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Abstract: Quantum computing and machine learning (ML) have received significant developments

which have set the stage for the next frontier of creative work and usefulness. This paper aims at re-

viewing various data-encoding techniques in Quantum Machine Learning (QML) while highlighting

their significance in transforming classical data into quantum systems. We analyze basis, amplitude,

angle, and other high-level encodings in depth to demonstrate how various strategies affect encoding

improvements in quantum algorithms. However, they identify major problems with encoding in

the framework of QML, including scalability, computational burden, and noise. Future directions

for research outline these challenges, aiming to enhance the excellence of encoding techniques in

the constantly evolving quantum technology setting. This review shall enable the researcher to gain

an enhanced understanding of data encoding in QML, and it also suggests solutions to the current

limitations in this area.

Keywords: quantum computing; machine learning (ML); data encoding; Quantum Machine Learning

(QML)

MSC: 81P99

1. Introduction

Quantum computation [1–4] represents a groundbreaking means of harnessing nature’s
computational power. Widely regarded as the frontier of technology, it offers the potential for
practical tasks to be executed through collaboration between parallel universes and subsequent
result sharing [5–8]. However, amidst the anticipation surrounding quantum computing,
demonstrating a “quantum advantage” remains a formidable challenge. This entails identify-
ing tasks that a quantum computer can accomplish more efficiently or effectively than the best
classical algorithms on conventional machines. While the realization of quantum advantage is
yet to be proven, even the prospect of quantum computers outperforming classical ones in
certain tasks within hours or minutes would signify a significant milestone.

Machine learning [9–11] refers to a versatile approach of teaching machines to recognize
patterns within data so as to enable categories and group them, arrange them in clusters,
or for some other purpose, without being programmed how to do so individually [12–15].
Hence, in this context, Quantum Machine Learning (QML), which has been proposed
and explored in the literature [16–18], appears to be the most feasible solution and is in
its infancy. While classical ML has expanded into a large field with many different uses,
QML has the possibility of outcompeting traditional approaches given the use of quantum
computation concepts.

Mathematics 2024, 12, 3318. https://doi.org/10.3390/math12213318 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12213318
https://doi.org/10.3390/math12213318
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-9343-5182
https://orcid.org/0000-0002-4589-3573
https://orcid.org/0000-0002-6361-8786
https://orcid.org/0000-0003-1902-9877
https://doi.org/10.3390/math12213318
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12213318?type=check_update&version=2


Mathematics 2024, 12, 3318 2 of 32

The performance of QML algorithms highly depends on the used encoding schemes
that lie at the heart of the classical data-to-quantum system transformation. It is possible to
obtain relevant data sets compatible with further actions of quantum algorithms by encod-
ing techniques that act as a transition of classical information to quantum states [19–22].
These approaches help integrate classical data into quantum structures, enhancing the
speed and optimization of QML algorithms [23–26]. The specific properties of quantum
computation make the utilization of QML focused on providing new opportunities in
the handling, sorting, and analysis of data. In this review paper, the study of encoding
techniques in QML addresses theoretical and practical problems and future developments.
We examine the effectiveness of numerous encoder schemes to help us determine their
compatibility in diverse contexts with considerations made on their computational time,
precision, and complexity. This work defines current issues and discusses possible enhance-
ments. We also highlight current developments and trends in QML encoding, with case
studies that demonstrate their practical application. Concluding with recommendations
for future research, this paper aims to advance the field of QML encoding. Table 1 shows a
comparison of quantum encoding methods with existing papers.

Table 1. Comparison with existing papers: A = quantum computing basics, B = QML and its methods

and discussions, C = discussions on quantum data encoding methods, D = research summary,

E = challenges and future directions related to QML, F = challenges and future directions related to

quantum encoding methods.

Year Reference A B C D E F Limitations

2018 Biamonte et al. [27] ✗ ✓ ✗ ✗ ✗ ✗

The work’s discussion of QML methodologies is limited, lacking basic
quantum computing concepts, making it high-level for readers, and it
restricts future scope to hardware challenges, ignoring other significant
issues in QML.

2020
Abohashima
et al. [28]

✗ ✓ ✗ ✗ ✓ ✗

While aiming for a comprehensive survey, this paper’s coverage of 30 publi-
cations is insufficient for recent QML advances, lacks detailed methodology,
overemphasizes classification over other areas, and focuses too much on
hardware limitations, neglecting algorithmic efficiency, error correction,
scalability, and integration with classical systems.

2020 Zhang et al. [29] ✓ ✓ ✗ ✗ ✗ ✗

The paper is not a comprehensive review as it focuses solely on quantum
versions of specific supervised and unsupervised algorithms based on the
quantum circuit model and insufficiently covers recent advancements by
reviewing only a limited number of publications.

2022 Houssein et al. [30] ✓ ✓ ✗ ✗ ✓ ✗

The work is similar to that by [28] and lacks novelty. Despite being
published in 2022, it only discusses papers up to 2020, hindering its ability
to present recent innovations. This limited scope and outdated coverage
diminish the paper’s relevance and contribution to current research.

2023 Tychola et al. [31] ✗ ✓ ✗ ✗ ✗ ✗

The review focuses solely on SVM and QSVM, overlooking other quan-
tum algorithms like QNN and QkNN, and lacks specific future research
directions or practical steps for advancing QML in unsupervised learning
and generative models.

2024 Pande et al. [32] ✗ ✗ ✓ ✗ ✗ ✗

The review overlooks some novel data-encoding techniques and lacks
detailed discussion on practical implementation challenges, including
required quantum resources and computational complexity.

− Our Study ✓ ✓ ✓ ✓ ✓ ✓ −

✓: a characteristic is satisfied in our study; ✗: a characteristic is not satisfied in our study.

2. Contributions of This Study

The main contributions of this research are outlined below:

• Introduction to Quantum Computing Fundamentals: This paper commences with
a concise yet comprehensive discussion of the rudimentary principles of quantum
computing. This foundation equips readers with the essential knowledge required to
comprehend the advanced topics discussed in subsequent sections.

• Exploration of QML: A comprehensive explanation of QML is presented that high-
lights historical background in addition to the existing state. As a distinct section, this
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concept presents methodologies of data encoding in QML and can thus be considered
valuable for readers.

• In-depth Analysis of Data Encoding Methods: This study offers an extensive analysis
of the most common data encoding practices in QML at the time. Finally, an evaluation
of the technique and its application in the current literature from the period of 2020 to
2024 is presented.

• Challenges and Future Directions: Finally, this paper discusses the most significant
issues that exist in the encoding stage for QML at the present time. It also describes
what future work may be worth pursuing that has the potential to further advance
these techniques and, in turn, the overall field of quantum technology.

Organization of the Work

Following the introduction, this paper is organized as follows to ensure that the
subsequent sections systematically and progressively address the main themes of the
study. The first part, Section 3, familiarizes the reader with fundamental concepts such as
Quantum Bits (Qubits), Superposition, and Entanglement, as well as the other important
principles. Next, in Section 4, we describe pure QML, quantum-inspired ML, and classical–
hybrid QML to provide the reader with the big picture of the area. Moreover, the discourse
seamlessly transitions into a detailed discussion of various encoding strategies, highlighting
their importance in the effective implementation of QML. In Section 5, a critical review and
discussion from 2020 to 2024 follows, providing a contemporary analysis of the literature.
The penultimate Section 6 addresses the pressing issues and potential advancements that
could shape the future of QML. This paper culminates in Section 7, which synthesizes the
insights garnered throughout the study. Table 2 shows abbreviations used in the paper.

Table 2. List of abbreviations used in the paper.

Abbreviation Full Forms Abbreviation Full Forms

AEs Autoencoders AI Artificial Intelligence

ANN Artificial Neural Network APM Autonomous Perceptron Model

APS American Physical Society AUC Area under the ROC Curve

CAN Control Area Network CFMs Classical Feature Maps

CML Classical Machine Learning CNNs Convolutional Neural Networks

CNOT Controlled NOT DDoS Distributed Denial of Service

DEQSVC
Dimensionality Reduction and Encoding
Technique for Quantum Support Vec-
tor Classifier

DL Deep Learning

DQL Deep Quantum Learning DT Digital Twin

DTQFL
Digital Twin-Assisted Quantum Federated
Learning Algorithm

EF-QAE Enhanced Feature Quantum Autoencoder

EO Earth Observation FL Federated Learning

HHL Harrow Hassidim Lloyd HQCA Hybrid Quantum Classical Architecture

HCQCs Hybrid Classical–Quantum Classifiers HC-QNN Hybrid Classical–Quantum Neural Net-
work

HQCNN Hybrid Quantum–Classical Neural Network IBM International Business Machines

IoMT Internet of Medical Things IoT Internet of Things

ML Machine Learning NIDS Network Intrusion Detection System

NISQ Noisy Intermediate Scale Quantum NISQRC Noisy Intermediate Scale Quantum Reser-
voir Computing

NNs Neural Networks PQCs Parametrized Quantum Circuits



Mathematics 2024, 12, 3318 4 of 32

Table 2. Cont.

Abbreviation Full Forms Abbreviation Full Forms

QA Quantum Annealer QC Quantum Computing

QCC Quality Control Circle QC-CNN Quantum Classical Convolutional Neu-
ral Network

QCL Quantum Circuit Learning QC-NNs Quantum Convolutional Neural Networks

QENN Quantum Embedding Neural Network QFMs Quantum Feature Maps

QGAN Quantum Generative Adversarial Network QGLMs Quantum Generalized Linear Models

QGFormer Quantum Gravitational Transformer QKAR Quantum Kernel Alignment based Regression

QKE-QSVR Quantum Kernel Estimation-based Quan-
tum Support Vector Regression

QKNN Quantum k-Nearest Neighbour

QLDA Quick Look Display Area QML Quantum Machine Learning

QNN Quantum Neural Network QNNN Quantum Naive Neural Network

QPCA Quantum Principal Component Analysis QRAM Quantum Random Access Memory

QSVR Quantum Support Vector Regression QSVM Quantum Support Vector Machine

QuBits Quantum Bits RBF Radial Basis Function

RS Remote Sensing SciML Scientific Machine Learning

SVMs Support Vector Machines SVR Support Vector Regression

UCI University of California Intelligence VQC Variational Quantum Classifier

VQE Variational Quantum Eigensolver VQNN Variational Quantum Neural Network

VQP Variational Quantum Pulses 3D-QAE 3D-Quantum Autoencoder

3. Quantum Computing Fundamentals

Quantum computing represents a paradigm shift, utilizing the principles of quantum
mechanics to process information in ways that classical computers cannot. Quantum
mechanics introduces the concept of a quantum, the smallest discrete unit of any physical
property. This same fundamental notion is applied in quantum computing to manipulate
‘qubits’—quantum bits that can exist in multiple states simultaneously, rather than just two
(as is the case with classical bits). Quantum computing relies on unique phenomena like
superposition and entanglement to make computations not only more efficient but also
faster. While both quantum computing and conventional computing use unique principles,
quantum computing leverages non-classical properties of subatomic particles, allowing it
to perform tasks beyond the capabilities of classical computation [33].

The fundamental principles of quantum computing that are essential for its implemen-
tation include the following.

3.1. Quantum Bits (Qubits)

A qubit is the fundamental unit of quantum information. It is the quantum analog of
the classical binary bit and is represented using Dirac notation:

|0⟩ =
[

1
0

]
, |1⟩ =

[
0
1

]
. (1)

Unlike a classical bit, which can be either 0 or 1, a qubit can exist in a state of superpo-
sition, allowing it to be simultaneously both 0 and 1. This phenomenon is a consequence
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of quantum mechanics, which permits particles to exist in multiple states at once. The
superposition state of a qubit can be mathematically expressed as:

|ψ⟩ = α|0⟩+ β|1⟩ =
[

α

β

]
, where |α|2 + |β|2 = 1. (2)

The coefficients α and β are complex numbers, representing the probabilities of the
qubit collapsing to the state |0⟩ or |1⟩ upon measurement.

Consider a two-qubit system expressed as follows:

|ψ⟩ = a|00⟩+ b|01⟩+ c|10⟩+ d|11⟩ =




a
b
c
d


, (3)

where a, b, c, d ∈ C and |a|2 + |b|2 + |c|2 + |d|2 = 1.
An example of a two-qubit system is:

|ψ12⟩ =
1√
2




0
1
1
0


 =

1√
2
(|01⟩+ |10⟩), (4)

where the subscripts 1 and 2 denote the order of the qubits.
The density matrix is another way to represent quantum states. For a pure state |ψ⟩,

the density matrix is:

ρ = |ψ⟩⟨ψ| =
(|a|2 ab∗

a∗b |b|2
)

. (5)

Density matrices can also describe mixed states, which are a statistical ensemble of
pure states |ψi⟩ with probabilities pi:

ρ = ∑
i

pi|ψi⟩⟨ψi|, (6)

where ∑i pi = 1.

3.2. Superposition

In quantum mechanics, a physical system can exist in multiple states simultaneously—a
property known as superposition. This phenomenon arises when Schrödinger’s equation
is solved for a quantum system as wave functions are often expressed as combinations of
different states [34–36]. These superpositions of possible states are precisely what quantum
mechanics predicts: a quantum system exists in a “fuzzy” superposition of different states
until a measurement reveals which specific state it is in. The key to enabling quantum
computers to perform a vast array of calculations simultaneously lies in the principle
of superposition. In quantum computing, each additional qubit exponentially increases
computational power, unlike the linear increase seen in classical computing. For example,
while two classical bits can represent 00, 01, 10, or 11, two qubits in superposition can
represent all four combinations simultaneously. Born’s rule [37,38] is used to calculate the
probabilities of measuring specific outcomes from these superposed states.

3.3. Entanglement

Entanglement is quantum mechanics’ most fundamental property and serves as the
basis for both quantum computing and QML. The process describes two or more quantum
particles, where the state of one particle instantly affects the other, regardless of the distance



Mathematics 2024, 12, 3318 6 of 32

between them [39–42]. By entangling qubits, the quantum computer is able to process
information more efficiently than a classical computer. With QNNs, entangled qubits
represent input data in terms of quantum states and explain complex correlations between
features. When a QNN processes a batch of photos, the entangled qubits can execute several
calculations concurrently, leading to substantial accelerations and enhanced generalization
across various image classes. Entanglement is a potent resource that not only expedites
computation but also improves the precision of machine learning tasks, underscoring its
essential role in the progression of quantum technologies [39,43].

3.4. Quantum Gates

Quantum gates are fundamental components in the quantum circuit model of compu-
tation, much like classical logic gates in conventional digital circuits. In contrast to classical
logic gates, quantum gates are all reversible and are represented by unitary matrices. This
implies that quantum gates always have the same number of inputs and outputs.

In reality, quantum gates are operators—unitary matrices that act upon a quantum
state to transform it into a different quantum state. This transformation can be repre-
sented as:

U|ψ⟩ =
[

u11 u12

u21 u22

][
α

β

]
(7)

=

[
a
b

]
(8)

= |ϕ⟩ (9)

In quantum circuit models, qubits are manipulated by applying quantum gates se-
quentially. Quantum gates differ depending on the qubit system considered; there are
different gates for single-qubit and multi-qubit systems. Table 3 briefly discusses the most
important gates used for one-qubit, two-qubit, and three-qubit systems.

Table 3. Quantum gates.

Gate Type Gate Name Matrix Working Principle

O
n

e
-Q

u
b

it
G

a
te

s

Identity Gate I =

(
1 0
0 1

)
It turns |0⟩ to |0⟩ and |1⟩ to |1⟩.

Pauli-X X =

(
0 1
1 0

)
≡ σx It converts |0⟩ to |1⟩ and |1⟩ to |0⟩. It is similar to

the NOT gate.

Pauli-Y Y =

(
0 −i
i 0

)
≡ σy It turns |0⟩ to i|1⟩ and |1⟩ to −i|0⟩.

Pauli-Z Z =

(
1 0
0 −1

)
≡ σz It turns |1⟩ to −|1⟩ and leaves the basis state |0⟩

unchanged. It is also called the phase-flip.

Hadamard H = 1√
2

(
1 1
1 −1

)
It converts |0⟩ to superposition state

|0⟩+|1⟩√
2

and |1⟩
to

|0⟩−|1⟩√
2

.

Phase shift S =

(
1 0
0 i

)
It turns |1⟩ to i|1⟩ and |0⟩ remains unchanged.

T gate T =

(
1 0

0 ei π
4

)
It turns |1⟩ to ei π

4 |1⟩ and |0⟩ remains unchanged.
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Table 3. Cont.

Gate Type Gate Name Matrix Working Principle

T
w

o
-Q

u
b

it
G

a
te

s

Controlled I CI =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 It leaves |00⟩, |01⟩, |10⟩, |11⟩ unchanged.

Controlled NOT CNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 It turns |10⟩ to |11⟩, |11⟩ to |10⟩ and leaves |00⟩,

|01⟩ unchanged.

SWAP Gate SWAP =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 It turns |10⟩ to |01⟩, |01⟩ to |10⟩ and leaves |00⟩,

|11⟩ unchanged.

Controlled Z CZ =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


 It turns |11⟩ to −|11⟩ and |00⟩, |01⟩, |10⟩ remain

unchanged.

Controlled S CS =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 i


 It turns |11⟩ to i|11⟩ and |00⟩, |01⟩, |10⟩ remain un-

changed.

Controlled T CT =




1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 ei π
4


 It turns |11⟩ to ei π

4 |11⟩ and |00⟩, |01⟩, |10⟩ remain
unchanged.

T
h

re
e

-Q
u

b
it

G
a

te
s

Toffoli Gate CCNOT =




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0




It turns |110⟩ to |111⟩, |111⟩ to |110⟩ and |000⟩,
|001⟩, |010⟩, |011⟩, |100⟩, |101⟩ remain unchanged.

Fredkin Gate CCSWAP =




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1




It turns |101⟩ to |110⟩ , |110⟩ to |101⟩ and |000⟩,
|001⟩, |010⟩, |011⟩, |100⟩, |111⟩ remain unchanged.

3.5. Measurement

The concept of measurement is pivotal in quantum mechanics and quantum computing.
It is through measurement that quantum states are observed and their properties inferred.
Despite ongoing debates regarding the interpretation of quantum mechanics, the practical
application of measurement to physical systems remains of paramount importance.

A quantum measurement is characterized by a set of measurement operators, Mm, as
stipulated by the third postulate of quantum mechanics. These operators act upon the state
space of the system being measured, with the index m representing the possible outcomes
of the experiment. The probability of obtaining a particular outcome m when the system is
in state |ϕ⟩ is given by:

p(m) = ⟨ϕ|M†
m Mm|ϕ⟩, (10)
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and the post-measurement state of the system is:

Mm|ϕ⟩√
⟨ϕ|M†

m Mm|ϕ⟩
. (11)

The measurement operators must satisfy the completeness relation:

∑
m

M†
m Mm = I, (12)

which ensures that the sum of probabilities for all possible outcomes is equal to 1:

1 = ∑
m

p(m) = ∑
m

⟨ϕ|M†
m Mm|ϕ⟩. (13)

In the context of quantum computing, measurement typically refers to the observa-
tion of qubits in the computational basis, described by the operators M0 = |0⟩⟨0| and
M1 = |1⟩⟨1|. For a system in state |ϕ⟩ = a|0⟩ + b|1⟩, the probabilities of measuring the
qubit in state |0⟩ or |1⟩ are:

p(0) = ⟨ϕ|M†
0 M0|ϕ⟩ = |a|2, (14)

and
p(1) = ⟨ϕ|M†

1 M1|ϕ⟩ = |b|2, (15)

respectively. The corresponding post-measurement states are:

M0|ϕ⟩
|a| = |0⟩, (16)

and
M1|ϕ⟩
|b| = |1⟩, (17)

where the phase factors a
|a| and b

|b| can be disregarded as they do not affect the measure-
ment outcome.

Since measurement allows us to extract classical information from quantum systems,
we therefore view this first as a definition of measurement. At the end of most quan-
tum algorithms, the computation’s result is read out to be seen and used directly by
classical interpretation.

3.6. The No-Cloning Theorem

The no-cloning theorem is one of the principles in quantum computing which should
be taken into consideration by the experts. The no-cloning theorem asserts that it is
impossible to replicate an exact duplicate of an arbitrary unknown quantum state [44]. This
is significant because, unlike classical information, which can be freely duplicated, quantum
information cannot. This is not merely a technical limitation, but it also necessitates the
development of new techniques for information processing that significantly differ from
classical methods. Rather, it is a result of fundamental quantum mechanical laws [45]. It
has profound implications for the development of quantum algorithms and prompts a
need for new techniques for information processing markedly different from the classical.

3.7. Decoherence in Quantum Systems

A phenomenon of decoherence represents a serious practical obstacle in the realization
of quantum computing. A quantum state refers to a loss of quantum coherence, i.e., the
probabilistic nature of quantum states leads to a mixture of states instead of a superposition
of states [46]. Usually, this occurs either due to interactions between a quantum system and
its environment, which causes its delicate phase relationships between quantum states to
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be disrupted, or from a nonlinear interaction between two quantum systems. Thus, the
quantum system is maintained in a quantum state but transitions into a classical state,
thereby losing exactly the properties that make quantum computing so special.

4. Quantum Machine Learning and the Role of Data Encoding

QML integrates quantum computing principles with ML algorithms, offering ad-
vantages like faster processing and the ability to handle vast datasets [16,47,48]. The
potential of QML lies in its ability to solve complex problems that are challenging for
classical computers.

The origins of QML can be traced back to Peter Shor and Lov Grover in the mid-
1990s, whose algorithms demonstrated quantum advantages in factorization and database
searching [49,50]. These foundational works laid the groundwork for using quantum
mechanics in computational tasks, including machine learning. The development of
quantum hardware, such as NISQ devices, has enabled the testing of QML algorithms,
showcasing quantum speedups in specific tasks [51]. As quantum hardware improves, the
potential applications of QML continue to expand.

QML approaches can be classified based on the dataset and algorithm employed [52],
as shown in Figure 1. These include:

1. Classical–Classical (CC): Classical algorithms with classical datasets.
2. Quantum–Classical (QC): Classical algorithms processing quantum datasets.
3. Classical–Quantum (CQ): Classical datasets processed on quantum hardware.
4. Quantum–Quantum (QQ): Quantum algorithms with quantum datasets.

Figure 1. QML approaches for machine learning and quantum computing.

QML algorithms can also be categorized into three types: pure quantum, hybrid
classical–quantum, and quantum-inspired.

4.1. Pure Quantum ML

Pure quantum ML algorithms operate entirely on quantum hardware, utilizing quan-
tum mechanics properties such as superposition and entanglement to achieve potential
speedups over classical methods. Examples include Quantum Support Vector Machines
(QSVMs) and Quantum Neural Networks (QNNs), which leverage quantum properties
to efficiently perform tasks such as matrix inversion and classification [16,53]. Despite
their potential, these algorithms require advanced quantum hardware, which remains a
challenge due to noise and error rates in current devices.
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4.2. Quantum-Inspired ML

Quantum-inspired ML draws inspiration from quantum mechanics principles, ap-
plying them to classical algorithms. These approaches, such as quantum-inspired binary
classifiers and neural networks, use classical hardware but achieve improved accuracy and
efficiency by incorporating quantum mechanics concepts [54,55]. Although they do not
achieve the same speedups as true quantum algorithms, quantum-inspired methods offer
practical benefits with current technology.

4.3. Hybrid Classical-Quantum ML

Hybrid classical–quantum ML combines classical and quantum resources to optimize
performance. Quantum computers are used for specific tasks, while classical components
handle operations better suited to traditional hardware. Approaches such as Variational
Quantum Classifiers (VQCs) and Quantum Circuit Learning (QCL) leverage this combina-
tion to optimize performance in tasks like classification and regression [56,57].

However, hybrid methods give us flexibility and use of near-term quantum devices,
but balancing quantum and classical computation is complex.

It is important for us to understand the differences between classical and quantum
ML because we see how QML could be useful. In classical ML, data are typically prepared
in binary form, while QML demands encoding classical data to quantum states via qubits.
This transformation allows one to execute quantum algorithms, which exploit quantum
phenomena, such as superposition, to execute computation in parallel over a number of
possibilities at once.

As depicted in Figure 2, the workflow of QML shares similarities with CML, including
data preprocessing and model training. However, the introduction of quantum encoding,
algorithms, and measurements adds unique complexities. The quantum model is trained
once, and a system must then convert quantum measurements back into classical data for
evaluation and decision-making. The heart of this process is data encoding, which, along
with its implications for the mapping from classical data to quantum states, has direct
consequences for the efficiency and performance of quantum algorithms.

Figure 2. General working methodology of QML.

The data encoding process is a key differentiator from CML to QML. Classical infor-
mation in QML is transformed to quantum states, which then perform better on quantum
algorithms for processing the data. Different encoding techniques are good for different
datasets or sometimes for different tasks. Below, we explore some of the most commonly
used encoding methods in QML (Figure 3):
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Figure 3. Types of data encoding methods in QML.

4.4. Basis Encoding

Basis encoding is a widely utilized method for translating classical data into quantum
states, effectively bridging classical and quantum computational paradigms [58]. In this
approach, an m-bit classical data string is encoded into an m-qubit quantum state. For
example, the classical sequence 1001 is represented in the quantum domain as |1001⟩.

The transformation of classical data X, consisting of vectors xn, into quantum states
can be mathematically formulated as:

|X⟩ = 1√
N

N

∑
n=1

|xn⟩, (18)

where each vector xn is a binary string xn = (b1, b2, . . . , bM) indicating the presence (1) or
absence (0) of M features. Binary thresholding is applied to convert grayscale images into
binary vectors. Each binary vector xn is then associated with a quantum state |xn⟩, and the
entire dataset is represented in a superposition of these states.

Each individual data sample is depicted by:

|xn⟩ = 1√
M

M

∑
i=1

|bi⟩, (19)

with bi denoting the binary value that signifies the presence of a feature, and |bi⟩ represent-
ing the corresponding qubit in the quantum system.

4.5. Amplitude Encoding

Amplitude encoding is a technique that maps classical data to the amplitudes of
a quantum state, establishing a fundamental connection between classical information
vectors and quantum state vectors [33,59–61]. This method utilizes normalized classical
vectors to encode information into the amplitudes of a quantum state [62,63]. The classical
vector y is represented as:

y =




y1

y2
...

yn


, (20)
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where y is a normalized vector within the complex vector space C2n
. The amplitude

encoding process is described by the following quantum state:

∣∣ψy

〉
=

2n

∑
i=1

yi|i⟩, (21)

where
∣∣ψy

〉
is the encoded quantum state residing in the Hilbert space H, and the normal-

ization condition ∑i |yi|2 = 1 is satisfied.
This state-preparation strategy is pivotal for enhancing the efficiency of data encoding

and facilitating the learning process in QML models [64,65].

4.6. Angle Encoding

Angle encoding, also referred to as qubit encoding, is a technique employed by various
QML algorithms to encode input data features into the rotation angles of qubits [66–70].
For a feature vector x = [x1, x2, . . . , xN ] belonging to the space X N , angle encoding is
mathematically represented as:

|x⟩ =
N⊗

i=1

(cos(xi)|0⟩+ sin(xi)|1⟩), (22)

where N features are encoded into an n-qubit system. The unitary operation for state
preparation of a single qubit in qubit encoding is given by:

Sxj
=

N⊗

i=1

Ui, (23)

with each Ui defined as:

Ui :=


cos

(
x
(i)
j

)
− sin

(
x
(i)
j

)

sin
(

x
(i)
j

)
cos
(

x
(i)
j

)

. (24)

Dense qubit encoding, a variant of angle encoding, allows for the encoding of two fea-
tures within a single qubit, thereby enhancing the density of the encoded information [71].

4.7. Time-Evolution Encoding

Time-evolution encoding, as described by the Schrödinger equation, is a pivotal
concept in quantum mechanics that delineates the temporal progression of a quantum
system. The equation is given by:

ih̄
d

dt
|ψ⟩ = H|ψ⟩, (25)

where h̄ denotes Planck’s constant, and H represents the Hamiltonian of the system, an
observable that encapsulates the system’s energy dynamics [16]. In the context of QML,
time-evolution encoding is leveraged to correlate a scalar value x ∈ R with time t through
the unitary evolution governed by the Hamiltonian H, as expressed in:

U(x) = e−ixH . (26)

The state of the system’s evolution, |ψ(x)⟩ = U(x)|ψ0⟩, varies with x, as dictated by
H. This encoding mechanism is particularly prevalent for embedding classical trainable
parameters within a quantum circuit. The most commonly utilized Hamiltonians for this
purpose are the Pauli rotation gates, defined by H = 1

2 σa, where a belongs to the set {x, y, z}.
To encode a real-valued vector x ∈ RN , one can sequentially apply gates or evolutions of
the form U(x).



Mathematics 2024, 12, 3318 13 of 32

4.8. Hamiltonian Encoding

Hamiltonian encoding is a sophisticated technique that involves embedding matrices
into the Hamiltonian of a quantum system’s time evolution. This method is particularly
instrumental in algorithms such as the HHL algorithm for matrix inversion [72]. The
essence of this technique lies in associating a square matrix A with a Hamiltonian H, which
is especially useful when A is not inherently Hermitian. In such cases, the Hamiltonian HA

is constructed as:

HA =

[
0 A

A† 0

]
, (27)

allowing computations to be performed within two distinct subspaces of the Hilbert space.
Hamiltonian encoding facilitates operations such as the multiplication of matrix A or its
inverse A−1 with an amplitude-encoded vector, as well as the extraction and manipulation
of the eigenvalues of A.

4.9. Feature Map Encoding

In QML, the encoding of inputs x ∈ X into a quantum system constitutes a mathe-
matical mapping from the input space X to the state space of the quantum system. This
mapping, when coupled with an inner product defined on the state space, is conceptualized
as a feature map [56,73,74]. Feature maps are integral to the kernel method in machine learn-
ing, facilitating the transformation of data into high-dimensional Hilbert spaces where the
computation of inner products between feature-encoded vectors is central to the analysis.

These inner products serve as a metric for quantifying the similarity between data
points, which is essential for addressing new data in learning tasks. The construction of a
data-encoding feature map—occasionally termed a “quantum feature map” [75,76]—can
be approached in two predominant manners. The first method involves interpreting Dirac
vectors as feature vectors, defining the feature map as:

ϕ1 : X → |ϕ⟩, (28)

where the inner product is the conventional bra–ket inner product ⟨ϕ|ϕ|ϕ|ϕ⟩. Alternatively,
a more natural choice is to employ density matrices to denote feature-encoding states, with
the feature map delineated as:

ϕ2 : X → ρ(x), (29)

and the inner product defined as tr{ρ(x)ρ′(x)}. In instances where ρ represents pure states,
the two representations are interconnected via ρ = |ϕ⟩⟨ϕ|.

For this discussion, we will focus on feature maps of the type ϕ1. It is noteworthy
that the term “embedding”, commonly used in natural language processing to describe the
mapping of non-numerical data into a metric space, is analogous to the concept of a feature
map in quantum states.

4.10. Unary Amplitude Encodings

Unary amplitude encoding offers a compact representation of unit vectors y ∈ Rn

within the quantum framework [77]. The encoding is defined as:

|un(y)⟩ = ∑
i∈[n]

yi|ei⟩, (30)

where ei represents the computational basis state corresponding to the binary string
0i−110n−i. Unlike binary amplitude encodings that necessitate depth O(n) or special-
ized hardware like quantum random access memory (QRAM), unary amplitude encodings
can be efficiently prepared using parametrized circuits with a depth of log n, render-
ing them particularly advantageous for QML applications. Unary data loaders, as de-
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scribed in [78], are specialized circuits designed to initialize quantum states for unary
amplitude encodings.

4.11. Entangler-Enhanced Encoding

Entangler-enhanced encoding is a sophisticated technique that leverages the power of
entanglement to enrich the representational capacity of quantum states [79]. The encoding
circuit is characterized by:

VΦ(y) =
M

∏
m=1

Em
entUϕ(y), (31)

where each layer m consists of a two-qubit entangling operation Em
ent, typically implemented

using CZ or CNOT gates, and a unitary operator Uϕ(y) that encodes the classical input data
y. This approach, termed entangler-enhanced encoding, significantly boosts the expressive
power of quantum circuits.

4.12. Variational Encoding

Variational encoding is a versatile method for embedding classical information into
quantum states, as outlined in [80,81]. An N-qubit quantum state can be generally ex-
pressed as:

|ψ⟩ = ∑
(p1,p2,...,pN)∈{0,1}N

ap1,...,pN |p1⟩ ⊗ |p2⟩ ⊗ · · · ⊗ |pN⟩, (32)

where ap1,...,pN
∈ A denotes the amplitude of each basis state, and pi ∈ {0, 1}. The

probability of observing the post-measurement state |p1⟩ ⊗ |p2⟩ ⊗ · · · ⊗ |pN⟩ is given by
the modulus squared of the amplitude ap1,...,pN

, with the total probability summing to unity:

∑
(p1,p2,...,pN)∈{0,1}N

|ap1,...,pN
|2 = 1. (33)

The variational encoding scheme utilizes the classical input values, or their transfor-
mations, as rotation angles in quantum gates, thereby enabling the encoding of classical
data into the amplitudes and phases of a quantum state.

4.13. Scaled Encoding

Scaled Encoding is an efficient quantum encoding scheme designed for environments
with input values confined to specific ranges [82]. This method involves scaling each input
to fall between 0 and 2π, followed by rotations along the Rxand Rz axes by the correspond-
ing radians. The simplicity of this approach, requiring merely two gates per qubit, has been
validated experimentally for its effectiveness, as detailed in the Blackjack section of [82].
However, it is noteworthy that certain environments, such as CartPole, present challenges
due to unbounded data ranges, rendering traditional scaling methods impractical.

4.14. Directional Encoding

To address the limitations of Scaled Encoding in environments with unbounded input
values, Directional Encoding is employed as an alternative scheme. This method entails
rotating each qubit along the Rx and Rz axes by either π or 0 radians. The decision for
rotation is contingent upon a simple conditional: a rotation of π radians is applied if the data
point is positive; otherwise, no rotation is performed. This binary approach also necessitates
only two gates per qubit and has been demonstrated to be experimentally viable.

4.15. Chebyshev Encoding

Chebyshev polynomials serve as a robust basis for various computational tasks, in-
cluding regression, function fitting, and integral evaluation [83]. Their application extends
to spectral methods for differential equations, financial modeling, and the characteriza-
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tion of many-body systems. Within the realm of quantum scientific machine learning
(SciML), Chebyshev polynomials have been utilized in derivative quantum circuits to solve
differential equations [84,85], albeit without linear basis independence. Building upon a
recently developed protocol, an orthonormal Chebyshev basis set can be generated through
quantum feature maps, facilitating the construction of global Chebyshev models within the
quantum latent space [86].

Chebyshev encoding is designed such that the amplitudes of a quantum state align
with the x-dependent Chebyshev polynomials of the first kind, denoted as
Tk(x) = cos(k arccos x), where k is the polynomial degree. The encoded quantum state is
given by:

|x⟩ = 1

NN(x)

(
1

2N/2
T0(x)|ϕ⟩+ 1

2(N−1)/2

2N−1

∑
k=1

Tk(x)|k⟩
)

, (34)

ensuring orthogonality of the states {|x⟩} over a Chebyshev grid comprising 2N points.
The normalization of this N-qubit state is achieved through:

NN(x) =
1

2(N−1)/2

(
1

2
+

2N−1

∑
k=1

T2
k (x)

)1/2

, (35)

noting that the normalization factor NN(x) is generally x-dependent when evaluated off
the Chebyshev grid. The aim is to utilize the Chebyshev polynomials as the basis functions
themselves, without the scaling introduced by NN(x).

4.16. Fourier Encoding

The Fourier basis, comprising functions TN
j := exp

(
i2π jx

2N

)
, where N denotes the num-

ber of qubits, is a foundational element for constructing a variety of mathematical models.
The phase feature map, which possesses an exponentially large capacity, is formed by this
basis and was introduced in [84]. It consists of a layer of Hadamard gates applied to each
qubit, succeeded by a layer of controlled phase gates P̂N(x, j) = diag{1, exp

(
i2πx2j−N

)
},

with j indicating the qubit index. When applied to the computational zero state, the phase
feature map yields the state:

|x⟩ = 1

2N/2

2N−1

∑
j=0

TN
j (x)|j⟩, (36)

resulting in an orthonormal set of Fourier states {
∣∣xj

〉
}2N−1

j=0 evaluated at integer points.

4.17. Projected Unitary Encoding

Projected unitary encoding is a pivotal technique in quantum computing that facilitates
the representation of a matrix within a higher-dimensional unitary operator. This method
employs orthogonal projectors Π̃ and Π, in conjunction with a unitary matrix U, to encode
a target matrix A. The encoding is defined by the relation A := Π̃UΠ, as elucidated in the
seminal work by Gilyén et al. [87].

The essence of this approach lies in the ability to embed a potentially non-unitary
matrix A into a unitary framework, which is essential for quantum algorithms that require
unitary operations. The projectors Π̃ and Π serve to isolate a specific portion of the unitary
matrix U that corresponds to the matrix A. When Π̃ and Π are identical, the encoding is
referred to as symmetric, ensuring that the same subspace is used for both the domain
and the range of A in the unitary representation. In practical terms, projected unitary
encoding allows for the quantum simulation of operations described by A by effectively
’projecting’ them into the unitary operation U. This is particularly useful for implementing
quantum algorithms that simulate the dynamics of physical systems, solve linear systems
of equations, or perform other complex operations that can be described by a matrix A.
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To illustrate, consider a simple example where A is a matrix representing a quantum
gate, and U is a larger unitary operator within which A is encoded. The projectors Π̃ and Π

act as filters that, when applied to U, extract the functionality of A. This enables the use of
A within quantum circuits and algorithms despite A itself not being unitary. The concept
of projected unitary encoding is a cornerstone of quantum algorithm design, providing
a versatile tool for the development of new quantum protocols and the enhancement of
existing ones.

4.18. Block-Encoding

Block-encoding is a nuanced form of projected unitary encoding where the orthogonal
projectors Π̃ and Π are defined as |0⟩⟨0|⊗a ⊗ I. In this scenario, the matrix A is effectively
the top-left block of a larger unitary matrix U:

A = (⟨0|⊗a ⊗ I)U(|0⟩⊗a ⊗ I) ⇐⇒ U =

[
A ·
· ·

]
. (37)

Such a unitary U is referred to as an a-qubit block-encoding of A. If A operates
on s qubits and we have α, ϵ ∈ R+ and a ∈ N, then an (s + a)-qubit unitary U is an
(α, a, ϵ)-block-encoding of A, provided that:

∥A − α(⟨0|⊗a ⊗ I)U(|0⟩⊗a ⊗ I)∥ ≤ ϵ. (38)

Given that ∥U∥ = 1, it follows that ∥A∥ ≤ α + ϵ. It is important to note that while
the definition suggests a representation for square matrices of size 2s × 2s, this is not a
limitation. For any matrix A ∈ Cn×m with n, m ≤ 2s, an embedding matrix Ae ∈ C2s×2s

can be constructed such that A occupies the top-left block of Ae and all other elements are
zero. This ensures that block encodings are indeed special cases of the projected unitary
encodings previously defined.

5. Review and Discussion of Existing Studies (2020–2024)

Building upon the foundational discussions of various encoding techniques in the
preceding section, this section aims to present a comprehensive review and discussion of
the most recent studies within the domain of QML. An upward trend can be observed in
the number of publications in various reputed databases such as IEEE Xplore, Springer,
and Elsevier from 2015 to 2024 in the QML field, as depicted in Figure 4. These studies
have pragmatically employed a multitude of encoding techniques across diverse datasets,
yielding fruitful outcomes in a range of applications. While this section highlights the fact
that research conducted before 2020 has already been reviewed extensively in the literature,
there has been a notable absence of reviews encompassing the advancements made in the
subsequent years. Since 2020, much more focus has been given to this field. Consequently,
we endeavor to bridge this gap by examining the literature from 2020 to 2024, offering
critical insights into each study, with a particular focus on the encoding techniques utilized.

More specifically, a study by Gouveia and Correia [88] introduced an innovative
technique for network intrusion detection by employing unsupervised QML and quantum-
assisted ML with Autoencode, utilizing both Basis and Amplitude Encoding on the KDD-
NSL and NB15 datasets. Their simulation evaluations on IBM QX suggest that Quantum-
Assisted Network Intrusion Detection Systems (NIDS) can achieve high accuracy levels,
rivaling those of the best conventional SVMs, contingent upon the characteristics of the
dataset. However, the study’s reliance on simulation mode raises questions about the
scalability and practical implementation of the technique in real-world quantum hardware.
Another study by Cao et al. [68] explored the embedding of an ML cost function into a
quantum circuit using qubit encoding on the canonical Iris flower dataset. Their method
allows for the reception of a training dataset either in a superposed state or as a pre-prepared
mixed state, and they detail a procedure for estimating the gradient of the cost function
within the quantum state. Notably, their approach circumvents the need to encode the cost
function directly in the quantum state, which is typically determined classically via repeated
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measurement outcomes. This strategy effectively insulates the cost function from direct
quantum manipulation. A potential limitation of this study is the indirect estimation of the
cost function’s gradient, which may introduce complexities in gradient-based optimization
algorithms commonly used in machine learning. Lloyd et al. [75] have proposed training
the embedding segment of a quantum circuit as a strategic part of learning. In this work,
they develop a method that maximizes the separation of data classes in a Hilbert space using
feature map encoding over datasets, such as the two-dimensional moons, using a term that
they dub as quantum metric learning. This technique simplifies the classification procedure
by defining in advance the measurement that leads to the minimum loss in terms of the
metric used, either when using the Helstrøm measurement when using the L1 distance
or a simple overlap measurement when using the L2 distance. This strategy provides a
promising analytic framework for QML given complex embeddings and measurements, but
this requires quantum processors capable of doing so. Limitation of the study’s potential
applicability might also stem from the level of dependence on individual metrics and
datasets used in the study, which will prompt further study to validate this technique’s
effectiveness on other quantum computing platforms and types of data.

Figure 4. Number of publications in QML from 2015 to 2024 based on the keywords “Quantum Data

Encoding Techniques”.

In the other exploration, Kim et al. [89] employed feature map encoding in the crypt-
analysis of the Caesar cipher by means of a QML framework. In contrast to classical neural
networks, they made a departure from classical neural networks and used a parameterized
quantum circuit as a learning model from KDD-NSL and NB15 datasets. Limitations in
testing four-bit combinations were not possible because the simulations on IBM QX were
perfect accuracy for two-bit plaintext and keys 0.84 for three-bit and four-bit combinations,
but restrictions on a cloud environment could not take any more than that, so four-bit
combinations had to be abandoned. It also found that the accuracy was not as good when
going from simulating quantum processors to real ones, which suggests there is still work
to be performed for practical application with good qubit efficiency and error mitigation.
Payares et al. [90] demonstrated a trio of quantum models for DDoS threat detection based
on angle encoding of an originally ‘specialized’ dataset. Their work compared the efficacy
of QSVMs, hybrid quantum–classical NNs, and a dual-circuit ensemble model. The models
demonstrated impressive performance, with the lowest accuracy being 96%. However,
the study’s focus on a specific threat type suggests a need for broader validation across
various cybersecurity challenges to fully assess the versatility of the proposed quantum
models. Stein et al. [91] presented GenQu, a hybrid framework that utilizes quantum states
for classical data learning. Applied to the MNIST and circle datasets, GenQu showcased
a reduction in qubit usage by up to 95.86% and a 33.33% increase in convergence speed
compared to conventional methods. Despite these promising results, the study acknowl-
edges the complexity of scaling such frameworks to larger, more complex datasets and
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the ongoing challenge of achieving consistent performance on actual quantum hardware
versus simulations

In an innovative exploration of binary classification through QML, Maheshwari et
al. [64] employed amplitude encoding within a VQC. This investigation spanned three
datasets: an exclusive diabetes dataset, the UCI sonar dataset, and a synthetic dataset. The
authors’ methodology included a pre-processing strategy encompassing feature selection
and quantum state preparation to mitigate the challenges posed by NISQ systems. The
study underscored the significance of quantum state preparation, particularly amplitude
encoding, in enhancing the QML models’ data encoding and learning processes. The
amplitude encoding-enhanced VQC demonstrated superior performance, occasionally
surpassing the conventional VQC, achieving accuracies of 98.40%, 67.3%, and 74.50% on
the synthetic, sonar, and diabetes datasets, respectively. However, the study’s limitation lies
in its reliance on amplitude encoding, which may not generalize across different quantum
hardware or datasets. Dilip et al. [92] scrutinized the compression of classical data into
quantum-efficient representations, utilizing amplitude encoding on the Fashion-MNIST
dataset. Their approach enabled the adjustment of both the quantum circuit’s qubit count
and depth. This was achieved by drawing parallels between matrix-product states and
quantum circuits. The researchers introduced a hardware-efficient quantum circuit design,
tested on the Fashion-MNIST dataset, demonstrating that a quantum circuit-based classifier
can rival existing tensor learning methods with a mere 11-qubit requirement. The limitation
of this study is the potential scalability issue when dealing with larger datasets or more
complex classification tasks. Islam et al. [58] presented a hybrid quantum–classical NN
utilizing basis encoding to detect amplitude shift cyberattacks within an in-vehicle control
area network (CAN) dataset. Their hybrid model achieved a commendable 94% attack
detection accuracy, outperforming both the LSTM NN (87%) and the standalone quantum
NN (62%). Despite the success, a limitation of this approach is the model’s specificity to the
CAN dataset, which may limit its applicability to other cybersecurity contexts or datasets.

Pushpak and Jain [76] delineated algorithms that leverage quantum feature maps to
discern fraudulent activities in home insurance claims. The intricate nature of insurance
fraud patterns necessitates robust detection mechanisms to preclude financial losses from
spurious claims. Their work harnessed QSVM algorithms, complemented by feature engi-
neering, selection, and parameter optimization, to identify dubious claims. A comparative
analysis with traditional SVMs is also presented, highlighting the efficacy of QSVM in fraud
detection within property insurance claims. Nonetheless, the study’s limitation is the po-
tential computational overhead associated with the quantum feature map, which may not
be feasible for large-scale datasets. Hur et al. [93] evaluated fully parameterized QCNNs
on MNIST and Fashion MNIST datasets for classifying classical data. Their QCNN model,
inspired by conventional CNNs, operates with two-qubit interactions. The performance of
various QCNN models, differentiated by their quantum circuit topologies, data encoding
methods, pre-processing techniques, cost functions, and optimizers, was compared. Despite
a limited number of parameters, QCNNs consistently achieved high classification accuracy,
surpassing CNNs under the same training conditions. The QCNN approach, utilizing
fully parameterized and shallow-depth quantum circuits, is deemed suitable for NISQ
devices. However, the limitation of this study is the QCNN’s dependence on specific circuit
topologies, which may not be universally optimal across different quantum computing
platforms. Nikoloska and Simeone [94] introduced a two-layer hybrid classical-quantum
classifier. The first layer comprises quantum stochastic neurons using generalized linear
models (QGLMs) with amplitude encoding, exploiting the exponential fan-in capability
relative to the qubit count. The implementation of QGLMs is simplified through binary
weights and activations. They proposed a stochastic variational optimization technique
for the concurrent training of quantum and classical layers via stochastic gradient descent,
overcoming the limitations of previous training methods restricted to exhaustive search or
single-neuron bit-flip strategies. The effectiveness of this approach is validated through
experiments with diverse activation functions in QGLM neurons. The study’s limitation,
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however, is the binary nature of weights and activations, which may restrict the model’s
expressiveness and adaptability to complex datasets.

Qian et al. [95] conducted systematic numerical experiments using qubit encoding on
the Quantum synthetic, Wine, and MNIST datasets. Their findings indicate that contem-
porary QNNs do not outperform conventional learning models. The study delivers two
significant insights: first, QNNs have low effective model capacity, leading to poor gener-
alization to real-world datasets; second, QNNs are trainable regardless of regularization
strategies, unlike conventional models. These results suggest that the current functionality
of current QNNs needs to be rethought and new protocols developed for maximizing
the quantum advantages that are possible for solving real-world problems. A limitation
of our work is that it relies on synthetic and small real-world datasets, which may not
fully capture the issues encountered in real-world practice. Multi-amplitude encoding is
proposed on MNIST and face datasets by Bar et al. [96] using a hybrid quantum–classical
technique for image classification. On the quantum side, they use a VQC, encoding the data
with multiple amplitude encoding while accounting for qubit constraints. The classical
component of the VQC consists of image preprocessing, convolution, and optimization
of single qubit rotation gates. The method was tested and evaluated for two datasets and
compared two- and four-layer VQC accuracy rates. Compared to other similar studies, this
hybrid strategy provided superior parameter efficiency and quantum cost. A limitation is
that this is not ideal for large, more complex datasets that have a small number of anomalies.
Digital twin-assisted quantum federated learning (DTQFL) was proposed by Qu et al. [97]
using amplitude and angle encoding on the Breast Cancer Wisconsin and Fetal Health
datasets. With this method, data from the IoMT devices are aggregated through a 5G mobile
network to create digital twins (DTs) of patients, thereby reducing time for communication
in federated learning. Synchronous training and updating of VQNNs without hampering
real-world operations is enabled by DTQFL. For privacy, security, and training speed,
final global parameters were also trained iteratively local personal VQNNs were trained
personalized for each hospital. The results show that DTQFL can train effective VQNNs
without collecting local data and achieve accuracy comparable to centralized methods. A
limitation of this approach is the dependency on advanced network infrastructure, which
may not be available in all healthcare settings.

Satpathy et al. [98] investigated the impact of a noisy quantum environment on
two datasets (TWTDUS and SDWTT18) associated with IoT harsh environments using
various QML methods. Their analysis employed analytical clustering approaches, with the
variational UU method achieving a maximum accuracy of 98.10% on the TWTDUS dataset.
On the SDWTT18 dataset, the UU† method combined with k-means clustering attained an
accuracy of 94.43%. These proposed quantum algorithms outperformed classical methods
and demonstrated potential for predicting daily output power generation based on metrics
used in the energy sector for decision-making. However, a limitation of this study is its
dependency on specific datasets, which may not fully generalize to other IoT environments
or datasets. Fan et al. [33] utilized amplitude encoding on five different Earth Observation
(EO) datasets—Overhead-MNIST, So2Sat LCZ42, PatternNet, RSI-CB256, and NaSC-TG2.
They described a hybrid quantum–classical convolutional neural network (QC-CNN)
designed to extract key features from EO data for categorization. The use of amplitude
encoding minimized the need for additional quantum bits. Complexity analysis revealed
that the proposed model outperformed classical models in convolutional operations. The
model’s performance, evaluated using the TensorFlow Quantum platform, showed superior
generalizability and accuracy on the EO benchmarks compared to classical counterparts.
Nonetheless, a limitation of this approach is the potential challenge in scaling the model
for larger datasets due to quantum hardware constraints. Tscharke et al. [99] presented
a semisupervised anomaly detection method based on the reconstruction loss of an SVR
with a quantum kernel, using amplitude and angle encoding on a toy dataset. This model
was positioned as an alternative to variational quantum and quantum kernel one-class
classifiers and was benchmarked against a quantum autoencoder, an SVR with a radial-
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basis-function (RBF) kernel, and a classical autoencoder. Extensive benchmarking on ten
real-world anomaly detection datasets and one toy dataset demonstrated that the SVR
model with a quantum kernel outperformed the SVR with an RBF kernel and all other
models, achieving the highest mean AUC across all datasets. Additionally, the quantum
SVR outperformed the quantum autoencoder on nine of the eleven datasets. A limitation
of this study is the use of a toy dataset for method development, which may not entirely
reflect real-world complexity.

Jiaxiang and Jiale [100] introduced the Quantum-Gravitational Transformer (QG-
Former) using the Gravity Spy project dataset, presenting a novel quantum–classical hybrid
transformer for detecting gravitational waves. The QGFormer architecture integrates a
vision transformer encoder with a quantum classifier within an autoencoder framework.
The encoder segments the input signal into small patches and maps them to higher di-
mensions, which are then fed into the quantum classifier for prediction. This parallelism
with quantum computing enhances computational efficiency and scalability. Additionally,
techniques such as super-density coding and quantum state compression help reduce noise.
Experiments on the Gravity Spy dataset, sourced from the LIGO detector, demonstrate
that QGFormer surpasses comparator models in both accuracy and F1-score, indicating
significant potential for QML in this domain. However, the study’s reliance on quantum
hardware, which may not be widely accessible, poses a limitation for practical implementa-
tion. Hu et al. [101] introduced NISQRC, a machine learning algorithm for qubit-based
quantum systems that analyzes temporal data over durations exceeding the coherence
times of individual qubits. NISQRC balances input encoding, mid-circuit measurements,
and reset to provide persistent temporal memory, capturing time-domain correlations in
streaming data. This method addresses challenges such as finite coherence, information
scrambling, and thermalization in monitored circuits. Using Volterra Series analysis from
dynamical systems theory, the study determines the necessary measurement and reset
conditions for maintaining a finite memory period in a monitored circuit. To validate
their approach, the authors applied it to the channel equalization challenge, recovering a
test signal of Nts symbols from a noisy and distorted channel. Their experiments with a
seven-qubit quantum processor and numerical simulations showed that Nts is not limited
by coherence time. However, the need for precise mid-circuit measurements, which may be
challenging to achieve consistently with current quantum hardware, is a notable limitation.
In this work, Ruan et al. [102] introduced VIOLET, a visual analytics tool to increase QNN
explainability on the AMASS dataset via angle encoding. The development of VIOLET
was informed by interviews with domain experts and a comprehensive literature review,
resulting in three visualization views: It consists of the encoder view, which shows the
classical input data-to-quantum states conversion; the ansatz view, depicting the temporal
evolution of quantum states when trained; and the feature view, showcasing the features
learned by a QNN after training. The visual representations, including satellite charts and
augmented heatmaps, depict variational parameters and quantum circuit measurements,
respectively. VIOLET’s effectiveness was demonstrated through two case studies and
in-depth interviews with 12 specialists, proving beneficial for QNN users and developers
in understanding and exploring QNNs. Nonetheless, the complexity and learning curve
associated with these visualization tools may limit their accessibility for users without a
strong background in quantum computing.

Alomari et al. [103] introduced the DEQSVC strategy utilizing a quantum feature
map on the DDoS Evaluation Dataset (CIC-DDoS2019) to enhance the accuracy of DDoS
attack detection. The DEQSVC leverages fast dimensionality reduction techniques, a robust
feature map method, and an efficient kernel estimation strategy to improve data encoding,
learning, and detection accuracy. Performance evaluations using simulations on the Qiskit
platform and an IBM quantum computer revealed that DEQSVC outperformed several
benchmark algorithms commonly used in intrusion detection systems, achieving a detection
accuracy of 99.49%. However, a limitation of this study is its reliance on simulations and
specific datasets, which may not fully represent real-world network conditions. Rathi
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et al. [104] presented the first quantum autoencoder for 3D point clouds, employing
amplitude encoding on the AMASS dataset. The 3D-QAE technique is entirely quantum,
optimizing all data processing components for quantum hardware. The model is trained
on 3D point clouds to generate compressed representations, addressing challenges such as
3D data normalization, parameter optimization, and the identification of an appropriate
architecture. Experiments on simulated gate-based quantum hardware demonstrated that
this method outperformed classical baselines, suggesting a promising new direction in 3D
computer vision. Nevertheless, the study’s dependence on simulated quantum hardware
poses a limitation, as real-world quantum hardware may present additional challenges.
Another study by Alomari et al. [105] proposed an HCQNN using angle encoding on a
solar radiation space weather dataset to simulate space weather. The HCQNN achieved a
99.9% accuracy rate in identifying space weather events and issuing early warning signals
to prevent adverse impacts on space-based systems. This approach has the potential
to enhance space weather monitoring and improve the resilience of critical space-based
technology, thereby reducing the economic and societal costs associated with space weather
occurrences. However, the study’s focus on a specific dataset and the use of angle encoding
may limit the generalizability of the findings across different space weather phenomena.

Nguyen et al. [106], utilizing angle encoding on the MNIST and FashionMNIST
datasets, introduced the concept of quantum scalable data. They presented a hybrid
quantum–classical architecture designed to manage such data, encompassing scalable
data definition, metadata, and operations within both classical and quantum components.
Their QML experiments demonstrated the benefits of retaining more data layers, thereby
improving classification performance. The ease of scaling implementation with quantum
data, as opposed to classical data, was highlighted as a significant advantage. This study
marks the first introduction and empirical validation of quantum scalable data. However,
the reliance on specific datasets and experimental conditions may limit the generalizability
of the results. Fan et al. [107] proposed two hybrid quantum–classical DL frameworks to
efficiently extract features from multi-spectral images using quantum computing, followed
by classification through classical computation. Their models were validated against
the LCZ42 dataset using the TensorFlow Quantum platform, demonstrating improved
feature extraction capabilities. Despite these promising results, the study’s dependency
on specific datasets and the hybrid nature of the model may pose challenges in fully
leveraging the advantages of quantum computing. Zhou et al. [108], using a quantum
feature map on the NASA airfoil self-noise dataset, proposed a QKE-QSVR model for
regression tasks. The model encodes classical inputs as quantum feature vectors using
a circuit with variable parameters. Their quantum kernel alignment-based regression
(QKAR) technique optimizes the trainable quantum kernel, thereby enhancing the model’s
predictive accuracy for specific datasets. The optimized quantum kernel is then integrated
into the classical support vector regression process to formulate the decision function and
predict new data points. The efficacy of the proposed model was validated through three
illustrative scenarios, with experimental results indicating superior predictive accuracy
compared to classical SVM models. However, the complexity of integrating quantum
kernels with classical algorithms and the reliance on specific datasets could limit the
broader applicability of this approach.

Based on the above discussion, a summary of the studies categorized by encoding,
dataset used, task performed, and result findings is presented in Table 4.
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Table 4. Summary of studies categorized by encoding, dataset, task performed, and result findings.

References Year QML Model Encoding Dataset Task Result Findings

Gouveia and Cor-
reia [88]

2020 QSVM
Autoencode (Basis and
Amplitude Encoding)

KDD-NSL and
NB15 datasets

Classification
QASVM generated 76.75% ac-
curacy, 82.3% recall, 86.15%
precision, and 77.2% F-score.

Cao et al. [68] 2020 PQCs Qubit Encoding
Canonical Iris
flower dataset

Classification –

Lloyd et al. [75] 2020 QGAN Feature Map Encoding 2D moons dataset Classification –

Payares et al. [90] 2021 QSVM Angle Encoding
DDoS Evaluation
Dataset

Classification
QSVM generated 97.14% accu-
racy, 96.14% recall, 97.19% pre-
cision, and 96% F-score.

Stein et al. [91] 2021 GenQu Quantum Encoding
MNIST and circle
datasets

Classification –

Kim et al. [89] 2021 QSVM Feature Map Encoding Caesar cipher dataset Classification –

Maheshwari
et al. [64]

2021
Amplitude En-
coding based
VQC

Amplitude Encoding
Synthetic, Sonar, and
diabetes datasets

Binary Classifi-
cation

Results of proposed amplitude
encoding based VQC on three
datasets are 98.4%, 67.3%, and
74.4% accuracy, respectively.

Islam et al. [58] 2022 HQ-CNN Basis Encoding
In-vehicle control
area network (CAN)
dataset

Classification

For both the training and
testing datasets, the hybrid
quantum-classical NN shows
98.7% and 93.9% accuracy, re-
spectively.

Rohit Dilip
et al. [92]

2022 QCC Amplitude Encoding
Fashion-MNIST
dataset

Classification –

Hur et al. [93] 2022 QCNNs
Amplitude, Qubit, and
Dense Encoding

MNIST and Fashion
MNIST datasets

Classification –

Pushpak and
Jain [76]

2022 QSVM Quantum Feature Map – Classification

QSVM generated 91.15%,
92.66%, and 92.67% accuracy
with linear, circular, and full
kernels, respectively.

Nikoloska and
Simeone [94]

2022 HCQC Amplitude Encoding
Prototypical image
dataset

Classification

The proposed SVO scheme
achieved higher classification
accuracy for all response func-
tions.

Qian et al. [95] 2022
QNNN,
QENN, and
QCNN

Qubit Encoding
Quantum synthetic,
the wine, and MNIST
datasets

Classification –

Bar et al. [96] 2023
2 and 4-layer
VQC

Multi-Amplitude
Encoding

MNIST and face
datasets

Image Classifi-
cation

MNIST dataset achieved
79.26% accuracy in 2-layer
VQC and 92.04% in 4-layer
VQC. The face dataset
achieved 71.05% accuracy in
2-layer VQC and 84.12% in
4-layer VQC.

Qu et al. [97] 2023 DTQFL
Amplitude and Angle
Encodings

Breast Cancer Wis-
consin and Fetal
Health datasets

Fetal Health
Classification

–

Satpathy
et al. [98]

2023

UU† classifier,
Variational
UU† classifier,
and QNN

–
TWTDUS and
SDWTT18 Datasets

Classification

For the TWTDUS dataset, vari-
ational UU† with analytical
clustering methods achieved
98.10% accuracy. For the
SDWTT18 dataset, the UU†

method with k-means cluster-
ing achieved 94.43% accuracy.
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Table 4. Cont.

References Year QML Model Encoding Dataset Task Result Findings

Fan et al. [33] 2023 QC-CNN Amplitude Encoding

Five different EO
datasets (Overhead-
MNIST, So2Sat
LCZ42, PatternNet,
RSI-CB256, and
NaSC-TG2)

Image Classifi-
cation

–

Jiaxiang and
Jiale [100]

2023 QGFORMER –
Gravity Spy project
dataset

Glitch Classifi-
cation

QGFormer generated 94.27%
accuracy and 94.13% F-score.

Alomari
et al. [105]

2023 HC-QNN Angle Encoding
Solar radiation space
weather dataset

Classification

Results of HCQNN on the
IBM Quantum Computer: 95%
accuracy, recall, precision, F-
score, and 5% error rate.

Tscharke
et al. [99]

2023 QSVR
Amplitude and Angle
Encoding

Toy dataset Regression
QSVR generated 100% AUC,
94% accuracy, 100% recall, 89%
precision, and 94% F-score.

Hu et al. [101] 2023 NISQRC Hamiltonian Encoding Temporal Data
Logistic Regres-
sion

–

Ruan et al. [102] 2023 VIOLET Angle Encoding – Classification –

Alomari
et al. [103]

2023 DEQSVC Quantum Feature Map
DDoS Evalua-
tion Dataset (CIC-
DDoS2019)

Classification

DEQSVC generated 99.49%
detection accuracy, 99% recall,
99% precision, and 99% F-
score.

Rathi et al. [104] 2023 3D-QAE Amplitude Encoding AMASS dataset Classification –

Nguyen
et al. [106]

2023 HQCA Angle Encoding
MNIST and Fashion-
MNIST datasets

Image Classifi-
cation

The accuracy values of MNIST
are over 95% while the accu-
racy values of FashionMNIST
are below 90%.

Fan et al. [107] 2023
FQCNN and
MQCNN

– LCZ42 dataset Classification
MQCNN model is superior to
the FQCNN model (from 0.899
to 0.913).

Zhou et al. [108] 2024 QKE-QSVR Quantum Feature Map
NASA airfoil self-
noise dataset

Regression –

Example Application: Quantum Machine Learning for Classification Tasks
In our classification task example, we employed a quantum support vector machine

(QSVM) technique. The encoding procedure encompassed the subsequent steps:

• Data Encoding: Classical data were converted into quantum states by amplitude
encoding. This method enables the simultaneous representation of many data points
by encoding them into the amplitudes of a quantum state.

• Quantum Feature Map: We utilized a quantum feature map to embed the classical data
into a higher-dimensional Hilbert space. This mapping improves the distinguishability
of the data, facilitating the quantum algorithm’s accurate classification.

• The Quantum Support Vector Machine (QSVM) was executed through a sequence
of quantum gates that manipulate the stored information. The circuit’s architecture
is engineered to enhance classification according to the support vectors recognized
during training.
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Distinctive Features of the Quantum Algorithm
The quantum technique employed for this application possesses numerous distinc-

tive characteristics:

• Exponential Speedup: In contrast to classical algorithms, QSVM can attain an exponen-
tial acceleration in specific situations, especially when managing extensive datasets.

• Quantum Interference: The method utilizes quantum interference to augment the
likelihood of accurate classifications while diminishing the chances of erroneous ones,
resulting in enhanced precision.

• Scalability: The inherent parallelism of quantum computing allows the algorithm to
scale more effectively with increased data complexity, providing a robust solution for
high-dimensional datasets.

6. Challenges and Future Directions

All the discussions in the previous sections of the paper highlight the critical role
of data-encoding techniques in QML. While significant progress has been made, several
challenges specific to data encoding remain, which must be addressed to fully exploit the
potential of QML. Although our main emphasis is on data encoding, it is essential to recog-
nize the substantial advancements in QML. Recent research in QML, especially utilizing
hybrid classical–quantum models, presents exciting opportunities for enhancing encoding
strategies. Hybrid methodologies utilize the advantages of classical systems for manag-
ing extensive datasets alongside the quantum benefits in particular computing functions,
including state preparation and data classification. Integrating these improvements may
enable the development of more efficient and scalable encoding methods that correspond
with real-world applications, thus fostering growth in both domains synergistically. Dis-
regarding these advancements will constrain the breadth and relevance of data encoding
research. This section outlines these challenges and proposes future research directions.

6.1. Scalability of Quantum Computers for QML Applications

The scalability of quantum computers remains a formidable barrier to the widespread
adoption of QML algorithms. Despite the rapid advancement in qubit counts, as detailed
in Table 5, the current quantum computing infrastructure is insufficient for executing large-
scale QML algorithms that require extensive data processing capabilities. The progression
from the first 2-qubit system developed by IBM, the MIT Media Lab, and UC Berkeley in
1997 to the anticipated 5k-gate, 156-qubit ’Flamingo’ system by IBM in 2025 underscores
the significant strides made in quantum computing [109]. However, the practical imple-
mentation of QML algorithms is hindered by the limited qubit coherence times, error rates,
and the quantum volume of existing systems.

The quantum volume, a metric that considers both the number of qubits and the
depth of operations that can be performed before decoherence sets in, is a critical factor
in determining the computational power of a quantum computer. As Herbster et al. [110]
highlight, the small scale of quantum computers restricts their data processing capacity,
leading to data loss when the number of features exceeds the available qubits. Furthermore,
many algorithms for NISQ devices, as considered by Preskill et al. [111], suffer from
inflexibility, requiring trade offs between the complexity of the algorithm and the quantum
hardware’s capabilities.

But to overcome these challenges, we desperately need progress in developing quan-
tum error correction, qubit connectivity, and circuit optimization. In addition, error-tolerant
algorithms capable of running on NISQ devices are also essential. According to Perdomo-
Ortiz et al. [112], the future of QML rests on our capacity to operate quantum computers
at scale not only in the number of qubits or quantum volume but also with regard to the
size of the datasets, without compromising the integrity of the data or the efficiency of
the algorithms.
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Table 5. Progress in qubit counts of quantum computers from 2015 to 2024.

References Year
Notable Progress in
Quantum Computing

Number of Qubits

[109]

2019 I IBM 27 qubits 27

2020 IBM 65 qubits 65

2021 IBM 127 qubits 127

2022 IBM 433 qubits 433

2023 S
IBM 133 qubits, IBM
1121 qubits

133, 1121

2024 T
IBM 408 qubits, IBM
1386 qubits

408, 1386

[113]

2016 RIGETTI 3 qubits 3

2016 IBM 5 qubits 5

2017 IBM 50 qubits 50

2018 INTEL 49 qubits 49

2019 GOOGLE 72 qubits 72

2019 RIGETTI 128 qubits 128

6.2. Advancements in Quantum Data Encoding

Integrating QML is a difficult task, given the intricacies of quantum data encoding.
Furthermore, the conversion of classical information (e.g., images and large datasets)—a
computationally expensive task—requires significant energy. A key part of this bottleneck
is the exponential increase of the Hilbert space with another qubit and therefore efficient
encoding schemes for representing data compactly but without losing information. More
recently, LaRose and Coyle [71] have moved in this direction with the development of a
robust binary quantum classifier that is resistant to noisy states. In this approach, they
then select the most suitable encoding method to put input data into the quantum system.
They showed to what extent accuracy can be enhanced by evaluating different encoding
strategies on the same datasets.

Nevertheless, the optimal encoding methods continue to be sought after. Future
work should investigate encoding schemes requiring the least quantum resources while
maximizing the encoded information conveyed in the quantum states. Exploration of data
representations in high dimensions, such as tensor network states and quantum feature
maps, is included and can capture complex correlations in the data. Additionally, error-
resilient encoding methods must be further developed that can withstand modern quantum
hardware imperfections. These achievements are not only going to make the QML models
more accurate but will also allow us to take advantage of QML models in many more
real-world problems.

6.3. Innovations in Encoding-Based Quantum Algorithms

A critical frontier in the integration of quantum computing with machine learning is
the evolution of encoding-based quantum algorithms. Efficiency in exploiting the com-
putational power of quantum systems largely depends on efficient mapping of classical
data onto quantum states, a task of great importance for realizing the power of quantum
hardware. This approach is demonstrated with the very real seminal work by Mahesh-
wari et al. [64] on implementing an amplitude encoding-based VQC for noisy quantum
environments. This method optimizes the encoding scheme to improve the input-handling
capability of the quantum system.

Specialized quantum subroutines coupled with quantum information theory are
essential for addressing complex machine learning challenges and provide a performance
boost to quantum algorithms. In combination, QNNs, DL, and quantum-inspired ML
paradigms open up the opportunities to kickstart new advances in the field. The encoding-
based QVCs hold deep potential for future research of classification algorithms that are
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suitably leveraged to achieve the highest performance with minimum circuit depth. These
advances will enable the applying of classical machine learning to real quantum hardware
and simulations, closing the gap between ideal theory and real-world engineering.

In addition, encoding strategies are also explored beyond amplitude encoding in
basis, angle, and Hamiltonian encoding, among others. Different encoding schemes have
their own advantages and disadvantages that need analysis in totality to understand
their suitability for a given machine learning problem. With the advent of quantum
technology, the encoding-based algorithms, which are not only theoretically sound but
practical and viable on near-term quantum devices, will play an important role. It entails
the development of robust quantum algorithms for few-qubit regimes utilizing sparse
ensembles whose quantum resources scale efficiently as hardware improves.

6.4. Optimization of Quantum Encodings for Emerging Hardware

It is important for the practical deployment of QML algorithms that quantum com-
puting hardware continue to advance. This poses an important engineering challenge for
us, as we need to scale qubit counts significantly in order to generate and evaluate QML
algorithms, as well as to process large datasets. An inherently qubit-intensive encoding
technique included in basis encoding is exemplified. Fortunately, there is a pressing need to
encode quantum problems in a fashion inherently congruent with the peculiar properties
of emergent quantum architectures. For future research, more should be accomplished
to encode data that are optimized for the landscape of the quantum hardware in order to
minimize the quantum resource overhead. In this, we mean to minimize the number of
qubits and quantum gates needed for encoding classical data into quantum states. It also
makes use of hardware-specific features—such as limitations on connectivity and fidelity
of the gates—to improve the efficiency and reliability of quantum operations.

Also, hardware-optimized encodings must take into account error rates and noise
characteristics for quantum systems. If one can design encoding schemes for a quantum
processor that minimizes its error profiles, this increased resistance and accuracy of QML
could be achieved. To implement this approach, there is a need for deep understanding both
of the theoretical aspects in quantum information and practical limitations of the quantum
hardware while bridging the gap between quantum algorithm designs and hardware
installations. As a purely technical pursuit, pursuing hardware-optimal encoding is simply
a hardware engineering problem to solve. But in reality, it is a multidisciplinary effort to
be achieved involving quantum algorithm theorists, hardware engineers, and machine
learning practitioners. Ultimately the result of this research direction will dictate how well
QML can scale to and be applicable to the real world.

6.5. Harnessing Entanglement for Feature Encoding in QML

In QML, entanglement-based feature encoding is a transformational approach where
classical data are encoded into quantum states that are entangled corresponding to each data
sample. Cao et al.’s [114] pioneering research in entangled encoding schemes for qutrits
provides clear illustration of the scheme’s potential. We find that the choice of encoding has
a significant impact on classification accuracy and uncovers the subtle interplay between
entanglement and computational performance.

The area of research aimed at developing feature maps or encoding systems that will
generate entangled quantum states specifically suited for a specific set of attributes in
input data is on the rise. Despite the powerful capability of quantum states to represent
patterns and correlations in the data, we envision these feature maps to tap into the specific
properties of entanglement to preserve this information in compact representations of
quantum states.

Future research directions include:

• Exploring the Theoretical Foundations: Deepening our understanding of how entan-
glement can be harnessed to improve data representation in high-dimensional spaces.
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• Designing Entanglement-Rich Feature Maps: Creating novel quantum feature maps
that intrinsically generate highly entangled states, potentially leading to more power-
ful QML models.

• Investigating Entanglement Measures: Studying various measures of entanglement
as a resource for QML to ascertain which aspects most significantly contribute to
enhanced learning capabilities.

• Optimizing for Quantum Hardware: Tailoring entanglement-based encodings to align
with the capabilities and limitations of current and future quantum hardware.

• Benchmarking Against Classical Methods: Comparing the performance of entanglement-
based encodings with classical encoding methods to quantify the advantages offered by
quantum approaches.

Incorporation of entanglement into feature encoding, while promising to increase QML
algorithm efficacy beyond existing limits, could also be exploited as a vehicle exploring the
richer interplay between quantum mechanics and machine learning. In this synergy, the
focus is on unlocking the new paradigms of data processing and algorithm design taken
from the analysis of quantum correlations.

6.6. Strategies to Overcome Barren Plateaus in Quantum Feature Maps

In the optimization landscape of QML, barren plateaus represent a key concept. These
regions are where the gradient is going to be small, but small means that gradient-based
optimization methods will not be able to find the global minimum. Usually, barren plateaus
are probabilistic, but structural elements in variational circuits like large Hilbert spaces
increase the probability of occurrence.

Future work should be directed at designing quantum feature maps, variational
models, with less constrained structure in order to alleviate the impact of barren plateaus.
In other words, this involves focusing the training process on a portion of the Hilbert
space such that our gradients remain large enough for successful optimization. This
necessitates an elegant control of the expressiveness of the quantum model and the fitness
of its training landscape.

Exploring the following areas will be crucial for advancing this field:

• Constrained Variational Models: Developing variational quantum models that avoid
large, unstructured Hilbert spaces prone to barren plateaus.

• Quantum Supremacy in Feature Maps: Investigating the potential of quantum supremacy
to create feature maps that can efficiently solve industry-relevant problems.

• Data-Driven Learning: Utilizing data-driven techniques to optimize the form and
parameters of quantum kernels, which is a nascent yet promising area of research.

• Performance Across Data Types: Assessing the performance of parameterized quan-
tum circuits (PQCs) on diverse types of data, both classical and quantum, to establish
benchmarks and identify best practices.

Beyond these, we find it critical to carry out a thorough exploration of barren plateaus
across several domains like optimization and DL. This will yield important insights into
the nature of these challenges to enable the development of robust QML quantum feature
maps capable of traversing the daunting optimization landscapes intrinsic to QML.

7. Conclusions

The data encoding methods for QML are explored and show a high potential of improv-
ing the efficiency and effectiveness of machine learning systems by quantum computing
fundamentals. As an encoding approach, this study highlights how encoding approaches
can translate classical data into quantum states, thus enabling the operation of quantum
algorithms for related datasets. While there have been many significant strides, scalability,
optimization for emerging quantum hardware, and overcoming barren plateaus in quan-
tum feature maps remain difficult challenges. The development of creative encoding-based
quantum algorithms, as well as leveraging entanglement for feature encoding, can offer
profound advances to the field.
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Future work should aim at improving these encoding techniques and exploring further
avenues for this promise to be fully achieved in practical use cases. Through these successes,
we will continue to increase the material of quantum technology and provide this door to
new pathways for applications in diverse domains.
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