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Abstract.We point out that nonlinear superposition principles can be used to identify
integrable systems of nonlinear ordinary differential equations among families of nonintegrable
ones. A superposition formula is then obtained for a class of integrable equations, namely the
matrix Riccati equations.

1. INTEGRABLE AND NONINTEGRABLE SYSTEMS RICCATI EQUATIONS.

We shall call a system of first order nonlinear ordinary differential equations (ODE's) a system of
Riccati equations if all the nonlinearities are quadratic

yH=at+ b y% e Hoa ya P, =t (1)
The coefficients at, bH_, c”aB are, in general, arbitrary functions of 1, the prime denotes
differentiation with respect to time t and summation over repeated indices is to be understood.

Equations of the type (1) can serve as prototypes of systems demonstrating chaotic behavior.
Examples of such systems with extremely sensitive dependence on the initial conditions are the
Lorenz equations, various versions of the Volterra-Lotke equations, or the Henon-Heiles
equations[1'3].
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On the other hand, many particular cases of equations of type (1) exist which are integrable and
hence have stable solutions with regular long term (global) behavior. Clearly it is of interest to
identify such systems and to solve them. These systems can then serve as tools for studying
"nearby” nonintegrable systems, obtained by perturbing the coefficients in the integrable
systems, Several methods are commonly used for identifying integrable systems among
families of nonintegrable ones. In addition to direct searches for first integrals, or for linearizing
transformations, we mention the method of Painlevé analysis[4]. This is an investigation of the
singularity structure of the solutions of the equations, the purpose of which is to find equations
for which the solutions have no moving critical points.

In this contribution we present a different integrability testls], based on the fact that certain
systems of nonlinear ODE's admit superposition formulas. We use this term to indicate that
the general solution of such a system of n ODE's can be expressed as a function of a finite
number m of particular solutions and of n constants{®10], This approach makes use of the
following theorem, due to S. Liel111,

Theorem 1. The necessary and sufficient condition for a system of first order ODE's

Y=n(.1) 2
to admit a superposition formula
Y =F (Y4 ¥y C4reeeCpy) )
isthat :
{ii The system (2) have the form
s
v = 2 L0 gl) (4)

(i) The vector fields
o o B oangy = (a1
Xk— pEI E‘k(Y] ayu ’ Ek" [€ yeres El;] (5]

generate a finite dimensional Lie algebra.

All indecomposable systems of equations satisfying Lie's criteria have been recently classified,
making use of the theory of transitive primitive Lie algebras[gl. All systems of n such equations
with n <3 have recently been integratedls].

Equations satisfying Lie's criterion do not necessarily have polynomial nonlinearities; examples
have been given of equations with rational and other nonfinearities!® 101, On the other hand,
families of Riccati type equations have been obtained that do admit superposition formulas and
still have coefficients that are arbitrary functions of t. Among these we mention :
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1. Projective Riccati equations[6'7]

yH = ate bl yEeyte, y® (6)
2. Conformal Riccati equationsm

yH = st Al yY e sy e yite, y*-dy y92 7
A +Avp=0

3. Matrix Riccati equations

W = A+WB +CW+WDW ()

W,Ae R™K Be ROK ¢ e R™M D RO
(equations (6) are a special case of the MRE (8) with k=1).

In order to show the qualitative difference between Riccati equations with and without
superposition formulas, consider a simple example[5]

X' =y +X(C{X +Cay) Y = -2+ Qcos 2t)y + y(cyx + Cgy) (9)
where ¢4, ¢y, ¢3 and Q are constants. For ¢z =cq (9)is a special case of projective Riccati
equations (6), for cg % ¢4 the conditions of Lie's theorem are not satisfied. For cg=c, we can
integrate analytically, for cg# ¢, numerical integration is required. On Fig. 1 we show Poincaré
surfaces of section for two different cases, namely Q=02 and c3=¢5 and Q=0.2,
€3 = Co-0.1=08. Inboth cases the orbits are plotted for t=kr (k = integer).

1. Unbounded 5(_,_4:"‘5_.
Unbounded LS. Motion ot [0
Motion ., . K D

]
T

+

Fig. 1
In both cases we can have unbounded motion (for initial conditions to the left of the dotted line)
or bounded motion (to the right of that boundary). In the case with a superposition formula we
obtain regular closed orbits. For cg#C, we start the integration at a paint (xg ~ -1, yg=0. t=0)
close to the boundary. The trajectory starts out in a complicated manner that depends very
sensitively on the exact value of xg; it then settles into a spiralling motion towards the origin. We
observe (for many different values of xg, Q, and c3-¢p # 0) a phenomenon of "transitory”

chaos in a non Hamiltonian system.
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In order to show how the nonlinear superposition formulas provide solutions, we consider the
matrix Riccati equations (8).

2. SUPERPOSITION FORMULAS FOR THE MATRIX RICCATI EQUATION.

The case we present here corresponds to the MRE (8) based on the Lie group SL(N, C) and a
maximal parabolic subgroup P(k), i.e. we consider N = n+k,and n=rk,where n2k and re Z.
It has been shown that we only need 5 particular solutions to construct the general solution of
r=1 (square MRE‘s[8]) and n+2 if k=1 (projective MRE'S[6'7J).

Let P(k) be a maximal subgroup.of the Lie group SL{n +k, C). We construct the homogeneous
space SL(n +k, C)/P(k) ~ Gk(C"+k), the Grassmannian of k-planes in C™+K. We introduce
homogeneous coordinates on Gk(cm‘k) as the components of a matrix & of rank k

(3]

The inherent redundancy in homogeneous coordinates is removed by introducing affine
coordinates W =XY"1 on Gk(C“+k) (for det Y =0).

= )Y<§]’ XCCnXkl Yecka: GeGL[k’C] “0)

The system of ODE's related to the action of SL(n +k, C) on Gk(cn+k) is precisely the
rectangular MRE (8) with W, Ae ¢™K, Be c®K ce ¢™M De clM where A,..D are
matrix functions of (time) t. The right hand side of (8) corresponds to a curve in the Lie algebra
sl(n + k, C). The general solution of this system is given by the action of SL(n +k, C) on
G(C™Hy, ie.

G11 G2
Ga1 G22
Here G(t) isacurvein SL(n+k, C),and Ue €™ is a constant matrix, specifying the initial

W =(Gy 40U +Gy,) (Gy U+ Gy ()1 G=[ e SL{n+k,C). (11)

conditions for W(t). The problem is now to determine Gy (1) as functions of a (minimal) sufficient
number of particular solutions W,(t) of the equation (8). These solutions are called a
fundamental set of solutions.

In the following we will consider the case n > k (the case n <k is reduced to this one by
transposition). The minimal number m of known particular solutions needed verifies

mnk = (n + k)2 - 1, where the rigHt hand term is the number of independent matrix elements of
G(t). Then m particular solutions W(t),...,.W(t) will determine G(t), at least locally, if the
stability group of m initial values Wj(t) on the product of m copies of Gk(Cn+k) is contained in
the center of SL(n +k, C). ltis possible to choose a fundamental set of solutions genericly and
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to transform it into a "standard” particularly convenient set. These results can be expressed in
homogeneous or in affine coordinates (see ref. 12 for all details and proofs of statements).

The points of Gk(Cn+k) are expressed as

&7 = (X, X, L YD), W= Wy T W, D), Xy wie €K it (12)
in homogeneous or affine coordinates, respectively (the superscript T denotes transposition).
Correspondingly, we shall write the elements of G e SL{n +k, C) of (11) as

T _ o7 T
» Gy = N{,.uNo), Gy = (Pl""' Pr]’ Gyp=Q.(13)

w

Theorem 2. The following "standard set” of r + 3 initial conditions of the MRE (8), given in
homogeneous coordinates, has only the center of SL{(n +k, C) as its isotropy group :

0 Ik ] 0 'k A2
{ s,..., S } = : . goer | - : : . 14
0 0 0 Ik lk Ik

The blocks A;e K are such that one of them, say A4 satisfies Ay =diag(hqy, 2. Ay), with
AeC, A ¢lj- for i=] and another one, say Ao, has no irreducible invariant subspaces in

common with Aq.

Theorem 3. Given a set of r + 3 initial conditions of the MRE (8) in affine coordinates
{Uq.Upglc criok satisfying the conditions

0 (V..U Upy
det 20,
e oo g I
(i) Ui ... UH Ui+1 voo Uppy Yo
det 20, {=2,...r
(" e g e g
Uy Uy Ups
(i} det *
e e K
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(iv) The matrices
-1 .
T; = §;R(Spyq Rpyq) T €K, =12
have no common nontrivial irreducible eigenspaces and one of them, say T4 has k distinct
eigenvalues, where S; and R; are defined by

Uy ... Up
U= R
e -ee i
[51]-1 U|'+2 R1 Ur+3
: = U'1 , = U"l
(Spp)] e Rpet I

Then, there exists a transformation G e SL(n +k, C) transforming the set

W - [ "

- i=1,.,r+3
e ]
into the standard set §Si of (14)

The superposition formula can be obtained by reconstructing the group element G(t) in terms
of r+3 particular solutions.

We parametrize the group element G(t) as in (11) and (13). Writing (11) for the first r+1
“standard” solutions Wi(t) we obtain
M'] = Wll Pl' NI =Wl'+1 i Q, i, ] =1,..r
where we put
Wi

Wi =| - | =103
Wir®

Using W, o, (t) we obtain a system of inhomogeneous linear equations for P; in terms of the
known solutions W) (=1,..1+2) and the still unknown matrix Q(t) e chxk.

p
A Weao 17 Wi Wisp 1= W

Wl 0 [ = (Wyq-WholQ, W=
R W r

- Wip oo Wr+2,r' Wer

The solution exists and is unique as long as det W 0. Finally, to determine Q we use the
remaining solution W, 4 (1) :
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F]QA1

W = (Wr+]' Wr+3)Q (19)
FrQAr
F

o - Weag 17 Wi Weeg 1 Wy

W o = Way-Weo), W= :
F Wr+3,r "W o Wr+3,r - Wy,

and Aq,...A, are defined in Theorem 2.

Using (15) and

Hy

D= W W - W),
Hy

we can write the following equations

which

arnQ ' =(F)TH, i=1,.r
determine Q. Note that the matrices F‘1i H; are conjugate to constant matrices. The

existence of W1 is assured by the conditions imposed in Theorem 3. For the same reasons
F’1i exists, i=1,...,r. (Theorem 3, (ii).)
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