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Preface

One of the most striking predictions of Quantum Electrodynamics (QED) is the production of matter

from light. In the present thesis the focus is on two processes: Schwinger and Breit-Wheeler pair pro-

duction. Schwinger pair production occurs when the vacuum, under the influence of an extremely

strong electric field, generates particle-antiparticle pairs. Heuristically, it can be viewed as due to the

field pulling apart the virtual electron-positron pairs and, if strong enough, turning them into real

particles. With the addition of high-energy photons to catalyze the creation, the process is known

as Breit-Wheeler pair production. Due to its exponential scaling P ∼ exp{−ES/E} with critical field

strength ES ∼ 1018 V/m much higher than those available at current strong laser facilities such as

the European X-Ray Free-Electron Laser Facility (XFEL) or the Extreme Light Infrastructure (ELI),

Schwinger pair production remains unobserved to this day. However, it has been possible to observe

Breit-Wheeler pair production at the E-144 SLAC experiment, where the photons were produced

from the scattering of a 46.6 GeV electron beam with a strong laser field. There are several theoreti-

cal methods to tackle these problems, all of them with their upsides and downsides, but one barrier

common to most of them is the difficulty one faces when considering fields with both space and time

structure. This work is an attempt to break down that barrier by providing quantitative results for

the spectra of particles produced by spacetime fields. While the focus is mostly on 2D fields, an in-

structive example of a more realistic 4D field with optimal spacetime focusing is also shown. Since

future experiments will reasonably involve highly focused pulses in both space and time, it is useful

to have a theoretical toolkit that allows us to access the spectra of spacetime fields.
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CHAPTER 1. INTRODUCTION

W
E GIVE A GENERAL INTRODUCTION to the field of Strong-Field QED and list some known

results about plane waves that have been known for a long time. Using the Lehmann-

Symanzik-Zimmermann (LSZ) reduction formula with open worldlines explained in the

present work, we rederive them to test the validity of this method. Then, we discuss briefly the two

processes studied throughout the rest of this work, i.e. Schwinger and Breit-Wheeler pair production.

In the end we give a short outline of the rest of the thesis.

1.1 Strong-Field QED

Without a doubt, Quantum Electrodynamics (QED), i.e. the quantum theory of matter and light, is

one of the most successful physical theories due its many accurate predictions including the well-

known agreement of the anomalous magnetic moment of the electron up to many digits of preci-

sion [1, 2]. This particular high-precision agreement, arising from a perturbative calculation at sev-

eral loop orders, could in principle allow for the discovery of unknown highly suppressed physics

from small discrepancies between the calculated and the experimental values. However, while in

the weak-field and high-energy regime perturbation theory is a powerful tool, it is not the best op-

tion if we consider the interaction of matter or hard photons with strong electromagnetic fields given

by a huge number of coherent low-energy photons. The prototypical example of this is the interac-

tion of matter with lasers. The standard method to get around this is splitting the electromagnetic

field into a classical background field given by the coherent sum of (typically optical) photons, and

a quantized radiation field describing the interaction with individual incoherent photons (typically

of much higher energy than the optical laser, such as X-rays or higher energy). This is known as

the Furry picture [3], and the study of the interaction of matter or high-energy photons with strong

background fields is then known as Strong-Field QED. In the past decades, partly because the tech-

nological advances will allow the experimental test of the predictions of Strong-Field QED, there has

been a great effort on the theoretical side [4, 5, 6, 7, 8].

We give now a very brief introduction to the main ideas necessary for this thesis. Throughout the

present work, unless stated otherwise, we work in natural units c = ℏ = 1 and absorb the electric

charge into the background field qA → A. In Quantum Field Theory language, the splitting men-

tioned above implies in practice that we have a Lagrangian (before gauge fixing)

L = Ψ̄
(︁
i/∂ − /A−m)Ψ− 1

4
FµνFµν − qAµΨ̄γµΨ (1.1)

where Fµν = ∂µAν − ∂νAµ with the quantized photon field Aµ, and Aµ the classical background.

Since the field is very strong and we want to treat it exactly, only the last term is an interaction term

to be treated perturbatively in powers of α. This is the so-called Furry picture [9].
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CHAPTER 1. INTRODUCTION

Given a field Aµ(x), one can show that any field invariant can be expressed in terms of

F =
1

4
FµνF

µν = −1

2
(E2 −B2) G =

1

4
⋆ FµνF

µν = −E · B (1.2)

where ⋆Fµν = 1
2ϵµνρσF

ρσ is the Hodge dual of F and ϵ is the Levi-Civita symbol. A well-known

class of fields used in practical calculations due to their simplicity are plane waves, namely fields

that depend only on ϕ = kx where k is a null vector k2 = 0. For these fields

F = G = 0 . (1.3)

Plane waves are widely used because the solutions to the Dirac equation and the propagator have

a simple form and the effective field felt by a high energy particle is typically a plane wave. Let-

ting

Sp(x) = −px−
1

2pk

∫︂ ϕ

0
dφ
(︁
2pA(φ)−A2(φ)

)︁
Kp(ϕ) = 1 +

/k /A(ϕ)

2pk

(1.4)

and up,s be the free Dirac spinor with momentum p, one can see that

Ψp,s(x) = Kp(ϕ)e
iSp(x) up,s (1.5)

is an exact solution to (︁
i/∂ − /A−m)Ψp,s(x) = 0 . (1.6)

These functions are known as Volkov states [10]. To obtain the corresponding positron solution we

let p → −p and up → vp. Although one could in principle find other solutions to the Dirac equation,

the Volkov states represent a basis, i.e. they are orthogonal according to a suitable scalar product and

they give a spectral resolution of the identity [11].

Furthermore, one can see that

S(y, x) =

∫︂
d4p

(2π)4
Kp(ϕy)

/p+m

p2 −m2 + iε
K̄p(ϕx) e

−ip·(y−x)−i
∫︁ ky
kx Vp (1.7)

is the exact (Volkov) propagator for a generic plane wave background [12, 13] with

Vp =
2pA−A2

2pk
. (1.8)

One thing to point out is that the expression above looks like a Fourier transform but it is not. In

fact, the actual Fourier transform of the Volkov propagator has a much more complicated pole struc-

ture [14].

Although in this work we focus on spin-12 particles because we are interested in processes involving

electrons and positrons, one can derive similar results also for scalar particles. In particular the

Volkov states are obtained by simply dropping anything involving spin

Φp(x) = eiSp(x) (1.9)
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CHAPTER 1. INTRODUCTION

and similarly for the propagator

G(y, x) =

∫︂
d4p

(2π)4
1

p2 −m2 + iε
e−ip·(y−x)−i

∫︁ ky
kx Vp . (1.10)

Armed with these exact solutions, one can derive the Feynman rules (in position space) for Strong-

Field QED in a plane wave background by simply replacing free propagators with S (or G) and free

external states with Volkov states. However, there is no Schwinger pair production for fields with

vanishing field invariants such as plane waves, so the Volkov states/propagator cannot be used for

the Schwinger effect.

8

1.2 Schwinger and Breit-Wheeler pair production

It has been well-known for a long time that the presence of a background field changes the structure

of QED in drastic ways. One of the most fascinating and at the same time elusive phenomena is

Schwinger pair production. It has been speculated since about a century ago [15, 16, 17] that, given a

sufficiently strong electromagnetic field, the vacuum becomes unstable and pairs of charged particles

are created. Due to the extremely large field intensity required, of the order1 of ES ∼ 1018 V/m or

IS ∼ 1029 W/cm2, it has yet not been possible to verify the existence of such process experimentally

despite the significant effort in the development of strong lasers. To this day, this is perhaps the most

remarkable yet untested prediction of QED. The process is challenging both experimentally (for said

reasons) and theoretically due to its nonperturbative nature. For a constant field, the rate of pair

production per unit volume scales as2

P ∼ exp
{︂
− π
E

}︂
(1.11)

so it is highly suppressed for E much smaller than the Schwinger limit ES = 1. It is also inter-

esting to point out that this is the same exponential scaling of e.g. atomic ionization in an electric

field [20]

Pion ∼ exp

{︄
−4

3

√
2E

3/2
b

E

}︄
(1.12)

where Eb is the binding energy, which also suggests that Schwinger pair production is a tunneling

process. In chapter 3, we will corroborate this interpretation using an instanton picture. For com-

parison, if we consider for example the binding energy of hydrogen [21], we get a critical field of the

order of 109 V/m, which is many orders of magnitude smaller than the Schwinger limit.

=
1 The Schwinger effect is an electric phenomenon, although it has been speculated the existence of an analogous effect

where pairs of magnetic monopoles are created in a strong magnetic field [18, 19].
2 We have also set the electron mass to one, m = 1, so that the critical Schwinger field is ES = 1.
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CHAPTER 1. INTRODUCTION

There are various ways to generalize the calculation of of (1.11) for more general fields. One can solve

numerically the Dirac equation in a background field [22, 23], but this is very complicated for realistic

spacetime fields. Other numerical methods are the Wigner formalism [24, 25, 26] and the quantum

Vlaslov equation [27, 28, 29, 30]. Alternatively, there are also analytical semiclassical techniques such

as Wentzel-Kramers-Brillouin (WKB) [31, 32, 33, 34, 35, 36, 37] and closed instantons for the effective

action [38, 39, 40, 41, 42, 43, 44]. For slowly varying fields, one can also use the locally constant field

method [40, 45] to obtain information about the total probability. There are upsides and downsides

to each of these. The WKB approximation is simple and very powerful for one-dimensional fields,

but it does not generalize in an obvious way to higher dimensional inhomogeneities (which is the

scope of the present work), although recently some progress has been made [46, 47]. The effective

action method works well analytically for one-dimensional fields but also numerically for higher

dimensional fields, as demonstrated in [41, 44]. However, the output is the total integrated proba-

bility and nothing is known about the spectrum of particles produced (although for time-dependent

fields there is a trick that allows one to find the spectrum as well [48]). The Wigner formalism does

give information about the spectrum, but it is numerically challenging to work with spacetime fields

(especially more than 2D). Spacetime fields have been considered with such quantum kinetic ap-

proaches in [26, 49, 50, 51]. The approach we present here, which uses open worldline instantons

at the amplitude level, allows us to work with spacetime fields and produces information about the

spectrum at generic electron/positron momenta independently of each other, while the Wigner for-

malism considers only one momentum variable. The only assumption we make everywhere is that

the field strength must be much smaller than the critical Schwinger limit E ≪ 1 so that we can work

in the semiclassical/saddle-point approximation. This regime will be interesting experimentally in

the future because the first tests of the Schwinger effect will reasonably be at field strengths smaller

than the Schwinger limit. Open worldlines have also been considered in [52, 53].

Being able to have quantitative results for spacetime fields is also useful because in order to obtain

the highest possible field strength at the peak it is essential to have a highly focused beam in both

space and time [54, 55], so the constant field or time-dependent approximations would not be the

best options if ω/E ∼ O(1) where ω is the laser frequency. It is also necessary to tell apart the signal

coming from Schwinger pair production from any other background noise inevitably present in the

data. To do this, it is very useful to predict what the spectrum of emitted particles is. While for fields

with only one peak the spectrum is always Gaussian in the E ≪ 1 regime, a realistic pulse will have

a nontrivial subcycle structure giving rise to a rich spectrum made out of several peaks and valleys

from the interference of the multiple peaks in the pulse [37, 48, 56, 57, 58]. The method presented

here also allows us to consider fields with multiple peaks. In principle, one could also tweak the field

parameters in order to produce a desired spectrum [59].

If one works with the effective action Γ[A] defined from the vacuum persistence amplitude in the

5



CHAPTER 1. INTRODUCTION

presence of a field A

eiΓ[A] := out⟨0|0⟩in (1.13)

one can obtain the total pair production probability from the complement of the vacuum to vacuum

probability3

Ppair ≃ 1− |out⟨0|0⟩in|2 ≃ 2ImΓ[A] (1.14)

thus any information about the spectrum and spin is lost. If instead we obtain the amplitude from

the amputation of the propagator using the LSZ reduction formula [60], we can access the spectrum

and the spin as well. However, the usual LSZ is not suitable for this purpose because we would have

to work off the mass shell and take the on-shell limit at some point during the calculation, which is

not necessarily easy. An alternative way is to use the LSZ as in [52] in which an asymptotic time limit

is present instead of a time integral and one can work on the mass shell from the very beginning. The

amplitude for the production of an electron with momentum p and a positron with momentum p′ is

given by

M = out⟨p, p′|0⟩in = lim
t±→∞

∫︂
d3x+ d

3x− e
ipx++ip′x− ūs(p) γ

0 S(x+, x−) γ
0 vs′(p

′) (1.15)

where S(x+, x−) is the Dirac propagator in a background field A and ū and v are the free Dirac

spinors. The spectrum is then obtained by the modulus squared of the amplitude. For fields with

several peaks, the amplitude will be the sum of multiple terms, which can give interference.

We use the worldline representation of the propagator S in terms of a path integral over trajecto-

ries [61, 62, 63]

S(x+, x−) = (i/∂x+ − /A(x+) + 1)
1

2

∫︂ ∞
0

dT

∫︂ x+

x−

Dq e−i
∫︁ 1
0 dτ

q̇2

2T
+T

2
+q̇·A P e−

iT
4

∫︁
σµνFµν . (1.16)

where T can be interpreted as the total proper time, P is the proper-time ordering operator, and

σµν = i
2 [γ

µ, γν ]. For electromagnetic fields that depend on space and/or time, some of the integrals

in (1.15) and (1.16) cannot be done analytically, so we must use an approximation method. In the

E ≪ 1 regime, we can use the saddle-point method. The saddle-point equation for the path integral

in (1.16) is the Lorentz force equation

q̈µ = TFµν q̇ν (1.17)

and the solutions are known as the instantons. A similar representation in terms of a single particle

path integral is used in [38, 39, 40, 41] for the effective action as well, but in that case the path integral

is over trajectories with periodic boundary conditions q(0) = q(1), so the corresponding instantons

are closed as well, while in the case considered here they are open q(0) ̸= q(1).

=
3 We neglect the highly suppressed production of multiple pairs.

6



CHAPTER 1. INTRODUCTION

From the saddle-point equations with respect to the variables T and x± we get respectively4

q̇2 = T 2 q̇i(1) = Tpi q̇i(0) = −Tp′i , (1.18)

where the first one is an on-shell condition and the other two fix the initial/final derivatives of the

instanton in terms of the asymptotic momenta. Since in the asymptotic time limit t± →∞ the saddle

point value of the total proper time Ts also goes to infinity, and τ represents the normalized proper

time, it is convenient to change the variable to u = Ts(τ − 1/2) so that (1.17) and (1.18) do not

contain divergent variables. The boundary conditions can make it challenging to find the instantons

numerically because we have to use the shooting method [41] varying some initial condition (at u = 0

for convenience) until (1.18) are satisfied.

Considering the single pulse case for simplicity, at the end of the calculation we find [64, 65] that the

spectrum can be written as

P(p, p′) = EaF (p, p′) e−
1
E
A(p,p′) (1.19)

where A(p, p′) is an integral involving the instantons

A(p, p′) = 2Im
∫︂
du qµ∂µAν

dqν

du
, (1.20)

F (p, p′) is a numerical prefactor that can be calculated solving some second order linear ODE describ-

ing fluctuations of the Lorentz force equation (1.17) around the instanton, and a is some real number.

We have extracted the dependence onE to make the point more clear. While this method in principle

allows us to find the spectrum at a generic momentum by finding the corresponding instanton that

satisfies (1.18), there is a simpler way. Since the integral A(p, p′) will have some maximum (ps, p
′
s)

and does not depend on the field strength E, for E ≪ 1 the spectrum is approximately a simple

Gaussian centered at (ps, p′s) with a narrower peak the smaller E is. This can be seen by Taylor ex-

panding A around (ps, p
′
s). Since the peak is very narrow, we can approximate the prefactor F (p, p′)

by considering its value at the maximum F (ps, p
′
s).

The particular form of the spectrum will depend on the field considered. For time-dependent fields,

for example, the spatial momentum is conserved, so the spectrum will be proportional to a delta

function δ(p + p′). If, on the other hand, we consider a field of the form E3(t, z) and all other com-

ponents equal to zero, the spatial dependence breaks momentum conservation along z so there are

more degrees of freedom. For such fields, it is convenient to change the variables to

P =
1

2
(p′3 − p3) ∆ = p3 + p′3 (1.21)

and denote by p⊥, p′⊥ the momentum values transverse to the polarization of the field x and y. Since

the field only depends on z, the transverse momentum is still conserved p⊥ + p′⊥ = 0 and the maxi-

mum is at p⊥ = p′⊥ = 0. For fields symmetric with respect to t and z the spectrum is symmetric with

=
4 x± denoting the space components of the initial/final points x± of the propagator (1.16).

7



CHAPTER 1. INTRODUCTION

respect to ∆ → −∆, so the saddle point is ∆s = 0. Denoting P the nontrivial saddle point of P we

have

P(p, p′) ∼ exp

{︃
−A
E
− p2⊥
E d2⊥

− (P −P)2

E d2P
− ∆2

E d2∆

}︃
, (1.22)

where A = A(ps, p′s). The advantage is that the three widths d⊥, dP , and d∆ in the spectrum can

be calculated numerically in a simple way by solving some ODE involving the instantons at the

maximum (ps, p
′
s), therefore, instead of calculating many instantons and integrating them for each

value of the momenta, one has to do this only once. Furthermore, the instantons at the maximum are

numerically easier to find due to symmetry.

To lower the threshold for Schwinger pair production, one possibility is using colliding laser pulses

[66]. If we consider an e-dipole field [67, 68], a 4D field with optimal focusing, the spectrum has

more degrees of freedom because no momentum component is conserved. Defining variables as

before

Pi =
1

2
(p′i − pi) ∆i = pi + p′i (1.23)

we have, due to symmetry, P⊥s = ∆⊥s = ∆zs = 0, so the only nontrivial momentum maximum is

P = Pzs. The spectrum now has the form

P(p, p′) ∼ exp

{︄
−A
E
− ∆2

⊥

E d2∆,⊥
− ∆2

z

E d2∆,z
− P 2

⊥

E d2P,⊥
− (Pz −P)2

E d2P,z

}︄
. (1.24)

The punchline is that we can find the spectrum in the semiclassical approximation using the follow-

ing simple recipe:

1. find the instanton q(u) at the momentum maximum

2. perform an integral involving q(u) to find A

3. solve some linear ODEs to compute the widths

We point out that, from a numerical point of view, this method is quite efficient and typically stable.

The point where we need to be the most careful is step 1 because, since we use the shooting method,

choosing a clever initial guess is essential, and even more so for very fast pulses with imaginary

poles [69], where the instantons have tricky branch cuts that require some care. Step 3 does not

require any shooting since the ODEs in question have simple initial conditions at u = 0. Once we

have all the widths, we find immediately the integrated probability and we can compare with the

effective action method.

The method outlined here is a considerable simplification compared to finding the spectrum on some

grid points around the maximum. If we have a more realistic spacetime field with several peaks this

method is even more powerful because the spectrum is no longer a simple Gaussian, so to resolve the

8



CHAPTER 1. INTRODUCTION

multiple peaks properly we would need a great number of sample points, which is numerically very

intensive. For such fields the expansion above is slightly more general, but the idea is the same–we

find the instantons and then use them to calculate a small number of numerical parameters that give

the full spectrum in the saddle-point approximation.

These instantons also have a physical interpretation. The saddle-point method is a semiclassical ap-

proximation in which we only consider contributions from the solution to the classical equation of

motion (1.17) plus Gaussian fluctuations around it. However, since we are dealing with a classically

forbidden process, namely particles tunneling from the vacuum, the instantons are complex func-

tions. Allowing also the proper time to be complex, i.e. choosing a complex contour u(r) in (1.17), we

find a particular contour which splits the instantons into a “creation” region and an “acceleration”

region. In the creation region the spatial components are real but time is imaginary so the particles

are tunneling, while in the acceleration region all components are real and the solution describes the

propagation of real particles accelerated by the field. Once we allow proper time to be complex, we

can interpret the instantons as analytic functions defined on some region of the complex u-plane. A

way to visualize them is to use domain coloring on the complex u-plane and add contour lines for

some desired quantity (e.g. modulus or real/imaginary parts) as in Fig. 1.1. As we can see, analytical

continuation of the instantons on the complex plane encounters branch points, so in the plot we show

only one Riemann sheet. We show that such branch points are due to the singularities of the electro-

magnetic field Fµν . In Fig. 1.1 we can also see the physical contour mentioned above represented by

the green line.

The other process we consider is nonlinear Breit-Wheeler pair production, γ → e−e+, i.e. we add a

high-energy photon to catalyze the process. The energy provided by the hard photon significantly en-

hances the probability [70] and the process remains nonperturbative if we are away from the regime

a0 = E/ω ≪ 1 where ω is the laser frequency. Similarly to the Schwinger effect, we can write the

spectrum in terms of some widths and saddle points. In addition, we study the effect of a Gaussian

wave packet for the photon momentum k on the spectrum and the total integrated probability.

We consider a 2D electric field E3(t, z) and a photon wave packet

f(k) ∼ exp

⎧⎨⎩−
3∑︂
j=1

(kj − lj)2

2λ2j

⎫⎬⎭ , (1.25)

centered around l1 > 0, l2 = l3 = 0 with very narrow widths λ1, λ2 ≪ 1 for the x and y momenta but

a generic λ3 for the z momentum. We find that there is a phase transition at some finite critical size

of the wave packet λ = λc where the spectrum splits from one to two peaks as shown in Fig. 1.2 and

the distance ∆s of the two peaks behaves like an order parameter for a continuous phase transition.

9



CHAPTER 1. INTRODUCTION

Figure 1.1: Component z(u) (left) and t(u) (right) of the instanton for Schwinger pair production in a double

Sauter pulse E3(t, z) = E sech(ωt)2 sech(κz)2. The parameters are given by γω = ω/E = 1 and γk = κ/E =

1. The green line is the physical contour that produces the split into formation (vertical) and acceleration

(horizontal) regions. The color represents the phase according to the legend on the right. In particular, red

indicates a region with a large positive real part and light blue a region with large negative real part. The

white lines represent contour lines of |q| and the black ones contour lines of Re(q) and Im(q). uc indicates the

zero of t(u), which is also a stationary point for the spatial component z′(uc) = 0.

Figure 1.2: Longitudinal spectrum before (left) and after (right) the phase transition at p⊥ = p⊥s with parame-

ters E = 1/20 and Ω = γt = γz = 1. The plot on the left is at λ = 2
√
E and the one on the right at λ = 3.2

√
E.

The critical point is λc ≃ 2.23
√
E. The dashed line represents the set of points with ∆ = 0.

Each peak of the spectrum has the form

P(p, p′) ∼ exp

{︃
−A
E
− p22
E d22

− 1

E
(Π−Πs) · d−2 · (Π−Πs)

}︃
(1.26)

10



CHAPTER 1. INTRODUCTION

where Π = (p1,∆, P ) is a collective variable for all particle momenta. Compared to the previous case,

the spectrum has a more complicated structure encoded in the matrix d−2, but the general idea is the

same. One does not have to find the spectrum on a grid of momenta, but only the widths.

In this case, the Lorentz force equation receives an extra term kµδ(u) from the photon

d2qµ

du2
= Fµν

dqν
du

+ kµδ(u) (1.27)

which begs the question about the meaning of δ(u) when we choose a complex contour. The inter-

pretation is in fact quite simple. The delta function splits the instanton into two: at u > 0 (before

contour deformation) we denote the instanton by q(+)(u) and at u < 0 by q(−)(u) with a discontinuity

in the derivative at u = 0 due to the kµδ(u) term

dqµ(+)

du
(0)−

dqµ(−)

du
(0) = kµ . (1.28)

We can view u = 0 as the value of proper time where the photon absorption happens and q(+)(u)

and q(−)(u) as describing the electron/positron respectively. Both functions can be defined over the

whole complex plane (up to branch cuts), so if we want a single-valued instanton we can glue them

together defining

q(u) :=

⎧⎪⎨⎪⎩q(−)(u) Im(u) > 0

q(+)(u) Im(u) < 0
(1.29)

obtaining Fig. 1.3. In this case we choose the contour at an angle because the zeros u±
c of t(u) are not

along the imaginary axis.

8

1.3 Outline of the thesis

We begin with a brief introduction to the worldline formalism in chapter 2, used throughout the

following chapters, providing a representation of the spinor propagator in terms of a particle path

integral rather than an integral over fields. In chapter 3 we calculate the Schwinger pair production

spectrum for spacetime fields, first for 2D and then 4D fields. We compute probabilities and the

spectrum widths at various field parameters. We also explain the method for finding the instantons

and study their analytic properties as functions of a complex variable. We also show how the in-

terpretation of the pair production as a tunneling phenomenon arises naturally from the instantons.

Finally, for dipole fields we derive an analytic slow pulse approximation beyond the locally constant

field method. In chapter 4 we study the Breit-Wheeler spectrum for 2D fields and the properties of

the phase transition of the spectrum. We find that the spectrum becomes infinitely spread out in one

direction as we reach the critical point, indicating that the semiclassical approximation breaks down.

11
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Figure 1.3: Components z(u) (left) and t(u) (right) of the instanton for Breit-Wheeler pair production defined

with (1.29) in a double Sauter pulse E3(t, z) = E sech(ωt)2 sech(κz)2. The parameters are given by γω = ω/E =

1 and γk = κ/E = 1 for the field, and {k1, k2, k3} = {1, 0, 1.15}, λ = 3
√
E for the incoming photon wave

packet. The green line is the physical contour that produces the split into formation and acceleration regions.

We look also at the spacetime trajectory of the pair after particle creation. In appendix A we explain

briefly the saddle-point ideas and calculate the worldline Green’s function for a time-dependent field.

In Appendix B we provide some basic notions of complex analysis and explain how we use them to

study the rich structure of the worldline instantons. In Appendices C and D we use the aforemen-

tioned representation of the propagator in the LSZ reduction formula to derive the exact solutions

of the Dirac equation and the propagator in a plane wave and in a constant electric field. We show

that, in a constant field, one has to choose the asymptotic states carefully to obtain the correct re-

sult, because the field extends infinitely and the particles are not free asymptotically. We also derive

the amplitude for Schwinger pair production (for the constant field) and Breit-Wheeler (for both the

plane wave and the constant field).

12



Chapter 2

Worldline formalism
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CHAPTER 2. WORLDLINE FORMALISM

I
N THIS CHAPTER WE derive some basic results of the worldline formalism. The usual way

to make quantum mechanics a relativistic theory is to treat space and time on the same

footing as labels on quantum fields constructing a quantum field theory. In this frame-

work, we either deal with operators or represent propagators as path integrals over field configura-

tions. However, in the worldline formalism approach, more similar to string theory, we represent

propagators and amplitudes in terms of single particle path integrals [61, 62, 63] as in nonrelativistic

quantum mechanics. The standard material is reviewed in [71, 72]. In this thesis we do not examine

the foundations of the worldline formalism; we simply use worldline representations of the propa-

gators in the LSZ reduction formula to compute scattering amplitudes. While this is not the simplest

method to work with for plane waves, constant fields or one-dimensional fields, for which either

exact or WKB solutions are known, the main advantage is that it allows us to go beyond and study

spacetime fields quite effectively.

2.1 Scalar particle

Assuming that the Hamiltonian for a relativistic particle is the well-known energy

H =
√︂

p2 +m2 , (2.1)

performing a Legendre transform we find

L = p · ẋ−H = −m
√︁

1− ẋ2 (2.2)

hence the action that describes a massive relativistic scalar particle is the integral of the line element

ds =
√
dt2 − dx2

S = m

∫︂ t1

t0

dt
√︁
1− ẋ2 . (2.3)

However, this is not nice because it is not manifestly Lorentz invariant. We can perform a change of

variable to τ with t→ t(τ)

S = m

∫︂ 1

0
dτ
√︁
ẋ2 (2.4)

where now ẋ(τ)2 = ṫ(τ)2 − ẋ(τ)2. Although the notation τ resembles proper time, we can perform

a change of variable τ → τ ′ = F (τ) where F (τ) is any diffeomorphism from [0, 1] to [0, 1]. This

reparametrization invariance is a gauge symmetry because it reflects a redundancy in our descrip-

tion.

While (2.4) is manifestly Lorentz invariant, using it to perform a path integral is quite a challenge

since it is not quadratic. The trick to make it quadratic is straightforward: we add an extra degree of

freedom that is not dynamical (the action does not depend on its derivative) such that, if we solve

14



CHAPTER 2. WORLDLINE FORMALISM

the Euler-Lagrange equations for it, we obtain (2.4). Let us call this degree of freedom e(τ). We must

reobtain (2.4) when we solve

∂L
∂e

= 0 (2.5)

and L shall be quadratic. We can easily see that

L =
ẋ2

2e
+
m2e

2
(2.6)

does the trick, since e =
√
ẋ2/m. The field e(τ) is called an einbein. Interestingly, (2.6) also de-

scribes a particle propagating in 0+1 dimensional spacetime with external gravity g00(τ) = e(τ). The

corresponding Hamiltonian is obtained immediately with a Legendre transform

H =
e

2

(︁
p2 −m2

)︁
. (2.7)

8

We can now compute a path integral with (2.6). Analogously to QED, integrating over all configura-

tions of x(τ) and e(τ) would produce an infinite result due to gauge invariance. One can show [72]

that the correct gauge fixed path integral is (denoting the integration variable path as q(τ) and the

initial/final points x and y)

G(y, x) :=
1

2

∫︂ ∞
0

dT

∫︂ y

x
Dq e−i

∫︁
dτ q̇2

2T
+m2

2
T . (2.8)

To check that this gives the Klein-Gordon propagator, the easiest way is in momentum space

G̃(p, p′) =

∫︂
d4xd4y eipx+ip

′yG(y, x) . (2.9)

The path integral can be computed by changing the variable to q(τ) → x + (y − x)τ + q(τ) so that

q(0) = q(1) = 0 using the normalization∫︂
Dq e−

i
2T

∫︁
dτ q̇2 =

1

(2πT )2
. (2.10)

The last integral over T is defined in terms of the analytic continuation of∫︂ ∞
0

dT eiT z =
i

z
(2.11)

from Re(z) > 0 to a purely imaginary exponent Re(z) = 0. This is equivalent to integrating along a

slightly tilted contour close to the real axis and letting ε→ 0

lim
ε→0+

∫︂ (1+iε)∞

0
dT eiT = i . (2.12)

Up to a phase we obtain the Klein-Gordon propagator

G̃(p, p′) =
1

p2 −m2
δ(p+ p′) . (2.13)
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8

We can now couple the scalar particle to an external electromagnetic field A by minimal coupling1

p→ p−A in the phase space action

H =
e

2

(︁
(p−A)2 −m2

)︁
(2.14)

from which we Legendre transform it back to obtain

L =
ẋ2

2e
+ ẋµAµ +

m2e

2
. (2.15)

This gives us the representation for the exact dressed propagator

G(y, x) =

∫︂ ∞
0

dT e−i
m2

2
T

∫︂ y

x
Dq e−i

∫︁
dτ q̇2

2T
+A·q̇ (2.16)

which will keep us company in the next chapters. Unlike the Quantum Field Theory representation,

here we have a path integral over real trajectories, which are functions of only one parameter τ .

We can derive this representation by brute force as well. By definition

G(y, x) = −⟨y| 1

−∂2 −m2
|x⟩ = i

2

∫︂ ∞
0

dT ⟨y|e−
iT
2
(∂2+m2)|x⟩ (2.17)

so if we compare this expression with the propagator2 (with m = 1)

⟨y, t|e−it
−∇2

2 |x, 0⟩ =
∫︂ y

x
Dq e−i

∫︁ 1
0 −

q̇2

2t (2.18)

we simply replace t→ T and

−∇2 → ∂20 −∇2 = ∂2 − q̇2 → (q̇0)2 − q̇2 = q̇2 (2.19)

to obtain (up to a phase)

G(y, x) =
1

2

∫︂ ∞
0

dT

∫︂ y

x
Dq e−i

∫︁
dτ q̇2

2T
+m2

2
T (2.20)

which is precisely (2.8).

8

There is a nice way to incorporate photons into this treatment. Usually, in Quantum Field Theory,

we add photons in the LSZ reduction formula as new external states and amputate to derive the

Feynman rules. In the Worldline Formalism, they appear as plane waves in the classical external field

A(x) [71, 73, 74], as we are going to show.

=
1 The electric charge is absorbed into the definition of the field qA → A.
2 q denoting only the space components since in nonrelativistic quantum mechanics one uses a path integral over the

spatial coordinates only.
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We begin with the LSZ formula for scalar QED with one outgoing photon3 with momentum l and

polarization ε attached to a scalar line, i.e. with one incoming and one outgoing scalar particle with

momenta respectively p′ and p. In the LSZ we have an amputation for each external particle, i.e.

⟨p; l, ε|p′⟩ =
∫︂
d4x d4y eipy−ip

′x (∂2x +m2)(∂2y +m2)

∫︂
d4z eilz εµ∂

2
z ⟨Ω|Tϕ†(x)ϕ(y)Aµ(z)|Ω⟩. (2.21)

Using the quantum field theory representation

⟨Ω|Tϕ†(x)ϕ(y)Aµ(z)|Ω⟩ =
∫︂
DϕDϕ†DAei

∫︁
d4wL0+Lint+LMϕ†(x)ϕ(y)Aµ(z) (2.22)

where L0 = ∂µϕ
† ∂µϕ −m2ϕ†ϕ, Lint = iAµ(∂µϕ

† ϕ − ϕ†∂µϕ) + A2ϕ†ϕ, and LM = −1
4FµνF

µν , we get

scattering at tree level by expanding the interacting Lagrangian at first order

ei
∫︁
d4wLint ∼ 1 + i

∫︂
d4wAν(w)(∂νϕ

† ϕ− ϕ†∂νϕ) . (2.23)

The zeroth order is of course zero, and at first order we contract the electromagnetic fields Aµ(z) and

Aν(w) obtaining∫︂
d4z eilz εµ∂

2
z ⟨Ω|Tϕ†(x)ϕ(y)Aµ(z)|Ω⟩ =∫︂

d4zd4w eilz εµ δ
µν∂2z∆(w − z)⟨0|Tϕ†(x)ϕ(y)(∂νϕ(w)† ϕ(w)− ϕ†(w)∂νϕ(w))|0⟩

(2.24)

where

⟨0|TF (ϕ, ϕ†) |0⟩ =
∫︂
DϕDϕ† ei

∫︁
d4wL0 F (ϕ, ϕ†) (2.25)

and

δµν∆(z − w) =
∫︂
DAAµ(z)Aν(w) ei

∫︁
LM (2.26)

is the photon propagator in real coordinates. Note that difference between (2.22) and (2.25) is that

|Ω⟩ is the vacuum of the interacting theory, while |0⟩ is the vacuum of the free scalar theory. This is a

great simplification because expectations values of the form ⟨0|ϕ . . . ϕ† . . . |0⟩ are combinations of the

free scalar propagator that follow from Wick’s theorem.

Using ∂2z∆(w − z) = δ(w − z) (2.24) becomes

i

∫︂
d4z eilz εµ ⟨0|Tϕ†(x)ϕ(y)

(︁
∂µϕ

†(z)ϕ(z)− ϕ†(z)∂µϕ(z)
)︁
|0⟩ =∫︂

d4z eilz εµ
δ

δAµ(z)
⟨0|Tϕ†(x)ϕ(y)|0⟩A=0

(2.27)

where

δ

δAµ(z)
⟨0|Tϕ†(x)ϕ(y)|0⟩A=0 (2.28)

=
3 We work in Feynman gauge for simplicity.
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is the functional derivative of the scalar propagator dressed with a classical field, subsequently eval-

uated at A = 0. The functional derivative pulls down a vertex.

8

At this point we can use the worldline representation of the dressed scalar propagator

⟨0|Tϕ†(x)ϕ(y)|0⟩A =
1

2

∫︂ ∞
0

dT

∫︂ y

x
Dq e−i

∫︁ q̇2

2T
+m2T

2
+A·q̇ (2.29)

so clearly

∫︂
d4z eilz εµ

δ

δAµ(z)
⟨0|Tϕ†(x)ϕ(y)|0⟩A=0

=
−i
2

∫︂ ∞
0

dT

∫︂ y

x
Dq

∫︂ 1

0
dτ1 e

il·q(τ1)ε · q̇(τ1)e−i
∫︁ q̇2

2T
+m2T

2

=
1

2

∫︂ ∞
0

dT

∫︂ y

x
Dq e−i

∫︁ q̇2

2T
+m2T

2
+A(q)·q̇

⃓⃓⃓
lin

(2.30)

where

Aµ(q) = εµ e
ilq (2.31)

and “lin” means that we take the linear part of the exponent in (2.30) when Taylor expanded in ε,

i.e.

e−i
∫︁
A(q)·q̇

⃓⃓⃓
lin

= −i
∫︂ 1

0
dτ1 e

il·q(τ1)ε · q̇(τ1) . (2.32)

Putting everything together, Eq. (2.21) reduces to

⟨p; l, ε|p′⟩ = 1

2

∫︂
d4x d4y eipy−ip

′x (∂2x +m2)(∂2y +m2)

∫︂ ∞
0

dT

∫︂ y

x
Dq e−i

∫︁ q̇2

2T
+m2T

2
+A(q)·q̇

⃓⃓⃓
lin
. (2.33)

To summarize, going from (2.21) to (2.33) we have dropped the photon amputation at the price of

adding a plane wave background field Aµ(q) = εµ e
ilq to the scalar propagator. This is a convenient

trick to add a photon because we now have only one scalar propagator (hence one path integral) and

no z-integral as in (2.21). This method generalizes for an arbitrary number of photons, and if we want

to have a background field on top of that, we perform the usual modifications to the scalar lines of

the LSZ and simply evaluate at A = Aext at the end. This allows us to deal with Breit-Wheeler with

the worldline formalism in a simpler way. A general formula for the N -photon scattering amplitude

is called a master formula, but we shall not pursue this here [73, 74, 75, 76, 77, 78, 79].

8
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2.2 Spinor particle

We have a number of different representations for the spinor propagator. The most straightforward

representation can be quickly derived analogously to the previous section

S(y, x) =
⟨︂
y
⃓⃓⃓ 1

m− i /D̂

⃓⃓⃓
x
⟩︂
=
⟨︂
y
⃓⃓⃓ m+ i /D̂

m2 + /D̂
2

⃓⃓⃓
x
⟩︂

= (i /Dy +m)
⟨︂
y
⃓⃓⃓ 1

D̂
2
+m2 + i

2γ
µγνFµν

⃓⃓⃓
x
⟩︂

= (i /Dy +m)KA(y, x) (2.34)

where D is the covariant derivative D = ∂ + iA (the electric charge being absorbed into the field)

and the heat kernel KA is the scalar propagator with an extra matrix valued potential, for which we

already know a worldline path integral representation. The matrix valued potential however forces

us to add a path ordering at the exponential, analogously to the Dyson series⟨︂
y
⃓⃓⃓ 1

D̂
2
+m2 + i

2γ
µγνFµν

⃓⃓⃓
x
⟩︂
=

1

2

∫︂ ∞
0

dT

∫︂ y

x
Dq e−i

∫︁ 1
0 dτ

q̇2

2T
+m2T

2
+A·q̇ P e−

iT
4

∫︁
σµνFµν . (2.35)

where σµν = i
2 [γ

µ, γν ] and we used iγµγνFµν = σµνFµν thanks to the antisymmetry of F .

The path-ordered exponent is a spin factor. In principle, we could rewrite it in terms of a path integral

over Grassmann variables as in [71], but for us it will be more convenient to keep it as it is.

8

2.3 Effective action

We take now a quick detour into the world of closed loops. The effective action method with

closed worldline instantons has proved itself to be an effective tool for perturbative loop calculations

in QFT [71] and for nonperturbative Strong-Field QED calculations with plane waves [80, 81, 82],

constant fields [70, 83, 84, 85, 86, 87], one-dimensional fields [39, 40], and more general configura-

tions [41, 43, 44, 88]. The vacuum to vacuum amplitude in quantum field theory for a scalar particle

in the presence of an external electromagnetic field is given by

eiΓ[A] := ⟨0|0⟩A =

∫︂
DϕDϕ∗ eiS[ϕ,ϕ∗;A] (2.36)

with

S[ϕ, ϕ∗;A] =

∫︂
d4x |Dϕ|2 −m2|ϕ|2 (2.37)

where D = ∂ + iA. This quantity is very useful for the computation of pair production. Since

probabilities must add up to one, we have the approximate relation

Ppair ≃ 1− |⟨0|0⟩A|2 = 1− |eiΓ[A]|2 ≃ 2ImΓ[A] (2.38)
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thus from the imaginary part of the effective action we immediately obtain the total integrated prob-

ability. This method, however, does not allow one to obtain the spectrum of emitted pairs, since Ppair

is the overall probability that a pair is created, i.e. the integrated spectrum. In the next chapters we

will show how the spectrum can be obtained using open worldlines.

Using a well known property of Gaussian integral we simply find

eiΓ[A] ∼ det
1

−D2 +m2
(2.39)

and, with the normalization eiΓ[0] = 1 due to the fact that the vacuum does not produce any pairs,

(2.39) becomes an equality. The effective action is readily found

Γ[A] = i ln det(−D2 +m2) = iTr ln(−D2 +m2) (2.40)

and, since the trace is independent of the basis, we can choose a set of position eigenstates

TrO =

∫︂
d4x ⟨x|O|x⟩ (2.41)

and use

ln a = −
∫︂ ∞
0

dT
e−

ia
2
T − e−

i
2
T

T
(2.42)

dropping the second term, we obtain

Γ[A] = −i
∫︂ ∞
0

dT

T

∫︂
d4x ⟨x|e−

iT
2
(−D2+m2)|x⟩ . (2.43)

The transition amplitude between two position eigenstates can be expressed in term of a particle path

integral [61], giving a final expression

Γ[A] = −i
∫︂ ∞
0

dT

T

∮︂
PBC

Dq e−i
∫︁ 1
0 dτ

q̇2

2T
+A·q̇ (2.44)

with ∮︂
PBC

Dq =
∫︂
d4x

∫︂ x(1)=x

x(0)=x
Dq . (2.45)

The spinor QED analog is simply multiplied by a spin factor

Γspin[A] = −
i

2

∫︂ ∞
0

dT

T

∮︂
PBC

Dq eiS[q;A]TrP e−
iT
4

∫︁
σµνFµν . (2.46)

This spin factor (now including a trace) can be expressed in terms of a fermionic path integral∫︂
ψ(0)=−ψ(1)

Dψ e−
1
2

∫︁ 1
0 dτ ψµψ̇

µ
+TψµFµνψν

(2.47)

where ψ is a Grassmann, fermionic variable that makes the action supersymmetric [71].
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CHAPTER 3. SCHWINGER PAIR PRODUCTION

W
E PRESENT A WORLDLINE APPROACH with open instantons to compute the spectrum of

pairs produced in spacetime fields. While this method can be used for simpler fields such

as plane waves, constant fields, and 1D fields, its true potential is allowing us to make

the leap to a general spacetime field. The calculation is performed using the LSZ reduction formula

with the worldline propagator and the saddle-point method to approximate the nontrivial integrals.

We show how to obtain simple expressions for the spectrum widths and use them to compare with

the effective action method for a few example fields such as a simple product of Sauter pulses and the

e-dipole pulse. The instantons play a major role in finding the spectrum, and developing a systematic

way to find them is crucial. With a particular choice of parametrization for proper time, we find a

natural interpretation of the instantons as describing tunneling in the central region and free particles

asymptotically. The material in this chapter is taken from [64, 65].

3.1 Pair production amplitude in a 2D field

3.1.1 Definitions

We begin by writing the amplitude with the LSZ reduction formula

M = lim
t±→∞

∫︂
d3x+ d

3x− e
ipx++ip′x− ūs(p) γ

0 S(x+, x−) γ
0 vs′(p

′) (3.1)

where p and p′ are respectively the electron/positron momenta, ū and v the free Dirac spinors in the

basis

us(p) =
1√︁

2p0(p0 + p3)
(/p+ 1)Rs

vs(p) =
1√︁

2p0(p0 − p3)
(−/p+ 1)Rs

(3.2)

with Rs chosen such that γ0γ3Rs = Rs (s = 1, 2), S the Dirac propagator in a background field Aµ in

the worldline representation (2.34)

S(x+, x−) = (i /Dx+ + 1)
1

2

∫︂ ∞
0

dT

∫︂ x+

x−

Dq e−i
∫︁ 1
0 dτ

q̇2

2T
+T

2
+q̇·A P e−

iT
4

∫︁
σµνFµν (3.3)

whereD is the covariant derivativeD = ∂+iA, P is the proper-time ordering symbol, σµν = i
2 [γ

µ, γν ]

and we have set m = 1 so that all energy scales are relative to the electron mass. In this section we

consider an electric field E3(t, z) polarized along the z direction with gauge potential A3(t, z). For

numerical computations, we specialize to a product of Sauter pulses

A3(t, z) =
E

ω
tanh(ωt) sech2(κz) . (3.4)

The asymptotic states are free because, although in this gauge A3 is nontrivial when t → ∞, the

instantons will satisfy |z| → ∞ as well. We may also choose a gauge where the potential manifestly

vanishes when t → ∞ such as A0(t, z) = −E
κ tanh(κz) sech2(ωt). Since the electromagnetic potential
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A(q) is a nonlinear function of the path integral variable q(τ), the integrand is no longer Gaussian so

some of the integrals cannot be performed exactly. Rescaling q → q/E, x± → x±/E, and T → T/E

we see that the scalar part of the exponent is proportional to 1/E

1

E

(︃
ipx+ + ip′x− − i

∫︂ 1

0
dτ

q̇2

2T
+
T

2
+ q̇ ·A(q/E)

)︃
(3.5)

so for field strengths much smaller than the Schwinger limit E ≪ 1, which is what we consider in

this work, we use the saddle-point method [39] to compute the integrals. Since the spin factor in (3.1)

is of order O(E0), for the saddle point equations we only consider the scalar terms (3.5).

If we have a field that depends on some characteristic frequencies {ω1, . . . , ωn}, before computing

any integrals we already see that the terms inside the parenthesis in (3.5) only depend on the field E

and the ωi through the Keldysh parameters γi

γi :=
ωi
E

(3.6)

so in what follows we always regard the γi as independent of E. In the saddle-point approximation

we consider the leading order contribution in E, so the spectrum and the integrated probability will

have a scaling of the form1

P(p, p′) = Ea S(γi) e−
A(γi)

E
− 1

E
(Π−Πs)·d−2(γi)·(Π−Πs) P = EbF(γi) e−

A(γi)

E (3.7)

where a, b are some constants and A,S,F , and d−2 are functions of the field parameters γi. Since the

dependence on E is trivial (3.7), in the present work we almost always focus on how the maximum

A, prefactor, widths, etc. change with the Keldysh parameters γi without the overall factors of E

for convenience. In some cases, for example if we want to plot the spectrum for fields with several

peaks, we resurrect the factor of E and fix it to some numerical value. For the 2D fields we consider

in this section we define

γω =
ω

E
γk =

κ

E
. (3.8)

8

3.1.2 Exponent

To compute the exponent, we make no assumptions on the field other than the fact that it vanishes

asymptotically. The saddle point equations for the path integral are the Lorentz force equations

q̈µ = TFµν q̇ν . (3.9)

Multiplying (3.9) by q̇µ we also see that q̇2 is independent of τ . For the ordinary variables T and x±

respectively

T 2 = q2 q̇i(1) = Tpi q̇i(0) = −Tp′i . (3.10)

=
1 Extracting all factors of E for the sake of clarity.
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The first is an on-shell condition, the other two fix initial/final derivatives of the instanton in terms

of the momenta. They can be shown by considering a variation δq which is only nonzero at the

boundary. We can now evaluate the exponent using these instanton equations. We integrate
∫︁
q̇2 by

parts and use

q̈µ = TFµν q̇
ν = T∂µAν q̇

ν − TȦµ (3.11)

from which

− iT
2
− i
∫︂ 1

0

q̇2

2T
+A q̇ = −i

[︃
q̇

T

]︃
· q
⃓⃓⃓1
0
+ i

∫︂ 1

0
qµ ∂µAν q̇

ν . (3.12)

Using (3.10), these boundary terms cancel against the contributions from the asymptotic states ipx++

ip′x− in (3.1). Changing the variable to u = Ts(τ − σ), where Ts is the saddle-point value of the T -

integral and σ is chosen so that at u ∼ 0 the worldline passes through the field, the final exponent

becomes

ψ = i

∫︂
C
du qµ ∂µAν

dqν

du
(3.13)

where the contour extends from −∞ to +∞ because Ts, i.e. the total proper time, goes to infinity in

the asymptotic limit as we show later.

The difference with the effective action [39] and open instanton results [89] in time-dependent fields is

that the final expression (3.13) for the exponent explicitly contains the instantons. This will motivate

us to study their properties in detail and to develop a method to find them efficiently. For now it

is enough to point out that Cauchy’s theorem tells us that (3.13) is manifestly independent of the

parametrization as long as C goes from −∞ to +∞ and we do not cross any poles or branch cuts

of the integrand. If we start with a real parametrization, it is not only convenient but sometimes

necessary to change it in order to find “good” instantons at all. Apart from the computational point

of view, some parametrizations allow for a clearer picture of what the instantons represent. Note that

the instanton appears to be traveling backward in time in the region (−∞, 0), i.e. where it describes

a positron, which agrees with the interpretation of positrons [90, 91].

As a final remark, one might be tempted to interpret the result above as a line integral of a differential

form. If such form is closed, one might hope that it is also exact and use Stokes’ theorem. Defining

fµ = qρ∂ρAµ the integrand becomes fµdqµ, which indeed has the structure of a 1-form. But such form

has no chance of being exact, since its differential

∂µfν − ∂νfµ = Fµν + qρ∂ρFµν (3.14)

is gauge invariant, and it is zero when Fµν = 0. Assuming that our field is gauge equivalent to zero,

Aµ = ∂µα, we immediately see that the integrand is exact

fµ = qρ∂ρ∂µα = ∂µ(q
ρ∂ρα− α) (3.15)
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therefore defining ω = qρ∂ρα− α we find∫︂
C
dqµ ∂µω = ω(∞)− ω(−∞) (3.16)

which gives a pure phase.

8

3.1.3 Path integral

As to the prefactor, one needs to be careful about the order in which one computes the integrals when

using the saddle-point method. Given an integral with respect to some variables x1, . . . xn, if we

compute e.g. x1 first then the exponent is evaluated at the saddle point for x1 as a function of all the

other variables x1s(x2, . . . xn), hence when taking derivatives of the exponent with respect to x2, . . . xn

to compute the other integrals the dependence in x1s(x2, . . . xn) must be taken into account.

We start from the path integral with the Gelfand-Yaglom method [40]. Expanding the exponent

of (3.1) around the instantons q → q + δq, where q are now the instantons, we find

exp

⎧⎨⎩− i

2T

∫︂ 1

0

(︂
δt δz

)︂
Λ

⎛⎝δt
δz

⎞⎠⎫⎬⎭ , (3.17)

with

Λ = T

⎛⎝− 1
T ∂

2
τ +Attż Atz ż +At∂τ

Atz ż − ∂τAt 1
T ∂

2
τ −Atz ṫ

⎞⎠ , (3.18)

where Atz = ∂t∂zA and so on. The path integral over transverse coordinates gives the free normal-

ization (2.10) ∫︂
Dq⊥ei

∫︁ q2⊥
2T =

1

2πT
(3.19)

while for the t, z components we have (3.1)∫︂
DδqtDδqz e−

i
2T
δq·Λ·δq =

1

2πT

1√
detΛ

(3.20)

with detΛ given by

detΛ = det

⎛⎝ϕ(1)1 ϕ
(2)
1

ϕ
(1)
2 ϕ

(2)
2

⎞⎠ (τ = 1) (3.21)

where the ϕ(i) are solutions to

Λϕ(i) = 0 ϕ
(i)
j (0) = 0 ϕ̇

(i)
j (0) = δij . (3.22)

Since we do not need the result for general t± but only in the asymptotic limit, there are considerable

simplifications. We expect to be able to write detΛ as

detΛ = (divergent terms)(finite numerical terms) (3.23)
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where the divergent terms contain some powers of t± and perhaps T . In other words, we want to

analytically extract the divergent contributions in the asymptotic limit t± → ∞ and obtain a finite

numerical contribution. We expect this to be possible because the field is only nonzero in a bounded

region around u = 0. We briefly outline the idea but more details can be found in [64].

We begin by changing variable to u = T (τ−σ) and letting u0 = −Tσ, u1 = T (1−σ), i.e. the initial and

final point of the worldline. In the asymptotic limit we thus have u0 → −∞ and u1 → +∞. We also

define (ũ0, ũ1) to be the region where the field can be considered nonzero, which is finite as t± →∞.

Since the field is zero in the region (u0, ũ0) and we have initial conditions (3.22) the solutions ϕ(i) are

straight lines until ũ0

ϕ(1)(ũ0) ≃

⎛⎝(ũ0 − u0)/T

0

⎞⎠ dϕ(1)

du
(ũ0) ≃

⎛⎝1/T

0

⎞⎠ (3.24)

and similarly for ϕ(2). Then, using

ũ0 − u0 =
∫︂ t̃0

t0

dt

t′
=
t0
p′0

+O(1) (3.25)

we can rewrite is as

ϕ(1)(ũ0) ≃

⎛⎝t0/(Tp′0)
0

⎞⎠+O(1/T ) . (3.26)

The subtle point, now, is where we are allowed to take the T →∞ limit, since one might be tempted

to just set dϕ/du to zero. However, doing so, we miss a necessary contribution. We can thus split ϕ

into

ϕ(j) =
t0
Tp′0

ϕ
(j)
d +

1

T
ϕ(j)n (3.27)

with

ϕ
(1)
d (ũ0) =

⎛⎝1

0

⎞⎠ dϕ
(1)
d

du
(ũ0) =

⎛⎝0

0

⎞⎠
ϕ(1)n (ũ0) =

⎛⎝0

0

⎞⎠ dϕ
(1)
n

du
(ũ0) =

⎛⎝1

0

⎞⎠ .

(3.28)

Plugging the expression for ϕ in terms of ϕd and ϕn into

detΛ = (ϕ
(1)
1 ϕ

(2)
2 − ϕ

(1)
2 ϕ

(2)
1 )|τ=1 (3.29)

we get contributions of the form ϕdϕd, ϕdϕn, and ϕnϕn. One can show that the last type of terms can

be neglected, while the first two combine to give

detΛ =
t+t−
Tp′0p0

h(ũ1) (3.30)
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where h(u) = η′(u) with η(u) a solution to

η′′ = (E2 +∇E · {z′, t′})η (3.31)

with initial conditions

η(ũ0) = 1 η′(ũ0) = 0 . (3.32)

The solution η(u) is therefore the only contribution we have to find numerically, and it is finite in the

asymptotic limit.

8

3.1.4 Ordinary integrals

After computing the path integral, the exponent is evaluated at the instantons q(u) for generic T

and initial/final points z±, t±. This makes the calculation of the integral with respect to T and z±

nontrivial because we do not know the analytical dependence of the instantons with respect to those

variables, and for the saddle point method we need to take derivatives of the exponent. Neverthe-

less, since we only need to compute them in the asymptotic limit t± → +∞, there are considerable

simplifications as for the path integral. We consider a contour u(r) with initial and final points u0

and u1, which we will eventually send to infinity. The transverse components are trivial. Shifting

q⊥(τ)→ x⊥
−+(x⊥

+−x⊥
−)τ + q

⊥(τ) so that the path integral has boundary conditions q⊥(0) = q⊥(1) = 0

and defining

φ⊥ =
1

2
(x⊥

+ + x⊥
−) θ⊥ = x⊥

+ − x⊥
− (3.33)

we simply get an overall momentum conserving delta function at the prefactor∫︂
Dq⊥

∫︂
d⊥x+ d

⊥x− → (2π)2 δ⊥(p+ p′) . (3.34)

Note that we only obtain a momentum conserving delta function along the transverse components

because the z dependence of the field breaks translation invariance over z.

Let us consider the remaining nontrivial integrals over z− = z(u0), z+ = z(u1), and T . As we show in

Appendix A, for the first derivative we only have to consider the explicit dependence of the exponent

on the variables since the implicit dependence due to the instantons drops out, hence

∂ψ

∂z−
= i[p′3 − z′(u0)]

∂ψ

∂z+
= i[p3 + z′(u1)]

∂ψ

∂T
=
i

2
(a2 −m2

⊥) (3.35)

where a2 = t′2 − z′2. Note that the reason why these integrals are hard is that the three quantities

z′(u0), z′(u1) and a2 are functions of the integration variables X := (z−, z+, T ) that we do not know.

This also implies that we do not have explicit expressions of the saddle points. Fortunately, the
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asymptotic limit saves the day thanks to the following trick

z− − z̃− =

∫︂ z−

z̃−

dz =

∫︂ t−

t̃−

dt
z′

t′
= − t− z

′(u0)√︁
a2 + z′(u0)2

+O(1)

z+ − z̃+ =

∫︂ z+

z̃+

dz =

∫︂ t+

t̃+

dt
z′

t′
=

t+ z
′(u1)√︁

a2 + z′(u1)2
+O(1)

T =

∫︂ t+

t−

dt

t′
=

t−√︁
a2 + z′(u0)2

+
t+√︁

a2 + z′(u1)2
+O(1)

(3.36)

obtained exploiting the fact that the instantons are nontrivial only in a bounded interval (ũ0, ũ1) and

straight lines elsewhere. These equations can be inverted to find the saddle points themselves

z′(u0) = −
z−
T

(︄
1 +

√︁
t2+ − z2+√︁
t2− − z2−

)︄
z′(u1) =

z+
T

(︄
1 +

√︁
t2− − z2−√︁
t2+ − z2+

)︄

a2 =
1

T 2

(︃√︂
t2− − z2− +

√︂
t2+ − z2+

)︃2
(3.37)

and, evaluating (3.36) at a2 = m2
⊥ etc, we find

z−s = −
p′3t−√︁
m2

⊥ + p′23
z+s = −

p3t+√︁
m2

⊥ + p23
Ts =

t−√︁
m2

⊥ + p′23
+

t+√︁
m2

⊥ + p23
. (3.38)

We can now compute all the second derivatives, but their expressions look complicated on their own.

If we group them into a 3x3 Hessian matrix∫︂
dz− dz+ dT →

∫︂
d3X e−X·H·X =

√︃
π3

detH
(3.39)

we find a nice and simple determinant

detH =
p30p
′3
0

8m2
⊥t+t−T

. (3.40)

We note that in the end we can take the limit analytically as all factors of t−, t+ and T cancel

1

2πT

1√
detΛ

√︃
π3

detH
=

√︄
2πm2

⊥

p0p′0h(ũ1)
(3.41)

where we have used (3.30).

8

3.1.5 Spin

The spin part is also very simple. With

d

du
ln(z′ + t′) = E (3.42)

we find

− iT
4
σµν

∫︂ 1

0
dτ Fµν =

1

2
γ0γ3 ln ρ , (3.43)
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where

ρ = −p0 − p3
p′0 − p′3

. (3.44)

Finally, integrating by parts the spatial derivatives and acting on the exponent with the remaining

time derivative we find

(i /Dx+ + 1)→ /p+ 1 (3.45)

therefore

Spinss′ =
1

2
R̄s(/p+ 1)γ0(/p+ 1)

1

2
√
ρ

(︁
ρ[1 + γ0γ3] + 1− γ0γ3

)︁
γ0(−/p′ + 1)Rs′ = δss′

√︂
p0 p′0 . (3.46)

In this case the spin dependence is trivial, but for more general fields this is not the case. Once we

take the modulus squared and sum over spins we find∑︂
ss′

|Spinss′ |
2 = 2p0p

′
0 . (3.47)

8

3.2 Instantons

3.2.1 Pursuing instantons

We have seen that, in order to find the exponent and the prefactor, the key point is finding the instan-

tons. For the 2D electric fields we are considering, the Lorentz force equation (3.9) reduces to

t′′(u) = E3(t, z)z
′(u) z′′(u) = E3(t, z)t

′(u) . (3.48)

From the previous section we saw that we find the spectrum at momenta (p3, p
′
3) by solving the

Lorentz force equation (3.48) with nonlocal boundary conditions on the derivatives

z′(u0) = p′3 z′(u1) = −p3

t′(u0) = −p′0 t′(u1) = p0 .
(3.49)

However, numerically we need initial conditions from which we evolve the solutions in discrete

steps using (3.48), so we use the so-called shooting method [41]. Guessing some initial conditions

q(0) and q′(0) at u = 0, we “shoot” the solution by evolving it with the Lorentz force equation

numerically until the instantons are outside the field and the derivatives become constant. Looking

at the resulting values of the asymptotic derivatives, we adjust the initial conditions in a suitable way

to obtain momenta closer to the desired values, proceeding until a certain level of numerical precision

is obtained. In principle this method allows us to find the spectrum on a grid of momentum points,

but it is computationally intensive.
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Since we work in the saddle-point approximation, the peaks are very narrow so we can Taylor ex-

pand the exponent up to second order around the maximum and find the widths d−2 directly. The

spectrum then has the form (3.7). But in order to do so, we need to know the maximum. Again, we

could in principle start at some initial guess Πguess, find the instantons, integrate them to find the ex-

ponent (3.13) Reψ(Πguess), and iterate until the maximum is found. This is also very computationally

intensive because at every step we need to use the shooting method and compute an integral.

Luckily, we can use asymptotic conditions that do not involve the momenta at all and find the instan-

tons at the maximum without knowing where the maximum is. First of all, we note that for symmetric

fields the maximum is at equal momentum values −p3 = p′3 = P . This is a significant simplifica-

tion because from (3.49) and the symmetry of E3(t, z) the instanton has odd z-component and even

t-component, thus two conditions follow immediately z(0) = t′(0) = 0. Furthermore, from q′2 = 1

we find z′(0) = i, reducing the number of free parameters to one complex value t̃ = t(0), i.e. the

turning point. In the next section we show that at the maximum the instantons satisfy

∂

∂P
Reψ = Im

[︃
z′(u1)

t′(u1)
t(u1)− z(u1)

]︃
= 0 (3.50)

which we use an asymptotic condition in place of (3.49). We still need to use the shooting method,

but only once. The asymptotic momentum P at the maximum then follows as a consequence when we

evaluate the instantons simply from P = z′(u1). Since the turning point t(0) is a complex parameter,

(3.50) is actually not enough to determine the instantons uniquely. There are in fact many solutions

that satisfy (3.50) but have complex momentum, so we get rid of them by adding Im z′(u1) = 0. To

summarize, we have

Initial conditions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

t(0) = t̃

t′(0) = 0

z(0) = 0

z′(0) = i

Constraints

⎧⎪⎨⎪⎩Im
[︂
z′(u1)
t′(u1)

t(u1)− z(u1)
]︂
= 0

Im z′(u1) = 0

For symmetric fields such as a product of Sauter pulses E3(t, z) = sech2(ωt) sech2(κz), the turning

point is in addition always imaginary for all values of ω and κ, therefore Im [z′(u1)] = 0 is actually

enough to find the instantons. However, one has to be careful because there are spurious solutions

which the algorithm might find. For better stability, it is convenient to start at γk = 0 where we have

an exact expression of the turning point

t̃ =
i

γω
arctan(γω) (3.51)

and perform a numerical continuation [44], i.e. increase γk in small steps using the known turning

point at a given γk as an initial guess at γk +∆γk. This allows us to go up to large values of γk.
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8

So far we have not discussed the choice of contour. For practical calculations it is often convenient to

use a tilted straight line

u(r) = e−iθ r → f(r) =
du

dr
= e−iθ (3.52)

with θ > 0 and sufficiently small. The reason why we tilt it clockwise will be explained in the next

section. The drawback is that the asymptotic velocities as functions of r are not real due to the phase.

To fix this, another possibility is to consider an affine combination of a tilted parametrization when

r ∼ 0 and let f → 1 at large values of r. We can construct it by letting ψ(r) be a normalized bump

function such as

ψ(r) =
1

2 tanh
[︁
L
W

]︁ (︃tanh [︃r + L

W

]︃
+ tanh

[︃
−r + L

W

]︃)︃
(3.53)

shown in Fig. 3.1 with adjustable parametersL andW , then define an affine combination of the trivial

einbein f = 1 and f = e−iθ

f(r) = 1·
(︁
1− ψ(r)

)︁
+ e−iθ ψ(r) (3.54)

so that f(r ∼ 0) ∼ e−iθ and f → 1 after some value in both directions. If we compare the instantons

obtained using (3.54) with the ones obtained using the tilted parametrization, we see that they are

equal for small r and separate when ψ goes to zero as in Fig. 3.1.

Although with this parametrization it is guaranteed that the imaginary parts do not grow linearly

with r, one might wonder if we can find a set of parameters such that one or both components are

also purely real. Assuming that either z or t becomes real, (3.50) implies that the other component

is real as well. This is very promising. Since t̃ is purely imaginary, first of all we set θ = π
2 so that

t(r) travels along the imaginary axis towards the origin and fix W equal to some small value. At this

point we only need to fine-tune the size of the bump L so that it makes a turn right at the origin and

becomes real. Doing so we obtain the instantons in Fig. 3.2.

We can interpret the region r ∼ 0 as the formation region, i.e. where the particles are not real yet,

and the asymptotic parts as the regions after the particles have been created but are still inside the

field and keep being accelerated for a little longer. Note that for a time-dependent Sauter pulse the

turning point t̃(γω) in (3.51) gets closer to the origin as γω grows, which means that the formation

region shrinks and the probability is enhanced [39].

While one could in principle try different contours until the one that gives the instantons in Fig. 3.2

is found, we can directly use the shooting method with L as a free parameter as well. The conditions

that work best numerically depend on the field and the parameters, but in general for symmetric

fields we use the two real parameters L (real) and t̃ (imaginary) and conditions

Im t(ra) = Im z(ra) = 0 (3.55)
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Figure 3.1: Bump function with parameters L = 1.6 and W = 0.3 (left) and comparison of the t-component

obtained using the tilted and the affine contour (right).
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Figure 3.2: Complex instantons with fine-tuned parameters L = 1.1636 and W = 0.1 (left), real and imaginary

parts of t (center) and z (right). The field parameters are γk = γω = 1.

or

Im t(ra) = Im t(rb) = 0 (3.56)

where ra, rb = O(1) just need to be large enough to be in the acceleration region, i.e. where the

instantons are both real.

8

3.2.2 Instantons on the complex plane

Besides looking at individual contours, it would be nice to get a global picture of the instantons

viewed as complex variable solutions q(u) to the Lorentz force equations with fixed initial conditions.

An interesting feature of complex differential equations is that their solutions can have branch points.

Since there are in general an infinite number of contours that go from the origin to a given complex

value u, q(u) is not necessarily single-valued, even if the function is analytic. For this to happen,
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letting C1 and C2 be two simple paths from the origin to u, the area enclosed by C1 ∪ C−2 must contain

a branch point. It is tempting to say that they are caused by singularities of the field, but we might

wonder what happens when the field is an entire function such as the Gaussian field E(t) ∼ e−t
2
.

In this case the singularity arises due to the fact that along a real trajectory u(r) = r the component

t(r) is imaginary and keeps growing faster and faster, but the exponential function has an essential

singularity at infinity. Due to Liouville there are no analytic functions on the Riemann sphere apart

from constant functions, so we either have poles or essential singularities at infinity (the only entire

functions that have poles at infinity are polynomials, but a realistic field is bounded along the real

axis). Before discussing branch points, we notice that for a field with singularities like a Sauter pulse

or a Lorentz pulse

E(t) ∼ 1

1 + t2
(3.57)

the instantons cannot be entire functions. This is because, due to Picard’s little theorem, their image

would be C without at most a single point, therefore they would cross a pole of the field. At that

point however they cannot be analytic, so we have a contradiction.

We now show explicitly that the poles of the field are the source of the branch points, and for sim-

plicity, let us consider a time-dependent field. Let E(t) be be a field with a pole of order β at tp and

expand the instantons around a point uB with an ansatz

E(t) ∼ R

(t− tp)β
, t(u) ∼ tp + ct(u− uB)α (3.58)

and similarly for z. Plugging this into the Lorentz force equation we see that α = 1/β, therefore for a

field like a Sauter pulse with a double pole the branch point is like a square root t(u) ∼ tp+ct
√
u− uB ,

so the instantons remain finite. This method does not give the correct result for a field with a simple

pole like a Lorentz pulse, indicating that near the branch point the instanton is not approximated by

(u − uB)α for any fractional power α. This is related to the fact that A(t) itself has a branch point

of log-type when A′(t) = E(t) has a simple pole. On the other hand, one also sees that for the

Gaussian pulse we have t(u) ∼
√︁
ln(u− uB), so the instantons are divergent at branch points. Due

do Liouville’s theorem, we always have singularities except for constant fields. Indeed the constant

field instantons are trivially entire functions.

We can also obtain an explicit expression for the branch points. Let us use the initial condition t(0) =

t̃, starting with a Gaussian field. Letting u(r) be a contour such that t(r) = t̃+ ir, we have

dt

du
=

√︄
1 +

(︃
dz

du

)︃2

→ u′(r) =
i√︁

1 +A(t̃+ ir)2
(3.59)

where we have used t′(r) = i and z′(u) = A(t̃+ ir). Integrating we obtain

uB = i

∫︂ ∞
0

dr√︁
1 +A(t̃+ ir)2

. (3.60)
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Since this integral is finite, t(u) reaches infinity along the imaginary axis for a finite imaginary value

uB . Similarly, if the field has a pole tp, we simply integrate from 0 to the value r such that t = tp,

i.e.

uB = i

∫︂ tp−t̃

i

0

dr√︁
1 +A(t̃+ ir)2

. (3.61)

Note that these equations are valid not only when t̃ is a turning point: if we consider e.g. particles

initially at rest z′(0) = z(0) = t(0) = 0, t′(0) = 1, we have the same integrals but without t̃. Evaluating

them explicitly we see that in this case the branch points are not on the real axis. This last observation

is nontrivial; from the initial conditions z′(0) = i and t(0) = t̃ ∈ iR, if we consider a contour along

the real axis, the instantons grow in absolute value but remain imaginary because E(t) is always real

when t is imaginary, therefore it seems obvious that at some point t(u) either hits the pole or diverges.

But the initial conditions above are all real, so it is not so obvious.

To get an intuitive picture of the analytic structure of the instantons, such as the position of the branch

points, we want to plot them in the complex plane. To this end, we must make a choice regarding the

plotting method. Since we want to see the regions where the instantons are real or imaginary and the

cuts on the complex plane, we use domain coloring, i.e. we color the complex u-plane according to

the phase of q(u) (either t or z). In addition, we use contour lines to keep track of |q(u)| and Re q(u),

Im q(u). For fields where the instantons are known exactly [39], this allows us to obtain plots right

away. However, for spacetime fields we do not have an analytic expression of the instantons, so we

must solve the Lorentz force equation over a dense enough set of contours. Before doing so, we use

the shooting method so that t̃ = t(0) is known. Then, let us say that we want to find the value of

q(ū) for some ū ̸= 0. Writing ū = iR + r with r,R ∈ R, we first solve numerically from u = 0 to

u = iR along the imaginary axis and then from u = iR to u = iR + r parallel to the real axis. Since

we want to find q(u) for many values of u, we need to solve along the imaginary axis only once so

that q(iR) is known for all R in some domain and then solve parallel to the real axis using q(iR) (and

its derivatives) as the initial conditions. The result is that we find q(u) on a grid of points with an

implicit contour choice for every u. This choice of contours is arbitrary but it is motivated by the

periodic structure of the branch points.

We see the instantons obtained with this method in Fig. 3.4 for a spacetime Sauter pulse

E3(t, z)/E = sech(ωt)2 sech(κz)2 , (3.62)

which is field with imaginary poles, and a Gaussian pulse

E3(t, z)/E = e−(ωt)
2−(κz)2 (3.63)

in Fig. 3.5, which is an entire function. We clearly see in both cases branch points along the real axis

and periodicity along the imaginary axis. If we solve only along the imaginary axis we obtain the
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Figure 3.3: Comparison between the instantons at different γk for a double Sauter pulse (3.62) obtained by solv-

ing along the imaginary axis using the turning point t̃ found from the shooting method with (3.50) (continuous

lines) and the discrete instantons from [44]. We also see that increasing γk tends to expand the instanton along

the t-axis.

same closed instantons used in the effective action method [39]. The comparison in Fig. 3.3 with the

discrete instantons from [44] indeed shows exact agreement. If we use the tilted contour u = eiθr to

find the turning point, from the plots 3.4 it is now clear that we have to use θ < 0 because rays with

θ > 0 (and small) go towards the region with the wrong asymptotic conditions t± → −∞ (light blue

region of t(u), on the right of Fig. 3.4). We want contours that travel in the t± → +∞ branches, i.e.

the red regions in the plot of t(u).

Besides the slightly different behavior near the branch point uB , the three plots look remarkably sim-

ilar. One might thus be tempted to think that for every pulse shape with a single peak the instanton

will look like Fig. 3.4. However, this is not the case. The reason why the instantons look similar

is that the shapes (3.62) and (3.63) are similar not only along the real axis but also along the imag-

inary one apart from (3.62) having a singularity at finite t and (3.63) at infinity. To see this, let us

consider a field that has a completely different behavior along the imaginary axis such as the double

supergaussian

E3(t, z)/E = e−(ωt)
4−(κz)4 . (3.64)

As we can see Fig. 3.6, the instanton now looks quite different. Note that in this case using a tilted

contour is not possible because the good asymptotic regions (red in the plot of t) are very thin, so a

contour of the form (3.54) is necessary.

Notably, the Sauter and Gaussian pulses grow very fast along the imaginary t-axis so there is a branch

point at real u, while the supergaussian is bounded for t = iτ

E3(t, z) ∼ e−(ωτ)
4

(3.65)
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Figure 3.4: Space (left) and time (right) component of the instanton with a double Sauter pulse (3.62) γω =

γk = 1. The green line is the physical contour that produces the split into formation (vertical) and acceleration

(horizontal) regions. uc and −uc represent electron and positron creation as they are at boundary between

creation/acceleration regions.

Figure 3.5: Space (left) and time (right) component of the instanton with a double Gaussian pulse (3.63) γω =

γk = 1.

and goes to zero very fast when τ ≫ 1 so the instanton is perfectly regular for u ∈ R.

8

3.3 Spectrum and integrated probability

To summarize, we have shown that in order to find the spectrum for a particular momentum, we only

need to find the respective instanton numerically and solve an ordinary differential equation (3.31)
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Figure 3.6: Space (left) and time (right) component of the instanton with a double supergaussian (3.64) with

γω = 0.8, γk = 0.32.

with initial conditions (3.32) to find h(ũ1). Since the exponent has the form

∼ e
1
E
(... ) (3.66)

we can integrate the spectrum using the saddle-point method to find the total probability. This allows

us to check with the discrete instanton method from [44]. We will see that the momentum widths can

be computed using only the instantons on the maximum. This is very good news because, due to sym-

metry, it is in general much easier to find instantons on the maximum of the spectrum. Furthermore,

we also gain information about the small γk behavior by taking the time-dependent limit.

3.3.1 Momentum widths

We want to calculate

P =

∫︂
d3p

(2π)3
d3p′

(2π)3

⃓⃓⃓
. . .
⃓⃓⃓2

= V⊥

∫︂
dp⊥
(2π)2

dp′

2π

dp

2π

4πm2
⊥

p0 p′0 |h(ũ1)|
e−

1
E
A (3.67)

where the perpendicular volume factor comes from the delta function and

A = 2 Im
∫︂
C
du qµ ∂µAν

dqν

du
. (3.68)

Note that in order to have a nontrivial spectrum the integral above must have an imaginary compo-

nent, which is the case if and only if the instantons themselves do.

We begin with the simple transverse width. It is much simpler to consider A before the simplifica-

tions. With

A = 2 Im
(︃
px+ + p′x− −

T

2
−
∫︂ 1

0
dτ

q̇2

2T
+A · q̇

)︃
(3.69)
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we only need to consider the explicit dependence on the momentum because all the rest will cancel

(see Appendix A). Furthermore, the maximum is p⊥ = 0, so we have a transverse spectrum of the

form

P ∼ e
− p2⊥

d2⊥ . (3.70)

Taking the derivative of the exponent with respect to p⊥ (i.e. either p1 or p2) we get

∂A
∂p⊥

= 2 lim
−u0,u1→∞

Im
(︃
t(u1)

p0
p⊥ +

t(u0)

p′0
p⊥ + q⊥(u1)− q⊥(u0)

)︃
(3.71)

but the transverse component of the instanton is trivially q⊥(u) = p⊥u = −p⊥u, therefore taking the

derivative again and evaluating at p⊥ = 0

d−2⊥ =
1

2

∂2A
∂p2⊥

= lim
−u0,u1→∞

Im
(︃
t(u0)

p′0
+
t(u1)

p0
− u1 + u0

)︃
. (3.72)

Such equation is valid for every contour, but we typically choose a symmetric contour and have sym-

metric momenta2 p0 = p′0. For a nontrivial contour such as (3.54), u1 − u0 can be found using

u1 − u0 =
∫︂ r1

r0

dr f(r) (3.73)

where the parameters ri satisfy u(ri) = ui.

8

As to the longitudinal part, the symmetry under exchange of −p and p′ suggests to define some new

variables

p3 = −P +
∆

2
p′3 = P +

∆

2
. (3.74)

Note that the symmetry implies that there are no mixed terms P∆, therefore we have two indepen-

dent widths. We did not lose any degrees of freedom because in the Hessian matrix for (p3, p
′
3) we

have two independent parameters (it is symmetric and the diagonal coefficients are equal).

We begin with the ∆ width; since the instantons are functions of the momenta, we define

δq∆(u) :=
∂q(u)

∂∆

⃓⃓⃓⃓
⃓
∆=0

(3.75)

with boundary conditions obtained by taking the derivatives of both sides of

z′(u1) = P − ∆

2
z′(u0) = P +

∆

2
(3.76)

=
2 Note that the widths are evaluated at the momentum saddle point because we expand f(x) ∼ f(x0)+

1
2
f ′′(x0)(x−x0)

2

and the width corresponds to f ′′(x0).
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and similarly for t′(u0,1), obtaining

δt′∆(u0) = δt′∆(u1) = −
P

2p0

δz′∆(u0) = −δz′∆(u1) =
1

2

(3.77)

i.e. δt∆ is odd and δz∆ even, satisfying

δt′′∆ = Ezδz∆ z
′ + Etδt∆ z

′ + Eδz′∆

δz′′∆ = Ezδz∆ t
′ + Etδt∆ t

′ + Eδt′∆ .
(3.78)

Taking two derivatives with respect two ∆ we find

d−2∆ :=
1

2

∂2A
∂∆2

= Im
[︃
t

2p30
− P

p0
δt∆ + δz∆

]︃
u→∞

(3.79)

or, defining ηa := 2p0(z
′δt∆ − t′δz∆)

d−2∆ =
1

2p20
Im
[︃
t

p0
− ηa

]︃
u→∞

(3.80)

such that η′a(u0) = η′a(u1) = 1. Note that ηa is an antisymmetric solution which satisfies

η′′a =
(︁
E2 + Ez t

′ + Et z
′)︁ηa (3.81)

which is a homogeneous equation, hence given some solution ηa,n with ηa,n(0) = 0 and η′a,n(0) = 1, the

asymptotic derivative will be some value η′a,n(u1) in general different from one, but if we define

ηa(u) :=
ηa,n(u)

η′a,n(u1)
(3.82)

then it is clearly a solution and it has by construction the desired asymptotic condition. The punchline

is that we can find the width numerically with simple initial conditions, i.e. without the shooting

method.

8

Now we consider an independent variation of P . From the first derivative

∂A
∂P

= Im
[︃
P

p0
t(u1)− z(u1)

]︃
(3.83)

we can now calculate the width defining as before

δqP (u) :=
∂q(u)

∂P

⃓⃓⃓
P=P

(3.84)

with boundary conditions

−δt′P (u0) = δt′P (u1) =
1

2

δz′P (u0) = δz′P (u1) =
1

2

(3.85)
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combined into ηs := p0(t
′δP z − z′δP t) with −η′s(u0) = η′s(u1) = 1 to give

d−2P =
2

p20
Im
[︃
t

p0
− ηs

]︃
u→∞

. (3.86)

Of course as before we can use initial conditions ηs,n(0) = 1, η′s,n(0) = 0 and divide by the asymptotic

derivative at the end.

8

3.3.2 Integrated probability and comparisons

It is now finally time to check these results with the closed worldline/effective action method. The

exponent can be compared directly, whereas we cannot check the individual widths as the effective

action produces only the total integrated probability. We can thus check the spectrum by comparing

its integral (3.67)

P = V⊥

∫︂
dp⊥ dP d∆P(p⊥, P,∆)

P(p⊥, P,∆) =
1

4π3|h(ũ1)|p0p′0
exp

{︃
−A− p2⊥

d2⊥
− (P −P)2

d2P
− ∆2

d2∆

}︃ (3.87)

which gives

P = V⊥
1

4π|h(ũ1)|p0p′0
e−A

d−2⊥

√︂
d−2P d−2∆

. (3.88)

As mentioned above, we always start at γk = 0 and increase in small steps ∆γk to obtain better

convergence of the shooting method. The comparisons of the exponent and the prefactor of (3.88) are

shown in Fig. 3.7, the widths in Fig 3.8.
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Figure 3.7: Comparison of the exponent and the prefactor (without the overall factors ofE). The latter has been

multiplied by γk to obtain a finite expression at γk → 0. The different colors of the curves represent different

values of γω from 1
4 to 2 in equal steps of ∆γω = 1

4 . The solid lines are obtained using the methods explain in

this chapter, the darker dots from the effective action. We see perfect agreement between the two for a wide

range of parameters.
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Figure 3.8: Saddle point value of the transverse momentum and all three widths (without the overall factors of

E). We see that as γk increases the maximum of the longitudinal momentum decreases; this matches with our

intuition that, as γk increases, the physical size of the field becomes smaller, so the pairs are accelerated less.

In general we observe, as expected, that the probability is enhanced when γω increases (faster pulse)

but suppressed when γk increases (smaller field). This is consistent with the fact that time inhomo-

geneities increase the probability, spatial ones decrease it [39].

8

3.3.3 Time-dependent limit

We look at the time-dependent limits. Letting γk → 0 we expect first of all that the exponent reduces

to [32, 34]

A → 1

E

2π

1 +
√︁
1 + γ2ω

(3.89)

and indeed, if we divide the left side curves in 3.7 by such value they all converge to 1. This also

happens for the two widths

d−2⊥ →
1

E

π√︁
1 + γ2ω

, d−2P →
1

E

πγ2ω
(1 + γω)3/2

. (3.90)

For the last width d∆, however, we cannot check its time-dependent limit analytically because d∆ ∼

γk (see [64]), and as γk → 0 it produces the momentum-conserving delta function. Since also h ∼ γ2k ,
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we can define d∆ = d̂∆γk and h = ĥγ2k so that the ∆ part of the spectrum (3.87) gives

P(∆) ∼ 1

2πĥγ2k
e
− ∆2

d̂
2
∆γ2

k → d̂∆

2
√
πĥγk

δ(∆) (3.91)

therefore the overall prefactor goes like 1/γk at small γk. This gives the regularized volume factor

V3.

We also see that in the time dependent case (3.13) reduces to the result obtained with the saddle-

point approximation of the Riccati equation [37]. In fact, let us consider a field A3(t) and all other

components equal to zero. We assume for simplicity A3(t) odd. We define u1 to be a point in the

contour with Reu1 ≫ 1 and t(u1) = t+. In the time-dependent case the instanton satisfy [39] (when

Reu1 > 0)

t′(u) = π0(p) :=
√︂
m2

⊥ + (p3 −A(t))2 t(0) = t̃ (3.92)

where t̃ is the turning point, so using the Lorentz force equation and integrating by parts we see

that

ψ = 2i

∫︂ u1

0
du t(u)t′′(u) =

[︁
t(u)t′(u)

]︁u1
0
− 2i

∫︂ u1

0
du t′(u)2

= 2i

∫︂ t̃

dt π0(p) (+phase)
(3.93)

where the lower integration boundary is an arbitrary real number which just affects the phase.

8

3.4 Other pulse shapes and dynamical assistance

3.4.1 Comparison with other pulses

We look at the shape dependence of the exponent A, the prefactor, and the widths. We define

FS(x) = sech(x)2 FG(x) = e−x
2

FL(x) =
1

1 + x2
(3.94)

and we refer to them respectively as the Sauter, Gaussian, and Lorentz pulse. They all have a maxi-

mum at x = 0 and are normalized so that

F (0) = 1 F ′′(0) = −2 . (3.95)

For example, in the previous sections we considered a fieldE3(t, z)/E = FS(ωt)FS(κz). If we change

FS for either FG or FL, the normalized action and prefactor change as in Fig. 3.9 while the widths as

in Fig. 3.10. We see that, while the time-dependent limit of the prefactor is the same for all pulses, the

d∆ width for the Lorentz pulse is very different from the others for γk → 0. This is because the Sauter

and Gaussian pulses decrease exponentially for t, z ≫ 1 while the Lorentz pulse only like a power,
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so besides the 1/γk factor there is an additional log(γk). Indeed, the scaling d∆ ∼ γk holds for fields

that decrease faster than

E(t) ∼ 1

t2
. (3.96)
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Figure 3.9: Normalized exponents and prefactors (without the overall factor of E) for the pulses E3(t, z)/E =

F (γωt)F (γkz) with F (x) given by (3.94) at γω = 1 and different values of γk.
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Figure 3.10: Normalized widths (d∆ without the factor ofE) for the pulsesE3(t, z)/E = F (ωt)F (κz) with F (x)

given by (3.94) at γω = 1 and different values of γk.

8

3.4.2 Asymmetric field

All the pulses considered so far are even with respect to t and z independently, i.e.

E3(t, z) = E3(−t, z) = E3(t,−z) (3.97)

which implies that the Lorentz force equation (3.48) is consistent with solutions that are t-even and

z-odd. This is still true if we relax this condition and consider fields that are only symmetric with

respect to z, namelyE3(t, z) = E3(t,−z). However, as soon as we break this symmetry the instantons

are no longer symmetric. First of all, since z(u) is no longer odd, ∆s ̸= 0 and we can have mixed terms

in the spectrum ∼ P∆. Furthermore, since the δq defined in (3.75), (3.84) are not symmetric as well,

the expressions for the widths are more complicated. The exact form is discussed in [64] and here we
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just focus on the spectrum. Letting Π = {∆, P} and

d−2αβ :=
1

2

∂2A
∂Πα∂Πβ

=

⎛⎝d−2∆∆ d−2∆P

d−2∆P d−2PP

⎞⎠ (3.98)

we have a spectrum

exp

{︃
−A− p2⊥

d2⊥
− (Π−Πs) · d−2 · (Π−Πs)

}︃
(3.99)

and the prefactor (3.88) is slightly changed because the matrix of coefficients (3.98) is not diagonal,

thus
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Figure 3.11: (Left) field (3.100) at t = 0 for some values of δ. (Right) saddle point value ∆s as δ is increased at

γω = 1 and some values of γk.

For the numerical calculations we want some F (x; δ) with a parameter δ such that F (x; 0) is even and

F (0; δ) = 1 for all δ. We consider for example

E3(t, z)/E = e−(ωt)
2 (1 + δ)e−(κz)

2

1 + δ e−(κz)3
(3.100)

shown in Fig. 3.11 for some values of δ. As δ → 0, everything reduces to the previous cases, and in

particular ∆s(δ = 0) = 0. For increasing δ, i.e. as field becomes more skewed, ∆s(δ) increases as

shown in Fig. 3.11. Since the field is skewed toward z > 0, more pairs are created in the z > 0 region

than z < 0, so positrons are accelerated more than electrons. Thus, the sign of ∆s turns out to be

negative. In Figs. 3.12 and 3.13 we also see how the exponent, prefactor, and widths change as δ is

increased. For this field and the parameters considered

d−2∆P << d−2∆∆, d
−2
PP (3.101)

so the matrix is approximately diagonal and we simply rename d−2∆∆ → d−2∆ , d−2PP → d−2P .

P = V⊥
1

4π|h(ũ1)|p0p′0
e−A

d−2⊥

√︁
detd−2

. (3.102)

8
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Figure 3.12: Exponent and prefactor (without the overall factors of E) as δ is increased at γω = 1 and some

values of γk.
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Figure 3.13: Widths as δ is increased at γω = 1 and some values of γk (without the overall factors of E).

3.4.3 Dynamical assistance

The Schwinger pair production probability can be enhanced by superimposing a strong, slowly vary-

ing field and a weak, faster pulse, as shown in [92]. With the methods outlined here, we consider a

spacetime version of dynamical assistance with a field

E3(t, z)/E = sech(Ωt)2 + ε sech(ωt)2 sech(κz)2 (3.103)

with ε, E ≪ 1, Ω≪ ω ≪ 1 and κ≪ 1. Defining

γΩ =
Ω

E
(3.104)

we fix ε = γΩ = 1/10 for the numerical calculations. As demonstrated in [92], for fields with poles,

dynamical assistance can be thought of as due to the additional imaginary pole of the fast field

tp =
iπ

2ω
(3.105)

acting like a barrier and squeezing the time component of the instanton. On the other hand, as

noted in [39], adding a space dependence to the field tends to stretch the instantons along the time

component. In this case, it is stretched toward the pole (3.105) as we see in Fig. 3.14. This suggests

that the threshold should be sharper for larger γk and fixed ε, and this indeed is the case as we see

in Fig. 3.14. Furthermore, from Fig. 3.15 we see that the widths d⊥ and dP are not very sensitive to

changes in γk, while d∆ changes significantly as γk is increased.
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Figure 3.14: Closed instantons (left) and exponent (right) as a function of γω and a few different values of γk.

In the exponent plot, the continuous lines represent the result with the methods outlined here and the darker

dots the result obtained from the effective action with discrete instantons, showing perfect agreement.
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Figure 3.15: Widths as functions of γω for a few fixed values of γk (without the overall factors of E).
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3.5 Spectrum for 4D e-dipole fields

3.5.1 Introduction

While it seems challenging to extend the WKB method even beyond 1D fields, we have seen how the

worldline formalism provides a powerful alternative way to access not only the integrated probabil-

ity but also the spectrum of Schwinger pairs produced in spacetime fields. However, the 2D fields

considered so far are not exact solutions of Maxwell’s equations without a current3. In this section

we turn to a realistic, exact, 4D class of solutions of Maxwell’s equations in a vacuum, called e-dipole

fields [67, 68], which are also optimally focused in the sense that they maximize the peak electric field

for a given total energy. This class of fields is characterized by a single parameter γ, apart from the

maximum field strength E. For slowly varying pulses γ ≪ 1 we can use the locally constant field

approximation as in [68]

PLCF = 2

∫︂
d4x
E2(x)
(2π)3

e
− π

E(x) (3.106)

=
3 Although this may not be such a tremendous problem [69].
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where E2 = −FµνFµν = E2 − B2 (for these fields E · B = 0). When E ≪ 1 we can perform the

integrals with the saddle-point method and obtain the leading order exponent and prefactor, but

for γ ∼ O(1) we cannot use this method. Here we show that one can obtain analytic corrections to

the LCF approximation in powers of γ to the exponents and for the prefactor using open worldline

instantons. We will see that just from the first couple of terms we obtain a good approximation even

for values of the parameter that are not small.

An e-dipole field is defined as follows. Let g be an arbitrary function, r =
√︁
x2 + y2 + z2, and

Z = ez
3E

4r
[g(t+ r)− g(t− r)] . (3.107)

One can show that the electromagnetic field given by

E = −∇×∇× Z , B = −∇× ∂tZ (3.108)

is an exact solutions to Maxwell’s equations. As pointed out in [67], this field has the property of

having finite energy and a finite limit when r → 0 given by

E = E ez g′′′(t) , B = 0 . (3.109)

In practice, this means that we choose g(t) such that g′′′(t) has a particular shape, such as Gaussian,

Lorentzian, Sauter, or even more “exotic” examples such as a supergaussian field g′′′(t) = e−(ωt)
4
. For

the moment, we only assume that g(t) has a single real maximum.

The calculation is more similar to the one in the previous section than one might initially imagine.

In this case, however, since the field is 4D, we cannot perform any of the integrals exactly, so we

use the saddle-point method for all of them. In the previous section we have derived the saddle-

point equation and exponent for a general spacetime field, obtaining in particular the Lorentz force

equation from the path integral. At first sight, it might seem that finding the instantons becomes

significantly more challenging in this case. However, we have already seen that we only need the

instantons at the saddle point of the momentum even for the widths, and for this class of fields we

have p⊥ = p′⊥ = 0 at the saddle point due to symmetry, which means we also have trivial transverse

components of the instanton q⊥ = 0. Not only are we left with just two nontrivial components, but

we also have on this subspace B = 0, E1 = E2 = 0, which means that at least the method for finding

the instantons fully reduces to the 2D case.

This is enough to obtain the exponent, but before moving on to the prefactor, we make an important

remark on contours. In the previous section we found it more convenient to use a tilted contour

u(r) = e−iθr but also mentioned that there exists always a contour such that t is purely imaginary

in a small interval and real everywhere else. We called these two regions respectively the formation

region and the acceleration region.

For dipoles, the field becomes wide when γ ≪ 1, and so does the region we have to consider in

order to see convergence to the asymptotics. Solving the Lorentz force equation over a large domain
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involves many time steps. However, using the physical contour (3.56) is much more convenient

because the search is restricted to the formation region, which is bounded by t̃(γ = 0) = i and

L = π/2 for a constant field. We can see the real and imaginary parts of the instantons for a small

and large value of γ in Fig. 3.16.

Re(t )

Im(t )
Re(z)

0 1 2 3

0

1

2

3

r

Figure 3.16: Real and imaginary parts of t and real part of z for γ = 1/10 (solid line) and γ = 5 (dashed).

For small γ the formation region is larger, approximately rc ≃ π/2 ≃ 1.57, while for lager γ it becomes tiny.

Furthermore, at γ small the instantons also converge at large r.

This splitting is not just helpful for finding the instantons; it also allows us show that, while the indi-

vidual widths depend on the acceleration region, the total integrated probability depends only on the

formation region and not on what happens when the particles are accelerated. Similar contours have

been used in other contexts as well, including particles experiencing a time-dependent mass [93],

nonrelativistic tunneling [94, 95], and saddle points of fields [96, 97, 98, 99].

8

Before moving on to the calculation, let us look closer at some properties of e-dipole fields. Letting

g1(t) and g2(t) be analytic functions, the field obtained by the sum of the two is simply the sum of the

fields obtained by the two functions alone, therefore we can view g(t) → (E,B) as a linear operator.

Furthermore, a second order polynomial at2+bt+c lies in the kernel of this operator, therefore we can

add or subtract any such function without changing the fields, which in practice means that we can

freely choose g(0) = g′(0) = g′′(0) = 0. We further restrict to symmetric fields g′′′(t) = g′′′(−t).

In terms of the function g, the electric field on the relevant subspace x = y = 0 simplifies to

E3(t, z) =
3E

2z2
[︁
g(t− z)− g(t+ z) + z

(︁
g′(t− z) + g′(t+ z)

)︁]︁
(3.110)
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and taking z → 0 one immediately sees E(t, z = 0) = Eg′′′(t). We can see in Fig. 3.17 what E3(t, z)

looks like as a function of z and different times t. We remark in particular that for |z| ≫ 1 the field

goes to zero like 1/|z|. From Fig. 3.17 it seems like there are multiple stationary points and thus

multiple instantons, but the additional stationary points with respect to z are at t ̸= 0 and thus satisfy

∂zE3 = 0 but ∂tE3 ̸= 0. The only true stationary point is at t = z = 0 if g′′′(t) has a single maximum.
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Figure 3.17: E3(t, z)/E as a function of z and fixed times with g(t) chosen such that g′′′(t) = e−(γt)2 at γ = 1.

Finally, we note that the fields (3.108) are defined in terms of Z which is however not a gauge poten-

tial, so we need to construct some potentialAµ to calculate the exponent. Since B = −∇×∂tZ and the

space components satisfy B = ∇× A, it is natural to identify −∂tZ = A (where {0, 0, 1} · A = −A3).

The relative A0, if we define Z = Zez , is simply ∂zZ, from which

Aµ = {∂zZ, 0, 0, ∂tZ} . (3.111)

The aforementioned gauge is advantageous with respect to the coordinate gauge [44, 100] in that it

avoids integrals that are not necessarily simple. Furthermore, the two components A⊥ are automati-

cally zero.

8

3.5.2 Complex instantons

As in the previous section, once we have used the shooting method to compute the turning point

t̃ = t(0), we can use the initial conditions to solve along a set of contours to visualize the instantons

on the complex plane. Although dipoles have a different structure (see Fig. 3.17) compared to the 2D

fields in the previous section, the instantons in the complex plane are very similar as we can see by

comparing with Figs. 3.18 and 3.19.
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Figure 3.18: Space z (left) and time t (right) components of the instantons for the Gaussian dipole g′′′(t) =

e−(ωt)2 with γ = 1.

Figure 3.19: Space z (left) and time t (right) components of the instantons for the Lorentzian dipole g′′′(t) =

(1 + (ωt)2)−1 with γ = 1.

8

3.5.3 Amplitude

Since the result for the exponent of the previous section

ψ = i

∫︂
du qµ∂µAν

dqν

du
(3.112)

was already valid for any field that is asymptotically zero, we just need to deal with the prefactor,

starting from the path integral. Expanding the exponent up to quadratic order in δq = q − qinst we
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get

− i

2T

∫︂
du δqΛ δq (3.113)

where

Λµν = T 2(−ηµν∂2u + Fµν∂u + q′ρ∂νFµρ) . (3.114)

However, the calculation simplifies greatly because the field is to be evaluated at the instanton, which

has zero transverse components. However, while the only nonzero component of the field is E3, the

derivatives are to be computed first and evaluated at x = y = 0 only after, thus terms such as ∂xEx

are not necessarily zero even though Ex = 0. At the end one finds the following structure

Λ =

⎛⎜⎜⎝
Λ2D 0 0

0 Λ⊥ 0

0 0 Λ⊥

⎞⎟⎟⎠ (3.115)

where Λ2D is the submatrix relative to the (t, z) components identical to (3.18) and

Λ⊥ = T 2(∂2u − t′∂xEx + z′∂xBy) . (3.116)

Because the matrix is block diagonal, the determinant is the product of the determinants of the

blocks

detΛ = detΛ2D (detΛ⊥)
2 (3.117)

with Λ2D as in (3.18) and detΛ⊥ given by

detΛ⊥ = ϕ(u1) , (3.118)

with [101] ϕ a solution of

Λ⊥ϕ = 0 ϕ(u0) = 0 ϕ′(u0) =
1

T
. (3.119)

As in the previous chapter, we would like to extract the dependence on the variables t± and T that

go to infinity.

Let (ũ0, ũ1) be some bounded interval where the field is nonzero. Since from u0 to ũ0 the solution is

a straight line, we get

ϕ(ũ0) ≃
ũ0 − u0
T

≃ t−
Tp′0

(3.120)

so defining ϕ = ϕ̄ t−/Tp
′
0 we have new simple initial conditions for ϕ̄

ϕ̄(ũ0) = 1 ϕ̄
′
(ũ0) = 0 , (3.121)
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where the second conditions follows from T → ∞. The determinant follows evaluating ϕ(u1) and

separating the other asymptotic region where ϕ̄ is a straight line

detΛ⊥ = ϕ(u1) ≃ ϕ̄
′
(ũ1)(u1 − ũ1)

t−
Tp′0

≃ ϕ̄′(ũ1)
t+t−
Tp0p′0

. (3.122)

Thus, the overall determinant is given by

detΛ =

(︃
t−t+
Tp′0p0

)︃3

η′(ũ1)
(︂
ϕ̄
′
(ũ1)

)︂2
. (3.123)

8

Concerning the ordinary integral, we use a similar procedure as in the 2D case. Writing the exponent

in its original form, we take first order derivatives with respect to x± and T

∂ψ

∂xj+
= i[pj + q′j(u1)]

∂ψ

∂xj−
= i[p′j − q′j(u0)]

∂ψ

∂T
= i[a2 − 1] (3.124)

where q′2 = a2. Eqs. (3.36) and (3.37) hold also in the 4D case for every spatial variable and with the

replacement t2± − z2± → x2± = t2± − x2±. Using

qj′(u0) = −
xj−
T

(︄
1 +

√︁
x2+√︁
x2−

)︄
qj′(u1) =

xj+
T

(︄
1 +

√︁
x2−√︁
x2+

)︄
a2 =

√︁
x2− +

√︁
x2+

T
, (3.125)

we can calculate the second derivatives of the exponent and evaluate them at the saddle points

xj−s = −
p′j
p′0
t− xj+s = −

pj
p0
t+ Ts =

t+
p0

+
t−
p′0

. (3.126)

Defining a collective coordinate X := (T, x+, x−) and δX = X − Xs we expand the exponent up to

second order around Xs and obtain ∫︂
d7X e−δX·H·δX =

√︃
π7

detH
. (3.127)

The Hessian matrix itself

Hij = −
1

2

d2ψ

∂Xi∂Xj
(3.128)

does not have a nice form, but its determinant in the asymptotic t± →∞ limit is

detH =
p50p
′5
0

27t3−t
3
+T

. (3.129)

Finally, regarding spin, since we evaluate the spin factor at the instantons, i.e. in particular on the

subspace where x = y = 0, from B = 0 and Ex = Ey = 0 we immediately see that the structure is the

same as in Eq. (3.46), i.e.

Spinss′ =
1

2
R̄s(. . . )Rs′ = δss′

√︂
p0 p′0 . (3.130)
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Putting together all the contributions we find a spectrum

P = 2

∫︂
d3p d3p′

(2π)3
1

|h(ũ1)| |ϕ′(ũ1)|2 p0p′0
e−A , A = 2Im

∫︂
du qµ∂µAν

dqν

du
(3.131)

where we remark that the only numerical contributions to the prefactor are due to the functions h(u)

and ϕ̄(u), which are solutions to (3.31) and (3.119), thus require no shooting.

8

3.5.4 Fantastic widths and how to find them

In the same spirit as in the last chapter, we now compute the widths in terms of the variables pj =

−Pj + ∆j

2 and p′j = Pj +
∆j

2 . Expanding around the saddle point ∆j = 0 we get

A(∆) ≃ A(0) + ∆i∆j A∆
ij (3.132)

where A∆
ij is obtained as follows. Since the first order derivatives of the exponent are simply

∂A
∂pj

= 2Im
(︃
qj(u1) +

pj
p0
t(u1)

)︃
∂A
∂p′j

= 2Im
(︃
qj(u0) +

p′j
p′0
t(u0)

)︃
.

(3.133)

we get, using the chain rule,

∂A
∂∆j

= Im
(︃
qj(u1) +

pj
p0
t(u1)

)︃
+ Im

(︃
qj(u0) +

p′j
p′0
t(u0)

)︃
. (3.134)

Now we simply need to perform a variation of the instantons (no sum over the index j)

qµ → qµ +∆j δq
µ
(j) +O(∆

2) , (3.135)

with first order variations satisfying

d2

du2
δqµ(j) = Fµν

d

du
δq(j),ν + ∂ρF

µν q′ν δq
ρ
(j) (3.136)

with boundary conditions

−δq′i(j)(u0) = δq′i(j)(u1) = −
δij
2

δt′(j)(u0) = δt′(j)(u1) = −
Pj
2p0

(3.137)

to obtain

A∆
ij :=

1

2

∂2A
∂∆i ∂∆j

= Im
[︃
δqi(j)(u1)− δt(j)(u1)

Pi
p0

+
t(u1)

2p0

(︃
δij −

PiPj
p20

)︃]︃
. (3.138)

Once we have computed the integrals over ∆j , we can take the derivative with respect to Pj to find

the maximum value

∂A
∂Pi

= 4 Im
[︃
Pi
p0
t(u1)− qi(u1)

]︃
!
= 0 (3.139)
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analogous to the 2D case; we can now perform a variation

qµ → qµ +∆j δq
µ
(j) (3.140)

and find

APij :=
1

2

∂2A
∂Pi ∂Pj

= 2 Im
[︃
−δqi(j)(u1) + δt(j)

Pi
p0

+
t(u1)

p0

(︃
δij −

PiPj
p20

)︃]︃
(3.141)

with boundary conditions

δq′i(j)(u0) = δq′i(j)(u1) = δij

−δt′(j)(u0) = δt′(j)(u1) =
Pj
p0

.
(3.142)

Focusing now on dipole fields, we expect most coefficients of the widths to vanish. Indeed, since the

only nonzero derivatives are4

∂xEx = ∂yEy = −
1

2
∂zEz

∂xBy = −∂yBx =
1

2
∂tEz

(3.143)

and since the variations satisfy the boundary conditions above, all mixed terms cancel A12 = A13 =

A23 = 0 and the perpendicular diagonal terms are equal A11 = A22 (equalities holding for both ∆

and P terms).

In summary, we have only four independent nontrivial widths, namely A∆
11 and A∆

33 for the ∆ com-

ponents and AP11 and AP33 for P . The terms A∆
33 and AP33 can be treated identically to the 2D case,

defining new η functions to reduce the degrees of freedom. As to the perpendicular ones we can

avoid using the shooting method as well as follows. Noting that P⊥ = 0, the only function we have

to evaluate to find the widths is δx(1) with certain boundary conditions that make it symmetric for ∆

and antisymmetric for P . Since the equation it satisfies is homogeneous

δx′′(1) = (t′∂xEx − z′∂xBy)δx(1) = −
1

2
∇E · {z′, t′}δx(1) (3.144)

we can express a general solution as

δx(u) = caδxa(u) + csδxs(u) , (3.145)

where the subscripts a, s denote respectively antisymmetric/symmetric solutions with initial condi-

tions

δxa(0) = 0 δx′a(0) = 1 δxs(0) = 1 δx′s(0) = 0 . (3.146)

For A∆
11, the solution will be given by

δx(1)(u) = −
1

2

δxs(u)

δx′s(∞)
(3.147)

=
4 Equalities between them following from Maxwell’s equation plus symmetry.
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because it satisfies the differential equation and it has by construction the appropriate boundary

conditions. Similarly, for AP we have

δx(1)(u) =
δxa(u)

δx′a(∞)
. (3.148)

To summarize, the four widths are given by

d−2∆,z =
1

2p20
Im
(︃
t

p0
− ηa
η′a

)︃
d−2P,z =

2

p20
Im
(︃
t

p0
− ηs
η′s

)︃
d−2∆,⊥ =

1

2
Im
(︃
t

p0
− δxs
δx′s

)︃
d−2P,⊥ = 2Im

(︃
t

p0
− δxa
δx′a

)︃ (3.149)

with all functions evaluated at u1 →∞.

While the expressions above are valid for any contour, i.e. with u1 going to infinity along any path

as long as we are on the appropriate branch, it is convenient to choose the contour with Imt = 0 for

r > rc. While it does not look like a big improvement to just drop the first addendum in all four

widths, we show later that this contour simplifies greatly the calculations of the γ ≪ 1 limits of the

widths and the total probability. In particular, we expect the total probability to depend only on the

formation region and independent of what happens in the asymptotic regions, i.e. when the particles

have already been created and are simply accelerated. On the other hand, the momentum widths

should be influenced by the acceleration region as well, therefore there must be some cancellations

between the various contributions which are not obvious at the moment.

Writing the real/imaginary parts explicitly such as ηs = ηsr + iηsi we get

d−2∆,z =
1

2p20
Im
(︃
−ηa
η′a

)︃
=
W (ηar, ηai)

2p20|η′a|2
d−2P,z =

2

p20
Im
(︃
−ηs
η′s

)︃
= 2

W (ηsr, ηsi)

p20|η′s|2

d−2∆,⊥ =
1

2
Im
(︃
−δxs
δx′s

)︃
=
W (δxsr, δxsi)

2|δx′s|2
d−2P,⊥ = 2Im

(︃
−δxa
δx′a

)︃
= 2

W (δxar, δxai)

|δx′a|2
,

(3.150)

with W (f, g) = fg′ − f ′g the Wronskian of the functions f and g.

Furthermore, since h(u1) = η′(u1), we can express η as a linear combination of ηs and ηa and

find

|h| = 2

⃓⃓⃓⃓
ηs
η′s
− ηa
η′a

⃓⃓⃓⃓−1
(3.151)

but since the Wronskian is constant (ηsη′a − ηaη′s) = 1 we have

|h(u1)| = 2|η′sη′a| . (3.152)

Similarly, writing ϕ̄ = caδxa + csδxs we find

|ϕ̄′(u1)| = 2|δx′sδx′a| . (3.153)

The reason why it is useful to express them in this form is not merely to make the result computa-

tionally more economic. This expressions (3.150) are effectively split into a local contribution, given
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by the Wronskians, and a nonlocal one, given by the denominators. The Wronskian is “local” because

at r > rc the real/imaginary parts are separately solutions so the Wronskian becomes constant. This

in turn implies that we can evaluate it at r ≳ rc, i.e. when the particles are created, instead of when

the field goes to zero (which is large when γ ≪ 1).

8

3.5.5 Spectrum and integrated probability

In terms of the widths calculated above the spectrum has the form

P(p, p′) =
2e−A

(2π)3|hϕ̄′2|p20
exp

{︄
− ∆2

⊥

d2∆,⊥
− ∆2

z

d2∆,z
− P 2

⊥

d2P,⊥
− (Pz −P)2

d2P,z

}︄
(3.154)

whereA is the exponent at the saddle point and P is the saddle point of the longitudinal momentum

Pz . The total probability

P =

∫︂
d3p d3p′ P(p, p′) (3.155)

is hence given by

P =
[W (ηar, ηai)W (ηsr, ηsi)]

−1/2e−A

32W (δxar, δxai)W (δxsr, δxsi)
. (3.156)

The reason why (3.156) is significant is that all the nonlocal contributions cancel and we are left with

the local ones. As we mentioned, the widths themselves are affected by what happens in the whole

region where the field is nonzero, whereas the total probability only depends on the formation region

and not on what happens after r > rc, where the particles are real and are just being accelerated. The

exponent and prefactor are shown in Fig. 3.20.

8

3.6 Locally constant field approximation and beyond

In this section we show how to compute the limit γ → 0 of the exponent and the prefactor of the total

probability and obtain analytic corrections to the locally constant field approximation in powers of γ

for both. In the LCFA, the probability is given by

PLCF = 2

∫︂
d4x
E2(x)
(2π)3

e
− π

E(x) (3.157)

and one can show that, for any e-dipole field with a single peak, the integral above gives, in the

E ≪ 1 limit,

5
√
5

(2π)3γ4
e−

π
E (3.158)
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Figure 3.20: Exponent and prefactor obtained using the method outlined in this section and comparison with

the effective action method. On the left we see both for a Gaussian pulse, on the right the comparison with a

Lorentz pulse. The prefactor is normalized using the locally constant field result (3.158). The solid lines in the

plot on the left are obtained with open instantons and the LSZ formula, while the darker dots with discrete

closed instantons and the effective action. The dashed line represents the perturbative result γ ≫ 1 in (3.179).

where the exponent is simply the constant field result. However, using this method, one cannot go

beyond the leading order result and it does not give information about the spectrum. We now show

how to obtain higher order corrections in γ using open worldline instantons. First of all, we note

that in the constant field limit the field becomes larger so the pair is accelerated more the smaller γ

becomes. In particular, letting

g(u) = G(ωu)/ω3 (3.159)

the leading order approximation to the asymptotic momenta is given by [65]

P ≃ p0 = t′(∞) ≃ 3G′′(∞)

2γ
, (3.160)

so for the pulses we consider

PGauss ≃
3
√
π

4γ
, PLorentz ≃

3π

4γ
. (3.161)

The normalized longitudinal momentum at various γ is shown in Fig. 3.21.

8

To calculate the small γ expansion of the exponent and the prefactor we express the instantons as

power series

t(u) =
∞∑︂
n=0

tn(u)γ
2n z(u) =

∞∑︂
n=0

zn(u)γ
2n (3.162)

with t0(u) = i cosh(u) and z0(u) = i sinh(u) the constant field instantons. However, we must be

careful because the γ → 0 limit is not uniform, i.e. when u is larger the convergence is slower (thus

the approximation is worse). This might be troublesome because, unlike the time-dependent limit
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γ → γk in previous sections, the domain wherein the instantons are nontrivial grows when γ becomes

smaller. Furthermore, while the derivatives of the instantons are bounded for all values of γ, this is

clearly not true for the constant field instantons (and for the higher order corrections as well). At any

rate, we can dismiss this subtlety by assuming that we work in a bounded domain, which is good if

we focus on the exponent and on the total probability. Since for a constant field γ = 0 the formation

region is uc = − iπ
2 , it is bounded for any γ.

We can find the next-to-leading correction to the instantons using the initial conditions z1(0) =

z′1(0) = t′1(0) = 0, and t1(0) a constant to be found. Let uc(γ) be the point such that t(u) = 0 for

a given γ; we can expand it

uc ≃ −
iπ

2
+ δu γ2 (3.163)

and determine the two constants δu and t1(0) by demanding t(uc) = z′(uc) = 0

t1(0) = −
i

5
δu =

iπ

5
(3.164)

from which

t1(u) =
i

20
[8u sinh(u)− 5 cosh(u) + cosh(3u)]

z1(u) =
i

20
[8u cosh(u)− 11 sinh(u) + sinh(3u)] .

(3.165)

To obtain the next-to-leading order (NLO) term in the exponent

A(γ) ≃ A(0) + 1

2
A′′(0)γ2 (3.166)

we begin by writing the exponent as

A(γ) = 2 Im
[︃
px+ + p′x− −

T

2
−
∫︂ 1

0
dτ Aq̇

]︃
. (3.167)

(3.167) is evaluated at all the saddle points as functions of γ, but taking the derivative we only have

to consider the explicit dependence on γ in the field A (cf. Appendix A). Furthermore, since there is

no O(γ) term due to symmetry we have

1

2
A′′(0) = −Im lim

γ→0

1

γ

∫︂
du

dAµ

dγ
q′µ (3.168)

where the instanton qµ is the constant field one. For all dipole fields, one finds (without the overall

factor of 1/E)

1

2
A′′(0) = −π

5
. (3.169)

We note that, to obtain beyond the next-to-leading order order term we only use the local behavior of

the field A(q) near q = 0 and the constant field instantons, so the correction is the same for all dipole
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fields. To go beyond NLO and obtain the next-to-next-to-leading order (NNLO), we also need (3.165).

One can generalize the previous argument and find (without the overall factor of 1/E)

A ≃ π
(︃
1− γ2

5
− [G(7)(0)− 28]

γ4

280

)︃
(3.170)

which shows that the NNLO correction depends on the shape of the field through G(7)(0).

Similarly, expanding the η’s and δx’s one can show

Pref ≃ 5
√
5

(2π)3γ4

[︃
1 +

4557− 224π2 − 162G(7)(0)

1680
γ2
]︃
. (3.171)

From (3.171) we see that, unlike the exponent, the prefactor becomes larger or smaller depending on

the field shape. For example, for a Gaussian pulse we have

Pref
PrefLO

≃ 1 + 0.24γ2 (3.172)

while for a Lorentzian pulse

Pref
PrefLO

≃ 1− 0.92γ2 (3.173)

as we can see in Fig. 3.22.

We stress that the next-to-leading corrections cannot be computed using the locally constant field

approximation, which only gives the trivial constant field result for the exponent and the ∼ 1/γ4

term at the prefactor. A comparison with the various orders of approximation of the exponent can be

found in Fig. 3.21 by plotting the relative error for the generic quantity Q

∆Q :=

⃓⃓⃓⃓
Qexact

Qapprox
− 1

⃓⃓⃓⃓
(3.174)

for a Gaussian as well as for a Lorentzian pulse.
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at various order of approximation. The dotted line are LO, dashed NLO, solid NNLO.

8

59



CHAPTER 3. SCHWINGER PAIR PRODUCTION

The computation of the nonlocal contributions to the widths is much more complicated and can be

found in [65]. As to the longitudinal widths, one can show that

η′a(∞) ≃ − iγ

2ϕ′(∞)
η′s(∞) ≃ − 3iγ

2ϕ′(∞)
(3.175)

from which these simple results follow

p20|η′a(∞)|2 ≃ 1

4
p20|η′s(∞)|2 ≃ 9

4
p20|h| ≃

3

2
(3.176)

hence the widths become (without the factor of E)

dP,z ≃
3

2πγ
d∆,z ≃

√
5

πγ
(3.177)

which, remarkably, is the same for all e-dipole fields. For the transverse widths we find

dP,⊥ ≃
⃓⃓⃓⃓
c1 ln

[︃
1

γ

]︃
+ c2

⃓⃓⃓⃓
d∆,⊥ ≃

c3
γ

(3.178)

where the constants ci are to be determined numerically as explained in [65]. Using these results we

normalize the widths obtained numerically in Figs. 3.20 and 3.22. The opposite limit, γ ≫ 1, can be

found in [65]. For a Lorentzian pulse we find

A ≃ 4

γ
dP ≃

√︁
γ/2 d∆ ≃

√︁
2γ . (3.179)

Notably, the transverse and longitudinal widths converge as we see in Fig. 3.22.
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dashed lines on the right are the perturbative limits (3.179) at γ ≫ 1.
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Chapter 4

Breit-Wheeler catastrophes
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A
FTER THE STUDY of Schwinger pair production for 2D and 4D fields in the previous

chapter, we now include an incoming photon and apply the instanton techniques to

Breit-Wheeler pair production. In the previous chapter we used a semiclassical approx-

imation to obtain the pair production spectrum from the worldline instantons. In this chapter, using

the same techniques, we show that there is a phase transition in the momentum spectrum as the

incoming photon wave packet becomes more spread out in momentum space. From a mathematical

perspective, this is analogous to Landau’s theory of continuous phase transitions. The material in

this chapter is taken from [102].

4.1 Amplitude

We consider the LSZ formula from the previous chapter (3.1) with the replacement

Aµ → Aµ + εµ e
−ikq (4.1)

in the Dirac propagator (3.3) to include the photon in the incoming state. We define Γ(x+, x−; ε, k) as

the spinor propagator after applying (4.1) and taking the linear part in ε and

M(k) = lim
t±→∞

∫︂
d3x+ d

3x− e
ipx++ip′x− ūs(p) γ

0 Γ(x+, x−; ε, k) γ
0 vs′(p

′) (4.2)

the amplitude at photon momentum k. We also call σ the proper-time point in τ when the photon is

absorbed. Including the effects of a Gaussian wave packet f(k) the amplitude is given by

M =

∫︂
d3k

(2π)32k0
f(k)M(k) (4.3)

with

f(k) = ρ(k) exp

⎧⎨⎩
3∑︂
j=1

−(kj − lj)2

2λ2j
+ ibjkj

⎫⎬⎭ (4.4)

normalized according to ∫︂
d3k

(2π)32k0
|f(k)|2 = 1 . (4.5)

We consider a wave packet centered around l3 = 0 and with no impact parameter bj = 0. Further-

more, without loss of generality we set l2 = 0 and define Ω = l1.

We consider a 2D field of the form E3(t, z) as in the previous chapter. For the numerical calculations

and the results shown in the plots we use a double Sauter pulse

A3(t, z) =
E

ω
tanh(ωt) sech(κz)2 (4.6)

with

γt =
ω

E
γz =

κ

E
. (4.7)
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As in the previous chapter, defining φ⊥ = x⊥
+ − x⊥

− and shifting q⊥(τ) → q⊥(τ) + φ⊥ the φ⊥ integral

gives a delta function ∫︂
d2φei(p+p

′−k)⊥φ⊥
= (2π)2δ⊥(p+ p′ − k) (4.8)

which we use to perform the k⊥ integrals in (4.3) so that k⊥ = p⊥ + p′⊥. Assuming λ1, λ2 to be very

small, we can perform the p′⊥ integrals as

∫︂
d2p′⊥
(2π)2

exp

⎧⎨⎩−
2∑︂
j=1

(p⊥ + p′⊥ − l⊥)2

λ2j

⎫⎬⎭ F (p′⊥) ≃
λ1λ2
4π

F (l⊥ − p⊥) . (4.9)

For time-dependent fields, if we assume the wave packet to be very narrow in the z direction as well,

we can completely neglect wave packet effects. However, the 2D fields we consider have a finite size

along z, so if λ := λ3 is small as well then the wave packet is highly spread out in space and the

overlapping with the field is small.

After calculating all the transverse integrals we arrive at our starting point for the calculation

P =
e2

4π3/2λ

∫︂
d2p⊥
(2π)2

dp3 dp
′
3

(2π)2

⃓⃓⃓⃓∫︂
dk3√
k0

exp

[︃
− k23
2λ2

]︃
M
⃓⃓⃓⃓2

(4.10)

with M defined as the amplitude stripped off of the perpendicular delta function (4.8).

8

4.1.1 Exponent

The calculation of the wave packet independent exponent is nearly the same as in the previous chap-

ter. From

ψ = ipx+ + ip′x− −
iT

2
− i
∫︂

q̇2

2T
+Aq̇ + δ(τ − σ) kq (4.11)

we see that saddle point equations for T and x± are the same as for Schwinger pair production (3.10),

and from the additional dσ integral we have

q̇(σ) · k = 0 . (4.12)

However, the Lorentz force equation have an additional term due to (4.1)

q̈µ = TFµν q̇ν + Tkµδ(τ − σ) (4.13)

which amounts to a jump in the derivative q̇(σ+) − q̇(σ−) = Tk. Using the saddle-point equa-

tions (3.10), (4.12), (4.13) and integrating by parts one sees

− iT
2
− i
∫︂ 1

0
dτ

q̇2

2T
+Aq̇ = −ipx+ − ip′x− + i

∫︂ 1

0
dτ qµ∂µAν q̇

ν − δ(τ − σ) kq (4.14)
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from which almost everything cancels and we are left with

ψ = i

∫︂
du qµ∂µAν

dqν

du
(4.15)

where u = Ts(τ − σ) extends from −∞ to∞ since Ts →∞. A plot of the exponent at the probability

level

A = −2Reψ (4.16)

is shown in Fig. 4.1.
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Figure 4.1: Exponent (without the overall factor of 1/E) as a function of the size of the field γz for different

values of the photon energy Ω and γt = 1 in the subcritical regime

Unlike in Schwinger pair production, where the only non-analyticity is given by the branch points,

the Breit-Wheeler instantons have now a kink at the origin u = 0 due to the delta function in the

Lorentz force equation (4.13). If we perform a change of contour and make u complex, it might not

seem obvious what the meaning of δ(u) should be. As we discuss in more detail in the next section,

this simply splits each component of the instanton into two parts.

8

4.1.2 Scalar prefactor

The ordinary and path integrals are very similar to the previous chapter, and in some sense even sim-

pler. Starting with the path integral, we use the Gelfand-Yaglom method as in the previous chapter to

find the determinant of the operator Λ defined as in (3.18) with the only difference that the instantons

are not smooth at one point.

Since the field is zero in the asymptotic regions (u0, ũ0) and (ũ1, u1) with some finite ũ0, ũ1, we can

write

ϕ
(i)
j (ũ0) ≃

1

T
(ũ0 − u0)δij (4.17)
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and

ũ0 − u0 ≃
t−
p′0

u1 − ũ1 ≃
t+
p0

.

(4.18)

Then, rescaling

ϕ̄ := ϕ
Tp′0
t−

(4.19)

we have new initial conditions at ũ0 independent of t− and T

ϕ̄
(i)
j (ũ0) = δij

dϕ̄
(i)
j

du
(ũ0) = 0 . (4.20)

Since the ϕ̄ solutions are linear in the asymptotic region (ũ1, u1) as well, the determinant scales

quadratically with u

D(u) :=
(︂
ϕ̄
(1)
1 ϕ̄

(2)
2 − ϕ̄

(1)
2 ϕ̄

(2)
1

)︂
(u) ≃ 1

2
D′′(ũ1)(u− ũ1)2 (4.21)

where

1

2
D′′(u) =

(︂
ϕ̄
′(1)
1 ϕ̄

′(2)
2 − ϕ̄′(1)2 ϕ̄

′(2)
1

)︂
(u) . (4.22)

Using the relations above, the determinant follows immediately

detΛ =

(︃
t−
Tp′0

)︃2 1

2
D′′(ũ1)(u1 − ũ1)2

=

(︃
t+t−
Tp0p′0

)︃2 1

2
D′′(ũ1) .

(4.23)

As to the ordinary integrals, the difference with the Schwinger 2D case is that we have the extra σ

integral and t′2 − z′2 is equal to two different constants before vs after absorption

τ < σ t′2 − z′2 = a2−

τ > σ t′2 − z′2 = a2+ .
(4.24)

Starting with the transverse integrals we get∫︂
d2φ⊥ (. . . ) = (2π)2δ⊥(p+ p′ − k)∫︂

d2θ⊥Dq⊥(. . . ) = e−
iT
2
[σp′2++(1−σ)p2⊥] .

(4.25)

The remaining nontrivial integrals over X = (T, σ, z±) are treated as in the Schwinger 2D case where

we extracted the formally divergent contributions analytically. Since we have performed the path

integral, the exponent is evaluated at the instantons as functions of X, which we can only find nu-

merically. However, as shown in Appendix A, for the first derivative the additional terms cancel and

we get

∂ψ

∂z−
=i[p′3 − z′(u0)]

∂ψ

∂z+
= i[p3 + z′(u1)]

∂ψ

∂σ
= −ikq̇(σ)

∂ψ

∂T
=
i

2

{︁
σa2− + (1− σ)a2+ − [σp′2+ + (1− σ)p2⊥]

}︁
.

(4.26)
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Due to the kink of q̇ at τ = σ, our first task is to make sense of the derivative with respect to σ.

Using

kq̇(σ+)− kq̇(σ−) = Tk2 = 0 (4.27)

we find a well-defined expression

kq̇(σ) =
T

2
[q′2(0+)− q′2(0−)] =

T

2
(a2+ − a2− − p2⊥ + p′2⊥) . (4.28)

To compute the second derivatives we use

Tσ = T

∫︂ σ

0
dτ =

∫︂ t̃

t−

dt

t′
≃ t−√︁

a2− + z′(u0)2

T (1− σ) = T

∫︂ 1

σ
dτ =

∫︂ t+

t̃

dt

t′
≃ t+√︁

a2+ + z′(u1)2

z− = z̃ +

∫︂ t−

t̃
dt
z′

t′
≃ − z′(u0)t−√︁

a2− + z′(u0)2

z+ = z̃ +

∫︂ t+

t̃
dt
z′

t′
≃ z′(u1)t+√︁

a2+ + z′(u1)2
,

(4.29)

to rewrite

z′(u0) = −
z−
Tσ

z′(u1) =
z+

T (1− σ)

a2− =
t2− − z2−
T 2σ2

a2+ =
t2+ − z2+

T 2(1− σ)2
.

(4.30)

and to find the saddle-point values of the integration variables X

z−s = −
p′3t−
p′0

z+s = −
p3t+
p0

Ts =
t−
p′0

+
t+
p0

σs =
t−
p′0

(︃
t−
p′0

+
t+
p0

)︃−1
.

(4.31)

Letting δX = X− Xs and expanding the exponent up to second order we find∫︂
d4X e−δX·H·δX =

π2√
detH

, (4.32)

where Hij = −(1/2)∂2ψ/(∂Xi∂Xj) is the Hessian matrix with determinant

detH =

(︃
p20p
′2
0 T

4t+t−

)︃2

. (4.33)

We note that (4.33) has the exact opposite asymptotic contributions with respect to (4.23), so the

factors of t± will cancel.

8
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4.1.3 Spin

As in the previous chapter, there is no on-shell contribution from the shift A → A + ε−ikq in the /A

term at the prefactor of Γ in (4.2). The two contributions, T1 and T2, are respectively from ε in the Aq̇

and σµνFµν terms. Defining

ε(∥)µ =
1

k0
(0,−k3, 0, k1) , ε(⊥)

µ = (0, 0, 1, 0) (4.34)

we express a general polarization state as

εµ = cos
(︂ρ
2

)︂
ε(∥)µ + sin

(︂ρ
2

)︂
eiλε(⊥)

µ , (4.35)

where ρ and λ are two constants. The probability can be expressed in terms of the Stokes vector

N = {1, cos(λ) sin(ρ), sin(λ) sin(ρ), cos(ρ)} . (4.36)

In the perpendicular case we have ε(⊥)q′(0) = 0 and hence no contribution from T1, whereas in the

parallel case we find

−iε(∥)q′(0) = 1 . (4.37)

For T1 we have

P exp

{︃
−iT

4

∫︂ 1

0
dτ σµνFµν

}︃
= exp

(︃
1

2
γ0γ3

∫︂ ∞
−∞

duE

)︃
.

(4.38)

From the Lorentz force equation we find

d

du
ln[±t′(u) + z′(u)] = ±E , (4.39)

from which it follows that ∫︂ 0

−∞
duE = − ln

(︃
−t′(0−) + z′(0−)

p′0 + p′3

)︃
(4.40)

and ∫︂ ∞
0

duE = − ln

(︃
t′(0+) + z′(0+)

p0 − p3

)︃
. (4.41)

The values of the derivatives at zero are now functions of k3 which we show later to be

−t′(0−) + z′(0−) = (k0 + k3)

(︃
1

2
+

i

k1

)︃
(4.42)

and

t′(0+) + z′(0+) = (k0 − k3)
(︃
1

2
+

i

k1

)︃
. (4.43)
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T2 is proportional to

exp

(︃
1

2
γ0γ3

∫︂ ∞
0

duE

)︃
/k/ε

2
exp

(︃
1

2
γ0γ3

∫︂ 0

−∞
duE

)︃
. (4.44)

Combining T1 and T2 and using exp(γ0γ3x) = cosh(x) + sinh(x)γ0γ3 we define

p0p
′
0

m2
⊥
S :=

⃓⃓
ūγ0(/p+ 1)[εq′(0)(4.38) + (4.44)]γ0v

⃓⃓2
. (4.45)

Although the rest of the calculation is linear algebra and can be done without choosing a represen-

tation of the Dirac matrices, it is convenient to use the spin basis in Eq. (8) in [89] for u and v. We

find

1

4

∑︂
spins

S = Nγ ·m , (4.46)

where Nγ is the Stokes vector for the photon (4.36) and

m = {1 + 3p21, 0, 0, 1− p21} , (4.47)

which is the same as in Eq. (154) in [89] or Eq. (44) in [103].

8

4.2 Kinky instantons

In Sec. 4.1.1 we mentioned that contour changes are perfectly fine despite the presence of the delta

function in the Lorentz force equation and postponed the discussion, so now we justify this state-

ment. From previous studies [104, 105] with simpler fields, it has been shown that the maximum

probability is obtained when the photon momentum is shared equally between the electron and the

positron, p = p′ = k/2. However, since we consider a spacetime dependent field which depends

on t and z, we do not expect the z components of the asymptotic momenta to satisfy this property

because the particles are accelerated along different trajectories thus feel a different field. Indeed,

in the previous chapter we showed that already for Schwinger pair production (which amounts to

setting k = 0 in the Lorentz force equation) this is not true for longitudinal momenta, so we expect

only the transverse component of the photon to be shared equally, p⊥ = p′⊥ = k⊥/2. In the next

section, we show that this assumption is correct so we look at the properties of the instantons setting

(p1, p2) = (k1/2, 0). From the discontinuity in the derivative

t′(0+)− t′(0−) = k0

z′(0+)− z′(0−) = −k3
(4.48)
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and the on-shell conditions q′(0±)2 = 1 we find

z′(0+) = i
k0
k1
− k3

2

z′(0−) = i
k0
k1

+
k3
2

(4.49)

and

t′(0+) =
k0
2
− ik3

k1

t′(0−) = −k0
2
− ik3

k1
.

(4.50)

Since the initial velocities are already determined, the free parameters we have to vary to find the

instantons at some generic asymptotic momenta are only t(0) and z(0). Unlike Schwinger pair pro-

duction, the instanton components are now not even/odd, so z(0) is a free parameter.

Figure 4.2: Time components of q(+) and q(−) with parameters k1 = Ω = γt = γz = 1, k3 ≃ 1.15, and λ = 3
√
E

(i.e. in the supercritical regime, since λc ≃ 2.23
√
E. Gluing these two functions we obtain Fig. 4.3.

To perform contour deformations, we note that the delta function in the Lorentz force equation sim-

ply tells us that there is a discontinuity in the derivative according to (4.48), therefore we can regard

the instantons before vs after absorption as distinct functions, q(+) and q(−), given by the solutions to

the Lorentz force equation with initial conditions

t′(+)(0) =
k0
2
− ik3

k1

z′(+)(0) = i
k0
k1
− k3

2

(4.51)

and

t′(−)(0) = −
k0
2
− ik3

k1

z′(−)(0) = i
k0
k1

+
k3
2

(4.52)
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defined over the whole complex plane. Their plots are shown in Fig. 4.2. However, since we want

the asymptotic region u→∞ to represent the solution with q(+) and vice-versa, and we want a single

valued function q(u), we define

q(u) =

⎧⎪⎨⎪⎩q(+)(u) Im(u) < 0

q(−)(u) Im(u) > 0
(4.53)

obtaining Fig. 4.3.

When p1 = k1/2, the initial conditions satisfy q′(+)(0) = −q
′
(−)(0)

∗. Furthermore, when the impact pa-

rameter is zero, b = 0, the initial conditions are imaginary q(0) = −q(0)∗ as well. From the uniqueness

theorem of ODEs

q(+)(u
∗) = −q(−)(u)

∗ (4.54)

which, in terms of the instanton defined by (4.53), implies

q(u∗) = −q(u)∗ (4.55)

as shown graphically in Fig. 4.3. For Breit-Wheeler, the physical contour (green line) that produces

the formation/acceleration region split is different from the Schwinger pair production case. In par-

ticular, the formation region is not along the imaginary axis because the zeros t(u±
c ) = 0 are not

imaginary. Of course the contour choice is arbitrary, but we want the acceleration regions to start at

u±
c because t = 0 represent the moments when the particles are actually created and time becomes

real hence physical rather than imaginary during tunneling. In the formation region shown in Fig. 4.3

time is actually not imaginary, but since t(0) ∈ iR we could in principle achieve this by deforming

the contour. However, there are no practical advantages and it is very difficult because the contour

is some nontrivial curve on the complex plane.

8

4.3 Spectrum and phase transition

4.3.1 Saddle points

At the amplitude level, since the derivatives of the saddle points do not contribute, we find

∂ψ

∂p⊥
= ip⊥

(︃
t(u1)

p0
− u1

)︃
− ip′⊥

(︃
t(u0)

p′0
+ u0

)︃
(4.56)

for the transverse momenta, and

∂ψ

∂p3
= i

[︃
z(u1) +

p3
p0
t(u1)

]︃
∂ψ

∂p′3
= i

[︃
z(u0) +

p′3
p′0
t(u0)

]︃ (4.57)
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Figure 4.3: Space (left) and right (right) components of the instanton defined in (4.53). The time component is

obtained gluing the two functions shown in Fig. 4.2. We denote by u±
c the zeros of t(u).

for the longitudinal ones. Writing the exponent at the probability level as

P ∼ e−A (4.58)

we then have the saddle point equations

∂A
∂p3

= Im
[︃
z(u1) +

p3
p0
t(u1)

]︃
= 0

∂A
∂p′3

= Im
[︃
z(u0) +

p′3
p′0
t(u0)

]︃
= 0

(4.59)

∂A
∂p⊥

= p⊥Im
(︃
t(u1)

p0
− u1

)︃
− p′⊥Im

(︃
t(u0)

p′0
+ u0

)︃
= 0 . (4.60)

In the previous section we have considered p1 = k1/2 and p2 = 0, but since the instantons are not

symmetric, it was not so obvious that p1 = k1/2 is also the momentum saddle point. Setting this

momentum value and considering the contour shown in Fig. 4.3 we have t(u0), t(u1) ∈ R, thus

∂A
∂p⊥

= −k1
2

Im(u1 + u0) . (4.61)

From the symmetry q(u∗) = −q(u)∗ it follows that the contour has the form

u1 = uc + r

u0 = u∗c − r
(4.62)

with r ∈ R, therefore

∂A
∂p⊥

= −k1
2

Im(uc + u∗c) = 0 (4.63)
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hence p1 = k1/2 is a saddle point.

Finally, from

∂ψ

∂k3
= −i

[︃
z(0) +

k3
k0
t(0)

]︃
(4.64)

the saddle point equation for the k3 integral is given by

−ks
λ2
− i
[︃
z(0) +

ks
k0
t(0)

]︃
= 0 (4.65)

which is of course a function of λ. On the momentum saddle point, the initial conditions q(0) are

both imaginary, therefore the solution ks is real.

8

4.3.2 Instanton variations

Since the spectrum at some momentum value is obtained after integrating over dk3, the computation

is trickier than in the previous cases due to the wave packet integral. We begin by defining the partial

derivatives of the instantons at the saddle points as

δqk =
∂q

∂k3
δqα =

∂q

∂Πα
(4.66)

where α ∈ {p1,∆, P}, which amounts to considering variations q → q + δk3 δqk or q → q + δΠα δqα.

All the instanton variations satisfy

δt′′ = Eδz′ +∇E · {δt, δz}z′

δz′′ = Eδt′ +∇E · {δt, δz}t′
(4.67)

but with different initial conditions. Since the equations are homogeneous, any solution can be writ-

ten as a superposition

δq(u) =

4∑︂
j=1

aj δq[j](u) (4.68)

of some basis solutions δq[j](u) with initial conditions

δt[1](u) = δz[2](u) = δt′[3](u) = δz′[4](u) = 1 (4.69)

and all others zero. With some algebra, one can find the coefficients for all the solutions appearing in

the widths.

We can write the coefficients

Xkk =
∂2ψ

∂k23
Xkα =

∂2ψ

∂k3∂Πα
Xαβ =

∂2ψ

∂Πα∂Πβ
(4.70)

in terms of the δq. We refer to [102] for their explicit expressions.

8
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4.3.3 Intermezzo: time-dependent field with large wave packets

Let us consider a time-dependent field. We focus only on the ∆ integral, i.e. the one that receives a

contribution from the wave packet. The others components are not directly affected. After computing

the integrals at the amplitude level except k3 we are left with a delta function δ(p3+p′3−k3) = δ(∆−k3)

from the spatial integral φ3 = 1
2(z+ + z−) and an exponent

ψa(k3,∆) := − k23
2λ2

+ ψ(k3,∆) (4.71)

where ψ is everything apart from the wave packet contribution evaluated at all the saddle points of

the ordinary and path integrals, which are functions of k3 and ∆. Due to the delta function, the k3

integral is trivial and it amounts to the replacement k3 = ∆ at the exponent. Unlike Schwinger pair

production, we now have a nonzero d∆ width even for a time-dependent field unless λ is so small

that we can approximate the exponential with a delta function

e−
∆2

λ2 ∼ δ(∆) . (4.72)

This is because a finite width λ for the photon momentum k3 allows the absorption of photons with

k3 ̸= 0, thus the creation of pairs with different asymptotic momenta

p3 + p′3 = ∆ = k3 ̸= 0 . (4.73)

Let us now look at the width

d−2∆ = −Re
d2ψa
d∆2

(4.74)

where d denotes total derivative with respect to ∆. Defining partial derivatives as before

X∆∆ =
∂2ψa
∂∆2

, Xk∆ =
∂2ψa
∂k3∂∆

, Xkk =
∂2ψa
∂k23

(4.75)

we find, applying the chain rule trivially to ψa(k3 = ∆,∆) with k′3(∆) = 1,

X0 :=
d2ψ

d∆2
= X∆∆ + 2Xk∆ +Xkk (4.76)

thus, defining X0r := ReX0,

d−2∆ =
1

λ2
−X0r . (4.77)

If X0r < 0 then the expression above is always positive so there is no problem, but since X0r > 0

there exists a finite critical value of the wave packet size λc such that

d−2∆ =
1

λ2c
−X0r = 0 (4.78)

given by

λc =
1√
X0r

. (4.79)
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Furthermore, it seems like the width should actually be negative d−2∆ < 0 at λ > λc, which would

give a negative determinant of the Hessian matrix of the momentum integrals and thus an imaginary

prefactor. However, the width becoming negative simply means that the value k3 = ∆ = 0 is no

longer a maximum when λ > λc and that the saddle point ∆ = 0 is degenerate at λ = λc. To see this

in a simpler example, consider the integral

I(λ) :=

∫︂
dx e−f(x) (4.80)

with

f(x) = ϵx4 + (λc − λ)x2 . (4.81)

When ϵ ≪ 1 we can use the saddle point method and neglect the fourth order coefficient, obtaining

a width

d−2 :=
1

2

d2f(x)

dx2
(4.82)

evaluated at x = 0, which is always a saddle point of f(x), given by

d−2 = λc − λ , (4.83)

so that

I(λ) =

√︃
π

d−2
=

√︃
π

λc − λ
. (4.84)

Here we have the analogous situation, namely a well defined result when λ < λc, a divergence when

λ = λc, and then an imaginary integral when λ > λc. What has happened? Looking back at the

original function f(x) we see where the problem was: at λ < λc the saddle point x = 0 is a global

maximum of the exponent, therefore it gives the largest contribution to the integral, but then when

λ > λc it becomes a local minimum instead, and there are two distinct maxima given by

x = ±
√︃
λ− λc
2ϵ

. (4.85)

therefore the result above is only valid when λ < λc simply because we have chosen the wrong

saddle point. When λ > λc we evaluate the width at the two maxima above and sum the results

obtaining

I(λ) =

√︃
π

d−2
=

√︃
π

λ− λc
. (4.86)

The neighborhood of λ = λc is the trickiest regime: here the quadratic term vanishes or it is compa-

rable in size to the quartic one, depending on the relative sizes of ϵ and λ − λc, so the saddle point

approximation breaks down and we have to consider the quartic term. Performing the integral ex-

actly we obtain Bessel functions, which in the limit (λ − λc)2 ≫ ϵ reduce to either of the two results

above, depending on the sign of λ − λc. Going back to our original problem, the change in the sign

of d−2∆ tells us that we are simply evaluating the width at the wrong saddle point.

8
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4.3.4 Phase transition

Letting

ψa = ψ − k23
2λ2

ψr = 2Reψa (4.87)

be the full exponent at the amplitude/probability level, the (in principle several) saddle points (ks,Πs)

are the solutions to the set of equations

∂ψ

∂k3
(ks,Πs)−

ks
λ2

= 0

∂ψr
∂Πα

(ks,Πs) = 0 .

(4.88)

Using the ideas of Appendix A, from the implicit function theorem we find a local solution to the

second equation Π(k3) in a neighborhood of ks with Π(ks) = Πs. Plugging it into the equation and

taking the total derivative with respect to k3 we get

Rαβ
dΠβ
dk3

+Rαk = 0 → dΠα
dk3

= R−1αβRβk (4.89)

where

Rαβ = 2ReXαβ Rαk = 2ReXαk . (4.90)

Plugging now Π(k3) into the first equation and defining

χ(k3) :=
∂ψ

∂k3

(︁
k3,Π(k3)

)︁
(4.91)

we get the single variable equation

χ(k3) =
k3
λ2

(4.92)

with both sides real. When λ is sufficiently small, the left hand side grows slower than k3/λ2, there-

fore k3 = 0 is the only intersection point because

|χ(k3)| <
⃓⃓⃓⃓
k3
λ2

⃓⃓⃓⃓
(4.93)

∀k3 ̸= 0, but above some critical size λ > λc the function χ(k3) grows faster near k3 ∼ 0 as we can

see in Fig. 4.4 so there are two new nonzero saddle points. In the language of catastrophe theory, this

is known as a cusp catastrophe or pitchfork bifurcation [106]. The critical size λc is thus the value

where the two functions have the same slope at the origin, or

1

λ2c
= χ′(0) (4.94)

from which we get

λc =
1√︂

Xkk −XαkR
−1
αβRβk

(4.95)
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χ(k3)
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Figure 4.4: χ(k3) (solid red line) and k3/2λ
2 for λ = 2 and λ = 3 in units of

√
E (blue and green line). We see

that at λ = 2 only k3 = 0 is a solution to (4.92), while at λ = 3 there are two additional intersection points. With

these parameters, Ω = γt = γz = 1, the critical wave packet size is λc ≈ 2.23
√
E.

where all coefficients are evaluated at k3 = 0. As we have mentioned in the previous section, the

critical point λc is finite even for a purely time-dependent field, which means that the existence of the

phase transition is not related to the fact that we have a spacetime-dependent field.

Since χ is odd (Fig. 4.4), we have two nonzero saddle points k3 = ±ks ̸= 0 in the supercritical regime.

We stress that from the argument above we can only infer the existence of the nonzero saddle points,

but we know nothing about their nature, i.e. whether a particular k3 corresponds to a maximum of

the spectrum or not. To achieve this, we have to look at the eigenvalues of the Hessian matrix of the

spectrum, since some saddle point Πs is a maximum if and only if all eigenvalues are positive. For

this we first need to find the instantons at the saddle points ks.

8

While in principle one could calculate the instantons at several k3 values until a solution to the saddle-

point equation is found, a better strategy is to use the saddle point equation for k3 (4.92) to find

z(0) = k3

(︃
i

λ2
− t(0)

k0

)︃
(4.96)

and then let t(0) and k3 be free parameters to vary using the shooting method until the particle

momenta saddle point equations (4.59) are satisfied as well. As we can see in Fig. 4.5, the saddle

point splits from zero to ±ks at λ = λc. The instantons at ±ks are related by

{z(u), t(u)} ←→ {−z(−u), t(−u)} (4.97)

so that, when ks = 0, the instanton components are respectively odd/even so the transforma-

tion (4.97) is a symmetry. (4.97) implies that the momenta of the two saddle points ±ks are related
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by

{p3s, p′3s} ←→ {−p′3s,−p3s} (4.98)

or equivalently Ps ←→ Ps and ∆s ←→ −∆s, so the spectrum is still symmetric with respect to

∆. Since the different k3 saddle points correspond to different momenta saddle points, there is no

interference term.
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Figure 4.5: Pitchfork bifurcation of the saddle-point value ∆s(λ) with parameters Ω = γt = γz = 1. The critical

point is λc ≃ 2.23
√
E. A similar behavior can be seen in ks(λ).

To compute the widths, i.e. the spectrum, we begin with the k3 integral. For a given value of the

momenta Π, we find in general a complex saddle point ks(Π) satisfying ks(Πs) = ks, which means

that

∂ψa
∂k3

(︁
ks(Π),Π

)︁ !
= 0 (4.99)

for every Π, thus taking the partial derivative with respect to some component Πα and rearranging

we get

∂ks
∂Πα

= − ∂2ψa
∂k3∂Πα

(︃
∂2ψa
∂k23

)︃−1
. (4.100)

To find the widths, we first take the derivative of the exponent at the probability level

dψr
dΠα

=
∂ψr
∂Πα

+ 2Re
∂ks
∂Πα

∂ψa
∂k3

=
∂ψr
∂Πα

(4.101)

then with the handy relation above we take another derivative and find a matrix of coefficients

2d−2αβ := − d2ψr
dΠαdΠβ

= − ∂2ψr
∂Πα∂Πβ

− 2Re
∂ks
∂Πα

Xβk

= − ∂2ψr
∂Πα∂Πβ

− 2λ2Re
XαkXβk

1−Xkkλ2

(4.102)
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thus we get the usual widths without the wave packet contribution, ∂α∂βψr, and an extra term that

vanishes as λ → 0. In the subcritical regime (λ < λc and k3 = 0) there is no mixing with the P

component1 due to XkP = X∆P = X∆p1 = 0, so the spectrum has the form

d−2 :=

⎛⎜⎜⎝
d−2p1p1 d−2p1∆ 0

d−2p1∆ d−2∆∆ 0

0 0 d−2PP

⎞⎟⎟⎠ . (4.103)

8

4.3.5 Critical behavior

Besides the splitting of the spectrum as shown in Fig. 4.6, the behavior near the critical point shows

another interesting feature. Let us recalculate the prefactor at k3 = 0 in a different way rewriting the

integral inside the modulus squared as

Figure 4.6: Longitudinal spectrum before (left) and after (right) the phase transition at p⊥ = p⊥s with parame-

ters E = 1/20 and Ω = γt = γz = 1. The plot on the left is at λ = 2
√
E and the one on the right at λ = 3.2

√
E.

The critical point is λc ≃ 2.23
√
E. The dashed line represents the set of points with ∆ = 0.

⃓⃓⃓⃓∫︂
dk3 e

ψa(k3,Π)

⃓⃓⃓⃓2
=

∫︂
dk3 dk̃3 e

ψa(k3,Π)+ψa(k̃3,Π)∗ (4.104)

and then calculating all the integrals, namely (k3, k̃3,Π), together. The saddle points are the same

as before, with k̃s = ks. The total prefactor is then proportional to the determinant of the Hessian

matrix

Hij = −
∂2

∂ξi∂ξj

[︂
ψa(k3,Π) + ψa(k̃3,Π)

∗
]︂

(4.105)

=
1 This can be seen from the explicit expressions of the X in [102].

78



CHAPTER 4. BREIT-WHEELER CATASTROPHES

where ξi, ξj ∈ {k3, k̃3, p1,∆, P}.

The Hessian (4.105) has a natural block matrix structure consisting of the 2x2 (k3, k̃3) block, the 3x3

momentum block, and the mixed blocks. From k̃s = ks we find

Hkk =
1

λ2
−Xkk

Hk̃k̃ =
1

λ2
−X∗kk

Hkk̃ = Hk̃k = 0

(4.106)

for the 2x2 block, then

Hαβ = −(Xαβ +X∗αβ) = −Rαβ (4.107)

with R given by (4.90) and α, β ∈ {p1,∆, P}, and also

Hαk = −Xαk Hαk̃ = −X
∗
αk . (4.108)

To visualize the next step better, we express Hαk as a column vector v and denote R the matrix of

coefficients Rαβ , leading to

H =

⎛⎜⎜⎝
1
λ2
−Xkk 0 vT

0 1
λ2
−X∗kk

(︁
vT
)︁∗

v v∗ −R

⎞⎟⎟⎠ (4.109)

which shows the block structure

H =

⎛⎝A B

C D

⎞⎠ . (4.110)

A corresponds to the (k3, k̃3) block (4.106), D = −R the momentum block (4.107), and BT = C the

mixed blocks (4.108). From the property of determinants of block matrices, we have

det (4.110) = det(A) det(D − CA−1B)

= det(D) det(A−BD−1C)
(4.111)

corresponding to, respectively, ⃓⃓⃓⃓
1

λ2
−Xkk

⃓⃓⃓⃓
detd−2 (4.112)

and (with some algebra)

det(−R)

(︄⃓⃓⃓⃓
1

λ2
−Xkk +XαkR

−1
αβXβk

⃓⃓⃓⃓2
−
⃓⃓⃓
XαkR

−1
αβX

∗
βk

⃓⃓⃓2)︄
. (4.113)

The two results (4.112) and (4.113) are, respectively, what we would obtain if we integrated with

respect to k3 or particle momenta Π first and they are equal⃓⃓⃓⃓
1

λ2
−Xkk

⃓⃓⃓⃓
detd−2 = det(−R)

(︄⃓⃓⃓⃓
1

λ2
−Xkk +XαkR

−1
αβXβk

⃓⃓⃓⃓2
−
⃓⃓⃓
XαkR

−1
αβX

∗
βk

⃓⃓⃓2)︄
. (4.114)
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Noting that −R is the spectrum at λ = 0, i.e. when the wave packet is a delta function around l3 = 0,

we conclude that det(−R) > 0 because only k3 = 0 can contribute, so it is a maximum. Furthermore,

since the instantons only depend on λ through k3 and k3 = 0 in the subcritical regime λ < λc, det(−R)

is constant as we increase λ all the way until the critical point λ = λc. Thus, since the two equations

above must be equal, the determinant of the spectrum detd−2 vanishes if and only if⃓⃓⃓⃓
1

λ2
−Xkk +XαkR

−1
αβXβk

⃓⃓⃓⃓2
=
⃓⃓⃓
XαkR

−1
αβX

∗
βk

⃓⃓⃓2
. (4.115)

From the definition of λc it follows immediately that the equality above is satisfied at λ = λc, there-

fore

detd−2(λc) = 0 (4.116)

so there exists at least one vanishing eigenvalue of d−2 corresponding to the momentum direction

where the spectrum spreads out. The eigenvalues as functions of λ are shown in Fig. 4.7 for some

set of parameter values. Furthermore, detd−2 < 0 at λ ≳ λc, i.e. k3 = 0 no longer corresponds to

maximum of the spectrum. Furthermore, from numerical considerations using a product of Sauter

pulse we also see that d−2p1∆, d∆∆ → 0 as λ→ λc from below, which means that the spectrum spreads

out in the ∆ direction.
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Figure 4.7: Eigenvalues of d−2
αβ without the overall factor of 1/E as functions of λ at parameters Ω = γt = γz =

1. The dashed lines represent the eigenvalues at k3 = 0 after the phase transition. The lilac line shows that one

eigenvalue becomes negative at the critical point λc ≃ 2.23
√
E.

Nevertheless, this only gives us local information about the spectrum close to the critical point, but

there is no reason why k3 = 0 should not become a maximum again. In fact, for some values of the

parameters, there is a second solution to (4.115)

˜︁λc = 1√︂
Xkk −XαkR

−1
αβIβk

(4.117)
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where Iβk = 2iImXβk, such that at λ > ˜︁λc all eigenvalues are positive and thus k3 = 0 corresponds

to a maximum again.

8

In conclusion of this section we point out an analogy between the calculation considered here and

Landau’s theory of continuous phase transitions [107]. If we look at the behavior of ∆s in Fig. 4.5 as a

function of λwe might be reminded of the Ising model of ferromagnets, where the system undergoes

a continuous phase transition into one of two magnetization states as we lower the temperature. To

make this more precise, let us look at the exponent at λ ≃ λc for a generic ∆ but on the saddle points

of P and k3. We have an expansion at b,∆≪ 1

ψr(∆) ∼ a1∆+ a2(λ)∆
2 + a4∆

4 (4.118)

with a1 ∼ b and a2(λ) ∼ λ−λc. A plot of ψr(∆) is shown in Fig. 4.8. The order parameter ∆s is given

by

∂ψr
∂∆

⃓⃓⃓
∆=∆s

= 0 . (4.119)

Since ψr(∆) has the form of the free energy in Landau theory of continuous phase transitions, we
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Figure 4.8: ψr(∆) defined in (4.118) for parameters λ = 2.24
√
E, Ω = γt = γz = 1. The value at the minimum

is ψr(0) ≃ 1.535.

immediately conclude that the critical exponents defined as

∆s(b = 0) ∼ λ̄β ∆s(λ = λc) ∼ b
1
δ

∂∆s

∂b

⃓⃓⃓
b=0
∼

⎧⎪⎨⎪⎩λ̄
−γ

λ < λc

λ̄
−γ′

λ > λc

C = −λd
2g

dλ2
∼

⎧⎪⎨⎪⎩(−λ̄)−α λ < λc

(−λ̄)−α′
λ > λc

(4.120)
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where g(λ) = ψr
(︁
∆s(λ)

)︁
and λ̄ = (λ− λc)/λc, are given by

α = α′ = 0 β =
1

2
γ = γ′ = 1 δ = 3 (4.121)

thus this phase transition falls in the universality class of mean field theory.

8

4.4 Integrated probability

To obtain the integrated probability we evaluate the exponent at the saddle points and collect all the

contributions to the prefactor. We write

P =

∫︂
d2p⊥dp3dp

′
3 P(p⊥, p3, p′3) (4.122)

for the integrated probability and the spectrum. Writing the spectrum as P(p, p′) = N ·M(p, p′) with

N given by (4.36), we have

M(p, p′) =
α√

πλ(2π)4
p0p
′
0m

m2
⊥

⃓⃓⃓⃓
⃓⃓∫︂ dk3√

k0

e−
k23
2λ2

+ψ

2πT

T√
detΛ

π2√
detH

⃓⃓⃓⃓
⃓⃓
2

. (4.123)

where detH is the determinant of the Hessian matrix of the {T, σ, z±} integrals (4.33). Using the

results from the previous sections we obtain

M(p, p′) =
α{1 + 3p21, 0, 0, 1− p21}
2π3/2k0p0p′0m

2
⊥λ|D′′/2|

e−A(p,p
′)⃓⃓

1
λ2
−Xkk

⃓⃓ . (4.124)

Since for λ > λc the spectrum has more than one peak, the probability is the sum of the contributions

of the individual peaks

P =
∑︂
n

Pn . (4.125)

Integrating over momenta we obtain

M =
α{1 + 3p21, 0, 0, 1− p21}

√
π

2λk0m2
⊥p0p

′
0|D′′/2|

1⃓⃓
Xkk − 1

λ2

⃓⃓ e−A√︂
d−22 detd−2

, (4.126)

where d−22 comes from the integration over p2 and detd−2 from (p1,∆, P ).

We show the total probability as a function of λ and all other parameters fixed (photon energy, field

strength, and γ’s) in Fig. 4.9. At the phase transition, we clearly see a peak in the probability.

8
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Figure 4.9: Integrated probability P = M ·N with M given by (4.126) as a function of λ at E = 1/10, Ω = γt =

γz = 1 and for perpendicular polarization N = {1, 0, 0,−1}.

4.5 Momentum at particle creation

For Schwinger pair production we see from Fig. 3.4 that along the imaginary axis there are zeros ±uc
of t(u) corresponding to the point where the particles become real. From the plot of z we also see that

they are stationary points of z(u), namely z′(±uc) = 0, which suggests that the particles are created

at rest. If we now look at the Breit-Wheeler complex plots 4.3, we might expect that the absorption of

a photon with nonzero longitudinal component k3 ̸= 0 gives an initial momentum to the pair. Let us

define u+
c the zero of t(u) in the lower half plane (corresponding to the creation of the electron) and

u−
c the zero on the upper half plane (corresponding to the creation of the positron) as in Fig. 4.3. Let

us denote by

pe := −z′(u+
c ) pp := z′(u−

c ) (4.127)

the electron/positron momenta at creation. In Sec. 4.2 we showed that the instantons satisfy q(u∗) =

−q(u)∗ for a generic k3 (not necessarily on the saddle point), therefore from z(u∗) = −z(u)∗ and

u+
c = (u−

c )
∗ and from the definition (4.127) we see that

pe = pp (4.128)

i.e. the longitudinal momentum is shared equally between the electron and the positron so that the

particles initially travel along the same direction. Note however that they are not created in the same

position because z(u+
c ) ̸= z(u−

c ). After creation, since the field accelerates one of them and decelerates

the other, the asymptotic momenta become different p3 ̸= p′3 when they are outside the field, and their

differences are given by the integral of E(t, z) along the respective worldline

p3 − pe =
∫︂ ∞
u+c

du t′(u)E(t, z)

p′3 − pp = −
∫︂ u−c

−∞
du t′(u)E(t, z) .

(4.129)
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For time-dependent fields we have

pe =
k3
2

(4.130)

or, defining the fraction of momentum given to each particle p̄

p̄ :=
pe
k3

(4.131)

we have p̄ = 1/2. As γk is increased, thus as the field becomes smaller, p̄ becomes smaller as well as

we see in Fig. 4.10.
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Figure 4.10: Particle momenta (4.131) normalized by k3 at creation with γt = 1 and Ω = 1 as a function of the

longitudinal momentum at different fixed values of γz .

We can also visualize the worldline trajectory of the particles after creation as follows. Let us define

the electron worldline as

{te(r), ze(r)} = {t(u+
c + r), z(u+

c + r)} (4.132)

and similarly for the positron

{tp(r), zp(r)} = {t(u−
c − r), z(u−

c − r)} . (4.133)

For r > 0, the functions defined above are always real because they are simply the instantons eval-

uated in the two acceleration regions. We can see them in Fig. 4.11. At k3 = 0 (dashed lines), the

two particles are created with no longitudinal momentum2 then they accelerate for a while because

of the field until the velocities become constant when they exit the field. At k3 = 2 (solid lines), the

longitudinal component of the absorbed photon gives an initial and equal momentum to the two

particles. The positron however (blue line) is accelerated by the field while the electron (red line) is

decelerated until it changes direction completely. If we make k3 larger, the field does not manage to

change the direction of the electron and so both particles travel toward z < 0.
=
2 But with equal transverse momenta k1/2.
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Figure 4.11: Worldlines defined by Eq. (4.132) and (4.133) for k3 = 0 (dashed) and k3 = 2 (solid). The red line

represents the electron and the blue one the positron. The parameters of the field are γt = γz = 1 and the

incoming photon has transverse momentum Ω = 1.





Conclusions

I
N THIS THESIS, the focus has been on Schwinger and Breit-Wheeler pair production mak-

ing use of an open worldline instanton formalism. While simpler field configurations

such as constant fields, plane waves, and 1D fields have been considered for a long time,

methods that work for multidimensional fields are harder to come by. A similar formalism to the

one considered here, based on closed worldline instantons [41, 44], allows one to find the total pair

production probability for fields with both a spatial and temporal structure, but it does not give infor-

mation about the momentum spectrum or spin of the produced particles, which was the scope of the

present work. The first part was dedicated to Schwinger pair production in 2D electric fields and 4D

e-dipole fields [67, 68], and the second one to Breit-Wheeler in 2D electric fields. Emphasis has been

placed on worldline instantons, as they play a key role in the calculation of the momentum spectrum.

In previous works, the instantons were considered along the imaginary axis [39, 40] or along along a

zig-zag contour [48]. In this thesis, the instantons are considered along arbitrary contours and they

are plotted on the complex proper-time plane. This allows us to visualize the instantons and get an

intuition of their analytic properties such as the existence of branch points. Furthermore, it shows

that there exists a special contour consistent with the interpretation of particles tunneling from the

vacuum at the beginning and then accelerating due to the background field. Besides the physical

interpretation, this contour is useful in practice when the instantons are found with the shooting

method [41].

A natural extension would be to study nonlinear Compton scattering in spacetime fields with open

worldline instantons, generalizing the results we obtained for time-dependent fields in [89]. As

shown in [102] for Breit-Wheeler, the incoming wave packet plays a significant role, so it would

be interesting to study the implications of a nontrivial electron wave packet for Compton scattering.

The worldline formalism has also been shown to be able to deal with multiloop amplitudes quite

efficiently [108, 109, 110], thus one could consider loop corrections to the probability. One could also

consider subleading contributions in the semiclassical approximation

P = e−
a
E

∞∑︂
n=0

cnE
n

using Green’s function techniques analogous to Appendix A. In this work we considered for the most
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part purely electric field where the spin contribution is trivial. It would be interesting to add a mag-

netic component and study the particle spins. Dipole fields, although having a magnetic component

as well, are very special in that at leading order there is a trivial spin structure. Another possible path

would be to consider a nonabelian background field such as a color field in SU(3) [111] or even a grav-

itational field to investigate Hawking radiation [112, 113, 114, 115, 116]. Finally, since instantons are

objects that arise naturally when one studies tunneling phenomena, one could use techniques anal-

ogous to the ones showcased here in the context of dynamically assisted nuclear fusion [117, 118].

Hic sunt Dracones
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Appendix A

Saddle points and Green’s functions

A.1 Saddle-point method

I
N THE CALCULATIONS INVOLVING spacetime fields, many integrals were approximated

using the so-called saddle-point or Laplace or steepest descent method [119]. In essence,

what we have done is Taylor expanding the exponent part of the integrand up to quadratic

order, obtaining thus a Gaussian integral. In this appendix we provide some motivation for why this

can be done.

Let us consider an integral of the form

I(ϵ) :=

∫︂
R
dx e−

1
ϵ
f(x) (A.1)

where ϵ is small and f(x) has a unique maximum x = 0 which is also nondegenerate f ′′(x) ̸= 0. If

we Taylor expand and rescale x→
√
ϵx we get an exponent

f(0)

ϵ
+
f ′′(0)

2
x2 +

f ′′′(0)
√
ϵ

6
x3 +O(ϵ) (A.2)

so we see that all the terms higher than quadratic are multiplied by positive powers of ϵ, and are

therefore suppressed. Neglecting them we obtain at leading order a simple Gaussian integral

I(ϵ) =

√︄
2πϵ

f ′′(0)
e−

1
ϵ
f(0) . (A.3)

In principle one could also expand the higher order terms at the exponent, obtaining at the prefactor

a power series in ϵ.

We can generalize this method to integrals of the form

∫︂
R
dxh(x) e−

1
ϵ
f(x) = h(0)

√︄
2πϵ

f ′′(0)
e−

1
ϵ
f(0) , (A.4)
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where h(x) is a slowly varying function, simply evaluating h(x) at the maximum x = 0. This is

because the domain where the exponential term of (A.4) is nonzero gets smaller and smaller as ϵ →

0+, thus h(x) is roughly constant in such interval. The generalization in D dimensions is simple: if

∇f(0) = 0, we get ∫︂
RD

dDxh(x) e−
1
ϵ
f(x) = h(0)

√︄
(2πϵ)D

detHf (0)
e−

1
ϵ
f(0) (A.5)

where Hf (0) is the Hessian matrix of f evaluated at zero.

A further, less obvious, generalization is for complex-valued functions∫︂
R
dx e

i
ϵ
f(x) (A.6)

with again ϵ → 0 and f ′(0) = 0. Now the integrand does not go to zero as |x| → ∞, but the

oscillations become faster and faster and cancel each other out in a sort of destructive interference.

The only region where this does not happen is near the stationary point x = 0, therefore∫︂
R
dx e

i
ϵ
f(x) =

√︄
2πiϵ

f ′′(0)
e

i
ϵ
f(0) . (A.7)

In quantum mechanics, where we identify the small constant ϵ with Planck’s constant ϵ = ℏ, transi-

tion amplitudes are given by path integrals of the form

M =

∫︂
Dq e

i
ℏS[q] (A.8)

and using the saddle-point method we get

M∼ e
i
ℏS[qcl] (A.9)

where qcl satisfies the classical equations of motion

δS

δq

⃓⃓⃓
q=qcl

= 0 (A.10)

so this is a semiclassical approximation because it takes into account the classical limit ℏ → 0 plus

quantum fluctuations up to quadratic order.

If the saddle point is complex, the situation is trickier. One can show that the integral can be split

into a sum of steepest descent contours (i.e. with constant imaginary part) known as Lefschetz thim-

bles [120].

Addendum: perturbative corrections

The result above can be seen as the first order in an expansion of the form√︄
2πϵ

f ′′(0)
e−

1
ϵ
f(0)

∞∑︂
n=0

cnϵ
n (A.11)
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where the exponential term is the leading order nonperturbative result, and the power series in ϵ are

perturbative corrections to the leading order exponential. The zeroth term is obviously c0 = 1, and the

first term can be obtained expanding the cubic and quartic powers

e
f(3)(0)

√
ϵ

3!
x3+

f(4)(0)ϵ
4!

x4 → f (3)(0)2ϵ

2(3!)2
x6 +

f (4)(0)ϵ

4!
x4 (A.12)

where we have neglected the cubic term proportional to
√
ϵ because its integral is zero. Performing

the Gaussian integrals we get√︄
2πϵ

f ′′(0)
e−

1
ϵ
f(0)

[︄
1 + ϵ

(︄
5f (3)(0)2

24f ′′(0)
− f (4)(0)

8f ′′(0)2

)︄
+O(ϵ2)

]︄
. (A.13)

8

A.2 Generalized saddle-point method

Now we construct a general way to compute an arbitrary number of path integrals and ordinary

integrals in the saddle-point approximation.

Let f(x, y) be a function with a unique minimum (x0, y0). The saddle point method tells us∫︂
dxdy e−f(x,y) ≃ 2π√︁

Hxy(x0, y0)
e−f(x0,y0) (A.14)

with

fx(x0, y0) = 0

fy(x0, y0) = 0 . (A.15)

However, suppose we want to compute the integrals one at a time. If we perform the x integral first,

we find a saddle point given by a function x̃(y)

fx(x̃(y), y) = 0 (A.16)

where the equality holds for every y. In particular, we can take the derivative of (A.16) with respect

to y and find

x̃′ = −fxy
fxx

. (A.17)

The saddle-point equation for y is the same because the extra term x̃′(y) fx(x̃(y), y) due to the implicit

differentiation drops using (A.16)

dyf(x̃(y), y) = x̃′(y) fx(x̃(y), y) + fy(x̃(y), y) = fy(x̃(y), y) = 0 (A.18)

therefore the saddle point is still (x0, y0). The second derivative gives

d2yf(x̃(y), y) = fyy + x̃′ fxy = fyy −
f2xy
fxx

(A.19)
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therefore the prefactor is the expression above times fxx from the initial x integral

fxx

[︂
fyy −

f2xy
fxx

]︂
= fxxfyy − f2xy (A.20)

but this is precisely the determinant of the hessian matrix Hxy, therefore the result is independent of

the integration order.

We can easily generalize this result to an n-dimensional x integral. Let us define

fij = ∂xixjf

fiy = ∂xiyf (A.21)

fyy = ∂yyf

and x̃i(y) to be the n saddle points as functions of y, which are solutions to fj(x̃, y) = 0 and satisfy

(taking the y derivative)

x̃′i = −f−1ij fjy . (A.22)

The second derivative with respect to y then gives

d2yf(x̃(y), y) = fyy + x̃′ifiy = fyy − fiyf−1ij fjy . (A.23)

If we first integrate over dnx and obtain an n-dimensional HessianHx = det(fij), the global prefactor

is det(fij) times the contribution from the y integral (A.23), therefore

det(Hxy) = det(fij)
[︂
fyy − fiyf−1ij fjy

]︂
. (A.24)

This is not surprising – in fact this is a well-known property of determinants in linear algebra. Sup-

pose we want to compute the determinant of the n+ 1-dimensional hessian matrix⎡⎢⎢⎢⎢⎢⎢⎣
f11 f12 . . . f1n f1y

...
...

...
...

fn1 fn2 . . . fnn fny

fy1 fy2 . . . fyn fyy

⎤⎥⎥⎥⎥⎥⎥⎦ (A.25)

then we have a block matrix of the form

M =

⎡⎣A B

B D

⎤⎦ (A.26)

where A = fij is an n × n matrix, B = fiy is an n-dimensional vector, and D = fyy is a scalar. From

linear algebra we know

det(M) = det(A) (D −BA−1B) (A.27)

which is precisely (A.24).
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Suppose that we would rather compute the single integral over y first. The first contribution to the

prefactor is ∫︂
dnx dy e−f(x,y) =

∫︂
dnx

√︄
2π

fyy
e−f(x,ỹ(x)) (A.28)

where ỹ(x) is the y saddle point as a function of the n dimensional variable x (which in the continu-

ous limit becomes a functional ỹ[x(τ)]). This function is in general very complicated, but as before we

do not need to find it explicitly, we simply compute the n dimensional integral with the saddle-point

method. We must distinguish total derivatives with respect to xi and partial derivatives, since at the

prefactor we have total derivatives (using partial derivatives would amount to having a block diag-

onal hessian matrix (A.25)). Nonetheless, having computed the integral over y first, we have

∂yf(x, ỹ(x)) = 0 (A.29)

identically for every x, therefore

fi(x, ỹ(x)) =
∂f

∂xi
(x, ỹ(x))

dif(x, ỹ(x)) =
df

dxi
(x, ỹ(x)) = fi(x, ỹ(x)) + ∂yf(x, ỹ(x)) ỹi = fi(x, ỹ(x)) (A.30)

so

dijf = fij + ỹj fiy = fij −
fiyfjy
fyy

. (A.31)

We can now compute the determinant of (A.31) using the matrix determinant lemma, which tells us

that

det(A+ vTu) = det(A)(1 + vTA−1u) (A.32)

where A = fij

det

(︃
fij −

fiyfjy
fyy

)︃
= det(fij)

(︄
1−

fiyf
−1
ij fjy

fyy

)︄
(A.33)

but if we include the contribution from the y integral, i.e. fyy, we have

fyy det

(︃
fij −

fiyfjy
fyy

)︃
= det(fij)

(︂
fyy − fiyf−1ij fjy

)︂
(A.34)

but notice that this is exactly (A.24). The generalization to several y-variables is straightforward:

the scalar terms of (A.24) become matrices, and the term fyy − . . . becomes the determinant of such

matrix.

In summary, we have shown in three different ways that the prefactor is (A.24): integrating over

dnx first (which represents a discretized path integral), integrating over dy first then using the matrix

determinant lemma, and computing them together and using the property (A.27) of determinants of

block matrices.
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This is useful if we have a path integral plus ordinary integrals. The determinant of the path integral

part A can be found using the Gelfand-Yaglom method, but the biggest problem is the computation

of the inverse G = A−1, which is difficult in general. If we have an explicit expression then

fiyf
−1
ij fjy =⇒

∫︂
I×I

dτdτ ′ ∂y

(︂ δS

δq(τ)

)︂
G(τ, τ ′) ∂y

(︂ δS

δq(τ ′)

)︂
. (A.35)

Summary

We can summarize this result in the following proposition.

Given a path integral over the variable q(τ) and and ordinary integral over y, the saddle point ap-

proximation of the combined integral is

∫︂
Dq
∫︂
dy e−f [q(τ),y] =

√︃
1

2πT

√︄
det(Λfree)

det(Λ)

√︄
2π

fyy − fyτ ·Gττ ′ · fyτ ′
(A.36)

where Λ is the quadratic operator, G is its green’s function, and Λfree =
1
T ∂

2
τ .

8

A.3 Time-dependent Green’s function

In this section we use the method outlined above to compute the fluctuation prefactor in a time-

dependent field. Let A(t) be an odd function such that A(∞) = A∞. Expanding the exponent up to

quadratic order around the instanton q → q + δq∫︂
q̇2

2T
+A(t)ż →

∫︂
q̇2

2T
+A(t)ż +

1

2
δq · Λ · δq (A.37)

one finds a kinetic operator [89]

Λ =

⎛⎝− 1
T ∂

2
τ +A′′ż +A′∂τ

−∂τ
(︁
A′ ) 1

T ∂
2
τ

⎞⎠ . (A.38)

We want to find the inverse the operator Λ, i.e. a matrix of Green’s function that satisfies⎛⎝− 1
T ∂

2
τ +A′′ż +A′∂τ

−∂τ
(︁
A′ ) 1

T ∂
2
τ

⎞⎠⎛⎝a(τ, τ ′) b(τ, τ ′)

c(τ, τ ′) d(τ, τ ′)

⎞⎠ =

⎛⎝δττ ′ 0

0 δττ ′

⎞⎠ (A.39)

with boundary conditions Gi = 0 for all four components at the boundary of the square [0, 1] ×

[0, 1]

Gi(τ, 0) = Gi(τ, 1) = Gi(0, τ
′) = Gi(1, τ

′) = 0 . (A.40)

8
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A.3.1 Computation of a and c

We want to solve

− 1

T
∂2a+A′′ża+A′∂c = δττ ′

1

T
∂2c− ∂(A′a) = 0. (A.41)

The delta function in the first equation tells us that either a or c have a discontinuity in the derivative

of some order. From the second equation ∂τ (A
′a) ∼ ∂2τ c we note that c is more regular than a,

thus a must be continuous with a derivative jump and c continuously differentiable. We begin by

integrating the second equation

∂c = TA′a+ k1 (A.42)

and plugging it into the first one

− 1

T
∂2a+ (A′′ż + TA′2)a+ k1A

′ = δττ ′ . (A.43)

We now multiply both sides by ṫ(τ) and use

− ṫ

T
∂2a = − 1

T
∂
(︁
ṫ ∂a− aẗ

)︁
− ṫ(A′′ż + TA′2)a (A.44)

to rewrite it as

− 1

T
∂
(︁
ṫ ∂a− aẗ− k1TA

)︁
= ṫδττ ′ . (A.45)

We integrate it

ṫ ∂a− aẗ = −Tθττ ′ ṫ(τ ′) + TAk1 + k2 (A.46)

and use ṫ2∂
(︁
a/ṫ
)︁
= ṫ ∂a− aẗ. The solution is finally

a(τ, τ ′) = ṫ(τ)

∫︂ τ

0
dτ̃

TAk1 + k2 − Tθτ̃ τ ′ ṫ(τ ′)
ṫ
2 . (A.47)

where k1, k2 are actually functions of τ ′ which we fix by imposing a(1, τ ′) = 0 and c(1, τ ′) = 0. We

define for convenience

In :=

∫︂ 1

0

(TA)n

ṫ
2 . (A.48)

From a(1, τ ′) = 0 we find

k1I1 + k2I0 = T ṫ(τ ′)

∫︂ 1

τ ′

1

ṫ
2 . (A.49)

We can now integrate (A.42)

c(τ, τ ′) = k1τ +

∫︂ τ

0
dτ̃ T (Aτ −A)

TAk1 + k2 − Tθτ̃ τ ′ ṫ(τ ′)
ṫ
2 (A.50)
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and from c(1, τ ′) = 0 we find

k1 + TA∞

(︂
k1I1 + k2I0 − T ṫ(τ ′)

∫︂ 1

τ ′

1

ṫ
2

)︂
− k1I2 − k1I1 + T ṫ(τ ′)

∫︂ 1

τ ′

TA

ṫ
2 = 0. (A.51)

Putting them together with λ := I0(1− I2) + I21

k1(τ
′) =

T ṫ(τ ′)

λ

(︃
I1

∫︂ 1

τ ′

1

ṫ
2 − I0

∫︂ 1

τ ′

TA

ṫ
2

)︃
=
T ṫ(τ ′)

λ

[︁
I0I1(τ

′)− I1I0(τ ′)
]︁

k2(τ
′) =

T ṫ(τ ′)

λ

(︃
I1

∫︂ 1

τ ′

TA

ṫ
2 + (1− I2)

∫︂ 1

τ ′

1

ṫ
2

)︃
=
T ṫ(τ ′)

λ

[︁
λ− (1− I2)I0(τ ′)− I1I1(τ ′)

]︁
. (A.52)

It is easy to see that k1(0) = 0, k2(0) = T ṫ(0) and k1(1) = 0, k2(1) = 0, which imply a(τ, 0) = a(τ, 1) =

0 as well, thus our Green’s functions vanish over the boundary of the square [0, 1] × [0, 1] as they

should. a(τ, τ ′) is also symmetric, but it is not obvious in this form. A nicer way to write our Green’s

functions using (A.48) is

a(τ, τ ′) = T ṫ(τ)ṫ(τ ′)

[︃
1

λ

(︁
I0I1(τ)I1(τ

′) + (I2 − 1)I0(τ)I0(τ
′)− I1I0(τ)I1(τ ′)− I1I1(τ)I0(τ ′)

)︁
+ θττ ′ I0(τ

′) + θτ ′τ I0(τ)

]︃
(A.53)

c(τ, τ ′) =
T

λ
ṫ(τ ′)TA(τ)

[︃
I1(τ)

(︁
I0I1(τ

′)− I1I0(τ ′)
)︁
+ I0(τ)

(︁
(I2 − 1)I0(τ

′)− I1I1(τ ′)
)︁]︃

− T

λ
ṫ(τ ′)

[︃
I2(τ)

(︁
I0I1(τ

′)− I1I0(τ ′)
)︁
+ I1(τ)

(︁
(I2 − 1)I0(τ

′)− I1I1(τ ′)
)︁]︃

+ T ṫ(τ ′)

[︃
θττ ′

(︁
TA(τ)I0(τ

′)− I1(τ ′)
)︁
+ θτ ′τ (TA(τ)I0(τ)− I1(τ))

]︃
+ τ

T

λ
ṫ(τ ′)

[︁
I0I1(τ

′)− I1I0(τ ′)
]︁

(A.54)

Notice that a(τ, τ ′) is proportional to ṫ(τ)ṫ(τ ′). At the end, we want to integrate by parts functions

like ∫︂
dτdτ ′A′(τ)A′(τ ′) a(τ, τ ′) (A.55)

therefore it is convenient to define reduced green’s functions such as

ã(τ, τ ′) :=
a(τ, τ ′)

ṫ(τ)ṫ(τ ′)
(A.56)

so that∫︂
dτdτ ′A′(τ)A′(τ ′) a(τ, τ ′) =

∫︂
dτdτ ′ Ȧ(τ) Ȧ(τ ′) ã(τ, τ ′) =

∫︂
dτdτ ′A(τ)A(τ ′) •ã•(τ, τ ′) (A.57)

where the dots denote derivatives with respect to τ and τ ′. It is easy to see that

•ã•(τ, τ ′) =
T

ṫ
2
(τ)

δττ ′ +
T

ṫ
2
(τ)ṫ

2
(τ ′)λ

(︁
I0 T

2A(τ)A(τ ′)− TI1
(︁
A(τ) +A(τ ′)

)︁
− 1 + I2

)︁
. (A.58)

8
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A.3.2 Computation of b and d

We want to solve

− 1

T
∂2b+A′′żb+A′∂d = 0

1

T
∂2d− ∂(A′b) = δττ ′ . (A.59)

We integrate the second equation

∂d = α1 + Tθττ ′ + TA′b (A.60)

and plug it in the first, finding

− 1

T
∂
(︁
ṫ∂b− ẗb

)︁
+ α1∂A = −T∂Aθττ ′ . (A.61)

Using ∫︂
f ′(x)θ(x− x0) dx = [f(x)− f(x0)] θ(x− x0) + c (A.62)

the expression for b follows

b(τ, τ ′) = ṫ(τ)

∫︂ τ

0
dτ̃
(︁
TAα1 + α2 + T 2(A−Aτ ′)θτ̃ τ ′

)︁ 1

ṫ
2 (A.63)

from which we also find d

d(τ, τ ′) = T (τ − τ ′)θττ ′ + α1τ +

∫︂ τ

0
T (Aτ −A)

1

ṫ
2

(︁
TAα1 + α2 + T 2(A−Aτ ′)θτ̃ τ ′

)︁
(A.64)

where α1, α2 are functions of τ ′. Setting b(1, τ ′) = d(1, τ ′) = 0 we find

α1(τ
′) =

T

λ

[︃
I1

∫︂ 1

τ ′

T (Aτ ′ −A)
ṫ
2 + I0

(︃
τ ′ − 1−

∫︂ 1

τ ′
TA

T (Aτ ′ −A)
ṫ
2

)︃]︃
=
T

λ

[︁
TAτ ′

(︁
I0I1(τ

′)− I0(τ ′)I1
)︁
− λ+ I0 τ

′ + I1I1(τ
′)− I0I2(τ ′)

]︁

α2(τ
′) =

T

λ

[︃
(1− I2)

∫︂ 1

τ ′

T (Aτ ′ −A)
ṫ
2 − I1

(︃
τ ′ − 1−

∫︂ 1

τ ′
TA

T (Aτ ′ −A)
ṫ
2

)︃]︃
=
T

λ

[︁
TAτ ′

(︁
λ− I0(τ ′)[1− I2]− I1(τ ′)I1

)︁
− I1 τ ′ + (1− I2)I1(τ ′) + I1I2(τ

′)
]︁

(A.65)

which satisfy α1(0) = −T , α2(0) = T 2A∞ and α1(1) = 0, α2(1) = 0, from which b(τ, 0) = b(τ, 1) =

d(τ, 0) = d(τ, 1) = 0.
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One can show that c(τ, τ ′) = b(τ ′, τ) and d(τ, τ ′) is symmetric with an expression

d(τ, τ ′) = (A.66)

=
T 3AτAτ ′

λ

[︁
I0I1(τ)I1(τ

′)− I0(τ)I0(τ ′)(1− I2)− I1I0(τ)I1(τ ′)− I1I1(τ)I0(τ ′)
]︁

+
T 2Aτ
λ

[︂
I1(τ)I1(τ

′)I1 − I1(τ)I2(τ ′)I0 + I0(τ)I2(τ
′)(1− I0) + I1(τ)I0(τ

′)I1 + I1(τ)I0τ
′ − I0(τ)I1τ ′

]︂
+
T 2Aτ ′

λ

[︂
I1(τ)I1(τ

′)I1 − I2(τ)I1(τ ′)I0 + I2(τ)I0(τ
′)(1− I0) + I0(τ)I1(τ

′)I1 + I1(τ
′)I0τ − I0(τ ′)I1τ

]︂
+
T

λ

[︂
I0I2(τ)I2(τ

′)− I1I2(τ)I1(τ ′)− I1I1(τ)I2(τ ′)− I1(τ)I1(τ ′)(1− I2) + I1(τ)I1τ
′ + I1(τ

′)I1τ

− I2(τ)I0τ ′ − I2(τ ′)I0τ + I0 τ τ
′
]︂
+ T [(τ − τ ′)θττ ′ − τ ]

+ Tθττ ′
[︁
TAτ TAτ ′I0(τ

′) + I2(τ
′)− (TAτ + TAτ ′)I1(τ

′)
]︁

+ Tθτ ′τ [TAτ TAτ ′I0(τ) + I2(τ)− (TAτ + TAτ ′)I1(τ)] (A.67)

8

A.3.3 Integrating

We use the result from the previous section (A.36) with the Green’s function matrix to compute the

prefactor of Schwinger pair production in time-dependent fields from [89], where we have a path

integral over qz and qt and ordinary integrals over T and space variables θi = xi+−xi−. For simplicity

we neglect the transverse integrals, which are trivial anyway. Letting θ = z+ − z−, ż(τ) = θ + qz(τ),

we have an exponent

f =
θ2

2T
−
∫︂
dτ

q̇2t
2T
− q̇2z

2T
+A(qt)(θ + q̇z) (A.68)

and mixed partial derivatives

fTt = ∂T

(︂ δf

δqt(τ)

)︂
= − q̈t

T 2
, fTz = ∂T

(︂ δf

δqz(τ)

)︂
=
q̈z
T 2
. (A.69)

Using b(τ, τ ′) = c(τ ′, τ) we want to compute

fT if
−1
ij fTj =

∫︂
dτdτ ′

[︂
fTt(τ) fTz(τ)

]︂⎡⎣a(τ, τ ′) b(τ, τ ′)

c(τ, τ ′) d(τ, τ ′)

⎤⎦⎡⎣fTt(τ ′)
fTz(τ

′)

⎤⎦ (A.70)

=

∫︂
dτdτ ′ fTt(τ) a(τ, τ

′) fTt(τ
′) + 2fTz(τ) c(τ, τ

′) fTt(τ
′) + fTz(τ) d(τ, τ

′) fTz(τ
′).

Term with a. With a(τ, τ ′) = ã(τ, τ ′) ṫ(τ) ṫ(τ ′) we have

fTt · a · fTt =
1

T 4

∫︂
ẗ(τ)ṫ(τ) ã(τ, τ ′) ẗ(τ ′)ṫ(τ ′) =

1

4T 4

∫︂
ṫ
2
(τ) •ã•(τ, τ ′) ṫ

2
(τ ′)

=
1

4T 3

[︃
I4 +

1

λ
(I0I

2
3 − 2I1I2I3 − I22 (1− I2)

]︃
(A.71)
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Term with c. Define c(τ, τ ′) = c̃(τ, τ ′) ṫ(τ ′), k1(τ ′) = k̃1(τ
′) ṫ(τ ′). The second term gives

2fTz · c · fTt = −
2

T 4

∫︂
z̈(τ) c̃(τ, τ ′)ṫ(τ ′) ẗ(τ ′) = − 1

T 4

∫︂
ż(τ) •c̃•(τ, τ ′) ṫ

2
(τ ′)

= − 1

T 3

∫︂
A(τ)

[︂
TȦ(τ) ã•(τ, τ ′) + k̃

•
1(τ
′)
]︂
ṫ
2
(τ ′) (A.72)

which receives two contributions from

− 1

2T 3

∫︂
T∂τ (A(τ)) ã

•(τ, τ ′) ṫ
2
(τ ′) =

1

2T

∫︂
TA2(τ) •ã•(τ, τ ′)A2(τ ′)

=
1

2T 3

[︃
I4 +

1

λ
(I0I

2
3 − 2I1I2I3 − I22 (1− I2)

]︃
(A.73)

and

− 1

T 3

∫︂
A(τ) k̃

•
1(τ
′) ṫ

2
(τ ′) = − 1

T 3λ

(︁
I3 + T 2I1

)︁
(I0I3 − I1I2) . (A.74)

Term with d. We have

fTz · d · fTz =
1

T 4

∫︂
z̈(τ) d(τ, τ ′) z̈(τ ′) =

1

T 4

∫︂
ż(τ) •d•(τ, τ ′) ż(τ ′)

=
1

T 2

∫︂
A(τ)A(τ ′)

[︁
TA′ b•(τ, τ ′) + α̇1(τ

′)− Tδττ ′
]︁

=
1

T 2

∫︂
A(τ)A(τ ′)

[︂
TȦ •c̃(τ ′, τ) + α̇1(τ

′)− Tδττ ′
]︂

=
1

2T 3λ

(︁
I3 + T 2I1

)︁ (︁
I0I3 + 2I0I1T

2 + I1I2
)︁
− 1

T 4

(︁
I4 + I2T

2
)︁

+
1

4T 3

[︃
I4 +

1

λ
(I0I

2
3 − 2I1I2I3 − I22 (1− I2)

]︃
+

1

2T 3λ

(︁
I3 + T 2I1

)︁
(I0I3 − I1I2)

(A.75)

where we have used the derivative of (A.60) with respect to τ ′ to simplify the first line.

8

Final result

The final result for the total derivative with respect to T is then

d2T f = ∂2T f + fT if
−1
ij fTj = −

1

T

I0
I20T

2 + I21
. (A.76)

which matches with Eq.(84) in [89]

−1

4

(︂
G00 −G0jG

−1
jk G0k

)︂−1
= − 1

T

I0
I20T

2 + I21
. (A.77)

Let us include the integral over θ as well (the other spatial integrals are trivial). First of all, for

convenience we define a product Suv := fuv + fuif
−1
ij fvj so that the result for the T integral is simply

STT . For the spatial contribution we must calculate

det

⎡⎣Sθθ STθ

STθ STT

⎤⎦ = STT

[︃
Sθθ −

S2
Tθ

STT

]︃
. (A.78)
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One can show that

Sθθ = fθθ + fθt · a · fθt =
I0
Tλ

(A.79)

STθ = fTθ + (fTt · a+ fTz · c) · fθt = −
I1
λT 2

(A.80)

therefore

Sθθ −
S2
Tθ

STT
=

1

T 3I0
=

1

G33
(A.81)

which matches with Eq. (91) in [89].
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Appendix B

Complex Analysis

T
HROUGHOUT THE PRESENT THESIS, complex analysis plays a vital role. The central objects

of study, used to obtain everything else, are complex solutions to ordinary differential

equations called instantons. Viewing them as complex variable functions shows their

analytical properties (branch points, zeros, regions where they are real/imaginary) and also allows us

to see directly the physical contour leading to the formation/acceleration regions and the tunneling

interpretation. To compute them in practice, we need to specify a particular contour and use the

shooting method to find the appropriate initial conditions, and in some cases, visualizing them on the

complex plane is helpful to come up with sensible asymptotic constraints. Many of the assumptions

made in the following, such as the smoothness of contours, are too strong and could be relaxed, but

for the purpose of this thesis this is not necessary.

8

B.1 A dive into the complex world

In this section we review some of the main definitions and theorems used in this thesis. Proofs and

technical details are not addressed, but can be found in any complex analysis book such as [121].

Throughout the following, all functions of complex variable

f : D −→ C (B.1)

defined in some open subset D ⊆ C are continuous with respect to the complex norm. Furthermore,

we assume them to be differentiable almost everywhere in the complex sense for all a ∈ D, i.e.

f ′(a) := lim
z→a

f(z)− f(a)
z − a

(B.2)

exists. Equivalently, f(z) is said to be analytic or holomorphic.
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Complex differentiable functions are very different from real ones. In the complex world, differen-

tiability at a point is enough to imply the existence of a convergent power series in an open neigh-

borhood of the point. Furthermore, analytic functions are also conformal mappings1 (they preserve

angles) in some U ⊆ D if f ′(z) ̸= 0 ∀z ∈ U . What is most relevant for this thesis, however, are the

properties of integrals over complex contours.

Given a smooth contour α parametrized by

u : R −→ C (B.3)

the integral over α is defined as ∫︂
α
f(z) dz :=

∫︂
R
f
(︁
u(r)

)︁
u′(r) dr . (B.4)

One can easily show that the integral above is independent of the parametrization u(r), so it is well-

defined.

The following theorem is the most important result of this section:

Theorem (Cauchy). Let f be an analytic function on a simply connected openD ⊆ C and α a simple contour

contained in D. The integral ∫︂
α
f(z) dz (B.5)

depends only on the initial and final points of the contour. Furthermore, integrals along closed loops always

vanish.

The assumption of D being simply connected is a crucial one. To put it another way, given two

contours α, β with the same initial and final point, we have∫︂
α
f(z) dz =

∫︂
β
f(z) dz (B.6)

if α can be continuously deformed into β without going outside of the domain D where f is ana-

lytic.

8

B.2 Singularities as obstructions

The takeaway message here is that the Cauchy theorem is a topological one. If we deform the do-

main D without altering its topology, i.e. without creating/destroying holes, two contours α and β

continue to be homotopic. If, on the other hand, there is some singularity z0 that prevent such de-

formation, the integral might in general be different. The singularities of f(z) behave as topological

=
1 This is also visible in the complex plots shown later.
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obstructions in the deformation. The study of singularities of complex functions is a very fascinating

one. Perhaps the most deep and surprising result is a theorem by Liouville:

Theorem (Liouville). Let f be an analytic function over the whole complex plane C. If f is bounded, i.e. there

exists M > 0 such that |f(z)| < M ∀z ∈ C, then f is constant.

In other words, non-constant complex functions either have singularities or they diverge at infinity.

If a singularity z0 of f is a zero of 1/f and f is analytic in a neighborhood of z0, it is called a pole.

Intuitively, this means that near the singularity we have

f(z) ∼ 1

(z − z0)n
(B.7)

for some positive integer n. If a function has only poles, we call it meromorphic. This rules out for

example compactly supported bump functions.

8

Functions of complex variables can have another, radically different, type of singular point. Consider

the function f(z) = z
1
2 and a contour z(r) = e2πir. At the beginning of the contour, r = 0, we have

z = 1 and f = 1. As we run along the contour, when r = 1, we are back at z = 1, but the function now

gives f = −1. In this case, we say that z = 0 is a branch point because a contour that runs around zero

leads to a different value of f . Of course this is due to the fact that f(z) is the inverse of a noninjective

function, namely z2, therefore we can regard f as a multi-valued function. In order to get a single

valued function, we can restrict to a single value, i.e. for this function we choose arg z ∈ (−π, π) and

throw away the negative real axis. This is called a “branch cut”, i.e. a restriction of the domain in

order to avoid loops around the origin causing troubles. Letting

B = {z ∈ C | Im(z) = 0, Re(z) < 0} (B.8)

be the branch cut, we have a well-defined, single-valued function

f : C\B −→ C . (B.9)

While this is the approach taken in this thesis, a more sophisticated way of dealing with such sit-

uations is to extend rather than restrict the domain. Since we run into problems insisting that the

domain should be the whole set of complex numbers, we can relax this condition and let

f : Σ −→ C (B.10)

for some surface Σ called a Riemann surface. The domain is now a complex manifold.

Depending on the approach one chooses, the two distinct values of f(1) = ±1 are said to lie on

different branches or different Riemann sheets.
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Singularities of complex functions are important for the study of instantons because, as we see in

the main text, the singularities of the electromagnetic field have a profound effect on the instantons

as they lead to branch points. If we consider for simplicity a time-dependent field E(t), even if it is

a well-behaved function when t is real, such as a Sauter pulse E(t) = E sech2(ωt), as a function of

complex variable it can have poles. But even if it does not have poles, somewhere in the complex

plane it must become very large due to Liouville’s theorem. Since the instantons are necessarily

complex, they can (and typically do) travel towards a pole or a region where the field grows very

quickly.

8

B.3 Instantons as functions of complex variable

It is customary to regard the worldline instantons, namely solutions to2

d2qµ

du2
= Fµν

dqν
du

, (B.11)

as complex valued functions of a real variable q : R → C by fixing a particular contour u(r). In the

context of the widely studied closed instantons, the contour is a straight line along imaginary axis

u = −ir. Starting from the simplest case, namely a constant electric field, we would like to generalize

this idea and treat the worldline instantons as functions of a complex variable.

For a constant field we get the simple set of equations

t′′(u) = z′(u)

z′′(u) = t′(u) .
(B.12)

With initial conditions t′(0) = z(0) = 0, z′(0) = i, t(0) = i, one readily verifies that the solutions are

given by

t(u) = i cosh(u) z(u) = i sinh(u) . (B.13)

Along the imaginary axis, u = −ir, the instantons become the well-known parametrization of a circle

in the
(︁
Re(z), Im(t)

)︁
plane as shown in [39]

t(u = −ir) = i cos(r) z(u = −ir) = sin(r) . (B.14)

One can use such closed instantons to calculate the Schwinger pair production probability using

the effective action and then consider more general time-dependent [39] or spacetime-dependent

fields [41, 44].

=
2 We work with the rescaled variables q → q/E and u → u/E so there are no factors of E.
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In this work, on the other hand, we deal with open instantons. Furthermore, since the exponent of

final result at the amplitude level

i

∫︂
du qµ∂µAν

dqν

du
(B.15)

is the integral of an almost everywhere analytic function, it is natural to consider contour deforma-

tions in u.

In addition, if we consider the instantons above as functions of a complex variable and interpret the

contour as a particular choice of gauge, we obtain much more information. A useful way to visualize

them is using domain coloring, i.e. coloring the complex u-plane according to the phase of t(u) or

z(u) and adding contour lines of their moduli. For convenience, we can also add contour lines of

the real/imaginary parts. Starting from some zero, which can be seen in Fig. B.1 as sets of white

circles, they allow us to visualize the contours along which the instantons are purely real or purely

imaginary.

Figure B.1: Constant field instantons (B.13), z(u) on the left and t(u) on the right. The black contour, given

by (B.16), makes z always real and t real asymptotically and imaginary in the formation region −π
2 < r < π

2 .

The legend on the right tells us the phase at each complex value u.

Looking at the plots, one might notice a special choice of contour. Letting

u(r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
iπ
2 + r + π

2 r < −π
2

−ir − π
2 < r < π

2

− iπ
2 + r − π

2 r > π
2

(B.16)

we obtain the black zigzag contour starting at −∞+ iπ/2 running until iπ/2 parallel to the real axis,

then until−iπ/2 along the imaginary axis, and finally to +∞− iπ/2 parallel to the real axis again. We

call the vertical segment the formation region and horizontal segments the acceleration regions.
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While z(u) is always real, t(u) is purely imaginary along the creation region and purely real along the

acceleration regions. Along the creation region the particles are not real yet, then they are created at

u = ±uc, and finally travel accelerated by the field forever (since we consider a constant field). The

imaginary time in the creation process reinforces the interpretation of Schwinger pair production

as a tunneling process. With this contour, the integral above (B.15) gives (restoring the factor of

1/E)

i

E

∫︂
du z′(u)t(u) = − π

2E
+ (imaginary terms) (B.17)

where the formally divergent imaginary contribution cancels at the probability level, leading to

P ∼ e−
π
E . (B.18)

Note that, since at the end we take the modulus squared, we can restrict the integral to the formation

region, as the instantons are purely real in the acceleration regions. This suggests that the total num-

ber of particles only depends on the small region where the particles are created and not on what

happens when the particles are accelerated by the field.

The constant field is useful to understand the analytic properties of the instantons and the exis-

tence of the tunneling contour, and almost everything generalizes to a time-dependent and even

spacetime-dependent field. We consider only fields with one stationary point for simplicity. For a

time-dependent Sauter pulse we have for example [39]

t(u) =
i

γ
arcsin

⎛⎝γ cosh
(︂√︁

1 + γ2u
)︂

√︁
1 + γ2

⎞⎠
z(u) = i

arcsin
(︂
γ sinh

(︂√︁
1 + γ2u

)︂)︂
γ
√︁
1 + γ2

(B.19)

with still z real and t imaginary along the imaginary axis, t(uc) = 0 now at

uc = −
iπ

2
√︁

1 + γ2
(B.20)

and both components real in the acceleration regions. However, the instantons are now no longer

entire functions due to the branch points where the argument of arcsin is equal to plus or minus one.

Such branch points are related to poles in the field, since we have

t(uB) =
iπ

2γ
(B.21)

which is exactly the pole of sech(γt)2. Such branch points can be seen explicitly in Fig. B.2. Note in

particular that this implies that the instantons are multivalued (see also [122]).

8
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Unfortunately, in general we cannot find an analytic expression for the instantons for spacetime

fields, but from the saddle point equation for the longitudinal momentum

Im
[︃
t(u1)− z(u1)

P

p0

]︃
= 0 (B.22)

we know that, if we find a contour such that one of the two components of the instanton become real

asymptotically, the other must also be real. In the main text we show that such contour is especially

useful for dipole fields to find an approximation in the locally constant field limit.

We now show how to plot the instantons on the complex plane. Since we do not have an explicit

expression for the instantons, we must solve the Lorentz force equation along a large set of contours.

If B is the set of branch cuts, we regard the instantons as functions on the complex plane minus

such set qC : C\B → C. Hidden in the definition there is also a choice of contour from the origin to

any u ∈ C\B. From the exact Sauter pulse solution we find a periodic set of pairs of branch points,

therefore one possible choice can be the following: we start with a single contour along the imaginary

axis ui(r) = ir, so that we obtain solutions ti(r) := t(ir), zi(r) := z(ir). Now we treat ti(r) and zi(r)

as a set of initial conditions to solve parallel to the real axis along a contour uR(r) = iR + r with

conditions

tR(0) = tc(R) t′R(0) = −i t′c(R)

zR(0) = zc(R) z′R(0) = −i z′c(R)
(B.23)

so that effectively qR(r) = q(iR + r) because we first go from u = 0 to u = iR, then from u = iR to

u = iR+ r.

With these contours we obtain the complex plot in Fig B.2. We can immediately see both the “tunnel-

ing contour” and a periodic one. The physical contour that gives the tunneling interpretation is the

one traveling along the red region until the zero, then along the imaginary axis until the other zero,

then to the right in the other red region. Note that with this coloring red means real and positive and

yellow-green imaginary with positive imaginary part. If we instead look at what happens along the

imaginary part we see an alternating set of turning points and zeros. This is in fact no coincidence:

if we solve along a purely imaginary contour we obtain precisely the closed instantons used in the

effective action method. Surprisingly, we see that adding the space dependence does not change the

qualitative behavior of the field; it merely shifts the turning points and the branch points.

Finally, from these plots we can also interpret the numerical phenomenon discussed in [48]. Let us

compare the results obtained with two very similar contours such as u(r) = eiθr for |θ| ≪ 1 either

positive or negative. In both cases t(u) goes very close to the pole of the Sauter pulse, but when θ > 0

it then makes a turn to the left towards −∞ (light blue region in the u-domain in B.2), whereas if

θ < 0 it turns to the right towards +∞ (red region in the u-domain). We can now see that we need

to consider a phase that tilts the contour clockwise because, if we were to do the opposite, we would

obtain the wrong asymptotic behavior t→ −∞.

109



APPENDIX B. COMPLEX ANALYSIS

Figure B.2: Imaginary contour and a few contours parallel to the real axis (left). Complex plot of t(u) for the

Sauter pulse with γ = 1 (right). The color represents the phase, the white lines are contour lines of |t(u)|, the

black ones constant real or imaginary part. The latter reveal a lot of information: starting from the zeros on the

imaginary axis we see that the real part of t(u) is constant and zero along the imaginary u axis, therefore t(u) is

purely imaginary. On the other hand, starting again from a zero but along a horizontal contour, t(u) is purely

real because they are contours of constant imaginary part. Lastly, the coloring tells us that the zeros are simple

zeros, i.e. t(u) ∼ u− uc, and there are no poles.
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W
E PROVIDE A WORLDLINE derivation of basic Strong-Field QED results in a plane wave

for both a scalar and a spinor particle. After a warm-up derivation of the Volkov prop-

agators and the exact solutions of the Klein-Gordon and Dirac equations, we compute

the amplitude for nonlinear Compton scattering. Finally, since the amplitude for vacuum pair pro-

duction is zero for plane waves, we conclude with a derivation of Breit-Wheeler pair production.

We will start every calculation off the mass shell and take the on-shell limit only towards the end.

The calculations shown in this appendix were performed as a preliminary check to compute known

quantities using the LSZ formula with the worldline representation of the scalar/spinor propagator.

During the course of the present work, the authors of [82] used the same techniques to generalize the

nonlinear Compton scattering result to a master formula with N external photons.

C.1 Asymptotic states and amputation

We would like to construct an LSZ representation for generic processes involving plane waves. In

general, we want to study processes of the form

out⟨p, p′|0⟩in = out⟨0|ap′(∞) ap(∞) |0⟩in (C.1)

for pair production, or

out⟨p′|p⟩in = out⟨0| ap′(∞) a†p(−∞) |0⟩in (C.2)

for nonlinear Compton scattering. Photons will always be added at the end using the substitu-

tion

Aµ → Aµ + εµ e
ilq . (C.3)

As a warm-up, we provide a worldline derivation of the Volkov propagator. We define lightfront

coordinates by

x± = x0 ± x3 x⊥ = {x1, x2} (C.4)

and consider a plane wave A⊥(x
+) with A0 = A3 = 0, A(−∞) = 0 and A(∞) = A∞. If the electro-

magnetic field is zero asymptotically, we can always shift the gauge such that this holds. We start

from the worldline representation of the exact propagator (see (2.16) in the main text)

G(y, x) =
1

2

∫︂ ∞
0

dT e−
iT
2
m2

∫︂ y

x
Dq e−i

∫︁ 1
0 dτ

q̇2

2T
+A·q̇ . (C.5)

We rewrite a generic trajectory as q(τ) → x + (y − x)τ + q(τ) such that q(0) = q(1) = 0. Since the

perpendicular part of the path integral is Gaussian, it can be calculated by evaluating the exponent

at its saddle point

q̈⊥(τ) = TȦ
⊥
(τ) =⇒ q̇⊥(τ) = TA⊥(τ)−

∫︂ 1

0
A⊥ (C.6)
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and using the normalization1 up to a phase∫︂
Dq⊥ei

∫︁ 1
0 dτ

q̇2⊥
2T =

1

2πT
(C.7)

giving ∫︂
Dq⊥ e−

∫︁ 1
0 dτ

q̇2

2T
+A·q̇ =

1

2πT
e

iT
2

(︁ ∫︁
A2−(

∫︁
A)2
)︁
. (C.8)

The path integral over q0 q3 looks very hard, but it is in fact simple. Since the field only depends on

q+, we can change the variables to q+ and q− and integrate over q−, obtaining an infinite dimensional

delta function δ(q+) which sets q+(τ) = 0 [80, 123]. We have now

1

2

∫︂ ∞
0

dT
1

(2πT )2
e−

iT
2
m2−i (y−x)2

2T
−i(y−x)·

∫︁ 1
0 A+

iT
2

(︁ ∫︁
A2−(

∫︁
A)2
)︁

(C.9)

where the field evaluated at A
(︁
x+ + (y+ − x+)τ

)︁
. We can rewrite some parts of it as

1

(2πT )2
e−i

(y−x)2

2T
−i(y−x)·

∫︁ 1
0 A−

iT
2
(
∫︁
A)2 =

∫︂
d4p

(2π)4
e

iT
2
p2−ip·(y−x)−i 1

p·k p·
∫︁ ky
kx A (C.10)

To see this, if we consider the p+ p− part of the exponent

i

2

(︂
Tp+p− − (y+ − x+)p− − (y− − x−)p+

)︂
(C.11)

we integrate over p− first, giving a delta function δ
(︂
Tp+ − (y+ − x+)

)︂
, so p · k = k · (y − x)/T , and

the last integral becomes

−i 1

p · k
p ·
∫︂ k·y

k·x
dϕA = −iTp ·

∫︂ 1

0
dτ A

(︁
x+ + (y+ − x+)τ

)︁
(C.12)

changing the variable with ϕ = k+

(︁
x+ + (y+ − x+)τ

)︁
. Similarly

iT

2

∫︂ 1

0
dτ A2 =

i

2p · k

∫︂ k·y

k·x
dϕA2 (C.13)

so we have now

1

2

∫︂
d4p

(2π)4

∫︂ ∞
0

dT e
iT
2
(p2−m2)−ip·(y−x)−i

∫︁ ky
kx Vp . (C.14)

Finally, calculating the remaining trivial T integral and adding the iε prescription we find

G(y, x) =

∫︂
d4p

(2π)4
e−ip·(y−x)−i

∫︁ ky
kx Vp

p2 −m2 + iε
. (C.15)

Adding spin is easy: looking at

S(y, x) = (i /Dy +m)
1

2

∫︂ ∞
0

dT

∫︂ y

x
Dq e−i

∫︁ 1
0 dτ

q̇2

2T
+m2T

2
+q̇·A P e−

iT
4

∫︁
σµνFµν (C.16)

=
1 We omit the boundaries of the path integral whenever they are zero.
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we can see that the spin factor exponent becomes2

− iT
4

∫︂ 1

0
dτ σµνFµν

(︁
x+ (y − x)τ)

)︁
=
T

2

∫︂ 1

0
dτ/k /A

′(︁
x+ (y − x)τ)

)︁
=
/k /A(ϕy)

2p · k
−
/k /A(ϕx)

2p · k
(C.17)

where A′ denotes derivative with respect to ϕ. Since only the first term of the expansion of the spin

factor in (C.16) is nonzero the expansion is simply

P e−
iT
4

∫︁
σµνFµν =

(︂
1 +

/k /A(ϕy)

2p · k

)︂(︂
1−

/k /A(ϕx)

2p · k

)︂
. (C.18)

We perform the integrals as before and introduce an integration over d4p∫︂
d4p

(2π)4
(i /Dy +m)

e−ip·(y−x)−i
∫︁ ky
kx Vp

p2 −m2 + iε

(︂
1 +

/k /A(ϕy)

2p · k

)︂(︂
1−

/k /A(ϕx)

2p · k

)︂
. (C.19)

When we compute the covariant derivative, since /∂y /k /A(ϕy) ∼ k2 = 0 it only acts on the exponent

and with some algebra with gamma matrices we obtain

S(y, x) =

∫︂
d4p

(2π)4
Kpy

/p+m

p2 −m2 + iε
K̄px e

−ip·(y−x)−i
∫︁ ky
kx Vp (C.20)

where

Kpy = 1 +
/k /A(ϕy)

2p · k
K̄px = γ0K†pxγ

0 = 1−
/k /A(ϕx)

2p · k
(C.21)

which matches with [12, 13].

8

We want to show now how the propagator can be amputated to derive the Volkov solutions. We

have the general form

(exact) =
∫︂

(asymptotic) (amputation) (exact propagator) (C.22)

which we can see, in a sense, as extracting the exact state from the propagator by ”projecting” it, i.e.

taking the scalar product with its asymptotic version. Note that the propagator contains information

about the exact states because it can be expanded precisely in terms of such solutions [124].

Since A(−∞) = 0 asymptotically, we have an amputation of the form

φp(y) =

∫︂
d4x e−ipx(∂2x +m2)G(y, x) . (C.23)

Of course, one could in principle amputate (C.15) directly to obtain φp, but we want to show how this

can be done with the scalar propagator in its worldline representation (C.5) without going through

the usual form (C.15). In doing so, we are compelled to work off the mass shell p ̸= m2 and take the

=
2 Recall that the path integral gives q+ = 0.
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on-shell limit at the end as in [82]. Integrating by parts and defining δ = p2 −m2 gives us (up to a

sign)

1

2

∫︂
d4x δ e−ipx

∫︂ ∞
0

dT e−
iT
2
m2

∫︂ y

x
Dq e−i

∫︁ 1
0 dτ

q̇2

2T
+A·q̇ . (C.24)

As before, we shift the variable in the path integral q(τ) and calculate it identically

1

2

∫︂ ∞
0

dT

∫︂
d4x δ e−ipx−

iT
2
m2−i (y−x)2

2T
−i(y−x)·

∫︁ 1
0 A+

iT
2

(︁ ∫︁
A2−(

∫︁
A)2
)︁

(C.25)

after which we change the variable to x − y = θ and perform the θ integrals. The perpendicular

ones are trivial, and from the θ− integral we get θ+ = −Tp+. Since the field is now evaluated at

A
(︁
y+ + Tp+(1− τ)

)︁
, we change the variable to ϕ = k+

(︁
y+ + Tp+(1− τ)

)︁
e−ipy

1

2

∫︂ ∞
0

dT δ e
iT
2
δ−i

∫︁ ϕy
ϕy−Tp·k Vp (C.26)

which is now the right moment to take the on-shell limit. Given an integral of the form, we will show

that

lim
δ→0+

∫︂ ∞
0

dT δ eiT δf(T ) = if(∞) (C.27)

in two ways. If we integrate by parts

lim
δ→0+

∫︂ ∞
0

dT δ eiT δf(T ) = −i lim
δ→0+

eiT δf(T )
⃓⃓⃓∞
0
− i lim

δ→0+

∫︂ ∞
0

dT eiT δf ′(T )

= if(0)− i lim
δ→0+

∫︂ ∞
0

dT eiT δf ′(T )

= if(0)− i
∫︂ ∞
0

dT f ′(T ) = if(∞) (C.28)

or we can simply change the variable to T → T/δ

lim
δ→0+

∫︂ ∞
0

dT δ eiT δf(T ) = f(∞)

∫︂ ∞
0

dT eiT

= if(∞) . (C.29)

Note that the on-shell limit simplifies and makes the T integral possible: if we tried amputating the

propagator off the mass shell, we would get stuck at this point.

Let us assume that the field is essentially zero for ϕ < ϕ1, so that

−i
∫︂ ϕy

ϕy−Tp·k
Vp → −i

∫︂ ϕy

ϕ1

Vp (C.30)

giving us finally

e−ipy−i
∫︁ ϕy Vp (C.31)

where we have dropped the lower integration variable because changing it only changes the overall

phase.
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Adding spin is not too difficult at this point. The amputations are slightly different∫︂
d4x e−ipxS(y, x)(−i

←
/∂ x +m)us(p) (C.32)

and the propagator becomes

S(y, x) = (i /Dy +m)
1

2

∫︂ ∞
0

dT

∫︂ y

x
Dx e−i

∫︁ 1
0 dτ

ẋ2

2T
+m2T

2
+ẋ·A P e−

iT
4

∫︁
σµνFµν . (C.33)

− iT
4

∫︂
σµνFµν =

1

2p · k

∫︂ k·y

k·y−Tp·k
/k /A
′ →

/k /A(ϕy)

2p · k
(C.34)

and since k2 = k ·A = 0 the exponent is truncated at first order

Pe−
iT
4

∫︁
σµνFµν = 1 +

/k /A(ϕy)

2p · k
. (C.35)

The amputation becomes −/p+m, which is zero on-shell because /p us(p) = mus(p). It is nonetheless

convenient to do the following

(−/p+m)us(p) =
1

2m
(−/p+m)(/p+m)us(p) =

1

2m
(−p2 +m2)us(p)→ −

δ

2m
us(p) (C.36)

so that we can perform the on-shell limit as before. Since (i /Dy +m) can be pulled out of the integral,

we perform the same steps as before to obtain

(i /Dy +m)
[︂
e−ipy−i

∫︁ ϕy Vp
(︂
1 +

/k /A(ϕy)

2p · k

)︂]︂
= e−ipy−i

∫︁ ϕy Vp
(︂
1 +

/k /A(ϕy)

2p · k

)︂
(/p+m) . (C.37)

The last term finally acts on the spinor

1

2m
(/p+m)us(p) = us(p) (C.38)

and we obtain

e−ipy−i
∫︁ ϕy Vp

(︂
1 +

/k /A(ϕy)

2p · k

)︂
us(p) . (C.39)

which agrees with the amputation performed in [14].

8

The other amputation is essentially identical, but here the outgoing particle classically has a Lorentz

momentum

π′ = p′ −A∞ + kV∞p′ V∞p′ =
2p′ ·A∞ −A2

∞
2p′ · k

. (C.40)

To guess the asymptotic form, we just take the x+ →∞ limit of the exact Volkov solution

outgoing Volkov ∼ ei(π′+A∞)y (C.41)
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and at the prefactor we cannot simply have ∂2y + m2, because we would not get zero on-shell. We

can simply amend it by switching to the asymptotic covariant derivative D2
∞+m2, i.e. we obtain the

asymptotic Klein-Gordon operator. To summarize, we want to calculate∫︂
d4y ei(π

′+A∞)y(D2
∞ +m2)G(y, x) (C.42)

similarly to before, going off the mass shell first and taking the limit at the end. Since π′2 = p′2, we

can simply define δ = p′2 −m2. As before, we integrate over Dq first

1

2

∫︂ ∞
0

dT

∫︂
d4y δ ei(π

′+A∞)y− iT
2
m2−i (y−x)2

2T
−i(y−x)·

∫︁ 1
0 A+

iT
2

(︁ ∫︁
A2−(

∫︁
A)2
)︁

(C.43)

and afterward over the variable y − x = θ

ei(π
′+A∞)x 1

2

∫︂ ∞
0

dT δ e
iT
2
δ− iT

2

∫︁ 1
0 dτ δVp′ (C.44)

with the field now evaluated at A
(︁
x+ + Tp′+τ

)︁
, where

δVp′ = Vp′ − V∞p′ . (C.45)

We change the variable in the integral at the exponent to ϕ = k+

(︁
x+ + Tp′+τ

)︁
and use (C.27) to

conclude

ei(π
′+A∞)x−i

∫︁
ϕx

δVp′ . (C.46)

In the spinor case we obtain∫︂
d4y ei(π

′+A∞)yūs′(π
′)(−i /Dy,∞ +m)S(y, x) (C.47)

so, proceeding as before, we get a spin factor (truncated at first order)

Pe−
iT
4

∫︁
σµνFµν = 1 +

/k /A∞ − /k /A(ϕx)
2p′ · k

. (C.48)

We also integrate by parts to obtain

(−i /Dy,∞ +m)(i /Dy +m)→ (−/π′ +m)(/π′ + /A∞ − /A(y) +m) (C.49)

but A(y) = A(θ + x) and θ+ = Tp′+ →∞, so effectively /A∞ − /A(y)→ 0. At the end we have

ūs′(π
′)δK̄p′x e

i(π′+A∞)x−i
∫︁
ϕx

δVp′ (C.50)

where

δK̄p′x = 1 +
/k /A∞ − /k /A(ϕx)

2p′ · k
. (C.51)

8
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C.2 Scalar nonlinear Compton scattering

As before, one could in principle calculate the amplitude for Compton scattering using the Volkov

states derived above, and the result would follow very quickly. However, our goal is to show that this

can be done without using the Volkov states at all because when we consider more complicated fields

we do not have access to such solutions. What we want to do instead is computing the amplitude

using the inclusion of the photon with the replacement

Aµ → Aµ + εµ e
ilq (C.52)

in the worldline propagator, as mentioned at the beginning of the chapter.

The method outline here is equivalent but slightly different to that used in [82] in that the authors

use a representation of the spin factor in terms of a Grassmann path integral (see previous chapter).

We want to calculate

M =

∫︂
d4xd4y e−ipx+i(π

′+A∞)y(∂2x +m2)(D2
y(∞) +m2)

∫︂ ∞
0

dT

2

∫︂ 1

0
dσ

∫︂ y

x
Dx e−i

∫︁ 1
0 dτ

q̇2

2T
+A·q̇+J ·q

⃓⃓⃓
lin

(C.53)

where

J(τ) = −l δ(τ − σ)− ε δ̇(τ − σ) (C.54)

such that ε·l = l2 = ε·k = 0. The last condition is satisfied simply by choosing the so-called lightfront

gauge ε+ = 0. The first step is to integrate by parts with both momenta off-shell, so that

(∂2x +m2)(D2
y(∞) +m2)→ (p2 −m2)(p′2 −m2) (C.55)

and perform the path integral. We write as usual q(τ)→ x+ (y − x)τ + q(τ) and get rid of the linear

terms in q by shifting q → q + qcl where qcl satisfies q−cl = 0 and

q̈⊥,+cl = T J̃
⊥,+

(C.56)

where J̃
⊥,+

= J⊥,+ − Ȧ. Since J̃
+
= J+ = −l+δ(τ − σ), this part is actually trivial. In general we

can use the standard method of Green’s functions to solve (C.56): given a differential equation of the

form

Ly u(y) = f(y) (C.57)

if we find a function G(y, x) such that Ly G(y, x) = δ(y − x), then the solution is given by

u(y) =

∫︂
dy G(y, x)f(x) . (C.58)

In our case, the Green’s function of the operator ∂2τ is well-known [74, 71]

G(τ, τ ′) = ττ ′ +
|τ − τ ′|

2
− τ + τ ′

2
(C.59)
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so we have

q⊥,+cl (τ) = T

∫︂ 1

0
dτ ′G(τ, τ ′) J̃

⊥,+
(τ ′) . (C.60)

With this substitution

−i
∫︂ 1

0
dτ

q̇2

2T
+ J̃ · q → − iT

2
J̃ ·G · J̃ − i

∫︂ 1

0
dτ

q̇2

2T
(C.61)

where the dot stands for τ integral and spacetime scalar product at once. We can now perform the

path integral and expand the first term. Since G has a trivial diagonal structure proportional to ηµν ,

we use J2 = 0 and integrate by parts some terms to find

− iT
2
J̃ ·G · J̃ =

iT

2

[︃ ∫︂
A2−

(︂∫︂
A
)︂2

+ 2

∫︂ 1

0
dτ A · l

(︁
σ + θ(τ − σ)− 1

)︁
− 2

∫︂ 1

0
dτ A · ε

(︁
1− δ(τ − σ)

)︁]︃
(C.62)

and recognize the first two terms, already present in the amputations. Note that the field is evaluated

at x+ + (y+ − x+)τ + q+cl(τ) where

q+cl(τ) = −T l
+G(τ, σ) . (C.63)

The ordinary integrals are very simple, we simply shift the y variable y = x + θ and perform every-

thing except x+. We have3∫︂
dx⊥dx− ei(π

′+A∞+l−p)x = (2π)3δ⊥,−(p
′ + l − p)ei(π′+A∞+l−p)+x+∫︂

d4θ e(... ) = (2πT )2e
iT
2
(
∫︁
π′+A∞−ε+σl−A)2

(C.64)

Adding together the path integral and θ contributions we find

iT

2

[︃ ∫︂ 1

0
dτ
(︂
A2 + 2(θ(τ − σ)− 1)A · l − 2A · p′

)︂
− 2p′ · ε+ 2σ

(︁
p′ + kVp′(∞)

)︁
· l + 2A(σ) · ε+ p′2 + 2A∞ · p′ −A2

∞

]︃
(C.65)

with the field now evaluated at θ+ = T (p′+ + σl+). Shifting x+ → x+ − Tp+σ the argument becomes

x+ + T (τ − σ)[p+ − θ(τ − σ)l+], which looks like the worldline with momentum that jumps from p+

to p+ − l+ (hence emits a photon) at τ = σ. We can now also take the linear part in ε

−iTε · (p′ − 2A(σ)) =: −iTπ(σ) · ε . (C.66)

Collecting everything else together and performing some algebraic manipulations, we are faced with

the following expression (up to the delta function)

(p2 −m2)(p′2 −m2)

∫︂
dx+

∫︂ ∞
0

dT

∫︂ 1

0
dσ

T

4
ε · π(σ)ei(π′+A∞−p+l)+x+

e
iT
2

[︁
(1−σ)(2A∞·p′−A2

∞)+σ(p2−m2)+(1−σ)(p′2−m2)−
∫︁ σ
0 dτ

(︁
2A·p−A2

)︁
−
∫︁ 1
σ dτ

(︁
2A·p′−A2

)︁]︁
. (C.67)

=
3 There is an overall factor of two from the Jacobian when we go to lightfront coordinates.
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Before taking the on-shell limit, it is convenient to change the variable in the last integrals similarly

to the previous section φ = k+[x
+ + T (τ − σ)(p+ − θ(τ − σ)l+] so that the integrals become

− iT

2

∫︂ σ

0
dτ
(︁
2A · p−A2

)︁
= −i

∫︂ kx

kx−Tσkp
Vp

− iT

2

∫︂ 1

σ
dτ
(︁
2A · p′ −A2

)︁
= −i

∫︂ kx+T (1−σ)kp′

kx
Vp′ . (C.68)

We are now ready to go on the mass shell. The expression looks like we should change the variables

to σT and T (1− σ) instead, so we do that but also include a factor of two

v =
Tσ

2
w =

T (1− σ)
2

. (C.69)

We have the following structure

(p2 −m2)(p′2 −m2)

∫︂ ∞
0

dT

∫︂ 1

0
dσ

T

4
(. . . ) =

∫︂ ∞
0

dv

∫︂ ∞
0

dw δ δ′eiδv+iδ
′wf(v, w) (C.70)

that we immediately recognize to be very similar to what we had before, but with more variables.

We shift v → v/δ and w → w/δ′ and perform the on shell limit

lim
δ,δ′→0+

∫︂ ∞
0

dv

∫︂ ∞
0

dw δ δ′eiδv+iδ
′wf(v, w) = −f(∞,∞) (C.71)

with the usual analytic continuation.

As before we define ϕ1 and ϕ2 such that A can be neglected for ϕ < ϕ1 and A(ϕ) = A∞ when ϕ > ϕ2.

Such values exist because we assume A(ϕ→ −∞) = 0 and A(ϕ→ +∞) = A∞. Then

− i
∫︂ kx

kx−Tσkp
Vp → −i

∫︂ kx

ϕ1

Vp

iVp′(∞)(kx+ T (1− σ)p′ · k)− i
∫︂ kx+T (1−σ)kx

kx
Vp′ → iVp′(∞)ϕ2 − i

∫︂ ϕ2

kx
Vp′ (C.72)

where the iVp′(∞)kx term is taken from ix+(π′ + A∞)+. Performing some manipulations one can

show

Vp′ = −
p · l
p′ · k

+ Vp +
π · l
p′ · k

x+(p′+ + l+ − p+) = ϕ
p · l
p′ · k

(C.73)

which gives the final result (where ϕ = k · x)

M = (2π)3δ⊥,−(p
′ + l − p) 1

k+

∫︂
dϕ e

i
∫︁ ϕ π·l

p′·k ε · π(ϕ) . (C.74)

It is quite clear that this approach, at least for plane waves, is significantly more challenging, or at

least more involved, than the approach with Volkov states. This is because the Volkov states are

effectively already amputated, whereas here we perform the amputation and go on-shell during the

calculation. But for spacetime fields where no exact states is known, this route is not available.

8
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C.3 Spinor nonlinear Compton scattering

Most of the calculation in the previous section is identical for a spinor particle; in particular, the

exponent is exactly identical. The part which requires the most care is the evaluation of the spin

factor. To begin with, the inclusion of a photon via the replacement

A→ A+ ε eilx (C.75)

does not affect the prefactor since the extra term we would obtain from

i/∂y − /A(y) +m→ i/∂y − /A(y)− /εeily +m (C.76)

is zero on-shell because it corresponds to a photon being absorbed outside the field.

Regarding the spin factor, we must now be more careful because the path ordering cannot be simply

dropped because we have two contributions FAµν + F γµν with

1

4
[γµ, γν ]FAµν = /k /A

′
(τ)

1

4
[γµ, γν ]F γµν = i/l/ε eil·x (C.77)

although fortunately most terms cancel because k2 = 0 and we must take the linear part in ε

Pe
T
2

∫︁ 1
0 dτ /k /A

′
+i/l/ε eilx = 1 +

T

2

∫︂ 1

0
dτ (/k /A

′
+ i/l/ε eilx) +

iT 2

4

∫︂ 1

0
dτdσ

(︁
/k /A
′
τ/l/εθτσ + /l/ε/k /A

′
τθστ

)︁
eilx(σ)

+
iT 3

8

∫︂ 1

0
dτdσdτ ′ θτσθστ ′ /k /Aτ/l/ε/k /Aτ ′e

ilx(σ) . (C.78)

This is not the end of the story, however, since we have the scalar contribution with ε · ẋ at the

exponent, but this just means that at the end of the calculation we multiply the terms in the spin

factor without /ε by −iTε · π(τ = σ)

− iT
(︂
1 +

T

2

∫︂ 1

0
dτ ′ /k /A

′
τ ′

)︂
π(ϕ) · ε+ iT

2
/l/ε +

iT 2

4

∫︂ 1

0
dτ ′
(︁
/k /A
′
τ ′/l/ε θτ ′σ + /l/ε/k /A

′
τ ′ θστ ′

)︁
+
iT 3

8

∫︂ 1

0
dτ ′dτ

(︁
/k /A
′
τ ′ /l/ε /k /A

′
τ θτ ′σθστ

)︁
. (C.79)

Expanding everything carefully, one sees that we always have

linε →
∫︂ 1

0
dσ (. . . )eil·x(σ) . (C.80)

The only thing we need to deal with is now the prefactor in the limit v, w → ∞ (with variables

defined in the previous section); recall that after computing the path integral and ordinary integrals

the argument of the field is φ = k+[x
+ + T (τ − σ)(p+ − θ(τ − σ)l+] therefore we use this as the new

variable at the prefactor as well, and in the on-shell limit we find

−2
(︂
1 +

/k /A

2p · k
+
/k /A∞ − /k /A

2p′ · k

)︂
π(ϕ) · ε+ /l/ε+

(︂/k /A∞ − /k /A
2p′ · k

/l/ε + /l/ε
/k /A

2p · k

)︂
+
/k /A∞ − /k /A

2p′ · k
/l/ε

/k /A

2p · k
.

(C.81)
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Regarding amputations, sinceA(y+) = A(θ++x+)→ A∞, the term from the propagator becomes

i/∂y − /A(y) +m→ /π′ +m (C.82)

so we combine it with −/π′ +m to get −δ′, whereas for the other we simplify it as follows

(−/p+m)us(p) =
1

2m
(−/p+m)(/p+m)us(p)→ −

δ

2m
us(p) . (C.83)

We can rewrite the prefactor (C.81) as

δK̄p′

(︂
2π(ϕ) · ε− /l/ε

)︂
Kp (C.84)

and using the following identities, together with a · b = /a/b + /b/a

/π(ϕ)Kp = Kp/p δK̄p′/π
′(ϕ) = /π′∞δK̄p′

(p′ + l − p)+ = k+

p · l
p′ · k

Vp = Vp′ +
p · l
p′ · k

− π · l
p′ · k

we find

δK̄/ε/π(ϕ)K + δK̄(/π(ϕ)− /l)/εK = 2mδK̄/εK + /k/ε
π · l
p′ · k

(C.85)

where we let /p and /π′∞ act on the spinors to simplify the expression. The factor 2m cancels, and the

last term is a total derivative and we can get rid of it. Finally, using

ūs′(π
′
∞)δK̄p′ = ūs′(p

′)K̄p′ . (C.86)

we obtain the final amplitude

M = (2π)3δ⊥,−(p
′ + l − p) 1

2k+

∫︂
dϕ e

i
∫︁ ϕ π·l

p′·k us′(p
′)K̄p′/εKp us(p) (C.87)

which agrees with [12].

8

C.4 Breit-Wheeler pair production

A minor variation of the nonlinear Compton calculation gives us the amplitude for Breit-Wheeler

pair production γ → e+e−. Intuitively, we are taking the Feynman diagram for Compton scattering

and changing the orientation of two arrows. The photon becomes incoming, so we simply change

its momentum l → −l; we do this at the end of the calculation. The incoming fermion line, on the

other hand, now becomes outgoing, so we change the spinor from us to vs and take some care with

its momentum. The outgoing positron, just like the electron, will receive some modifications due to

A∞.
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We use the LSZ∫︂
d4xd4y ei(π

′
∞+A∞)y−i(π∞+A∞)xūs′(π

′
∞)[−i /D∞y +m]S(y, x)[i

←−
/D∞x +m]vs(π∞) (C.88)

where

π′∞ =p′ −A∞ + k
2p′ ·A∞ −A2

∞
2p′ · k

= p′ −A∞ + kVp′ ,

π∞ =− p−A∞ − k
−2p ·A∞ −A2

∞
2p · k

= −p−A∞ − kV−p (C.89)

where the opposite sign for the positron follows from the fact that we have absorbed the charge of

the electron in A, and π∞ = π(−p,∞). Substituting A→ A+ εeilx in the worldline representation of

S(y, x), shifting y = θ + x in the path integral, and performing a few more steps gives

1

4
δ̄(p′ + p+ l)ūs′(π

′
∞)[−/π′∞ +m]

∫︂ ∞
0

dT

∫︂ 1

0
dσ

∫︂
dx+d4θDq (/π′∞ + /A∞ − /A(θ + x) +m)

ei(π
′
∞+π∞+l)+x+−i θ

2

2T
−im

2T
2

+i(π′
∞−π∞+lσ−ε−

∫︁
A)θ−i

∫︁ q̇2

2T
+J̃ ·q Spin[A] [−/π∞ +m]vs(π∞) (C.90)

where the spin prefactor Spin[A] is given by

Spin[A] :=
(︂
1 +

T

2

∫︂ 1

0
dτ ′ /k /A

′
τ ′

)︂
linε +

iT

2
/l/ε +

iT 2

4

∫︂ 1

0

(︁
/k /A
′
τ ′/l/ε θτ ′σ + /l/ε/k /A

′
τ ′ θστ ′

)︁
+
iT 3

8

∫︂ 1

0
dτdσdτ ′ θτσθστ ′ /k /Aτ/l/ε/k /Aτ ′ (C.91)

and

δ̄(p′ + p+ l) = (2π)3 δ⊥,−(p
′ + p+ l) (C.92)

Where there is no linε we simply ignore the ε contribution that will come from the exponent. The

integrations over dθ and Dq are no different from Compton scattering. We have delta functions

which set

y+ → T (l+σ + p′+)

q+(τ)→ −T l+
[︂
τσ +

|τ − σ|
2

− τ + σ

2

]︂
. (C.93)

We also shift x+ → x+ + Tp+σ (opposite sign with respect to Compton). By going on shell we have

Tσ, T (1− σ)→∞, so the exponential becomes

i(p′ + p+ l)+x
+ − i

∫︂ ϕ2

ϕ
−V−p − i

∫︂ ϕ2

ϕ
Vp (C.94)

so using

x+(p′ + l + p)+ =− ϕ p · l
p′ · k

,

Vp′ =ϕ
p · l
p′ · k

+ V−p −
π−p · l
p′ · k

(C.95)
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where −π = p+A∞ − kV−p, we get an exponential

−i
∫︂ ϕ π−p · l

p′ · k
. (C.96)

The spin prefactor on the other hand

2π−p · ε δK̄p′ δK−p + δK̄p′ /ε/lδK−p (C.97)

can be manipulated using the following properties

/π−p(ϕ) δK−p = δK−p δK̄p′ /π
′(ϕ) = /π′∞ δK̄p′ (C.98)

to give 4

2π−p · ε δK̄p′ δK−p + δK̄p′ /ε/lδK−p = δK̄p′/εδK−p(/π∞ +m). (C.99)

Also using

ūs′(π
′
∞) δK̄p′ ūs′(p

′) K̄p′ δK−p vs(π∞) = K−p vs(p) (C.100)

we get

1

2k+

δ̄(p′ + l + p)

∫︂
dϕ e

−i
∫︁ ϕ π−p·l

p′·k ūs′(p
′) K̄p′/εK−p vs(p) . (C.101)

We should also substitute l → −l such that the photon is incoming. Here −π−p = p + A − kV−p

because it is for the positron.

=
4 The rightmost factor (/π∞ +m) combines with the spinor truncation.

124



Appendix D

Constant field

125



APPENDIX D. CONSTANT FIELD

A
NOTHER SIMPLE EXAMPLE where we can perform the calculations analytically is a con-

stant field. We focus for simplicity on a constant electric field polarized in the z direc-

tion, but in principle it is possible to generalize to a general constant electromagnetic

field Fµν with all non-zero electric and magnetic components. The biggest complication is that the

asymptotic states are no longer free, so the usual LSZ reduction formula must be modified in a non-

trivial way. We start with a derivation of the exact propagator, then move to the amputations and

obtain the exact solutions to the Dirac equation in a constant electric field, which are well-known,

in terms of parabolic cylinder functions. After these preliminary calculations, we compute the am-

plitudes for Schwinger pair production and Breit-Wheeler pair production. We consider only the

spinor case, as it is the most relevant, since we are typically interested in studying electrons in an

electromagnetic field.

D.1 Propagator

As in the previous appendix we start with a worldline derivation of the exact propagator. We con-

sider a constant electric field F03 = −F30 = E with a gauge A3(t) = Et. From here on, we label x−

the initial point and x+ the final point. The worldline representation is still the same

S(x+, x−) = (i/∂x+ − γ3Et+ +m)KE(x+, x−) (D.1)

and for the most part we focus on the heat kernel KE(x+, x−)

KE(x+, x−) =

∫︂
dT

2
e−

im2T
2

∫︂ x+

x−

Dq e−i
∫︁ q̇2

2T
+A·q̇ P e−

iT
4

∫︁
σµνFµν . (D.2)

Since Fµν = const, the spin factor is easily expanded

e
ET
2
γ0γ3 = cosh

(︂ET
2

)︂(︂
1 + γ0γ3 tanh

(︂ET
2

)︂)︂
. (D.3)

As to the path integral, we compute the exponent and the prefactor separately. Since it is Gaus-

sian, we compute the exponent by evaluating it with the solutions to the equations of motion. The

perpendicular components are trivial q̈⊥(τ) = 0, while two nontrivial components satisfy

ẗ(τ) = TE ż(τ)

z̈(τ) = TE ṫ(τ) (D.4)

with boundary conditions t(0) = t−, t(1) = t+, z(0) = z−, z(1) = z+. Evaluating at the instantons we

get∫︂ 1

0
dτ

ṫ
2
(τ)

2T
− ż

2(τ)

2T
+ E t(τ)ż(τ)− (q̇⊥)2

2T
=

E

2
(t+ + t−)(z+ − z−) +

E

4
coth

(︃
ET

2

)︃(︂
(t+ − t−)2 − (z+ − z−)2

)︂
−

(x⊥
+ − x⊥

−)
2

2T
.

(D.5)
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As to the prefactor, we can compute it in two ways. We can simply use the Gelfand-Yaglom method [40]:

collecting the symmetrized second order terms at the exponent we can write it as

− i

2T

∫︂
dτ q · Λ · q (D.6)

where q = {t, z}

Λ =

⎛⎝ −∂2τ ET∂τ

−ET∂τ ∂2τ

⎞⎠ . (D.7)

We must find two solutions that satisfy

Λϕ(i) = 0 ϕ
(i)
j (0) = 0 ϕ̇

(i)
j (0) = δij (D.8)

to obtain the prefactor from

1

(2πT )2

√︃
1

detΛ
(D.9)

with

detΛ =
(︁
ϕ
(1)
1 ϕ

(2)
2 − ϕ

(1)
2 ϕ

(2)
1

)︁⃓⃓
τ=1

. (D.10)

It is easy to verify that the solutions are given by

ϕ(1)(τ) =

⎛⎝ sinh(ETτ)
ET

cosh(ETτ)−1
ET

⎞⎠ ϕ(2)(τ) =

⎛⎝ cosh(ETτ)−1
ET

sinh(ETτ)
ET

⎞⎠ (D.11)

from which we immediately see

detΛ =
sinh2

(︂
ET
2

)︂
(︂
ET
2

)︂2 (D.12)

so the prefactor is

1

(2πT )2

ET
2

sinh
(︂
ET
2

)︂ . (D.13)

Alternatively, we can find the eigenvalues of

Λφn(τ) = λn φn(τ) (D.14)

which we do by solving the equation above with φn(0) = 0 and finding the values λn for which

φn(1) = 0. One can show that the eigenvalues are given by

λn = n2π2+
(︂ET

2

)︂2
. (D.15)
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The prefactor is therefore given by1

1

(2πT )2

∏︂
n

λ0n
λn

=
1

(2πT )2
1∏︁

n

(︂
1 + E2T 2

4n2π2

)︂ =
1

(2πT )2

ET
2

sinh
(︂
ET
2

)︂ . (D.16)

The heat kernel KE is finally

KE(x+, x−) =

∫︂ ∞
0

dT e−i
m2T

2
−iE

2
(z+−z−)(t++t−)+

i(x⊥+−x⊥−)2

2T
−iE

4
coth(ET

2 )
(︁
(t+−t−)2−(z+−z−)2

)︁

×
ET
2 coth

(︂
ET
2

)︂
2(2πT )2

(︂
1 + γ0γ3 tanh

(︂ET
2

)︂)︂
.

(D.17)

In order to write it in terms of a Fourier transform, we use

ET
2 coth

(︂
ET
2

)︂
(2πT )2

e
i(x⊥+−x⊥−)2

2T
−iE

4
coth(ET

2 )
(︁
(t+−t−)2−(z+−z−)2

)︁
=∫︂

d4q

(2π)4
e−iq(x+−x−)−i q

2
⊥T

2
+i(q20−q23)

tanh

(︁
ET
2

)︁
E

(D.18)

and let the derivatives act

i/∂+ − γ3Et+ +m→ /q +
E

2

(︁
(z+ − z−)γ0 − (t+ − t−)γ3

)︁
+m . (D.19)

Finally, since the extra E terms are precisely the saddle point values of the q0 and q3 integrals, we can

substitute

E

2
(t+ − t−)→ q0 tanh

(︁ET
2

)︁ E

2
(z+ − z−)→ −q3 tanh

(︁ET
2

)︁
(D.20)

so finally

S(x+, x−) =
1

2
e−i

E
2
(z+−z−)(t++t−)

∫︂
d4q

(2π)4

∫︂ ∞
0

dT e−iq(x+−x−)−im
2T
2
−i q

2
⊥T

2
+i(q20−q23)

tanh

(︁
ET
2

)︁
E(︂

/q +m− (q0γ
3 + q3γ

0) tanh
[︂ET

2

]︂)︂(︂
1 + γ0γ3 tanh

[︂ET
2

]︂)︂
(D.21)

which is the well-known result [17].

8

D.2 From asymptotic states to pair production

Analogously to the plane wave case, we derive the exact solutions from the asymptotic ones by

amputating the propagator. From now on, we set m = 1 so that all energy scales are relative to

the electron mass. For constant fields, the particles are never free asymptotically, so we cannot use

=
1 There is no square root because the eigenvalues are doubly degenerate.
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plane waves as outgoing states in the LSZ as we do for all the other cases. We use instead the WKB

approximations [49, 125, 126]

Us(t,p) = (γ0π0 + γiπi + 1)G+(p, t)Rs

Vs(t,−p) = (−γ0π0 + γiπi + 1)G−(t,p)Rs
(D.22)

where π⊥ = p⊥, m2
⊥ = 1 + π2⊥ , π3 = p3 −A3(t), π0 =

√︁
m2

⊥ + π23 , and

R1 = (0, cosφ, sinφ, 0) , R2 = (0,− sinφ, cosφ, 0)

G
±
(t,q) =

1√︁
2π0(π0 ± π3)

e∓i
∫︁ t π0 (D.23)

with Rs chosen to satisfy γ0γ3Rs = Rs. The LSZ for Schwinger pair production in a constant electric

field will then look like

lim
t±→∞

∫︂
d3x+ d

3x− e
ip·x++ip′·x−Ū s(p, t+) γ0 ⟨0|TΨ(x+)Ψ(x−)|0⟩ γ0 Vs′(p′, t−) . (D.24)

8

We consider one amputation first. We want to calculate

lim
t+→∞

∫︂
d3x+ e

ip·x+ ū∞s′ (p, t+) γ
0G(x+, x−) (D.25)

where we write G(x+, x−) as

G(x+, x−) = KE(x+, x−)(−i
←−
/∂ x− − /A(x−) + 1) (D.26)

and

KE(x+, x−) =

∫︂ ∞
0

dT
1

2

ET
2

sinh
(︂
ET
2

)︂
i(2πT )2

(︂
cosh

[︂ET
2

]︂
+ γ0γ3 sinh

[︂ET
2

]︂)︂

× e−i
T
2
−iE

2
(z+−z−)(t++t−)+

i(x⊥+−x⊥−)2

2T
−iE

4
coth(ET

2 )
(︁
(t+−t−)2−(z+−z−)2

)︁
.

(D.27)

For convenience, we can omit the operator (−i
←−
/∂ x− − /A(x−) + 1), since it can simply act at the

end

(−i
←−
/∂ x− − /A(x−) + 1) =⇒ (−i

←−
∂ t− + πiγ

i + 1) . (D.28)

We derive the asymptotic expansion of the WKB state

ū∞s (p, t+) = lim
t+→∞

Ū s(p, t+) (D.29)

from the exponent ∫︂ t+

dt̄
√︂
m2

⊥ + (Et̄− p3) (D.30)
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defining a new variable v̄ := (Et̄− p3)/m⊥ (and v = (Et+ − p3)/m⊥) so that√︁
1 + v̄2 ∼ v̄ + 1

2v
(D.31)

gives us, defining η = m2
⊥/E,

η

∫︂ v

dv̄
√︁

1 + v̄2 ∼ η

2

(︁
v2 + ln(v)

)︁
. (D.32)

We also simplify the prefactor and find

ū∞s (p, t+)γ0 =
1

m⊥
e

iη
2 (v

2+ln(v)) R̄s (γ
⊥π⊥ + 1)γ0 . (D.33)

We can immediately perform the d3x+ integrals as well and redefine T → T/E, obtaining

eip·x− lim
v→∞

1

m⊥
R̄s(γ

⊥π⊥ + 1)γ0
√︃

1

4πE

(︂
1 + γ0γ3 tanh

[︂T
2

]︂)︂
×
∫︂ ∞
0

dT

2
√︁
coth(T/2)

e
iη
2

(︁
v2+log(v)−T− 1

2
coth(T/2)(v′−v)2− 1

2
tanh(T/2)(v′+v)2

)︁
.

(D.34)

For the T integral, we have to figure out a way to take the limit explicitly, but once we find it, the T

integral actually becomes doable. As it is now, it is very hard.

Notice that when T →∞ the v2 terms simply cancel, and the infinite terms at the exponent are only

ln(v) − T . If we perform the substitution T → T + ln(v) and take the v → ∞ limit, we cancel the

logarithmic divergence and obtain the desired T →∞ limit. We can expand the hyperbolic functions

at the exponent as follows

coth
(︂x
2

)︂
≃ (1 + e−x)(1 + e−x + e−2x) ≃ 1 + 2e−x + 2e−2x

tanh
(︂x
2

)︂
≃ (1− e−x)(1− e−x + e−2x) ≃ 1− 2e−x + 2e−2x

(D.35)

and we are almost ready to take the limit. It is convenient to actually change the variable as T =

ln(v/τ) so that ∫︂ ∞
0

dT =

∫︂ v

0

dτ

τ
→
∫︂ ∞
0

dτ

τ
(D.36)

obtaining a finite exponent when v →∞

iη

2

(︁
−v′2 − 2τ2 + 4τv′

)︁
+

(︃
iη

2
− 1

)︃
ln(τ) . (D.37)

We already know that the result will contain parabolic cylinder functions, so we just have to find the

integral representation that is most convenient. Changing the variables to

r :=
√︁
2ηei

π
4 τ z :=

√︁
2ηei

π
4 v′ (D.38)

our exponent looks like (removing the phases)

−r
2

2
+ zr − z2

4
+
(︂ iη
2
− 1
)︂
ln(r) +

πη

8
+

1

2
ln(2η) (D.39)
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and all together

eip·x− R̄s(γ
⊥π⊥ + 1)γ0

√︃
1

4πE
e

πη
8

∫︂ ∞
0

dr e−
r2

2
+zr− z2

4 r
iη
2
−1 . (D.40)

This is precisely the integral form [127]

Dν(z) =
e−

z2

4

Γ(−ν)

∫︂ ∞
0

dx e−zx−
x2

2 x−ν−1 (D.41)

so we are almost done. Acting with

eip·x−
(︂
− i
←−
/∂ x− − /A(x−) + 1

)︂
= eip·x−

(︂
− i
←
∂ 0γ

0 + γiπ′i + 1
)︂

(D.42)

we have

eip·x−
Γ
(︁ iη
2

)︁
2m⊥

√
πE

R̄s(γ
⊥p⊥ + 1)γ0 e

πη
8 D− iη

2

(︁
−
√︁
2η v′ ei

π
4
)︁(︁
− i
←−
∂0γ

0 + πiγ
i + 1

)︁
. (D.43)

and using

D′ν(z) = −
1

2
zDν(z) + νDν−1(z) (D.44)

we obtain

D− iη
2

(︁
−
√︁
2η v′ ei

π
4
)︁(︁
− i
←−
∂0γ

0 + πiγ
i + 1

)︁
=

D− iη
2

(︁
−
√︁

2η v′ ei
π
4
)︁
(p⊥γ

⊥ + 1) +
√
2Eei

π
4
η

2
D− iη

2
−1
(︁
−
√︁
2η v′ ei

π
4
)︁
γ0 (D.45)

therefore, up to a phase, the full result is

eip·x−

out⟨0|0⟩in
1√
ηE

e−
πη
8

(︂
m⊥B̄0D− iη

2

(︁
−
√︁
2η v′ ei

π
4
)︁
+
√
2E ei

π
4 B̄1

η

2
D− iη

2
−1
(︁
−
√︁

2η v′ ei
π
4
)︁)︂

(D.46)

where

B0 := γ0Rs B1 :=
1

m⊥
(1 + γ⊥p⊥)Rs

out⟨0|0⟩in = −2i
√︃
π

η

e−
πη
4

Γ
(︁ iη
2

)︁e− iη
4

(︁
ln(2/η)+1

)︁
+iπ

4 (D.47)

in agreement with [124].

8

At this point, most of the work to compute the the pair production amplitude is done. By definition

we have

lim
t±→∞

∫︂
d3x+ d

3x− e
ip·x++ip′·x−Ū s(t+,p) γ0G(x+, x−) γ

0 Vs′(t−,p′) (D.48)

but we have already carefully shown that

lim
t+→∞

∫︂
d3x+ e

ip·x+Ū s(p, t+) γ0G(x+, x−) = (D.46) (D.49)
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so the integral over d3x− gives us a delta function∫︂
d3x− → (2π)3 δ(p + p′) (D.50)

and the asymptotic v∞ state can be expanded as follows letting v′ = m⊥(Et+ + p′3) = m⊥(Et− −

p3)

1√︁
2π′0(π

′
0 − π′3)

→ 1

2m⊥v′
γ0(−γ0π0 + γ3π3)Rs′ → −2m⊥v

′Rs′ ei
∫︁ t− π′

0 → e
iη
2
(v′2+ln(v′)) .

(D.51)

Finally, the parabolic cylinder functions have an asymptotic expansion

Dν(z) ∼ e−
z2

4 zν (D.52)

where −5π
4 ≤ arg(z) ≤ 3π

4 . In our case we have a phase −e
iπ
4 = e−i

3π
4 , which matters because it gives

a real contribution at the exponent (︁
e−i

3π
4
)︁− iη

2 = e−
3πη
8 . (D.53)

The leading order v′ →∞ of (D.46) is the first term, so up to a phase we have

e−
πη
8 D− iη

2

(︁
−
√︁

2η v′ ei
π
4
)︁
∼ e−

πη
2 e−

iη
2
(v′2+ln(v′)) (D.54)

which precisely cancels the infinite part from v∞; this gives us an amplitude

1

out⟨0|0⟩in
δss′ (2π)

3δ(p′ + p) e−
πη
2 . (D.55)

The presence of the normalization factor out⟨0|0⟩in tells us that the worldline propagator S(x+, x−) is

not the same as out⟨0|TΨ(x+)Ψ̄(x−)|0⟩in but rather [52, 124]

S(x+, x−) =
out⟨0|TΨ(x+)Ψ̄(x−)|0⟩in

out⟨0|0⟩in
. (D.56)

Since we want to use out⟨0|TΨ(x+)Ψ̄(x−)|0⟩in rather than S itself in the LSZ, we get rid of the factor

out⟨0|0⟩in and integrate over the momenta∑︂
ss′

∫︂
d3p d3p′

(2π)6
|out⟨0|0⟩in|2 |(D.55)|2 = EV4

∑︂
ss′

∫︂
dp1dp2
(2π)3

e−πη = V4
E2

4π3
e−

π
E (D.57)

where we used
∫︁
dp3 = EV0. Note that this gives the total probability to produce just one pair, so it

is different from the vacuum decay rate, which includes the probability to produce any number of

pairs [17].

Of course, one can show that amputating the propagator with the positron asymptotic state gives the

same result. The exact solution produced in that case is given by

eip
′·x+

out⟨0|0⟩in
1√
2E

e−
πη
8
+iπ

4

(︂
m⊥B0D− iη

2
−1
(︁
−
√︁
2η v ei

π
4
)︁
−
√
2E e−i

π
4 B1D− iη

2

(︁
−
√︁
2η v ei

π
4
)︁)︂

(D.58)
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where

B0 = γ0Rs′ B1 =
1

m⊥
(m− γ⊥p⊥)Rs′ . (D.59)

8

D.3 Breit-Wheeler pair production

We consider a photon with momentum lµ which decays into an electron with momentum p and a

positron with momentum p′ in a constant electric field E along the z axis. The gauge is always

A3(t) = Et. Explicitly, we take the photon momentum to be lµ = Ω(1, sin θ, 0, cos θ) and consider two

polarization vectors ε(∥) = (0,− sin θ, 0, cos θ) and ε(⊥) = (0, 0, 1, 0). Since the maximum probability is

when the photon is perpendicular to the electric field, we consider the case θ = π
2 or lµ = Ω(1, 1, 0, 0).

From the amplitude, we obtain the total probability by integrating the modulus squared over outgo-

ing momenta and summed over spins. One momentum integral is solved by the delta function, and

we can solve the other with the saddle point method. One can show [104, 105] that the biggest con-

tribution is when p′ = p = l/2. In order to make things more precise, especially with the expectation

of generalizing to spacetime fields, we consider a photon wave packet in the incoming state

|l, ε⟩in →
∫︂

d3k

(2π)32k0
f(k)ϵ(k)a†(k)|0⟩in (D.60)

where f(k) is a probability distribution peaked around k = l and normalized as∫︂
d3k

(2π)32k0
|f(k)|2 = 1 . (D.61)

Choosing a Gaussian wave packet

f(k) ∼ exp

⎧⎨⎩
3∑︂
j=1

−(kj − lj)2

2λ2j
+ ibjkj

⎫⎬⎭ (D.62)

we get a normalized distribution

f(k) =

√︄
(2π)32k0

π3/2λ1λ2λ3
exp

⎧⎨⎩
3∑︂
j=1

−(kj − lj)2

2λ2j
+ ibjkj

⎫⎬⎭ . (D.63)

In this chapter we choose the wave packet to be so sharply peaked that we can effectively neglect

all wave packet effects. However, as we show in chapter 4, a large wave packet leads to interesting

consequences.

Since the field is space-independent, from the spatial integral over φi = 1
2(x

i
+ + xi−) we obtain a delta

function ∫︂
d3φei(pj+p

′
j−kj)φj

= (2π)3 δ(p + p′ − k) (D.64)
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which we can use to perform the k integrals. Then, we assume that the λj are so small that

∫︂
d3p′

(2π)3
exp

⎧⎨⎩
3∑︂
j=1

−(kj − lj)2

λ2j

⎫⎬⎭F (p′) ≃ λ1λ2λ3

8π3/2
F (l− p) (D.65)

so that at the prefactor (D.65) cancels with the factor of (2π)3 and the normalization of f(k) to give in

the end

P =
e2

2Ω

∑︂
spin

∫︂
d3p

(2π)3
|M |2 (D.66)

where Ω := l0 = k0 and M is the amplitude stripped off of the delta function Defining the amplitude

M as

(2π)3δ(p′ + p− l)M := out⟨p, s; p′, s′|l, ε⟩in . (D.67)

Eq. (D.66) is our starting point.

8

In principle we could find the stimulated pair production amplitude using the LSZ and the exact

states

⟨0|0⟩2 lim
t±→∞

∫︂
d3x+d

3x−d
4x eipix

i
++ip′ix

i
−−ilx Ū s(t+,p)G(x+, x) /εG(x, x−)Vs′(t−,p′) (D.68)

simply amputating both propagators to obtain∫︂
d4x e−ilx +ψ̄p(x) /ε −ψ

′
p(x) (D.69)

where +ψp′(x) and −ψp(x) are the exact solutions which represent a single electron and a single

positron at ∞, shown in the previous section. The resulting spatial integrals give a delta function,

and the time integral can be computed using the saddle point method when E ≪ 1. Since we use the

saddle point method, it actually makes no difference if we use the WKB approximations instead of

the exact solutions with parabolic cylinder functions.

Our goal, however, is to use the worldline representation with the photon introduced as a plane wave

A→ A+ ε e−ilx

Γ(x+, x−; l, ε) = (i /Dx+ + 1)
1

2

∫︂ ∞
0

dT

∫︂ x+

x−

Dq e−i
∫︁ 1
0 dτ

q̇2

2T
+T

2
+A·q̇+ε·q̇ e−ilq Pe

E
2
Tγ0γ3−iT/ε/l

∫︁
e−ilq

⃓⃓⃓
linε
.

(D.70)

where the ε term from /Dx+ gives zero as for plane waves.
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D.3.1 Exponent

We want to calculate

lim
t±→∞

∫︂
d3x+ d

3x− e
ipix++ip′ix−Ū s(t+,p) γ0 Γ(x+, x−; l, ε) γ

0 Vs′(t−,p′) . (D.71)

We begin with the path integral: the instantons now satisfy q̈µ = TFµν q̇ν+TJ
µ with Jµ = lµ δ(τ−σ),

or in components

q̈0 = ET q̇3 + T l0 δ(τ − σ)

q̈3 = ET q̇0 + T l3 δ(τ − σ) (D.72)

q̈⊥ = T l⊥ δ(τ − σ) .

The path integral is Gaussian, so evaluating it at the instantons is exact.

We turn to the spatial integrals: changing the variables to φi = 1
2(x

i
+ + xi−) and θi = (xi+ − xi−) we

immediately integrate over d3φ to obtain a delta function (2π)3δ3(p + p′ − l). Since the d3θ integral

is Gaussian, we can solve it exactly by evaluating the exponent at the saddle point. We redefine the

limit t→ t− p3/E so that p3 drops from the expression.

As to the last two T and σ, we have to use the saddle point method. As we show in Appendix A,

we can find the saddle points for T and σ from the initial exponent (i.e. not evaluated on the other

saddle points)

T 2 = q̇2

l · q̇(σ) = 0 (D.73)

but they are implicit equations; we can obtain a more useful asymptotic expression as follows: using

T 2 = q̇2, and since t goes to infinity, we must have

ṫ(τ) = Tθτσ

√︂
m2

⊥ + (p3 − Et(τ))2 − Tθστ
√︂
m′⊥

2 + (p3 − Et(τ))2 . (D.74)

When τ = σ there is a turning point: comparing the equation above with ṫ(σ + ε+)− ṫ(σ − ε+) = TΩ

we see that

Ω =

√︂
m2

⊥ + (p3 − Et̃)2 +
√︂
m′⊥

2 + (p3 − Et̃)2 (D.75)

where we have defined t̃ = t(σ). At the momentum saddle point and shifting t so that p3 disappears

we find a much simpler condition

Ω

2
=

√︃
1 +

Ω2

4
+ (Et̃)2 → t̃ =

i

E
. (D.76)

From (D.74) we find (changing the variable to get rid of p3)

T = T

∫︂ σ

0
+T

∫︂ 1

σ
=

∫︂ t

t̃
dt̄

1√︂
m2

⊥ + E2t̄2
+

1√︂
m′⊥

2 + E2t̄2

=
arcsinh

(︂
Et
m⊥

)︂
− i arcsin

(︂
1
m⊥

)︂
E

+
arcsinh

(︂
Et
m′

⊥

)︂
− i arcsin

(︂
1
m′

⊥

)︂
E

. (D.77)
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In particular this tells us that T goes to infinity parallel to the real axis but slightly shifted. This

imaginary contribution to T is important because at the end we take the modulus squared so the real

phases get canceled.

Notice that, for generic momenta, even if we take the limit along t = t+ = t−, we do not have σ = 1
2 ,

since from

Tσ =
arcsinh

(︂
Et
m⊥

)︂
− i arcsin

(︂
m
m⊥

)︂
E

T (1− σ) =
arcsinh

(︂
Et
m′

⊥

)︂
− i arcsin

(︂
m
m′

⊥

)︂
E

(D.78)

we have Tσ = T (1−σ), hence σ = 1
2 , if and only if m⊥ = m′⊥. This implies that, when evaluating the

exponent at the saddle points for T and σ but before the momentum integrals, we cannot simply set

σ = 1
2 .

Writing the exponent explicitly as a function of T and σ gives a complicated expression, but we only

need to consider the asymptotic limit T → ∞. Furthermore, when we integrate over perpendicular

momenta, we find a saddle point at p⊥ = p′⊥ = l⊥
2 ; at the probability level we have the exponent

2

E

(︄
Ω

2
−
(︂
1 +

Ω2

4

)︂
arctan

(︂ 2
Ω

)︂)︄
(D.79)

which is the result obtained in [70].

D.3.2 Prefactor

As for the path integral, since the current is zero almost everywhere2, we solve the Lorentz force

equations in the regions [0, σ) and (σ, 1] separately and match the solutions at τ = σ; we assume for

simplicity l3 = 0. Since q̈µ contains a delta function, q̇µ makes a jump q̇µ(τ + ε+)− q̇µ(τ − ε+) = T lµ

and qµ is continuous. The path integral normalization is unchanged with respect to the vacuum case

since only the instantons change but the kinetic operator does not depend on them∫︂ x+

x−

Dq → 1

(2πT )2
ET/2

sinh (ET/2)
. (D.80)

The spatial variables give∫︂
d3ϕd3θ −→ (2π)3δ(p′ + p− l) 2πT

√︄
4π tanh

(︁
ET
2

)︁
E

(D.81)

whereas the Hessian matrix for T and σ gives a very complicated expression for general time and

momenta, but in the asymptotic limit and on the momentum saddle point∫︂
dTdσ −→ 2

√
2π

ET
(︁
i+ ω/2

)︁√
ω
. (D.82)

=
2 In a measure-theoretic sense, the single point τ = σ has measure zero in the open interval [0, 1].
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At the prefactor the term (i /D+ + 1) can be simplified by integrating the spatial derivatives by parts

and letting ∂t+ act on the exponent, giving us

i∂t+ e
−i

∫︁
(... ) = E

∫︂
ż(τ) τ =

ṫ(1)

T
= p′0 (D.83)

where after taking the derivative we set t = t+ and integrate by parts the τ integral.

As to the spin factor, we have a scalar addendum

−iε · q̇ e
ET
2
γ0γ3 (D.84)

and a spinor one

Pe
ET
2
γ0γ3− iT

2
/l/ε = − iT

2
e

ET
2
γ0γ3(1−σ) /l/ε e

ET
2
γ0γ3σ . (D.85)

For the scalar one we simply have −iε · q̇(σ) = Tε3 and

1

m⊥
R̄i(p⊥γ

⊥ + 1)γ0(i /Dy + 1)(...)e
ET
2
γ0γ3Rj →

1

m⊥
R†iRjm

2
⊥ e

ET
2 (D.86)

whereas for the spinor part we have

− iT
2

1

m⊥
R̄i(p⊥γ

⊥ + 1)γ0(i /Dy + 1)(...)e
ET
2
γ0γ3(1−σ) /l/ε e

ET
2
γ0γ3σRj →

− iT e
ET
2

2

1

m⊥
R†i

(︂
γ0(p⊥γ

⊥ + 1)
(︂
i+

ω

2

)︂
+m2

⊥

)︂
/l/ε Rj (D.87)

where in the last line we have inverted the instanton relation (D.77)

2Et =
(︂
i+

ω

2

)︂
e

ET
2 . (D.88)

At this point one can see that all functions of T cancel in prefactor, so that the limit is finite.

Defining

Mij :=
1

m⊥
R†i

[︃
− i

2

(︂
γ0(p⊥γ

⊥ + 1)
(︂
i+

ω

2

)︂
+m2

⊥

)︂
/l/ε +m2

⊥

]︃
Rj (D.89)

we have the following sum over spins ∑︂
i,j

|Mij |2 = 2m2
⊥ . (D.90)

Finally, integrating over momenta yields a contribution∫︂
dp⊥ →

πE

2

√︃
arctan

[︂
1
p

]︂ (︂
arctan

[︂
1
p

]︂
− p

1+p2

)︂ (D.91)

for the transverse momenta, while since the integrand does not depend on p3 we get a volume fac-

tor ∫︂
dp3 → EV0 . (D.92)
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Putting everything together

P (∥) =
αEV0
4pω

e
2m2

E

(︁
p−(1+p2) arctan

[︁
1
p

]︁)︁
√︃

arctan
[︂
1
p

]︂(︂
arctan

[︂
1
p

]︂
− p

1+p2

)︂
P (⊥) =

2p2

1 + p2
P (∥).

(D.93)

where p = Ω
2 . The results agree with [70].
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[5] J. Z. Kamiński, K. Krajewska and F. Ehlotzky, “Fundamental processes of quantum electrody-

namics in laser fields of relativistic power,” Rept. Prog. Phys. 72, no.4, 046401 (2009)

[6] A. Di Piazza, C. Müller, K. Z. Hatsagortsyan and C. H. Keitel, “Extremely high-intensity laser

interactions with fundamental quantum systems,” Rev. Mod. Phys. 84, 1177 (2012)

[7] N. B. Narozhny and A. M. Fedotov, “Extreme light physics,” Contemp. Phys. 56, no.3, 249-268

(2015)

[8] A. Fedotov, A. Ilderton, F. Karbstein, B. King, D. Seipt, H. Taya and G. Torgrimsson, “Advances

in QED with intense background fields,” Phys. Rept. 1010, 1-138 (2023)

[9] W. H. Furry, “On Bound States and Scattering in Positron Theory,” Phys. Rev. 81, 115-124 (1951)
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