lastlayerpools ←∅ (�) Store IndexPools in last layer
8: CoIndex←∅ (�) Store concatenation index among adjacent gates in one layer
9: repeat (�) Pick out two-local gates one by one for each layer to conduct gate cancellation procedure
10: if nextlayer = true then (�) Choose first two-local gate of a layer

11: for PjPk in
(

PjPk

)(n)
do

12: if Pj, Pk in {}lastlayerpools then

13: [
(

PjPk

)(n)
]ordered ← PjPk (�) Append PjPk to [

(
PjPk

)(n)
]ordered

14: [
(

PjPk

)(n)
] ← [

(
PjPk

)(n)
] − PjPk , {}lastlayerpools ←{}Pj , {}Pk

, CoIndex← Pk, nextlayer← False, break (�)Remove

PjPk from [
(

PjPk

)(n)
], update last layer IndexPools with new {}Pj , {}Pk

, find CoIndex and jump out of FOR loop

15: else if j = 0 then

16: [
(

PjPk

)(n)
]ordered ← P0Pk

17: [
(

PjPk

)(n)
] ← [

(
PjPk

)(n)
] − P0Pk , {}lastlayerpools ←{}P0 , {}Pk

, CoIndex← Pk , nextlayer← false, break
18: end if
19: end for
20: else
21: repeat (�) Choose the rest gates of a layer

22: for CoIndex in {}CoIndex and PjPk in
(

PjPk

)(n)
do

23: if Pj = CoIndex and Pj, Pk in {}lastlayerpools then

24: [
(

PjPk

)(n)
]ordered ← PjPk

25: [
(

PjPk

)(n)
] ← [

(
PjPk

)(n)
] − PjPk , {}lastlayerpools ←{}Pj , {}Pk

, CoIndex ← Pk, break

26: end if
27: end for
28: until nextlayer = True
29: end if

30: Reorder existent two-local sequences in [
(

PjPk

)(n)
]ordered for parallelization

31: until no PjPk in rest [
(

PjPk

)(n)
] contribute to gate cancellation

32: append the rest two-local sequences to [
(

PjPk

)(n)
]ordered list with parallelization

33: return [
(

PjPk

)(n)
]ordered

34: end function

gates of the two-local gates we chose can be canceled out with those in the next layer. And further, we select
the gates that act on as much qubits as possible in a layer (i.e., [X0X1, X1Y2, Y2Z3, Z3X4] instead of
[X0X1, X1Y2, Y2Y4]), which exploits the advantage of parallelization.

4.2. Gate allocation among Trotter layers
As for the third strategy, the gates in each layer are chosen from the Pauli-index pools in last layer (except
for the first layer). Additionally, for the gates act on qubit 0, which are always on the top of a layer, we can
simply select a lexicographic order among layers.

Since every diagonalization gate of a two-local gate can be canceled out at most once, regardless of
which one is canceled out with, we move all the gate cancellation procedures ahead quickly as the reason of
the third strategy. Explicitly, if two diagonalization gates on the left side of a two-local gate can both be
canceled out with those on the right side of last layer, this two-local gate would be the first choice, and the
case of only one diagonalization gate can be canceled out would be the second choice. As an example, the
choice of gates as shown in the dashed boxes of figure 6 is outperformed by that on the corresponding
position of figure 7.

Joining the adjacent gate cancellation procedures together, all the diagonalization gates that contribute
to gate reduction are exhausted. That is, these locally optimal reductions, combined together, have resulted
in a globally optimal solution in terms of the amount of removed gates. Furthermore, benefiting from the
proposed ordering strategies, we can parallelize possible operations among adjacent layers without
decreasing the amount of gate cancellation, which additionally reduces the circuit depth. In the last step of
our ordering strategies, the rest of the two-local gates whose diagonalization gates cannot be canceled out
are placed at the end of circuit with parallelization. The complete order search algorithm is depicted in
algorithm 1.

7
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Figure 10. Optimized first layer of circuit after gate cancellation procedure and DFS CNOT reduction procedure, we used the
same example as in figure 8 (i.e., [Z0X1, X1Y2, Y2X3] for this layer).

Figure 11. Optimized first layer of circuit after gate cancellation procedure and EC CNOT reduction procedure, used the same
example with figure 10.

5. Further optimizations

As we mentioned previously, error rates of the two-qubit gates on NISQ devices are non-negligible, which
makes it vital to minimize the cost of two-qubit gates. In this section we discuss the second stage of our
algorithm, which further optimizes the circuit by integrating the approach proposed in [30] into our gate
reduction framework, for decreasing the amount of CNOT gates. To begin with, a briefly review of the
approach we will employ is necessary.

In [30], the authors developed two hardware independent approaches for reducing the count of CNOT
gates in the circuit. The first one is based on edge coloring (EC) method where parallelization of circuit
takes priority, while the second one is based on depth first search (DFS) which holds an advantage in the
amount of gate reduction. Both of the two approaches derived from the theorem 1 that they found as
described in paper [30]. On account of the decomposition form we use, our two-qubit interaction operators
match with the form of operators which can be optimized under the condition of theorem 1. That is to say,
these two approaches can be grafted onto our optimization framework after the ordering and gate
cancellation routine. Here we elucidate more details of implementation.

According to theorem 1 in [30], an operator V1 of the form

V1 =
(
CNOTjk

) (
Ij ⊗ Rz(2γl)k

) (
CNOTjk

)
(10)

can be replaced by
V2 =

(
CNOTjk

) (
Ij ⊗ Rz(2γl)k

)
(11)

under certain conditions, where the operator V1 is exactly our two-qubit Z ⊗ Z interaction operator in
equation (5) if we substitute γl with δ. (In our case, δ describes a small time-step of Trotterization.)
Following the techniques they proposed, the first CNOT gate of corresponding operators in the first layer of
our circuit can be eliminated. We demonstrate this with examples based on the DFS method and EC
method respectively, as shown in figures 10 and 11.

Utilizing the DFS based method for CNOT gates reduction, we can diminish the amount of CNOT gates
up to N − 1, where N is the amount of qubits. In the case of EC based method, the gate count can be
reduced up to N/2, but with lower circuit depth when the amount of qubits is large. The overall circuit
optimization algorithm is summarized in algorithm 2.

Since the cost of total gate count and circuit depth are both crucial indicators of the performance of an
optimization algorithm on NISQ devices, we evaluate both of the two optimization pathways with various
circuit models. The synthetic performances of them will be shown in the next section.

8
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Algorithm 2. Circuit optimization algorithm.

Input: original circuit of an arbitrary two-local Hamiltonian simulation
Output: optimized circuit of an arbitrary two-local Hamiltonian simulation
1: if DFS path then
2: execute order search routine without parallelizing operations in the first layer
3: conduct gate cancellation procedure
4: use DFS based CNOT gates reduction subroutine
5: else if edge coloring path then
6: execute the complete order search routine
7: conduct gate cancellation procedure
8: use edge coloring based CNOT gates reduction subroutine
9: end if
10: output the optimized circuit

Figure 12. Evaluation results of molecule Hamiltonians, UCCSD ansatzes, Fermi–Hubbard models, and random Hamiltonians.
DFS and EC denote the depth first search and edge coloring optimization paths, which significantly outperform Paulihedral,
Qiskit, and t|ket〉 compilers.

6. Evaluation

In this section, we exhibit results of some representative benchmarks for constructing baselines by which to
compare the performance of our optimization algorithm with other state-of-the-art optimizers.

6.1. Experiment setup
Benchmarks: to cover as many varieties of applications as possible, we select different kinds of
Hamiltonians as our benchmarks, including seven molecule Hamiltonians generated by PySCF [34]
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Table 1. The complete benchmarking results of DFS, EC, Paulihedral, qiskit, and t|ket〉.

DFS EC Paulihedral qiskit tket

Total Depth Total Depth Total Depth Total Depth Total Depth

HF 1070 338 1081 362 4884 2966 4810 3059 5888 4525
LiH 1070 338 1081 362 4884 2966 4810 3059 5888 4525
H2O 1584 512 1593 511 9234 5253 9466 5844 9567 6712
NH2 1704 560 1670 565 14 532 8372 15 237 9274 17 529 13 166
CH2 1704 560 1670 565 14 871 8576 15 631 9540 18 320 13 774
NH3 2365 743 2374 787 22 179 12 516 22 639 13 396 24 814 18 255
CH4 2714 852 2706 853 25 982 14 634 26 058 15 755 27 124 19 113
UCCSD-8 287 145 296 151 1171 761 1259 874 917 761
UCCSD-12 896 269 895 291 12 320 7800 11 440 7503 11 811 9803
UCCSD-16 1622 511 1620 511 32 530 20 470 33 530 21 898 38 460 32 772
Fermi–Hubbard 2 × 2 139 59 151 58 166 82 188 107 182 109
Fermi–Hubbard 3 × 3 489 118 502 128 890 421 870 453 933 561
Fermi–Hubbard 4 × 4 941 142 924 146 1835 656 1764 699 1758 845
Fermi–Hubbard 5 × 5 1491 232 1505 204 2996 968 3075 1201 3056 1597
Random-4 119 78 118 79 168 110 140 89 174 129
Random-5 282 149 284 150 745 504 711 493 953 654
Random-6 420 182 426 186 1697 1167 1665 1185 2098 1527
Random-7 619 223 612 225 3152 2170 3123 2273 3979 2712
Random-8 826 264 842 271 5537 3668 5527 3972 7173 4630
Random-9 1023 329 988 312 8913 5756 8870 6443 11 363 7394
Random-10 1174 371 1138 363 14 139 8997 14 066 10 176 17 456 11 294
Random-11 1360 431 1351 437 20 445 12 884 20 642 14 915 25 646 16 272
Random-12 1589 524 1567 498 29 719 18 138 29 705 21 550 36 573 22 957

(HF, LiH, H2O, NH2, CH2, NH3, CH4) and VQE UCCSD ansatzes [7] of three sizes. We also prepare the
Fermi–Hubbard models of four square lattice sizes, which are well known in condensed matter physics to
describe the interactions between particles in a lattice. And finally we choose random Hamiltonians with
the number of qubits range from 4 to 12 for a more comprehensive assessment. For the randomly generated
Hamiltonians, we set the amount of Pauli strings increase polynomially with respect to the size of the
qubits.

Metrics: we use the total gate count and depth of circuit as metrics to evaluate the performance of
different quantum circuit optimizers. Due to the diverse circuit synthesis, different gate sets for representing
a quantum circuit may give rise to different gate count and circuit depth. To establish a fair comparison, we
compute the total gate count by adding up all the single-qubit gates and CNOT gates after circuit
optimization, as these gates can be executed on NISQ devices directly. And the same for circuit depth.

Comparisons: we compare our circuit optimization algorithm with two generic state-of-the-art
quantum compilers Qiskit [31] and t|ket〉 [32], and a specific quantum simulation compiler Paulihedral
[33]. Qiskit compile quantum simulation kernels into Ising type gates in its elementary gate library then
apply the level 3 optimization, t|ket〉 compiler has particular techniques based on simultaneous
diagonalization for quantum simulation subroutine then follows ‘full-pass’ optimization. Paulihedral
performs the block-wise optimization for quantum simulation kernels, it employs a specific Pauli IR that
can preserve high-level semantics then conduct its block scheduling passes for gate cancellation utilizing
lexicographic ordering. We compare both DFS and EC optimization paths with the above compilers.

6.2. Comparison result
Figure 12 shows the results of evaluation, note that due to the huge gap between DFS (EC) optimization
and other compilers, the results of DFS and EC are difficult to read, it also reveals the great advantages of
our optimization algorithm. Comparing with Qiskit, DFS (EC) optimization can reduce total gate count by
7.5× (7.5×), circuit depth by 15.4× (15.2×) on average. The reduction in total gate count and circuit depth
when comparing with t|ket〉 are 8.5× (8.5×) and 19.8× (19.5×) on average, with respect to DFS (EC)
optimization. The reason of low efficiency in t|ket〉 is probably the high overhead induced by simultaneous
diagonalization technique. As we can see, generic compilers perform poorly in quantum simulation kernel
optimization tasks when compared with our algorithm.

Next we turn to the comparison with Paulihedral, a specific quantum simulation compiler. The results
in figure 12 exhibits that DFS (EC) optimization can still reduce total gate count by 7.5× (7.5×), and circuit
depth by 14.3× (14×) on average, which means that our techniques for synthesizing quantum simulation
kernels combined with greedy ordering scheme for gate cancellation greatly outperforms the lexicographic
ordering scheme. The complete benchmarking results are presented in table 1.
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For the effect of DFS and EC optimization paths, it can be seen that in most cases their performances
are similar, while in the situation of random generated Hamiltonians, EC optimization method can yields
lower circuit depth when the size of circuits is large. It suggest that for a generic quantum simulation kernel
with large interaction size, EC optimization method can be more practical.

In summary, our optimization algorithm outperforms Qiskit, t|ket〉, and Paulihedral compilers in both
total gate count and circuit depth, especially for the capability of depth reduction. For all benchmarks, DFS
optimization algorithm can reduce the total gate count by 7.8× (up to 23.7×) and circuit depth by 16.5×
(up to 64.1×) on average when comparing to other compilers. And EC optimization algorithm shows an
average reduction in gate count by 7.8× (up to 23.7×) and in circuit depth by 16.3× (up to 64.1×) for all.

7. Conclusion

In this work, we developed a circuit optimization algorithm for Hamiltonian simulation problems. Distinct
from the conventional circuit synthesis, we employ a novel sub-circuit synthesis in Pauli IR and combined
with a greedy ordering scheme which explores the search space for an superior Trotter ordering scheme. By
searching locally optimal Trotter orders and joining them together, we obtain an advantageous overall order
which significantly decreases the gate count and circuit depth from gate cancellation. Moreover, we grafted
the approach proposed in [29] onto our gate reduction framework for further optimization, which results
in two optimization pathways, namely EC based optimization and DFS based optimization. Evaluation and
benchmarking results showed that our algorithm significantly outperforms both state-of-the-art generic
quantum compilers t|ket〉 and Qiskit and specific quantum simulation compiler Paulihedral in terms of
total gate count and circuit depth. For a large variety of quantum simulation kernels, DFS and EC
optimization algorithm can substantially reduce the overall circuit cost. We believe our techniques will help
enhance the performance of quantum simulation on NISQ devices and allow them to solve more practical
problems.
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