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Abstract

Various profiles of matter distribution in galactic halos (such as the Navarro–Frenk–White, Burkert, Hernquist,
Moore, Taylor–Silk models, and others) are considered here as the source term for the Einstein equations. We
solve these equations and find exact solutions that represent the metric of a central black hole immersed in a
galactic halo. Even though in the general case the solution is numerical, very accurate general analytical metrics,
which include all the particular models, are found in the astrophysically relevant regime, when the mass of the
galaxy is much smaller than the characteristic scale in the halo.

Unified Astronomy Thesaurus concepts: Astrophysical black holes (98); General relativity (641); Galaxy dark
matter halos (1880)

1. Introduction

Almost every large galaxy has a supermassive black hole in
its center (Kormendy & Ho 2013). Galactic matter is usually
modeled by an anisotropic fluid with some density distribution,
which implies an almost spherical halo dominated by dark
matter (Benson 2010). Depending on the size, mass, and form
of a galaxy one or another distribution is preferable. The
generic density distribution of a galactic halo has the following
form (see, e.g., Taylor & Silk 2003):

r r= +g a a g a- - - -( ) ( ) ( ) ( )( ) ( )r r a r a2 1 , 1k
a

k k k

which interpolates between the slope α near the galactic center
and the slope γ at large distance r? a. Here a is the
characteristic scale of the galactic halo. For a dwarf galaxy,
composed of about a thousand up to several billion stars, the
Burkert model (α = 1, γ = 3, k = 2; Burkert 1995; Salucci &
Burkert 2000) is suitable, while for galaxies with the largest
content of dark matter, the Navarro–Frenk–White model (α =
1, γ = 3, k = 1; Navarro et al. 1995, 1997) is mostly used. The
Hernquist profile (α = 1, γ = 4, k = 1; Hernquist 1990) is
applied for modeling the Sérsic profiles observed in bulges and
elliptical galaxies. When supposing the cold dark-matter halos
that form within cosmological N-body simulations, the Moore
model (α = 7/5, γ = 14/5, k = 7/5; Moore et al. 1998) is
considered. Within supersymmetric models the lightest neu-
tralino is an excellent candidate to form the universe’s cold
dark matter, and they can be observed indirectly owing to
annihilation in regions of high dark-matter density, such as the
centers of galactic halos (Feng 2010). When studying signals
from such annihilation events, the Taylor–Silk model (α = 3/
2, γ = 3, k = 3/2; Taylor & Silk 2003) is suggested.
Dynamical constraints on such dark-matter models of galaxies
were studied in Lacroix (2018), while the impact of relativistic
corrections on the detectability of dark-matter spikes with

gravitational waves were considered in Speeney et al. (2022). A
general relativistic description of a black hole surrounded by a
central region of a galaxy was given in Sadeghian et al. (2013).
The natural question in this context is whether we can

ascribe a general relativistic metric to such galactic distribution
of matter that includes the spacetime of a central black hole.
One way is to consider an isolated black hole spacetime that is
matched to some distribution of matter via the mass function
(Hou et al. 2018; Xu et al. 2018; Konoplya 2019; Jusufi et al.
2020; Liu et al. 2021; Zhang et al. 2021, 2022). In contrast to
such a cut-and-paste approach, a straightforward solution has
been recently suggested in Cardoso et al. (2021) where the
problem of general relativistic description of a central black
hole immersed in the (Hernquist distribution) galactic halo was
considered self-consistently, i.e., via a solution of the
corresponding Einstein equations with the energy-momentum
tensor representing the galactic matter. Quasi-normal modes,
scattering, and optical phenomena for this solution have been
studied in Konoplya (2021) and Stuchłik & Vrba (2021), while
an exact solution for a different equation of state of the galactic
matter was proposed in Jusufi (2022) in a similar fashion.
In the present paper we propose a general approach of this

kind and find exact solutions of the Einstein equations with the
energy-momentum tensor corresponding to various distribu-
tions of the galactic medium. Even though the analytical
solutions can be obtained only in particular cases, we show that
a very good analytical approximation can be obtained in the
general case by expanding the accurate solution in terms of the
small parameter M/a, where M is the mass of a galaxy.
Thus, for a spherically symmetric line element,

q q j= - +
-

+ +( )
( )
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1 2
sin ,
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where m(r)< r/2 is the mass function and f (r)> 0 is the
redshift function, we find an analytical approximate form of the
metric. In particular, we will show that the approximate metric
takes the following compact form for the Navarro–Frenk–
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White model (Navarro et al. 1995, 1997),
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and for the Burkert model (Burkert 1995; Salucci &
Burkert 2000),
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Here s is the radius of the galactic halo and r0 is the radius of
the event horizon.

While for the model of Taylor & Silk (2003) the
approximate analytic expression has a rather cumbersome
form, for a Taylor–Silk–like model (α= 3/2, γ= 3, k= 1),
which provides the same slopes for the density distribution in
the central and far regions (though with a slightly different
interpolation between them), the corresponding metric func-
tions are
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We will show that for the general case given by Equation (1),
the analytic approximation can be found in the form of the
hypergeometric function.

2. Black Hole Surrounded by the Galactic Halo

We assume that Equation (2) is the solution to the Einstein
equations with the stress-energy tensor corresponding to the
anisotropic matter with the density ρ(r) and only the tangential
pressure P(r),

r= - = =( ) ( ) ( )T r T T P r, . 60
0

2
2

3
3

The Einstein equations imply

p r¢ =
¢

=
-

( ) ( ) ( )
( )

( )
( )

( )m r r r
f r

f r

m r

r rm r
4 ,

2

2
, 72

2

and the tangential pressure has the form,
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Thus, once the density distribution is specified, all the functions
can be determined by solving Equations (7) with the following
conditions:

= ¥ =( ) ( ) ( )m f0 0, 1. 9

We will consider the density distribution (1), where the
constant ρa≡ ρ(a) fixes the total mass of the galaxy

òp r= =( ) ( ) ( )M m s r r dr4 , 10
s

0

2

and s is the radius of the halo, such that s> a?M. We notice
that for γ> 3 the galaxy size can be taken infinite, since, as
s→∞ , the improper integral (Equation (10)) converges.
When s is finite, in order to have a finite total mass, we suppose
that the space is empty outside the galactic halo, i.e.,
ρ(r> s)= 0.
When there is a black hole in the center of the galaxy, the

density distribution is modified near the event horizon, located
at r0=M, in such a way that the galactic distribution of matter
is reproduced in the far zone. In the general case we consider

r r r =( ) ( ) ( ) ( ) ( )r r b r r , 11

where the prefactor b(r) approaches unity for r ?r0. For this
purpose we can define the function b(r) through the following
expansion:
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In particular, the choice

= - +( ) ( ) ( )b r r r1 13n
0

1

sets to zero the density and its first n derivatives at the event
horizon. By solving Equations (7) with the following
conditions (see Equation (9)),

= ¥ =( ) ( ) ( )m r r f2, 1, 140 0

we obtain numerically the accurate metric functions describing
the galactic halo with the central black hole of radius r0. For the
Hernquist-type density distribution (α= 1, γ= 4, k= 1) and
n= 0 in Equation (13), the resulting metric has been obtained
in an analytic form in Cardoso et al. (2021).
In order to simplify analysis in the general case, we

introduce the new functions, A(z) and B(z), which are finite at
the horizon,
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The functions A(z) and B(z) are dimensionless and must depend
on the following small dimensionless parameters: M

a
, r

a
0 and r

s
0 .

For our purposes, we can safely ignore the dependence on the
two latter parameters, since the black hole size is negligible
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comparing to the size of the galaxy. Therefore, we have
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We notice that in the region near the black hole, i.e., for
r; r0= a, the redshift function gains the factor
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which corresponds to the dominant redshift correction to the
frequencies due to the galactic halo. Further, we shall calculate
the value of ( )A 0 explicitly, and also note that =( )B 0 0.

By solving Equations (7), taking the dominant order in 1/a
and neglecting the terms of order r0/a, we find that ( )B z does
not depend on the particular choice of the prefactor b(r) in
Equation (11):
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is the hypergeometric function. Substituting Equation (15) into
(7) and neglecting the black hole size as compared to the
galactic scales, we obtain
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which, after substitution of Equation (16), leads in the
dominant order to the following relation:
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Using Equation (18) in (20) one can find explicitly A(z) in
terms of the generalized hypergeometric functions,
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The constant of integration μ is fixed in order to match the
Schwarzschild geometry for r> s,
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where Mt=M+ r0/2 is the total asymptotic mass. Thus, the
values of ρa and μ are determined in terms of the asymptotic
mass Mt and the cutoff parameter s by matching the
Schwarzschild metric Equation (22) at r= s:
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Even for quite large values of M/a the resulting analytic
expressions approximate very well the accurate metric func-
tions, which can be found only numerically (see Figure 1). For
the particular cases of the Navarro–Frenk–White, Burkert, and
Taylor–Silk–like models, the above hypergeometric functions
take a relatively simple form leading to Equations (3)–(5) for
the metric functions. The analytic approximation for the metric
functions is available in the Wolfram Mathematica® ancil-
lary file.3

We would like to note that within our approach the cutoff
occurs not in an arbitrary place, but at the radius of the galactic
halo. Outside this radius the (conditionally) empty space is
described by the Schwarzschild metric produced by the total
mass of the halo. Therefore, the results depend on the cutoff
parameter exactly in the same way, as they depend on the size
of the galaxy. If we fix the total mass and change the size of the
galaxy (and consequently the value of s), we change the density
of the halo, and the observables are changed correspondingly.

Figure 1. Comparison of the numerical solution of Equation (7) (blue) and the analytic expression, Equation (15) (red), for a = 4Mt = 40r0, s = 50a(α = 1,
γ = 3, k = 1).

3 The ancillary file is available from https://arxiv.org/src/2202.02205/anc.
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3. Circular Photon Orbit and ISCO

The shadow radius Rsh depends only on the redshift function
f (r), corresponding to the minimum
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where rph is the radius of the circular photon orbit. Substituting
Equation (15) into (25) we find that

= + ( ) ( )r r r a3 2 , 26ph 0 0

where we neglect the radius of the black hole as compared to
the characteristic scale of the galaxy a. Therefore, we obtain the
following expression for the shadow radius:
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Taking into account that Equation (18) implies =( )B 0 0
(α< 2), we obtain the Lyapunov exponent
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The radius of the innermost stable circular orbit rISCO satisfies
the relation
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Substituting Equation (15) into (29) we obtain
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Neglecting the black hole size as compared to the characteristic
scale of the galaxy we find the corresponding frequency at
ISCO,
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It is well known that the high-frequency (eikonal) quasi-
normal modes of test fields and, at least in a great number of
cases, of gravitational perturbations are fully determined by the
circular frequency and Lyapunov exponent of a null ray
orbiting around the black hole (Cardoso et al. 2009; Konoplya
& Stuchłik 2017). Thus, the quasi-normal frequencies in the
eikonal regime (ℓ→∞) and the ISCO frequency gain the same
redshift due to the galactic halo with the factor ( )A 0 , which

depends on s:
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For γ= 3, ( )A 0 goes to zero as s grows (see Figure 2), because
the constant halo mass leads to the vanishing density in this
limit. For γ= 4 in the limit s→∞ Equation (32) reads
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4. Accuracy of the Approximation

First of all, we will compare the analytic solution for the
particular case of α= 1, γ= 4, k= 1 (see Equation (6) of
Cardoso et al. 2021) and our approximation, Equation (16),
yielding
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which corresponds to the following density distribution (see
Equation (10) of Cardoso et al. 2021)
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Notice that ρ(r0)≠ 0, because we have neglected some terms
proportional to the black hole radius. The corresponding
approximation for the redshift function takes the simple form
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which coincides with Equation (7) of Cardoso et al. (2021)
within the considered approximation. The redshift factor
(Equation (33)) for α= 1, γ= 4, k= 1 is unity, so that for
the eikonal quasi-normal modes and the ISCO frequency we

Figure 2. The redshift factor ( )A 0 as a function of the galactic size s for γ = 3:
α = 1, k = 1 (red) and k = 2 (magenta), α = 3/2, k = 1 (black) and k = 3/
2 (blue).
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have (see Equations (12) and (16) of Cardoso et al. 2021)

 W = W - + +( ( ) ( ) )M a r a M a1 .0 0
2

Comparison of the metric coefficients of the accurate
numerical or analytical solution and the approximate one is
not meaningful, because the metric coefficients are not
observable gauge invariant characteristics. Instead we will
compare the dominant proper oscillation frequencies, called
quasi-normal modes (QNMs; Konoplya & Zhidenko 2011;
Kokkotas & Schmidt 1999), which are sensitive to the near-
horizon behavior. From the Table 1 we see that the
approximation provides good estimations for the QNMs for
the electromagnetic perturbations, even for large black holes
(M= 5r0) as long as M/a is small. We observe a similar
behavior for the other models, examples of which are shown on
Tables 2 for the Navarro–Frenk–White and Burkert profiles.

5. Conclusions

When constructing the metric of a supermassive black hole
immersed in the galactic halo, a cut-and-paste approach is usually
used, which simply matches the Schwarzschild solution with the
weak field regime matter distribution via the mass function. On
the contrary to this approach, here we developed the fully general
relativistic approach and found self-consistent solutions to the
Einstein equations describing a black hole immersed in some
general distribution of matter (Equation (1)), which includes
various profiles used for modeling the galactic halo. In the
astrophysically motivated range of parameters the general
analytical expression for the metric functions has been obtained
in the form of the hypergeometric functions and the excellent
accuracy of this expression is confirmed via analysis of

electromagnetic QNMs, frequencies at ISCO, and the radius of
the black hole shadow. Even though the influence of the galactic
environment is relatively small for the radiation processes around
central black holes, they might be potentially observable in
future, for example, when detecting QNMs, due to many cycles
of rotation of a binary system before the merger in the galactic
medium (Cardoso et al. 2021) or in optical phenomena owing to
the dark-matter spikes in the central region (Nampalliwar et al.
2021). The current and expected-in-the-near-future sensitivity of
the gravitational wave detectors is certainly not sufficient to
detect the influence of the galactic environment.
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