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Abstract: We have used publicly available kinematic data for the S2 star to constrain the parameter
space of MOdified Gravity. Integrating geodesics and using a Markov Chain Monte Carlo algorithm,
we have provided the first constraint on the scales of the Galactic Centre for the parameter α of the
theory, which represents the fractional increment of the gravitational constant G with respect to its
Newtonian value. Namely, α . 0.662 at 99.7% confidence level (where α = 0 reduces the theory to
General Relativity).
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1. Introduction

Scalar-Tensor-Vector Gravity (STVG), also referred to in the literature as MOdified
Gravity (MOG), is a theory of gravity firstly proposed in [1] as an alternative to Einstein’s
theory of General Relativity (GR). It introduces extra fields in the description of the gravita-
tional interaction, allowing for correct predictions on galactic and extragalactic scales [2–6],
without resorting to dark matter [7]. The gravitational action in MOG presents additional
terms along the classical Hilbert–Einstein action, depending on the metric tensor gαβ of
spacetime. More specifically, a massive vector field ϕα is introduced and its mass, µ, is
treated as a scalar field. Furthermore, Newton’s gravitational constant GN is also elevated
to a scalar field G.

The motion of test particles in MOG is affected by the presence of the vector field ϕα

which acts as a fifth force, whose repulsive character counteracts the increased attraction due
to the scalar field nature of G. The fractional increment of G, with respect to its Newtonian
value, GN , is given by a new parameter of the theory, α = (G − GN)/GN . A distinctive
feature in the motion of test massive bodies in MOG is that Keplerian orbits in a central
potential are characterized by an increased value of the rate of orbital precession [8,9]. This
is given by:

∆ωMOG = ∆ωGR

(
1 +

5
6

α

)
, (1)

where ∆ωGR is the usual expression of the periastron advance in GR,

∆ωGR =
6πGN M

ac2(1− e2)
, (2)

related to semi-major axis, a, and eccentricity, e, of the orbiting body.
Here, we will summarize the extended work carried out in [8], where we used publicly

available data for the S2 star from [10], along with the measurement of its orbital precession
from [11] to constrain the parameter space of MOG.
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2. MOdified Gravity

In MOG, the gravitational action is written as [1]:

S = SHE + Sm + SV + SS. (3)

The first term, SHE, is the classical Hilbert–Einstein action of GR, while Sm is related
to the ordinary matter energy-momentum tensor,

SHE =
1

16π

∫
d4x
√
−g

1
G

R, Tm
αβ = − 2√−g

δSm

δgαβ
. (4)

where gαβ is the metric tensor of spacetime, g its determinant and R the Ricci scalar. The
two extra terms, SV and SS, on the other hand, are related to the vector and scalar field
respectively, and read:

SV =−
∫

d4x
√
−g
(

1
4

BαβBαβ −
1
2

µ2 ϕα ϕα + V(ϕ)

)
, (5)

SS =
∫

d4x
√
−g

1
G3

(
1
2

gαβ∇αG∇βG−V(G)

)
+
∫

d4x
1

µ2G

(
1
2

gαβ∇αµ∇βµ−V(µ)

)
. (6)

With ∇α we have indicated the covariant derivative related to the metric tensor gαβ, and
with Bαβ the Faraday tensor associated to the massive vector field ϕα: Bαβ = ∇α ϕβ−∇β ϕα .
V(ϕ), V(G) and V(µ), on the other hand, represent scalar potentials describing the self-
interaction of the vector and scalar fields.

In MOG, particles with mass m move according to a modified version of the geodesic
equations [12]: (

d2xα

dλ2 + Γα
βρ

dxβ

dλ

dxρ

dλ

)
=

q
m

Bα
β

dxβ

dλ
. (7)

The term on the right-hand side represents a fifth force [1,3,12], due to the coupling
between massive particles and the vector field ϕα. The coupling constant, q, is postulated to
be positive (q > 0) so that this force is repulsive [1] and physically stable self-gravitating sys-
tems can exist [3]. Additionally, q is taken to be proportional to m, q = κm with κ a positive
proportionality constant [12], ensuring the validity of Einstein’s Equivalence Principle.

The field equations associated to the MOG action in Equation (3) can be solved exactly
assuming that:

1. the metric tensor is spherically symmetric;
2. the scalar field G can be treated as a constant on the scales of compact objects,

∂νG = 0 [13,14]. This means that the aforementioned parameter α can be regarded as a
positive dimensionless constant, whose value depends on the mass of the gravitational
source [1]:

G = GN(1 + α) = const. (8)

3. The proportionality constant κ defining the fifth-force charge of massive particles is
defined by:

κ =
√

αGN . (9)

4. The mass of the vector field, µ, can be neglected on the scales of compact objects, as
its effects are only evident on kpc scales [3,4,15].

Under these assumptions (and by setting the speed of light in vacuum to c = 1), one
obtains [13] the following line element:

ds2 =
∆
r2 dt2 − r2

∆
dr2 − r2dΩ2 . (10)
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This Schwarzschild-like metric is the most general spherically symmetric static solution
in MOG, and it provides an exact description of the gravitational field around a pointlike
nonrotating source of mass M (and hence a fifth-force charge Q =

√
αGN M). It differs from

the classical one in GR (to which it reduces when α = 0) by a different definition of the
∆ function:

∆ = r2 − 2GN Mr + αGN M
(
(1 + α)GN M− 2r

)
. (11)

The solid angle element, on the other hand, has the usual expression dΩ2 = dθ2 +
sin2 θdφ2. The vector field ϕα associated to the metric tensor in Equation (10) is given
by [16]

ϕα =

(
−
√

αGN M
r

, 0, 0, 0
)

, (12)

generating a repulsive force directed along the radial direction. As a consequence, the
increased value of the gravitational constant G increases the attractive effect of gravity
on test particles, while the repulsive effect of the vector field counteracts this effect. As
shown in [9], particles around a MOG BH experience an increased orbital precession, whose
first-order expression explicitly depends on the parameter α and is given in Equation (1).

3. The Orbit of S2 in MOG

Upon numerically integrating the geodesic equations in Equation (7), we obtain fully
relativistic sky-projected orbits for the S2 star in MOG starting from its osculating Keplerian
elements at the initial time 1. These parameters are the semimajor axis of the orbit, a, the
eccentricity e, the inclination i, the angle of the line of nodes Ω, the angle from the ascending
node to pericentre ω, the orbital period T and the time of the pericentre passage tp. These
uniquely assign the initial conditions of the star at a given time, that we set to be the time
of passage at apocentre, given by ta = tp − T/2. Along with these parameters, one needs
to fix the mass of the gravitational source, M, its distance from Earth, R, and a possible
offset and drift (described by five additional parameters x0, y0, vx,0, vy,0 and vz,0) of this
object in the astrometric reference frame of the observer. From the integrated geodesic,
the astrometric positions can be obtained via a geometric projection of the spacetime
coordinates, through the Thiele-Innes elements [19], and modulating the observation times
for the classical Rømer delay. The kinematic line-of-sight velocity of the star is converted
into the spectroscopic observable, i.e., its redshift. In doing so we take into account both
the special relativistic longitudinal and transverse Doppler effect and the gravitational
time dilation, due to the combination of high velocity and high proximity at pericentre.
Other effects, such as the gravitational lensing or the Shapiro time delay provide negligible
contributions [17,18], and we hence do not take them into account. In Figure 1, we report
how much the spectroscopic and the two astrometric observables deviate around pericentre
from a Newtonian orbit of the S2 star, for different values of the parameter α. As can be
seen, measurements performed at and after pericentre of both the astrometric position of
the star and its radial velocity carry a signature of the gravitational field produced in MOG.
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Figure 1. Numerically integrated sky-projected geodesic trajectories for the S2 star in pre- and post-
pericentre (dashed vertical line) phase, for different values of the parameter α. In particular, we report
the deviation from the Newtonian case (dashed horizontal black line) of the GR orbit (α = 0, red line)
and for increasingly higher values of α (in different shades of blue) on the right ascension direction
(left panel), on the declination direction (central panel) and for the radial velocity (right panel).

4. Data and Methodology

S2 is a B-type star in the nuclear star cluster of SgrA*, a compact radio source in the
Galactic Centre (GC) of our Galaxy, identified with a supermassive black hole (SMBH) with
mass M ∼ 4× 106M�. Throughout its 16-year orbit , both special and general relativistic
effects have been detected [11,20,21] confirming predictions from GR on one hand, and
opening a new way to test gravity [8,17,18,22] on the other.

We exploit publicly available kinematic data for the S2 star to constrain the 15-
dimensional parameter space of our orbital model in MOG, given by (M, R, T, tp, a,
e, i, Ω, ω, x0, y0, vx,0, vy,0, vz,0, α). More specifically, we use the astrometric positions
and radial velocities of S2 presented in [10] and the measurement of the relativistic orbital
precession performed in 2020 by the Gravity Collaboration [11], through precise astrometric
observations with the GRAVITY interferometer at VLT (which, however, are not publicly
available and we can only rely on the precession measurement itself). In particular, they
measured the parameter fSP in

∆ω = ∆ωGR fSP, (13)

where ∆ωGR is given in Equation (13), obtaining fsp = 1.10± 0.19, thus favoring GR against
Newtonian gravity at >5σ.

In order to fit our orbital model to such data we employ the Markov Chain Monte
Carlo (MCMC) sampler in emcee [23], and we evaluate the integrated autocorrelation time
of the chains to check the convergence of the algorithm. In particular, we perform two
separate analyses:

A : We only use astrometric positions and radial velocities up to mid-2016 in [10]. Our
dataset, thus, contains no information at all about the 2018 pericentre passage. In
this case we use the following log likelihood:

logL = logN (R.A., σR.A.) + logN (Dec, σDec) + logN (RV, σRV) (14)
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by which we assume that all data points are uncorrelated with each other and that
they are normally distributed within their experimental uncertainty, namely:

logN (x, σ) = ∑
i

log

[
1

σi
√

2π
exp

(
(xi − µi)

2

σ2
i

)]
, (15)

where xi is the i-th experimental data point, σi its uncertainty and µi the corre-
sponding prediction from our model.

B : We use the same dataset used in case A , but adding as a single measurement the
rate of orbital precession obtained in [11]. Since the latter measurement was done
using the same astrometric dataset that we use, plus data recorded at pericentre,
we need to multiply all our uncertainties by

√
2 to avoid double counting data

points. This yields

logL = logN (R.A.,
√

2σR.A.) + logN (Dec,
√

2σDec) + logN (RV,
√

2σRV) + logN ( fSP,
√

2σSP). (16)

In both cases we use uniform flat priors for our parameters2 centered on their best-
fitting value by [10] and with an amplitude given by 10 times their experimental uncertainty,
and we set heuristically α ∈ [0, 2] as uniform interval for the MOG parameter.

5. Results

In Figure 2 we report the 1σ confidence intervals for the orbital parameters in our
analyses A and B , compared with the corresponding 1σ intervals from [10] (who fitted
Keplerian orbits to the data) and [11] (in which a first-order Post-Newtonian orbital model
is used). The parameters from our analyses are compatible within their errors with the
results from the previous studies. Finally, in Figure 3 we report in logarithmic scale the
normalized posterior distributions for the parameter α from the two analysis A (in blue)
and B (in red) along with their 99.7% confidence level (c.l.) upper limit. Our results
provide with the first constraint on the MOG theory at the GC, yielding:

A : α . 1.499 w/o precession (17)

B : α . 0.662 w/ precession (18)

While both analyses are compatible with GR, the additional information carried by
the single orbital precession data point at pericentre results in a more peaked distribution
for α in case B , whose upper limit decrease by 55.6% with respect to analysis A .
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A
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Figure 2. The best fitting values and 1σ confidence interval for the orbital parameters of the S2 star in
our analyses A (blue bars) and B (red bars), compared with the best-fitting values from previous
works in [11] (in which 1-PPN model is fitted to the data) and [10] (using a Keplerian model to
describe the orbit of S2).
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Figure 3. The normalized posterior probability distribution of the parameter α in logarithmic scale
for the two analysis A (in blue) and B (in red). The 99.7% c.l. level upper limit of the parameter
is reported as a dashed vertical line in the two cases. The analysis B provides a more peaked
distribution for α around 0, with the upper limit going down by 55.6% between the two analyses.

6. Conclusions

Here, we have summarized our results in [8], providing the first constraint on the
extra parameter, α, of MOG at the GC, obtained by studying the fully relativistic motion of
the S2 star around the SMBH SgrA*. In particular, we have numerically solved the geodesic
equations for a test particle around a static BH in MOG, described by the metric element in
Equation (10), particularizing the kinematic properties of the test particle for the orbital
parameters of the S2 star [10,11]. Then, we explored the 15-dimensional parameter space
of our model by means of an MCMC algorithm, which allowed us to study the posterior
distributions of the parameters, upon comparison with publicly available kinematic data
for S2 and the measurement of its rate of orbital precession. In particular, we performed
two separate analyses, in which we either excluded– A –or included– B –the information
of the pericentre advance. We demonstrated that the additional information carried by
the relativistic orbital precession is able to bring down the 99.7% c.l. upper limit on the
parameter α from α . 1.499 in analysis A to α . 0.662 in analysis B : a significant
reduction of ∼ 55.6%.
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Notes
1 We refer to [8,17] and the Supplementary Materials of [18] for a detailed description of our orbital model.
2 Except for the five reference frame parameters, x0, y0, vx,0, vy,0 and vz,0, for which we use gaussian priors from the independent

measurements by [24], and for the parameters T and tp we use large (FWHM = 10 times the experimental uncertainty) gaussian
priors centered on their best fitting values from [11].
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