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Abstract.We point out that nonlinear superposition principles can be used to identify 

integrable systems of nonlinear ordinary differential equations among families of nonintegrable 

ones. A superposition formula is then obtained for a class of integrable equations, namely the 

matrix Riccati equations. 

1. INTEGRABLE AND NONINTEGRABLE SYSTEMS RICCATI EQUATIONS. 

We shall call a system of first order nonlinear ordinary differential equations (ODE's) a system of 

Riccati equations if all the nonlinearities are quadratic 

y'P.=aP.+bP-~.y~.cP.~yeCyJ ~, p .= l  ..... n. (1) 

The coefficients a I~, bP'cu clJ'c~13 are, in general, arbitrary functions of t, the prime denotes 

differentiation with respect to time t and summation over repeated indices is to be understood. 

Equations of the type (1) can serve as prototypes of systems demonstrating chaotic behavior. 

Examples of such systems with extremely sensitive dependence on the initial conditions are the 

Lorenz equations, various versions of the Volterra-Lotke equations, or the Henon-Heiles 

equations[I-3]. 
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On the other hand, many particular cases of equations of type (1) exist which are integrable and 

hence have stable solutions with regular long term (global) behavior. Clearly it is of interest to 

identify such systems and tO solve them. These systems can then serve as tools for studying 

"nearby" nonintegrable systems, obtained by perturbing the coefficients in the integrable 

systems. Several methods are commonly used for identifying integrable systems among 

families of nonintegrable ones. In addition to direct searches for first integrals, or for linearizing 

transformations, we mention the method of Painlev~ analysis[4]. This is an investigation of the 

singularity structure of the solutions of the equations, the purpose of which is to find equations 

for which the solutions have no moving critical points. 

In this contribution we present a different integrability test[5], based on the fact that certain 

systems of nonlinear ODE's admit superposit ion formulas. We use this term to indicate that 

the general solution of such a system of n ODE's can be expressed as a function of a finite 

number m of particular solutions and of n constants[ 6"10]. This approach makes use of the 

following theorem, due to S. Lie[11]. 

Theorem 

y' = ~ (y, t) 

to admit a superposition formula 

y = F ( Y l  ..... Ym, Cl ..... Cn) 
is that : 

(i) The system (2) have the form 

= T. Zk(t ) ~,k(¥) Y' k=! 

(ii) The vector fields 

generate a finite dimensional Lie algebra. 

1. The necessary and sufficient condition for a system of first order ODEs 

(2) 

(3) 

(41 

(s) 

All indecomposable systems of equations satisfying Lie's criteria have been recently classified, 

making use of the theory of transitive primitive Lie algebras[ 9]. All systems of n such equations 
~[5] with n <_ 3 have recently been integratea . 

Equations satisfying Lie's criterion do not necessarily have polynomial nonlinearities; examples 

have been given of equations with rational and other nonlinearities [9,10]. On the other hand, 

families of Riccati type equations have been obtained that do admit superposition formulas and 

still have coefficients that are arbitrary functions of t. Among these we mention : 
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1. Projective Riccati equations [6,7] 

2. Conformal Riccati equations [7] 

ytJ-= a~+.kllvyV+sy~+yP-c~ya.cl~yc{y(Z/2 

,,% + A ~ . : 0  
3. Matrix Riccati equations 

W' = A+WB+CW+WDW 

W, A e R nxk, B e Rkxk,, C e R nxn, D e R kxn 

(equations (6) are a special case of the MRE (8) with k = 1). 

(6) 

(7) 

(8) 

In order to show the qualitative difference between Riccati equations with and without 

superposition formulas, consider a simple example[ 5] 

x' = y + X(ClX + c2Y ) y' = -(2 + Q cos 2t)y + Y(ClX + o3Y ) (9) 

where c 1, c 2, c 3 and Q are constants. For c 3 = c 1 (9) is a special case of projective Riccati 

equations (6), for c 3 ~ c I the conditions of Lie's theorem are not satisfied. For c 3 = c 2 we can 

integrate analytically, for c 3 ;~ c 2 numerical integration is required. On Fig. 1 we show Poincar(~ 

surfaces of section for two different cases, namely Q = 0.2 and c 3 = c 2 and Q = 0.2, 

c 3 = c 2 - 0.1 = 0.6. In both cases the orbits are plotted for t = k= (k = integer). 
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--I.5 • .. 

x 

Fig. 1 

In both cases we can have unbounded motion (for initial conditions to the left of the dotted line) 

or bounded motion (to the right of that boundary). In the case with a superposition formula we 

obtain regular closed orbits. For c 3 ~ c 2 we start the integration at a point (x 0 ~ -1, YO = O, t = O) 

close to the boundary. The trajectory starts out in a complicated manner that depends very 

sensitively on the exact value of Xo; it then settles into a spiralling motion towards the origin. We 

observe (for many different values of x O, Q, and c 3 - c 2 ~ O) a phenomenon of "transitory" 

chaos in a non Hamiltonian system. 
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In order to show how the nonlinear superposition formulas provide solutions, we consider the 

matrix Riccati equations (8). 

2. SUPERPOSITION FORMULAS FOR THE MATRIX RICCATI EQUATION. 

The case we present here corresponds to the MRE (8) based on the Lie group SL(N, C) and a 

maximal parabolic subgroup P(k), i.e. we consider N = n + k, and n -- rk, where n > k and r e Z. 

It has been shown that we only need 5 particular solutions to construct the general solution of 

r =1 (square MRE's[8]) and n + 2 if k = 1 (projective MRE's[6,7]). 

Let P(k) be a maximal subgroup of the Lie group SL(n + k, C). We construct the homogeneous 

space SL(n + k, C)/P(k) ~ Gk(Cn+k), the Grassmannian of k-planes in C n+k. We introduce 

homogeneous coordinates on Gk(C n+k) as the components of a matrix ~ of rank k 

t:=[X lY - y.[X' l = [XG]yG , x:cnxk, yeckxk G=GL(k,C)., [I0} 

The inherent redundancy in homogeneous coordinates is removed by introducing affine 
coordinates W = XY "I on Gk(C n+k) (for det Y ~ 0). 

The system of ODE's related to the action of SL(n + k, C) on Gk(C n+k) is precisely the 

rectangular MRE (8) with W, A E C nxk, B e C kxk, C e C nxn, D e C kxn, where A ..... D are 

matrix functions of (time) t. The right hand side of (8) corresponds to a curve in the Lie algebra 

sl(n + k, C). The general solution of this system is given by the action of SL(n + k, C) on 

Gk(On+k), i.e. 

W(t)=(G11(t)U +G12(t))(G21(t)U+G22[t))'l G= [ Gl l  G12 1~ SL(n+k,C). (11) 
' G21 G22 

Here G(t) is a curve in SL(n + k, C), and U e C nxk is a constant matrix, specifying the initial 

conditions for W(t). The problem is now to determine Gik(t ) as functions of a (minimal) sufficient 

number of particular solutions Wi(t ) of the equation (8). These solutions are called a 

fundamental set of solutions. 

In the following we will consider the case n > k (the case n < k is reduced to this one by 

transposition). The minimal number m of known particular solutions needed verifies 

mnk > (n + k) 2 - 1, where the rigllt hand term is the number of independent matrix elements of 

G(t). Then m particular solutions Wl(t ) ..... Wm(t ) will determine G(t), at least locally, if the 

stability group of m initial values Wi(t0) on the product of m copies of Gk(C n+k) is contained in 

the center of SL(n + k, C). It is possible to choose a fundamental set of solutions genericly and 
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to transform it into a "standard" particularly convenient set. These results can be expressed in 

homogeneous or in affine coordinates (see ref. 12 for all details and proofs of statements). 

The points of Gk(C n+k) are expressed as 

~T=(XlT,...,XrT, yT), wT=(WlT,... ,wT), Xi,Y,WiE C kxk, i=1 ..... r (12) 

in homogeneous or affine coordinates, respectively (the superscript T denotes transposition). 

Correspondingly, we shall write the elements of G E SL(n + k, C) of (11) as 

[ M.1 ! ':": . M'r ] T = [NT,..., NT), = [P, ,..., Pr }, Q. {13) 
G11 = , G12 G21 G22 = 

[ Mr1 ,..., Mrr 

Theorem 2. The following "standard set" of r + 3 initial conditions of the MRE (8), given in 

homogeneous coordinates has only the center of SL(n + k, C) as its isotropy group : 

s 
,-.., (~r+3 } = 

Ik 

? 
0 
!k 

0 
o 

s'"s i k i,] 
Ik 
!k 

;k 

% 
• [ 1 4 ]  

Ar 

]k 

The blocks A i e C kxk are such that one of them, say A 1 satisfies A 1 = diag(~. 1, Z 2 ..... Zk), with 

Zi e C, ~'i ~ %j for i ~ j and another one, say A 2, has no irreducible invariant subspaces in 

common with A 1 . 

Theorem 3. Given a set of r + 8 initial conditions of the MRE (8) in affine coordinates 

{U 1 ..... Ur+3} c C rkxk satisfying the conditions 

(i] I U I . . . U r  Ur+11 
d et = 0, 

I k I k I k J 

[ii) I UI "'" 
det 

I I k 
Ui-1 Ui+1 . . .  Ur+ I Vr+2 l 

I I k I k I k I k 

U ... U r Ur+3] 
[iii] det =0. 

I k ... I k I k 

=0, ] = 2,...,r 
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(iv) The matrices 

T i = S i Ri(Sr+ 1 Rr+l )-1 e C kxk, i=  1,2 

have no common nontrivial irreducible eigenspaces and one of them, say 

eigenvalues, where S i and R i are defined by 

u i u,..-U-,} 
I k . . .  I k 

• -_ 0 - 1  , " ; U - 1  

(Sr+l) "1 I Ik R r . l  i Ik 

T 1 has k distinct 

Then, there exists a transformation G ~ SL(n + k, C) transforming the set 

into the standard set F.S i of (14) 

The superposition formula can be obtained by reconstructing the group element G(t) in terms 

of r+3 particular solutions. 

We parametrize the group element G(t) 

"standard" solutions Wi(t ) we obtain 

Mij -- Wji Pj, Ni "Wr+ l  ,i Q, i, j = 1 ..... r 

where we put 

Wit(t} 

wi(t) = 
Wir (t} 

as in (11) and (13). Writing (11) for the first r+l 

i = 1 , . . . , r + 3 .  

Using Wr+ 2 (t) we obtain a system of inhomogeneous linear equations for Pi in terms of the 

known solutions W i (t) (j = 1 ..... r+2) and the still unknown matrix Q(t) ~ C kx k.  

L Wr÷2l "Wlr """Wr+2, r" Wrr 

The solution exists and is unique as long as det V~ ~ 0. Finally, to determine Q we use the 

remaining solution Wr+ 3 (t) : 
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where 

[ F1Q~- ! 
. 

Fr'Q& r 
: [Wr+l  - Wr÷3 ]Q  (1S) 

I;'} 
: [Wr÷ I - W r + 2 ) Q ,  

Fr 
W= 

w,:!,!;.w!! :::;:Wr:, ;!:w:!l 
Wr+3,r" Wlr .... ' Wr+3,r- WrrJ 

and A 1 ..... A r are defined in Theorem 2. 

Using (15) and 

• _- ~/-1 [Wr+ 1 _ Wr+3 }, 
Hr 

we can write the following equations 

QAiQ-1 = (Fi) "1 H i, i = 1 ..... r 

which determine Q. Note that the matrices F ' l i  H i are conjugate to constant matrices. The 

existence of W -1 is assured by the conditions imposed in Theorem 3. For the same reasons 

F' l i  exists, i= 1 ..... r. (Theorem 3, (ii).) 
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