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Abstract

This thesis concerns experimental work in the field of laser wakefield acceleration, with a
focus on the diagnosis and optimisation of the electron beam quality.

The density length parameter space of a 5 TW, 0.25 J laser driven wakefield accelerator
was characterised. Measurements of the electron beams and x-ray pulses were reported,
and optimal parameters for various metrics were found. Beam-driven acceleration was
identified as the mechanism that produced energies above 211MeV, and the peak x-
ray brilliance was 4.2 ± 0.8 × 1020 ph s−1 mm−2 mrad−2 0.1%BW−1. Both the electron
energy and the x-ray brilliance are significantly higher than literature values using
comparable laser powers. Separately, the parameter scans were used to measure an
extended dephasing length of the laser-accelerated beam, attributable to semi-localised
depletion of the driving laser pulse, and measure the pulse evolution rate and injection
length as a function of plasma density, which was found to be slower than would be
expected when only considering the longitudinal evolution.

An emittance diagnostic was developed using a beam mask and electron spectrometer.
This was used to measure the spectrally resolved normalised emittance of GeV beams,
produced by ionisation injection in a gas jet using a 165TW, 7.4 J laser. Average
emittance values as low as 4 µm were measured, which are the lowest emittances recorded
using a beam mask technique in the literature, at energies that are close to an order of
magnitude higher than other beam mask methods.

The effect of density ramps and plasma mirrors on electron beam divergence was measured
in the context of staged wakefield acceleration, using a 242 TW, 11 J laser. Termination
of an acceleration stage with a plasma mirror was found to increase total beam divergence
from 3.38 ± 0.07 mrad to 6.13 ± 0.13 mrad, and the effect was observed to persist at high
energies, up to 2.2GeV. Using simulations and numerical models, the presence of the
density ramp was shown to have a divergence-reducing effect with a magnitude that
matched the experiment. The 103 tesla magnetic fields generated in plasma mirrors were
investigated using simulations, and the effect of these fields on the electron beam was
quantified. Compared to normal incidence, a 45 degree angle of the plasma mirror to the
beam axis was found to reduce the integrated magnetic fields inside the mirror, with
beneficial effects on electron beam emittance.
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1 | Introduction

The particle accelerator is one of mankind’s primary tools for investigating the
structure of the universe. This has been the case since the days of Rutherford1, who,

by simply scattering particles off a gold foil, showed that the true structure of atoms was
far from what was expected at the time2. This highlighted the use of particle accelerators
as microscopes for inspecting the smallest of structures, and advances in fundamental
physics have been in lock-step with advances in accelerator technology ever since3. One
century after Rutherford’s foil experiment, the Large Hadron Collider (LHC) was used
to confirm the existence of the Higgs boson4, the final part of the Standard Model5.
Now the task remains to go beyond this model and explain many pressing phenomena6,
such as the accelerating expansion of the universe7, the mysterious rotational properties
of galaxies8, and to incorporate gravity into a unified ‘theory of everything’9. If these
explanations are to be found, it is possible they will be found using particle accelerators.

Beyond pursuing these high physics goals, particle accelerators touch our lives in more
direct ways. Proton therapy, a safer method for treating cancerous tumours than gamma
ray therapy, is becoming increasingly widespread, owing to the growing accessibility of
particle accelerators10. Further, the fast particles from accelerators are used to create the
isotopes needed for Positron-Emission-Tomography11, a technique for monitoring critical
bodily functions. Industrial applications are prolific; from shrink-wrapping and food
sterilisation12, to semiconductor production13 and material hardening14. Much of the
modern world would not be possible without particle accelerators, and their proliferation
is driving growth in many areas.
1 [1] E. Rutherford (1911) Lond. Edinb. Dublin philos. mag. j. sci.
2 [2] J. J. Thomson (1904) Lond. Edinb. Dublin philos. mag. j. sci.
3 [3] E. F. Haussecker et al. (2011) Physics in Perspective
4 [4] A. Collaboration et al. (2015) Physical Review Letters
5 [5] M. K. Gaillard et al. (1999) Reviews of Modern Physics
6 [6] A. Joyce et al. (2015) Physics Reports
7 [7] A. G. Riess et al. (1998) The Astronomical Journal
8 [8] V. Trimble (1987) Annual Review of Astronomy and Astrophysics
9 [9] R. B. Laughlin et al. (2000) Proceedings of the National Academy of Sciences

10 [10] Y. Matsumoto et al. (2021) Journal of Personalized Medicine
11 [11] O. Jacobson et al. (2015) Bioconjugate Chemistry
12 [12] A Mousavi Khaneghah et al. (2020) Food and Chemical Toxicology
13 [13] J. S. Williams (1998) Materials Science and Engineering: A
14 [14] D. J. Rej et al. (1997) Journal of Vacuum Science Technology A
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Figure 1.1: Then and now: panel a) shows the original Cockroft-Walton generator, and
panel b) shows the first synchrotron. Panel c) shows the scale of modern-day accelerators.

The LHC, the largest particle accelerator in the world, has a circumference of 27 km,
and cost over £3 billion to build. Smaller accelerators that are used for applications are
still on the metre scale and can be prohibitively expensive. To reduce the size and cost of
these machines, plasma-based accelerators have been proposed. Plasma accelerators can
increase the accelerating gradient by over a factor of 1000 when compared to conventional
technology15, which can potentially reduce the size of these machines by the same factor,
a promise that has produced a flourishing research community over the last 40 years. This
thesis is concerned with one particular class of plasma accelerators, the laser wakefield
accelerator (LWFA), which uses ultra-intense laser pulses with near atmospheric density
gas to produce relativistic electrons.

1.1 Conventional particle accelerators

The first particle accelerators were the Cockroft-Walton generators16, which successfully
split the atom for the first time, earning the namesakes the 1951 Nobel Prize in Physics.
These are essentially capacitors, where particles are injected using electrical breakdown,
and are still used today in electrical appliances that require voltage multiplication from a
low AC input17. An image of the first accelerator is shown in Fig. 1.1, which was capable
of producing an accelerating gradient of 440 kV m−1. The main disadvantage of these
15 [15] E. Esarey et al. (2009) Reviews of Modern Physics
16 [16] J. D. Cockcroft et al. (1932) Proc. R. Soc. A: Math. Phys. Eng. Sci.
17 [17] Y. Jongen “Review of compact commercial accelerator products and applications” (1997)
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accelerators was that the field was only applied to the particle once, such that once the
particle reaches the cathode, acceleration terminates. This limited the attainable energy
to the product of the acceleration distance and the field strength, ∆W = qElacc, where q

is the charge of the particle, E is the magnitude of the accelerating electric field, and lacc

is the acceleration length. In many modern accelerators, particles travel along a circular
path, allowing the same electric field to be applied to the particle repeatedly. This circular
path is achieved using dipole magnets, which apply a force to the beam perpendicularly
to its motion. This circular geometry increases the energy limit substantially but imposes
numerous technical challenges that the field of accelerator physics arose to solve. The
problem of keeping the beam focused is addressed by using multi-pole magnets, which
can be shown to maintain a small beam size over arbitrary distances18, while the problem
of the phase synchronisation was addressed by gradually ramping up the dipole magnet
strengths as the particle accelerates, which turned the cyclotron into the synchrotron19.
The LHC is a synchrotron, which utilises these solutions, among many others, to achieve
proton energies of 7 TeV20. The current limit on proton energy is set by the strength of
the magnets, such that the only route to increased energy is to increase the accelerator
radius or increase the field strength of the magnets.

Electron synchrotrons face a different, more fundamental, limitation. It is a fact
of nature that charged particles radiate energy as they accelerate, and this radiation
occurs when particles follow curved trajectories. The problem for electrons is that the
power of this radiation, P ∝ W 4/m4R2, where W is the particle energy, m is the particle
mass, and R is the instantaneous radius of curvature. Since electrons are approximately
2000 times less massive than protons, they radiate energy at 1013 times the rate! This
hard scaling has limited the maximum attainable electron energy to 100GeV, which
occurred at the Large Electron Positron collider (LEP21), built in the same tunnel as
the LHC. It is unfortunate that electron-positron energies are limited in this way, as
their collisions are much easier to analyse than hadron collisions, owing to the fact that
hadrons are composite particles while leptons are fundamental. For this reason, there is
great motivation for increasing the maximum electron energy to the multi-TeV level.

Achieving multi-TeV electron energies using a synchrotron would require a planet-sized
collider22, and due to the impracticality of constructing such a device, other solutions
need to be investigated. A linear accelerating geometry overcomes the radiation problem,
but the original limit encountered by the Cockroft-Walton generators resurfaces. The
accelerating field has been increased by using superconducting radio-frequency cavities,
which use a moving electromagnetic wave to accelerate the particle. This technology
can achieve field strengths of 100MV m−1, although in practice this is limited to the
20 - 30MV m−1 range23. The limitation on the maximum field is caused by electrical
18 [18] E. D. Courant et al. (1952) Physical Review
19 [19] E. M. McMillan (1945) Physical Review
20 [20] O. Brüning et al. (2012) Progress in Particle and Nuclear Physics
21 [21] K. Hübner (2004) Physics Reports
22
√

REarth/RLHC ∼ 40; an Earth sized LEP could achieve ∼ 4 TeV using the same technology.
23 [22] H Padamsee (2017) Superconductor Science and Technology
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breakdown, as electrons are pulled from the cavity walls by the field, causing irreparable
damage to the cavities. Since the field is limited, the desired electron energy sets the
accelerator length. The proposed International Linear Collider24 promises to achieve
a centre-of-mass energy of 1TeV using two anti-colinear accelerators, which are each
over 10 km in length. The 2021 ILC Report to Snowmass25 states that the cost of the
first stage of the project, which will be able to produce electron energies up to 125 GeV,
will be $6.2 − 6.8 billion26, while the upgrade to TeV energies is estimated to cost in
the range of $18 − 30 billion27. To reduce this size and cost, the field strength needs
to be increased, and, since the advances in conventional radiofrequency technology are
obtaining diminishing returns in this area, there is significant motivation to explore other
options.

1.2 Plasma accelerators

If electrical breakdown is limiting field strengths, then why not accelerate particles inside
an already broken-down material? This is the idea behind plasma accelerators. A plasma
is defined as a collection of positively and negatively charged particles that exhibits
collective behaviour and interact electromagnetically. The number of positive and nega-
tively charged particles is approximately equal, such that the plasma is macroscopically
neutral. However, over short distances and timescales, large charge separations can be
generated, which can support extremely strong electric fields. At a near atmospheric
density of 1 × 1024 m−3, a plasma can support electric fields on the 100GV m−1 scale,
approximately 3-4 orders of magnitude higher than conventional technology. This holds
the promise of shrinking the accelerating sections of kilometre-long facilities to table-top
sizes.

The idea of using plasmas to accelerate particles originated in the 1950s, when the
potential utility of large electric fields in plasmas was first noted28. However, it was not
until 1979 that a seminal paper by Tajima and Dawson29 proposed the use of a laser
pulse and a low-density plasma to produce a relativistically moving plasma wave, the
electric field of which could accelerate particles to high energies. In order to resonantly
excite this plasma wave, the laser pulse length would need to be on the timescale of the
plasma frequency, ωp ∝

√
ne/m, which is on the scale of 10s of femtoseconds, in a regime

known as Laser Wakefield Acceleration. On this timescale, the ions are approximately
static due to their larger mass, so it is the electron motion that dominates. The structure
of a large amplitude plasma wave in the wake of an intense laser pulse is illustrated in
Fig. 1.2.
24 [23] P. Bambade et al. (2019) arXiv e-prints
25 [24] A. Aryshev et al. (2022)
26 The estimate in the report is explicitly in 2012 dollars; the value quoted here accounts for inflation at

the time of writing.
27 [25] M. Chamizo Llatas et al. (2022) arXiv e-prints
28 [26] V. A. Veksler (1956) The Soviet Journal of Atomic Energy
29 [27] T. Tajima et al. (1979) Physical Review Letters
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Figure 1.2: An image from a laser wakefield simulation, sliced through the plane x = 0
to reveal the structure of the wake. The laser pulse, in red, travels from left to right,
driving a wave in the plasma. Electrons from the background plasma have been injected
into the wave, forming a beam in the trough behind the laser pulse.

Since single pulses with high intensities were not available in 1979, the Plasma Beat-
Wave Accelerator (PBWA) was envisioned. This utilised two laser pulses with slightly
different frequencies to produce a train of laser ‘beats’, which could be tuned to the ωp

timescale. While initially successful30, this technique was always destined to encounter
problems at large wave amplitudes. The reduced plasma frequency that accompanies the
large amplitude waves causes a de-tuning of the interaction between the beats and the
plasma, saturating the field strength. More practically, coupling between the long laser
pulse and the motion of the ions was observed to limit the attainable field strength to
0.6GV m−131. The Self-Modulated Laser Wakefield Accelerator overcame these effects
by using the plasma wave itself to modulate the laser pulse to the plasma frequency32.
Through various non-linear pulse evolution mechanisms, this pulse would then amplify
and inject background electrons into the wake33, producing electron beams with energies
up to 100MeV34. However, these electron beams had thermal spectra, making them
ill-suited for use in particle accelerators.

The attention of the scientific community was captured in 2004 when it was shown by
three groups35 that electron beams with narrow energy spread could be obtained using
100GeV m−1 accelerating gradients. This advance was made possible by the transition
to the LWFA regime, facilitated by continued advances in laser technology. The most
30 [28] C. E. Clayton et al. (1985) Physical Review Letters

[29] C. E. Clayton et al. (1993) Physical Review Letters
31 [30] F. Amiranoff et al. (1995) Physical Review Letters
32 [31] J. Krall et al. (1993) Physical Review E
33 [32] K. Nakajima et al. (1995) Physical Review Letters

[33] A. Modena et al. (1995) Nature
[34] C. I. Moore et al. (1997) Physical Review Letters
[35] W. P. Leemans et al. (2001) Physics of Plasmas
[36] V. Malka et al. (2001) Physics of Plasmas

34 [37] D. Gordon et al. (1998) Physical Review Letters
35 [38] S. P. D. Mangles et al. (2004) Nature

[39] C. G. R. Geddes et al. (2004) Nature
[40] J. Faure et al. (2004) Nature
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Figure 1.3: Summary of recent LWFA energy measurements as a function of the laser
power and publication date.

significant of these advances was the development of Chirped-Pulse Amplification36, a
technique which drastically increased the laser power that could be attained before laser
amplifiers became damaged37. Since 2004, the LWFA regime has dominated the energy
records, which have advanced continuously. Higher energies have been obtained by using
increasingly powerful lasers, as shown in Fig. 1.3. This allows large amplitude plasma
waves to be driven at lower densities and for longer, which offers favourable scaling for
the maximum energy38. Multi-GeV energies require acceleration lengths over centimetre
scales, and so methods such as relativistic self-focusing39, electrically ionised capillary
waveguides40, and laser ionised plasma channels41, have been used to combat diffraction.
Over the last decade, the maximum energies in the literature have been obtained by
using capillary waveguides, with the published record standing at 7.8 GeV42. Capillaries
allow the laser to remain focused at lower densities than self-guiding, and are currently
more stable than laser-generated waveguides. These beams are typically limited by a
process known as dephasing, which occurs when the electron beam out-runs the slightly
slower plasma wave.
36 [41] D. Strickland et al. (1985) Optics Communications

[42] P. Maine et al. (1988) IEEE Journal of Quantum Electronics
37 [43] M. D. Perry et al. (1994) Science
38 [44] W. Lu et al. (2007) Physical Review Special Topics - Accelerators and Beams
39 [45] A. B. Borisov et al. (1992) Physical Review Letters

[46] L. M. Chen et al. (2007) Physics of Plasmas
40 [47] A. Zigler et al. (1996) J. Opt. Soc. Am. B

[48] Y. Ehrlich et al. (1998) J. Opt. Soc. Am. B
41 [49] r. Durfee C. G. et al. (1993) Phys Rev Lett

[50] H. M. Milchberg et al. (1996) Physics of Plasmas
[51] R. J. Shalloo et al. (2018) Physical Review E
[52] A. Picksley et al. (2020) Physical Review E
[53] B. Miao et al. (2020) Physical Review Letters
[54] B. Miao et al. (2022) Physical Review X
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A particle beam can also be used to drive the plasma wave. This can be done with
either an electron beam43, such as at SLAC and FLASHForward, or with a proton
beam44, as is being done at the AWAKE project45, using CERN’s SPS to provide the
beam. Beam-driven acceleration does not suffer from dephasing, which is one of the
main limitations of LWFA. In addition, it benefits from both the impressive stability of
the drivers provided by conventional accelerators and the relatively simple interaction
between the beam and the plasma, when compared to the laser-plasma interaction. They
are also less computationally intensive to simulate because the laser frequency does not
need to be resolved. The main downside of these techniques is the requirement for a large
conventional accelerator to be placed nearby. Consequently, beam-driven acceleration is
well suited for use as an ‘afterburner’46, providing a final energy boost to conventionally
accelerated beams.

1.3 Near-term applications

The primary near-term application of laser wakefield accelerators is as a source of
x-rays, or betatron radiation, which is often produced naturally by LWFA electron
beams. The term derives from the oscillation frequency of electrons in a focusing
channel, which is known as the betatron frequency, ωβ = ωp/

√
2γ. First observed at

conventional facilities47, it was then soon observed in LWFA48. The spectrum of the
radiation is broad49, and similar to that emitted by a synchrotron, with significant
frequency components up to a critical energy in the range of 1 - 30 keV, for electrons in
the 0.1 - 2GeV range50. The short electron bunch duration51 means that these beams
produce ultra-short pulse x-ray flashes52, suitable for time-resolved imaging of processes
that proceed on the femtosecond timescale53. The small source size54 enables phase
contrast imaging55, capable of resolving the fine structures inside biological samples56,
and the broad energy range allows for spectroscopic probing of warm dense matter57.

Laser wakefield accelerated beams at the few-GeV level can already be used for
frontier physics experiments. The measurement of quantum electrodynamics in strong
fields has been performed58, experiments in which the electron beam collides with an
43 [56] I. Blumenfeld et al. (2007) Nature
44 [57] R. Assmann et al. (2014) Plasma Physics and Controlled Fusion
45 [58] E. Gschwendtner et al. (2016) Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect.

Assoc. Equip.
46 [59] S. Lee et al. (2002) Physical Review Special Topics - Accelerators and Beams
47 [60] S. Wang et al. (2002) Physical Review Letters
48 [61] A. Rousse et al. (2004) Physical Review Letters
49 [62] S. Fourmaux et al. (2011) New Journal of Physics
50 [63] M. Schnell et al. (2015) Journal of Plasma Physics
51 [64] M. Heigoldt et al. (2015) Physical Review Special Topics - Accelerators and Beams
52 [65] K. T. Phuoc et al. (2007) Physics of Plasmas
53 [66] J. C. Wood et al. (2018) Scientific Reports
54 [67] K. T. Phuoc et al. (2006) Physical Review Letters

[68] F. Albert et al. (2008) Physical Review E
55 [69] S. Fourmaux et al. (2011) Optics Letters
56 [70] J. Cole et al. (2018) Physical Review X
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intense laser pulse. Looking slightly further ahead59, electron beams with energies in
the 10 − 100GeV range could be used in fixed target experiments to search for dark
photons, while high energy electron-proton collisions could be used to probe sub-hadronic
structures60. These applications benefit from relatively relaxed requirements on the
transverse beam quality and hence provide ample near-term motivation to continue to
develop plasma acceleration technology.

1.4 Towards frontier plasma colliders

Despite the significant progress that has been made in the field, numerous challenges need
to be overcome if a plasma-based collider that pushes the frontier of physics forwards is
to be realised. Various ‘roadmaps’ have been laid out by committees around the world
with the aim of identifying a path from the current state of the art to a mature machine
design61. There are technical challenges, such as achieving the high repetition rates and
stability levels that are required, but also more fundamental physics roadblocks, such
as injecting and maintaining high transverse beam quality, reaching TeV energies, and
mirroring these achievements for positrons. We will discuss each of these physics issues
in turn.

1.4.1 Emittance requirements

The luminosity of a beam, L, is the ratio between the event rate and the interaction
cross section62. It is given by

L = fN2

4πσ2
r

∝ fN2

βε
, (1.1)

where f is the repetition rate, N is the number of particles in each of the colliding
bunches, σr is the Gaussian radius of the beam, β is a measure of focusing strength, and
ε is the transverse emittance. Here we have assumed the normal incidence collision of
two cylindrically symmetric beams with identical numbers of particles. This value is
maximised by focusing the beam to a small diameter, and since different electron energy
slices focus to different longitudinal positions, the desire for a small energy spread is
implicit.

The LHC can produce luminosities in the 1038m−2 s−1 range63, largely through both
the MHz frequencies that can be achieved by colliding bunch trains, and the ability to
re-use the beam64. Such high repetition rates are unattainable for linear colliders, since
58 [70] J. Cole et al. (2018) Physical Review X
59 [73] N. Mounet European Strategy for Particle Physics - Accelerator RD Roadmap (2022)
60 [74] M. Wing (2019) Philosophical Transactions of the Royal Society A: Mathematical, Physical and
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[76] E. Adli (2022) Journal of Instrumentation

62 [77] W. Herr et al. (2006) Cern Document Server
63 [78] F. Gianotti et al. (2005) The European Physical Journal C - Particles and Fields
64 [79] Luminosity? Why don’t we just say collision rate?, Quantum Diaries
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Table 1.1: Estimated parameter requirements for an electron-positron LWFA collider.

Parameter Value Unit
Beam energy 0.5 TeV
Charge 0.64 nC
Normalised emittance 100 nm
Repetition rate 15 kHz
Energy spread 0.35 %
L 1 1038m−2 s−1

each bunch can only be used once, and so frequencies are likely to be restricted to the
realm of kHz. The deficiency in repetition rate needs to be accounted for, through both
increasing the charge to nanocoulomb levels and reducing the emittance to approximately
100 nm. The projected requirements for plasma-based colliders are shown in Tab. 1.1,
taken from a conceptual design by Schroeder et al.65, and a sketch of this collider is
shown in Fig. 1.4.

As will be discussed in Sec. 2.8, the emittance is a quantity that generally only
increases, and it is, therefore, necessary to first inject low emittance beams, and then
preserve this emittance from injection to the target. Fortunately, plasma accelerators
are naturally suited to producing low emittance beams66, owing to a coupling of an
intrinsically small scale and high accelerating gradient67. Emittance values as low as
56 nm have been measured in LWFA68, exceeding the requirement given in Tab. 1.1.
A review of LWFA emittance measurements is given in Sec. 5.5.2. Achieving such low
emittances at the required charge and repetition rate will require further studies into
the various injection mechanisms available. In addition, measurement of the ultra-low
emittance from plasma-based experiments is challenging and will require the development
of the diagnostic methods that are currently available69.

1.4.2 Staged acceleration

The highest energies achieved by LWFA use densities of around 1 × 1023 m−3, requiring
centimetre acceleration lengths and petawatt class lasers70. Higher single-stage energies
necessitate driving the plasma wave over longer distances71, requiring more laser energy,
which is antithetical to also attaining high repetition rates due to heat load in the
compressor72. If driver power was not limited, achieving an energy of 1TeV in a single
stage would require an acceleration length of 240 m, for which the accelerating gradient
65 [80] C. B. Schroeder et al. (2010) Physical Review Special Topics - Accelerators and Beams
66 [81] C. M. S. Sears et al. (2010) Physical Review Special Topics - Accelerators and Beams

[82] S. Kneip et al. (2012) Physical Review Special Topics - Accelerators and Beams
67 [83] D. H. Dowell (2016) arXiv e-prints
68 [84] Z. Qin et al. (2018) Physics of Plasmas
69 [85] A. Cianchi et al. (2013) Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc.

Equip.
70 [55] A. Gonsalves et al. (2019) Physical Review Letters
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would have dropped to 3.7GV m−1. This is similar to the direction taken by AWAKE
using beam-driven acceleration and is one possible route for achieving TeV energies.

An alternative is to operate at a higher density, and simply replace the laser pulse when
it depletes, or the electron beam dephases. This is known as staging and was demonstrated
in 2016 by the group at LBNL73. This proof-of-principle dual-stage experiment captured
approximately 3% of the first stage’s charge in the second stage. This experiment was
performed at the 100MeV level and used an active plasma lens to focus the beam into
the second stage74. Staging presents three main challenges75:

1. compact laser pulse injection;
2. stability; and,
3. emittance preservation.

The first problem is currently addressed by using a plasma mirror placed near the focus
to inject the beam within millimetres of the target76. This can make addressing the
third problem more difficult, as placing a hot, high-density plasma in the beam will have
detrimental effects on the emittance77. Curved plasma channels for guiding intense laser
pulses could be an alternative to plasma mirrors78. Achieving stability is difficult owing
to the small scales of the structures involved; the tolerance level has been found to be
0.1 µm in early studies79. Effective active stabilisation is likely to be essential to achieve
the required level of stability80.

While electron beams can be injected with ultra-low emittances, maintaining this
emittance over a large number of stages is challenging. Coulomb scattering in the plasma
mirror will need to be managed in some way, such as by minimising the thickness of
the mirror by using liquid crystal films81. Further, the beam can scatter off ions in the
channel82, and emittance will also grow irreversibly due to space charge effects83, effects
that are negligible for single stages but may become significant over longer propagation
distances. Controlling emittance growth as the beam leaves and enters stages is non-
trivial, owing to the large divergence of LWFA beams coupled to finite energy spread84.
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Figure 1.4: Schematic of potential all-plasma electron-positron collider.

If the beam expands between stages, it will need to be re-focused into the next stage,
which will require some combination of beam optics and density ramps85. The coupling
region should not become too large, as this reduces the average accelerating gradient
of the accelerator. This is the benefit of active plasma lenses, which are capable of
producing focusing fields in a small footprint86, but can cause emittance growth through
scattering and field non-linearites87.

1.4.3 Positron acceleration

It is important to mention positron acceleration, which is an entire half of the plasma
collider picture that has been mostly neglected experimentally. Using a high Z material
as a converter at the end of a TeV electron accelerator would generate positrons88, but
a high conversion efficiency is unlikely to be possible if sub-micron emittance is to be
preserved89. Consequently, low emittance, high charge positron beams will likely require
their own accelerator90. The highly non-linear regime of plasma wakefield acceleration,
which produces emittance preserving linear focusing forces for electrons, is defocusing
for positrons. A positron focusing region of the wake exists behind the back of the first
bubble, and it has been proposed to use this region to accelerate positrons91, with recent
work suggesting that the focusing forces would be linear in a hot plasma92. This scheme
would have Coulomb scattering issues, and so acceleration in a hollow core in the centre
of the bubble is also being investigated93.
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1.5 Thesis outline

Below are brief descriptions of each of the remaining chapters in this thesis.

Chapter 2

Reviews the theory relevant to the work presented in this thesis. This includes laser
pulse descriptions, plasma wave excitation, acceleration dynamics, and transverse beam
effects.

Chapter 3

Provides descriptions of the experimental methods used to obtain the data and some of
the numerical methods used. Various convergence tests for particle-in-cell simulations
are performed in support of the resolution choices made for the simulation results later
in the thesis.

Chapter 4

Results from a series of high-resolution density-length parameter scans using a 5TW
laser are presented. These results are used to measure the pulse evolution length, detect
beam-driven acceleration, and estimate x-ray brilliance. The optimal parameters for
various beam metrics are presented.

Chapter 5

A mask-based emittance measurement technique is described and then used to measure
the slice emittance of GeV energy beams. The limitations of ionisation injection are then
investigated.

Chapter 6

A novel target design is used to generate electron beams with energies up to 2 GeV. The
target configuration is used to deduce the effect of plasma density ramps and plasma
mirrors on the electron beam.

Chapter 7

Conclusions from the results chapters are discussed, and suggestions for future work are
made.
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2 | Theory

Here we review the theory that will be necessary for the discussions in this thesis.
To begin, we will give a brief description of laser pulses, which are central to LWFA.

Following this, we will build from the single particle interactions with electromagnetic
fields to macroscopic plasma behaviour and the generation of wakefields. Finally, we
will transition to viewing these wakefield structures as accelerators, examining particle
injection, acceleration, and the transverse dynamics of the electron beam.

2.1 Laser pulses

The behaviour and properties of laser pulses can be deduced from Maxwell’s equations1.
In vacuum the source terms are dropped, and, taking the curl, we reproduce the wave
equation

∇2E − 1
c2

∂2E
∂t2 = 0, (2.1)

where E is the electric field and c is the wave speed. Since there are many solutions to
this equation, we are free to choose one where the electric field varies independently in
space and time, E(r, t) = R(r)T (t). This allows us to solve Eq. 2.1 by noticing that the
derivatives must also be independent, and consequently, the terms must be equal to a
constant, k,

∇2R
R = 1

c2T

∂2T

∂t2 → (∇2 + k2)R = 0, (2.2)

which is the Helmholtz equation. Similarly, we can write down a second-order differential
equation for the temporal function, (∂2

t + ω2)T = 0, where ω = ck, which has oscillatory
solutions of the form T = e±iωt.

This motivates choosing a separable trial solution of the form E = E0(r)eikzeiωt,
allowing us to focus only on the time-independent component. If the length over which
the beam envelope varies is much longer than the laser wavelength, then |∂2

z E0| ≪ |k∂zE0|,
which is the paraxial approximation. Substituting E0eikz into Eq. 2.2 and applying this
approximation gives (

∇2
⊥ + 2ik

∂

∂z

)
E0 = 0, (2.3)

1 See appendix A.2.
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where ∇2
⊥ = (∂2

x + ∂2
y). Transforming to cylindrical coordinates, Eq. 2.3 becomes

(
∂2

∂r2 + 1
r

∂

∂r
+ 2ik

∂

∂z

)
E0 = 0. (2.4)

For the boundary conditions imposed by a laser’s spherical mirror cavity, this equation
is solved by a series of solutions referred to as Hermite-Gaussians2, the lowest order of
which is called the Gaussian mode, or TEM00 mode, which is usually the dominant mode
produced by laser cavities. In linear polarisation, the TEM00 mode can be expressed as3

Ex(r, z, t) = Ex,0
w0

w(z) exp
(

i

[
(ωLt − kz) − kr2

2R(z) + tan−1
(

z

zR

)]
− r2

w2(z)

)
, (2.5)

where Ex,0 is the peak electric field strength, ωL is the laser frequency, and the wavenum-
ber k = 2π/λ where λ is the wavelength. Here, the focal plane is at z = 0. The value
w0 is the Gaussian waist and refers to the distance from the optical axis at which the
field strength drops to 1/e of its peak value, at the focal plane. As |z| increases, the 1/e

intensity width increases as

w(z) = w0

√
1 + z2

z2
R

, (2.6)

where zR is the Rayleigh range, given by

zR = πw2
0

λ
, (2.7)

which is the longitudinal scale length of the laser focus. For z = zR, the peak field
strength drops by a factor of

√
2. The wavefronts that are flat at focus become curved

as z increases, with a radius of curvature given by

R(z) = z

(
1 + z2

R

z2

)
. (2.8)

The term tan−1(z/zR) in Eq. 2.5 is known as the Gouy phase shift, and causes a slight
increase in the wavelength when the laser passes through focus, an effect that is small
enough to be ignored for long Rayleigh lengths4. The real component for this solution
is plotted in Fig. 2.1, for a 800 nm light focuses to a Gaussian spot size of w0 = 1µm.
Note that these parameters have been chosen for illustrative purposes, allowing the
beam envelope changes, wavefront curvature, and wavelength to be observed on the
same spatial scale. Focusing a laser this tightly would actually invalidate the paraxial
approximation, and would therefore require a more accurate solution5.
2 [119] F. L. Pedrotti et al. Introduction to Optics (1987)
3 [120] W. S. C. Chang Principles of lasers and optics (2005)
4 [121] S. Feng et al. (2001) Optics Letters
5 [122] S. M. Sepke et al. (2006) Optics Letters
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Figure 2.1: Real component of the solution to Eq. 2.5 for 800 nm light focused to a
w0 =1 µm spot.

2.1.1 Wavefront aberrations

In real laser systems, multiple Hermite-Gaussian modes superpose to produce a transverse
field strength that is constant with radius in the near field, as opposed to a Gaussian.
This allows for the maximal extraction of energy from an amplifier and also minimises the
peak intensity incident on the optics for an equivalent average power. Such a transverse
intensity profile in the near field leads to the Airy disk pattern at focus, seen in the first
panel of Fig. 2.2. In addition, physical optical systems introduce spatial phase variations,
or wavefront aberrations, to the beam, such that E(r, θ) = |E(r, θ)| exp(iϕabb(r, θ)). The
variations add linearly with the phase term imposed by the focusing optic, changing the
profile at focus. For circular beam apertures, we can express these aberrations as the
sum of a series of functions called Zernike polynomials6, Z(r, θ),

ϕabb =
∑

i

αiZi(r, θ), (2.9)

where αi is the coefficient for the ith Zernike polynomial. Each Zernike polynomial has
a radial degree, n, and an azimuthal degree, m, with the polynomials being expressed
in terms of these indices, Zn

m. The wavefront aberrations add linearly with the phase
variation introduced by a focusing optic, which changes the distribution of energy at focus.
The lower-order polynomials are often referred to by names that relate to the focal spot
aberrations they produce, such as spherical, astigmatism, or coma. Examples of these
aberrated focal spots are plotted in Fig. 2.2. Aberrations from the ideal spot typically
reduce the peak intensity and increase the half-maximum beam size. Modifications to the
wavefront have been shown to affect the electrons and x-rays produced in laser wakefield
6 [123] M. Born et al. Principles of optics : electromagnetic theory of propagation, interference and

diffraction of light (1999)
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Figure 2.2: Zernike polynomials and the resultant focal spot patterns.

accelerators7, while active feedback systems have been used to tailor the wavefront based
on the electron beam8.

2.2 Single particle motion

The Lorentz equation governs the motion of charged particles in an electromagnetic field,

F = q(E + v × B), (2.10)

where F is the force vector on the charge. For electromagnetic waves, the magnitude of
E and B are related by |B| = |E|/c, so for the second term in Eq. 2.10 to significantly
affect the dynamics, the particle speed must approach c.

2.2.1 Non-relativistic motion

First, we will consider the motion at v ≪ c. In the presence of an oscillating electric
field, E = Exx̂ = −E0 cos(ωLt)x̂, an initially motionless electron will undergo harmonic
motion in the x̂ direction,

v(t) = eE0
meωL

sin ωLt. (2.11)

Here we see that the magnitude of the electric field determines the peak velocity of the
electron. In the non-relativistic limit, the electron velocity is proportional to the vector
potential of the laser field, A, where E = −∂tA. It is helpful to define the parameter a0,

a0 ≡ eE0
meωLc

, (2.12)

7 [124] S. P. D. Mangles et al. (2009) Applied Physics Letters
[125] A. Popp et al. (2010) Physical Review Letters
[126] B. Beaurepaire et al. (2015) Physical Review X
[127] J. M. Cole PhD. Thesis (2016)

8 [128] Z. H. He et al. (2015) Nature Communications
[129] S. Dann et al. (2019) Physical Review Accelerators and Beams
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which is the normalised peak velocity of the electron quivering in the laser field, or
equivalently, the peak amplitude of the normalised laser vector potential, given by
a = eA/mec. The parameter allows us to immediately identify the regime of particle
motion (non-relativistic for a0 ≪ 1)9. Numerically, a0 can be calculated using

a0 ≃ 0.855λ[µm]
√

I[1022W m−2]

≃ 0.25E0[TV m−1],
(2.13)

where, in the second approximation, λ = 800 nm. An electron quivering in the field has
a cycle-averaged kinetic energy of

Up = 1
2me⟨v2⟩, (2.14)

where Up is the non-relativistic ponderomotive potential, and the angled brackets denote
taking the average value over a cycle. We can see that this can be considered as a
potential source of energy if we imagine a scenario where an electron only experiences an
odd number of half cycles of the oscillating field, for example, due to a reflection of the
field, at which point this potential energy would be suddenly converted to kinetic energy.
This potential has an associated force, the ponderomotive force, given by Fp = −∇Up.
Physically, we can see this as the electron being ‘kicked’ at a rate of ωL in alternating
directions, but with a consistently weaker kick strength in one direction due to the
intensity gradient, causing the electron will gradually accelerate. This is a more gradual
mechanism via which the energy in the potential can be converted into kinetic energy.
Averaging over the sinusoidal motion of the electron, the non-relativistic ponderomotive
force for a linearly polarised laser is

Fp = −1
4mec2∇a2, (2.15)

where a2 = |a|2. Note that in circular polarisation the force is a factor of 2 stronger.

2.2.2 Relativistic motion

When the particle speed approaches c, the effect of the magnetic field becomes significant.
Using a vector potential A = Axx̂ = a0 sin θx̂, where θ = kz − ct, the electromagnetic
fields are computed by E = −∂tA and B = ∇ × A. As shown by the derivation in
appendix A.3, the electron momentum in a stationary frame, normalised to p/mc = p,
evolves according to

px = a0 sin θ, (2.16)

pz = a2
0
2 sin2 θ. (2.17)

9 This is assuming the particle is initially at rest.
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Figure 2.3: Electron trajectories in the presence of an oscillating electromagnetic field
with spatial frequency k0 and field strength a0. The left panel shows the motion in the
laboratory frame, while the right panel shows the motion in a reference frame that moves
at the average drift velocity of the particle.

If the electrons are initially at rest, then their coordinates as a function of θ are

x = a0 cos θ (2.18)

z = a2
0
4

(
θ − 1

2 sin 2θ

)
, (2.19)

where x = kx. These solutions are plotted in the left panel of Fig. 2.3, for a0 values of 1
and 3. When the effects of the magnetic field are included the particle drifts in the laser
propagation direction. This is because the particle’s transverse motion changes sign at
the same time as the magnetic field, so the motion perpendicular to the magnetic field
is always in the same direction. The cycle average drift velocity scales with the laser
intensity as

vd

c
= ⟨pz⟩

⟨γ⟩
= a2

0
4 + a2

0
. (2.20)

In a frame moving with the electron at vd, the particle’s trajectory traces out a ‘figure-
of-eight’, as plotted in the right panel of Fig. 2.3.

Relativistic electrons also experience a weaker force due to intensity gradients than
non-relativistic electrons. The relativistic ponderomotive force of the laser was derived
by Mora et al.10, which for linear polarisation is given by

Fp = −mec2

4⟨γ⟩
∇a2, (2.21)

where γ is the Lorentz factor of the electron.
10 [130] P. Mora et al. (1997) Physics of Plasmas
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Table 2.1: Ionisation intensity thresholds for a selection of ions, calculated from Eq. 2.22.
The a0 values assume a laser wavelength of 800 nm.

Ion Eion (eV) IBSI (W m−2) a0

H+ 13.6 1.4 × 1018 0.0079
He+ 24.6 1.5 × 1019 0.026
He2+ 54.4 8.8 × 1019 0.064
C+ 11.3 6.4 × 1017 0.0055
C5+ 392.1 3.8 × 1022 1.3
C6+ 489.0 6.4 × 1022 1.7
N+ 14.5 1.8 × 1018 0.0091
N6+ 552.1 1.0 × 1023 2.2
N7+ 667.0 1.6 × 1023 2.7

2.3 Ionisation

The ionisation of initially neutral gas is a necessary precursor to LWFA. Although for
weakly bound electrons, such as those in the outer shells of atoms, the laser is typically
so intense that these can be assumed to be ionised a long time before the main part of
the pulse arrives, large nuclei can produce field strengths that are comparable to those
of the laser. We must therefore consider the exact process by which a bound electron
ionises.

Consider a simple model of an atom, where the potential from a nucleus of charge
Ze is modified by a stationary electric field of strength E0. The potential at a position x

is U(x) = −Ze2/4πϵ0x − eE0x, which has a maximum at xmax =
√

Ze/4πϵ0E0. This is
the position of the potential barrier that separates a bound electron from the continuum.
We want to know the field strength where the maximum of the potential dips below
the ionisation energy, where U(xmax) = Eion, at which point the electron is no longer
bound. This is known as barrier suppression ionisation (BSI), and the intensity at which
this occurs, IBSI, serves as a useful boundary above which an unbound electron can be
assumed.

IBSI = π2cϵ3
0

2e6
E4

ion
Z2 ≃ 4 × 1013 (Eion[eV])4

Z2 W m−2. (2.22)

Ionisation at intensities below this threshold is also possible and can proceed by two
mechanisms. A bound electron can be liberated by absorbing a series of high-frequency
photons, each with energy ℏωL, which sum to equal or exceed the ionisation energy.
This is known as multiphoton ionisation, which allows for ionisation at intensities that
are orders of magnitude lower than those listed in Tab. 2.1. Alternatively, an electron
can be ionised by tunnelling through a partially suppressed barrier, which can occur at
intensities close to IBSI. This occurs because the potential far from the nucleus is lower
than the electrons’ bound potential, so there is a non-zero probability for the electron to
be found outside of the potential well.
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Keldysh showed that the ratio of the time taken for an electron to tunnel through
the barrier to the period of the laser determines if tunnelling ionisation dominates or if
multiphoton ionisation dominates11,

γK = τt

Tl
=
√

Eion
2Up

(2.23)

For γK
2 ≪ 1, the frequency is low and the field strength is high, favouring the tunnelling

mechanism, while for γK
2 ≫ 1 the frequency is high with a relatively unperturbed

potential, which favours multiphoton ionisation. For typical field strengths in LWFA,
the tunnelling mechanism dominates the ionisation process.

The tunnelling ionisation rate for complex atoms was determined by Ammosov,
Delone12, who built on earlier work by Perelomov et al.13. An approximation for this
rate gives14

WADK[s−1] ≈ 1.52 × 1015 4n∗
Eion[eV]

n∗Γ(2n∗) (20.5E∗)2n∗−1 e−6.83E∗
, (2.24)

where Γ is the gamma function15, and

E∗ = Eion
3
2 [eV]

E0[GV m−1] , (2.25)

and
n∗ = 3.69 Z√

Eion[eV]
(2.26)

is the effective principle quantum number for a target ionisation level of Z. See ap-
pendix A.4 for a formula that includes the effects of quantum numbers l and m on
WADK.

As a laser pulse passes through a gas or plasma, the fraction of the atoms or ions
that are ionised can be calculated using

f = 1 − e
−
(∫ t′

0 WADK(t′)dt′
)

. (2.27)

This integral has been calculated in Fig. 2.4, for the transitions from H1+ to H2+, C4+

to C5+, and N6+ to N7+, for a laser pulse with a Gaussian envelope. The peak a0 of the
laser is 2, and the Gaussian width is 19 fs. The helium ion is completely ionised before
the bulk of the pulse arrives, whereas the inner electrons of carbon are liberated later.
Note that, despite the peak field strength being below the barrier suppression threshold
for the N7+ ion, the ultimate ionisation fraction is almost 0.5. Ionisation is often treated
11 [131] L. V. Keldysh (1965) Sov. Phys. JETP
12 [132] M. V. Ammosov et al. (1986) Sov. Phys. JETP
13 [133] A. Perelomov et al. (1966) Sov. Phys. JETP

[134] A. Perelomov et al. (1967) Sov. Phys. JETP
14 [135] D. L. Bruhwiler et al. (2003) Physics of Plasmas
15 Γ(z) =

∫∞
0 tz−1e−tdt; in our case the argument is always real and positive.

http://dx.doi.org/10.1063/1.1566027
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Figure 2.4: Ionisation fraction calculated for different ions during the passage of a 800 nm
laser pulse.

as a threshold effect, but for pulse lengths in the 10s of femtoseconds, ionisation fractions
at field strengths significantly below threshold can be substantial.

2.4 Plasma waves

A plasma can be defined as a quasi-neutral ensemble of charged particles that interact
electromagnetically, exhibiting collective behaviour. They can support many different
types of waves because the mode of oscillation depends on the interplay of various
conditions, including whether or not an EM wave or magnetic field is present, the species
of interest (electrons or ions), and the relative orientation of the magnetic field to the
EM wave. In this work, we will restrict ourselves to the domain of electron plasma waves,
without an external magnetic field. We will proceed from cold, electrostatic oscillations
in 1D, to highly nonlinear electromagnetic waves in 3D.

2.4.1 Plasma oscillations

Consider a slab of cold, neutral plasma with electron and ion densities of ne and ni,
where the ions are singly charged. Gauss’ law states that there will be an electric field
associated with any charge imbalance,

∇ · E = − e

ε0
(ne − ni). (2.28)

At equilibrium, ne = ni, and so no field exists. Perturbing the electron density slightly in
the x direction, the field becomes ε0E = −enex. Using the Lorentz force from Eq. 2.10,
for v ≪ c, the field accelerates the displaced electrons

me
d2x

dt2 = −nee2

ε0
x. (2.29)
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The electrons, therefore, oscillate around their equilibrium positions at the plasma
frequency,

ωp =
√

nee2

meε0
. (2.30)

The ions will experience an equal and opposite force to the electrons but will accelerate
a rate reduced by a factor mi/me, where mi is the ion mass. Consequently, the ions
are normally treated as static for timescales on the order of ω−1

p . Since neighbouring
regions of plasma are electrostatically shielded from each other, charge oscillations do not
propagate in cold plasmas. This can be seen in the lack of wave number dependence in
Eq. 2.30, such that the group velocity, dωp/dk = 0; consequently, the phase velocity can
be anything, and can have any wavelength. The wavelength of a plasma wave moving
at v ≃ c is λp = 2πc/ωp, a quantity often referred to as the plasma wavelength16, and
can be thought of as the distance light would travel in a vacuum during one plasma
oscillation period.

2.4.2 Electromagetic waves

For an electromagnetic wave propagating in a cold plasma, the dispersion relation is17

ω2
L = ω2

p + k2c2. (2.31)

The density for which ωp = ωL and hence k = 0 is the critical density, nc = meε0ω2
L/e2.

Above this density, the plasma electrons can respond quickly enough to counteract
the incident field oscillations, reflecting the radiation, with only an evanescent field
penetrating the plasma up to a length of c/ωp. Below nc the plasma is transparent, and
the phase and group velocities are

vp = c√
1 − ne

nc

, vg = c

√
1 − ne

nc
= c

√
1 − 1

γ2
g

, (2.32)

where γg is the relativistic Lorentz factor associated with the group velocity of the
radiation. While vp is always greater than c, the group velocity is always below c,
preserving causality. We have also found that the Lorentz factor associated with the
group velocity is γg = ωL/ωp =

√
nc/ne.

2.4.3 Linear wakes

The ponderomotive force of a laser pulse can drive a plasma wave. This can be seen by
considering the fluid equation

me

(
∂v
∂t

+ (v · ∇)v
)

= −e(E + v × B). (2.33)

16 Although arguably, there is no such thing as a plasma wavelength.
17 See appendix A.5.
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The transverse velocity is due to the potential of the laser, A, such that v⊥ = eA/me.
Consequently, we see that the difference between the second terms on each side of Eq. 2.33
is the ponderomotive force,

me(v · ∇)v + ev × B = e2

me
((A · ∇)A + A × (∇ × A)), (2.34)

= e2

2me
∇|A|2. (2.35)

Using this, and the normalisation A = meca/e, and |a|2 = a2, Eq. 2.33 becomes

me
∂v
∂t

= −eE − mec2

2 ∇a2. (2.36)

The current density J = −enev, while the charge density ρ = −e(ne − ni), such that
charge conservation gives

− e
∂(ne − ni)

∂t
− e∇(nev) = 0. (2.37)

For linear wakes, we will assume small perturbations to the electron density, such
that ne → δne + ne, where δne ≪ ne, and small fluid velocities such that |v| ≪ c.
Differentiating Eq. 2.37 with respect to time, and taking the divergence of Eq. 2.36
(operating with ∇·) gives

ne∇ · ∂v
∂t

= −∂2(δne)
∂t2 , (2.38)

me∇ · ∂v
∂t

= −e(∇ · E) − mec2

2 ∇2a2. (2.39)

Recognising that ∇ · E = −eδne/ϵ0, we reach the wave equation for linear wakes,(
∂2

∂t2 + ω2
p

)
δne

ne
= 1

2c2∇2a2. (2.40)

A solution to Eq. 2.40 is plotted in Fig. 2.5, where the driving laser has a Gaussian
temporal envelope with a width of cτ = λp/4 and a peak a0 of 0.01. The oscillation is
sinusoidal, with a π/2 phase difference between the plasma wave and the longitudinal
electric field. The electrons receive a ‘kick’ in the forward and backward directions as
the laser’s rising and falling edges pass, which excites the oscillation, and consequently,
the oscillation will have a larger amplitude if the impulses from the laser add resonantly
with the restoring forces from the charge separation, which will occur if the laser pulse
length is on the order of ω−1

p /2. The maximum electric field that can be supported by a
sinusoidal electron wave can be calculated using Gauss’s law, which gives

Emax ≈ meωpvg

e
≡ βgE0, (2.41)

where E0 is known as the cold wavebreaking limit. The electric field in Fig. 2.5 is
normalised to this limit.
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Figure 2.5: Linear electron density wave excited by a laser pulse with a Gaussian temporal
envelope with width cτL = λp/4.

2.4.4 Energy gain

Electrons can gain energy by copropagating with the laser pulse. In the boosted frame of
the wave moving at the phase velocity, γp, an electron will undergo longitudinal simple
harmonic oscillations in the field of the wake. While the magnitude of the electric field
is invariant under this transformation, the x coordinate is stretched by γp, such that
the boosted field has the form E′ = E0 sin(kpx′/γp), where the ′ denotes boosted values.
The electron has maximum velocity when it has propagated from the inflection point of
the density wave to its trough18, over a distance of γpλp/4,

W ′
max = eE0

∫ γpλp/4

0
sin(kpx′/γp)dx′′ = γpmec2, (2.42)

and the momentum is cp′
x = γpβpmec2. Applying the Lorentz boost to return to the

stationary frame, we get(
γp γpβp

γpβp γp

)(
γpmec2

γpβpmec2

)
=
(

γ2
p(1 + βp)mc2

2γ2
pβpmc2

)
, (2.43)

Wmax ≃ 2γ2
pmec2 (2.44)

= 1.14 GeV
λL[µm] ne[1024m−3] , (2.45)

where we have taken βp ≃ 1, and λL is the laser wavelength. This is the energy scaling
originally derived in the landmark paper by Tajima and Dawson19. The physical picture
in the lab frame is one where the electron ‘surfs’ on the plasma wave; since both the
wave and the particle are moving at relativistic velocities, the energy gain of the electron
does not cause it to immediately outrun the wave. Lower densities lead to faster wakes
18 Regions of high plasma density are defocusing for electrons.
19 [27] T. Tajima et al. (1979) Physical Review Letters

http://dx.doi.org/10.1103/PhysRevLett.43.267
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Figure 2.6: Non-linear wake excitation for laser pulses with peak a0 of 0.1 and 3 for the
top and bottom panels respectively. Note the density perturbation n1 = n − n0.

and hence longer acceleration times, which more than offsets the reduced accelerating
field strength.

2.4.5 Non-linear wakes in 1D

For pump strengths where the transverse quiver momentum py ≫ mec, a fully relativistic
model is required. Using the quasistatic approximation20, we transform the variables
(z, t) to (ξ, τQ), where ξ = x − vpt, and τQ = t, and assume that the driving envelope
varies slowly, such that ∂τQ = 0. Under this approximation, the plasma wave is purely a
function of ξ. Sprangle et al. found the potential for sufficiently underdense plasmas21,
while for arbitrary wave velocities, the solution for the potential is22

∂2ϕ

∂ξ2 = γ2
pk2

p

βp

[
1 − 1 + a2

γ2
p(1 + ϕ)2

]− 1
2

− 1

 (2.46)

= γ2
pk2

p (βpΦ − 1) , (2.47)

from which the plasma density can be calculated using n = γ2
pβp(Φ − βp), and the fluid

velocity u = (βp − Φ−1)(1 − βpΦ−1)−1. The maximum field strength can be predicted
using Emax/E0 = a2

0/
√

1 + a2
0/2, where E0 is the cold wavebreaking limit23. While

analytic solutions for these equations do exist for specific pulse shapes24, we will proceed
by solving them numerically.
20 See appendix A.6.
21 [136] P. Sprangle et al. (1990) Physical Review Letters
22 [137] E. Esarey et al. (1995) Physics of Plasmas
23 [138] V. I. Berezhiani et al. (1990) Physics Letters A
24 [139] S. V. Bulanov et al. (1989) JETP Letters

http://dx.doi.org/10.1103/PhysRevLett.64.2011
http://dx.doi.org/10.1063/1.871358
http://dx.doi.org/https://doi.org/10.1016/0375-9601(90)90813-4
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Plotted in Fig. 2.6 are solutions to the non-linear wake equations for the density,
fluid velocity, and electric field. The laser pulse driving these waves is modelled as a
linearly polarised plane wave oscillation modulated by a Gaussian envelope, with the
form a(ξ) = a0 cos(kLξ) exp (−ξ2/(χλp)2), where χ is the pulse length in units of λp,
which takes the value of χ = 0.5 in Fig. 2.6. Within the envelope of the laser pulse, fast
oscillations of the density and fluid velocity are driven by the carrier wave, but these
subside quickly since the cycle-averaged perturbation is approximately zero. After the
pulse, the waveform depends on the peak intensity of the drive pulse. For a0 = 0.1, the
wave is sinusoidal with a wavelength of λp, while for a0 = 3 the density takes on a spiked
waveform with an elongated wavelength. The oscillation wavelength increase is a result
of the relativistic mass increase of the electrons, as m = γme, where γ =

√
1 + a2

0/2,
causing ωp → ωp/

√
γ.

2.4.6 Non-linear wakes in 3D

The discussion of 1D non-linear waves has been useful for identifying some of the
properties of large amplitude plasma waves, such as the formation of the density spike,
the elongation of the oscillation wavelength, and the linear longitudinal electric field
between the wavefronts. However, when the transverse dimension is included, the
dynamics of the interaction change substantially. The total force on the electrons is due
to the electromagnetic fields of the wake, and the ponderomotive force,

dp
dt

= −[eE + ev × B]plasma + Fp, (2.48)

Electrons exactly on the axis will experience purely longitudinal forces, while off-axis
electrons will be deflected radially by the gradient of the laser intensity. To solve Eq. 2.48
exactly, the fields need to be computed self-consistently with the electron motion, a task
that requires kinetic simulations. In order to gain insight into the electron motion, we
make the simplification that the fields from the plasma current are negligible and that
consequently, the transverse forces on the electron are due solely to the ion column and
the laser. Under the quasistatic approximation25, and assuming cylindrical symmetry,
the equation of motion of the electrons in the non-relativistic limit becomes

d2r

dξ2 = −r − r0
2 − ∇|a2|

4 , (2.49)

where r0 is the initial radial position of the electron. Here we have used normalised units,
rkp = r, ωpt = t, and mec2a = a.
25 See appendix A.6.



38 Chapter 2. Theory

-1 -0.5 0

ξ/λp

−0.5

0.0

0.5

r/
λ
p

−1.0 −0.5 0.0 0.5

ξ/λp

0

1

2

3

a
0

Figure 2.7: Electron trajectories calculated using Eq. 2.49, for a laser pulse with a
normalised length and width of 0.25λp, the envelope of which is shown in red. The peak
a0 in the left and right panels is 1 and 3 respectively.

Solutions to Eq. 2.49 are plotted in Fig. 2.7 for a laser pulse with a Gaussian pulse
length and width of 0.25λp, for peak intensities of a0 = 1 and a0 = 3. These plots are
similar to those produced by Lu et al.26, except that here a laser driver has been used
instead of an electron beam27. As the driver intensity increases, electrons are deflected to
greater radii, before the electrostatic attraction of the ions pulls them back towards the
axis. Once a certain field strength is reached the electron trajectories are seen to cross.
More formally, the maximum radius reached by an electron as a function of the initial
radius switches from one tha steadily increases to one that there is a maximum value.
When this occurs, the interaction is said to have entered the ‘blow-out’ or ‘bubble’ regime,
with the latter term referring to the circular sheath formed by the electrons as they are
deflected around the laser pulse. In simulations reported by Pukhov et al. in 200228, this
regime was shown to be able to spontaneously trap some of these crossing trajectories
and produce a quasi-monoenergetic energy spectrum, before such observations had been
made experimentally.
26 [140] W. Lu et al. (2006) Physics of Plasmas
27 Interestingly, the laser driver disturbs a much narrower region of plasma than a beam driver, because

Fp decays exponentially, while the electrostatic force decays as 1/r for a cylinder of charge.
28 [141] A. Pukhov et al. (2002) Applied Physics B

http://dx.doi.org/10.1063/1.2203364
http://dx.doi.org/10.1007/s003400200795
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Figure 2.8: Electron density from 3D PIC simulation, illustrating the bubble regime.
The laser can be seen to cause fast modulations in the electron density at ξ ≈ 0, and
travels in the +ξ direction. The bulk plasma density is 2 × 1024 m−3, and the laser a0 is
4.5, producing a bubble with a radius of 0.64λp.

The bubble regime is illustrated in Fig. 2.8 using a map of the electron density from a
particle-in-cell simulation, where the term ‘bubble’ refers to the approximately spherical
sheath of electrons that forms in the laser’s wake. A phenomenological argument can
be used to estimate the radius of the bubble. The expulsion of electrons means that
the laser cannot self-focus relativistically past a certain point29, and so will reach an
equilibrium with a transverse dimension that is approximately equal to the bubble radius
rb. The ponderomotive force at the bubble radius is then

Fp(rb) = rba
2
0

2γr2
m

. (2.50)

Equating this with the attractive force from the ions, rb/2, and letting rm ≈ rb, and
γ ≈ a0, the bubble radius is

rbkp ≃ 2√
a0. (2.51)

where the additional factor of 2 was found by Lu et. al. using particle-in-cell simulations30.
At the moment the snapshot in Fig. 2.8 is taken, the laser peak a0 is 4.5 and the plasma
density is 2 × 1024 m−3, which predicts a bubble radius of 0.64λp. As indicated in the
figure, this matches the simulation results.

Normalising the electric fields to Ei = ϵ0Ei/nee and the magnetic fields to Bi =
Bi/(neeµ0), the fields inside a bubble moving at velocity vb ≈ c are31

Ez = ξ

2 , Ex = x

4 , Ey = y

4 , (2.52)

29 See Sec. 2.5.1.
30 [140] W. Lu et al. (2006) Physics of Plasmas

[44] W. Lu et al. (2007) Physical Review Special Topics - Accelerators and Beams
31 [142] I. Kostyukov et al. (2004) Physics of Plasmas

http://dx.doi.org/10.1063/1.2203364
http://dx.doi.org/10.1103/PhysRevSTAB.10.061301
http://dx.doi.org/10.1063/1.1799371
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Bz = 0, Bx = y

4 , By = x

4 . (2.53)

The resulting Lorentz forces on an electron at coordinate (ξ, x, y), normalised to meω2
p,

are
Fz = −ξ

2 , Fx = −x

2 , Fz = −y

2 . (2.54)

We see that the bubble provides linear accelerating and focusing forces. Longitudinally,
the peak accelerating field scales with the bubble radius, Emax ∝ √

a0, which is a weaker
scaling with intensity than in the 1D case. Transversely, the linear focusing forces can
preserve the transverse quality of an electron beam32, making the bubble structure an
ideal accelerating cavity.

2.5 Laser pulse evolution

In the preceding section, we have seen how an intense laser pulse can affect an under-dense
plasma. Now, we shall look at how this plasma affects the laser pulse. The refractive
index in a plasma is given by η =

√
1 − ω2

p/ω2
L, which depends on the relativistic factor

of the electrons, the density, and the field frequency.

Variations in any of these quantities will modulate the phase and group velocity,
changing the pulse shape. For weak pumps, η can be expressed as33

η(ne, a, ω) =
(

1 − 1
2

ω2
p

ω2
L

[
1 + δne

ne
− 2δω

ωL
− ⟨a2⟩

2

])
, (2.55)

where we have used ωp → ωp/
√

1 + a2
⊥, and performed an expansion to first order using

δne and δω as small perturbations to ne and ωL. First, we will look at how variations
in ⟨a2⟩ lead to transverse envelope changes, before looking at how the pulse is changed
longitudinally by these effects.

2.5.1 Relativistic self-focusing

Refractive index gradients that are transverse to the direction of propagation cause
focusing and defocusing of the pulse. Since the normalised potential of the laser varies
across the pulse, so does the relativistic plasma frequency ωp/⟨γ⟩1/2, modifying the
refractive index. For an intensity profile that is peaked on-axis, the refractive index
gradient will point radially inwards, causing focusing of the pulse. This effect is known
as relativistic self-focusing.
32 See Sec. 2.8.
33 [143] W. B. Mori (1997) IEEE Journal of Quantum Electronics

http://dx.doi.org/10.1109/3.641309
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Figure 2.9: The change in angle, θ, of a wavefront propagating in the positive z direction,
in the presence of a refractive index gradient.

Following Mori34, we consider an initially flat wavefront propagating through undis-
turbed plasma, away from z0 at t = 0, as shown in Fig. 2.9. After ∆t, the wavefront will
acquire an angle to the vertical, given geometrically by tan(θ) ≈ θ = (vϕ1 − vϕ2)∆t/w0.
The difference in phase velocity, vϕ1 − vϕ2, can be written in terms of the gradient,
w0∂rvϕ, such that ∂tθ = ∂rvϕ. Using vϕ = c/η, we see that ∂tθ = −c/η2∂rη.

Energy propagates perpendicularly to the wavefronts at the group velocity vg, which,
after acquiring the angle θ, now has a radial component. This radial component has a
velocity equal to vg sin θ ≈ vgθ, in the negative r direction, which is equal to the rate of
change of the spot size, ∂tw = vgθ. Since we are not concerned with variations in the
group velocity here, we make the approximation that vg ≈ c. Differentiating with respect
to time, we find the acceleration of the spot size as a function of the index gradient,

∂2w

∂t2 = c2

η2
∂η

∂r
. (2.56)

For small modulations in the refractive index, η can be expressed as

η ≈ 1 − ω2
L

2ω2
p

(
1 − ⟨a2⟩

2

)
. (2.57)

This can be used to express the acceleration of the spot size in terms of the vector
potential

∂2w

∂t2 =
c2ω2

p

8ω2
L

∂a2

∂r
, (2.58)

where the assumption that η2 ≈ 1 has been made. For a Gaussian transverse intensity
profile,

∂a2

∂r
= 1

w0
a2, (2.59)

which can be substituted into Eq. 2.58 to give

∂2w

∂t2 =
c2ω2

pa2

8ω2
Lw0

. (2.60)

34 [143] W. B. Mori (1997) IEEE Journal of Quantum Electronics

http://dx.doi.org/10.1109/3.641309
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The accelerating contraction of the focal spot is eventually halted and reversed by
diffraction. At a certain power level, the diffractive and focusing forces exactly balance,
and this level can be found by considering the vacuum diffraction of a pulse as a function
of time, given by

w(t) = w0

√
1 +

(
ct

zR

)2
, (2.61)

≈ w0

(
1 + 1

2

(
ct

zR

)2
)

, (2.62)

where the beam is considered focused at t = 0, and the approximation represents a
Taylor expansion to first order in (ct/zR)2. The accelerating increase in the spot size
due to diffraction is then,

∂2w

∂t2 = w0c2

z2
R

= 4c4

ω2
Lw3

0
, (2.63)

where zR = ωw2
0/(2c) is the Rayleigh range in terms of the laser frequency. Equating

this to Eq. 2.60 and rearranging gives the critical condition for constant focal spot size,

a2w2
0 = 32c2

ω2
p

. (2.64)

We can relate the term on the left-hand side to the power of the laser pulse by
calculating the integral

P =
∫

A
I(r)dA, (2.65)

= ε0
2

m2
eω2

Lc3a2
0

e2

∫ ∞

0
e

− 2r2
w2

0 dr, (2.66)

= πε0m2
eω2

Lc3

4e2 a2
0w2

0. (2.67)

(2.68)

This gives us the critical power for self-focusing to occur,

Pc = 8πε0m2
ec5

e2
ω2

L

ω2
p

, (2.69)

≈ 17.5
(

ω2
L

ω2
p

)
GW. (2.70)

The threshold is determined by the power, rather than the intensity. Physically, this is
because a more tightly focused beam will have a greater intensity and will consequently
experience a stronger focusing force from the larger refractive index gradient, but an
equally strong diffractive force. The competing forces of self-focusing and diffraction
lead to an equation of motion for the spot size. Sprangle et al.35 showed that the power
35 [144] P. Sprangle et al. (1987) IEEE Transactions on Plasma Science

http://dx.doi.org/10.1109/TPS.1987.4316677
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Figure 2.10: Solutions to the envelope equation, Eq. 2.71, for various focusing geometries
and focal positions. For all solutions, a0 is scaled such that w0a0 = 80µm, and the
plasma density is 2 × 1024 m−3. The matched spot size at this density 14.7 µm, indicated
in the plot by the dashed horizontal line. The solid vertical lines show the first minima
in w(z) for each solution.

normalised waist X = w/(w0a0) evolves according to

d2X

dt2 = V0

( 1
X3 − 16αX [h − 1 + 2 ln 2 + 2 ln(h + 1)]

)
, (2.71)

where h = (1+X−2)1/2, V0 = (2c/(kw2
0a2

0))2 , and α = (ωpa0w0/4c)2 = P/Pcrit. This full
expression is required to accurately model the evolution of laser pulses in the moderately
relativistic a0 ≃ 1 regime. This equation is stable for X ′′ = 0, which, for a0 ≫ 1, occurs
for

kpwm ≃ 2.25
(

P

Pc

) 1
6

, (2.72)

where wm is the matched spot size. The envelope equation has been solved numerically for
various initial spot sizes and vacuum focal positions, zf,v in Fig. 2.10, where we observe
that the laser waist oscillates around the matched spot size for initially mismatched
beams. If the initial mismatch is small, such as for the w0 = 20µm solution, then the
oscillations resemble sinusoidal motion, whereas for larger mismatches the oscillations
become asymmetrical, with the pulse being reflected sharply away from focus before
gradually refocusing. If the pulse is focused too tightly, then after passing through its
plasma focus it can reach an ‘escape velocity’, where it refracts indefinitely, as shown for
the w0 = 10µm, zf,v = 5zR.

The vertical lines in Fig. 2.10 indicate the position of the first minimum in w(z) for
each solution, which is sensitive to the plasma density, the initial spot size, the laser
power, and the distance of the beam from its vacuum focal position. We define the
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Figure 2.11: Plasma focal length for a wide range of densities, where the laser is at its
vacuum focus as it enters the plasma.

plasma focal position, zf,p, as the longitudinal position of the first minimum. For a beam
with w0 = 40 µm, zf,v = 0, we find zf,p = 2 mm, while a beam with the same w0 but with
a vacuum focus of zf,v = −zR has zf,p = 8.5mm. The vacuum focal position changes
both the spot size and the rate of change of spot size when the beam encounters the
plasma; an expanding spot will require a longer distance to reach its vacuum focus.

The effect of varying the density on zf,p is shown in Fig. 2.11 for various focal spot
sizes and laser intensities, with the lines terminating when the density drops below
the threshold density required for self-focusing. As the ne increases, zf,p reduces due
to the increased focusing force from the plasma. At densities significantly above the
self-focusing threshold, the approximately linear relationship between ln(ne) and ln(vf,p)
indicates that a polynomial fit could be used to model this relationship. However, in
self-guided laser wakefield experiments, we typically want to operate at low densities, and
consequently, predictions of the plasma focal position may require either exact solutions
to Eq. 2.71, or a fit to the plot in Fig. 2.11 around the density region of interest.

Guiding up to the point of laser depletion has been observed experimentally36,
however the solutions plotted in Fig. 2.10 show envelope behaviour that is observed
neither experimentally nor in PIC simulations. Due to the plasma response to the laser,
the beam waist does not undergo large amplitude oscillations; instead, the laser focuses
to and remains at wm from Eq. 2.72. This is because, for moderate values of a0, the
bubble that forms in the wake of the laser helps to guide the pulse. The formation of
this bubble was described in Sec. 2.4.6, with Eq. 2.51 predicting kprb = 2√

a0. Using this
result, in combination with the value of P/Pc, it can be shown that a0 ≃ 2(P/Pc)1/3, or

kpwm ≃ 2
√

2
(

P

Pc

)1/6
. (2.73)

36 [145] J. E. Ralph et al. (2009) Physical Review Letters

http://dx.doi.org/10.1103/PhysRevLett.102.175003
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Interestingly, this is almost identical to Eq. 2.72, except that here we have only used the
bubble radius and the critical power for self-focusing.

2.5.2 Pulse compression

Longitudinal refractive index gradients exist within the volume occupied by the laser
pulse, which can be due to variations in the plasma density, the carrier wave frequency,
or the field strength. Pulse compression can occur when the group velocity at the front
of the pulse is lower than at the rear, as shown in Fig. 2.12.

L

Figure 2.12: Diagram of a laser pulse propagating in a co-moving density ramp, simulating
laser-driven plasma wave, with the spatially dependent group velocity denoted by vg1,2,
and the phase velocities of the wavefronts by vp1,2.

A pulse with initial length L changes by ∆L = (vg1 − vg2)∆t ≈ L∂xvg∆t. The pulse
length changes at a rate given by37

∂L

∂t
= L

∂vg

∂x
. (2.74)

On the other hand, wavefronts in regions of higher plasma density will travel faster than
those in lower-density regions, leading to a local increase in the wavelength. Considering
two wavefronts at x1 and x2 initially separated by λ0, the local wavelength is λ =
x1 − x2 = λ0 + (vϕ1 − vϕ2)∆t. The rate of change of the wavelength is then

∂λ

∂t
= λ

∂vϕ

∂x
= −cλ

η2
∂η

∂x
. (2.75)

For the simplified example in Fig. 2.12, the refractive index gradient is always negative
with respect to x, such that only redshifting would occur. However, for intense laser
pulses, the gradient in a0 causes both redshifting and blueshifting independently of
the density modulation, a process known as self-phase modulation. In addition, from
inspection of the plasma wave density profiles in Fig 2.6, it is clear that both positive
and negative density gradients exist, resulting in spectral broadening. This widening of
37 [143] W. B. Mori (1997) IEEE Journal of Quantum Electronics

http://dx.doi.org/10.1109/3.641309
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the spectrum is necessary for pulse compression to occur, as the bandwidth and temporal
duration of the pulse depend on one another.

In the bubble regime, only the front part of the laser pulse interacts with the plasma,
while the rest of the laser energy is guided in a region devoid of electrons. This causes
the pulse length to decrease due to the difference in group velocity. Amplification was
observed by Streeter et al.38 using post-interaction pulse length measurements, where it
was found that injection of an electron beam into the wake coincided with the power of
the laser reaching a maximum. This was found to occur after the pulse had propagated
a distance of

Levol = L

(
2ωL

3ωp

)√
1
2 ln

(
P

Pc

)
. (2.76)

A central frequency shift to ∼ ωL/
√

3 was observed, in conjunction with a bandwidth
increase. Based on these observations, the power amplification was attributed to photons
at the front of the pulse transferring energy to the plasma, causing their frequency to
drop and recede relative to the front.

2.6 Acceleration

The acceleration of electrons to high energies is the primary purpose of LWFAs. Ap-
proximately, the energy that a particle reaches is determined by the product of the
accelerating field and the distance over which this field interacts with the electron. In
this section we will review the scalings for the maximum accelerating field strength and
the acceleration length in various intensity regimes. These will then be combined to give
estimates for the electron energies attainable.

2.6.1 Accelerating field

The field strength is determined by the magnitude of the charge separation that can be
generated, which will depend on both the plasma density and the driver intensity. Recall
that low-intensity drivers (a0 ≪ 1) will produce sinusoidal oscillations in the plasma
density, which have a maximum amplitude equal to the quiescent plasma density. The
maximum field that can be supported by such an oscillation is the cold wavebreaking
limit, E0 = meωpc/e, which is driver independent because the shape of the wave has
been assumed. As was shown in Sec. 2.4, high-intensity drivers produce distorted waves,
with spikes in the density profile, which increase the attainable field strength. In the 3D
non-linear regime, the cavitation of the bubble of electrons in all directions limits the
energy scaling further. To summarise, the field strengths in the different regimes can be
38 [146] M. Streeter et al. (2018) Physical Review Letters

http://dx.doi.org/10.1103/PhysRevLett.120.254801
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estimated using39

E

E0
=


a2

0 (1D, a0 ≪ 1),
a2

0√
1+a2

0/2
(1D, a0 ≃ 1),

√
a0 (3D, a0 ≳ 2).

(2.77)

Note that these scalings derive from making various assumptions about the pulse shape,
and that the particulars of this will affect the field strength magnitude.

2.6.2 Acceleration limits

As the laser pulse drives the plasma wave, it is continually losing energy, to the plasma
electrons on a micro-scale, or to the plasma wave on a macro-scale. Since the energy
in the pulse is finite, this process cannot continue indefinitely, and at some point, the
laser will no longer support accelerating gradients. If the energy gain of the electron
beam is limited by this process, then the acceleration is described as being depletion
limited. Shadwick et al.40 define a depletion length, Ld, as the length over which the
laser pulse energy is reduced by a factor of 1/e. If it is assumed that the plasma wave is
being driven by a laser pulse with a Gaussian longitudinal envelope with a pulse length
of τ , then the depletion length is41

Ld

λp
= ω2

L

ω2
p


1

2πa2
0
ωpτ (a0 ≪ 1),

1
2π ωpτ (a0 ≫ 1).

(2.78)

It is interesting to note that the dependence of the depletion length on the driver intensity
weakens as the wake amplitude increases, eventually decoupling. Decker et al.42 identify
increasingly localised depletion of the pulse as the process responsible for this decoupling.
At high intensities, the front of the laser pulse is interacting with a narrow spike in the
plasma density, while the trailing parts of the pulse propagate in a region of low density,
or a vacuum in the bubble regime. Consequently, only the pulse front depletes, causing
the pulse to etch away from front to back, at a rate that is determined by the width
of the density spike and the time required for the energy inside this width to deplete.
The pulse front etches away at a speed given by βetch = ne/nc, such that the pulse of
length L will be completely depleted after a time of L/cβetch. The field strength no
longer affects the depletion length because the width of the density spike and the rate of
energy loss in the spike both have the same dependence on a0.

Dephasing of the electron beam can also limit energy gain. This is the process of
an electron ‘out-running’ the accelerating portion of the wake, due to its velocity being
higher than that of the plasma wave. Relative to a wake moving at the linear group
39 [147] L. M. Gorbunov et al. (1986) JETP

[136] P. Sprangle et al. (1990) Physical Review Letters
[44] W. Lu et al. (2007) Physical Review Special Topics - Accelerators and Beams

40 [148] B. A. Shadwick et al. (2009) Physics of Plasmas
41 [44] W. Lu et al. (2007) Physical Review Special Topics - Accelerators and Beams
42 [149] C. D. Decker et al. (1996) Physics of Plasmas

http://dx.doi.org/10.1103/PhysRevLett.64.2011
http://dx.doi.org/10.1103/PhysRevSTAB.10.061301
http://dx.doi.org/10.1063/1.3124185
http://dx.doi.org/10.1103/PhysRevSTAB.10.061301
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velocity, vg, the electron’s speed is c − vg ≈ 1/2γ2
p . The accelerating portion of a linear

wake is approximately λp/2 long, which means that the electron will move out of this
region after propagating a distance of Lϕ = λpγ2

p . This is the linear dephasing length.

For non-linear wakes, the length of the accelerating portion of the wake is modified
by the relativistic increase of the oscillation period. In the a0 ≫ 1 limit, the non-linear
plasma wavelength is43 λNL

p = 2λpa0/π, whereas in the 3D non-linear regime, the
accelerating portion of the wake is determined by the bubble radius, rb = λp

√
a0/π. In

addition to the lengthening of the accelerating portion of the wake, the phase velocity is
reduced by the localised etching of the laser pulse44, meaning that the electron’s velocity
relative to the wake is now 3ω2

p/2ω2
L. Accounting for these effects, the dephasing lengths

in the various regimes are45

Lϕ

λp
= ω2

L

ω2
p


1 (1D, a0 ≪ 1),
1
π a0 (1D, a0 ≫ 1),
2

3π

√
a0 (3D, a0 ≳ 2).

(2.79)

The 3D, a0 ≳ 2 dephasing length is plotted in the left panel of Fig. 2.13, illustrating the
weak effect of a0 and the strong effect of the plasma density.

2.6.3 Energy gain

Previously, we used the cold wavebreaking field strength and the linear dephasing length
to estimate the maximum energy gain from a LWFA as Wmax ≈ 2γ2

pmec2. We can now
see that this energy gain would require a relativistic a0 if the linear dephasing length is
assumed; hence, this is an overly ambitious scaling. Taking into account the appropriate
phenomena for each regime, Lu et al.46 give the following scalings for the maximum
energy gain,

Wmax
mec2 = ω2

L

ω2
p


a2

0 (1D, a0 ≪ 1),

4a2
0 (1D, a0 > 1),

2
3a0 (3D, a0 ≳ 2).

(2.80)

The 3D (a0 ≳ 2) Wmax is plotted in the right panel of Fig. 2.13. For the non-linear
cases, the average accelerating field experienced throughout the acceleration is half the
maximum field, which is generally true for a0 ≫ 1. The acceleration has been assumed to
be dephasing limited for the 1D linear and 3D non-linear regimes, and depletion limited
for the 1D non-linear regime. In the latter case, this is because if the pulse length is set
43 [136] P. Sprangle et al. (1990) Physical Review Letters
44 [149] C. D. Decker et al. (1996) Physics of Plasmas
45 [44] W. Lu et al. (2007) Physical Review Special Topics - Accelerators and Beams

[136] P. Sprangle et al. (1990) Physical Review Letters
46 [44] W. Lu et al. (2007) Physical Review Special Topics - Accelerators and Beams
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to the bubble radius, ωpτ = kpcτ = 2√
a0, then

Ld = 2ω2
L

ω2
p

λp
√

a0, (2.81)

which has the same scaling with ne and a0 as Lϕ, but is always longer. Hence, in the
bubble regime, dephasing will limit the maximum electron energy unless the pulse length
is much shorter than the bubble radius.
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Figure 2.13: Dephasing length and energy gain as functions of plasma density and a0.

When attempting to predict energy gain, it is important to use an appropriate value
for a0. However, this is often difficult to estimate because of the non-linearity of the
laser-plasma interaction. For example, in chapter 6, electron beam energies up to 2.2 GeV
are reached using a plasma density of 2 × 1024 m−3, with a spot size of w0 = 27µm.
Using the vacuum a0 value of 2 would predict an energy gain of 1.2GeV. However, if
the matched spot size of 13 µm is used to determine a0, then the predicted energy gain
is 2.4 GeV, meaning that, in this case, this was the correct spot size to use. Ultimately,
these scaling laws need to be interpreted in the context of exactly how and when the
electron beam is injected into the wake and the plasma wave evolution that occurs as
the beam accelerates.

2.7 Injection

Before a particle can be accelerated it must first be injected into the wave. In this section
we review the fundamentals of trapping in a plasma wave, before giving overviews of
some of the mechanisms that are used to inject charge in laser wakefield accelerators.

2.7.1 Trapping in a 1D wave

Consider a 1D plasma wave with a potential given by ϕ = ϕ0 cos(ξ), where ϕ0 is the
maximum of the potential, ξ = kp(z − vpt) is the phase of the wave, and the wave is
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Figure 2.14: Phase space trajectories for electrons in plasma wave with γp = 10. The
solid line gives the separatrix between trapped and free trajectories. Electrons follow
clockwise trajectories, moving in the −ξ direction below p = 10, and in the +ξ direction
above p = 10.

travelling in the positive direction at vp. The motion of an electron in this wave is
dictated by the Hamiltonian47,

H(γ, ξ) = γ − βpp − Φ(ξ), (2.82)

where γ and p are the electron’s Lorentz factor and momentum, βp = vg/c, and Φ =
eϕ/mc2. The derivation of the Hamiltonian can be found in appendix A.7. To determine
the conditions for trapping, we can calculate the various phase space orbits available to
electrons. Using γ =

√
p2 + 1, we can express Eq. 2.82 as a quadratic in p,

(1 − β2
p)p2 − 2(H + Φ)βpp + 1 − (H + Φ)2 = 0. (2.83)

This can be used to calculate trajectories in the (ξ, p) phase space, which has been
done in Fig. 2.14 for γp = 10. In this moving frame, particles with low momentum slip
backwards at the speed of the wave, while at the other extreme, particles with high
momentum overtake the plasma wave.

The critical trajectory exists for Hs = H(γp, ξmin) = γ−1
p − Φmin, where ξmin is the

point at which Φ(ξmin) = Φmin, and defines a separatrix between phase space orbits
that are trapped by the wave and those that are free. This is shown by the solid line
in Fig. 2.14. From inspection, we see that trapped orbits must have initial momenta
close to γp, as the accelerating forces of the wake are too weak to accelerate a particle
from rest up to γp within a quarter cycle. Amongst the trapped orbits there are two
different types; closed and open48. The open trapped orbits can be followed by electrons
in the bulk plasma that have the necessary momentum, while the closed trapped orbits
are inaccessible to these electrons, and instead, particles must be initialised at these
points in phase space, such as through external injection. The orbits in Fig. 2.14 are
47 [137] E. Esarey et al. (1995) Physics of Plasmas
48 [150] S. V. Bulanov et al. (2005) Physics of Plasmas
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for particles with H = 1.5Hsep (free), H = Hsep/1.5 (trapped, open), and H = Hsep/3
(trapped, closed). Particles rotate along these trajectories in a clockwise direction, at a
speed determined by the particle’s distance from γp. As stated by Liouville’s theorem,
the density of particles travelling along these trajectories is constant in time. This means
that a group of particles that are injected with a distribution of phases but at the same
momentum, will rotate to have a narrower spread of phases but some non-zero spread in
momentum. Thus, under the assumptions made here, a small energy spread requires
that particles are injected within a narrow region of phase space.

2.7.2 Self-injection

Self-injection is a general term that refers to background plasma electrons somehow
becoming trapped in the accelerating and focusing portion of the plasma wave. It was first
observed experimentally in 1995 by Coverdale et al.49, and has since become a common
injection method due to its technical simplicity. Self-injection is a highly non-linear
process, as it is required for the plasma wave to break in some way, and consequently
requires a high intensity drive laser pulse.

There are numerous scaling laws that can be used to predict the onset of self-
injection. A model based on observations from PIC simulations, requires the bubble
radius, rb ≳

√
2k−1

p γp
50. This model is conservative in its predictions of the field strength

required for self-injection, as noted in Lu et al.51 and elsewhere, providing an upper
bound on the required bubble size. Another model proposed by Thomas et al.52 finds
a less stringent requirement for self-injection, that rb ≳ 2k−1

p

√
ln (2γ2

p) − 1. Taking the
bubble radius rb = 2k−1

p
√

a0, the predicted field strength for self-injection as a function
of density becomes

a0 ≳ ln(2γ2
p) − 1. (2.84)

This threshold is found by calculating the fields inside the bubble in its moving frame, and
then integrating the elliptical trajectories of electrons as they travel from the transverse
extremes of the bubble to its rear. By injecting transversely, electrons avoid the initially
decelerating portion of the bubble, and consequently require less acceleration, or a weaker
field, to be trapped. The predicted injection a0 as a function of density is plotted in
Fig. 2.15.

The model by Thomas was found to agree with the experimental results of Mangles
et al.53, who go on to express the self-injection threshold density in terms of the laser
power and the fraction of the laser energy contained within the FWHM of the spot, α,

α
P

Pc
= 1

16

[
ln
(2nc

3ne

)
− 1

]3
, (2.85)

49 [151] C. A. Coverdale et al. (1995) Physical Review Letters
50 [142] I. Kostyukov et al. (2004) Physics of Plasmas
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51 [44] W. Lu et al. (2007) Physical Review Special Topics - Accelerators and Beams
52 [153] A. G. R. Thomas (2010) Physics of Plasmas
53 [154] S. P. D. Mangles et al. (2012) Physical Review Special Topics - Accelerators and Beams
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Figure 2.15: The self-injection threshold intensity, as predicted by Thomas et al. across
the range of densities commonly used for laser wakefield acceleration.

which was shown to have validity over a range of densities from 0.3 - 2 × 1025 m−3.
Fundamentally, self-injection is difficult to predict because the laser pulse evolution
changes the Hamiltonian of the system. Since pulse evolution is also highly non-linear,
cases where we are at the threshold of self-injection often require PIC simulations to
support the conclusions of analytic models.

2.7.3 Phase velocity reduction injection

Reductions in the phase velocity of the back of the bubble can relax the intensity
requirements for injection because the reduced phase velocity means that the electrons
do not need as much longitudinal momentum to become trapped. For example, if the
a0 of the laser is increasing then the bubble radius will expand, reducing the injection
threshold54. Since ultrashort intense laser pulses tend to amplify as they propagate, some
form of injection driven by intensity changes is common, although sometimes undesirable
due to its unpredictability.

The bubble radius can also expand due to a decreasing plasma density, which has
been observed to trigger injection55. Gas targets can be constructed specifically with
this aim in mind, as done by Gonsalves et al.56 and Hansson et al.57, where multiple gas
sources were used to customise the density profile. If the density transition is confined
to a small region in space, such as in a hydrodynamic shock, then the energy spread can
be reduced58, as shown in the work done by Schmid and Buck et al.59.
54 [155] S. Kalmykov et al. (2009) Physical Review Letters
55 [156] H. Suk et al. (2001) Physical Review Letters

[157] J. Faure et al. (2006) Nature
[158] A. V. Brantov et al. (2008) Physics of Plasmas

56 [159] A. J. Gonsalves et al. (2011) Nature Physics
57 [160] M. Hansson et al. (2015) Physical Review Special Topics - Accelerators and Beams
58 [150] S. V. Bulanov et al. (2005) Physics of Plasmas
59 [161] K. Schmid et al. (2010) Physical Review Special Topics - Accelerators and Beams
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2.7.4 Ionisation injection

Ionisation injection offers a technically simple way to gain control over the injection
mechanism. By using a low Z gas, such as hydrogen or helium, doped with a certain
amount of a higher Z gas, such as nitrogen, control of the injection threshold, as well
as over the rate of charge injection, can be obtained. Ionisation injection can reduce
the intensity required for injection to occur60, as well as increase the beam charge and
reduce the divergence61.

The tightly bound inner shell electrons require a larger field strength to be ionised
than the bulk plasma electrons and are therefore ionised at a different phase of the
laser pulse and plasma wave. Specifically, cold electrons in the bulk plasma have total
energy H = 1, while electrons that are ionised close to the peak of the laser pulse have
H = 1 − Φ(ξi), where Φ = eϕ/mec2 is the normalised potential of the wake at the
ionisation phase ξi. Electrons will be trapped if H ≤ Hsep, where Hsep = γ−1

p − Φmin

is the separatrix, and Φmin is the minimum of the potential. The electrons will also
have some transverse momentum due to the heating of the laser, γ⊥(ξi) =

√
1 + a⊥(ξi).

Including these effects, the trapping condition is62

1 − Φ(ξi) ≤

√
1 + a2

⊥(ξi)
γp

− Φmin. (2.86)

The residual transverse momentum a⊥ is zero if the electron is ionised at the peak phase
of the laser pulse. Generally, this condition cannot be satisfied for a0 < 1 for wake
velocities that are appropriate for laser wakefield acceleration, and so the potential of
the wake needs to be calculated numerically.

The left panel of Fig. 2.16 shows the potential of a wake, calculated using Eq. 2.46
for a Gaussian laser pulse with an envelope function a(ξ) = a0 exp (−ξ2/(2kpστ )2) for
a0 = 1.3 and kpστ = 1, the resonant pulse length which produces the largest wave for
this a0. It is assumed that the electron is ionised at the peak phase, when a⊥ = 0. For
this laser pulse, only electrons that are ionised after the peak of the laser pulse has
passed have the potential to be trapped. If an electron is going to be ionised, it is likely
to happen before or at the peak of the laser pulse, so, consequently, ionisation injection
is unlikely for this laser pulse. A longer laser pulse moves the peak of the field further
into the potential, increasing ξi, which can increase the chance of ionisation injection
occurring, despite the reduction in the wave amplitude that results from moving away
from resonance. This is shown in the right panel of Fig. 2.16, which charts the ionisation
phase ξi as a function of both the laser peak a0 and the pulse length kpστ = 1. The
contour of ξi = 0 can be seen as a soft threshold for ionisation injection.
60 [163] T. P. Rowlands-Rees et al. (2008) Physical Review Letters

[164] C. McGuffey et al. (2010) Physical Review Letters
61 [165] A. Pak et al. (2010) Physical Review Letters
62 [166] M. Chen et al. (2012) Physics of Plasmas
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Figure 2.16: Left panel shows the potential of a wake excited by a Gaussian laser pulse
with a0 = 1.3, kpστ = 1. The dashed horizontal and vertical lines are the injection
condition, Φ(ξi), and injection phase ξi. The right panel gives the injection phase as a
function of peak a0 and pulse length, with the yellow star indicating the location of the
example in the left panel.

Due to the probabilistic nature of ionisation, electrons will be ionised at different
phases of the laser oscillation, when a⊥

2 > 0. The electrons are accelerated transversely
by the laser in its polarisation direction and retain this momentum once they are captured.
In 3D, an additional source of transverse momentum exists for electrons ionised off-axis,
where a transverse potential gradient exists. Two-colour ionisation injection has been
proposed to alleviate these issues63, with the shorter wavelength, higher field strength
pulse being used to ionise the inner shell electrons. The shorter wavelength both reduces
the a⊥ and allows the laser pulse to be over-focused, reducing the RMS64 distance
between the ionised electrons and the wake axis, as well as localising injection to a small
region in z, reducing energy spread.

2.8 Transverse dynamics

As we saw in Sec. 2.4.6, for large amplitude drivers the strong longitudinal accelerating
fields of the wake also exist in the transverse directions. These fields result in LWFA
accelerated beams having exceptionally small transverse sizes, on the order of a few
microns. For moderate divergences, this means that the beam quality is comparable to
conventionally accelerated beams65, which is an attractive feature of LWFAs. In addition,
the rapid oscillation of high energy electrons in the channel produces high-frequency
electromagnetic radiation, typically in the 1 - 50 keV range66. These hard x-rays are
emitted from a small source, making them suitable for phase-contrast imaging67. In this
63

[167] L. L. Yu et al. (2014) Physical Review Letters
[168] X. Xu et al. (2014) Physical Review Special Topics - Accelerators and Beams

64 Root Mean Squared
65 [169] R. Weingartner et al. (2012) Physical Review Special Topics - Accelerators and Beams
66 [170] J. C. Wood PhD. Thesis (2016)
67 [82] S. Kneip et al. (2012) Physical Review Special Topics - Accelerators and Beams

http://dx.doi.org/10.1103/PhysRevLett.112.125001
http://dx.doi.org/10.1103/PhysRevSTAB.17.061301
http://dx.doi.org/10.1103/PhysRevSTAB.15.111302
http://dx.doi.org/10.1103/PhysRevSTAB.15.021302
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section, we will look at the transverse dynamics of electrons in a plasma channel, the
definition and behaviour of the beam’s emittance, and the properties of the betatron
radiation produced by the oscillations.

Consider the motion of an electron in an ion channel, where the electron has some
initial displacement from the field axis in the x direction. The focusing forces of the
electromagnetic fields inside the bubble are given by Eq. 2.54, such that

Fx = −
meω2

p

2 x. (2.87)

Using Fx = ∂tpx = γme∂2
t x, the transverse equation of motion is then

d2x

dt2 = −ωβ
2x, (2.88)

where ωβ = ωp/
√

2γ is known as the betatron frequency of the oscillation. At 1GeV
electrons in an ion channel with a plasma density of 1 × 1024 m−3 will oscillate with a
wavelength of 2 mm, while at 1 × 1025 m−3 and 100 MeV, this reduces to 0.2 mm. Since
electrons are also being accelerated and decelerated, the instantaneous betatron frequency
changes with the longitudinal dynamics.

The amplitude of the transverse oscillation depends on the specifics of the electron’s
injection process, as this determines the initial displacement from the field axis and the
initial transverse momentum. For self-injected beams, the injection is mostly from the
edges of the bubble, where the initial transverse momentum is low but the displacement
is large. For ionisation injection, it will depend on the width of the laser pulse that is
above the ionisation threshold, and will be increased by above-threshold heating of the
electrons by the laser. The oscillation amplitude will decrease as the electron accelerates,
due to the relativistic mass increase of the particle.

2.8.1 Defining emittance

Each electron in a beam has a location in a 6D position-momentum space. As a beam,
they occupy a hyper-volume in this phase space, and the magnitude of this volume is
defined as the full 6D emittance, which is a value that quantifies the beam quality. It is a
useful concept because, according to Liouville’s theorem, it is invariant if the beam is only
exposed to conservative forces. Examples of non-conservative forces that are relevant to
LWFA are elastic scattering and direct laser acceleration, which will increase emittance,
and betatron radiation, which reduces emittance68. In general, a large emittance is bad
for applications, as it reduces the minimum spot size to which the electron beam can be
focused, and makes the beam more difficult to transport. Since reducing emittance is
challenging, maintaining a low emittance is a priority of accelerator design. As discussed
68 This is the purpose of cooling rings for conventional accelerators; electrons ‘radiate off’ their transverse

energy.
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in Sec. 2.4.6, the focusing forces in the bubble regime of plasma wakefield acceleration
are linear, making this regime well suited to maintaining electron beam emittances.

Floettenmann69 identifies steps usually taken by physicists to make this 6D volume
more tractable. The emittance is projected onto either the longitudinal axis or one of
the two transverse axes, and in the transverse directions, the transverse momenta, px, py

are replaced by the quantities x′ = px/pz, y′ = py/pz. In addition, since beams often
have long-tailed distributions, the analysis is restricted to a high-density core using some
width metric. This is usually the RMS, but for particularly long-tailed distributions a
scaling that is more robust might be required, such as the FWHM, or median. It should
be noted that only the full 6D distribution strictly obeys Liouville’s theorem and that the
projections are simply useful shorthands, only being conserved under specific conditions.

If the particle coordinates are known, the emittance can be calculated statistically.
The trace space emittance is given by

εtr =
√

⟨x2⟩⟨x′2⟩ − ⟨xx′⟩2, (2.89)

where the angled brackets denote the RMS. This is the trace space because the x′ quantity
is being used, as opposed to the transverse momentum. This emittance is considered
‘un-normalised’, because an increase in the longitudinal momentum will decrease the
emittance, despite the transverse momentum spread remaining unchanged, a process
known as adiabatic damping. The normalised trace emittance is defined as

εtr,n = p̄z

mec

√
⟨x2⟩⟨x′2⟩ − ⟨xx′⟩2, (2.90)

where p̄z is the average longitudinal momentum. In contrast, the phase emittance, or
geometric emittance, requires no normalisation,

εph,n = 1
mec

√
⟨x2⟩⟨p2

x⟩ − ⟨xpx⟩2, (2.91)

where the subscript n has been added here for emphasis. Throughout this thesis it
will be assumed that it is the normalised emittance being referenced, unless it is either
explicitly stated or irrelevant, such as when γ = 1. The normalised emittance can be
more difficult to determine since the transverse momentum is seldom measured directly
and so knowledge of the energy is also required so that it can be calculated from the
divergence. The projected emittances can be seen as determinants of 2 × 2 matrices,
where the diagonal entries are the area terms, ⟨x2⟩ and ⟨p2

x⟩, and the off-diagonal entries
are the correlation terms, ⟨xpx⟩. Extending this, the full 6D emittance can be calculated
69 [171] K. Floettmann (2003) Physical Review Special Topics - Accelerators and Beams

http://dx.doi.org/10.1103/PhysRevSTAB.6.034202
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using

ε2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

σxx σxpx σxy σxpy σxz σxpz

σpxx σpxpx σpxy σpxpy σpxz σpxpz

σyx σypx σyy σypy σyz σypz

σpyx σpypx σpyy σpypy σpyz σpypz

σzx σzpx σzy σzpy σzz σzpz

σpzx σpzpx σpzy σpzpy σpzz σpzpz

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≈

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

σxx σxpx 0 0 0 0
σpxx σpxpx 0 0 0 0

0 0 σyy σypy 0 0
0 0 σpyy σpypy 0 0
0 0 0 0 σzz σzpz

0 0 0 0 σpzz σpzpz

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(2.92)
where σxx = ⟨x2⟩ and σxpx = ⟨xpx⟩. The approximation is the assumption that correla-
tions between orthogonal coordinates are small, and the 6D emittance is simply the sum
of the individual emittances in each direction.

2.8.2 Drift space emittance growth

In a drift space, there are no forces acting on the beam, and consequently, the full
emittance of the beam is conserved. However, if there is any energy spread in the beam,
then the phase emittance, εph, will grow as the beam spreads out. The magnitude of
this effect can be calculated by substituting x(z) = x0 + zx′ into the definitions of ⟨x2⟩
and ⟨xpx⟩,

⟨x2⟩ = ⟨x2
0⟩ + 2z⟨x0x′⟩ + z2⟨x′2⟩, (2.93)

⟨xpx⟩ = ⟨x0px⟩2 + 2z⟨x0px⟩⟨x′px⟩ + z2⟨x′px⟩2. (2.94)

Then, by substituting into 2.91, we derive the phase emittance as a function of drift
length,

εph(z)2 = εph(0)2 + Az + Bz2, (2.95)

where

A = ⟨x0x′⟩⟨p2
x⟩ − ⟨x0px⟩⟨x′px⟩,

B = ⟨x′2⟩⟨p2
x⟩ − ⟨x′px⟩2.

(2.96)

If the energy spread is small, 1/pz can be factored out of the expressions for A and B,
resulting in A = B = 0.

Although this growth only affects the phase space emittance, it manifests itself in the
trace space emittance if the beam is recollimated by a beam optic, such as a quadrupole.
This is due to the γ dependence of a magnetic field’s effect on each electron’s trajectory.
The result is that, upon collimation, a single point in trace space before the optic will map
to multiple points after the optic, causing the trace space emittance to increase. When
the beam is collimated the trace space and phase space emittances will be equal. The
consequence of this is that the trace space emittance measurements of the electron beam,
such as the pepper-pot style measurements presented by Sears et al.70, while valuable
70 [81] C. M. S. Sears et al. (2010) Physical Review Special Topics - Accelerators and Beams
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Figure 2.17: Phase space plot of a Gaussian beam. An ellipse with radii R1, R2 has
been fit to the RMS contour of the beam. In this plot, the beam has acquired a positive
correlation after expanding from focus, where it would have had zero correlation.

for providing information about the emittance of the beam inside the channel, cannot
measure the effect of the drift space on the electron beam. To obtain this information,
the emittance measurement must be made after a quadrupole, or some other focusing
element, where the two spaces are equivalent. Alternatively, the trace emittance of each
energy slice of the beam can be measured independently, as is done in chapter 5.

2.8.3 Beam envelope dynamics

The beta function relates the beam size to the emittance at longitudinal position s in
the accelerator,

βx(s) ≡ ⟨x2⟩
εx

. (2.97)

The physical interpretation of the beta function is shown in Fig. 2.17, with an ellipse fit to
the RMS contour of the beam in x−x′ phase space. The area of the ellipse is equal to the
emittance times a factor of π; sometimes the units of emittance are given in π mm mrad,
and under the action of conservative forces, the area of the ellipse will remain constant,
causing the ellipse to rotate, stretch and compress as the beam propagates. For example,
when the beam is at focus, the ellipse will be upright, while after some drift space, an
initially focused beam will acquire a positive correlation between x and x′, as shown in
the Fig. 2.17.

Since the focusing forces depend on the location of the beam in the accelerator, we
can recast Eq. 2.88 to depend on s,

d2x

ds2 + kβ
2x = 0, (2.98)
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where kβ = ωβ/c, and we have made the coordinate transformation s = ct. This is Hill’s
equation71, from which it can be shown that the beta function is given by the solution to

1
2β′′ + k2

ββ − 1
β

[
1 + β′2

4

]
= 0. (2.99)

This equation often needs to be solved numerically for arbitrary density profiles. For a
constant plasma density, the beta function evolves according to

β = β0 cos2(kβs) + 1
β0k2

β

sin2(kβs), (2.100)

where β0 is the initial condition. This is an oscillating solution unless β0 = k−1
β ≡ βm,

which defines the matched beam size. If an electron’s beam size is to remain constant in
an accelerating column, it must be injected with the energy-dependent matched beam
size. Oscillations in the beta function are undesirable because they produce emittance
growth when they couple to energy spread, since different energy slices rotate at different
rates in phase space.

Solutions to Eq. 2.100 are plotted in Fig. 2.18 for a tapered density profile using
γ = 300 and γ = 3000. An initially mismatched solution oscillates around the matched
solution, with an oscillation wavelength that scales with the longitudinal momentum. As
the density drops, the beta function and oscillation wavelength increase.
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Figure 2.18: Beta function solutions for different Lorentz factors. A matched solution,
β0 = βm, and a mismatched solution, β0 = 1.2βm has been plotted at each γ. The effect
of a decreasing density is shown.

2.8.4 Betatron radiation

As a particle oscillates, it undergoes continual transverse acceleration and emits radiation
as a result. The longitudinal acceleration also produces radiation, but the field’s strength
is a factor of 1/γ weaker. Consequently, the radiation at any given moment is effectively
the same as would be emitted by a particle travelling along the arc segment of a circle
71 [172] S.-Y. Lee Accelerator Physics (Fourth Edition) (2019)
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with an equivalent radius of curvature72. Due to the particle’s relativistic motion, the
radiation is collimated by a factor of γ along its direction of motion, such that for highly
relativistic particles, the radiation is only ‘seen’ by an observer when the particle is
travelling directly towards them. In the particle’s reference frame, the radiation column
strafes over the observer in time ∆t′ ∼ ρ/cγ, where ρ is the instantaneous radius of
curvature. In the observer’s reference frame, this is a factor of γ2 shorter, so the pulse
length is ∆t ∼ ρ/cγ3. From Fourier theory, the radiation spectrum must extend up to a
critical frequency of ωc ∼ ∆t−1 ∼ cγ3/ρ.

The value for the radius of curvature, ρ, depends on the frequency ωβ , and the radius
of oscillation, rβ. The radius of oscillation for individual electrons will depend on their
specific injection trajectories, so it is more useful to consider the average radius of the
beam for a given emittance, εn. If the beam is matched to the channel, then the radius
will be

rβ =
√

εn

γkβ
=
(

2ε2
nc2

γω2
p

) 1
4

. (2.101)

For a typical LWFA emittance of 10 mm mrad, a 1 GeV beam in a 1 × 1024 m−3 plasma
will have an oscillation radius of 1.3 µm. For a sinusoidal oscillation, the minimum radius
of curvature is

ρ = v2

v̇⊥
= v2

c2k2
βrβ

≃
λ2

β

4π2rβ
, (2.102)

where the approximation comes from taking v ≃ c. For our example, ρ ≃ 0.07 m, which
gives a critical frequency of 2.2×1019 s−1. This means that significant numbers of photons
with energies up to the critical energy of Ec = 19 keV should be produced, which are in
the hard x-ray part of the spectrum. For the 100 MeV beam in the 1 × 1025 m−3 plasma,
the critical energy is an order of magnitude lower, at 1.9 keV.

For Nβ electron oscillations in a plasma channel, the intensity spectrum can be
expressed in terms of the critical frequency,

d2I

dEdΩ ≃ 6Nβe2

π2c

γ2ζ2

1 + γ2θ2

[
γ2θ2

1 + γ2θ2 K2
1/3(ζ) + K2

2/3(ζ)
]

, (2.103)

where
ζ = E

Ec
(1 + γ2θ2)

3
2 , (2.104)

and
Ec = ℏωc = 3ℏγ3rβω2

β/c, (2.105)

and the functions Ki are modified Bessel functions of the second kind. Eq. 2.103 is
plotted in Fig. 2.19 for a 100 MeV electron oscillating in an ion channel with a density of
1 × 1025 m−3. The radiation intensity is strongest on-axis and slightly below the critical
energy. The intensity falls at increasing observation angles, as does the critical energy.

72 [173] J. D. Jackson Classical electrodynamics (1999)



61 Chapter 2. Theory

100

d
I
d
E

10−2 10−1 100 101

E (keV)

−25

0

25

θ
(m

ra
d

)

d2I
dEdθ

0 20
dI
dθ

−25

0

25

θ
(m

ra
d

)

2.5 5.0 7.5

Figure 2.19: X-ray spectrum with a critical energy of 1.9 keV, corresponding to a 100 MeV
electron performing a single oscillation in an ion channel with a density of 1 × 1025 m−3.
The dotted vertical line shows the critical energy, while the curved dashed line is the
maximum intensity contour. The spectrum in the top plot is the on-axis spectrum, while
the transverse profile in the right plot is integrated across all energies.



3 | Methods

In this chapter, the experimental and numerical methods used in this thesis will be
presented. We will follow a similar route through these methods as the route taken

through the theory section, starting with the laser diagnostics. Following on from this,
we will explain the target configuration and the interferometric methods used for density
measurements. The electron beam diagnostics will be discussed, covering the detection
of electrons, the measurement of the energy spectrum, and the pepper-pot emittance
measurement technique. Finally, due to their extensive use in this thesis, the mechanism
behind particle-in-cell simulations will be explained, and various convergence tests will
be performed to identify appropriate simulation resolutions.

3.1 Laser diagnostics

The experimental results were obtained using the Gemini laser at the Central Laser
Facility (CLF); part of the Rutherford Appleton Laboratories in Oxfordshire. The
Gemini laser simultaneously provides 800 nm laser pulses to two target areas, named
Astra Target Area 2 and 3 (ATA2/3)1, with each target area serving a different purpose.
Nominally, the laser provided to ATA2 has an energy of 500 mJ, with a pulse duration of
40 fs, at a repetition rate of 5 Hz, while the laser provided to ATA3 is split into two arms,
which each deliver 15 J in 30 fs, at a repetition rate of 0.05Hz. The ATA2 and ATA3
beam diameters are 55mm and 150mm respectively. More detailed descriptions of the
laser system are given here2. The nominal values of the laser system rarely equal those
delivered to the target areas during experiments, and consequently, it is necessary to
closely monitor the delivered laser energy and pulse duration on a shot-to-shot basis,
both for the operation of the experiment and for the analysis of results.

To characterise the laser at focus for each shot, measurements of the energy and
temporal duration need to be made, which determines the power. The spatial distribution
of the power at the focal plane can then be determined by characterising the focal spot.
1 The ‘Astra’ refers to the front-end of the Gemini laser, which was previously a laser system in its

own right, capable of achieving intensities of 1023W m−2.
2 [174] C. J. Hooker et al. (2006) Journal de Physique IV

[175] K. Poder PhD. Thesis (2016)
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3.1.1 Power measurements

In ATA2, the shot-to-shot variations in the laser energy are monitored using the residual
laser energy that leaks through one of the dielectric mirrors close to the target. The
leakage is de-magnified, before being directed onto a camera’s CCD, and the integrated
number of counts on the camera correlates linearly with the laser energy. The calibration
between the number of counts and the laser energy is performed by taking measurements
of the laser energy at the target using a Gentec energy meter, which is capable of
measuring the absolute energy in the laser. Calibrating this number with the leakage
CCD counts accounts for the losses that occur during the beam transport to the target.
In ATA3, a similar procedure is performed, except that the measurement is provided by
the CLF laser operators, and it is made before compression of the pulse. The compression
efficiency is periodically measured and is usually approximately 70 %. This data is then
made available to users online3.

The pulse duration is more challenging to measure. Since the laser pulse is on the
femtosecond timescale, the only readily available reference with which to measure it
is the laser itself. This is the principle behind the autocorrelator, which is a common
method for measuring the pulse length due to its relative technical simplicity. However,
this only gives intensity information, which is ambiguous with respect to the carrier
envelope phase and the direction of time. To fully describe the pulse shape, the temporal
phase is also required. Two common methods exist for measuring this, the Frequency
Resolved Optical Gate (FROG), and Spectral Interferometry for Direct Electric field
Reconstruction (SPIDER). The FROG is used by the CLF operators to provide the pulse
length information about the ATA3 lasers to the users, while a SPIDER was employed by
the users to measure the post-compression pulse length in ATA2. Particular care must
be taken when making pulse length measurements with respect to dielectric mirrors, as
these can alter the pulse spectrum. One must also take care to account for transmission
through dielectric materials since these can alter the pulse length via group velocity
dispersion.

3.1.2 Focal spot characterisation

The first step in characterising the focal spot is the measurement of a satisfactory focal
spot image. The focal spot should be imaged exactly at its focal plane, and with an
appropriate magnification. The focal plane can be determined by monitoring the size of
the focal spot as the position of the camera is scanned. For weak focusing geometries, the
Rayleigh range of the laser can become comparable to the travel of the focal spot camera,
and in such instances, it is best to use quantitative measurements of the beam size as a
function of camera position to find the focal plane. The appropriate magnification is a
balancing act since the magnification needs to be large enough that the contours of the
focal spot can be resolved accurately, but not so large that small amounts of energy in
the wings of the pulse are clipped. This will ultimately depend on the dynamic range
3 [176] eCat2, Central Laser Facility
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and resolution of the camera, as well as the focal spot quality. Of similar importance is
to attenuate the laser to a level that uses the full dynamic range of the camera, without
causing saturation. Spatial calibration of the camera must also be performed. While it
is possible to use the magnification of the imaging system, this can be subject to errors
associated with the manufacturing tolerances of the objective. It is often simpler and
more reliable to use a physical reference, and a reliable one is the diffraction pattern
formed by a grating. For a transmission grating with spacing d placed into the near-field
of the laser, a series of focal spots will be produced in the far field with a separation
x ≈ fλ/d, where f is the focal length, and λ is the laser wavelength. Finally, it is
important to perform a pixel-wise background subtraction of a dark-field image. This
image should be created by taking the pixel-wise average of a large number of images
with the camera while the laser is blocked.
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Figure 3.1: Focal spot image (left) and the associated field intensity (right). An ellipse
fitted to the FWHM contour has been plotted. The dashed lines indicate the minor and
major ellipse axes.

After recording a focal spot image, it is helpful to extract a measure of the beam size
and the maximum intensity. The beam size is most often quantified by fitting an ellipse
to the full width at half maximum (FWHM) contour, which is a useful measurement for
noisy, irregular patterns on account of its insensitivity to long tails in the measurement.
The focal spot size can then be quoted in terms of the long (major) and short (minor)
axes of this ellipse, which gives a measure of the spot size and its eccentricity. The
intensity at each pixel can be determined by stipulating that the power of the laser is
shared equally between all the pixel counts in the image. This analysis procedure has
been performed for the image in the left panel of Fig. 3.1, using an example focal spot
image taken from the experiment described in chapter 6. The conversion from pixel
counts to intensity has used a laser energy of 10.9 J and a FWHM temporal envelope
width of 45 fs. The right panel is the normalised field strength of the image, proportional
to

√
I, and consequently, the dynamic range of the image is increased.

The intensity and field strength profiles as a function of radius are plotted in Fig. 3.2.
This highlights the difference in widths between the two profiles. The laser transverse
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Figure 3.2: Identification of focal spot transverse profile metrics.

profile is often modelled as a Gaussian with a width equal to the 1/e2 width of the
intensity profile, and Fig. 3.2 shows that using this approximation models the true a0

profile quite well within the central spot. However, energy in the wings of the spot will
not be modelled with this approximation, and some of the consequences of using this
approximation will be shown in Sec. 3.5.5.

For reference, it is worth explicitly stating the conversions between the various metrics.
A Gaussian field envelope in both space and time has the form

E(r, t) = E0 exp
[
−
(

t

τ0

)2
−
(

r

w0

)2
]
, (3.1)

where τ0 and w0 are defined as the Gaussian widths of the field. The intensity profile,
using the same widths, is

I(r, t) = I0 exp
[
−2
(

t

τ0

)2
− 2

(
r

w0

)2
]
, (3.2)

where we are refraining from identifying intensity Gaussian widths to avoid confusion.
The two important relationships to identify are those between the intensity focal spot
FWHM and the Gaussian width, and the intensity temporal FWHM and the peak
intensity. The width relationship can be found by setting I(rHM, 0) = 0.5, giving

wFWHM =
√

2 ln 2w0 ≈ 1.18w0, (3.3)

where wFWHM = 2rHM, and rHM is the radius at half maximum. The energy in the laser,
EL, is equal to the 3D integral of the intensity,

EL = I0

∫ +∞

−∞
I(t′)dt′

∫ +∞

−∞
I(r′)r′dr′

∫ π

−π
dϕ′ (3.4)

=
(

π

2

) 3
2

τ0w2
0I0. (3.5)
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This expresses the laser energy in terms of the field parameters. In terms of the FWHM
measurements, this becomes

I0 = 8
( ln 2

π

) 3
2 EL

τFWHMw2
FWHM

. (3.6)

This assumes that the peak of the electric field occurs at the peak of the field envelope,
which is approximately true for cτ0 ≫ λ0, where λ0 is the carrier wave wavelength.

3.2 Gas targets

All the experiments in this thesis use neutral gas as the target. This gas needs to be
positioned at the laser focus when the pulse arrives, and control over the density and
longitudinal profile is required. In this section, the gas delivery systems are discussed,
and fluid simulations are used to model the density variations near apertures.

3.2.1 Target types

Gas jets are a common target in LWFA experiments since they are relatively simple to
set up, are easy to diagnose, and can provide the densities and longitudinal profiles that
are required. Usually, a longitudinal profile that is approximately constant is desired,
and this is achieved by using a converging-diverging (de Laval) nozzle design4. The gas
flow is initially subsonic in the converging region, accelerating to Mach 1 in the nozzle
throat, and then accelerating again to supersonic speeds as it expands in the diverging
section5. The ratio between the throat diameter and the final nozzle diameter determines
the speed of the flow, with faster flows producing flatter density profiles under ideal
conditions. The trade-off is that a larger backing pressure will be required to achieve the
same density at a higher flow velocity. Gas bottles, which are typically pressurised to
100 bar, can support supersonic flows in the density range of 1023 − 1025 m−3, which is
ideal for LWFA experiments.

In real gas jets, the effects of viscosity and nozzle imperfections need to be accounted
for, which can have substantial effects on the density profile. For example, the boundary
layer that forms between the flow and the nozzle wall can continue to grow into the flow
outside the nozzle6. In addition, shocks can form at nucleation points inside the nozzle,
producing spikes at the edges of the density profile. Micron-scale density ripples have
also been inferred through measurements of local variations in the plasma wave velocity,
seeding injection and affecting electron beam quality7. Consequently, while gas jets are
convenient and robust, they may be poorly suited to applications where fine control of
the density profile and the injection process are required.
4 [177] S. Semushin et al. (2001) Review of Scientific Instruments
5 [178] D. B. Atkinson et al. (1995) Review of Scientific Instruments
6 [179] N. Lemos et al. (2009) Review of Scientific Instruments
7 [180] S. Kuschel et al. (2018) Physical Review Letters

http://dx.doi.org/10.1063/1.1380393
http://dx.doi.org/10.1063/1.1145338
http://dx.doi.org/10.1063/1.3233895
http://dx.doi.org/10.1103/PhysRevLett.121.154801
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Figure 3.3: Simulations of neutral gas density around gas cell apertures. Each panel
shows a simulation with a different aperture radius. These simulations are axisymmetric
around r = 0, with the gas coming in at the z − 0 plane. The snapshots are at different
times; 15ms, 40ms, and 45ms moving from left to right, showing the equilibriatino of
the density over time.

Gas cells are another option for LWFA experiments. These are small gas boxes that
have entry and exit holes through which the laser propagates. These holes are typically
on the 100 µm scale, and they can be subject to laser damage if the laser is misaligned or
insufficiently focused. The cell is filled approximately 100 ms prior to the laser’s arrival,
which is enough time for the density to reach a smooth equilibrium. Cells are naturally
suited to producing a constant density profile, and they can also be designed to have a
variable length, which provides a useful tool for optimising the interaction, as well as
performing parameter scans.

3.2.2 Simulation of cell apertures

One of the disadvantages of gas cells is that the cell casing can obstruct the imaging of
the plasma. This is particularly the case at the laser exit and entry apertures, which is
where the most variation in the density occurs. To gain insight into the density profile
through the apertures, fluid dynamic simulations have been performed using the FLASH
code8. This code employs adaptive mesh refinement to allow for efficient computation
of a large range of length scales. The simulations were performed in 2D cylindrical
geometry, where the axis of symmetry was the centre of the aperture. The simulation
domain was 2 × 1 mm in the z − r plane, with the z = 0 boundary defined as the inlet
with a pressure of 100mbar, and the z = 2 mm and the r = 1mm boundaries defined
as outflows. The cell was simulated using a 25 µm thick boundary that extended up
the right edge of the domain to z = 0.8 mm, and then across to z = R, where R is
8 [181] B. Fryxell et al. (2000) The Astrophysical Journal Supplement Series

http://dx.doi.org/10.1086/317361
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the aperture radius and the parameter under study. Such a thin boundary was used to
simulate the boundary formed by the tape in the target used in chapter 6.
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Figure 3.4: Left panel shows exponential fits to on-axis density lineouts. The right panel
shows the fitting parameter λ as a function of aperture radius. The dotted black line in
the right panel goes through the origin without being forced.

Fig. 3.3 shows outputs from the aperture radii studies, at different times in the
simulation. At early times the flow inside the cell is turbulent, as the flow reflects off
the cell boundaries and mixes with inflowing gas. Over time, the density stabilises, first
at the apertures, and then in the corner of the cell. After approximately 50ms steady
state is achieved throughout the simulation window. The density reached a value of
approximately 1025 m−3 inside the cell, which is similar to the backing pressures used in
experiments, and this value was higher for the narrower apertures, as would be expected.
The on-axis density profiles are plotted in the left panel of Fig. 3.4. To these profiles, an
error function is fit, where the analytic form ρ = (e−ρ/λ + 1)−1 has been used, where λ is
the fitting parameter and characterises the scale length of the density change. Fitting
this function to the density profiles gives a linear relationship between λ and R, which
can be seen in the right figure of the plot. Approximately, λ ≈ R/2, a scaling that will
be used to characterise the density ramps in this thesis.

3.3 Interferometry

Interferometry is a general method that uses the interference between two waves to
extract information, and in LWFA experiments, the technique is primarily used for
measuring the density profile of the target. The refractive index of the plasma is lower
than the vacuum, so light that transmits through the plasma will acquire a relative phase
shift. The path length difference of a ray of light propagating through a material relates
to the line integral of the refractive index along its path,

λ0∆ϕ(x, y) = 2π

∫ B

A

[
η(x, y, z′) − 1

]
dz′, (3.7)
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where the path A − B is the path the light takes through the material with refractive
index η. If we assume that the path is straight, that is to say, the deflection of the light
rays is negligible, then for a constant density of ne, the phase shift is

∆ϕ(x, y) = λ0e2

4πc2meϵ0
neL. (3.8)

For densities of 1 × 1024 m−3 and plasmas that are 100 µm thick, this produces a path
length difference on the order of λ0, and so the laser wavelength is an appropriate
reference to use for the measurement. The interference pattern is generated by overlaying
two coherent beams with a slight pointing difference. Perfectly co-linear beams result
in no interference pattern in the transverse plane, as the phase difference between the
beams is constant everywhere. Only by introducing an angle between the beams, ∆θ,
does an interference pattern emerge, as this is equivalent to having a linearly increasing
phase difference across the entire beam. Fig. 3.5 illustrates this effect 1D, and how a
phase object can perturb the interference and cause a fringe shift.

Unperturbed Perturbed

Figure 3.5: Illustration of the principle of interferometry with angled beams.

The distortion of the wavefronts changes the location of the constructive interference
between the two waves, which is measured as a phase shift at the detector. In this way,
the spatial variation in the phase of the carrier wave produces spatial variations in the
intensity of the interference pattern. In our 1D example, the intensity of the pattern is

I(x) ∝ 1 + α cos(k0x sin(θ) + ∆ϕ(x)), (3.9)

where α is a factor that relates to the contrast of the fringes. The k0 sin(θ) term is
the wavenumber of the interference pattern, arising geometrically. By subtracting the
oscillating term, such as by comparing the data to a reference interferogram without a
phase object, the phase shift ∆ϕ can be retrieved.
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3.3.1 Implementation

Typically, we are interested in the longitudinal density profile of the plasma, and so a
probe is set up so that it propagates through the target orthogonally to the drive beam.
For our purposes the probe can be the same frequency as the main beam since any 1ωL

light scattered by the plasma is much weaker than the probe beam. The intensity of
the probe varies between experiments, but it is normally approximately two orders of
magnitude less energetic than the main beam. Once the laser has formed the plasma, it
will begin to evolve hydrodynamically; the electrons heat the ions and the whole plasma
begins to expand. This expansion reduces the density, and it is therefore important to
probe the target immediately after the drive laser completes its interaction with the
plasma, so as to accurately measure the plasma density at the moment of interaction. In
all experiments in this thesis, the probe beams were obtained from the same laser as the
drive beams, synchronising the pulses. To fine-tune the relative delay, a translation stage
in the probe beamline was used to provide a variable path length, and modifications
were made until the probe beam imaged the plasma immediately after the drive beam
had completed its transit.

The design of the interferometer needs to be considered. The plasma is typically
long and thin, whereas the probe beam is circular, meaning there is typically a large
portion of the beam that propagates through vacuum or neutral gas, undergoing almost
no phase shift. Consequently, it is often not necessary to generate the reference beam
before the probe interacts with the plasma, as this ‘unused’ portion of the beam can
be repurposed as the reference. The advantage of setting up the interferometer in this
way is that most of the apparatus can be placed away from the target, facilitating easy
access, and liberating space near the target.

The interferometer uses a 50:50 beamsplitter to generate two copies of the probe
beam. To produce the desired interferogram, these two copies need to be overlapped
on a camera’s sensor with the pointing difference required to produce the fringes, and
the positional offset required to overlap the unused portion of the beam with the phase
object. In addition, the short pulse length necessitates precise placement of the mirrors;
for a 50 fs pulse width, the path lengths of the two arms need to be within ∼ 10 µm of
each other. These requirements make the geometry of mirrors important, as different
geometries offer different degrees of freedom over the interference pattern. For example,
a Michelson interferometer, which utilises a central beamsplitting cube to both split
and recombine the beams, couples the spatial offset and the pointing angle between
the beams, whereas a Mach-Zender (MZ) geometry does not, allowing for independent
control of the offset direction and the fringe orientation. The extra control of the MZ
may be required when attempting to measure phase shifts near a boundary, such as at
the aperture of a gas cell. It is worth noting that the conventionally configured MZ
changes the timing between the two arms by changing the pointing in the individual
arms, not through the movement of the translation stage, as might be naively assumed9.
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Michelson Mach-Zender Hybrid
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Figure 3.6: Diagrams of Michelson, Mach-Zender, and hybrid interferometers.

This makes achieving temporal overlap more challenging with a Mach-Zender since the
alignment needs to be constantly corrected as the pointing offset is scanned in search of
temporal overlap. However, there is a modified MZ geometry that achieves the degrees
of freedom of the MZ and the ease of timing of the Michelson, at the cost of requiring a
slightly more complicated setup. These different arrangements are shown in Fig. 3.6.

To achieve a high-quality measurement, it is important to tune the interferometer
to simultaneously maximise spatial resolution and fringe contrast. Fringe contrast
determines the phase resolution because small changes in phase are determined not by
fringe wavefront movements, but by subtle changes in intensity across the interferogram.
Interferometry is therefore surprisingly sensitive; an interferogram with no visible fringe
shift can still measure changes in density if the image noise is low enough. Spatial
resolution is primarily determined by the imaging system, although fringe spacing can
play a role when the image is filtered according to spatial frequency, with thinner
fringes allowing for the selection of higher spatial frequencies while retaining a narrow
bandwidth10. Thin fringes result from a larger angle between the two arms of the
interferometer, which, for short laser pulses, can result in a spatially varying fringe
contrast. This is because the pulses do not overlap temporally across the entire beam,
resulting in a region of high contrast bordered by two regions of diminishing contrast.
This effect can be mitigated to some extent by using a narrow bandpass filter to reduce
the bandwidth of the probe pulse, increasing the pulse length and hence the region of
high-contrast fringes.

3.3.2 Density extraction

Mathematically, the interferogram has the form

I(x, y) = Ibg(x, y) + 1
2Iplasma(x, y)

(
ei(kf x+∆ϕ(x,y)) + e−i(kf x+∆ϕ(x,y))

)
, (3.10)

9 A translation stage is still required in the MZ setup to allow for a large range of pointing angles to be
scanned in search of the correct timing.

10 See Sec. 3.3.2 and Fig. 3.7.
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Figure 3.7: The Fourier filtering of interferograms, where the phase object producing the
fringe shift is a laser-ionised plasma in a gas jet. The left panels show the absolute value
of the Fourier transform of the image, while the right panels show the real components
of the respective inverse Fourier transforms, after masking the indicated regions. The
frequency space units are mm−1.

where Ibg and Iplasma are the intensity variations due to the background and plasma
respectively, kf is the fringe spatial frequency, and ∆ϕ is the 2D phase map to be retrieved.
We want to remove the noise from this image that is due to the background, and then
convert the argument i∆ϕ(x, y) to an intensity map. This will then be converted to a
2D density profile using an Abel inversion.

The Fourier transform of an example interferogram is shown in the left column of
Fig. 3.7. The hot spots at kx = ±2mm−1 correspond to the sinusoidal variation in the
intensity due to the fringes, which have a wavelength of approximately 0.5mm. The
fringes have the effect of making copies of the image in the Fourier plane at ±kf ,

F(I(x, y)) = F(Ibg) + F (kx + kf , ky) + F ∗(kx − kf , ky)
2 , (3.11)

where F denotes the Fourier transform, and

F (kx + kf , ky) = F(Iplasma(x, y)ei∆ϕ(x,y)), (3.12)

with F ∗ as the complex conjugate of F . By setting the value of the Fourier transform to 0
everywhere except the region surrounding either (kx +kf , ky) or (kx −kf , ky), most of the
background intensity variations are removed, as is the high-frequency part of the noise
spectrum. This is shown by the differences between the filtered interferograms in the top
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two panels of the right column of Fig. 3.7. Care must be taken so that an appropriately
sized region is masked, and there is an inherent trade-off between noise and resolution.
If the Fourier plane is cropped too aggressively in the ky direction, such that the range
of spatial frequencies selected is too narrow, then the plasma channel will appear larger
due to the loss of high-frequency spatial information, affecting the measurement of the
channel radius, and consequently the density. In addition, if the plane is cropped too
tightly in the kx direction, then the sharp change in density at the start and end of
the plasma will not be resolved. An example of this loss of resolution can be seen
when comparing the second two rows in Fig. 3.7, with the last row being an example of
cropping the Fourier plane too tightly and losing important spatial information.

After filtering around the lobe at kx = −ff , the interferogram now has the form
I(x, y) = Iplasma(x, y) exp(−i(kf x + ∆ϕ(x, y))). The phase map is then retrieved by
dividing by a reference interferogram, to which the exact same filtering has been applied,
yielding Iref(x, y) exp (−ikf x). The phase can then be retrieved by dividing by the
reference set of fringes and then taking the argument,

∆ϕ(x, y) = arg
(

Iplasma(x, y)e−i(kf x+∆ϕ(x,y))

Iref(x, y)e−ikf x

)
. (3.13)

Using a reference image for this purpose, rather than an artificially generated sinusoidal
signal, allows for the warping of the fringes due to imaging system imperfections to be
corrected.

The Abel inversion can be used to convert from the phase map to the density profile.
In our application, it uses the assumption of cylindrical symmetry and the phase as a
function of distance from the axis to determine the density at each point. The density at
longitudinal position x is given by

ne(x, r) = λ0re

∫ ∞

r

d∆ϕ(x, y)
dy

1√
y2 − r2 dy. (3.14)

where re is the classical electron radius. In principle, this equation can be used to turn a
phase map into a 2D density profile. In practice, brute force calculation of this function is
both slow, scaling O(N3) with the image size N , and inaccurate, requiring a high sample
rate to reach convergence. In addition, it is particularly sensitive to the measurements
near the axis, where the denominator in the integrand becomes small, and it is also
affected greatly by the presence of noise due to the reliance on a derivative.

Fortunately, numerous algorithms are available to make the transformation more
accurate and reliable. The main one used for the density calculations in this thesis is
the ‘three-point’ method11, which is well suited to applications where the noise level is
not high relative to the change in signal between samples. It cannot resolve single-point
values, since the three points smooth over such small fluctuations, but this is not a
concern for our application. Methods for computing the Abel inversion rely on an axis
11 [182] C. J. Dasch (1992) Appl. Opt.

http://dx.doi.org/10.1364/AO.31.001146
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Figure 3.8: The top panel shows the phase extracted from the interferograms in Fig. 3.7
while the lower panel shows the density map retrieved by the three-point method. The
side plots show the density profile of the channel, averaging over the region within the
black dotted lines.

of symmetry. For real data, this does not exist, therefore a compromise axis must be
selected, either manually or computationally. In this thesis, the centre was found by
fitting a Gaussian to the transverse phase profile of the channel. An example phase map
and the resulting density measurements are plotted in Fig. 3.8.

3.3.3 Accuracy of interferometry

Almost all the errors in interferometry come from the conversion of the phase map
to the density map. One large source of error can be incorrect spatial calibration, as
this can produce errors due to miscalculation of the channel size, to which the density
measurement is sensitive. Spatial calibration is usually performed by placing an object
with known dimensions into the focal plane of the diagnostic and then calculating the
ratio between the object’s size and its pixel width in the image. This can be a problem
if the magnification is not equal in each direction, so a first-order improvement to this
would be to obtain separate spatial calibrations in both planes individually. However,
imperfections in the imaging optics can cause local warping of the image, which could
only be properly corrected by using a pixel-wise calibration. A solution could be to
image a mesh of known dimensions as a reference and then use this to map each pixel to
real space individually.

The accuracy of interferometry could also be improved by increasing the transverse
sampling frequency. This would have two beneficial effects: firstly, the central region of
the plasma used for measuring the density is typically only a few pixels wide, and so
increasing the number of pixels in this region would improve the measurement accuracy;
and secondly, it would make identification of the axis of symmetry more reliable, as a
single pixel error would have a smaller effect. Typical CCDs are approximately square,
while underdense laser plasmas are long and thin, such that a large portion of the
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camera’s pixels are not utilised. Consequently, the use of different magnifications in each
plane would be advantageous.
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Figure 3.9: Stability of interferometry measurements over 141 shots at the same conditions.
The median density of the central region is 2.30 ± 0.07 × 1024 m−3, where the error is
the standard deviation of the measurements.

Fig. 3.9 uses a series of 141 interferometry measurements performed under the same
conditions to examine the stability of the diagnostic. This data was taken using the
experimental setup in chapter 5. The gas jet target can be assumed to be providing
helium molecules with a consistent density profile. While the laser energy variations will
affect the channel radius, the plasma density should not be sensitive to these, as the
helium at the centre of the channel will be fully ionised for all possible laser energies.
The variations in the density measurement are therefore dominated by random errors
in the interferometry, which result from a combination of noise, and changes in the
identification of the central axis. At this density the standard deviation was ±3%; if
single shot measurements are to be used, for example, for optimisation procedures, or if
it is necessary to monitor fine adjustments to the density profile, less variability would
be beneficial.

3.4 Electron beam diagnostics

In this section, we review the electron beam diagnostics employed in this thesis. These
come in two forms, beam profile measurements and spectrometer measurements. These
both rely on scintillating materials, the properties of which will be discussed first. Finally,
a modified pepper-pot emittance measurement technique will be explained.

3.4.1 Detection

A scintillator is a material that emits visible light after the incidence of ionising radiation.
The radiation causes electrons within the material to attain an excited state, which then
subsequently decay back to the ground state by releasing radiation with a characteristic
spectrum12. Terbium-doped gadolinium oxysulphide (Gd2O2STb) was used as the
scintillating material for all experiments performed, a material that is common in laser
12 [183] J. Lindström PhD. Thesis (2021)



76 Chapter 3. Methods

Table 3.1: Scintillator screen relative brightnesses and absolute resolution measurements.

Lanex Regular Luminex Ultrafine
Relative brightness 1 0.4
Contrast at 2 lines/mm 0.23 0.65
Contrast at 5 lines/mm 0.05 0.29

plasma accelerator experiments. This is due to its high efficiency13 and sufficiently short
decay time of 600 µs, which in principle allows for single shot temporal resolution at
kilohertz frequencies. Its emission spectrum has a narrow peak at 545 nm14, which can
be isolated from the continuum with the use of notch band-pass filters, a useful property
in a noisy light environment that includes lasers and plasma emissions. The fluorescence
intensity per electron is almost completely independent of the incident electron’s energy
above approximately 1 MeV15, which is advantageous for charge calibrated measurements,
and crucial for charge calibration if the electron beam has unknown energy.

Scintillating screens are plastic sheets coated with a thin layer of the scintillator and
have been manufactured for industrial use by numerous companies over the years. Until
recently, Kodak manufactured these screens, and their product, Lanex regular16, was used
for the electron detectors in chapters 4 and 6. Note that Lanex is such a common product
in the LWFA community that the product name has become genericised. Chapter 5 used
the product Luminex Ultrafine from Scintacor17, due to the higher resolution of this
type of screen. The properties of these scintillator screens are compared in Tab. 3.118.
There is a trade-off between brightness and resolution because resolution improvements
are obtained by reducing the thickness of the scintillator, which naturally reduces the
emission intensity.

Charge-calibrated measurements are reported in chapter 4, and these use an image
plate (IP) to calibrate between the number of counts observed by a camera and the
electron flux. It is possible to calibrate the emission from Lanex and Luminex directly19,
however, this involves precise measurements of the capture angle of the imaging system,
and the transmission of all of the components in the imaging line, which can be error
prone when using multiple optical components. Fujifilm IP, BaFBr0.85 I0.15:Eu2+, was
used20, which is another scintillating material, but with a much longer decay time than
Lanex. The decay can be stimulated to occur by irradiating the phosphor with 623 nm
light21, and scanners have been developed to exploit this property. By fluorescing in
13 [184] Y. Glinec et al. (2006) Review of Scientific Instruments
14 [185] E.-J. Popovici et al. (2004) Optical Materials

[186] J. Lindström et al. (2020) Physica Medica
15 [184] Y. Glinec et al. (2006) Review of Scientific Instruments
16 [187] LANEX screens, Carestream
17 [188] X-ray Phosphor Screens, Scintacor
18 [189] G. C. Tyrrell (2005) Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc.

Equip.
[190] DRZ Screens, MCI Optonix LLC

19 [191] A. Buck et al. (2010) Review of Scientific Instruments
20 [192] S. G. Gales et al. (2004) Review of Scientific Instruments

http://dx.doi.org/10.1063/1.2360988
http://dx.doi.org/https://doi.org/10.1016/j.optmat.2004.07.006
http://dx.doi.org/https://doi.org/10.1016/j.ejmp.2020.07.009
http://dx.doi.org/10.1063/1.2360988
http://dx.doi.org/https://doi.org/10.1016/j.nima.2005.03.103
http://dx.doi.org/https://doi.org/10.1016/j.nima.2005.03.103
http://dx.doi.org/10.1063/1.3310275
http://dx.doi.org/10.1063/1.1789256
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a scanner, all the emission light can be measured, so no optical systems need to be
calibrated. The conversion from the intensity of the stimulated emission from IP to
the deposited energy, and hence the charge, is well understood22, and so by comparing
the scans to the scintillating screen images, a conversion between camera counts and
charge flux can be obtained. It should also be noted that the emission intensity is angle
dependent23, so for accurate charge calibration across the entire screen, it is necessary
for the observation angle to be roughly constant, or for a pixel-wise calibration between
the IP and the image to be performed.

3.4.2 Electron profile

The electron profile diagnostic is for simply imaging the beam’s entire transverse profile
at a certain point in its propagation. Typically, it is set up by placing a scintillating
screen on-axis and then imaging the screen onto the CCD of a camera. The beam should
be allowed to expand to a size that is larger than the combined resolution limit of the
screen and the scintillating system. For an LWFA beam with mrad divergence, and
Lanex regular with approximately 200 µm resolution, this distance should be larger than
0.5 m. Normally, the side of the screen facing the target is coated in a protective foil, and
it is the rear surface that is imaged, as this reduces the possibility of low energy electrons
and residual light skewing the measurement. However, if sufficient care is taken to filter
residual light and the distance from the target is large enough, then the front surface
can also be used. After recording a satisfactory profile image, the image is corrected for
viewing angle distortions, and a background subtraction is performed. The image is also
calibrated spatially by using a grid with known dimensions placed on the screen, and the
beam axis is determined using an alignment laser.

3.4.3 Electron spectrometer

The electron spectrometer determines the energy spectrum of the beam by converting
energy to position with the aid of a deflecting dipole magnet. Electrons follow an energy-
dependent trajectory through the magnet, such that their position on a scintillating screen
placed after the magnet can be used to determine their energy. Since the dipole deflection
is perpendicular to its field line directions, the electron beam transverse properties along
the axis of the field lines are relatively unperturbed by the magnet, meaning that the
non-dispersed axis of the beam can still be used to measure the 1D divergence and
pointing of the beam. The electron spectrometer’s ability to simultaneously monitor the
spectral and spatial properties of the beam makes it a ubiquitous diagnostic on LWFA
experiments.
21 [193] I. J. Paterson et al. (2008) Measurement Science and Technology
22 [194] K. A. Tanaka et al. (2004) Review of Scientific Instruments

[195] K. Zeil et al. (2010) Review of Scientific Instruments
[196] S. Kneip PhD. Thesis (2010)
[170] J. C. Wood PhD. Thesis (2016)

23 [197] G. E. Giakoumakis et al. (1985) Physics in Medicine Biology
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http://dx.doi.org/10.1063/1.1824371
http://dx.doi.org/10.1063/1.3284524
http://dx.doi.org/10.1088/0031-9155/30/1/003
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Figure 3.10: Diagram of an electron spectrometer.

Electron spectrometers for GeV experiments are usually set up such that they
maximise the resolution at the highest energy. This is because this region of the
spectrometer is usually both the most interesting and has the worst resolution, owing to
the difficulty of dispersing high-energy electrons. Inside the dipole with field strength B,
electrons with v ≈ c acquire transverse momentum p⊥ at a rate of ecB. For a magnet of
length L, the high energy electrons are deflected by

∆θ ≈ ∆p⊥
γmec

= eBL

γme
. (3.15)

The approximation assumes that the electron’s longitudinal momentum is much larger
than the transverse momentum it acquires due to the magnet. A diagram of this deflection
is shown in Fig. 3.10. The spatial dispersion at the scintillating screen is then

d(∆θD)
dγ

= e

me

BLD

γ2 . (3.16)

The γ−2 scaling is why the highest energy electrons are the most difficult to resolve.
Increasing the magnet strength and size will increase the angular dispersion while moving
the screen further away will magnify the spatial dispersion. Considering the beam of
electrons with finite divergence along the dispersion axis, if the beam’s divergence along
the dispersion axis is larger than the angular dispersion, then increasing D will not
improve energy resolution. For this reason, if the electron beam divergence is large, it
is common to put a slit in front of the magnet to select only those electrons with low
divergence. This comes at the cost of the ability to measure all of the beam’s charge at
each energy.
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Figure 3.11: Calculation of particle trajectories for different energies through mapped
magnetic field. The dotted lines indicate the locations of the scintillating screens.

In order to perform an accurate calibration, the exact magnetic field and spectrometer
layout are measured, and these measurements are used to calculate electron trajectories.
The magnet map is obtained by scanning the region in and around the dipole with a
Hall probe. Measurements are made using two motorised translation stages, such that a
grid for the B field can be obtained, which is used to construct the magnetic field map
using linear interpolation between the gridpoints. It is important to also scan the region
outside the magnet since fringe fields can have an appreciable effect. This thesis used 2D
maps, corresponding to the y − z plane in Fig. 3.10, centred in x on the approximate
beam axis. An improvement on this would be to use a 3D map, such that off-axis beams
are modelled properly. An example of this tracking has been performed for a 300mm
long 1 T peak field magnet in Fig. 3.11.

The arrangement of screens in Fig. 3.11 was the spectrometer setup for the experiment
in chapter 5. An image of the setup from inside the target chamber is shown in Fig. 3.12,
where the positions of the magnet and the three scintillating screens have been highlighted.
The screens all have a vertical extent of approximately 100mm, and a length between
250 mm and 450mm. Multiple screens were used so that a large energy range could be
covered with a high resolution. In addition, the energy ranges of the screens overlapped
significantly, as this allowed for pointing fluctuations along the dispersion axis to be
deconvolved.

3.4.4 Emittance measurement

An electron beam mask can be used in conjunction with either the profile or spectrometer
to measure the transverse emittance. The mask can be either a series of slits, for 1D
measurements24, or pinholes, for 2D measurements25. A wire grid can also be used
for low-charge beams, as this will increase the signal. The 2D pinhole mask is known
24 [81] C. M. S. Sears et al. (2010) Physical Review Special Topics - Accelerators and Beams

http://dx.doi.org/10.1103/PhysRevSTAB.13.092803
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Figure 3.12: Experimental layout of the magnets and electron spectrometer screens for
the results in chapter 5, at the ATA3 target area of the Gemini laser.

as a ‘pepper-pot’ plate, and the method of extracting the emittance from the masked
beam’s pattern is often referred to as the pepper-pot method, even if performed in 1D.
As discussed in Sec. 2.8, the emittance is defined as

εx =
√

⟨x2⟩⟨x′2⟩ − ⟨xx′⟩2, (3.17)

where x is the particle transverse pointing and x′ = px/pz is the pointing angle of the
particle, where z is the longitudinal direction. The angled brackets denote the RMS
value of the quantity over the entire distribution of particles.

The mask with p slits produces an equal number of beamlets, each with its own size,
pointing, and correlation. It is possible to express each of the terms in Eq. 3.17 in terms
of the beamlet measurements26. These are

⟨x2⟩ ≈ 1
N2

p∑
j=1

nj(xj − x̄)2, (3.18)

⟨x′2⟩ ≈ 1
N2

p∑
j=1

nj [σ2
x′

j
+ (x′

j − x̄′)2], (3.19)

and

⟨xx′⟩2 ≈ 1
N2

 p∑
j=1

njxj x̄′
j − Nx̄x̄′

2

, (3.20)

25 [198] Y. Yamazaki et al. (1992) Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect.
Assoc. Equip.
[199] R. P. Shanks et al. ()
[200] E. Brunetti et al. (2010) Physical Review Letters

26 [201] M. Zhang Emittance Formula for Slits and Pepper-pot Measurement (1988)

http://dx.doi.org/https://doi.org/10.1016/0168-9002(92)90021-U
http://dx.doi.org/https://doi.org/10.1016/0168-9002(92)90021-U
http://dx.doi.org/10.1117/12.820706
http://dx.doi.org/10.1103/PhysRevLett.105.215007
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Figure 3.13: A beam is split into a series of beamlets using a mask. This produces a
series of peaks on the scintillating screen.

where nj is the number of electrons that propagate through the jth slit, N = ∑p
j=1 nj ,

xj is the position of slit j, x′
j is the average pointing of the jth beamlet, x̄ is the weighted

average position of all the beamlets, and x̄′ is the weighted average pointing of the
beamlets. The critical quantity is σx′

j
, which is the RMS divergence of the jth beamlet,

which is equal to σxj /L, as indicated by the diagram in Fig. 3.13.

The above expressions are derived under the assumption of infinitely small slits, but
this is not the case, and so the size of the slit needs to be taken into account. If the
beam had zero emittance, then the slit would produce a top-hat profile on the scintillator.
For a finite emittance beam, this top-hat transmission function convolves with the
divergence that is due to the emittance. The measured divergence of the beamlet is then
the quadrature sum of the two RMS divergences, σx′

j ,m =
√

σ2
x′

j
+ σ2

s , where σ2
x′

j
is the

divergence due to the emittance alone in Eq. 3.19. The RMS width of the top-hat function
is Md/

√
12, where d is the slit width, and M is the magnification, given by the ratio

between the distances of the mask and the screen from the source, M = Lm,s/(Lm,s + L).
Consequently, in terms of the screen measurements, the divergence of the jth beamlet
due to the emittance alone is

σx′
j

=

√√√√(σxj

L

)2
−
(

Lm,sd

(Lm,s + L))
√

12

)2

. (3.21)

To confirm the validity of this scaling, Monte Carlo (MC) simulations of the electron
beam drift have been performed. One of these simulations is shown in the two left plots
of Fig. 3.14, where an electron beam with a divergence of 1 mrad is masked by 2 µm wide
slits, and then propagates 50 mm. The right panel shows the effect of increasing the slit
width on the beamlet size for a magnification27 of 34, and the dashed line shows the
scaling used to derive Eq. 3.21. This scaling agrees with the MC simulation results well,
27 Corresponding to the geometry used for the emittance measurements presented in chapter 5.
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Figure 3.14: Monte Carlo simulation of the electron beam propagation through the mask.
The red scatter points indicate the electrons transmitted by the mask.

with a slight discrepancy at larger slit widths that results from the slit size becoming
large compared to the beam size.

3.5 Particle-in-cell simulations

Numerical simulations of laser-plasma interactions have been an important tool for
obtaining and improving our understanding of physical processes. The first paper on
LWFA was supported by numerical simulations28, and they have been used extensively
to explore the capabilities and limits of plasma acceleration ever since. Semi-empirical
scaling laws have been derived through their use29, and now optimisation methods30

and novel positron acceleration paradigms are being tested31. The computational scale
of simulations has increased by many orders of magnitude since the 1979 paper, now
reaching the exascale32.

The process of LWFA involves laser pulses that are on the order of the plasma period
in length, relativistic non-Maxwellian particle beams, and non-linear laser pulse evolution.
In order to model this physics as accurately as possible, Maxwell’s equations should
be solved directly at the positions of each particle of interest, a daunting task when
considering the full 6D phase space of the particle distribution at densities of 1×1024 m−3.
To reduce the computational cost, large ensembles of real particles can be represented
by single virtual macroparticles, where each macroparticle represents a sampling of the
particle phase space distribution. The electromagnetic fields are typically calculated at
28 [27] T. Tajima et al. (1979) Physical Review Letters
29 [44] W. Lu et al. (2007) Physical Review Special Topics - Accelerators and Beams
30 [202] F. Irshad et al. (2022) arXiv e-prints
31 [118] T. Silva et al. (2021) Physical Review Letters

[115] S. Diederichs et al. (2020) Physical Review Accelerators and Beams
32 [203] L. Fedeli et al. “Pushing the Frontier in the Design of Laser-Based Electron Accelerators with

Groundbreaking Mesh-Refined Particle-In-Cell Simulations on Exascale-Class Supercomputers” (2022)
[204] J. L. Vay et al. (2018) Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc.
Equip.

http://dx.doi.org/10.1103/PhysRevLett.43.267
http://dx.doi.org/10.1103/PhysRevSTAB.10.061301
http://dx.doi.org/10.1103/PhysRevLett.127.104801
http://dx.doi.org/10.1103/PhysRevAccelBeams.23.121301
http://dx.doi.org/https://doi.org/10.1016/j.nima.2018.01.035
http://dx.doi.org/https://doi.org/10.1016/j.nima.2018.01.035
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the vertices of a pre-defined grid, further reducing the computational load. Simulations
that perform these two simplifications are known as particle-in-cell (PIC) simulations,
which are a type of kinetic simulation.

3.5.1 PIC algorithm

Before the PIC algorithm can be implemented, the simulation must be initialised. This
involves defining the starting positions of the particles, the initial values of the fields,
and the boundary conditions at the edges of the simulation domain. Once this is done, a
recursive algorithm is implemented to evolve the particle positions in time and space,
which proceeds for a user-defined number of steps. The structure of the algorithm is as
follows:

1. The field values are interpolated at the particle positions.
2. The particle momenta and positions are computed and updated.
3. The current densities are projected onto the grid.
4. The new electromagnetic fields are calculated.

The particle momenta are updated using the Lorentz force, using the newly calculated
fields. Care is required to ensure that the simultaneous update of the particle positions
and momenta conserves energy, which is typically achieved by using the Boris algorithm33.
This is a leapfrog method, where the particle is first moved, then half of its energy change
is applied, then the momentum vector is rotated, and then finally the second half of
the energy change is applied. While this algorithm is adequate in Euclidean frames, in
Lorentz boosted frames, the Boris algorithm has been shown to perform poorly34, and
so other algorithms have gained prevalence35.

Maxwell’s equations are typically solved using the finite difference time domain
(FDTD) approach. The Yee grid36 is a grid where electric fields are defined at the grid
edges and the magnetic fields are defined at the grid faces. This method exhibits long-
term stability, and as such is another popular choice for spatio-temporal discretisation.
The 3D Cartesian simulations of plasma mirrors performed in this thesis use the Yee
implementation of the FDTD method, although another method is used for the laser
wakefield simulations, as will be discussed in the next section.

Since the standard PIC implementation only requires local information at each step,
the full simulation domain can be split into numerous sub-domains to allow for parallel
computation. This is particularly advantageous when a large number of CPUs are
available. Each sub-domain is assigned to a separate CPU, which performs the PIC
algorithm for that region alone, and the only information that needs to be shared between
the CPUs are the field and particle values at the edges of the domains. Not only does
33 [205] J. P. Boris “Relativistic Plasma Simulation - Optimization of a Hybrid Code” (1970)
34 [206] J. L. Vay (2008) Physics of Plasmas
35 [207] B. Ripperda et al. (2018) The Astrophysical Journal Supplement Series
36 [208] K. Yee (1966) IEEE Transactions on Antennas and Propagation

http://dx.doi.org/10.1063/1.2837054
http://dx.doi.org/10.3847/1538-4365/aab114
http://dx.doi.org/10.1109/TAP.1966.1138693
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Figure 3.15: Phase velocity of electromagnetic waves as a function of 2D wavevector for
∆x = ∆y (left), and for ∆x = 3∆y/40 (right).

this speed up the computation, but it also allows for a large amount of memory to be
used, permitting simulations with high resolutions to be performed quickly. The full 3D
simulations performed for this thesis ran on Imperial College’s cluster, CX1, requiring
almost 3 years of clock time, but took less than 72 hours to run due to the number of
CPUs employed.

3.5.2 Numerical dispersion

The FDTD algorithm is subject to numerical dispersion37. This is concerning for the
simulation of relativistic particles, as a reduced speed of light can lead to particles having
super-luminal velocities. By inserting a plane wave solution into the FDTD algorithm, it
can be shown that the 2D dispersion relation is given by

sin2 (ω∆t/2)
(∆t2) = sin2 (kx∆x/2)

(∆x2) + sin2 (ky∆y/2)
(∆y2) . (3.22)

The resulting phase velocity vϕ = ω/k, is

vϕ = 2
k∆t

sin−1

∆t

√
sin2 (kx∆x/2)

(∆x2) + sin2 (ky∆y/2)
(∆y2)

 . (3.23)

A feature of the Yee solver is that, for equal grid spacings, waves propagating along
the cell diagonal are dispersion free, as can be seen in Fig. 3.15, while waves propagating
along the grid axes experience the most dispersion. This is unfortunate for LWFA
simulations, as typically the laser pulse runs parallel to one of the grid axes. This is
mitigated by choosing an unequal grid spacing, where setting ∆x ≪ ∆y substantially
reduces the dispersion along the x axis. This choice of resolution is also appropriate for
LWFA simulations because the scale length of interest along the laser propagation axis is
the laser wavelength, which is much shorter than the transverse length scale; the plasma
wavelength38. The exact phase velocity for a given 2D resolution can be found by setting
37 [209] R. Nuter et al. (2014) The European Physical Journal D
38 This may not be the case if the transverse motion of ultra-low emittance beams needs to be resolved.

http://dx.doi.org/10.1140/epjd/e2014-50162-y
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kx = k, and ky = 0, giving,

vϕ(k, ∆x, ∆y) = 2
√

∆x−2 + ∆y−2

k
sin−1

sin(k∆x/2√
1 + ∆x2

∆y2

 . (3.24)

As can be seen from Fig. 3.16, for appropriately chosen resolutions, numerical dispersion
will not lead to a significant difference in the velocity of the laser pulse and that of the
relativistic particles. However, even if the choice of resolution is such that the laser phase
velocity and particle velocity are essentially the same, the highest frequencies supported
by the grid, where kx∆x ≈ π, will propagate sub-luminally, and high energy particles
will propagate faster than these components. This causes a numerical form of Cherenkov
radiation to be emitted in the high-frequency band of the simulation; the electric fields
of this spurious radiation can act on the particles, producing non-physical emittance
growth39. For accurate simulation of transverse beam properties over long propagation
lengths, suppression or elimination of this instability is required. Methods for doing so
with FDTD solvers include filtering the higher frequencies and increasing the size of
the stencil used to calculate the fields40. Alternatively, spectral methods can be used to
solve Maxwell’s equations in Fourier space, which can lead to dispersion-free solutions in
vacuum41.

3.5.3 Specific PIC codes

The code Smilei42 was used for the fully 3D laser-solid interactions performed in this
thesis. Smilei was chosen due to its ability to output simulation diagnostic information
at a different resolution than the main simulation grid, which was useful for performing
analysis that required high temporal but low spatial resolution. It has been used to study
the Weibel instability, both generally43, and in laser-plasma interactions44, and it is for
this purpose that Smilei is employed in this thesis. Smilei can be used for performing laser
39 [210] R. Lehe et al. (2013) Physical Review Special Topics - Accelerators and Beams
40 [211] A. D. Greenwood et al. (2004) Journal of Computational Physics
41 [212] O. Buneman et al. (1980) Journal of Computational Physics
42 [213] J. Derouillat et al. (2018) Computer Physics Communications
43 [214] A. Grassi et al. (2017) Physical Review E
44 [215] A. Grassi et al. (2017) Physical Review E

http://dx.doi.org/10.1103/PhysRevSTAB.16.021301
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2004.06.021
http://dx.doi.org/https://doi.org/10.1016/0021-9991(80)90010-8
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2017.09.024
http://dx.doi.org/10.1103/PhysRevE.95.023203
http://dx.doi.org/10.1103/PhysRevE.96.033204


86 Chapter 3. Methods

wakefield simulations, but like all FDTD solvers it can suffer from numerical dispersion,
and in its full 3D mode it is overly computationally costly45.

The majority of simulations performed in this thesis use the code FBPIC46, which
is more specialised than Smilei since it was written specifically for simulating wakefield
acceleration. FBPIC exploits the near-cylindrical symmetry of LWFA by using Maxwell’s
equations in cylindrical coordinates (x, y, z) → (z, r, θ), and in addition, solving for the
fields in spectral space (z, r, θ) → (kz, k⊥, m). As a result, the code is dispersion free
in all directions in Euclidean frames. Using cylindrical coordinates and spectral space
simultaneously requires the use of the Fourier-Hankel transform, which represents the
radial variations of the fields as a sum of Bessel functions, Jm; under this transformation,
the fields decouple in spectral space47. To exactly model the fields, the transformation
should integrate in k⊥ from 0 to +∞, in kz from −∞ to +∞, and sum over all m

from −∞ to +∞. However, if the fields exhibit a high degree of cylindrical symmetry
then only a small number of modes are required to approximate them reasonably well,
decreasing the number of computations required by orders of magnitude. For example,
for many LWFA phenomena, only 2 modes are required, and so a 2D cartesian grid
with 1000 cells in x and y that would require 106 operations to compute would only
require 5 × 103 operations, summing over the modes from −2 to +2. Once solved, the
fields are used to push the particles in 3D cartesian space, such that the macroparticles
each have 6 coordinates (x, y, z, px, py, pz). The entire operation amounts to a fully 3D
computation of the fields, but with aggressive low-pass filtering of the azimuthal variations
around a pre-defined central axis. Finally, FBPIC offers operation in a Lorentz-boosted
frame, which can further reduce computational time, particularly for centimetre-length
simulations.

3.5.4 Simulating asymmetrical focal spots

It is common practice to model the transverse intensity profile of the laser pulse at focus
as a Gaussian. This has the advantage of convenience, as well as being able to initialise
the pulse at arbitrary distances from focus. However, if comparison to experimental
results is the objective, then the simulation should match the experiment as closely as
possible, and to this end, matching the distribution of energy in the laser far field is
an improvement over using a perfectly symmetrical profile. It is expected that this is
particularly important if the transverse emittance of the injected electron beam is being
measured, as is the case in this thesis. Here, we show how experimental focal spot images
are used to inject asymmetrical focal spots into FBPIC simulations.
45 Smilei has recently introduced azimuthal mode decomposition and spectral solvers, but at the time

of writing these were in the beta stages of development. In addition, the spectral solver was not
available for all geometries, nor was it omnidirectional.

46 [216] R. Lehe et al. (2016) Computer Physics Communications
47 Maxwell’s equations in cartesian coordinates only require a Fourier transform to decouple.

http://dx.doi.org/https://doi.org/10.1016/j.cpc.2016.02.007
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For a Gaussian transverse profile, the electric field normalised to its maximum can
be written as

E(x, y, z)
E0

= ξ−1 exp
(

−ikz − x2 + y2

w2
0ξ

)
, (3.25)

where E0 is the maximum of the field, k is the wavenumber, w0 is the Gaussian waist.
The term ξ is the complex radius of curvature, given by

ξ =
(

1 + i
z − zf

ZR

)
, (3.26)

where zf is the focal position in z, and ZR is the Rayleigh length. This term reduces the
field strength as the distance from focus is increased, implements the Gouy phase, and
adds curvature to the wavefronts. Separating out the phase components, we can write

E(x, y, z)
E0

= ξ−1 exp

−ikz −
r2 − ir2

(
z−zf

ZR

)
w2

0

(
1 +

(
z−zf

ZR

)2
)
 . (3.27)

A focal spot image measures the intensity I(x, y), which is proportional to the square
of the electric field. This should be used to modify the purely spatial part of Eq. 3.27,
while leaving the phase components the same. Therefore, we can write

E(x, y, z)
E0

= ξ−1 exp

−ikz +
ir2
(

z−zf

ZR

)
w2

0

(
1 +

(
z−zf

ZR

)2
) + ln(

√
I(x, y)(

1 +
(

z−zf

ZR

)2
)
 , (3.28)

where we are making the approximation that the wavefront of the aberrated spot has
a radius of curvature that matches a perfect Gaussian. This is only an approximation,
and consequently, this formula’s validity is limited to |(z − zf )/ZR| < 1. More accurate
simulations of laser pulses could be achieved by measuring the phase of the profile,
such as by taking multiple focal spot images at different z and using a phase recovery
algorithm, such as the Gerchberg-Saxton algorithm48. However, since only the z − zf = 0
images were available, we are limited to initialising focal spots near to focus.

3.5.5 Implementation

The above formula is used to convert focal spot images into a function for calculating the
electric field, but the parameters E0 and w0 also need to be provided. The maximum
field strength is determined from the laser power and the focal spot image pixel values,
while the value for w0 is measured by fitting an ellipse to the FWHM contour of the
focal spot image, and then using the mean value of the major and minor axes49. The
function I(x, y) is a linear interpolator that uses the focal spot image for its data points.
48 [217] I. V. Il’ina et al. (2009) Quantum Electronics

[218] A. Borot et al. (2018) Optics Express
49 Since this beam is not a solution to the paraxial wave equations, w0 is simply a scaling factor that

affects the radius of curvature of the wavefronts, and the rate of change of field strength as focus
recedes.

http://dx.doi.org/10.1070/QE2009v039n06ABEH013642
http://dx.doi.org/10.1364/OE.26.026444
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The focal spot image has been artificially modified so that the value of the field drops
to 0 at approximately

√
x2 + y2 > 2.5w0, ensuring that the electric field is zero at the

boundary of the simulation window during initialisation. The code FBPIC performs
the azimuthal mode decomposition in the same way that it does for any other function
for the fields. Examples of this projection for various numbers of modes are shown in
Fig. 3.17, where it can be seen that the projection becomes less symmetrical and more
structured as the number of modes increases.
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Figure 3.17: Projection of focal spot image with aberrations onto an increasing number
of azimuthal modes.

The code has been tested by simulating a centimetre scale LWFA, and comparing
the results to an equivalent simulation with a Gaussian focal spot. The resolution for
the simulations was 20 × 4 points per laser wavelength longitudinally and transversely
respectively, with 3 azimuthal modes, and 9 particles per cell. The evolution of the
electron energy spectrum for each simulation is shown in Fig. 3.18. A similar evolution
is observed between the two simulations, where injection occurs at z ∼ 2mm, and the
maximum electron energy is ∼ 2.2GeV. Interestingly, the charge in the first bunch is
slightly higher for the experimental focal spot, and it reaches its highest energy sooner,
while the laser pulse depletes slightly later. The extended depletion length is due to the
extra energy in the pulse that results from using a realistic profile.
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Figure 3.18: Evolution of the electron beam energy spectrum for the aberrated (left) and
Gaussian (right) focal spots.

Fig. 3.19 compares the charge and transverse beam measurements for the two
simulations, selecting electrons with energies above 5 MeV, and using the median average
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Figure 3.19: Comparing transverse beam properties for aberrated and Gaussian focal
spots.

deviation to measure the transverse beam properties. The total amount of charge injected
is similar for both simulations, as is the average beam divergence. The only significant
difference is seen when the transverse beam measurements are projected onto the x and
y directions, where it appears that the introduction of the asymmetrical focal spot has
increased the symmetry of the electron beam, a counter-intuitive result. The divergence
and emittance in x are slightly larger for the perfect focal spot, while they are slightly
smaller in the y direction.

3.5.6 Longitudinal resolution

The minimum acceptable longitudinal resolution of the simulations needs to be determined.
Numerical dispersion is not a concern for FBPIC, so we just need to be able to resolve
the smallest structures in the simulation. However, choosing this size is non-trivial due
to the lack of an analytic description of the plasma wave in the 3D non-linear regime. In
particular, the electron bubble that forms in the wake of the laser could be challenging
to resolve due to the thin, high-density spike that forms at the bubble’s rear.

Simulations have been performed using the longitudinal resolution as the variable of
interest. The aim was to determine the resolution required to resolve the bubble thickness
and the effect of the resolution on self-injection. A 1mm plasma was initialised, with
0.1mm scale length density ramps at either end and a plateau density of 2 × 1025 m−3.
A short, high-density simulation was chosen to reduce the computational load, necessary
for running abnormally high resolutions in a reasonable amount of time. A Gaussian
transverse profile with a width of 4 µm was used for the laser. The temporal profile was
also a Gaussian, with a width of 20 fs, while the peak a0 was 2. These laser and plasma
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conditions roughly mirror those used for the pure helium simulations in chapter 4, once
the laser pulse has evolved to its plasma-matched parameters.
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Figure 3.20: Axial plasma density and longitudinal electric field at various longitudinal
resolutions. The left panels are on the scale of the plasma wavelength, while the right
panels show the 1 µm region near the highest density spike.

Simulations were performed at 20, 40, 80, and 160 grid points per laser wavelength
(ppλ). Fig. 3.20 shows the on-axis plasma density and longitudinal electric field at
z = 0.55mm into the evolution, which is the moment before injection occurs. On the
scale of the simulation window, the increasing resolution appears to have no effect on the
plasma wavelength or the electric field. Small differences can be observed by zooming in
on the back of the bubble, where the effect of increasing the resolution can be seen to
both increase the density and decrease the width of the density spike, as well as slightly
increase the plasma wavelength. Note that the change in peak density is substantial,
approximately 50% when increasing the resolution from 40ppλ to 80ppλ. The change
in plasma wavelength slightly shifts the location of the field minimum, while the effect
on the magnitude of the accelerating field is small. It seems that the total amount of
charge in the spike is relatively constant, which, due to Gauss’s law, results in a similar
accelerating field strength for each of the simulations, despite the differences in peak
density. The change in location of the field minimum is on the order of 100 nm, which is
small compared to the millimetre scale dephasing length, and so the effect on the peak
energy is also likely to be small. This is confirmed in Fig. 3.21, where the evolution of the
charge and the final electron energy spectra are compared. The longitudinal resolution
has a negligible effect on these properties, and so a resolution of 20ppλ appears to be
sufficient for simulating this set of input parameters.
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Figure 3.21: Left panel shows the evolution of the charge injected above 1MeV, while
the right panel shows the final energy spectrum of the beam.

3.5.7 Aziumthal modes convergence test

Here we determine the number of azimuthal modes required. It is expected that as the
simulation departs further from cylindrical symmetry, more modes will be required to
reach convergence. For this thesis, we are particularly concerned with the transverse
emittance of electron beams injected via ionisation injection, using an asymmetrical focal
spot. Consequently, a scan of the number of azimuthal modes has been performed for a
GeV class accelerator with ionisation injection.

These simulations used the same aberrated focal spot used for the simulations in
Fig. 3.19, with the a0 reduced from 2.07 to 1.71. Helium doped with 2% nitrogen by mass
was used as the accelerating medium, with the first electron of the helium and the first 5
electrons of nitrogen pre-ionised. When the helium was fully ionised, the plateau plasma
density was 1.5×1024 m−3, and 0.15 mm scale length ramps were used at both ends of the
12 mm long density profile. The longitudinal and transverse resolution was 20ppλ×4ppλ,
and the simulation window spanned 60 µm×160 µm in z and r respectively. A single
macro-particle was used in z and r, while 3 particles were used for each azimuthal mode.
This was necessary to avoid under-resolving the higher mode simulations but resulted in
an O(n2) scaling of the computation time with the number of modes.

The results of these simulations are plotted in Fig. 3.22 for electrons which originate
from the inner shells of nitrogen and have E > 250 MeV. Note that the Nm = 5 did not
complete due to its long computational time. A similar amount of charge is produced in
each simulation, however, the transverse properties do depend on the number of modes
simulated. For the divergence in both x and y to converge, it appears that 3 modes are
necessary, while the same is true for εy. However, for εx, it appears that convergence
may require 4 modes. Since the divergence in x does not require 4 modes, this suggests
that it is the beam size along the laser polarisation direction that requires the additional
resolution. In this thesis, when the transverse properties of the beam were of interest, 3
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Figure 3.22: The evolution of the charge (top left), the beam divergence (top right),
and the normalised emittance (lower panels), for particles that reach the end of the
simulation with energy above 250MeV. In the divergence plot, the solid lines are the
divergence in the laser polarised direction, x, while the dashed lines correspond to the
polarisation orthogonal direction, y.

modes have been used for simulations. This achieves a balance between computational
speed and accuracy. The emittance measurements reported in chapter 5 are in the y

direction, and so 3 modes should be sufficient for this purpose.



4 | The density-length parameter
space of a laser wakefield
accelerator

The performance of a laser wakefield accelerator is, to first order, determined by
the laser power1. However, for most laser powers, there exists a range of densities

that will produce desirable electron and x-ray beams, and so usually the density of
operation is determined empirically, based on the desired beam metrics. Since the
density affects the rate of laser pulse evolution, as well as the electron beam acceleration
dynamics, the optimum density is inexorably coupled to the length of the plasma. This
means that the plasma length needs to be scanned in conjunction with the density to
maximise the performance of the accelerator for any given application. While density
scans are frequently reported in the literature, density-length scans are less common2,
owing to the requirement for a target with a variable length, as well as the time cost of
finely scanning a 2D parameter space.

In this chapter, we investigate the density-length parameter space of a 5TW laser
wakefield accelerator. The 250 mJ laser had a central wavelength of 800 nm, a temporal
FWHM duration of 45 fs, and was focused to an intensity of approximately 6×1021 W m−2.
Identical scans were performed for two gas mixtures; pure helium, and a 1% nitrogen-
doped helium gas, where the presence of the dopant would permit additional trapping
of electrons via the ionisation injection mechanism. The density range was 0.3−2.8 ×
1025 m−3, while a gas cell was used with a length which varied from 0−3mm. Sec. 4.1
will outline the experimental setup, describing the configuration of the vacuum chamber,
interferometer, electron spectrometer, and x-ray diagnostics. An automated Bayesian
optimisation procedure was run for each gas mixture prior to the performance of the
scans3, with the goal of maximising the signal on the electron spectrometer, and the
results of these optimisations are shown here. Following this, in Sec. 4.2 the 2D scan
experimental results will be presented; starting with the electron beam measurements,
1 See Fig. 1.3.
2 [64] M. Heigoldt et al. (2015) Physical Review Special Topics - Accelerators and Beams

[219] S. V. Rozario PhD. Thesis (2020)
[175] K. Poder PhD. Thesis (2016)

3 [220] R. J. Shalloo et al. (2020) Nature Communications
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Figure 4.1: Layout of the ATA2 vacuum chamber.

before moving on to the quantification of the x-ray photon flux. Electron beam energies in
excess of 200 MeV were measured, which are the highest electron beam energies measured
at this laser power to date. Simulations were performed at densities that match the
experimental parameters, and the results of these are shown in Sec. 4.3. Finally, Sec. 4.4
will investigate the validity of widely-used scaling laws in this regime, determine the rate
of laser pulse evolution and its mechanism, and estimate the x-ray brilliance.

The high electron beam energies observed in the doped gas were attributed to beam
acceleration, driven by the ionisation injected electron beam. It is shown that due to the
low vacuum a0 of the laser pulse, the transverse and longitudinal evolution of the laser
pulse occur sequentially, delaying the length at which self-injection occurs beyond the
typical depletion length. In addition, the low a0 at low densities was found to lead to a
reduction in the etching rate of the beam, which increased the phase velocity at the rear
of the bubble. At some parameters, the photon flux exceeded 10.0 ph mrad−20.1%BW−1,
resulting in a peak brilliance of 4.2+0.8

−0.8 × 1020 ph s−1 mm−2 mrad−2 0.1%BW−1, where
PIC simulation measurements have been used to estimate the source size. Compared to
other measurements in the literature, this is an exceptionally high brilliance for the laser
power.

4.1 Experimental setup

A diagram of the vacuum chamber is shown in Fig. 4.1. The laser energy for this
experiment could not exceed ∼ 0.25 J due to the heat load on the compressor gratings4,
particularly when operating at repetition rates above 1Hz. A small hole in the final
mirror of the compressor allowed a portion of the pulse to be used for pulse length
and phase measurements, which were performed using the SPIDER method5. When
4 [221] V. Leroux et al. (2020) Optics Express

http://dx.doi.org/10.1364/OE.386112
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optimally compressed, the beam was able to achieve a FWHM duration of 45 fs. However,
most of the time, a Fastlite Dazzler6 was used to modify the 2nd, 3rd, and 4th order
spectral phase terms, resulting in a longer pulse than the bandwidth limited length. The
SPIDER was used to monitor on-shot changes in the temporal profile; this allowed for
the effects of the Dazzler to be measured directly.

The 55 mm diameter beam was focused over a distance of 1 m by an off-axis parabola,
constituting a focal geometry of f /18. The energy of the laser was measured using a
Gentec energy meter placed between the turning mirror and the target. The energy
measurements were used to calibrate near and far field measurements of the laser beam
leakage, allowing for energy fluctuations to be monitored. The spatial phase of the laser
could be controlled using an adaptive optic (AO), while the wavefront was monitored
using an Imagine Optics HASO4 7; a commercially available Shack-Hartmann wavefront
sensor. During the daily alignment of the system, the wavefront sensor and AO would be
used in a closed-loop feedback system to flatten the wavefront, with the goal of producing
an intense focal spot. In addition, the AO could also be used actively during shots to
optimise certain measurements, such as the number of counts on the x-ray camera or
the electron beam divergence, while the HASO could be used to passively monitor these
changes, allowing the aberrations introduced by the AO to be measured in terms of
Zernike polynomial coefficients.

On the day that the data presented in this chapter was recorded, a series of 100 focal
spot images were captured after the closed loop optimisation of the wavefront had been
performed. A summary of these metrics is presented in Fig. 4.2, as well as the focal spot
with the median peak a0. The median peak a0, FWHM, and percentage of energy within
the FWHM were 0.57 ± 0.02, 21.7 ± 0.5 µm, and 39 ± 2%, where the error comes from
the standard deviation of the data set. For these calculations, it was assumed that the
energy in the pulse was 225 mJ, while the temporal FWHM was 49.4 fs, measured using
the SPIDER.
5 [222] C. Iaconis et al. (1998) Optics Letters
6 [223] Fastlite Dazzler product information, Fastlite
7 [224] HASO4 FIRST, Imagine Optic

http://dx.doi.org/10.1364/OL.23.000792
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Figure 4.2: Focal spot metrics for the day on which the measurements in this chapter
were obtained. The red horizontal lines indicate the median, the dashed grey horizontal
lines show the standard deviation of the fluctuations, and the grey shaded region indicates
the error on the mean, calculated via bootstrapping. A representative focal spot image,
converted to normalised field strength, is shown in the lower right panel. This particular
image had the median peak a0. An ellipse, fit to the FWHM contour of the intensity
profile, has been overlaid on the image, with the dotted lines indicating the major and
minor axes.

For this experiment, a relatively high repetition rate of 5 Hz was desired, which put
additional strain on the vacuum pumping system. To alleviate this, differential pumping
was employed, where the target was enclosed in a second internal chamber inside the
main vacuum chamber, which was then pumped directly. Only a small aperture between
the main chamber and the small chamber allowed the laser to reach the target, which,
combined with the additional pumping, maintained the pressure difference. This caused
the internal chamber, where the gas was being injected, to operate at a higher pressure
than the rest of the chamber and compressor, which was able to maintain a low pressure
of less than 1 × 10−3 mbar, protecting the optics.

A gas cell target was used for this experiment. The cell consisted of a steel frame,
with glass windows to allow for imaging and optical probing of the plasma, and a ceramic
front plate with a 200 µm diameter pinhole for the laser to enter. During shooting, jitter
in the focal spot position and energy in the wings of the spot caused the hole to widen
significantly to approximately 1mm. At the rear of the cell, a piston was used to set
the position of the exit pinhole, which again widened from an initial 200 µm to a 1 mm
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diameter hole. The piston could move to set the distance between the entrance and exit
holes to anywhere from 0 to 10mm, although, in practice, a cell length of 0mm meant
that there was a buffer of 100 µm between the pinholes, eliminating the risk of the piston
damaging the front plate.

After exiting the gas cell, the residual laser energy was dumped using a 25 µm tape-
based plasma mirror. The electrons and x-rays propagated through a small aperture
into an appendage vacuum chamber, which contained a 0.5 T permanent dipole magnet
and a Lanex regular scintillating screen. This was imaged through a window by a 12-bit
camera. The x-rays passed through the magnet and through some light-shielding foil
before being imaged by a direct detection camera. The electron spectrometer and x-ray
camera were housed in a lead enclosure, which shielded the rest of the target chamber
from the radiation produced by the experiment.

4.1.1 Density calibration

Transverse interferometry was used to measure the plasma density; an example interfer-
ogram is shown in the left panel of Fig. 4.3. This diagnostic made use of a dedicated
probe beam that was available in the ATA2 target area, which was taken from the
leakage of the main beam after amplification but before compression. This 1mJ pulse
was compressed to approximately 100 fs using a dedicated at-air compressor, before being
telescoped down to a diameter of 25mm and directed into the target chamber. The
probe beam backlights the plasma channel, which is imaged by a 750mm focal length,
100mm diameter objective lens and a 400mm imaging lens onto a 12-bit CCD, and a
Michelson interferometer was used to generate the fringe pattern8. Due to the size of the
windows on the target and the obstruction caused by the piston in the gas cell, density
measurements could only be made for target lengths greater than 1.7 mm. Consequently,
the density values quoted in this chapter are obtained by calibrating the pressure of the
gas reservoir to the density in the cell at 3mm, as shown in the right panel of Fig. 4.3,
and then assuming that the fractional change in cell volume that occurs when moving to
shorter lengths does not significantly impact the density. A length of 3 mm was chosen
for this calibration because this allowed a sufficient number of fringes to be observed,
increasing the reliability of the measurement.
8 See Sec. 3.3.1.
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Figure 4.3: The Left panel shows an example interferogram, taken at 1000mbar, with
the red dashed lines indicating the location of the plasma. The right panel shows the
measured relationship between pressure and density, where a polynomial has been used
to fit the data. Each data point represents the mean of the interquartile range of
measurements from 10 shots at that pressure, while the error bars show the standard
error, given by σ/

√
N , where σ is the average error on the measurements and N is the

number of samples.

4.1.2 Electron spectrometer

The image of the scintillating screen on the electron spectrometer camera was transformed
to a flat, spatially calibrated rectangle using a projective transform. Spectral calibration
was performed by tracking the trajectories of energetic electrons through a 2D map of the
dipole magnet onto the screen, the results of which are plotted in Fig. 4.4. The charge
calibration was done using BAS-TR image plate placed in front of the Lanex screen, and
taking 100 shots to allow a large amount of charge to be detected. The absolute charge
measured by the image plate9 was then compared to the number of counts detected by
the camera to provide a conversion coefficient that was used for the data presented here.
9 [225] J. Strehlow et al. (2019) Review of Scientific Instruments

http://dx.doi.org/10.1063/1.5109783
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Figure 4.5: Example of electron spectrometer processing. In the upper panel, the dashed
horizontal lines indicate the charge weighted FWHM divergence of the beam, while the
horizontal line in the lower panel shows the noise floor. The vertical dashed line and grey
shaded region are the maximum energy and associated error. The spectrum used for
calculating the total charge is shown in blue, while the maximum energy was calculated
using the spectrum shown in black, where a gradient background subtraction has been
performed.
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Figure 4.4: Electron energy and propagation length as a function of distance along the
Lanex screen. The grey shaded region indicates the change in energy associated with a
±5 mm translation along the dispersion direction of the electron beam, corresponding to
a divergence of 18 mrad.

The upper panel of Fig. 4.5 shows a processed electron spectrometer image, and the
lower panel shows two measurements of the spectrum after performing slightly different
background subtractions. We define the maximum energy as the highest energy at which
the spectrum rises above 3σ, where σ is the standard deviation of the background intensity.
Due to light scattering inside the coffin, the value of the background intensity was affected
by the brightness of the scintillation light emanating from the Lanex, resulting in a
signal-dependent background that was not completely removed when the background
subtraction was performed. In the plot of the spectrum, this light contamination takes the
form of a pedestal, which complicates the calculation of a maximum energy. To account
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for this, a second spectrum was calculated where a gradient background subtraction
was performed in addition to the normal background subtraction, which eliminated the
pedestal. This second spectrum was only used for calculating the maximum energy, and
not for the measurement of the total charge. The value for σ was then determined by
taking the standard deviation of the spectrum above 200MeV and at divergences of
θy > ±20 mrad, a region usually devoid of signal. The error in the maximum energy was
calculated by finding the maximum energy using both 2σ and 4σ as thresholds, and then
taking the average difference between these values and the maximum energy measured
using a 3σ threshold. This method of error analysis captures the main uncertainty in
this measurement, namely, the true value of σ, as the maximum energy is more sensitive
to this parameter than any other.

The divergence was calculated by splitting the spectra into 10MeV slices from the
bottom of the spectrum up to the maximum energy, determining the FWHM divergence of
each slice, and then taking the charge weighted average over each of the slices. The error
in this measurement is simply the standard deviation of each of the FWHM measurements.
In some instances, beams were produced that completely filled the spectrometer Lanex,
such that sometimes the divergence may be underestimated.

4.1.3 X-ray spectrum measurements

For this experiment, the low laser power led to the anticipation of both a low number of
photons and a low critical energy, with the latter expected to be in the region of 5 keV.
An Andor iKon-M 934 BR-DD camera10 was used; since this is a direct detection camera,
it should be well suited to measuring low intensity, low energy x-rays11.

In conjunction with this camera, a custom filter pack was designed for this experiment.
Rectangular strips of each material with widths of 1.96 mm and lengths between 4.12 mm
and 7.24mm were placed in a mount in front of the camera sensor, and the relative
signal detected behind each material could then be used to estimate the critical energy.
In choosing the filters and their surface area, there existed a trade-off between choosing
enough filters so that the spectrum could be measured with a sufficient number of data
points, and maximising the number of photons detected per filter, which determines the
error on each data point. Since there are expected to be a small number of photons, the
filter areas needed to be relatively large to make any meaningful measurement, which
resulted in only a small number of filters. Consequently, optimal filter selection was
crucial to the spectrum measurement. An optimisation procedure was written to perform
this selection, the details of which are given here12, as are the details of the x-ray analysis
procedure, performed by J.-N. Gruse. The final filter material and thicknesses are given
in Tab. 4.1. The x-ray spectrum critical energy was retrieved by calculating the expected
transmission through each filter for a range of critical energies and then choosing the
10 [226] iKon-M 934 BR-DD information, Andor
11 The K-edge of silicon is 1.89 keV, and direct detection cameras are approximately 100 times more

sensitive than comparable indirect detection cameras.
12 [227] J.-N. Gruse PhD. Thesis (2020)
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Table 4.1: Selected filter materials for the x-ray camera filter pack, and their thicknesses
in µm.

Kapton
C22H10N2O5

Mylar
C10H8O4

Mg Al(95%)
Mg(5%)

Al(98%)
Mg(1%)
Si(1%)

W

12.9 21.85 20.2 29.8 33.5 53.6

energy that minimised the χ2 difference relative to the measured transmission. The
error on the critical energy was then estimated by using the standard error on each filter
transmission value to calculate low and high transmission bounds, which were then used
to calculate lower and upper critical energies. The reported critical energy error is the
average difference between these bounds and the centre critical energy.

4.1.4 Initial optimisation

Before performing the density-length parameter scans, the accelerator was first optimised
for both the pure helium and mixed gas species to ensure that the scans were performed
using parameters that produced a large amount of charge. On most LWFA experiments,
optimisation is done entirely manually, and usually takes the form of a series of 1D
parameter scans, where the coordinate that produced the best outcome is fixed for
subsequent 1D scans. This method suffers from various issues, such as being overly
costly and poorly suited to optimising coupled parameters. Instead, after brief manual
optimisation to get an initial signal, a 5D Bayesian optimisation was performed, where
the dimensions varied were the 2nd, 3rd, and 4th order spectral phase terms of the laser
(β(2), β(3), β(4)), the vacuum focal position, and the density. The length of the cell
was fixed at 1mm, which was done to reduce the dimensionality of the optimisation,
resulting in faster convergence. The β(i) refer to the coefficients pulse’s spectral phase
β(ω∗), where ω∗ = ω − ω0,

E(ω) = Eωe−
(

ω∗
∆ω

)2

e−iβ(ω∗), (4.1)

where ∆ω is the Gaussian bandwidth and

β(ω∗) = β(0) + β(1)(ω∗) + β(2) (ω∗)2

2 + β(3) (ω∗)3

6 + β(4) (ω∗)4

24 + ... . (4.2)

The zeroth and first-order spectral phase terms relate to a shift of the phase with respect
to the envelope and a shift of the pulse with respect to time, which have negligible effects
since the spatial scale of the pulse envelope is much longer than the laser wavelength.
However, the addition of β(2) such that β(ω∗) = β(2)(ω∗)2/2 results in a time-varying
electric field with the form

E(t) = Eω

2
√

π
(

1
(∆ω)2 − iβ(2)

2

) exp

iω0t −

 t2 + iβ(2)(∆ω)2t2

2

(∆ω)2
(

1
(∆ω)4 + (β(2))2

4

)
 (4.3)
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We see that there is now a quadratic term in the phase resulting in a chirp, and the pulse
length has increased from (∆ω)−1 to a length that depends on β(2). The field strength
has dropped commensurately. Similarly, adding third and fourth-order spectral phase
terms results in cubic and quartic terms in the phase, and also modifies the pulse length
and peak field. It should be noted that the addition of β(3) modifies the pulse shape
assymetrically, in contrast to the β(2) and β(4) terms.

At each coordinate, a burst of 10 shots was taken at a repetition rate of 1Hz, after
which the average number of counts on the electron spectrometer camera was used
as the optimisation goal, with the error being the standard deviation over the burst.
Optimisations were halted once a maximum was reached and the algorithm began to
search for a new regime to exploit; this point was determined manually. More details of
this procedure are given by Shalloo et al.13; the data for this publication was obtained
during the experiment described in this chapter.
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Figure 4.6: Bayesian optimisation of the accelerator using pure helium gas. The upper
right plot shows the measurements as a function of the burst number, where each data
point is the average of all the data collected during that burst, and the error bar is the
standard deviation of the measurements in each burst. The blue line, the ‘Maximum’,
refers to the maximum value recorded up to that burst, while the red line, the ‘Optimum’,
shows the maximum value of the fitted Gaussian process.

Fig. 4.6 shows a summary of the pure helium gas optimisation. The 10 small scatter
plots on the lower left side of the plot show the coordinates at which measurements were
13 [220] R. J. Shalloo et al. (2020) Nature Communications

http://dx.doi.org/10.1038/s41467-020-20245-6
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made, while the marker colour is determined by the number of counts detected at that
coordinate. The term ∆β(i) is the change of the ith spectral phase coefficient, relative to
the average value of the coordinate, while ∆f gives the change in focal position, where
positive values correspond to focusing further from the parabola. In each of these plots,
as the number of counts increases, the location of the measurements can be seen to
gravitate towards a local maximum, indicating the algorithm has found and is attempting
to exploit this maximum. During the optimisation, a 5D Gaussian process, GP(5), was
fit to the data and acts as a surrogate model of the accelerator. The 2D colour maps
in the background of the scatter plots show the model prediction, where a 2D slice has
been taken through the GP(5) at the optimum position. For example, the upper left plot
of ∆β(3) versus ∆β(2) calculates the value of GP(5)(∆β(2), ∆β(3)| ∆β

(4)
opt, ∆fopt, ne,opt).

The plot in the upper right of the figure shows the measurements and their errors dis-
played chronologically as a function of burst number. Note that some values consistently
produced signal roughly equivalent to the background, resulting in a low measurement
with a small error bar. This did not skew the model, because the measured variance
at each point was used to construct a second Gaussian process, used to model the true
uncertainty at each position, and this second process was used to provide a less noisy
estimate of the error. This was done because the measured shot-to-shot fluctuations
provide an inaccurate measurement of the variance at that position, given the small
number of samples. See the above publication for more details. The predicted optimum,
shown in red, is an estimate of the optimum value of GP(5), calculated iteratively as the
result of each burst is supplied to the model. On the other hand, the rolling maximum,
shown in blue, is simply the maximum value measured up to a given burst. The predicted
optimum of the model does not match the maximum value recorded up to that point
because the measurements have errors, and the model has a pre-defined range of scale
lengths. Setting up the GP with a relatively restrictive lower bound on the scale length of
the variation is useful in a noisy environment, as it prevents over-fitting and encourages
a more gradual but reliable optimisation.

The helium source reached a local optimum after 80 bursts, following which 20 more
bursts were taken where the accelerator performance decreased, indicating that the
algorithm had converged and had begun to search for a new regime. Since the number of
counts increased steadily with the burst number, the path the optimisation took through
the parameter space can be seen in the scatter plots. While for most parameters a simple
linear shift is seen, such as in the plots of ne versus ∆β(i), the plots involving ∆f follow
a slightly more convoluted path from the starting coordinate to the optimum, starting at
+0.2, then shifting to −0.3, before arriving at approximately −0.1.

The optimisation of the doped (mixed) gas is shown in Fig. 4.7. This optimisation
appeared to converge quicker than the helium run, as can be seen by the swift rise in the
number of counts between bursts 30 and 40, followed by the decline after burst 50, and a
levelling of the predicted optimum. As a result, this optimisation was terminated after
55 bursts. In contrast to the helium optimisation, which saw a gradual increase in the
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Figure 4.7: Bayesian optimisation of the accelerator for the mixed gas.

number of counts, this optimisation took longer to find an improved regime. After the
initial bursts taken at random coordinates (1-5), the maximum value did not improve
significantly until burst 30. This is likely due to the different starting points of the
optimisations, with the mixed gas starting close to a local optimum, while the helium
gas started on a slope, making it easier to find improvements. This can be seen in the
nevs∆β4 plot Fig. 4.7, in which two peaks in the GP can be seen. The smaller number
of bursts contributes to the smoother prediction of the GP , resulting in a smoother kernel
being used to construct the surrogate model.

4.2 Density-length scans

The density-length scans were performed immediately after the optimisations. Scans
were performed by setting the cell length to 0mm, and then increasing the backing
pressure to the cell from 200mbar to 1200mbar in 21 steps. This direction was chosen
because increasing the backing pressure required little time and did not require frequent
venting, reducing wasted gas. Pressure scans were performed at cell lengths up to 3 mm
in increments of 0.2 mm, for a total of 16 cell lengths. At each combination of pressure
and length, 10 shots were attempted, for a total of 3,360 shots per scan. The laser failed
to produce a beam above 200mJ on 92 of the 6,720 shots, a failure rate of 1.4%, and
consequently, these shots were removed from the analysis. The median laser energy
for the helium scan after the failed laser shots were removed was 251.2 ± 7.3mJ, while
259.0 ± 8.2mJ was the median energy during the doped gas scan. Laser energy as a
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function of shot number is plotted in Fig. 4.8, where it can be seen that no large drifts
in the laser energy are observed during the run.
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Figure 4.8: Laser energy delivered to target during the helium (left) and doped (right)
parameter scans. The horizontal line and red shaded regions show the median and
standard deviation respectively.

4.2.1 Electron spectrometer measurements

First, we will review the measurements made by the electron spectrometer. Rather than
present individual electron spectrometer images, due to the quantity of data, single-valued
metrics of the electron beams will be used to characterise the spectra individually. The
average of these metrics over a burst has been calculated, with the results of each burst
represented as a single data point on a grid. This allows for a macroscopic, qualitative
analysis of the full parameter space to be performed, facilitating the identification of
regions with interesting behaviour. These interesting regions will then be investigated
quantitatively in Sec. 4.4.
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Figure 4.9: Mean electron beam charge for pure helium gas (left) and 1% nitrogen-doped
gas (right) in the density length parameter space. The grey colour indicates regions
where the charge fell below 0.5 pC. The anomalous low-density measurement at 1.4 mm
in the doped scan is due to imperfect venting of the reservoir.

Fig. 4.9 compares the mean electron beam charge for the pure and doped gas density-
length scans. Immediately apparent is the larger amount of charge injected by the doped
gas, up to a maximum of 27.3 ± 4.0 pC, while the maximum charge in the pure gas scan
was 13.5 ± 1.5 pC, where the error is calculated using the standard error, σ/

√
N , where
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N is the number of samples and σ is the standard deviation of those samples. In addition,
electron beams are produced over a wider range of parameters for the doped gas, with
injection occurring at densities as low as 9.4 × 1024 m−3, and at the minimum cell length
at 1.30 × 1025 m−3, while the helium gas required densities above 1.81 × 1025 m−3 for
any injection to occur. For both gases, above approximately 2.2 × 1025 m−3, increasing
density results in a decrease in charge, independently of the cell length.

One of the features of these plots that will receive the most attention in the following
analysis is the coupling between the density and the length at which injection occurs.
This can be seen in the slopes on the left-hand side of the plots, where, for lower densities,
a longer cell length is required for injection to occur. In pure helium gas, injection is
caused by wavebreaking of the plasma wave, while, in the doped gas, inner shell ionisation
provides an additional mechanism for injection, and both these processes depend on the
dynamics of the driving laser. Consequently, analysis of the injection point provides
insight into the pulse evolution rate.

The energy below which 95% of the charge in the spectrum exists is a robust metric for
characterising the energy of the beam, as it does not attempt to measure precisely where
the signal ends and the background begins, and is therefore well suited to measuring the
quasi-thermal electron spectra which are common during these scans. It is calculated
by integrating the spectrum from its lowest energy up to the point at which the charge
is equal to 95% of the total charge. This metric for the two gas mixtures is shown in
Fig. 4.10.
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Figure 4.10: Mean 95% cut-off energy of each burst. The regions where the charge did
not exceed 0.5 pC have been greyed out, as the spectra in these regions would occasionally
produce spurious high energy readings due to noise.

For helium gas, the highest 95% energy value did not exceed 80 MeV, and this metric
was optimised at a density of 1.8 × 1024 m−3, with a weak length dependence, provided
a beam was injected. When we compare Fig. 4.10 to the charge measurements in
Fig. 4.9, we see that the highest energy beams occur at slightly longer lengths and lower
densities than the highest charge beams. These two locations in the parameters space are
approximately equivalent in terms of the conversion efficiency from laser beam energy to
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electron beam energy, indicating the presence of a Pareto front14, where improvements
in one metric come at the cost of another.

The mixed gas plot in Fig. 4.10 has two distinct regions where high energies were
recorded; one at low densities and short cell lengths, and another at higher densities
and longer cell lengths. In both of these regions, the cut-off energy exceeds 120MeV,
significantly higher than the highest values recorded in the helium gas. In between these
two regions, there appears to be a ‘valley’ in the parameter space, where the beam energy
decreases before increasing again. Comparing the doped gas results to those from the
pure gas, the region of the parameter space occupied by the pure gas beam is similar to
the location of the second high-energy region in the doped gas. Taken together, these
observations strongly indicate two injection events; an ionisation injection that occurs at
shorter plasma lengths and lower densities, and a second injection event that occurs in
the same place as self-injection in the pure gas.

While the 95% energy metric is useful for characterising the beam, we would also
like to measure the maximum energy that was produced at each coordinate, as this
provides quantitative insight into the acceleration dynamics. However, as shown by
Fig. 4.4, the error in the energy due to divergence fluctuations becomes significant above
approximately 100 MeV, and so care needs to be taken when determining the maximum
energy. Simply using the maximum energy detected would not produce a useful result,
as the error would be over 50% for the higher energy shots. Another option would be to
take the mean maximum energy of the burst, which would mitigate errors due to pointing
fluctuations. However, due to shot-to-shot variations in the laser, the peak energy varies
significantly across the burst, so this mean value underrepresents the maximum energy.
As a compromise, we will use the mean of energies with non-zero values that are above
the 25th percentile of the burst, as this should remove the low-quality laser shots while
allowing for enough measurements to mitigate the error from pointing fluctuations.
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Figure 4.11: Mean peak energy of each burst. The regions where the charge did not
exceed 0.5 pC have been greyed out, as the spectra in these regions would occasionally
produce spurious high energy readings due to noise. Additionally, the settings that failed
to produce a peak energy measurement due to low signal are also shown in grey.
14 [202] F. Irshad et al. (2022) arXiv e-prints
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These peak energy measurements are shown in Fig. 4.11. The highest energy reached
by the pure gas was 125 ± 33 MeV, while the doped gas had an estimated peak energy of
211±7 MeV. The error on the pure gas measurement is higher than the mixed gas because
the highest energy burst from the pure gas scan produced only one measurement that met
the selection criteria, and, as a result, the error is taken from the error due to pointing
fluctuation at that energy, shown as the shaded region in Fig. 4.4. Qualitatively, the
doped gas measurements in Fig. 4.11 are similar to those in Fig. 4.10, with two distinct
regions of the parameter space producing high-energy beams. The main difference is that
the two regions have different peak energies, despite having similar 95% cutoff energies.
This occurs due to a difference in the shapes of the spectra; since the 95% metric is
insensitive to long tails, we can deduce that the high peak energies are the result of
long-tailed spectra.

The average divergences are plotted in Fig. 4.12. For the pure helium gas, the higher
electron beam energies coincided with the lowest divergence beams, which were mostly
in the range of 15 to 20 mrad. This is to be expected, as electron beams with equivalent
transverse momentum spreads will have lower divergences if the energy is higher. The
beams produced in the doped gas at short cell lengths and low plasma densities were
the most collimated, down to a minimum divergence of 1.4 ± 0.1mrad, produced at
9.4 × 1024 m−3 at a length of 1 mm. Conversely, the electron beams produced at longer
lengths and higher plasma densities in the mixed gas had higher divergences than those
produced in the same region of the parameter space in the pure gas. This is despite the
higher beam energy, which would be expected to reduce the divergence.
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Figure 4.12: Mean divergence of each burst. Regions with charge below 0.5 pC are
coloured grey, as these divergence measurements were overly susceptible to noise.

Having examined the parameter space in full, it is worth displaying a selection of the
raw data. The shots displayed in Fig. 4.13 constitute the highest charge burst from the
pure helium scan, Fig. 4.14 shows the lowest divergence electron beams from the doped
gas scan, and Fig. 4.15 shows the high peak energy measurements, also from the doped
gas. Note that the three figures all use the same colour and axes scales. Displaying the
raw data is important because it reveals information that cannot be deduced from the
single metric plots above, such as the interesting structure of the high charge beams
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injected in helium gas, and the fact that the highest energy electrons exceed the upper
energy threshold of the spectrometer.
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Figure 4.13: Electron spectrometer images from the peak charge burst in pure helium gas,
ne = 2.1 × 1025 m−3 with a cell length of 1.0 mm. The horizontal axis is the divergence
and spans ±75mrad. A wider divergence range is visible at lower energies due to the
shorter propagation length. Empty images show instances where the laser failed to
produce an electron beam.
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Figure 4.14: Lowest divergence beams produced in the doped gas, ne = 0.95 × 1025 m−3

with a cell length of 1.0 mm.



110 Chapter 4. The density-length parameter space of a laser wakefield accelerator

−75 0 ±75

50

100

150

200

E
n

er
gy

(M
eV

)

0 ±75 0 ±75 0 ±75 0 ±75

θy (mrad)

0 ±75 0 ±75 0 ±75 0 ±75±75 0 75
0

1

2

3

4

5

d
2
Q

d
E
d
θ

(f
C

M
eV
−

1
m

ra
d
−

1
)

Figure 4.15: Electron spectrometer images from the burst with the highest peak energy,
at 1.6mm, and ne = 2.0 × 1025 m−3. The highest energies exceeded the upper energy
limit of the spectrometer.

4.2.2 X-ray measurements

A measure of the x-ray beam intensity is shown in Fig. 4.16; the mean peak of the
background subtracted counts on the x-ray camera during each burst. Due to shot-to-shot
fluctuations, the x-ray intensity varied significantly within each burst, and so, to minimise
the error on these measurements, the best 60% of shots from each burst are selected and
used for these measurements. Since the error is calculated from the standard deviation
across the burst, this reduces the error at the cost of slightly biasing the results. As shall
be seen, the error on the x-ray measurements is significant, and so minimising the error
was a priority.

Electrons generated during the second injection event in the doped gas appear to
be responsible for the majority of the observed x-rays, while the electron beam in the
helium gas can only produce signal that rises above the background level over a narrow
region. This is partly due to the increased charge and energy of the second beam in the
doped gas, which combine to greatly enhance the x-ray flux. Interestingly, electrons from
the first injection event in the doped gas fail to produce detectable x-rays, despite having
comparable charge and higher energy than the x-ray-producing beam in the helium gas.
This is likely to be due to the reduced oscillation amplitude of this beam, as can be
seen from the divergence measurements in Fig. 4.12. The 98th percentile mean peak
intensity values for the helium gas were 518 ± 2 counts, while for the doped gas these
were 4890 ± 10 counts. The uncertainties reflect the standard error on the mean, which
is low due to number of pixels, of order 103, and the averaging over multiple shots.
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Figure 4.16: Comparison of the peak x-ray intensity.

Fig. 4.17 shows the measurements of the critical energy. The 98th percentile critical
energies for the helium gas is 8.0 ± 1.2 keV, and 2.8 ± 0.2 keV for the doped gas. Despite
the low signal, the pure helium target was capable of producing higher critical energies
than the doped gas at the equivalent parameters. This is surprising because the critical
energy scales most strongly with the electron energy, Ecrit ∝ γ2, and the electrons in
the doped gas are more energetic in this parameter region. A possible explanation is
that the higher charge beam of the doped gas has a large number of low energy electrons
that are contributing to the x-ray spectrum, reducing the measured Ecrit. Alternatively,
or perhaps additionally, from inspection of the images in Fig. 4.13, we can see that the
beam is clearly undergoing large amplitude oscillations, which would increase the critical
energy.
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Figure 4.17: Comparison of the critical energy.

The number of photons within a 0.1% bandwidth at the peak of the x-ray spectrum,
Nph, is shown in Fig. 4.18, normalised to the unit solid angle. This is calculated by
determining the peak number of photons measured per pixel from the peak intensity,
dividing by the angular size of that pixel from the source, and then using this value
to normalise the integral of the synchrotron spectrum. A 98th percentile value of
2.5+0.7

−0.1 ph mrad−2 0.1%BW−1 was measured for the pure helium gas, while for the doped
gas this value was 10.7+1.3

−1.6 ph mrad−2 0.1%BW−1. The unit 0.1%BW−1 means that the
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reported Nph is equal to the integration of the intensity spectrum around the energy
with the peak intensity, occurring at E = Epeak, over a bin width of Epeak × 10−3. The
asymmetry of the error results from using the error on the critical energy, ∆Ecrit, to
determine Nph for two different critical energies, Ecrit ± ∆Ecrit, with the upper error
resulting from using a lower critical energy.
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Figure 4.18: Number of photons at the peak of the spectrum, calculated using the peak
intensity and the measurements of the spectrum.

4.3 Simulations

In this section, the results of the PIC simulations will be presented. Following an overview
of the simulation parameters, the results from the pure helium and doped gas density
scans will be presented. Explicit comparison to the experimental data will be delayed
until the following discussion section.

4.3.1 Simulation parameters

The simulations were performed using the code FBPIC15 using the parameters shown
in Tab. 4.2, using a single GPU in the infinite order spectral solver mode, making the
simulations dispersion free in all directions. Identical parameters were used for both the
pure and doped simulations, with the only difference being the presence of the dopant.
The helium atoms were initialised with an ionisation state of +1, while the nitrogen
atoms were ionised up to +5, which was done to reduce computational time, while the
ionisation rates were calculated using the built-in module based on ADK ionisation
rates16. The nitrogen ions were initialised with only 1 particle per cell as opposed to the
24 particles per cell used for the helium and plasma electrons because otherwise tracking
the number of particles produced by the dopant exceeded the memory limits of the GPU.

Density ramps with scale lengths of 0.25 mm were used for the transition between the
bulk of the plasma and the vacuum. Such long ramps were used to simulate the effects of
the large exit and entry holes to the cell, which had been widened to approximately 1 mm
by laser ablation. The density profiles were initialised so that the front ramp reached
15 [216] R. Lehe et al. (2016) Computer Physics Communications
16 See Sec. 2.3.

http://dx.doi.org/https://doi.org/10.1016/j.cpc.2016.02.007
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Table 4.2: Simulation parameters

Parameter Axis (Units) Number
Window size z × r, (µm2) 80 × 40
Resolution z × r, (λ−1) 35 × 2.5
Azimuthal modes θ 2
e- z × r × θ 2 × 2 × 6
He1+ z × r × θ 2 × 2 × 6
N5+ z × r × θ 1 × 1 × 1
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Figure 4.19: Snapshots from the pure helium simulation at ne = 2 × 1025 m−3, t = 4.7 ps,
(top) and t = 5.0 ps (bottom); before and after the first injection event.

95% of the plateau plasma density at z =2mm, and the down ramp at the end of the
plasma dropped to 95 % at z =5 mm.

The laser pulse injected into the simulations had a Gaussian transverse profile with
w0 =18.5 µm and a peak a0 of 0.57, chosen to match the median values of the data
presented in Fig. 4.2. The vacuum focal position was set to z =2mm, which is over 1
Rayleigh length from the start of the simulation. It is for this reason that a Gaussian
transverse profile has been used, as opposed to an experimentally measured one, as the
spatial phase information of the focal spot would be required to propagate it accurately
over such a long distance. The longitudinal intensity profile was taken from the pulse
length measurements made with the SPIDER at the end of the optimisation process,
which had τFWHM 49.4 fs, but required a 266 fs (80 µm) long window to contain the
pre and post pulse structure. Two snapshots from one of the simulations are shown
in Fig. 4.19. Taken from the moments before and after the first injection event in
ne = 2 × 1025 m−3 pure helium, these plots illustrate the relative scales of the plasma
bubble size, the laser wavelength, and the laser pulse length.
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4.3.2 Simulation results

The evolution of the electron energy spectrum for the densities 1.25 - 2.5 × 1025 m−3 are
shown in Fig. 4.20 for the pure helium gas. For each density, an initial period of pulse
propagation is followed by the injection and rapid acceleration of electrons. These first
electrons follow a roughly parabolic trajectory in the energy-z space, characteristic of a
beam that is undergoing acceleration followed by dephasing. The curvature radius and
maximum energy of the parabolic trajectory appear to be inversely related to the density,
with the beam from the lowest density simulation following the smoothest, highest path,
while the first injection in the highest density simulation dephases more rapidly and at a
lower energy.

Following this first beam, a second beam is injected for ne > 1.25 × 1025 m−3. Rather
than following a curved trajectory, this beam undergoes constant acceleration, before
plateauing abruptly. This is consistent with beam-driven acceleration, where the witness
beam does not dephase from the driver. The maximum energy of this second bunch
is sensitive to the charge of the driver bunch, the location at which the laser depletes,
and the injection location, all of which are the result of highly non-linear processes
individually. Consequently, the maximum energy reached by this second beam does not
appear to follow a pattern, as the process that produced it is semi-chaotic.
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Figure 4.20: Electron beam energy spectrum evolution as a function of longitudinal
position z for the pure helium gas at various densities, where a logarithmic colour scale
has been used. The simulation for ne = 1 × 1025 m−3 did not inject any charge and has
been omitted.

The evolution of the energy spectrum for the nitrogen-doped simulations is shown in
Fig. 4.21, now for the density range 0.75 - 2.0 × 1025 m−3. In these plots, the electrons
which originate from the bulk plasma are shown in the same colour map as in Fig. 4.20,
while those which are produced by the ionisation of the N5+ ions are shown in red. We
see that ionisation injection occurs for densities as low as 0.75 × 1025 m−3, while the bulk
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plasma electrons are only injected once the density reaches 1.25 × 1025 m−3, which is
the same threshold as that found in the pure helium simulations. The first bunch of
electrons injected from the bulk plasma also reach similar energies as those in the first
bunches in the pure helium simulations, indicating that the ionisation injected beam
has dephased sufficiently so as to not suppress the accelerating field experienced by the
self-injected beam. The onset of beam-driven acceleration is also seen to occur at the
same density, but appears to reach higher energies for the nitrogen-doped simulations
than for the comparable pure simulations. We therefore conclude that, prior to the laser
depleting, the ionisation injected beam and self-injected beam do not strongly affect each
other, but that once the laser has depleted, the witness bunch energy is sensitive to their
combined effects.
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Figure 4.21: Electron beam energy spectrum evolution as a function of longitudinal
position z for the nitrogen-doped gas. The simulation for ne = 0.5 × 1025 m−3 did not
inject any charge, and has been omitted. The red colour denotes the electrons that
originate from the inner shells of nitrogen.

The injection, acceleration, and dephasing of the beam is sensitive to the evolution of
a0, which is plotted in Fig. 4.22. At all densities greater than or equal to 1 × 1025 m−3, a
similar evolution is observed; an initial period of increasing a0 is followed by a plateau,
after which a second increase is observed up to the peak value, after which the intensity
drops rapidly. The first increase is due to the transverse self-focusing of the pulse as it
enters the plasma, while the second increase is due to longitudinal compression, which is
soon followed by depletion. The results in the pure and doped gases are plotted side by
side, where it can be seen from inspection that the dopant is not having a measurable
effect on the dynamics. Some small differences between the two gases are seen for the
higher density simulations; the 1.5 × 1025 m−3 simulation has a higher peak a0 in the
doped gas than the pure gas, while the peak a0 is higher in the pure helium gas simulation
at 2 × 1025 m−3. However, these are only seen at the peak a0 values, which are noisy to
measure due to the few-cycle length of the pulse when fully compressed.
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Figure 4.22: Maximum value of the laser a0 as a function of z, for the pure helium
simulations, left, and the doped simulations, right.

Comparing the a0 evolution plots to the results in Fig. 4.20 and Fig. 4.21, we can
see that the first self-injection events occur when a0 ≈ 3, while ionisation injection
starts17 when a0 ≈ 2. The initial transverse focusing increases a0 sufficiently for the first
ionisation injection event to occur, while the first self-injection event requires the pulse
to undergo some longitudinal compression. Further self-injection occurs when the pulse
compresses rapidly, after which the onset of beam-driven acceleration aligns with the
depletion of the laser pulse.

To provide a quantitative comparison between the experimental 2D scans and the
simulations, various electron beam metrics have been measured as a function of longitu-
dinal position, and have been plotted in Fig. 4.23. These metrics were the charge above
27MeV, the 95% cut-off energy, and the divergence, θy. The charge and divergence
measurements were made by selecting particles with divergences in x less than 18 mrad
and energies above 27 MeV, as these are the only particles which would reach the electron
spectrometer screen on the experiment. In contrast, the energy metric is calculated from
the 95% energy contours in Fig. 4.20 and Fig. 4.21, which does not set any requirement
on the divergence. The fast changes seen in the charge and divergence metrics are a
result of this stipulation, as the divergence of the beam is undergoing rapid changes
during injection.

From inspection, the simulated data resembles the experimental measurements closely.
Firstly, the dependency between density and injection length appears to be similar, for
both the self-injected and the ionisation-injected beam, suggesting that these simulations
can be used to determine the mechanism behind the pulse evolution rate. In addition,
the ionisation injection density threshold occurring somewhere between 0.75 × 1025 m−3

1 × 1025 m−3 is in close agreement with the experimental data, and the contour of
the peak energy of the first ionisation injected beam is in close agreement with the
measurements in Fig. 4.10. The lower divergence of the ionisation injected beam relative
17 Interestingly, we do see a small amount of ionisation for the 0.75 × 1025 m−3 simulation, despite a0

not reaching the ionisation threshold, indicating that these electrons were ionised by tunnel ionisation
rather than barrier suppression, and the low charge is due to the reduced likelihood of their ionisation.
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Figure 4.23: Beam metrics as a function of density and longitudinal position, for the
pure helium gas, top, and the doped gas, bottom. Grey regions indicate the lack of data
or insufficient charge. For comparison, the plots have been extended so that they cover
the same density range, even though, for example, the highest density simulation for the
doped gas was 2 × 1025 m−3.

to the self-injected beam agrees with the measurements, as well as the average divergence
of the doped gas measurements being lower than for the pure gas. These similarities will
be used to support the discussion of the data that follows.

Several differences between the experiment and simulation results are also observed.
Firstly, although the ionisation injected charges are comparable, at approximately
10 pC, the simulated self-injected charge is roughly 10 times larger than measured
experimentally, at 60 pC versus 5-10 pC. It is possible that this is a result of using a
perfectly symmetrical transverse profile for the laser pulse, combined with the assumption
of cylindrical symmetry, as this could enhance the amount of charge that undergoes
self-injection by providing an un-physically stable bubble. Self-injection at the threshold
occurs transversely18, and so it is plausible that instability in the location of the electron
sheath that forms the bubble makes trapping electrons transversely more challenging.
In contrast, ionisation injection is insensitive to small changes in the electron sheath
location, as it is primarily a longitudinal process in which the captured electrons do
not get close to the sheath. The self-injection charge discrepancy between simulations
and experimental measurements is an area of active investigation. One consequence
of this over-injection of charge in simulations may be an overestimate of the energy
and charge resulting from any subsequent beam-driven acceleration, and so the high
energies at longer lengths in the pure helium simulations are treated as being potentially
spurious. Electrons accelerated by beam drivers can be readily identified by the linear
18 [153] A. G. R. Thomas (2010) Physics of Plasmas

http://dx.doi.org/10.1063/1.3368678
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relationship between energy and propagation length, compared to the parabolic trajectory
of laser-driven acceleration.

Another difference between the experimental and simulated results can be found in
the divergence measurements, which are more extreme in the simulations. At the higher
densities, these values are too high, while they are too low at the lower densities. The
difference at high densities can be explained by realising that the experimental length
scan includes the density down ramp at the end of the plasma, whereas here we are only
taking snapshots of the particle phase space. In addition, the simulated measurements
are more likely to be skewed by long tails in the beam’s phase space, which may be below
the detection threshold of the spectrometer. The underestimation of the divergence at
low densities could also be due to the assumption of a symmetric transverse laser profile
in the simulation, as well as the effects of scattering in the tape for the real beam.

4.4 Discussion

In this section, the results presented in the previous sections will be discussed. The
resolution of the data allows for many possible avenues of exploration, and consequently,
this discussion will not be comprehensive. We will instead focus on the topics of electron
beam energy, the rate of laser pulse evolution, and x-ray production. This discussion will
be conducted by comparing the data to the appropriate scaling laws, and by employing
PIC simulations to investigate the nonlinear phenomena.

4.4.1 Self-injected beam energy

We will first consider the self-injected beam in the pure helium gas. The energy gain for
an electron being accelerated in the 3D, a0 > 2 regime19 is given by,

∆W = mc2 2
3

ω0
ωp

a0. (4.4)

Recall20 that this scaling law is derived from a model where an electron is propagating
from the peak of the accelerating field to the equilibrium point at the centre of the
bubble, over the distance of the bubble radius. For the self-injected beam in pure helium,
we can use the model by Thomas to estimate the laser a0 at injection21,

2c
√

ln (2γ2
p) − 1

ωp
≳ rb, (4.5)

where rb is the bubble radius. In the bubble regime, rb = 2√
a0c/ωp, and γ2

p = nc/3ne,
where γp is the phase velocity of the plasma wave, or the velocity of the back of the
bubble, when the laser pulse is etching. Therefore, for the self-injected beam, the modified
19 [44] W. Lu et al. (2007) Physical Review Special Topics - Accelerators and Beams
20 See Sec. 2.6.3.
21 [153] A. G. R. Thomas (2010) Physics of Plasmas

http://dx.doi.org/10.1103/PhysRevSTAB.10.061301
http://dx.doi.org/10.1063/1.3368678
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energy scaling law becomes

∆WSI = mc2 2
3

ω0
ωp

ln

2
3

(
ω0
ωp

)2
− 1

 . (4.6)

This expression for the energy gain scales with the density slightly faster than Eq. 4.4, as
at lower densities a larger bubble is driven, resulting in a longer acceleration length. For
a density of 2 × 1025 m−3, this model predicts injection at a0 =3.06, giving an energy
gain of 90.8MeV. This model also assumes that the value of a0, and hence the electric
field strength at the back of the bubble, is constant throughout the acceleration, which is
likely to be an oversimplification. However, an increasing a0 will result in an increasing
bubble radius, accelerating dephasing, while a decreasing a0 will slightly rephase the
electrons, enhancing the acceleration, so the effect of a variable a0 may be partially
mitigated.
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Figure 4.24: Comparing the pure helium gas peak energy data to theoretical scaling.
The fitted value of R in this plot is 93%.

In Fig. 4.24 the experimental data and the results of the pure helium PIC simulations
are compared to ∆WSI . Each experimental data point is the peak energy and its
associated error from the left panel of Fig. 4.11, excluding the densities at which no
beams were injected. The grey shaded region indicates the mean error at each density,
calculated using the errors on the data points, and centred on the mean energy at that
density. The results of the simulations are also included, where the energy plotted
here is the maximum energy reached by the first electron beam. Attempting to fit
Eq. 4.6 to the experimental data, a prefactor of R = 0.93 minimises the square of the
error-weighted distance of the line from the data points. Both ∆WSI and R∆WSI are
plotted in Fig. 4.24, and since both lines lie within the region of error, we conclude that
the model behind Eq. 4.6 is a good descriptor of the acceleration and injection process.

4.4.2 Doped gas beam energy

We now turn our attention to the peak electron energies from the doped gas. Again, we
will assume we are in the 3D, a0 > 2 regime22 and will use Eq. 4.4 to predict the energy
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gain. For ionisation injection of nitrogen, we simply need to determine the electric field
intensity for the barrier suppression ionisation of the first inner shell electron. These will
be the first electrons to be injected, and consequently should reach the highest energies
due to beam loading effects. This value is found in Tab. 2.1, and gives an a0 = 2.2.
This value is used to predict the ionisation injected energy gain ∆WII , and is plotted
alongside a selection of the experimental data in Fig. 4.25.
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Figure 4.25: Electron beam peak energy as a function of density for a selection of cell
lengths. The model behind ∆WII assumes a0 = 2.2. Experimental data is discontinuous
at some densities due to lack of data.

When tracing the relationship between density and peak energy in Fig. 4.25 for
various lengths, a pattern emerges. As density increases, the energy rises until it hits a
peak, then either plateaus or falls, before rising again to produce a second peak, then
falling again at high energies. This does not follow the prediction of ∆WII , which is not
surprising given the more complicated injection behaviour. The simulations suggest that
the first peak corresponds to electrons injected via ionisation injection, while the second
peak is due to injection that occurs when the laser pulse depletes, and that further, the
height of the second peak is a result of beam-driven acceleration. It is not expected for
the second peak to follow the predictions of ∆WII , since the acceleration mechanism is
completely different. However, the first peak is produced by laser-driven acceleration
when the a0 of the laser is known, so it is surprising that even this acceleration does not
follow the theoretical prediction. For example, the density scan at L = 0 mm produces a
prominent peak of 160 MeV at 1.5 × 1025 m−3, much higher than predicted by the scaling
law. This means either that the accelerating gradient is stronger than predicted, or the
acceleration length is longer than predicted.

To further investigate the source of this extra energy gain, we can recast the data
into a length scan. This has been done for the data taken at 1.1 × 1025 m−3 in Fig. 4.26.
In the fully blown-out model, the longitudinal electric field Ez has a magnitude of

Ez(z) =
(

1 − z

Lacc

)
Ez,max, (4.7)

22 [44] W. Lu et al. (2007) Physical Review Special Topics - Accelerators and Beams

http://dx.doi.org/10.1103/PhysRevSTAB.10.061301
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where Ez,max is the maximum electric field found at the back of the bubble, z is the
distance from the back of the bubble, and Lacc is the length of acceleration. The energy
gain as a function of z is

∆W

mec2 = Ez,max

∫ z

0

(
1 − z′

Lacc

)
dz′. (4.8)

This length is determined by the bubble radius and the phase velocity of the plasma
wave,

Lacc =
(

1
1 − βϕ

)
rb. (4.9)

If, for now, we assume that the bubble radius is constant, and determined by the
value of a0 at injection, and further take the phase velocity to be the etching velocity,
βϕ = 1 − (3ne/2nc), where nc is the critical density, the energy gain from Eq. 4.8 follows
the dashed line in Fig. 4.26. We see that the form of the prediction is similar to the
measurement, which is approximately parabolic until z = 1.2 mm. After this point, the
measured energy gain falls slowly, which is a consequence of the laser depleting before
the beam fully dephases.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

z (mm)

0

50

100

150

E
n

er
gy

(M
eV

)

∆W (z)

∆WK(z)

PIC

Exp.

Figure 4.26: Energy gain as a function of length, for experimental data recorded at
1.1 × 1025 m−3, and simulation results at 1.25 × 1025 m−3. The error bars on the data
points reflect the shot-to-shot fluctuations at each position. The energy gain model
with a bubble velocity reduced by etching, ∆W (z), has been plotted, in addition to the
modified energy gain model with a higher bubble velocity, ∆WK(z).

The peak of the predicted and measured energy gains occur at different points in
z, with a lower and earlier predicted peak energy than measured. A different phase
velocity could account for this, which we can find by adding a fitting parameter, K, to
the expression for the etching velocity,

βϕ(K) ≃ 1 +
(

K − 3
2

)(
ωp

ωL

)2
. (4.10)

A good fit is obtained for K = 2/3, giving βϕ ≃ 1 − 5ne/6nc. This velocity is slower
than the linear group velocity, for which K = 1, but it is closer to the group velocity
than the etching velocity K = 0.
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Figure 4.27: On-axis charge density map for the undoped simulation, left, and doped
gas simulation, right, for ne = 1.25 × 1025 m−3. The laser pulse moves from left to right
across the plot.

By examining the PIC simulations, we can directly measure the plasma wave velocity
at the moment of injection. Fig. 4.27 gives the on-axis charge density as a function
of longitudinal position for the 1.25 × 1025 m−3 simulations, where the central 3 cells
have been averaged. Moving from left to right across the plots, we can see that the
plasma wave structure forms at z = 0.2 mm, and that the first ionisation injection event
happens at z ≈ 0.2mm. The injected electrons move at c through the simulation, while
the plasma wave recedes at approximately βϕ(K = 2/3). Note that the front of the wave
is also moving at this velocity, and that the phase velocity of the plasma wave is slightly
higher in the pure helium gas than in the doped gas due to the effects of beam loading.
In the pure helium simulation, the phase velocity drops to βetch at z = 1.2mm, while
in the doped gas simulation the phase velocity decelerates below the etching velocity,
where the difference in velocity between the two simulations is attributed to further
beam loading of the wake due to ionisation injection.

We conclude that we are in a regime where pulse depletion is semi-localised. The
pulse does not etch at the rate given by Decker et al.23 because the laser intensity at the
front of the pulse is too low, nor does it move at the linear group velocity. For a0 ≫ 1, a
narrow density spike forms at the front of the pulse, which causes rapid local depletion of
the slice of the pulse propagating in that region of the plasma. However, we can see that
for our conditions the density increase at the front of the plasma wave is not narrow, and
consequently, a wide but still localised region of the pulse is being depleted. This wide
region moves backwards through the pulse at a slower rate than would a narrow spike,
increasing the plasma wave velocity relative to βetch. An advantage of this regime is that
particles injected into the faster wake can attain higher energies due to the extended
dephasing length.

An increased dephasing length is also the source of the 200MeV energies seen at
ne = 2 × 1025 m−3. This can be seen from the plot in Fig. 4.28, where the data for
23 [149] C. D. Decker et al. (1996) Physics of Plasmas

http://dx.doi.org/10.1063/1.872001
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Figure 4.28: Energy as a function of cell length for all densities above 1.5 × 1025 m−3.

densities above 1.5 × 1025 m−3 has been plotted as a function of cell length. Fitting a
parabola to this data, we find that the acceleration length is 3.0 mm, which is significantly
longer than the group velocity dephasing length, λpnc/ne = 0.6mm for 2 × 1025 m−3.
Such a long acceleration length is indicative of beam-driven acceleration, where the
acceleration length is determined by the energy in the driving beam, rather than the
velocity difference between the driver and the witness. Beam-driven acceleration was
also observed in the simulations, verifying the experimental observations.

4.4.3 Pulse evolution rate

We will now investigate the pulse evolution rate. To do this, the cell length coordinates
are converted to target lengths, which is complicated by the presence of the density
ramps at the front of the cell. For the purposes of this discussion, we will define the
start of the plasma as the point at which the density is high enough for the laser pulse
to self-focus, which occurs at 6 × 1024 m−3 for the 5 TW laser used. The form and scale
length of the ramp was obtained from the fluid simulations reported in Sec. 3.2.2. The
effect of this definition is that the cell length now depends on the density; for a plateau
density of 1.0 × 1025 m−3, the laser pulse will begin to focus 0.6 mm before the cell, while
for a density of 2.5 × 1025 m−3, the laser pulse will begin to focus 1mm before the cell.
This non-linear relationship has been plotted in Fig. 4.29.
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Figure 4.29: Left panel shows some of the exponential density ramps used in the
simulations, with the self-focusing threshold for the 5TW laser at 0.6 × 1025 m−3. The
right panel shows the location at which the density rises above the focusing threshold as
a function of plateau density, relative to z = 0.

The injection length as a function of density is plotted in Fig. 4.30 for both the pure
helium gas and the nitrogen-doped gas. The experimentally measured injection length
was determined by arranging the data into a series of density scans, see Fig. 4.25 for an
example, and then determining the first point at which the charge reached 10% of the
maximum charge for that density scan, linearly interpolating between data points. The
error in ne is calculated by performing the same procedure using thresholds of 5% and
15% and then using the mean of these two values. The injection point for the simulations
is determined from the data in the first column of Fig. 4.23. For all injection length
measurements, the correction for the effect of the density ramp from Fig. 4.29 is applied.
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Figure 4.30: Injection length versus density, for the experimental data and from the
simulations.

The depletion length24, Ld = 1.4λpnc/ne is also plotted in Fig. 4.30, as is the pulse
evolution length from Streeter et al.25,

Levol = λp
2
3

nc

ne

√
1
2 ln

(
P0
Pc

)
, (4.11)

24 [148] B. A. Shadwick et al. (2009) Physics of Plasmas
25 [146] M. Streeter et al. (2018) Physical Review Letters

http://dx.doi.org/10.1063/1.3124185
http://dx.doi.org/10.1103/PhysRevLett.120.254801
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where P0 and Pc are the peak and critical power respectively. This model requires
moderate values of P0/Pc, and will not be valid for P0 ≲ Pc, as seen by the fall in
Levol at lower densities. The evolution length gives the point at which maximum power
amplification should occur, which is after approximately half of the laser pulse has been
etched under the conditions studied by the authors, while the depletion length is the
length at which all of the energy in the pulse has been lost (Ld ≈ 2Levol). Comparing
Levol and Ld to our measurements in Fig. 4.30, we see that they predict pulse depletion
before the injection length. In the most extreme case at ne = 1.7×1025 m−3, the depletion
length is 1.16mm, while the injection length in the pure helium gas is 2.04mm. It is
unphysical for the first electrons to be injected at z = 1.76Ld, and so the longitudinal
evolution mechanism should be re-evaluated.

First, let us consider the transverse evolution of the pulse. The matched spot size
wm ≈ 2

√
2k−1

p , and the a0 at this size will be given by a0,m = a0,v(w0/wm)2, where a0,v

and w0 are the vacuum a0 and Gaussian waist. The median FWHM vacuum spot size is
21.7±0.5 µm, corresponding to w0 = 18.4±0.4 µm, with a0,v equal to 0.57. The matched
spot size as a function of density is plotted in Fig. 4.31, as well as the corresponding a0

value reached by the laser at the plasma focus. This is compared to the self-injection
threshold predicted by Thomas et al.26,

a0,i = ln(2γ2
p) − 1. (4.12)

The a0 at the point of injection from the pure helium simulations is also plotted in
Fig. 4.31. Compared to the theoretical self-injection threshold, the simulations are in
reasonable agreement, although it appears that slightly higher values than the threshold
are required, particularly at higher densities. This difference could be due to the higher
bubble velocity that results from being in the semi-localised pulse etching regime discussed
previously. The simulations indicate that, in the density range studied, transverse
evolution alone does not amplify the field strength enough to cause self-injection; it will
require longitudinal evolution to further increase a0.

For ionisation injection, the field strength needs to be strong enough to cause a
sizeable fraction of the N5+ ions to ionise, and to drive a sufficiently strong plasma wave
to capture these electrons27. The a0 value required to ionise N5+ through the barrier
suppression mechanism is 2.2, however, over the duration of the pulse, some ionisation
can be expected to occur through tunnelling at intensities significantly below this value,
an effect shown in Fig. 2.4. This is why ionisation injection can be seen to occur at a0

values far below 2.2, as shown by the red crosses in Fig. 4.31. The a0 at which ionisation
injection occurs in simulations roughly follows the a0,m line, since, although the intensity
is high enough to cause ionisation for a0 ≳ 1.5, the plasma wave is still forming before
26 [153] A. G. R. Thomas (2010) Physics of Plasmas

See Sec. 2.7.2.
27 [164] C. McGuffey et al. (2010) Physical Review Letters

See Sec. 2.7.4.

http://dx.doi.org/10.1063/1.3368678
http://dx.doi.org/10.1103/PhysRevLett.104.025004
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Figure 4.31: The black line shows the matched spot size, wm, as a function of ne. The
solid red line, a0,m, is the a0 of the laser at this matched spots size, while the dashed red
line is the theoretical a0 required for self-injection. The ‘PIC SI’ and ‘PIC II’ markers
give the a0 at which injection occurs in the simulations.

the laser pulse reaches a0,m, and so the field strength needs to reach an intensity that
allows the ionised electrons to be captured.

Since a0 crosses from the upper end of the linear regime (a0 ≲ 1) into the lower
end of the nonlinear regime (a0 ≳ 1), the pulse first self-focuses and then longitudinally
compresses. For densities where longitudinal compression is required for injection, the
injection length is determined by the sum of the plasma focal length, the distance taken
for the laser pulse to reach the matched spot size, and the longitudinal scaling, either
Levol or Ld. The self-focusing rate is determined by Eq. 2.71, and the distance to the
plasma focal length, Lf , can be determined by finding the first minimum in the spot
size, as was done in Fig. 2.11 for various spot sizes and densities. By performing a fit to
the solutions of Eq. 2.71, we find that, over the density range studied here, the plasma
focal position scales with (nc/ne)3/2, which is the same scaling as the depletion length,

Lf [mm] ≃ 3.1 × 10−4
(

nc

ne

) 3
2

+ 0.34. (4.13)

This fitting uses only the plasma density and the initial focal spot parameters, not the
experimental data. A numerical solution was required because the transverse envelope
equations of motion cannot be solved analytically. The injection length is then the sum
of this transverse evolution length and the longitudinal evolution length

Linj ≃ Lf + Ld. (4.14)

In Fig. 4.32 the simulated and measured injection lengths are compared to this
new scaling. The injection point for the pure helium gas now occurs at some point
between the evolution length and the depletion length, and the scaling with the density
is approximately correct. In simulations, we observe that the largest a0 values occur at
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Figure 4.32: Injection length versus density, for the experimental data and from the
simulations. Now compared to new injection length predictions.

this point in its evolution; when the pulse is highly compressed but yet to fully deplete.
Only the lowest density injected beams lie above the depletion length, and this can be
accounted for by realising that the evolution fit we derived assumed a constant density,
whereas the average density during the focusing is slightly lower than this due to the
ramp. The ionisation injected beam injects at or slightly before the plasma focal length,
in agreement with the injection a0 values in Fig. 4.31.

4.4.4 X-ray source

We will now discuss the x-rays produced by the accelerator. The peak x-ray intensity
produced by the doped gas was a factor of 9.4 times higher than that produced by the
pure helium gas, while the peak photon flux was a factor of 4.4 times higher in the doped
gas. The difference in performance can be explained by considering the electron beam
properties; the charge and the electron beam energy were both approximately a factor of
2 larger in the doped gas than in the helium. The spectral intensity of the x-rays scale
as28

d2I

dEdΩ ∝ Nβγ2, (4.15)

where Nβ is the total number of betatron oscillations performed by all of the radiating
electrons. This scaling explains the difference in the measured intensity between the
gases. The high critical energies measured in the pure helium gas reduced the peak
photon flux, and are likely to be due to the larger amplitude betatron oscillations, as
indicated by the electron spectrometer images in Fig. 4.13, and as shown in the injection
mechanism in Fig. 4.19.

The x-ray measurements show that the doped gas was capable of producing approxi-
mately 11.0+0.8

−4.2 ph mrad−2 0.1%BW−1 , but we would like to compare this value to the
x-ray production of other sources. A broadly used figure of merit for x-rays is the peak
brilliance of the beam, and so, to compare our results, we will estimate the brilliance
experimentally, and then again separately using PIC simulations.
28 See Sec. 2.8.4.
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First, we will attempt to make this measurement using only experimental measure-
ments. Since the brilliance requires accounting for the spatiotemporal source size, and
this was not directly measured, we must make some assumptions to estimate this size.
The first assumption will be that the x-ray pulse length is equivalent to a plasma period,
τX ∼ 2π/ωp. Although electron bunch lengths have been measured to be as short as a
few femtoseconds29, large x-ray fluxes are caused by large amounts of charge, which, as
seen in simulations, results from continuous injection over a large distance. As a result,
the plasma period is probably an appropriate approximation for the x-ray pulse length.

The transverse dimension of the bunch can be estimated using the relation,

sβ = 2rβ = 2Ecritλp

3π2γ2cℏ
, (4.16)

where γ is an estimate of the electron energy. The peak brilliance is then

B = Nph

τXπr2
β

, (4.17)

where the photon flux Nph, was calculated previously and plotted in Fig. 4.18. Using the
measurement of the 95% cut-off energy in Fig. 4.10 and the density measurements, the
brilliance can be determined. These are shown in Fig. 4.33.
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Figure 4.33: Estimated x-ray brilliance. The logarithmic colour scale spans the
entire range of values, while the grey regions indicate the regions with insuffi-
cient signal for the brilliance to be calculated. The units of brilliance are [B] =
ph s−1 mm−2 mrad−2 0.1%BW−1.

The 98th percentile brilliance for the helium gas was 3.3+3.0
−2.8 × 1020[B], while for the

doped gas this value was over an order of magnitude larger, at 45+18
−19 × 1020[B], where

the units of brilliance are [B] = ph s−1 mm−2 mrad−2 0.1%BW−1. Such high brilliance
values are mainly due to the small source sizes; 0.35 ± 0.14 µm and 0.18 ± 0.07 µm for the
pure and doped gases respectively, derived using Eq. 4.16. Unsurprisingly, the measured
brilliance has large errors, as both the source size and the photon flux are sensitive to the
critical energy, which itself has significant uncertainty. In addition, the average error due
29 [64] M. Heigoldt et al. (2015) Physical Review Special Topics - Accelerators and Beams

http://dx.doi.org/10.1103/PhysRevSTAB.18.121302
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Figure 4.34: Longitudinal (left) and transverse (right) beam size from doped PIC
simulation at 2 × 1025 m−3. The lineouts to the sides of the histograms are the averaged
values along their respective axes, in arbitrary units. The dashed lines show the extent
of the FWHM.

to uncertainty on γ ∼ 10%, which further increases the uncertainty on the source size.
The error on the critical energy could be reduced by acquiring more signal, while the
error on the source size could be reduced by making a knife-edge measurement, although
this would require a large magnification if the source truly is approximately 0.1 µm.

Instead of using the measurements of the electron beam energy to estimate the
source size, we can use the PIC simulations. In Fig. 4.34, weighted histograms of the
particle distributions from the 2 × 1025 m−3 are shown, which give an indication of the
longitudinal and transverse beam size. In these histograms, the weight of each particle
has been multiplied by γ2, as this is the scaling of the intensity of radiation emitted by
an accelerating particle. We will use this radiation density as a metric to measure the
beam size.

In the longitudinal phase space, we see a multi-bunch structure, corresponding to the
multiple injection events. The FWHM length of the bunch with the highest radiation
density is 5.4 µm, which is approximately equal to the plasma wavelength, λp = 7.5 µm.
This suggests that our initial estimate that the x-ray pulse length is equal to the plasma
wavelength is valid. However, this is only a static picture of the phase space, since, from
observing the waterfall plots in Fig. 4.21, we see that electrons have a range of energies
over the course of the interaction. It is possible that each bunch contributes to the
total x-ray flux, which would mean that the x-ray pulse is composed of multiple flashes,
separated by 10s of femtoseconds, significantly reducing the average brightness.

Transversely, an elliptical radiation density profile is observed, with the major axis of
the ellipse aligned to the laser polarisation axis. The FWHM beam size is 2.24 × 2.28µm
in the x and y directions respectively. Eq. 4.16 for a γ = 200 beam with Ec = 2keV
predicts a beam size of 1.2 µm, significantly lower than for the simulated beam. Likewise,
for an electron beam with γ = 200, and a source size that matches the beam from the
PIC simulation, then we would predict Ec = 4.2 keV. This discrepancy can be addressed
by realising that the value of γ that has been used to calculate rβ may not be appropriate.



130 Chapter 4. The density-length parameter space of a laser wakefield accelerator

While the maximum intensity per electron may be radiated by those with the highest
energy, the x-ray spectrum that is measured is a composite of many different synchrotron
spectra, resulting from the significant energy spread in the electron bunch. In addition,
since electrons radiate while they are being accelerated and dephased, a scaled metric of
the energy, such as the maximum of γ2(dQ/dγ), would also be inaccurate for predicting
rβ. Instead, either experimental measurements of the source size, such as using a knife
edge, or simulations using slightly aberrated focal spots should be used to determine
this quantity, and hence the brightness.

For completeness, the values for the brilliance in Fig. 4.33 have been re-calculated
using a constant transverse source size of sβ = 2µm and plotted in Fig. 4.35. This
decreases the brilliance by approximately two orders of magnitude for a maximum value
in the doped gas of 4.2+0.8

−0.8 × 1020[B].
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Figure 4.35: Brilliance values using a constant 2 µm source size.

4.4.5 Literature comparisons

In Fig. 4.36 the highest electron beam energy measured in this chapter is compared to
the published literature, as well as results from recent theses30. The theses used the same
laser system as was used in this chapter but with more than twice the energy. Across all
the results, the relationship between laser power and peak electron energy is clear and
was highlighted in the introduction31. Higher powers produce higher energies because
they allow for non-linear plasma wave excitation to occur at lower densities, extending the
dephasing length. The results presented here were able to achieve high energies through
the use of ionisation injection seeded beam-driven acceleration, extending the dephasing
length through a different mechanism. While the high energy beams produced in this
chapter had thermal spectra, if the injection could be localised, such as with the use of
structured density profiles32, then it might be possible to produce self-seeded narrow
energy spread beams that exceed 200MeV with 5TW lasers. Further, the increased
30 [175] K. Poder PhD. Thesis (2016)

[170] J. C. Wood PhD. Thesis (2016)
[219] S. V. Rozario PhD. Thesis (2020)

31 See Sec. 1.2.
32 See Sec. 2.7.3.
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phase velocity of the bubble due to the semi-localised depletion of the pulse could be
used to further enhance the laser-driven energy gain of the electrons, through the use of
pulse shapes optimised to maximise the phase velocity.
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Figure 4.36: Comparison of the peak electron beam energy measured in this chapter to
published literature results (black markers) and previous theses from the group using
the same laser system (blue crosses).

The peak brilliance measurements reported in this chapter are compared to the
literature in Fig. 4.37. These measurements are almost an order of magnitude higher
than measurements performed at more than double the laser power33 and are the lowest
power at which betatron beams capable of imaging have been detected. Since lower-power
lasers can operate at higher repetition rates, the achievement of high brilliance beams at
these low laser powers offers a route to high repetition rate imaging, as well as for the
use of laser-driven sources as imaging devices in small-scale facilities, such as hospitals
and universities. Since the high photon fluxes observed here result from the use of the
ionisation injected beam, optimisation of the dopant species and percentage would be
expected to yield even higher performance. Consequently, for experiments in this low-a0

regime, a greater degree of control over the dopant would be useful.
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Figure 4.37: Comparison of the peak x-ray brilliance measured in this chapter to published
literature results (black markers).
33 [124] S. P. D. Mangles et al. (2009) Applied Physics Letters

http://dx.doi.org/10.1063/1.3258022
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4.5 Summary

The density-length parameter space of a laser wakefield accelerator has been characterised,
both in terms of the produced electron beams and betatron radiation. Measurements were
performed using pure helium gas and 1% nitrogen-doped helium gas as the target, with
automated Bayesian optimisation procedures used to tune the experimental parameters
before recording the data. The data was used in conjunction with simulation results
to identify various phenomena, such as semi-localised pulse depletion and beam-driven
acceleration, and to construct a model for the pulse evolution rate that combines the
transverse and longitudinal effects. The findings are most applicable to laser pulses with
a pulse length on the order of the plasma wavelength and have a vacuum a0 < 1, which
rely on relativistic self-focusing to drive a non-linear plasma wave and achieve ionisation
and self-injection. The electron beam peak energies and x-ray brilliance measurements
are the highest in the literature at the laser power used. A summary of the optimal
beam metrics and the parameters that produced them are displayed in Tab. 4.3.

Table 4.3: Peak values obtained for various electron and x-ray beam metrics. The left
column gives the measurements, while the right column gives the coordinates, in the
form (ne(1025 m−3), Length (mm)).

Measurement 1025 m−3, mm

He 1% N2 He 1% N2

Charge (pC) 13.0±1.5 27 ± 4 2.1, 0.6 2.1, 2.6

Max. Energy (MeV) 125 ± 33 211 ± 7 2.5, 1.0 1.9, 1.8

Min. Divergence (mrad) 8.6 ± 1.1 1.4 ± 0.1 2.4, 0.0 0.9, 1.0

X-ray signal (counts) 518 ± 2 4890±10 2.0, 0.8 2.1, 1.6

Critical energy (keV) 8.0 ± 1.2 2.8 ± 0.2 2.4, 0.2 2.5, 0.4

Flux (ph mrad−20.1%BW−1) 2.5+0.7
−0.1 10.7+1.3

−1.6 2.1, 0.8 1.3, 2.8

Brilliance 1020[B] 0.2+0.03
−0.04 4.22+0.8

−0.8 2.2, 1.2 2.1, 1.2



5 | Measurement of ionisation injected
GeV beam emittance

The transverse emittance is a useful figure of merit for the quality of a particle
beam. Laser wakefield accelerators naturally produce beams with normalised emit-

tances that are typically below 10 µm, which is comparable to conventionally accelerated
beams. However, measuring beams from wakefield accelerators is comparatively challeng-
ing, owing to the small source size combined with the large divergence of the beam, as
well as the large energy spread. Several methods have been implemented1, but all of the
measurements reported in the literature are at sub-GeV energies and often calculated
using x-ray measurements, and are hence indirect. In addition, the vast majority of the
measurements concern electrons injected from the background plasma via wavebreaking,
as opposed to those injected by the ionisation injection mechanism.

This chapter presents direct emittance measurements of GeV laser wakefield acceler-
ated beams. All the data presented here was obtained using the Gemini laser in ATA3
during the summer of 2021, where the average on-shot energy 7.4 J, reaching a power
of 165TW and a vacuum intensity of approximately 6 × 1022 W m−2. The primary
goal of the experiment was to provide a high-charge, high-energy electron beam to a
commercial user group, and the measurements reported here were obtained in parallel
to that experiment. A helium gas doped with 2% nitrogen was used as the target, so
beams were primarily injected via ionisation injection. A tungsten mask placed close
to the target was used to scatter the beam, and the scattered pattern on the electron
spectrometer was used to determine the spatially resolved beam size, from which the
emittance was calculated. A Monte Carlo-based technique was used to confirm these
measurements. The first part of this chapter is dedicated to describing this method and
characterising its uncertainty. Possible improvements to this technique are discussed at
the end of the chapter.

The second part of this chapter reports the emittance measurements and develops a
simple model for predicting the emittance of ionisation-injected beams. The normalised
emittance measurements were as low as 4 µm in some regimes but could also be as
high as 30 µm in others, and the emittance was found to depend on both the plasma
1 See Sec. 5.5.2.
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density and the gas jet backing pressure independently. Particle-in-cell simulations were
used to investigate the emittance evolution at a range of densities and examine electron
trajectories as they are injected into the wake. A scaling was derived that predicts that
the emittance should be particularly sensitive to the beam size at injection, which is
effectively the ionisation radius of the laser pulse.

5.1 Experimental setup

5.1.1 Vacuum chamber layout

The vacuum chamber layout is shown in Fig. 5.1. Only the south beam was in use for
this experiment, which enters the vacuum chamber from the roof. Upon reflection, a
beam with a polarisation direction in the plane of the page is produced, which is retained
to the target. After entering the chamber it is reflected by an Adaptive Optic (AO),
which is used to correct for wavefront aberrations by using a feedback loop between it
and a HASO wavefront sensor2. The AO is also used to perform parameter scans of
various aberrations using the electron spectrometer for feedback. The beam was focused
using an f/40 off-axis parabolic mirror, which focused the 150 mm diameter beam over
6m to a spot size of 41.5 ± 1.0 µm average FWHM. To fit this focusing geometry into
the vacuum chamber, a pair of mirrors was used to reflect the beam mid-focusing, both
of which required periodic changing due to burn damage.

f/40 OAP

AO

South beam

y

x

Turning mirrors

Magnet

Lanex regular

Probe beam

to diagnostics

Luminex 
ultra� ne

0 4620

Nozzle Tape

Mask

Figure 5.1: Experimental setup for the data reported in this chapter. The inset shows
the arrangement of the tape and emittance mask near the nozzle, with measurements in
millimetres.
2 [224] HASO4 FIRST, Imagine Optic
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Figure 5.2: Left image is a true-colour photograph of the target during a shot. The laser
is propagating from left to right, producing the purple plasma in the centre of the image.
An interferogram of the plasma is shown on the right.

A tape was positioned 40mm after the end of the gas jet, which was used to dump
the residual laser energy onto a ceramic plate, protecting the emittance mask. The
tape was composed of Kapton, was 25 µm thick, and angled at approximately 10° to the
optical axis to avoid reflecting light back up the optical path, where it may cause damage
in the upstream amplification chain. This tape was necessary to protect the emittance
mask, as well as the Kapton window at the end of the vacuum chamber. This window
formed part of the vacuum seal; catastrophic damage would result if it was punctured
by the laser. The tape was spooled between each shot so as to provide an undamaged
surface for reflecting the laser, and cameras monitored the position of the tape to ensure
that it did move between each shot as intended.

5.1.2 Gas jet characterisation

A time-integrated true colour image of the target during a shot is shown in the left panel
of Fig. 5.2. The laser is propagating from left to right in the image, first encountering
the helium-nitrogen mixed gas above the nozzle before being reflected off the plasma
mirror to the right of the image (out of shot). The different colours are due to the
various species that are undergoing recombination, with the blue-pink light being due to
the helium-nitrogen mix, while the green light is due to scattered laser light ablating
and ionising some steel in the nozzle. Note that the exact colours are sensitive to the
white balance setting of the camera, therefore the true colours may be different to those
depicted.

The density profile was measured using transverse interferometry; an example in-
terferogram is shown in the right panel of Fig. 5.2. This made use of a dedicated
probe beam, formed from the leakage of the main laser. The pulse length of this beam
was reduced to approximately 100 fs, which was the minimum attainable pulse length
given the compressor geometry, before propagating into the target chamber, where it
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was first expanded to a 30mm diameter before traversing the gas jet, orthogonally to
the main beam. The 10mJ beam had an intensity of approximately 1 × 1014 W m−2,
bright enough to overpower the plasma self-emission and forgo frequency doubling, and
the polarisation of the probe at the target was orthogonal to that of the main beam,
suppressing any pump-probe scattering3. An image relay system composed of three
lenses transported the probe and image rays out of the chamber, ensuring that the image
rays were perpendicular to the vacuum window to avoid distortion. A final objective lens
focused the beam onto 16-bit CCDs, one for shadowgraphy and one for interferometry.
A Mach-Zender geometry was chosen for the interferometer to allow independent control
of the fringe spacing and angle, and a narrow band filter was used to expand the region
of high fringe contrast.

Measurements of the longitudinal plasma density profile at various heights and
backing pressures are shown in Fig. 5.3. This was taken from a scan where 3 shots were
taken at a range of backing pressures from 40 bar to 100 bar, and from a range of heights
from 5mm to 17mm in 7 steps. Each horizontal line of the density maps in Fig. 5.3 is
the average longitudinal density at each location. The longitudinal resolution is pixel
limited to 19 µm. These plots show how the gas expands and decreases in density as the
distance from the nozzle increases. Longitudinally, the density profile is approximately
trapezoidal, but as the backing pressure increases, the profile takes on a distorted form,
with high-density sides and a lower-density core. This effect has been observed in neutral
gas density measurements at high pressures4 and is attributed to shocks propagating in
the nozzle5.
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Figure 5.3: Plasma density maps of the gas jet for a range of backing pressures.

5.1.3 Electron spectrometer

The electron spectrometer for this experiment was composed of a 300 mm×100 mm 1 T
magnet, and 3 separate scintillating screens. The first screen covered an energy range
of 116 - 309MeV, the second covered from 101 - 1039MeV, while the third measured
3 [127] J. M. Cole PhD. Thesis (2016)
4 [36] V. Malka et al. (2001) Physics of Plasmas
5 See Sec. 3.2.1.

http://dx.doi.org/10.1063/1.1374584
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Figure 5.4: Image of resolution target taken by the high magnification spectrometer
camera, with the red boxes indicating some of the line sets used for the MTF measurement.
The right plot shows the measured MTF of the imaging system.

electrons with energies from 317 - 2130 MeV, where the energy ranges assume the electron
beam is initially aligned with the optical axis on entering the magnetic field. Note that
the final 1000 MeV of the high energy screen was detected by a length of only 30 mm, so
this energy range was particularly susceptible to errors due to electron beam pointing
variations. The two lower energy screens used Lanex Regular, while the highest energy
screen used Luninex Ultrafine6, which reduced the sensitivity of this screen but increased
the resolution, as required for imaging the shadow of the mask. A 16-bit CCD camera
imaged each scintillating screen, and projective transforms were used to correct viewing
angle distortion. The purpose of the second Lanex was to provide pointing information
along the dispersion axis of the spectrometer, but this could not be used for emittance
measurements as the additional scattering it caused destroyed the structure imprinted
on the beam by the mask. Hence, divergence fluctuations introduce uncertainty into
these measurements.

To improve the spatial resolution of the spectrometer, a second 16-bit camera with
higher magnification was used to image the upper energy range of the high-energy screen.
This camera could detect electrons with energies from 702 - 1393MeV, which was the
typical energy range of the high energy features of the electron beam. This improved the
resolution by a factor of approximately 3, which was necessary to resolve the emittance.
Fig. 5.4 shows an image of a resolution target placed on the Lanex screen, as well as a
measurement of the modulation transfer function (MTF), which measures the contrast
as a function of spatial frequency for the purposes of determining the reolution. Based
on this measurement, the optical system should be able to resolve ∼ 80 µm features, so
long as the contrast is sufficiently high.
6 See Sec. 3.4.1.
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Figure 5.5: Images of the emittance mask. Each foil is 25 µm thick, and extends for
5 mm.

5.1.4 Emittance mask

The emittance mask was constructed from a stack of tungsten foil by the target fabrication
team at the Central Laser Facility. Each foil had a thickness of 25 µm, and was cut to a
length of 5mm. The separation between foils was provided by using the same foils as
spacers, and the stack was clamped in place by two screws in a 3D-printed mount. The
total number of slits was 8, limited by the time taken to stack the foils, as well as the
requirement for some amount of clear space between the foils when viewed at an angle.

The design and placement of the emittance mask was determined using the resolution
limits of the imaging system, the size of the vacuum chamber, and the expected electron
beam properties. Electron beams with divergences of approximately 2 mrad were expected,
with energies in the 1 - 2GeV range, while the source size was expected to be on the
order of 1 µm. This meant that, for the ∼ 40 µm resolution of the imaging system, a
magnification of M = 40 would be required to resolve the source. During the experiment,
the mask was positioned 46mm after the edge of the gas jet, while the high energy
(closest) end of the electron spectrometer screen was 1.6m from the same point, for a
magnification of 35.

Placing the mask closer to the edge of the gas jet would have increased the magnifi-
cation, however, this would have been at the cost of either sampling frequency or the
scattering material thickness. For example, at 46mm, a 2mrad beam would be 92 µm
wide, and so a mask spacing of 25 µm or smaller would be needed to provide sufficient
samples to perform a reliable emittance measurement. Masks with smaller spacing than
this can be constructed, such as with an array of thin wires or a laser-drilled sheet of
metal, but these would not have the thickness required to scatter a 2 GeV beam. Using
a thinner foil thickness would have been possible, but this would make the mask overly
susceptible to warping of the foils, and would have made alignment difficult due to the
reduced inter-foil spacing.

The emittance mask was placed 2 mm after the tape, protecting it from laser damage.
The mask was attached to a vertical motorised translation stage, which allowed for it to
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Figure 5.6: Electron spectrometer images from the highest energy scintillating screen,
with the emittance mask inserted into the beam. The three beams on the left were
produced with a plasma density of 2.5 × 1024 m−3, while the beams on the right used a
plasma density of 1.5 × 1024 m−3.

be inserted into and removed from the beam under vacuum. Due to the small beam size
at this point, accurate positioning of the mask was required to ensure that the electron
beam hit the centre of the mask as often as possible. This was done by first setting the
vertical position using the laser as a reference and then using the mask’s shadow on the
electron spectrometer to perform fine adjustments. Due to the length of the foils and
the small foil spacing, control of the mask’s pitch angle was also required. A picomotor
attached to the mask’s mount was used to finely adjust the pitch under vacuum, where
the signal intensity on the electron spectrometer was used to provide feedback.

The emittance mask slits were aligned with the dispersion direction of the dipole
magnet. This allowed for the emittance for each energy slice of the beam to be measured
independently, permitting a full measurement of the geometric beam emittance, since
the transverse momentum spread of each slice can be deduced from the divergence and
energy. Example images from the electron spectrometer with the mask in the beam are
shown in Fig. 5.6, where two different plasma densities are being compared. The beams
produced in the higher-density plasma are more divergent, overfilling the mask so that
its entire shadow is visible, whereas, for the lower divergence beams, the beam is fully
masked.

5.2 Emittance measurement

After recording a satisfactory spectrometer image of the masked beam, the task remains
to extract the emittance. This will first be done using a modified pepper-pot method
for an example image, and a detailed error analysis will be performed, in which Monte
Carlo (MC) simulations of the scattering process are used to determine the effect of
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Figure 5.7: The upper panel shows a processed electron spectrometer image from the
high-resolution camera. The lower panel shows the multi-Gaussian fit to the data at
1 GeV and the identification of the slits, numbered from 1 − 8.

input parameter variation on the measurement. Finally, it will be shown how these MC
simulations could be used to measure the emittance directly through an iterative process.

5.2.1 Gaussian fit method

The main method for determining the emittance from the images will be to fit a series
of Gaussian peaks to the transverse lineouts of the image at each energy. The tacit
assumption here is that the transverse coordinates of the electrons in the beam at the
accelerator exit are normally distributed. This process is performed for the beam from
the top right panel in Fig. 5.6. The high magnification image of the beam is shown in
the top panel of Fig. 5.7, and the bottom panel of the figure shows a Gaussian peak fit
to the lineout of the image at 1000 MeV, where a ±5 MeV window has been averaged to
produce the data lineout.

To perform the Gaussian fit, the number of peaks is first identified. Peaks are
detected by finding where the signal rises above 3σ of the background level, where σ is
the standard deviation of the background noise, calculated using the edge of the lineout.
Rather than fitting a Gaussian to each peak individually, a multi-Gaussian function is
defined,

G(µ, σ) =
N∑
i

aiG(µi, σi), (5.1)

where G(µ, σ) is a Gaussian with mean µ and standard deviation σ, and the vectors µ,
σ, are vectors populated by the individual µi and σi, and ai are fitting coefficients. This
function is then fit to the lineout for N peaks. Fitting to the lineout in this way was
necessary due to the overlap between the beamlets, which can be substantial for beams
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Figure 5.8: Calculation of the mask clear aperture. The left panel shows simulated test
electron trajectories emanating from a point source. The central panel plots the length
of scattering material encountered as a function of divergence. The right plot shows the
binary filter used to determine the effective slit widths.

with a large source size. As can be seen in the lower panel of Fig. 5.7, this function fits
the data well, indicating that modelling the beamlets as having Gaussian divergences is
appropriate.

The divergence of a beamlet is related to its intrinsic emittance, but other factors
also contribute and must be accounted for in order to determine the amount that is
due solely to the emittance. These factors are the finite width of the slit, scattering in
the tape, and incomplete scattering in the mask. The latter is not dealt with in this
method, but shall later be shown to only have a small effect. The other two factors add
in quadrature to increase the measured divergence,

σ2
m = σ2

ε + σ2
W + σ2

S , (5.2)

where σm is the measured divergence, σε is the divergence due to the emittance, σW is
due to the finite slit width, and σS is due to the tape scattering. The effect of finite slit
width can be realised by considering a perfect beam, one with zero emittance, incident
on a slit. This beam will produce a magnified image of the slit on the spectrometer
screen, which is a top-hat function. This has an RMS value of σW =

√
12Md, where M

is the magnification due to the distance between the screen and the mask, and d is the
slit width.

Due to the length of the foils and the variation in their spacing, d must be determined
individually for each slit. In Fig. 5.8, the method for doing this is shown. The emittance
mask is modelled using the measurements provided by the mask manufacturer, which
detailed the foil thicknesses and their spacing, and then the thickness of tungsten
encountered along straight trajectories emanating from the source is calculated as a
function of divergence angle. The slit width is the range of divergence angles which
encounter no tungsten when viewed from the accelerator exit. It should be noted that, if
the origin of the beam shifts, then these values will change slightly, becoming less reliable.
This is a disadvantage of using a mask with this geometry, an issue that will be addressed
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in the discussion. The peaks are then assigned a slit number and the slit width is used
to correct for the effect of the finite slit width. The variation in the position of the mask
shadow on the electron spectrometer screen is small enough that the locations of the
various peaks can be determined from the high divergence beams, and then hardcoded
into the analysis procedure. The value for σS is calculated using the length of Kapton
traversed, 25 µm/ cos 10◦, and the energy of the electrons being analysed. Knowing the
energy allows scattering effects to be accounted for, which is one of the advantages of
energetically resolved measurements. The emittance can now be calculated using the
formula given in Sec. 3.4.4, using the value σε for the beamlet divergence.

5.2.2 Sampling error

The mask has 8 slits in total, setting the largest number of source size measurements
that can be made for a given beam. Further, the lowest divergences measured during the
experiment were ∼ 0.5mrad, which only illuminate 2 - 3 slits. Such a small number of
samples can make the measured emittance sensitive to exactly which parts of the beam
are transmitted by the mask. In addition, if the number of samples drops to 1, then the
formula will place the average position of the beam exactly where the only measurement
is being made, giving a measured emittance of 0.
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Figure 5.9: The effect of divergence on the systematic error of the emittance measurement.
The measured emittance is shown in the black line, while the dashed line shows the
simulated beam’s input emittance.

This effect is shown in Fig. 5.9. Here, beams with a 10 µm source size and a random
initial pointing are initialised and scattered off the tungsten mask model shown in Fig. 5.8.
The lineouts they produce are measured using the method described above, returning
a value for the emittance. Over the range of random pointings at each divergence, the
average emittance and standard deviation are plotted in Fig. 5.9, with the error bars
denoting the standard deviation of the measurements. For large enough divergences,
there are sufficient samples, and although there is significant variation in the measurement
due to the pointing fluctuations, the average of these measurements is equivalent to the
true emittance. Once the divergence of the beam drops to the point where sometimes
only a single beamlet is measurable, at approximately 0.5 mrad in Fig. 5.9, the average
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Figure 5.10: Left plot shows individual emittance measurements of a simulated beam
for random input pointing angles, as a function of noise-to-signal ratio. The right panel
performs a linear fit to the rolling standard deviation of these measurements. The grey
shaded region is the error on the standard deviation, calculated using bootstrapping.

measured emittance begins to drop relative to the true emittance. This can be thought
of as a resolution limit of the mask and should be considered when designing emittance
masks.

The effect of noise must also be considered. Noise makes fitting the series of Gaussian
peaks to the lineout less reliable, but also has an effect on the sampling number. Since
peaks are detected relative to a threshold that is calculated using the noise floor, a noisier
lineout will lead to fewer peaks being detected. To quantify these effects, simulated
beams with emittances7 of 12 nm and random pointing angles have been scattered off
the model mask. The lineouts produced have artificial noise added to them, and then an
emittance measurement is attempted. The ratio between the standard deviation of the
noise and the highest signal in the lineout, NSR, is calculated. The emittance at each
NSR value is plotted in the left panel of Fig 5.10, where it can be observed that, as the
NSR increases, the error on the emittance measurement increases, and the average value
of the emittance measured also starts to decrease systematically. The increase in the
range of emittance values is due to the increased difficulty of accurately fitting Gaussian
peaks to the lineout, while the systematic shift is a manifestation of the effect shown in
Fig. 5.9.

5.2.3 Monte Carlo fit

The scattering model that was used to measure the clear aperture of the emittance mask
can also be used to measure the beam directly. If we assume that the electron beam
particle coordinates have a Gaussian distribution in y − py phase space, then we can
scatter this beam off the virtual model of the tape and mask to obtain a simulated scatter
pattern. By comparing the simulated pattern to the measured one, we can define a cost in
terms of the difference between the two, and seek to minimise this cost using any number
of algorithms. Since the number of free parameters is small8, yet individual simulations
7 Unnormalised at 1 GeV
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are somewhat costly, Bayesian optimisation was chosen to tune the parameters. An
example of this optimisation is performed in Fig. 5.11 for a single energy slice. After
300 iterations, each of which using 1 × 106 particles, the optimisation converges and a
good fit is obtained. The small differences between the optimum and the data can be
attributed to imperfect mask modelling.
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Figure 5.11: Alternate method for measuring the emittance. The main plot shows the
experimental data, the initial guess, and the result with the highest fitness value. The
inset shows the fitness as a function of iteration number, with the red line indicating the
rolling maximum.

This analysis procedure produced results that were in agreement with the pepper-pot
method, verifying the modifications made to account for the scattering in the tape. It
also shows that the effects of partial scattering in the edges of the foil are not significant;
the foils are functioning as almost perfect beam masks. Since the optimisation method
takes substantially longer, it was not used for the bulk of the analysis. However, we
will return to this method in the discussion, as it has the potential to improve on the
pepper-pot method if the computational limitations can be overcome.

5.3 Experimental results

Now that the method for extracting the emittance measurements from the electron
spectrometer images has been explained, the experimental measurements can be presented.
In this section, we will first present two example measurements before proceeding to
show the results of a parameter scan, where the gas jet backing pressure and the height
above the nozzle were varied.
8 There were five parameters, the two Gaussian phase space widths, the initial beam position and

pointing, and a shift associated with the background subtraction performed on the data.
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Figure 5.12: Normalised emittance measurement, for a gas jet backing pressure of 40 bar,
producing a plasma density of 1.53 ± 0.06 × 1024 m−3.

5.3.1 Example measurements

The normalised emittance measurement for the example image is shown in Fig. 5.12.
This measurement was taken 5 mm above the nozzle, with a backing pressure of 40 bar,
which produced an average plasma density of 1.53 ± 0.06 × 1024 m−3. The measurement
was performed using an energy bin width of 10 MeV, with measurements taken at every
energy. This was performed up to the point at which the signal of the transversely
integrated spectrum fell to within 3σ of the background. The normalised emittance is
then calculated by multiplying the phase emittance by the γ of the energy slice. The
weighted median emittance for this measurement was εn = 6.9 ± 0.6 µm, where the error
was calculated using the charge weighted median average deviation from the emittance
measurement.

The grey shaded region shows the error on the individual energy slice measurements,
which uses the signal-to-noise ratio energy scaling derived in Fig. 5.10. The effects of
sampling error can be clearly observed in this measurement, since, as the charge of
the beam changes, different numbers of peaks are detected. This causes jumps in the
emittance measurement, which do not appear to correspond to substantial changes in the
beam profile. These jumps are larger in magnitude and more frequent at places where
the signal is low. As can be seen by the analysis in Fig. 5.9, when the divergence drops
below approximately 0.5 mrad, the measured emittance drops spuriously, and this effect
is also observed at energies below ∼ 750MeV and above 1025MeV. However, since the
charge is low in these regions, the charge-weighted median of the emittance measurement
is insensitive to these errors for this shot.

The emittance measurement of a beam that over-fills the mask is shown in Fig. 5.13.
This measurement was taken with a backing pressure of 80 bar, shooting at 5 mm above
the nozzle, producing an average plasma density of 2.86±0.08×1024 m−3. This generated
a beam with a thermal spectrum, where electron energies up to approximately 1GeV
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Figure 5.13: Normalised emittance measurement, for a gas jet backing pressure of 80 bar,
producing a plasma density of 2.86 ± 0.08 × 1024 m−3.

were detected, and a median emittance of 35 ± 6 µm. For beams that overfill the mask,
the emittance was calculated by extrapolating the measurements of the masked regions
to the unmasked regions. This was done by first ignoring the regions of the beam that
are outside of the mask, and calculating the emittance for the masked region only. This
measurement is then scaled by the divergence of the entire beam. This is equivalent to
using the mask to measure the source size, and then using the divergence and source
size to calculate the emittance. Since extrapolation is involved, the reliability of this
measurement is reduced. However, due to the increased number of samples of the beam,
the emittance of the central region is characterised more accurately, which partially
compensates for the loss of reliability due to extrapolation. The error on the measurement
grows substantially above ∼ 950MeV. This is due to the low signal in this region, but
an emittance measurement is still attempted since the integrated signal is above the
background threshold.

5.3.2 Density scan

A series of scans were performed where the height above the nozzle and the gas jet
backing pressure was varied. Backing pressures of 40, 60 and 80 bar were used, while
4 heights in the range from 5mm to 11mm were used. At each setting, 10 shots were
taken, which was necessary since the electron beam was intermittent and had substantial
pointing fluctuations, meaning that it only occasionally produced a measurable pattern
on the electron spectrometer screen. The spectrally resolved emittance measurements
obtained from this scan are plotted in Fig. 5.14. From inspection, it is clear that many
of the measurements are too noisy and discontinuous to warrant single-shot analysis, and
so the shots at each setting have been averaged to produce a single spectrally resolved
emittance measurement for that setting, shown by the red lines. The charge was used
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Figure 5.14: Summary of all emittance measurements. Each plot corresponds to a
particular target configuration, with height above the nozzle increasing, moving from low
to high, and gas pressure decreasing from left to right; the coordinates are labelled on
the top and right of each column and row, respectively. The grey lines are the single-shot
measurements, while the red lines are the charge-weighted average measurements. No
satifactory emittance measurements were obtained at (80 bar, 11mm), due to lack of
signal.
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to weight the average, reducing the effect of slice emittance measurements that are
spuriously low due to low charge9.

Examining the scan as a whole, the measurements bifurcate; low densities tend to
produce average emittances lower than 10 µm, while the higher density measurements
produce beams with average emittance above 20 µm. In addition, for the latter group,
the emittance gradually increases as a function of energy, while for the lower-density
group, emittance falls slightly as a function of energy. Within the low-density group,
further reducing the density appears to reduce the emittance while also reducing the peak
electron energy, which is indicated by the energy at which the measurements stop. In
the high-density group, there is no clear trend in the emittance as the energy increases.
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Figure 5.15: Charge weighted median emittance values for each density and gas jet
backing pressure. The error bars represent the charge-weighted standard deviation of
the slice emittance measurements.

The charge-weighted median emittance for each setting is plotted in Fig. 5.15. The
lowest median emittance was 4.42 ± 0.60 µm, with the error value representing the
standard deviation of the slice emittance measurements, in a plasma with a density
of 1.65 ± 0.06 × 1024 m−3, while the highest emittance was 34 ± 6 µm, which used a
plasma density of 2.17 ± 0.07 × 1024 m−3. This would indicate that the emittance is
particularly sensitive to density changes in this region, which may be true. However, the
variable of the gas jet backing pressure also changed between these two measurements;
from 60 bar to 80 bar, and the height above the nozzle was the same, at 9 mm. Further,
a measurement at 2.18 ± 0.07 × 1024 m−3 with a pressure of 60 bar was made, which
produced a median emittance of 7.2 ± 1.3 µm. Taken together, these results indicate that
the backing pressure has an independent effect on the emittance.
9 See Sec. 5.2.2.
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5.4 Simulations

5.4.1 Simulation setup

Simulations of the interaction have been performed using FBPIC10. This has been
done to provide a comparison to our results, as well as to determine the independent
effect of density on emittance for our experimental parameters. The simulations used a
100 µm × 100 µm z × r moving window with a velocity equal to the group velocity of the
laser in the bulk plasma. The grid resolution was 20 × 4 points per laser wavelength in
the longitudinal and transverse dimensions respectively, and three azimuthal modes were
used. The gas jet target is initialised as a 12.8mm long region of constant density gas,
with exponential density ramps at both ends. The ramps had scale lengths of 150 µm, a
value that was determined from interferometry. The helium atoms were initially singly
ionised, while the nitrogen atoms were ionised up to +5. The density of the helium and
nitrogen atoms was determined by stipulating that the plasma density was achieved
when the helium was fully ionised and the first 5 electrons of the nitrogen were ionised.

A total of 48 macroparticles per cell was used for the helium, while only 1 macroparticle
per cell was used for the nitrogen. This was done to reduce the discrepancy in each
species’ resolution. Helium has 0.29 times the weight of nitrogen yet composes 98% of
the gas mixture by weight, meaning that the ratio of helium atoms to nitrogen atoms is
344. This means that even with 48 times fewer particles per cell, the nitrogen atoms
are still represented by approximately seven times more macroparticles. For example,
in the highest density simulation performed, a total of 234 pC of charge from the bulk
plasma was injected and accelerated to energies above 10MeV, while 591 pC of charge
was injected through the ionisation of N5+ ions. The electrons injected from the plasma
were represented by 2.7 × 104 macroparticles, while the ionisation injected charge was
represented by 5.8 × 106 macroparticles. This means that each simulation particle
represents 1.4 × 105 electrons in the self-injected beam, but 1.8 × 103 electrons in the
ionisation injected beam.

The laser pulse is initialised using a real focal spot image, using the method outlined
in Sec. 3.5.4. Although focal spot data was not available for the day on which the data
in this chapter was recorded, many focal spot images had been taken on other days, and
the day-to-day variation was not significant. The focal spot image for these simulations
was taken from this collection, which had a FWHM of 41 µm and a peak a0 of 1.724.
The temporal envelope was Gaussian and had a width of 38.1 fs. The focal position of
the laser was set to the point at which the density reached 90% of its plateau value.

Simulations were performed at 5 density intervals between 1 × 1024 m−3 and 3 ×
1024 m−3. All electrons in the simulation were tracked so that the injection mechanism
could be studied in detail. The emittance was calculated using the median average
deviation of the particle coordinates.
10 [216] R. Lehe et al. (2016) Computer Physics Communications

http://dx.doi.org/https://doi.org/10.1016/j.cpc.2016.02.007
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Figure 5.16: The top panel shows a synthetic electron spectrometer image from the
low-density 1 × 1024 m−3 simulation. The lower panel shows the spectrally resolved
emittance in x and y. The laser is polarised in the x direction.

5.4.2 Simulation results

In the top panel of Fig. 5.16, a synthetic electron spectrometer image from the 1×1024 m−3

simulation is shown, below which the spectrally resolved emittances are plotted. A quasi-
monoenergetic beam is produced, where the energy peak occurs at 900MeV, and the
divergence is 1.7 mrad for the 55 pC of charge above 725 MeV11. The similarity between
this and the results presented in the right panel of Fig. 5.6 implies that the simulation is
modelling the experiment reasonably well and that comparisons between the simulated
beam’s emittance and the experimental measurements are appropriate. The spectrally
resolved emittance was calculated using a bin width of 20MeV, and the number of
macroparticles was sufficient that the standard deviation and median average deviation
metrics gave the same measurements. The betatron oscillations in the spectrum, which
were not present when using a Gaussian transverse profile for the laser, did not affect the
spectrally resolved emittance significantly with this bin width. For the energies above
725 MeV, the emittance of the simulated beam in the y direction is approximately 5 µm,
while in the x direction the emittance is larger, at approximately 9 µm. The spike in the
emittance that occurs at the highest energy is due to a small number of high-energy
electrons that have interacted with the laser pulse. Note that at this density, all electrons
are injected via ionisation injection.

The synthetic electron spectrometer image from the 3 × 1024 m−3 simulation is shown
in the upper panel of Fig. 5.17, where different colours have been used to denote the
electrons from nitrogen and those from the background plasma. The opacity of the
overlaid beam in blue has been reduced to make both beams visible in the plot. The total
charge above 725MeV was 294 pC, with 1.8 × 106 macroparticles modelling the 214 pC
coming from the nitrogen, compared to the 80 pC coming from the plasma electrons,
which had only 1 × 104 macroparticles. This discrepancy in the resolution of the species
11 Threshold chosen to match the low energy end of the experimental emittance measurements.
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is despite using many more macroparticles per cell for the background plasma than the
dopant. The particles injected from the nitrogen have a large divergence of 5.8mrad,
reducing the charge density on the spectrometer, while the plasma electrons have a low
energy slice divergence of 2.0 mrad, but with spectrally resolved pointing fluctuations that
exceed ±15 mrad. Again, this is qualitatively similar to the experimental measurements
at high density, shown in the left panel of Fig. 5.6. From comparison with the simulations,
we can now identify that the high divergence part of the beam is from ionisation injection,
while the low divergence core of the beam is from background plasma electron injection.
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Figure 5.17: Synthetic electron spectrometer image (top) and emittance measurements
(bottom) from the 3 × 1024 m−3 simulation. Different colour maps have been used for the
different electron origins; red for electrons from nitrogen K-shells and blue for electrons
from the bulk plasma.

The spectrally resolved emittance of the beam produced in the 3 × 1024 m−3 plasma
is shown in the lower panel of Fig. 5.17. This is the combined emittance of both the
ionisation-injected beam and the self-injected beam, although the former dominates the
measurement due to its higher charge. The energy slice emittance of the plasma electron
injected beam is lower than that of the ionisation injected beam, and consequently, its
inclusion slightly reduces the emittance measurement. The large emittance in the low
energy part of the spectrum is due to the observed pointing fluctuations, which are
present in both beams. Although the emittance is lower above 725 MeV, it is still higher
than the comparative part of the other beam; (εx, εy) = (7.5 ± 2.5, 4.8 ± 1.5) µm from
the low-density plasma, versus (11.4 ± 8.0, 11.5 ± 3.5) µm in the high-density plasma.
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Figure 5.18: Charge weighted mean emittances for energies above 725 MeV in the x and
y planes for a range of simulations. The error bars denote the charge-weighted standard
deviation.

The mean emittances for the 5 densities simulated are plotted in Fig. 5.18. A linear
fit to the data yields gradients of 1.9 for εx and 3.5 for εy, with correlation coefficients12

of 0.82 and 0.98 respectively. The low density < 2 × 1024 m−3 measurements in the y

plane agree closely with the experimental measurements, indicating that the transverse
beam dynamics are being simulated accurately over this energy range. In contrast, for
densities > 2×1024 m−3, these simulated emittances are much lower than those measured
experimentally. This is also the density at which significant numbers of electrons begin
to be injected from the background plasma, as opposed to ionisation-injected electrons
being the most common.

5.5 Discussion

In this section, we will use the low-density simulations to determine the source of the
emittance. The measurements will then be compared to the literature, and the advantages
and disadvantages of the various emittance measurement methods will be discussed.
Finally, possible developments of this diagnostic method are discussed.

5.5.1 Emittance source

The laser power is above the critical power for self-focusing, which is given by Pc ≈
17.5γ2

pGW, such that for our 150 W laser, P/Pc ≈ 5 at a plasma density of 1 × 1024 m−3.
The matched spot size is wm ≃ 2.94k−1

p , equal to 15.6 µm, which is a factor of approxi-
mately

√
2 lower than the vacuum spot size. The a0 is boosted from 1.7 to 2.4 via focusing

alone, and which then undergoes further amplification via longitudinal compression13.
This means that the laser is usually intense enough to cause near complete cavitation of
electrons in its wake, providing an emittance preserving linear focusing structure for the
electron beam.
12 Pearson’s r value.
13 [146] M. Streeter et al. (2018) Physical Review Letters

http://dx.doi.org/10.1103/PhysRevLett.120.254801


153 Chapter 5. Measurement of ionisation injected GeV beam emittance

0 5 10

z (mm)

200

400

600

800

1000

E
n

er
gy

(M
eV

)

0 5 10

z (mm)

0.00 0.25 0.50 0.75 1.00

dQ
dE (pC MeV−1)

0 5 10 15 20
εn (µm)

2.0

2.5

3.0

a
0

Figure 5.19: History of the electron beam energy spectrum (left) and spectrally resolved
emittance (right) in the y direction. The right plot also shows the evolution of the laser
a0.

The evolution of the energy spectrum and the emittance of the beam as it accelerates
is plotted in Fig. 5.19. The high energy electron bunch appears to be accelerated at a
constant rate, an effect that is due to a combination of the long dephasing length at this
density (approximately 15 mm) and the rephasing of the electron beam as a0 drops and
the bubble shrinks. This coincides with some beam loss, which begins at z = 5 mm, as
electrons close to the back of the bubble leave the accelerating and focusing portion of
the wake. The emittance of electrons with the highest energies starts to increase rapidly
at approximately 6mm. However, this growth is limited to electrons that lie outside
the energy peak, with a total charge of 0.01 pC above 900 MeV, compared to the 55 pC
above 725 MeV. This emittance growth is due to the interaction of electrons with a large
displacement from the axis interacting with the electron sheath of the wave.

For the high charge, high energy peak of the beam, almost all of the beam’s emittance
is generated at the moment of injection. We will now use a simple phenomenological
argument to predict this value. In ionisation injection, an electron’s transverse energy
is determined by the potential into which it is ionised. In the direction transverse to
the laser polarisation, only the plasma wave potential contributes to this, in contrast
to the direction aligned with the laser polarisation, where electrons are heated by the
instantaneous electric field of the laser, which provides an additional source of transverse
energy. In the bubble regime, the potential is quadratic with distance from the axis of
the wake, ϕ = eney2/3ϵ0, where y is the transverse distance from the axis of the wake.
From the solution to Eq. 2.88, y(t) = y0 cos(ωβt), where we recall that ωβ = ωp/

√
2γ.

Using the Lorentz force, ∂tpy = e∇ϕ, the transverse momentum RMS is given by

σpy = 2
√

2γ

3
nee2

ϵ0ωp

√
⟨y2

0⟩, (5.3)
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Figure 5.20: Injection process in the 1 × 1024 m−3 plasma. This snapshot is taken at the
moment the highest energy electrons are injected, at t = 6.0 ps. The histogram on the
right is of the y coordinates of the electrons to the right of the dashed line, which has an
RMS width of 6.1 µm. The plot on the right shows the emittance of the beam.

The geometric emittance at injection (γ = 1) is then

εph = 2
√

2
3 kp⟨y2

0⟩. (5.4)

Since electrons are initially stationary in the laboratory frame, this is also the normalised
emittance. At a plasma density of 1 × 1024 m−3, a normalised emittance of 5 µm would
be given by a beam size of yσ ≈ 5.3 µm using this scaling.

We can use the simulations to estimate yσ. A snapshot of the injection process is
shown in Fig. 5.20, where this snapshot is taken at t = 6.0 ps; the moment the electrons
that produce the high energy peak in Fig. 5.16 are ionised. At this moment, the peak a0

of the laser is 2.18, which drives a plasma wave that is close to a fully cavitated bubble.
The electrons produced by the ionisation of N5+ nitrogen ions are plotted as scatter
points, with a colour that depends on their longitudinal momentum in the laboratory
frame. Note that, since the laser polarisation points in the x direction, the electrons
are initially cold in the y − z plane. Since the peak a0 of the laser is slightly below the
intensity required for barrier suppression ionisation, these electrons are ionised via the
tunnelling mechanism, the rate of which depends strongly on the laser intensity. Hence,
most electrons are ionised close to the peak of the laser intensity, and this value falls off
radially. The RMS beam size at the moment of ionisation is 6.1 µm, which, using the
simple model we have derived, would predict a normalised emittance of 2.7 µm. This is
equivalent to the lowest value of the injected beam’s emittance, seen in the right panel
of Fig. 5.20, indicating that the model is accurately predicting the lower bound of the
emittance. An additional source of emittance comes from early injection, into a wake
structure that is undergoing formation. Fig. 5.21 shows this early injection, where the
wake is capable of capturing electrons, but the focusing forces are non-linear. To avoid
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Figure 5.21: Injection into a wake as it forms, resulting in higher emittance. This
snapshot is at t = 1.5 ps.

this early injection, and to ensure a low emittance at all energies, it would be beneficial
to have a region of the plasma without the dopant present, to allow a stable wake to
form before injection occurs.

We can now explain the low emittance electron beams produced in the experiment
and simulation, but this does not explain why the emittance of the beams produced
using 80 bar of backing pressure have such large emittances. One possible explanation
is the development of ripples in the gas flow, which disrupt the stable structure of the
wake, increasing emittance. For example, Kuschel et al.14 have used high-resolution
shadowgraphy to compare the structure of the plasma wake in gas jets to gas cells and
found that the plasma wave can have an irregular wavelength in gas jets. They attribute
this variation to ripples in the gas flow that are too small to be resolved by density
measurements. This spatially varying wavelength causes self-injection to occur at lower
densities than predicted15, a form of downramp injection, and also increases the beam’s
divergence, as measured by a beam profile monitor. It is possible that a similar process
is occurring here and that the backing pressure threshold for the onset of the ripples
occurs somewhere between 60 bar and 80 bar.

Although the lower backing pressure measurements had lower emittances, it is possible
that these values could also be reduced further by using a gas cell instead of a jet. Aside
from this, to further reduce the emittance in the polarization-perpendicular plane, a
reduced ionisation radius would be necessary. To this end, two-colour ionisation injection
schemes have been suggested16, where a second, higher frequency laser pulse is focused
14 [180] S. Kuschel et al. (2018) Physical Review Letters
15 [153] A. G. R. Thomas (2010) Physics of Plasmas
16 [167] L. L. Yu et al. (2014) Physical Review Letters

http://dx.doi.org/10.1103/PhysRevLett.121.154801
http://dx.doi.org/10.1063/1.3368678
http://dx.doi.org/10.1103/PhysRevLett.112.125001
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into the bubble behind the laser pulse driving the plasma wave. Only this second laser
pulse is capable of ionising electrons near its focus, and as such, the emittance could be
substantially reduced by the small focal spot of the second laser. However, such a scheme
comes at the cost of reducing the charge. Maintaining the charge while reducing the
emittance would necessitate a large ionisation radius and a shallower potential well, such
as those produced in lower-density plasmas, and this would need to be balanced against
the increased trapping difficulty. Carefully structured gas targets, with different gas
densities for the injection and acceleration regions, as well as localised dopants, would
be necessary to achieve this.

5.5.2 Literature comparison

In Fig. 5.22 the experimental measurements presented here are compared to a non-
exhaustive list of measurements from the literature17. The beam mask methods encompass
measurements that rely on some type of pepper-pot technique, either in 1D or 2D, while
the quadrupole methods use a combination of magnetic lenses to re-image the beam
at the exit of the accelerator onto a high-resolution detector. The x-ray source size
measurement used the shadow of a knife edge in the x-ray profile to estimate the size
of the beam in the plasma channel, while the x-ray spectroscopy measurements use a
combination of the x-ray spectrum and the electron spectrum to infer an oscillation
radius, and hence a source size. In general, the beam mask measurements have been used
to measure emittance values of more than 5 µm, at energies of 100 MeV. The quadrupole
methods have recorded lower emittance values of ∼ 1 µm, while the x-ray methods have
recorded emittances as high as 10 µm, by Kneip et al. and as low as 0.056 µm, by Qin
et al. Except for the Weingartner et al. study, which used a gas cell, and the work by
Plateau et al., which used a capillary discharge, all the measurements used gas jets to
provide the plasma for the target. This is presumably due to their ease of operation,
which was discussed in Section 5.1. As implied by Fig. 1.3, the energy of the electron
beams roughly correlates to the laser power used in each experiment; the Sears 2010 used
a 10 TW laser, the Kneip 2012 paper used a 70 TW system, and the Qin 2018 result used
powers of 120 TW. Relative to the laser polarization, the Weingartner 2012 measurement
was perpendicular to the laser polarisation, while the Barber 2017 measurements were
parallel, and the other measurements were either unstated (Sears, Qin) or relied on some
measurements from one plane and other measurements from another (Kneip).
17 [228] S. Fritzler et al. (2004) Physical Review Letters

[81] C. M. S. Sears et al. (2010) Physical Review Special Topics - Accelerators and Beams
[200] E. Brunetti et al. (2010) Physical Review Letters
[82] S. Kneip et al. (2012) Physical Review Special Topics - Accelerators and Beams
[169] R. Weingartner et al. (2012) Physical Review Special Topics - Accelerators and Beams
[229] G. R. Plateau et al. (2012) Physical Review Letters
[230] S. Barber et al. (2017) Physical Review Letters
[231] A. Curcio et al. (2017) Physical Review Accelerators and Beams
[84] Z. Qin et al. (2018) Physics of Plasmas

http://dx.doi.org/10.1103/PhysRevLett.92.165006
http://dx.doi.org/10.1103/PhysRevSTAB.13.092803
http://dx.doi.org/10.1103/PhysRevLett.105.215007
http://dx.doi.org/10.1103/PhysRevSTAB.15.021302
http://dx.doi.org/10.1103/PhysRevSTAB.15.111302
http://dx.doi.org/10.1103/PhysRevLett.109.064802
http://dx.doi.org/10.1103/PhysRevLett.119.104801
http://dx.doi.org/10.1103/PhysRevAccelBeams.20.012801
http://dx.doi.org/10.1063/1.5019987
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Figure 5.22: Laser wakefield acceleration beam emittance measurements from the lit-
erature. Except for this work, and the gas jet work performed by Barber et al., all
experiments used either pure helium or pure hydrogen targets. The error bars represent
the range of emittance values recorded, and the energy range studied.

To our knowledge, the energy at which the measurements in this chapter were
recorded is higher than any other in the literature. They are also the lowest emittance
measurements among the other beam mask method measurements and are the only
spectrally resolved measurements amongst this subset. In terms of injection method, the
only other study that investigated ionisation injection was the work by Barber et al.,
which was performed at an energy that is over an order of magnitude lower.

The different measurement methods used in the literature each have strengths and
weaknesses. Arguably, the quadrupole method is the gold standard, since this directly
measures the minimum beam size that can be obtained; one of the primary reasons for
caring about the emittance in the first place. However, the requirement for a beam optic
can make this method unattractive, due to both the space that needs to be reserved for the
optic in the vacuum chamber, and the increased complexity involved with its installation.
It is also normally limited to some extent by the field strengths it can produce, and
the proximity to the target that can be achieved given mechanical constraints18. The
x-ray measurements have a naturally high resolution owing to either the relative ease
of stopping x-rays compared to electrons (in the case of the source size method), or
the accuracy with which the x-ray and electron energy spectra can be determined. The
downside of these measurements is that they often rely on a downstream electron beam
measurement to determine the divergence of the source, while the source size is estimated
while the beam is inside the channel, meaning that since the transition to vacuum is not
properly accounted for, these methods underestimate the emittance.
18 [85] A. Cianchi et al. (2013) Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc.

Equip.

http://dx.doi.org/https://doi.org/10.1016/j.nima.2012.12.012
http://dx.doi.org/https://doi.org/10.1016/j.nima.2012.12.012
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Figure 5.23: Upper panel shows MC simulated electron spectrometer image for current
mask geometry. The bottom panel shows the scattering pattern for an alternative mask
geometry.

5.5.3 Diagnostic development

The diagnostic used in this chapter was able to measure the emittance of beams that
were aligned with the laser axis and had a low divergence. However, if the divergence
caused the beam to overfill the mask, the measurements had to be extrapolated, which
reduces the accuracy significantly. Further, since the size of the gaps depended on the
initial position of the electron beam, pointing fluctuations of the laser introduce a source
of error. Finally, the low sampling rate can lead to large errors, and if the sampling rate
dropped too low then the measurement could not be made at all.

One of the main weaknesses of the pepper-pot technique is that it relies on the
complete scattering of the beam. This places restrictions on the thickness of the mask,
as a thicker mask will be required as the electron energy increases. At GeV energies,
millimetre scale thicknesses are required, while, to achieve the required magnification,
the mask needs to be placed where the beam is only a few 100s of microns in diameter.
Therefore, to use the pepper-pot method with a sampling rate of 10, the ratio between
the mask thickness and the spacing needs to be approximately 100, which means the foils
will be liable to warping. There are two solutions to this problem for a fixed vacuum
chamber size; either place the mask further away, and image the spectrometer pattern
with a higher resolution, or change the analysis method. Imaging the spectrometer
pattern with higher resolution would require switching to a higher resolution scintillating
material, which, while suitable for small energy ranges19, becomes prohibitively expensive
if a large energy range is desired.

An alternative is to use a different analysis method. In this chapter, we have used
simulations of the electron beam scattering off the mask for various purposes, such as
19 [230] S. Barber et al. (2017) Physical Review Letters

http://dx.doi.org/10.1103/PhysRevLett.119.104801
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determining the clear aperture of the mask and verifying the measurements made by the
pepper-pot technique. However, with sufficient computational resources, the electron
beam phase space could be determined with any scattering pattern, complete or not,
provided the structure of the mask is known. This lifts the requirement for complete
scattering, making a high sample rate possible. For example, a thin tungsten sheet with
laser-machined slits could be used, allowing for narrower, more closely spaced slits. In
Fig. 5.23, the scattering caused by a 10 µm foil with 10 µm slits is compared to the mask
used in this experiment. Even though the scattering is almost imperceptible at high
energies, the emittance can still be extracted because some modulation has occurred.

5.6 Summary

In this chapter, an emittance measurement diagnostic based on the pepper-pot method
has been developed and used to measure the emittance of GeV beams. At low gas jet
backing pressures of either 40 or 60 bar, the measured normalised emittances were in
the range of 4 - 9 µm, while at 80 bar, the emittance measurements exceeded 30 µm.
The lower pressure emittance values closely agreed with simulations, with the emittance
being primarily due to the radial distance from the axis at which the electrons were
ionised. The large emittance values were attributed to ripples in the gas flow that become
significant at higher backing pressures. The low emittance values measured are the lowest
reported in the literature using a mask method, at energies over an order of magnitude
higher. Finally, improving the resolution of the diagnostic using MC simulation-based
analysis was discussed.



6 | Beam divergence considerations
for staged LWFA

The staging of two independent 250 TW laser wakefield accelerators was investigated
during a 2019 experiment at the Astra-Gemini laser facility. While multi-stage

acceleration has already been demonstrated1, it has not been done at the GeV level or
with a large capture efficiency. Although energy gain due to the second accelerator was
not achieved, numerous experiments were performed on the dual-stage target to find
optimal operating conditions.

The results of one of these experiments are reported in this chapter, where it was
found that the target configuration at the end of the first cell had a significant effect on
the divergence of the electron beam. This divergence change was immediately noticeable
during the experiment, but the primary mechanism behind it was not known. A large
divergence is undesirable for most applications, and particularly so for multi-stage
accelerators because the divergence will accelerate emittance growth that occurs between
stages, lowering the beam quality. In addition, if there is no focusing beam optic between
the stages, as was the case for our experiment, a large divergence will cause the beam to
overfill the wake in the second stage, reducing the capture efficiency. Understanding the
dominant cause for this change in divergence is important for making design modifications
for future multi-stage acceleration experiments. More generally, understanding all of the
factors that affect the beam quality between stages becomes increasingly important as
the number of stages increases, as even small effects could become significant if they are
allowed to compound.

In Section 6.1, the experimental setup and target configurations are described, and
the experimental measurements are reported. Following this, two potential causes of
divergence increase are investigated using simulations. The first of these is the effect
of magnetic fields generated in the tape by the laser, reported on in Section 6.2, while
the second is the effect of longitudinal density ramps on the electron beam envelope,
reported on in Section 6.3. Finally, in Section 6.4, the preceding analyses are combined
to determine the relative contributions of the different mechanisms to the observed
divergence changes. The experimental measurements are then used to estimate the effect
1 [88] S. Steinke et al. (2016) Nature
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Figure 6.1: Sketch of the vacuum chamber layout. The laser beams enter the vacuum
chamber from above (propagating into the page). The two Lanex screens indicate the
positions of the electron beam diagnostics. Note that the physical beam paths were not
exactly as sketched; the angle of incidence onto the 7.5 m spherical was not 45°.

the divergence increase would have on the capture efficiency of a second stage. Control
of the electron beam envelope between stages is also discussed, where density ramps with
a range of scale lengths and different functional forms are compared.

6.1 Electron beam measurements

6.1.1 Experimental setup

The layout of the laser beams and the positioning of the electron beam diagnostics is
shown in Fig. 6.1. The South beam was focused over a distance of 6m by an off-axis
parabola (OAP), while the North beam was focused over 7.5m by a spherical mirror.
This constituted a focal geometry of f /40 and f /50 for the South and North beams,
respectively. Turning mirrors were used between the focusing optics and the target to
allow this geometry to fit inside the vacuum chamber. Since the intensity of the beam
was approximately four times higher on the turning mirrors than the other optics due
to the halved beam diameter, these optics required regular replacement due to damage
caused by the laser.

Each laser was focused into separate gas cells using a configuration shown in Fig. 6.2.
The South beam was responsible for the injection and initial acceleration of the electron
beam, while the North beam was to provide the secondary energy boost. Two independent
Kapton tapes were used between the two cells to facilitate the coupling between the
lasers and the electron beam. Upon encountering the tapes, the focused lasers ionise the
surface, producing an above-critical density plasma that functions as a plasma mirror.
The first tape (extraction tape) was used to dump residual laser energy at the end of the
first cell, while the second tape (injection tape) injected the North beam into the second
cell. The extraction tape also served the secondary role of sealing the end of the first
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Cell 2Cell 1

North beamSouth beam

Extraction tape Injection tape

Electrons

Figure 6.2: Diagram of the target. Electrons injected and accelerated in cell 1 pass
through the tapes into cell 2. The red arrows indicate the initial laser propagation
direction.

Figure 6.3: Shadowgrams of the target during a shot. The lasers propagate from left to
right across the images.

cell, which allowed the two cells to be positioned as close to each other as possible. This
tape had a thickness of 25 µm, while the injection tape had a thickness of 125 µm, and
both were laid at 45° to the optical axis. Since the reflection of a single laser shot caused
the near or complete puncturing of the tapes, during normal operation, the tapes were
translated between each shot. A composite shadowgraphy image of the two cells during
a shot is shown in Fig. 6.3.

When the laser pulses enter the vacuum chamber, they are both polarised in the y

direction, as defined in Fig. 6.1, and they initially propagate in the z direction, entering
the chamber vertically. After reflection from the first optic, the South beam’s polarisation
remains in the plane of the page, while the North beam’s polarisation points in the
z direction, and this orientation is maintained until the laser pulses reach the target.
Consequently, the South beam is p-polarised with respect to the tape, while the North
beam is s-polarised. This is advantageous for maintaining energy in the North beam, as
energy is not lost via Brunel absorption2 that is enhanced in p-polarisation and degrades
the reflection quality3.
2 [91] C. Thaury et al. (2007) Nature Physics

[232] F. Brunel (1987) Physical Review Letters
3 [233] B. H. Shaw et al. (2016) Physics of Plasmas

http://dx.doi.org/10.1038/nphys595
http://dx.doi.org/10.1103/PhysRevLett.59.52
http://dx.doi.org/10.1063/1.4954242
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Figure 6.4: The three cell 1 configurations used in this experiment, extraction tape (ET),
hole (H), and injection tape (IT), are displayed across the top row. The corresponding
longitudinal density profiles are shown below. The underdense plasma from the gas is
shaded green, while the overdense plasma from the plasma mirror is orange. The axis is
broken to accommodate the range of densities.

To investigate the effect of the tape on the electron beam, measurements of the
electron beam profile and spectrum were made under various target configurations. The
three main configurations are depicted in Fig. 6.4, where, for all data reported here, cell 2
was removed, and the North beam was not used4. For the extraction tape configuration
(ET), the injection tape was removed, and 50 shots were taken while the extraction tape
was translated between shots. To create the hole configuration (H), 10 shots were taken
without translating the extraction tape, allowing a hole of stable size to form in the tape.
A total of 40 shots were then taken without moving the extraction tape. Finally, for
the injection tape configuration (IT), the injection tape is placed in its normal position,
8mm after the extraction tape, and 19 shots were taken while translating this tape,
whilst the extraction tape remained static.

The leakage of the South beam through a dielectric mirror was used to probe the
interaction. The probe beam diameter was reduced to ∼ 75 mm with a Galilean telescope
and was then sent through a delay line ahead of reaching the target. The beam was
split using a 50:50 beamsplitter before propagating through the cells orthogonally to the
direction of the main beam, as shown in Fig. 6.3. This allowed transverse interferometry
and shadowgraphy to be performed independently for each cell. This, alongside pressure
sensors in the cells, was used to monitor the plasma density. A 300mm motorised
translation stage was used to adjust the delay between the probe beam and drive beam,
ensuring that the plasma was imaged close to its time of formation. For all measurements
reported in this chapter, the plasma density was 2.0 ± 0.5×1024m−3.

Before taking data, the focal spot of each beam was optimised by correcting for
wavefront aberrations using the adaptive optic (AO in Fig. 6.1). The focal spot quality was
4 The properties of the North beam were described because they pertain to the discussion later in the

chapter.
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Figure 6.5: Focal spot metrics of all the focal spot images taken on that day, and the
median focal spot image a0. The red horizontal lines indicate the median value, the
black dashed lines show the shot-to-shot standard deviation, and the grey shaded region
is the estimated error on the mean, calculated via bootstrapping.

measured by taking 100 images of the focal spot using a spatially calibrated microscope.
The relevant measurements for this chapter are shown in Fig. 6.5. Accounting for the
70% compressor efficiency, 10.9 ± 0.2 J of energy was delivered to the target by the f/40
OAP, with a central wavelength of 808 nm. When optimally compressed, the pulse length
was 45 ± 2 fs (FWHM), however, to maximise the energy and charge of the electron beam
a Fastlite dazzler5 was used to add modest second, third, and fourth-order spectral phase
terms, stretching the pulse slightly. The median FWHM spot size was 41.2±0.9 µm, with
39 ± 2% of the energy contained with the FWHM. Assuming an optimally compressed
beam with 10.9 J of energy, the laser intensity was I = 9.58 ± 0.70 × 1022 W m−2,
corresponding to a vacuum a0 =2.12 ± 0.08.

6.1.2 Electron profile

The electron beam profile monitor was composed of a 75mm circular Lanex screen
placed 2.15 m from the end of cell 1, imaged off-axis by a 12-bit CCD. Although placing
the Lanex screen before the magnet would allow for simultaneous measurement of the
beam profile and the spectrum, placing it further from the source magnifies the beam,
improving the measurement resolution. The advantage of the electron profile diagnostic
over the spectrometer is that it can measure the divergence and pointing of the beam
in both transverse dimensions. This was particularly desirable for our experiment since
5 [223] Fastlite Dazzler product information, Fastlite
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Figure 6.6: Electron profile processing and measurement example. The cropped raw
image is displayed in the left panel (axes are in pixels), while the transformed and
median-filtered profile is shown in the central panel. Note the wire grid shadow seen
in the raw image has been filled in. The black ellipse in the right panel is fitted to the
FWHM intensity contour.

both the asymmetrical target and the linearly polarised laser pulse had the potential to
produce asymmetrical electron beam behaviour in the transverse plane.

At the sub-MeV energy level, the response of the scintillating screen becomes non-
linear6, and as such, there is the possibility that low energy particles bias the measure-
ments. For the ET and IT configurations, 1 MeV electrons would have a scattering angle
of over 160mrad as they propagate through 25 µm of Kapton7, which is much larger
than the 35mrad wide beam profile screen. However, in the H configuration, there is
nothing in the beam path between the cell and the diagnostic, so it is possible that a
beam of ultra-low transverse momentum electrons could reach the Lanex. If this were the
case, we would expect the integrated counts from the H configuration to be significantly
higher than for the other configurations. Since this is not the case, we assume that the
low-energy electrons are not biasing the measurements in any of the configurations. This
assumption is verified by comparing beam profile divergence measurements with those
from the electron spectrometer, which are in agreement.

A beam profile image at different stages of processing is shown in Fig. 6.6. Using the
known dimensions of the screen, a projective transform was used to correct for distortions
resulting from the viewing angle. Two background subtractions were performed; a
pixel-wise one, using a reference image taken without the laser pulse firing, and a global
one, using pixels at the edges of the Lanex. This second one was required to remove the
effects of shot-to-shot variations in the background level, caused by imperfect timing of
the camera shutter. Hard hits were removed using a median filter with a kernel width
of 3 pixels. As can be observed from the left panel in Fig. 6.6, the shadow of a grid
is imprinted on the beam, which was from a tungsten wire grid that was deliberately
placed in the beam path. In principle, the edge spread of the shadow could be used to
6 [184] Y. Glinec et al. (2006) Review of Scientific Instruments
7 [234] M. B. Reid (1991) Journal of Applied Physics

[235] V. L. Highland (1975) Nuclear Instruments and Methods

http://dx.doi.org/10.1063/1.2360988
http://dx.doi.org/10.1063/1.349761
http://dx.doi.org/https://doi.org/10.1016/0029-554X(75)90743-0
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Figure 6.7: The major and minor axis divergence for every measured shot, arranged
chronologically. The grey markers indicate those shots taken during the hole formation
process.

determine the spatially resolved divergence, allowing for a measurement of the emittance
to be obtained8. In practice, the electron energies, the energy spread, and the resolution
of the profile monitor made this measurement impossible. More details of why this
measurement failed, and a method for performing it successfully, are given in chapter 5.

The beam size was measured by fitting an ellipse to the FWHM contour of the beam’s
profile. This procedure was complicated by the shadow of the wire grid, as the beam
was effectively sliced into numerous small beamlets, each with its own FWHM contour.
Simply applying a Gaussian blur to merge the beamlets is a crude method of addressing
this issue, because the standard deviation of the kernel used for the blurring spuriously
affects the measurement. Instead, a synthetic profile was generated from each beam
profile image, where the regions masked by the wire array are detected and filled using
information in the neighbouring parts of the image. This synthetic image was then used
to calculate the FWHM, requiring no Gaussian filtering. An example of this synthetic
image is shown in the central panel of Fig. 6.6, while the right panel shows the fitting of
an ellipse to the synthetic image.

6.1.3 Beam profile measurements

The divergence measurements from every measured shot are shown chronologically in
Fig. 6.7. The total number of shots for which a measurable electron beam profile was
obtained was 46, 39, and 14, for the ET, H, and IT configurations respectively. Moving
from the ET to the H configuration results in a substantial reduction in divergence, while
moving from the H to the IT configuration results in a further slight drop in divergence.
8 [236] D. Marx et al. (2018) Physical Review Accelerators and Beams

http://dx.doi.org/10.1103/PhysRevAccelBeams.21.102802
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The charge-weighted mean and standard deviation for each configuration are given in
Tab. 6.1. Taking the average of the major and minor axes, the divergence of the ET data
set was 80% higher than the hole data set, and the shot-to-shot fluctuations were three
times greater (12% vs. 4%). The beams were slightly elliptical, with the major axis
predominantly aligned with the polarisation axis of the laser, and elipticity increased
slightly with shot number.

Table 6.1: Experimental divergence and pointing measurements. For each measurement,
the mean, µ, and standard deviation, σ, are given, and the errors are calculated using
bootstrapping. The key results are highlighted in yellow.

Divergence (mrad) Pointing (mrad)

Major Minor Mean x y

ET
µ 6.85 ± 0.16 5.41 ± 0.13 6.13 ± 0.13 1.39 ± 0.27 −3.07±0.27

σ 1.16 ± 0.08 0.72 ± 0.13 0.76 ± 0.08 1.85 ± 0.36 1.49 ± 0.18

H
µ 3.86 ± 0.09 2.90 ± 0.07 3.38 ± 0.07 0.19 ± 0.21 −2.44±0.21

σ 0.28 ± 0.05 0.16 ± 0.05 0.16 ± 0.04 1.31 ± 0.18 1.59 ± 0.26

IT
µ 3.38 ± 0.25 2.14 ± 0.10 2.76 ± 0.14 0.51 ± 0.34 −2.74±0.34

σ 0.67 ± 0.2 0.11 ± 0.08 0.23 ± 0.09 1.25 ± 0.29 2.70 ± 0.87

The pointing angle of each electron beam measurement is shown in Fig. 6.8, where
pointing is defined relative to the optical axis. An ellipse has been fit to the 1σ confidence
level of each data set and centred on the average pointing of each configuration, reported
in Tab. 6.1. This ellipse is slightly larger for the ET configuration than for the H and
IT configurations, and there is also a slight shift in the average pointing. However,
the difference in ellipse size is small, and the pointing shift is within the 1σ confidence
contour. We therefore conclude that the differences in electron beam pointing are not
statistically significant. Repeating this experiment and either taking more data or using
a laser with less jitter would help determine if the small changes we observe are due to
the target configuration.
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Figure 6.9: Particle tracking for calibration of the electron spectrometer used in this
experiment. The black line shows the position of the Lanex screen.
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measurements, weighted by the charge.

6.1.4 Electron spectrometer

The setup for the electron spectrometer is shown in Fig. 6.9. Three 1 T dipole magnets
extending over 500mm were used to disperse the beam, and two Lanex scintillating
screens were used to extend the energy range up to 5 GeV. The first Lanex screen covered
the 0.1 −2.6 GeV energy range, with an error of ±0.135 GeV for a 1 mrad ŷ deviation at
the highest energy. The second Lanex screen was not used in the measurements presented
here, because, firstly, the electron energies did not exceed ∼ 2.2 GeV, and secondly, the
divergence of the beam on the second screen at energies below 2.2 GeV would be modified
by multiple scattering as the electrons propagate through the first screen. Correcting
for this would needlessly complicate the analysis and introduce errors. To process the
images from the spectrometer camera, a projective transform was performed to correct
for viewing angle distortion, and a median filter was applied to remove hard hits. Since
the background varied significantly across the image, particularly for shots where there
was a hole in the extraction tape, a gradient background subtraction was used, where a
strip of pixels along each edge of the Lanex was used to calculate the local background.
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Figure 6.10: The top two panels show example electron spectrometer measurements,
where the top panel is from the ET configuration and the lower panel is from the H
configuration. The lower panel shows the spectrally resolved divergence measurements
for each beam.

Example electron spectrometer images are shown in the upper two panels of Fig. 6.10,
and the lower panel shows the energetically resolved FWHM divergence of the beams.
The data points are calculated by taking the mean transverse beam profile over a sample
width of 10 pixels, which has the result of reducing the sampling rate at higher energies.
An estimate of the error for this measurement is calculated by first measuring the
divergence for a sample width of 1 pixel at all possible locations, then calculating the
rolling standard deviation of these values with a window length of 10 pixels. The error
bars in the figure are sampled from this rolling measurement. The region below 0.6 GeV
was polluted by stray light, which varied transversely across the scintillator, and hence
could not be completely removed via background subtraction. Consequently, these beam
divergence measurements will only use energies above 0.6 GeV.

6.1.5 Electron spectrometer measurements

The averaged electron spectrometer data is shown in Fig. 6.11. In the ET configuration,
14 shots were recorded, while for the H configuration, 13 shots were recorded after
10 shots were taken beforehand to form the hole in the tape. The upper panel shows
the mean spectrum for each configuration and the associated uncertainty. There was
considerable shot-to-shot variation in the energy spectrum, but the consistent features
were a peak at approximately 1GeV, and a tail extending past 2GeV, similar to the
example images in Fig. 6.10. The total charge above 0.6GeV for the H configuration
was ∼25% lower than for the ET shots. Still, the similarity of the averaged spectra
is reasonable, making comparisons between shots taken in the different configurations
appropriate. The spectrally resolved FWHM divergence is measured using the procedure
depicted in Fig. 6.10, producing an array of divergence measurements at each energy with
an associated error. The lines and shaded regions in the lower panel of Fig. 6.11 represent
the mean and standard deviation of these arrays, where the mean is weighted by charge.
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Figure 6.11: The top panel shows the mean FWHM divergence measurements for the
ET and H configurations. The bottom panel shows the inferred change in divergence.
The grey shaded regions indicate the ±1σ error.

The divergence reduction due to the hole’s presence is observed to persist at energies above
0.6 GeV. The average divergence across the spectrum drops from 6.20±0.18 mrad for the
ET data to 3.90 ± 0.06 mrad for the H data, with errors calculated using bootstrapping,
in close agreement with the beam profile measurements reported in Tab. 6.1. The lower
panel of Fig. 6.11 shows the average difference in transverse momentum between the two
data sets as a function of energy, which is consistently in the 2 - 3 MeV range.

To summarise the main experimental findings, the electron profile diagnostic observed
a 2.8 ± 0.5mrad decrease in the total beam divergence when changing from the ET
configuration to the H configuration. The electron spectrometer corroborated this effect,
which observed a 2.3 ± 0.6 mrad average difference between the configurations. Critically,
this latter observation means that the effects of low-energy electrons are not biasing the
beam profile data; the presence of the tape is affecting the high-energy electrons that are
of most interest for staging applications.

6.2 Laser-tape simulations

Particle-in-cell simulations have been performed to investigate the mechanism causing
the divergence change observed between the ET and H configurations. The range of
relevant densities extends from 10−3ncrit in the wakefield accelerator to over 250ncrit in
the plasma mirror, and the spatial scales of interest range from the 2 cm length of the
under-dense plasma down to the 10 nm skin depth of the laser in the overdense plasma
on the surface of the tape. To accurately resolve this range of length scales and to do
so in a computationally efficient way, separate simulations using different simulation
codes were performed. This section presents the results of the overdense laser-plasma
simulations.



171 Chapter 6. Beam divergence considerations for staged LWFA

−1.5 0.0 1.5 3.0

z (µm)

−1

0

1

y
(µ

m
)

0 200
ne/nc

0 50
ρ (C/µm2)

Figure 6.12: Snapshot of the laser-tape simulation charge density in the 45° geometry,
after interaction with the laser pulse and before the electron beam enters the tape. The
simulation time at this point is 0.17 ps. The laser pulse and electron initially travel in
the positive z direction.

6.2.1 Simulation setup

The code Smilei9 was used to model the interaction between the laser, tape, and electron
beam. Separate simulations were performed for the tape angled at 0° and 45° to the
direction of laser propagation, and these simulations were performed in a full 3D Cartesian
geometry. The 25 µm thick Kapton tape used in the experiment has the chemical formula
C22H10N2O5, and a density of 1.42 × 103 kg m−3. In these simulations, the tape is
modelled as a carbon strip with a number density of 7.3×1028 m−3, such that the plasma
density reaches 256ncrit when fully ionised, equivalent to the fully ionised plasma density
of Kapton. This simplification of the target’s chemical composition will have the effect of
placing a higher proportion of the electrons in the inner shell, making the target slightly
more difficult to ionise. However, this is offset by the lower nuclear charge of carbon,
lowering their ionisation energy. As such, the simplification to an all-carbon target is
not expected to have a significant effect on the physics of the interaction. Although
pre-ionising the target would reduce the computational load, this has been shown to
reduce the magnitude of the fields of interest10, and also introduces uncertainty as to
the appropriate initialisation temperature of the plasma electrons, which is important
for the Weibel instability. As such, the target is initialised as a block of initially neutral
carbon atoms. Ionisation is determined by the ADK rates11, which is handled by Smilei’s
ionisation module. The tape thickness was set to 1.5 µm, allowing it to fit inside the 5 µm
long simulation window, with room on each side for fields outside the tape to be observed.
The transverse extent of the simulation was 2 µm in x and y, where, for the angled tape
simulations, the tape was angled when viewed in the y − z plane. A snapshot of the full
simulation window is shown in Fig. 6.12. Similar simulations have been performed by
Raj et al.12, but with differences in the plasma density, laser properties, and geometry.
9 [213] J. Derouillat et al. (2018) Computer Physics Communications

10 [237] Y. Lang et al. (2018) Plasma Physics and Controlled Fusion
11 [132] M. V. Ammosov et al. (1986) Sov. Phys. JETP
12 [92] G. Raj et al. (2020) Physical Review Research

http://dx.doi.org/https://doi.org/10.1016/j.cpc.2017.09.024
http://dx.doi.org/10.1088/1361-6587/aabd05
http://dx.doi.org/10.1103/PhysRevResearch.2.023123
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the simulations reported in Sec. 6.3.

The smallest length scale that needs to be resolved is the plasma skin depth, ∼ c/ωp,
which, for the fully ionised Kapton, is 8 nm ≈ λL/100. Consequently, the resolution of
the simulations was ∆ = λ/103 in all directions. Due to the currents generated, the
plasma density can reach considerably higher values than the fully ionised plasma density,
up to and above 400nc at the edges of the tape, so some regions of the simulation may
be improperly resolved. This can be seen on the front surface of the tape in Fig. 6.12.
The magnetic fields of primary interest here have a spatial scale of approximately λ/10
and should therefore be resolved sufficiently. For the carbon, 25 macroparticles per cell
were used, while 4 particles per cell were used for the electrons, and open boundary
conditions were used for the simulation edges. Open boundary conditions were required
due to the asymmetry in the 45° geometry, but would not be required if the laser pulse
were rotated instead of the tape.

The laser pulse undergoes depletion13 and amplification14 during its interaction with
the 20 mm of underdense plasma that preceeds the tape. Since the interaction is highly
nonlinear, it is difficult to predict the energy that remains in the pulse. Further, the pulse
amplification process will produce a highly distorted temporal profile that cannot be
calculated analytically. To account for these effects, the longitudinal laser pulse envelope
for the tape simulations was taken from the wakefield simulations discussed later in
this chapter. This profile is plotted in Fig. 6.13, containing 2.1 J of energy with a peak
a0 = 2.76, higher than the vacuum focus a0 of 2.07. This pulse was focused onto the
tape’s front surface with a Gaussian spot size of 20 µm.

An electron beam was also simulated, propagating across the tape after the laser
interaction. The beam was modelled as a sphere with a radius of 0.5 µm, 50 pC of
charge, and an energy of 2 GeV. The electron beam enters the simulation at t = 0.17 ps,
approximately 20 µm after the peak of the laser pulse encounters the tape, mimicking
the separation between the laser pulse and the electron bunch observed in wakefield
simulations, and in experiments15.
13 [148] B. A. Shadwick et al. (2009) Physics of Plasmas
14 [146] M. Streeter et al. (2018) Physical Review Letters
15 [64] M. Heigoldt et al. (2015) Physical Review Special Topics - Accelerators and Beams

http://dx.doi.org/10.1063/1.3124185
http://dx.doi.org/10.1103/PhysRevLett.120.254801
http://dx.doi.org/10.1103/PhysRevSTAB.18.121302
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Figure 6.14: Plasma electron density and magnetic fields at the front surface of the tape,
at the moment the peak of the laser envelope encounters the tape. The left column of
plots is for the 0◦geometry, and the right column of plots is for the 45° geometry.

6.2.2 Field structure in the tape

A snapshot of the plasma density and magnetic fields at t = 0.17 ps is shown in Fig. 6.14.
The plasma density from the carbon electrons is shown in the y − z plane, while the Bx

and By fields are shown in both the y − z and the x − z planes, for x = 0 and y = 0
respectively. The Bz fields have not been plotted since these do not deflect electrons
travelling in the z direction. It should also be noted that the electric fields have been
neglected; since the magnetic fields are on the order of 500 T, cB ≃ 1012V m−1, and no
electric fields approaching this magnitude were observed (|E|max ≪ |cB|max). A thin
region on the front of the tape is observed to be fully ionised, with the bulk of the tape
having a median ionisation state of +3.9, which corresponds to the 2 × 2p and 2 × 2s
outer shell electrons of carbon.
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The magnetic fields on the inside of the front surface of the tape have the characteristic
structure of the current filamentation instability16. These fields extend up to ∼ 1 µm
into the tape, and at this time have a transverse wavelength of ∼ 0.4 µm. At earlier
times, the transverse wavelength of these fields is shorter, in agreement with the Weibel
instability growth rate, which predicts a higher growth rate for shorter wavelength
perturbations. Since this transverse wavelength is sub-micron, these fields will impart
spatially dependent deflections of the electron beam, increasing divergence. The magnetic
field strength magnitude of the Weibel instability at saturation given by Fiuza et al.17 is

Bsat =
√

2a0αncµ0mec2, (6.1)

where αnc is the density of hot electrons driving the instability, with the value of α

determining the number of high-energy electrons driving the instability. This scaling was
derived by matching the energy density in the hot electron flow to the energy density in
the magnetic fields. In the simulations presented here, field strengths of approximately
1 kT are reached, with a peak a0 of 2.73, indicating α ≈ 10−3 when the electron beam
enters the tape. In contrast, at the moment the peak of the laser is incident on the tape,
the magnetic fields are an order of magnitude stronger, indicating α ≈ 0.1, which is in
reasonable agreement with the results of Lang et al.18.

The currents generated in the tape by the laser are shown in Fig. 6.15. This snapshot
is taken at the moment the peak of the laser pulse is incident on the tape, as this time
most clearly shows the various currents that are produced. The laser’s electric field is
polarised in the y direction and can be seen to produce currents in this direction on the
front surface of the tape. In the 0° geometry, this is uniform across the surface, while for
the 45° geometry, the Jy field on the front surface of the tape varies as the phase of the
laser changes across the surface. Large amplitude plane waves in the current are observed
inside the bulk plasma, which have a wavelength of approximately 60 nm, equal to the
plasma wavelength of the partially ionised carbon. In the 0° geometry, these currents
are entirely in the z direction, while in the 45° geometry they are in both the z and y

direction, indicating that these plane waves are emanating from the front surface of the
tape. These are simply Langmuir waves, and carry pulses of current across the tape.

Currents extending out of the front surface of the tape are observed for the 45°
geometry. This is due to electrons being pulled out of the plasma by the electric field of
the laser, before being accelerated into the tape, in a process known as vacuum heating,
or Brunel heating19. This enhances laser energy absorption20, and should result in extra
heating of the target compared to the 0◦geometry since this heating mechanism cannot
16 [238] E. S. Weibel (1959) Physical Review Letters

[239] B. D. Fried (1959) The Physics of Fluids
[92] G. Raj et al. (2020) Physical Review Research

17 [240] F. Fiuza et al. (2012) Physical Review Letters
18 [237] Y. Lang et al. (2018) Plasma Physics and Controlled Fusion
19 [232] F. Brunel (1987) Physical Review Letters
20 [241] P. Gibbon Short pulse laser interactions with matter (2005)

[242] N. Dover PhD. Thesis (2013)

http://dx.doi.org/10.1103/PhysRevLett.2.83
http://dx.doi.org/10.1063/1.1705933
http://dx.doi.org/10.1103/PhysRevResearch.2.023123
http://dx.doi.org/10.1103/PhysRevLett.108.235004
http://dx.doi.org/10.1088/1361-6587/aabd05
http://dx.doi.org/10.1103/PhysRevLett.59.52
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Figure 6.15: Currents generated in the tape by the laser. The left column plots are from
the 0° geometry, while the right column plots are from the 45° geometry. If the current
coordinate is orthogonal to both axes, positive current is directed out of the page.
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occur at normal incidence. However, since the laser is relativistic, J × B heating becomes
significant, and this is most efficient at normal incidence, so this may compensate for the
lack of vacuum heating. The Jz currents emanating from the rear surface of the tapes at
a frequency of 2ω are characteristic of this heating mechanism21.

Once the laser-tape interaction has finished, it is the residual electron currents that
drive the long-term magnetic fields with which the electron beam interacts. There are
two sources of these currents; a temperature anisotropy, normal to the tape surface, and
a drift of electrons out of the simulation, parallel to the tape surface. The former causes
the Weibel fields that are observed extending from the front surface of the tape. The
latter produces the magnetic fields that can be observed on the front and back surfaces
inside the tape, and the fields outside the tape in the 45° geometry. The drift of electrons
out of the simulations occurs in all directions symmetrically for the 0° geometry, while it
occurs predominantly in the negative y, positive z direction for the 45° geometry. This
net drift of electrons is why there are significant magnetic fields outside the tape in the
45° simulations but not in the 0° simulations. Although it is produced by the removal
of electrons at a boundary, these currents and associated fields could be physical, since,
in an infinite tape irradiated in a small region by a laser at an angle, the net flow of
electrons will still be influenced by the initial laser pulse direction.

6.2.3 Electron beam deflection

An electron beam passing through the tape will experience the fields at different points
in space, due to the beam’s transverse size, and time, due to the time taken for the beam
to traverse the tape. Individual electrons moving with v ≈ c will be deflected by the
Lorentz force

dpy

dt
= −ecBx, (6.2)

and because the transverse scale of the fields is smaller than that of the beam, the
deflection will have a spatial dependence. If we assume that the fields are frozen in time,
the increase in transverse momentum spread in y as the electron beam crosses the tape
is given by

∆p2
y = e2c2⟨B2

x,int⟩,

= e2c2

Q

∫∫
q(x, y)dxdy

∫
(Bx(x, y, z) − B̄x(z))2dz,

where
B̄x(z) = 1

Q

∫∫
Bx(x, y, z)q(x, y)dxdy, (6.3)

is the charge-weighted mean magnetic field, and q(x, y) is the transverse electron beam
profile, such that Q =

∫
beam q(A)dA.

21 [243] S. C. Wilks et al. (1992) Physical Review Letters

http://dx.doi.org/10.1103/PhysRevLett.69.1383
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Figure 6.16: The left four panels show the z integrated magnetic field over the electron
beam radius of 0.5 µm, with the left column showing the output from the 0◦simulation,
and the right column showing the output from the 45◦simulation. The right panel shows
the evolution of the variation in Bint during the simulation. The dashed vertical line
indicates the time at which the electron beam enters the tape, which is the moment at
which the four plots on the left are extracted.

Fig. 6.16 shows the integrated B fields at the moment the electron beam enters the
tape and the temporal evolution of their variation. The fields in y have a higher spatial
frequency than those in x, and the fields for the 45° geometry are slightly weaker, with a
larger difference for the Bx fields. This larger difference in x is due to the integration
of the tilted fields along z, causing these fields to ‘wash out’ slightly. Both of these
differences can be seen numerically in the plot of the temporal evolution. The fields
in the 45° geometry are larger at earlier times due to the earlier interaction with the
tape, and the effect of J × B heating, which is most prominent at 0.11 ps. However, once
the laser has passed, the fields have a similar magnitude, stabilising at approximately√

⟨B2
int⟩ = 0.1 kTµm.

Finally, the electron beam that propagates across the tape can be used to estimate
the effects of these fields. The evolution of the transverse momentum FWHM of the beam
is plotted in Fig. 6.17, which shows that the deflection of the beam occurs differently
in each plane and each geometry. In the 0° simulations, the majority of the divergence
increase occurs when the beam enters the tape at z̄ = 1.5mm, and the behaviour in x

and y is similar. In contrast, in the 45° geometry, the divergence increases more gradually,
with markedly different behaviour in the x and y directions. The px FWHM increases as
it enters the tape22, and then continues to increase while inside the tape, while the py

FWHM increases early, at 0.5mm, remains constant while entering the tape, and then
increases gradually while transiting the tape. The py increase at 0.5mm is due to the
Bx fields that extend beyond the tape, while the gradual increases inside the tape are
due to the fields extending further into the 45° tape than the 0° tape. Considering only
22 This region is wider in the 45° geometry because the top of the beam enters the tape before the

bottom.
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the effects of the fields inside the tape, responsible for divergence changes from 1mm
to 3mm, we see that the reduced integrated Bx fields observed in Fig. 6.16 result in a
reduced divergence increase in the y direction.
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Figure 6.17: FWHM electron beam transverse momentum change as it traverses the
simulation. The grey shaded region indicates the location of the tape.

In summary, these simulations estimate that the fields in and around the tape can
increase the electron beam transverse momentum by a FWHM value of approximately
0.2MeV, or a 0.1mrad increase in the divergence of the 2GeV electrons in the beam.
Since this is too small to explain the > 2 mrad divergence change, other factors must be
considered.

6.3 LWFA simulations

Simulations of the wakefield accelerator were performed in FBPIC23. The main purpose
of these simulations was to quantify the effects of a density ramp at the end of the cell on
the beam divergence. To do this, simulations were run using density ramps of different
scale lengths, where the ramp was modelled as an exponential. The analytic form of the
longitudinal density profile at the end of the cell was n(s) = n0/(e(s/λR) + 1), where λR

is the scale length of the ramp. This function was found to fit fluid simulations of gas
leaking through circular apertures24, where the radius of the aperture R ∼ 2λR. Thus, a
1 mm diameter hole would be expected to have a ramp with a 250 µm scale length. This
modelling does not account for the effect of a ragged or moving aperture, which may
have been the case for a hole formed in thin tape by a distorted laser pulse. The ramp at
the front of the cell had λR = 250 µm, and the plateau density was n0 = 2 × 1024 m−3.

These simulations use the method described in Sec. 3.5.4 to inject a realistic focal
spot, where the focal spot image with the median peak intensity was chosen, shown in
Fig. 6.5. A Gaussian temporal profile was used, with τ0 = 38 fs, and the peak a0 was
2.07. The vacuum focal position was set to coincide with the start of the density plateau,
defined as the point at which the density reaches 90% of n0, at approximately 2λR from
the ramp midpoint. This required that the laser was initialised ∼ 0.2ZR from focus,
23 [216] R. Lehe et al. (2016) Computer Physics Communications
24 See Sec. 3.2.2.

http://dx.doi.org/https://doi.org/10.1016/j.cpc.2016.02.007
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which is within the method’s domain of applicability. The full 20mm interaction was
simulated for ramps with scale lengths which varied from 0.0−0.5mm. The simulation
window was z = 100 µm long and had a radial extent of r = 100 µm, which contained
2000×400 cells, for a resolution of 20λ−1 × 4λ−1. In z, r, and θ, each cell contained
2×2×6 macroparticles, and 3 azimuthal modes were used.
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Figure 6.18: Evolution of the electron energy spectrum and laser a0 during the simulation.
The plasma density profile starts at 0 mm and ends at 20 mm

A waterfall plot of one of the simulations in shown in Fig. 6.18, which reveals the
mechanism by which the high-energy electron beam is generated. Two main injection
events are observed; one at 2mm, which produces the highest energy electrons, and
another that starts at 8 mm and ends at 12 mm, which produces a high charge beam with
a large energy spread, roughly centred at 1 GeV. The first electrons are injected when the
laser pulse self-focuses to its plasma focal spot size, which results in an a0 ∼ 6. Note that
this is equivalent to the self-injection threshold predicted by Thomas et al.25, ln(2γ2

p) − 1.
This beam is then accelerated for the next 8 mm, which is similar to the dephasing length
for a beam undergoing etching26. The second injection event is caused by longitudinal
compression and amplification of the laser, which causes bubble expansion, reducing the
velocity of the back of the bubble, making it easier for injection to occur27. Despite the
high a0 at this point, this part of the beam is injected into a pre-loaded wake28, with a
laser pulse that is approaching depletion, resulting in less energy gain than experienced
by the first beam. Interestingly, the dephasing length of this second beam is similar
to the first, indicating that the laser pulse is still driving a non-linear plasma wave.
The depletion length at this density predicted by Shadwick et al.29 is 28.7mm, and
so we should expect the laser pulse to still contain appreciable energy after 20mm of
propagation. This is important when we consider the ability of the laser pulse to drive a
wake in the ramp at the end of the cell.
25 [153] A. G. R. Thomas (2010) Physics of Plasmas
26 [149] C. D. Decker et al. (1996) Physics of Plasmas
27 [155] S. Kalmykov et al. (2009) Physical Review Letters

[146] M. Streeter et al. (2018) Physical Review Letters
28 [244] M. Tzoufras et al. (2008) Physical Review Letters
29 [148] B. A. Shadwick et al. (2009) Physics of Plasmas

http://dx.doi.org/10.1063/1.3368678
http://dx.doi.org/10.1063/1.872001
http://dx.doi.org/10.1103/PhysRevLett.103.135004
http://dx.doi.org/10.1103/PhysRevLett.120.254801
http://dx.doi.org/10.1103/PhysRevLett.101.145002
http://dx.doi.org/10.1063/1.3124185
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Figure 6.19: Plasma density ramps at the end of the simulations (top), electron beam
divergence across all energies (middle), and geometric (phase) normalised emittance
(bottom). The divergence and emittance values plotted here are the average of the values
projected into the x̂ and ŷ directions.

Every macroparticle that reached an energy of 1 MeV, and remained within the moving
window at the end of the simulation was selected for tracking. For the approximately
3mm drift space between the end of the plasma and the end of the simulation, this
selection criterion was equivalent to a requirement that particles had a divergence of less
than 33 mrad, which is larger than the ∼ 20 mrad measurement range of the experimental
beam profile diagnostic. This resulted in an average of 5.6×104 tracked particles in each
simulation. The divergence was calculated by measuring the median average deviation,
σmad, and then scaling to the RMS or FWHM as required30. The trace emittance projected
into the ŷ direction was calculated by computing εtr,y =

√
⟨y2⟩⟨y′2⟩ − ⟨yy′⟩2, where the

angled brackets denote averaging over the tracked electrons, and y′ = py/pz. Similarly,
the normalised phase emittance is calculated using εph,y = (mecp̄z)−1

√
⟨y2⟩⟨p2

y⟩ − ⟨ypy⟩2,
where p̄z is the mean longitudinal momentum.

6.3.1 Beam divergence

The density profiles corresponding to exit ramp scale lengths from 0 mm to 0.5 mm are
plotted in the upper panel of Fig. 6.19, while the lower panels of this figure show the
evolution of the divergence and emittance. Between z = 17mm and z = 20mm in the
central panel of Fig. 6.19, the divergence is observed to gradually increase, as well as
undergo small scale oscillations. For such a long propagation length, it might be expected
that the range of energies present in the beam would cause the divergence to stabilise, as
the different energy slices of the electron beam oscillate incoherently. However, although
the energy spread is large, there are still peaks in the energy spectrum that will oscillate
30 σRMS ≈ 1.4826σmad, and σfwhm = 2

√
2 ln 2σrms for normally distributed data.
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Figure 6.20: Sample of particle trajectories at the accelerator exit. The trajectory colour
depends on the instantaneous electron longitudinal momentum. The density profiles are
depicted by the black dotted lines.

coherently for long propagation lengths, and it is these high charge features that are
responsible for the observed oscillations in the divergence. The gradual increase in the
divergence that occurs before the beam enters the vacuum is due due to the onset of the
hosing instability for parts of the electron beam31.

For the step density function (λR = 0), the divergence of the beam in the vacuum is
determined by its instantaneous divergence at which it encounters the density transition.
For the short ramps (λR = 0.1, 0.2mm), the divergence is similar to the step density
simulation up until z =20mm, but then undergoes a smooth decrease as it enters the
vacuum, stabilising rapidly. Finally, for the longer ramps (λR ≥ 0.3), the divergence can
be seen to undergo multiple oscillations as it is gradually reduced, requiring a longer
distance to reach a stable value. The bottom panel of the figure shows that the emittance
is unaffected by the differences in the divergence before z =20mm, but is sensitive to
the behaviour of the beam in the vacuum. For all ramps, the emittance is growing in the
vacuum, but this growth occurs at different rates and starts at different positions, both
of which depend strongly on the ramp scale length.

Fig. 6.20 has been produced to show the behaviour of particles with different energies
as they leave the plasma; for the step density transition and the 0.5 mm ramp. A random
sub-sample of 20 particles from each simulation has been plotted, and the selection index
is kept constant for the two simulations. Consequently, the selected particles from each
simulation should have equivalent energies, although, since the particles are from two
different simulations, the individual trajectories are slightly different. Within the plasma,
the particles are oscillating with an energy-dependent spatial frequency, and the beam is
31 [170] J. C. Wood PhD. Thesis (2016)
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Figure 6.21: Energy-divergence spectrographs for the λR = 0mm and λR = 0.5mm
simulations are shown in the top and middle panels respectively. The lower panel
compares the simulated FWHM divergence for the 0.0 mm, 0.2 mm, and 0.4 mm ramps
to the experimental data.

also undergoing collective oscillations. For the case of the step density transition, the
transverse momentum of each electron is frozen at the value it has when it encounters
the transition. Since there is a large range of transverse momentum values that can be
supported in the channel, the spread in transverse momentum after the plasma is high.
The density ramp is able to damp the transverse momentum oscillations, resulting in a
more focused beam. This is because, as the density drops, the focusing forces in the wake
weaken, reducing the range of transverse momentum values that can be supported. The
electron beam that then emerges from the plasma has a reduced transverse momentum
spread. Note that for the low-energy electrons, which undergo multiple oscillations in
the ramp, the amplitude of the oscillations gradually reduces, while for the higher-energy
electrons, which only undergo one or two oscillations in the ramp, it is the final oscillation
that appears to be affected the most strongly.

Synthetic electron spectrometer images have been generated from the particle beams
at the end of the 0.0mm and 0.5mm simulations, and are plotted in the upper two
panels of Fig. 6.21. These mimic the experimental data plotted in Fig. 6.10. The beam
divergence as a function of energy is plotted in the lower panel of Fig. 6.21, calculated
statistically using the median average deviation, and then smoothed with a Gaussian
weighting function, which had a width of 100 MeV. This shows that the reduction in the
divergence is consistent at all energies in the beam, in agreement with the experimental
measurements.

6.3.2 Emittance

The evolution of the transverse emittance is plotted in Fig. 6.22, projected onto the
x and y axes. For z < 20mm, both the trace and phase space emittances are stable,
staying in the 20-30 µm range, while in the drift space for z >20mm, the phase space
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Figure 6.22: Comparison of the behaviour of the trace (top) and phase (bottom) emit-
tances in the density ramp. The solid lines show the projection onto the x̂ direction,
while the dashed lines show the projection into the ŷ direction.

emittance grows linearly in both x and y. The trace space emittance is constant in
this region, roughly equivalent to its value at z = 20 mm. The x projected emittance is
slightly larger due to the interaction of some electrons with the tail of the x polarised
laser pulse. This increases the emittance because part of the electron beam is accelerated
transversely by the spatially varying field, increasing the transverse momentum spread.

The fact that the trace space and phase space emittances behave differently in the
drift space is simply due to their different definitions32. The phase space emittance
measures the beam under the assumption that there is a correlation between transverse
position and transverse momentum, while the trace space emittance assumes a correlation
between transverse position and divergence. The phase space emittance grows in the
drift because two particles with the same transverse momentum but different longitudinal
momentum will move different amounts transversely, leading to a spreading out in phase
space, while two particles with the same divergence will, by definition, move the same
amount transversely, preserving the phase space area.

If it were possible to exactly reverse the sign of the divergence of every particle with
some focusing optic, then it would be possible to preserve the trace space emittance,
causing the phase space emittance to fall to equal the trace space. Since this is not the
case, and instead, focusing strength depends on the particle energy, any focusing of the
beam will instead cause the trace space emittance to rise to meet the phase space value.
Consequently, for multi-stage acceleration applications, the phase space emittance is the
more appropriate measure. Migliorati et al.33 derive an equation that parameterises the
phase space emittance growth of a beam in a drift space in terms of its energy spread,
σE , and its divergence, σy′ , as

ε2
n = ⟨γ⟩2(z2σ2

Eσ4
y′ + ϵ2

0), (6.4)
32 [171] K. Floettmann (2003) Physical Review Special Topics - Accelerators and Beams
33 [104] M. Migliorati et al. (2013) Physical Review Special Topics - Accelerators and Beams

http://dx.doi.org/10.1103/PhysRevSTAB.6.034202
http://dx.doi.org/10.1103/PhysRevSTAB.16.011302
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where ϵ0 is the unnormalised trace space emittance when the beam is at focus inside the
plasma channel. For small energy spreads, εn ≃ ⟨γ⟩ϵ0, which is simply the normalised
trace space emittance. However, in the presence of energy spread, the emittance growth
rate scales with the square of the divergence, ε′

n ≈ ⟨γ⟩σEσ2
y′ . This scaling agrees

with the results of our PIC simulations; the emittance growth rate of the 6.5mrad
beam is approximately 100 µm mm−1, while for the 3.5mrad beam the growth rate
is approximately 25 µm mm−1. The sensitivity of the emittance growth rate to the
divergence makes controlling the divergence a priority for maintaining low emittance.

6.4 Discussion

We will now discuss the results of the preceding analysis. First, we will quantify and
compare the effects of the various mechanisms that contribute to the divergence increase,
following which we will solve the beta function equation for density ramps of various scale
lengths. The effect of divergence change on charge capture efficiency will be estimated,
and future multi-stage experiment design considerations will be discussed. Finally, the
benefits of expanding the beam optimal ramp shapes will be explained.

6.4.1 Divergence change mechanism

There are three main contributors to the divergence difference between the ET and H
configurations: Coulomb scattering, magnetic field deflection, and the effect of the density
ramp. These effects add in quadrature, such that the divergence change can be written as
θ2

ET − θ2
H = ∆θ2 = ∆θ2

S + ∆θ2
B + ∆θ2

R, where S, B, and R depict the divergence change
due to scattering, magnetic fields, and the ramp, respectively. Coulomb scattering should
increase electron beam divergence by34

∆θS(z) = 17 MeV
E[MeV]

√
z

LR

[
1 + 9

8 log10

(
z

LR

)]
, (6.5)

where z is the length of material traversed, and LR is the radiation length of the material.
For a 25 µm thick Kapton tape35, angled at 45°, ∆θS = 0.16mrad GeV36. From the
plasma mirror simulations in Sec. 6.2, the magnetic fields in the tape are estimated to
increase the divergence by 0.1mrad. This means that the ramp of length ∼ 0.25 µm
should be able to account for a divergence change of at least 2.98mrad of the 3mrad
divergence change observed at 1 GeV. The simulations in Fig. 6.21 indicate that this is
possible.

While on the subject of multiple scattering, it is worth commenting on the effect of the
injection tape. Counter-intuitively, its placement in the electron beam path reduced the
divergence slightly; from 3.38 ± 0.22 mrad in the H configuration to 2.76 ± 0.39 mrad in
34 [234] M. B. Reid (1991) Journal of Applied Physics

[235] V. L. Highland (1975) Nuclear Instruments and Methods
35 Kapton radiation length LR = 28.57 cm

[245] Kapton Properties, Particle Data Group, LBNL
36 The units donte that a 1 GeV beam would experience a divergence increase of 0.16 mrad.

http://dx.doi.org/10.1063/1.349761
http://dx.doi.org/https://doi.org/10.1016/0029-554X(75)90743-0
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Figure 6.23: Monte Carlo simulation results showing a possible effect of electron beam
scattering. The left panel is without scattering while the centre panel includes scattering.
Mean transverse intensity profiles are shown in the right panel, with the red line indicating
the scattered beam.

the IT configuration. This observation is unlikely to be due only to random fluctuations,
given the 39 and 14 shots recorded in the respective setups. Instead, scattering could
cause this observation by preferentially removing low energy, high divergence electrons
from the beam.

This effect is demonstrated using a Monte Carlo simulation in Fig. 6.23. An electron
beam is initialised with two mono-energetic peaks in its spectrum; one at γ = 30, and
the other peak at γ = 3000. The lower energy component of the beam has a divergence
of 2mrad, and contains 66% of the total charge, while the high energy component’s
divergence is 1mrad. The combined beam starts from a point source, propagates
8mm, scatters by 1mrad GeV, and then propagated a further 2m. For this particular
configuration, the effect of the scattering is to remove the high divergence, low energy
electrons, leaving the unperturbed high energy core. It is possible that this is the
mechanism behind the observed effect of the IT configuration.

6.4.2 Ramp scale length

The effect of the density ramp scale length on a beam with a given emittance can be
determined numerically. Recall37 the beta function of the electron beam evolves according
to

β′′ = −2kβ(z)β + 2
β

[
1 +

(
β′

2

)2]
, (6.6)

where β = ⟨x2⟩/ε represents the size of the beam normalised by the emittance, and
k2

β(z) = ω2
p(z)/2γec2 is the betatron wavenumber for an electron with relativistic factor

γe. In Fig. 6.24, this equation is solved numerically for emittances between 10 µm and
30 µm, assuming a mean γ = 2000. For comparison, the results of the PIC simulations
and the experimental results are also plotted. The PIC simulation results are in close
agreement with the 20 µm solution to Eq. 6.6, as are the experimental median values,
while the error bars fit within the solutions for an emittance variation of ±10 µm.
37 See Sec. 2.8.
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Figure 6.24: Comparison of the experimental results to the PIC simulation results and
the numerical model, for various values of the emittance.

The close agreement between the experimental results, the PIC results, and the
numerical model suggests a method for measuring emittance experimentally. If the
functional form of the density ramp at the end of the accelerator is known accurately,
then so is the beta function, and consequently, a single measurement of the beam size
should be sufficient to obtain an estimation of the emittance. Further, if the scale length
of the density ramp can be controlled, then a parameter scan of this scale length would
produce a series of divergence measurements that could be used to measure the emittance
via a fitting line, similar to those in Fig. 6.24. In our example, this method is being used
to measure the total beam emittance, but could also be used to measure the energetically
resolved emittance if it were paired with the electron spectrometer. It should be noted
that the solutions in Fig. 6.24 assume a matched beam, which is not necessarily the
case. Beam mismatch introduces an additional free parameter, which has the potential
to either add noise to the measurement or to shift it systematically.

6.4.3 Charge capture

We will now consider the effect that the increase in divergence would have on the amount
of charge that could be captured in a second stage. A minimum requirement for an
electron to be captured is that its transverse coordinates are close enough to the second
laser pulse’s beam axis that the plasma wake produced by this laser pulse is able to focus
the electron. This ‘close enough’ distance will be called the acceptance of the second
stage and will be roughly on the scale of the plasma wavelength. Using this minimum
requirement, we can compute the maximum fraction of charge that can be captured
for a given acceptance. The relevant factors are the divergence of the electron beam,
the distance between the stages, the pointing jitter of the electron beam, the spatial
jitter of the second laser at the injection plane, and the average distance between the
electron beam and the second laser at the injection plane. If we model the transverse
fluctuations as being normally distributed, then we can produce an expression for the
average electron beam size, with respect to the centre of the acceptance aperture of the
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second wake. The expected fraction of charge captured is then given by

f =
∫ RA

−RA

1
σT

√
2π

e
− |r−r0|2

2σ2
T dr, (6.7)

where r0 is the vector connecting the centres of the shot patterns of the lasers, and σT

represents the average electron beam size, averaging over the range of possible shots,
given by

σ2
T = σ2

L + (LϕB)2 + (LθB)2, (6.8)

where σL is the standard deviation of the laser focal spot position, ϕB and θB are the
electron beam pointing and divergence standard deviations, and L is the inter-stage
distance.

To obtain a value for the acceptance radius, we will assume that the second wake is
in the bubble regime, driven by a laser with a0 = 3, at a plasma density of 1 × 1024 m−3.
This gives a bubble radius of38

rb ≈
c
√

a0
ωp

∼ 10 µm. (6.9)

For the calculations presented here, we will approximate that the acceptance of the
accelerator is half of this value. This accounts for the need to inject into the accelerating
portion of the accelerator, which is narrower than rb.

In Fig. 6.25, equation Eq. 6.7 is plotted for increasing values of stage separation,
L, using an acceptance radius of 5 µm. The value for ϕB is taken from the measured
values of the electron beam pointing fluctuations in Tab. 6.1, while the value for σL is
taken from spatially calibrated focal spot measurements of the North beam fluctuations.
These have values of 1.5mrad and 20 µm respectively. For the solid lines in Fig. 6.25,
these fluctuations are set to zero, to see the maximum fraction that could be captured
38 [153] A. G. R. Thomas (2010) Physics of Plasmas

http://dx.doi.org/10.1063/1.3368678
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for a perfectly aligned shot. For L <1 mm, we see that 100% charge capture is possible,
but will only happen a small fraction of the time. At large values of L, the difference
between the best possible shot and the average vanishes, as at this point the electron
beam is much larger than the target wake, overlapping it uniformly but weakly. For the
inter-stage separation during our experiment, we would have expected an average charge
capture of about 10% for 1 mrad beams, with the best shots capturing about 25% of the
charge. Here, the beam divergence refers to the standard deviation of a Gaussian, as
opposed to the FWHM used to measure the data. This simple model demonstrates that
if the stages are close enough, then 100% charge capture should be possible on occasion,
but if a reliable coupling is desired, then the combined pointing jitter of the laser and
the electron beam must be reduced.

6.4.4 Future staging design considerations

The target design chosen for this experiment attempted to us the proximity of the stages
to maximise charge capture. Even for the low divergence of approximately 1 mrad, this
would have limited charge capture to 25%, while the normal operation set-up, with the
extraction tape moving, would have reduced the peak capture even more. However, since
thousands of shots were taken, we would still have expected to observe energy gain in
the second stage, given the signal-to-noise ratio of the spectrometers (of order 1 × 103).

The main limiting factor for the experiment was the effect of aberrations in the near
field of the North beam. These were strong enough to rapidly damage the dielectric
mirrors if shots were taken above ∼4 J. This greatly reduced the intensity that could be
obtained at the focus of the North beam. Further, these aberrations reduced the focal
spot quality such that only 20% of this energy was contained within the FWHM, even
before reflection off the tape. Even with the injection tape’s high reflectivity of 70%39,
the vacuum a0 ≈ 0.6, resulting fields of strength 30 MeV m−1. The reduced bubble radius
that results from the low a0 would have had a negative effect on capture efficiency, and
the highly aberrated focal spot would have driven a distorted wakefield, further reducing
the captured beam quality. All of these factors contributed to the failure to detect staged
acceleration.

As in conventional accelerators, other multi-stage LPA concepts utilise an active
focusing element in between the stages, such as a plasma lens40. The advantage of using
such an optic is that it gives a degree of control over the electron beam size as it enters
the next stage, potentially allowing for high charge capture and, in principle, injection
with a beam size matched to the focusing strength of the second wake. Adding such an
optic significantly increases the technical complexity of the experiment; if each plasma
stage now requires its own plasma optic, then the number of gas targets has doubled,
complicating alignment and increasing the gas load on the pumping system. Further,
in the presence of energy spread and energy variation, active focusing does not stand a
39 [227] J.-N. Gruse PhD. Thesis (2020)
40 [88] S. Steinke et al. (2016) Nature

http://dx.doi.org/10.1038/nature16525
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Figure 6.26: Beta function solutions for various ramp scale lengths connecting two
plasmas. Beams are initially matched to the plasma with a mean γ = 3000 and 10%
energy spread (RMS).

realistic chance of being able to preserve emittance, as a slight change in energy will cause
the injection of a mismatched beam, and any energy spread in the beam will produce
uncorrelated emittance growth when the beam is collimated. A method for passively
and compactly transferring the electron beam from one stage to another is required if
multi-stage acceleration is to be robust.

Connected plasma density ramps offer a method for achieving this. Fig. 6.26 shows
two regions of high-density plasma with a 10 mm drift space between them, representing
the end and start of two plasma accelerating stages, where the edges of the stages have
exponential density ramps of various scale lengths. For each density profile, we consider a
beam with a Gaussian energy spectrum with ⟨γ⟩ = 3000 and σγ = 300, initially matched
to the density profile. The plotted value of the beta function is the charge-weighted
mean of the beta function for each energy slice. Between the stages, the beta function
expands at a rate that depends inversely on the scale length of the ramp. As the beam
enters the second stage its expansion is halted and it instead undergoes damped betatron
oscillations, eventually reaching a constant value. This occurs because each energy
slice is entering the second stage at a mismatched beam size, consequently undergoing
betatron oscillations at an energy-dependent frequency, resulting in a smearing out
of the beam in phase space and an increase in emittance. For the longest ramp, this
does not occur; instead, the beam remains matched throughout the transfer, such that
β(z = −10) = β(z = 20). Note that this perfect matching only occurs because there is
no drift space between the stages. If there is any drift space then the emittance will
necessarily increase in the presence of energy spread.

6.4.5 The benefit of beam expansion

If allowing the beam to expand too quickly leads to emittance growth, then the question
that naturally arises is: why have a coupling section at all? It might seem more



190 Chapter 6. Beam divergence considerations for staged LWFA

straightforward to have the plasma mirror bisect a region of constant plasma density,
as this would circumvent the need to manage the beta function. Further, removing the
coupling section would have the additional benefit of maximising the average accelerating
gradient over the two stages.

Unfortunately, such a system would be overly sensitive to alignment, both in terms
of charge capture and emittance preservation. To maximise the per-stage energy gain,
the electrons should be injected into the bubble as close to the back as possible, but this
region becomes increasingly narrow. At acceleration densities of 1 × 1024 m−3, pointing
jitter would need to be limited to a few microns if the high accelerating gradients at the
back of the bubble are to be exploited. Injecting into an expanded bubble relaxes this
requirement to some extent, as once the beam is within the expanded bubble, the focusing
forces can steer the beam onto the axis. Even if the laser pulse-electron beam alignment
fluctuations could be limited to a few microns, expanding the beam in between the stages
would still be advantageous. Off-axis injection will cause betatron oscillations, which will
lead to emittance growth. This is because the electrons are not injected at the bottom
of the transverse potential well, and this will increase the total transverse momentum
in the beam. For the same spatial offset, this increase in transverse momentum will be
smaller if the plasma density is lower at the point of injection. Consequently, expanding
the beam between the stages reduces emittance growth that occurs due to misalignment.

6.4.6 Optimal density ramps

Finally, we can find the optimal functional form of these ramps. So far, we have considered
only exponential profiles, which are convenient from an experimental perspective but
are inefficient in terms of space. The betatron wavelength in a ramp of the form
η(s) = n0 exp(−s/λR) is

λβ(s) = 2π

(
2γec2

ω2
p,0

) 1
2 1√

η(s)
= λβ,0√

η(s)
. (6.10)

In contrast, the exponential ramp varies on the scale of η/η′ = λR, such that the beam
will eventually cease to see the ramp as varying slowly. To negate emittance growth in
an exponential ramp, the scale length needs to be longer than strictly necessary since the
ramp will change too slowly when the density is high. An optimal ramp will maintain a
constant ratio between the betatron wavelength and variation scale. Ariniello et al.41

define an adiabaticity parameter related to the beta function as being equal to this ratio,

αm = λβ(s)
∣∣∣∣η′

η

∣∣∣∣ ≪ 1 (6.11)

where α = −β′/ε is the normalised correlation in the beam, and αm is defined as the
correlation that keeps the emittance growth within acceptable limits. An optimal ramp
41 [246] R. Ariniello et al. (2019) Physical Review Accelerators and Beams

http://dx.doi.org/10.1103/PhysRevAccelBeams.22.041304
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Figure 6.27: Optimal density ramp compared to the exponential ramps. The parameter
a = 10−3kβ.

will have a constant αm, which was shown to be achieved for

η(s) = 1
1 + (as)2 , (6.12)

where the parameter a can tune the acceptable level of emittance growth.

By using a ramp that is optimally tailored to the electron energy, a large increase
in the beam size while maintaining the emittance can be achieved with a much smaller
ramp. This is shown in Fig. 6.27 for a ramp with a = 10−3kβ . This ramp is shorter than
the 500 µm exponential ramp and achieves a larger beta function between the stages
while also performing similarly to the 1500 µm in the second stage. Such a ramp would
allow for a larger beam size to be achieved between the stages, or a reduced inter-stage
distance for the same beam size.

6.5 Summary

Beam divergence measurements have been made using various cell configurations that
are of interest for staged wakefield acceleration. Termination of the accelerator with a
plasma mirror was found to increase total beam divergence from 3.38 ± 0.22mrad to
6.13 ± 0.94 mrad, an effect that was found to still be significant at the high energies that
are of interest for staging. The presence of the density ramp was shown to account for the
observed divergence change, while the effects of magnetic fields generated in the plasma
mirror on the beam were shown to be small for the studied experimental configuration.
The angle of the tape was found to reduce the impact of the mirror’s internal magnetic
fields on the electron beam divergence in the y direction. The results were discussed
in the context of beam transfer between laser wakefield stages, and the use of density
ramps was suggested to facilitate coupling.
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In this thesis, the quality of electron beams produced by laser wakefield accelerators
have been measured and optimised. To this end, the density length parameter space

of a laser wakefield accelerator was characterised, an emittance diagnostic was developed
and implemented, and target designed for the purpose of multi-stage acceleration were
investigated. In this chapter, we present a summary of the findings and discuss future
directions.

7.1 Conclusions

7.1.1 The density-length parameter space

The density-length parameter space of a 5TW laser wakefield accelerator has been
explored in chapter 4, using plasma densities from 0.3 − 2.8 × 1024 m−3, and cell lengths
from 0 − 3mm. Two different gas species were used; pure helium and helium doped
with 1% nitrogen, and each 2D scan took 5 laser shots at 16 × 21 locations, for a total of
3,360 shots over the two scans. Before performing the scans, an automated Bayesian
optimisation routine was used to ensure that the laser pulse shape and focal position
maximised the signal on the electron spectrometer camera.

In general, it was found that the doped gas produced both higher charge and higher
energy electron beams than the pure helium gas, although the beams from the pure
gas were more collimated. Notably, electron beams with peak energies above 200MeV
were measured, which is much larger than would be predicted by typically used scaling
laws. The combination of higher charge and energy resulted in a higher x-ray signal from
the doped gas, while the pure helium gas produced x-ray spectra with higher critical
energy. See Tab. 6.1 for details. The electron beam results were found to be in reasonable
agreement with PIC simulations, with the exception of the self-injected beam charge,
which was much higher in simulations.

The dephasing length of the ionisation injected beam was found to be longer than
expected, resulting in higher energies. This was attributed to an increase in the phase
velocity of the plasma wave, from βϕ = βetch ≃ 1 − 3ne/2nc to βϕ ≃ 1 − 5ne/6nc, which
was found to accurately predict the speed of the back of the bubble in PIC simulations.
The enhanced phase velocity was attributed to the laser pulse depletion process being

192
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only semi-localised, such that the phase velocity fell between the linear group velocity
and βetch. The exceptionally high (> 200MeV) energies measured using the doped gas
were attributed to beam-driven acceleration, identified by observing increasing energy
with plasma length up to approximately 2 mm at 2×1025, much longer than the depletion
length at this density.

The pulse evolution rate was measured by monitoring the injection point as a function
of density over the length scans. The depletion length scaling of Ld = λpnc/ne was found
to be too short to explain the pulse evolution length. However, if the pulse first needed
to self-focus over a length Lf before depletion could begin, then it was found that the
combined length Lf + Ld fitted the experimental data well. It was concluded that, in
LWFA regimes where the a0 of the laser pulse crosses from a0 ≲ 1 to a0 ≳ 1, then the
evolution rate is reduced by the need for the pulse to self-focus almost fully before it can
begin to compress longitudinally.

The x-ray data was analysed with the goal of determining a value for the brilliance.
From PIC simulations, the source size was determined to be ∼1 µm, which led to brilliance
measurements in the region of 1020[B], where [B] = ph s−1 mm−2 mrad−20.1%BW−1. In
addition, a commonly used method for determining the source size using the electron
beam energy was used, which produced brilliance measurements that were approximately
two orders of magnitude too high. It was concluded that such a measurement method
is too inaccurate for beams with high energy spread since, although the highest energy
electrons are responsible for the majority of the photon flux, large amounts of charge at
intermediate energies could offset this, biasing the critical energy measurement.

7.1.2 Ionisation injection emittance measurements

In chapter 5, we developed an emittance diagnostic and used it to measure the emittance
of an ionisation injected GeV electron beam. At moderate backing pressures, the
normalised emittance was measured to be in the range of 4 − 9 µm, over a density
range of 1 − 2 × 1024 m−3. At a higher backing pressure, this emittance jumped to
approximately 30 µm, over a density range of 2 − 3 × 1024 m−3. Simulations performed
using the experimental conditions produced results that agreed with the low-density
measurements, but did not agree with high-density measurements. When compared to
the literature, these are the lowest emittance measurements made using a beam mask
method and are made at the highest energies. The sources of error for the diagnostic
method were explored. It was found that, for low divergence beams, the small number
of samples contributed significantly to random error, and if the sample number dropped
too low, then the measured emittance was systematically low. To overcome the sampling
errors, for reasonable vacuum chamber sizes, an analysis method that only requires
partial scattering of the beam can be used.

A scaling was derived to estimate the emittance of ionisation injected beams for the
direction orthogonal to the laser polarisation, which predicted ε ∝ ω2

py3
σ. This scaling
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produced results that agree with the experimental results in the 1−2×1024 m−3, provided
that the r.m.s. beam size at the moment of injection was approximately 7 µm. This beam
size was verified using the simulations. Larger emittances than predicted by this model
could occur at some energies due to injection into a partially formed wake, suggesting
that a localised dopant would be best placed at a point where a stable wake has formed.

7.1.3 Beam divergence considerations for staged LWFA

Finally, in chapter 6 we investigated a novel gas cell design for use in staged acceleration
experiments. Experimental measurements of the electron beam profile and spectrum have
indicated that terminating a LWFA accelerator with a 25 µm thick tape instead of a 1 mm
aperture increases electron beam divergence by approximately 75%, from 3.38±0.22 mrad
to 6.13 ± 0.94 mrad. An additional, thicker tape, placed 8 mm after the aperture further
reduced total beam divergence, from 3.38 ± 0.22 mrad to 2.76 ± 0.39 mrad.

Through PIC simulations of the wakefield acceleration and a numerical model, it
was shown that the density ramp that forms by gas leaking through the hole accounted
for the experimentally observed divergence change. Fluid simulations indicated that an
exponential density ramp is formed at the plasma-vacuum boundary, with a scale length
determined by the hole radius. For a scale length of approximately 0.25 mm, corresponding
to a 1mm diameter hole, the divergence reduction observed in simulations and the
numerical model agreed well with the experimental measurements. The mechanism for
the divergence reduction is the adiabatic reduction of the plasma wave’s focusing forces,
which allows the beam to expand to a large beam size with a lower divergence before
entering the vacuum. This was shown to effectively reduce emittance growth that occurs
in the drift space after the plasma.

The magnetic fields generated in the tape by the laser were investigated using high-
resolution 3D PIC simulations, for both 0° and 45° geometries. The input temporal
profile of the laser was obtained from LWFA simulations, accurately accounting for the
compression and depletion that occurred. Magnetic fields were generated in the tape
via the Weibel instability, which had grown to micron-scale structures by the time the
electron beam reached the tape. When probed with a test electron beam, the fields caused
a spatially dependent deflection that increased divergence by approximately 0.1 mrad for
a 2 GeV beam. The fields were geometry dependent; stronger fields were observed inside
the tape in the 0° orientation, while the 45° degree orientation resulted in weaker internal
fields, but additional fields external to the tape. The RMS variations of the internal
integrated field strengths reached values as high as 1 kT µm when the peak of the laser was
incident, but these decayed rapidly before the arrival of the electron beam. The reduced
integrated Bx field variation in the 45° tape resulted in a reduced divergence increase in
the y direction, indicating that tape angle has an effect on emittance preservation.
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7.2 Summary and outlook

7.2.1 Outlook

The quantity of data presented in chapter 4 permits many possible future directions of
study. One of these is determining the exact mechanism that produced the enhanced
x-ray flux measured in the doped gas, as understanding this mechanism in detail could
help design experiments that directly exploit it. X-ray production is one of the primary
use cases of wakefield accelerators at this scale, and so developing this facet of the
performance would be of great interest to imaging applications.

The charge injected in FBPIC simulations by ionisation injection matched the
amount measured experimentally, while the self-injected charge was significantly higher
in simulations. This issue is common in simulations of self-injection, with all convergence
tests performed so far giving consistently high results. The effect of this over-injection of
charge is to cast doubt on the simulation of electrons injected after the first electrons, as
beam loading and beam-driven acceleration are sensitive to charge. The explanation given
in chapter 4 was that the overly stable bubble caused by the assumption of cylindrical
symmetry is responsible. Investigating this using a fully-3D code and simulating the
spatiotemporal phase of a realistic laser pulse would be of wide interest.

The emittance diagnostic presented in chapter 5 obtained proof of principle mea-
surements. As discussed, using more sophisticated analysis methods would enable this
diagnostic to operate more precisely and achieve a higher resolution while making the
effect of the mask less invasive, such that it could be used as with the electron spectrome-
ter to perform charge-calibrated measurements. In addition, using this diagnostic with a
larger magnification and an optimised imaging system would increase its resolution to the
sub-micron level. This could then be used to investigate various injection mechanisms, or
implemented in real-time so that reducing emittance could be an optimisation goal. This
latter application would likely require advanced numerical methods to quickly extract
the electron beam phase space distribution from the data.

The natural progression from the work presented in chapter 6 would be to perform
the same experiment again, except using long density ramps between the cells and a
single tape to facilitate both the extraction and injection of the laser pulses. Further,
additional considerations should be made for the fluence of the North laser on the
dielectric optics to maximise the laser power in the second cell. While the achievement
of this aim is an important milestone on the road to high-energy multi-stage LWFA, it
would not address the emittance preservation issue. Consequently, it would be extremely
valuable to demonstrate coupling that not only has a high charge capture efficiency
but also maintains emittance, even in the presence of energy spread and pointing jitter.
The development of all-plasma beam coupling solutions might be able to achieve this,
provided the driver intensity could be maintained during the coupling.
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The effect of magnetic fields generated in a plasma mirror on electron beams warrants
further study. While one literature study that pertains to these results exists1, the effects
of tape angle, density, pre-plasma, and laser variations remain unexplored. In chapter 6,
simulations were performed for the specific parameters investigated experimentally, but
this is only a small look into the range of parameters that could be of interest for staging
applications.

7.2.2 Summary

In the introduction of this thesis, the near, medium, and long-term use cases for LWFAs
were outlined. Chapter 6 focused on the most ambitious of these aims, that of developing
multi-stage accelerators such that a useful TeV plasma-based collider could, one day,
be constructed. Due to the relatively low repetition rate of linear colliders, a small
emittance is paramount, and although LWFAs are naturally suited to generating low
emittance electron beams, extracting these beams from the wakefield and injecting them
into subsequent micron-scale accelerating stages while maintaining the emittance is
challenging. The experimental results show the beneficial effect that density ramps
have on the divergence, and consequently, the emittance growth rate, motivating their
inclusion in future beam transport designs. In addition, the effects of angled plasma
mirrors, used for injecting and extracting laser pulses between accelerating stages, were
characterised, and these effects will become more important as the number of accelerating
stages increases.

To improve the emittance, it is helpful to be able to measure it, and current methods
are either technically involved and require sophisticated apparatus (using quadrupoles),
or rely on indirect methods that are likely to underrepresent the emittance (inference
from x-ray measurements). Beam mask methods suffer from neither of these issues, but
are difficult to implement at high energies owing to the penetration depth of high-energy
electrons. In chapter 5 the beam mask method was developed so that it could measure
the energetically resolve emittance of GeV energy beams. This method offers a means
by which smaller-scale LWFA facilities can monitor and develop the transverse beam
quality.

In contrast, chapter 4 focused on developing a LWFA source for the most near-term
applications; that of using a compact electron beam and x-ray source. This chapter
showed that lower power, small footprint laser systems could produce remarkably bright
x-ray beams when optimised, such that they could find widespread use in industrial and
medical imaging. Near-term use cases such as these are necessary, not only to solve
problems in the present but also for providing motivation and funding to continue to
develop the technology for the decades that will be required if the most ambitious aims
of the field are to be reached.

1 [92] G. Raj et al. (2020) Physical Review Research

http://dx.doi.org/10.1103/PhysRevResearch.2.023123
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A.1 Fundamental constants

Tab. A.1 lists the constants used in this thesis.

Table A.1: Fundamental constants used in this thesis.

Symbol Name Value Unit
c Speed of light 2.998 × 108 m s−1

me Electron rest mass 9.109 × 10−31 kg
mec2 Electron rest energy 0.5110 MeV
e Elementary charge 1.602 × 10−19 C
ε0 Vacuum permittivity 8.854 × 10−12 F m−1

µ0 Vacuum permeability 1.256 × 10−6 N A2

h Planck’s constant 6.626 × 10−34 m2 kg s−1

ℏ hbar 1.054 × 10−34 m2 kg s−1

re Classical electron radius 2.818 × 10−15 m

A.2 Maxwell’s equations

Maxwell’s equations are a set of four equations that are foundational to electromagnetism:

∇ · E = ρ

ε0
, (A.1)

∇ · B = 0, (A.2)

∇ × E = −∂B
∂t

, (A.3)

∇ × B = µ0J + µ0ε0
∂E
∂t

. (A.4)

The first of these is Gauss’s law, which describes the electric fields, E, from distributions
of charge, ρ. The second, known as Gauss’s law for magnetic fields, B, is equivalent to
the statement that there are no magnetic monopoles. Faraday’s law relates a changing
magnetic field to the curl of the electric field, and is the principle by which electricity is
generated. Finally, the fourth equation is Ampère’s law with Maxwell’s addition, which
describes how magnetic fields are produced by current, J, and time-varying electric fields
magnetic fields.
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The fields E and B can be written in terms of a scalar electrical potential, ϕ, and a
vector potential, A, using

E = −∇ϕ − ∂A
∂t

, (A.5)

B = ∇ × A. (A.6)

The wave equation in a vacuum can be produced by taking the curl of Eq. A.3 with
J = 0,

∇ × (∇ × E) = ∂(∇ × B)
dt

, (A.7)

∇(∇ · E) − ∇2E = µ0ε0
∂2E
∂2t

. (A.8)

In vacuum, ∇ · E = 0, and since µ0ε0 = c−2, we retrieve the wave equation, Eq. 2.1.

In addition, charge conservation is equivalent to the statement that

∂ρ

∂t
+ ∇ · J = 0. (A.9)

A.3 Relativistic single particle motion

We consider the motion of an electron in a relativistic field, where a0 > 1. Following
Gibbon1, the electromagnetic fields will be expressed in terms of the vector potential2

E = −∂tA, B = ∇ × A. We choose A = Axx̂ = a0 sin θx̂, where we have used, and will
be using, the normalised units of eA/mec = A, v/c = v, and p/mc = p. The phase of
the wave is given by θ = ωt − kz = ct − z. Using these definitions, the Lorentz force can
be written as,

dp
dt

= −∂A
∂t

+ [v × (∇ × A)] , (A.10)

= −∂Ax

∂t
x̂ +

(
−vz

∂Ax

∂z
x̂ + vx

∂Ax

∂z
ẑ
)

, (A.11)

and the rate of energy change is given by the power, v · F,

dγ

dt
= −vx

∂Ax

∂t
. (A.12)

If we first look at the x̂ component, by using the definition of the convective derivative3,
we can see that this is equal to the total derivative,

dpx

dt
= ∂Ax

∂t
+ vz

∂Ax

∂z
= dAx

dt
. (A.13)

1 [241] P. Gibbon Short pulse laser interactions with matter (2005)
2 See appendix A.2.
3 d

dt
= ∂

∂t
+ v · ∇.
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Integrating, the transverse momentum is simply the sum of the potential and the initial
momentum,

px = Ax + px,0. (A.14)

To determine the longitudinal momentum, we compare the ẑ conponent of Eq. A.10 to
the rate of change of energy,

dpz

dt
− dγ

dt
= vx

(
∂Ax

∂t
+ ∂Ax

∂z

)
= 0. (A.15)

Integrating with respect to time gives the relation

γ − pz = α, (A.16)

where α is a constant of the integration. Using the definition of γ2 = 1 + |p|2, Eq. A.16
can be rearranged to show that,

pz = 1 + p2
x − α2

2α
. (A.17)

Taking px,0 = 0 in Eq. A.14, and α = 1, the equations of motion are

px = a0 sin θ, (A.18)

pz = a2
0
2 sin2 θ. (A.19)

To find the coordinates, these equations are integrated with respect to time. Recognising
pz = γż, the total derivative of the phase is

dθ

dt
= ∂θ

∂z
+ dz

dt

∂θ

∂z
= α

γ
, (A.20)

where in the second equality, Eq. A.16 has been used. From here, we can express the
momentum as

px = γ
dθ

dt

dx

dθ
= α

dx

dθ
. (A.21)

For α = 1, the coordinates are given by

x = a0 cos θ, (A.22)

z = a2
0
4

(
θ − 1

2 sin 2θ

)
. (A.23)

A.4 Tunnel ionisation rate for specific electrons

The rate given by Eq. 2.24 can be used to estimate the tunnel ionisation rate for electrons
at an effective principle quantum number n∗. To calculate the rate for an electron with
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quantum numbers m and l, the ADK rate is

WADK(E) = ω0C2
xlX1

(2E0
E

)X2

e
[
− 2

3
E0
E

]
(A.24)

E0
EH

=
(

ω

ωH

) 3
2
, X1 = (2l + 1)(l + |m|)!

2|m||m|!(l − |m|)!
, X2 = 2Z

√
ωH

ω0
− |m| − 1, (A.25)

where Z is the post-ionisation charge of the ion, and the dimensionless constant Cxl is
difficult to calculate for complex atoms, but taking the hydrogen value of Cxl = C0 = 2
will be sufficient for most applications. The binding energy of the electron is equal to
ℏω, and E0 is the scaled Coulomb field, where the subscript H indicates energy and field
of the ionisation of hydrogen, ℏωH = 13.6eV.

A.5 Plasma dispersion relation

Consider an electromagnetic plane wave which has an electric component of the form
E = E0ei(k·r−ωLt). The operations ∂t and ∇× become −iωL· and ik×. Using these
operations, Faraday’s law, Eq. A.3, becomes

ik × E = iωLB. (A.26)

Taking the curl, and using the orthonality of E and k, (k · E = 0), this becomes

− k2E = −iωLk × B. (A.27)

Using this equation, Ampère’s law becomes

− k2

ωL
E = µ0

∂J
∂t

− iωLµ0ε0E, (A.28)

Finally, recognising that the current J = −enev, and from the Lorentz force, me∂tv =
−eE, the current is given by the electric field.

J = nee2

meωL
E, (A.29)

Substituting into Eq. A.28 gives

− c2k2E = ω2
pE − ω2

LE, (A.30)

which reduces to the dispersion relation.

A.6 The quasistatic approximation

A convenient frame of reference to use for many underdense laser-plasma interactions is
one that moves at approximately the speed of the laser. This is usually taken as the group
velocity of the laser pulse, or the phase velocity of the plasma wave. For low-density
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plasmas, vg ≃ c. In addition to moving to this frame of reference, it is also common to
neglect the evolution of the driver, such that the behaviour of the plasma is a function
of co-moving position only, and not time. Taken together, the coordinate shift and
slowly-varying approximation form the quasistatic approximation. The coordinates (x, t)
become (ξ, τQ), where ξ = x − ct and τQ = t. The spatial derivative is left unchanged,

d

dx
= d

dξ
; d2

dx2 = d2

dξ2 , (A.31)

while the first-order temporal derivative becomes

d

dt
= d

dτQ
− c

d

dξ
≃ −c

d

dξ
, (A.32)

where the approximation in the second line is the slowly changing approximation. The
second-order temporal derivative is

d2

dt2 = c2 d2

dξ2 . (A.33)

A.7 Hamiltonian of electron in a 1D plasma wave

Following Esarey and Pilloff4, consider a test electron moving in a plasma wave. The
electron gains energy δγ by moving δx in the longitudinal field given by the gradient of
the potential,

mec2δγ = −eExδx, (A.34)

= e
dϕ

dx
δx, (A.35)

= −e
dϕ

dξ
δx, (A.36)

where in the last line, we have switched to the moving frame. We now construct the
Hamiltonian H = H(p(t), q(t)), where we use γ and ξ as proxies for the momentum and
position, p and q, while x replaces the paramertic variable t. Using Hamilton’s equations,

∂H
∂ξ

= −dγ

dx
,

∂H
∂γ

= dξ

dx
, (A.37)

the Hamiltonian is given by
H =

∫
dξ

dx
dγ. (A.38)

4 [137] E. Esarey et al. (1995) Physics of Plasmas

http://dx.doi.org/10.1063/1.871358
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From the definition of the moving frame,

dξ

dx
= d

dx
(x − vpt), (A.39)

= 1 − vp
dt

dx
, (A.40)

= 1 − βp

β
. (A.41)

Using β =
√

γ2 − 1/γ,

H =
∫

(1 − βp
γ√

γ2 − 1
)dγ, (A.42)

= γ − βp

√
γ2 − 1 + f(ξ), (A.43)

= γ − βp

√
γ2 − 1 − Φ, (A.44)

where in the last line we have used Eq. A.36, with ϕ = mc2Φ/e. From here, Eq. 2.82 can
be derived using γ =

√
1 + p2,

H(γ, ξ) = γ − βpp − Φ(ξ). (A.45)



Bibliography

[1] E. Rutherford. “LXXIX. The scattering of α and β particles by matter and the
structure of the atom”. In: Lond. Edinb. Dublin philos. mag. j. sci. 21, pp. 669–688,
1911, pp. 669–688. (See p. 12)

[2] J. J. Thomson. “XXIV. On the structure of the atom: an investigation of the
stability and periods of oscillation of a number of corpuscles arranged at equal
intervals around the circumference of a circle; with application of the results to
the theory of atomic structure”. In: Lond. Edinb. Dublin philos. mag. j. sci. 7,
pp. 237–265, 1904, pp. 237–265. (See p. 12)

[3] E. F. Haussecker and A. W. Chao. “The Influence of Accelerator Science on
Physics Research”. In: Physics in Perspective 13, p. 146, 2011, p. 146. (See p. 12)

[4] A. Collaboration, C. M. S. Collaboration, G. Aad, B. Abbott, J. Abdallah,
O. Abdinov, R. Aben, M. Abolins, O. AbouZeid, H. Abramowicz, H. Abreu,
R. Abreu, Y. Abulaiti, B. Acharya, L. Adamczyk, D. Adams, J. Adelman, S.
Adomeit, T. Adye, A. Affolder, T. Agatonovic-Jovin, J. Aguilar-Saavedra, S.
Ahlen, F. Ahmadov, G. Aielli, H. Akerstedt, T. Åkesson, G. Akimoto, A. Akimov,
et al. “Combined Measurement of the Higgs Boson Mass in pp Collisions at

√
s = 7

and 8 TeV with the ATLAS and CMS Experiments”. In: Physical Review Letters
114, p. 191803, 2015, p. 191803. (See p. 12)

[5] M. K. Gaillard, P. D. Grannis, and F. J. Sciulli. “The standard model of particle
physics”. In: Reviews of Modern Physics 71, S96–S111, 1999, S96–S111. (See p. 12)

[6] A. Joyce, B. Jain, J. Khoury, and M. Trodden. “Beyond the cosmological standard
model”. In: Physics Reports 568, pp. 1–98, 2015, pp. 1–98. (See p. 12)

[7] A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P. M.
Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut,
M. M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, R. C. Smith, J.
Spyromilio, C. Stubbs, N. B. Suntzeff, and J. Tonry. “Observational Evidence
from Supernovae for an Accelerating Universe and a Cosmological Constant”. In:
The Astronomical Journal 116, p. 1009, 1998, p. 1009. (See p. 12)

[8] V. Trimble. “Existence and Nature of Dark Matter in the Universe”. In: Annual
Review of Astronomy and Astrophysics 25, pp. 425–472, 1987, pp. 425–472. (See
p. 12)

203

http://dx.doi.org/10.1080/14786440508637080
http://dx.doi.org/10.1080/14786440508637080
http://dx.doi.org/10.1080/14786440409463107
http://dx.doi.org/10.1080/14786440409463107
http://dx.doi.org/10.1007/s00016-010-0049-y
http://dx.doi.org/10.1103/PhysRevLett.114.191803
http://dx.doi.org/10.1103/PhysRevLett.114.191803
http://dx.doi.org/10.1103/RevModPhys.71.S96
http://dx.doi.org/https://doi.org/10.1016/j.physrep.2014.12.002
http://dx.doi.org/10.1086/300499
http://dx.doi.org/10.1086/300499
http://dx.doi.org/10.1146/annurev.aa.25.090187.002233
http://dx.doi.org/10.1146/annurev.aa.25.090187.002233


204 Bibliography

[9] R. B. Laughlin and D. Pines. “The Theory of Everything”. In: Proceedings of the
National Academy of Sciences 97, pp. 28–31, 2000, pp. 28–31. (See p. 12)

[10] Y. Matsumoto, N. Fukumitsu, H. Ishikawa, K. Nakai, and H. Sakurai. “A Critical
Review of Radiation Therapy: From Particle Beam Therapy (Proton, Carbon, and
BNCT) to Beyond”. In: Journal of Personalized Medicine 11, 2021. (See p. 12)

[11] O. Jacobson, D. O. Kiesewetter, and X. Chen. “Fluorine-18 Radiochemistry,
Labeling Strategies and Synthetic Routes”. In: Bioconjugate Chemistry 26, pp. 1–
18, 2015, pp. 1–18. (See p. 12)

[12] A Mousavi Khaneghah, M Hashemi Moosavi, C. A. F. Oliveira, F Vanin, and
A. S. Sant’Ana. “Electron beam irradiation to reduce the mycotoxin and microbial
contaminations of cereal-based products: An overview”. In: Food and Chemical
Toxicology 143, p. 111557, 2020, p. 111557. (See p. 12)

[13] J. S. Williams. “Ion implantation of semiconductors”. In: Materials Science and
Engineering: A 253, pp. 8–15, 1998, pp. 8–15. (See p. 12)

[14] D. J. Rej, H. A. Davis, J. C. Olson, G. E. Remnev, A. N. Zakoutaev, V. A.
Ryzhkov, V. K. Struts, I. F. Isakov, V. A. Shulov, N. A. Nochevnaya, R. W.
Stinnett, E. L. Neau, K. Yatsui, and W. Jiang. “Materials processing with intense
pulsed ion beams”. In: Journal of Vacuum Science Technology A 15, pp. 1089–
1097, 1997, pp. 1089–1097. (See p. 12)

[15] E. Esarey, C. B. Schroeder, and W. P. Leemans. “Physics of laser-driven plasma-
based electron accelerators”. In: Reviews of Modern Physics 81, pp. 1229–1285,
2009, pp. 1229–1285. (See p. 13)

[16] J. D. Cockcroft, E. T. S. Walton, and E. Rutherford. “Experiments with high
velocity positive ions.—(I) Further developments in the method of obtaining
high velocity positive ions”. In: Proc. R. Soc. A: Math. Phys. Eng. Sci. 136,
pp. 619–630, 1932, pp. 619–630. (See p. 13)

[17] Y. Jongen. “Review of compact commercial accelerator products and applications”.
In: Proceedings of the 1997 Particle Accelerator Conference. Vol. 3. 1997. 3770–
3774 vol.3. (See p. 13)

[18] E. D. Courant, M. S. Livingston, and H. S. Snyder. “The Strong-Focusing
Synchroton—A New High Energy Accelerator”. In: Physical Review 88, pp. 1190–
1196, 1952, pp. 1190–1196. (See p. 14)

[19] E. M. McMillan. “The Synchrotron—A Proposed High Energy Particle Accelera-
tor”. In: Physical Review 68, pp. 143–144, 1945, pp. 143–144. (See p. 14)

[20] O. Brüning, H. Burkhardt, and S. Myers. “The large hadron collider”. In: Progress
in Particle and Nuclear Physics 67, pp. 705–734, 2012, pp. 705–734. (See p. 14)

[21] K. Hübner. “Designing and building LEP”. In: Physics Reports 403-404, pp. 177–
188, 2004, pp. 177–188. (See p. 14)

[22] H Padamsee. “50 years of success for SRF accelerators—a review”. In: Supercon-
ductor Science and Technology 30, p. 053003, 2017, p. 053003. (See p. 14)

http://dx.doi.org/doi:10.1073/pnas.97.1.28
http://dx.doi.org/doi:10.1073/pnas.97.1.28
http://dx.doi.org/10.3390/jpm11080825
http://dx.doi.org/10.1021/bc500475e
http://dx.doi.org/10.1021/bc500475e
http://dx.doi.org/https://doi.org/10.1016/j.fct.2020.111557
http://dx.doi.org/https://doi.org/10.1016/j.fct.2020.111557
http://dx.doi.org/https://doi.org/10.1016/S0921-5093(98)00705-9
http://dx.doi.org/https://doi.org/10.1016/S0921-5093(98)00705-9
http://dx.doi.org/10.1116/1.580435
http://dx.doi.org/10.1116/1.580435
http://dx.doi.org/10.1103/RevModPhys.81.1229
http://dx.doi.org/10.1103/RevModPhys.81.1229
http://dx.doi.org/doi:10.1098/rspa.1932.0107
http://dx.doi.org/doi:10.1098/rspa.1932.0107
http://dx.doi.org/10.1103/PhysRev.88.1190
http://dx.doi.org/10.1103/PhysRev.88.1190
http://dx.doi.org/10.1103/PhysRev.68.143
http://dx.doi.org/https://doi.org/10.1016/j.ppnp.2012.03.001
http://dx.doi.org/https://doi.org/10.1016/j.ppnp.2012.03.001
http://dx.doi.org/https://doi.org/10.1016/j.physrep.2004.09.004
http://dx.doi.org/https://doi.org/10.1016/j.physrep.2004.09.004
http://dx.doi.org/10.1088/1361-6668/aa6376
http://dx.doi.org/10.1088/1361-6668/aa6376


205 Bibliography

[23] P. Bambade, T. Barklow, T. Behnke, M. Berggren, J. Brau, P. Burrows, D.
Denisov, A. Faus-Golfe, B. Foster, K. Fujii, J. Fuster, F. Gaede, P. Grannis, C.
Grojean, A. Hutton, B. List, J. List, S. Michizono, A. Miyamoto, O. Napoly,
M. Peskin, R. Poeschl, F. Simon, J. Strube, J. Tian, M. Titov, M. Vos, A. White,
G. Wilson, et al. “The International Linear Collider: A Global Project”. In: arXiv
e-prints, arXiv:1903.01629, 2019, arXiv:1903.01629. (See p. 15)

[24] A. Aryshev, T. Behnke, M. Berggren, J. Brau, N. Craig, A. Freitas, F. Gaede,
S. Gessner, S. Gori, C. Grojean, S. Heinemeyer, D. Jeans, K. Kruger, B. List,
J. List, Z. Liu, S. Michizono, D. W. Miller, I. Moult, H. Murayama, T. Nakada,
E. Nanni, M. Nojiri, H. Padamsee, M. Perelstein, M. E. Peskin, R. Poeschl, S.
Posen, A. Robson, et al. “The International Linear Collider: Report to Snowmass
2021”. In: arXiv:2203.07622, 2022, arXiv:2203.07622. (See p. 15)

[25] M. Chamizo Llatas, S. Dasu, U. Heintz, E. A. Nanni, J. Power, and S. Wag-
ner. “Report of the Snowmass 2021 e+e−-Collider Forum”. In: arXiv e-prints,
arXiv:2209.03472, 2022, arXiv:2209.03472. (See pp. 15, 19)

[26] V. A. Veksler. “Principles of acceleration of charged particles”. In: The Soviet
Journal of Atomic Energy 1, pp. 77–83, 1956, pp. 77–83. (See p. 15)

[27] T. Tajima and J. M. Dawson. “Laser Electron Accelerator”. In: Physical Review
Letters 43, pp. 267–270, 1979, pp. 267–270. (See pp. 15, 35, 82)

[28] C. E. Clayton, C. Joshi, C. Darrow, and D. Umstadter. “Relativistic Plasma-
Wave Excitation by Collinear Optical Mixing”. In: Physical Review Letters 54,
pp. 2343–2346, 1985, pp. 2343–2346. (See p. 16)

[29] C. E. Clayton, K. A. Marsh, A. Dyson, M. Everett, A. Lal, W. P. Leemans, R.
Williams, and C. Joshi. “Ultrahigh-gradient acceleration of injected electrons by
laser-excited relativistic electron plasma waves”. In: Physical Review Letters 70,
pp. 37–40, 1993, pp. 37–40. (See p. 16)

[30] F. Amiranoff, D. Bernard, B. Cros, F. Jacquet, G. Matthieussent, P. Miné, P.
Mora, J. Morillo, F. Moulin, A. E. Specka, and C. Stenz. “Electron Acceleration
in Nd-Laser Plasma Beat-Wave Experiments”. In: Physical Review Letters 74,
pp. 5220–5223, 1995, pp. 5220–5223. (See p. 16)

[31] J. Krall, A. Ting, E. Esarey, and P. Sprangle. “Enhanced acceleration in a self-
modulated-laser wake-field accelerator”. In: Physical Review E 48, pp. 2157–2161,
1993, pp. 2157–2161. (See p. 16)

[32] K. Nakajima, D. Fisher, T. Kawakubo, H. Nakanishi, A. Ogata, Y. Kato, Y.
Kitagawa, R. Kodama, K. Mima, H. Shiraga, K. Suzuki, K. Yamakawa, T. Zhang,
Y. Sakawa, T. Shoji, Y. Nishida, N. Yugami, M. Downer, and T. Tajima. “Obser-
vation of Ultrahigh Gradient Electron Acceleration by a Self-Modulated Intense
Short Laser Pulse”. In: Physical Review Letters 75, pp. 984–984, 1995, pp. 984–984.
(See p. 16)

http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/10.1007/BF01516316
http://dx.doi.org/10.1007/BF01516316
http://dx.doi.org/10.1103/PhysRevLett.43.267
http://dx.doi.org/10.1103/PhysRevLett.43.267
http://dx.doi.org/10.1103/PhysRevLett.54.2343
http://dx.doi.org/10.1103/PhysRevLett.54.2343
http://dx.doi.org/10.1103/PhysRevLett.70.37
http://dx.doi.org/10.1103/PhysRevLett.70.37
http://dx.doi.org/10.1103/PhysRevLett.74.5220
http://dx.doi.org/10.1103/PhysRevLett.74.5220
http://dx.doi.org/10.1103/PhysRevE.48.2157
http://dx.doi.org/10.1103/PhysRevE.48.2157
http://dx.doi.org/10.1103/PhysRevLett.75.984.2


206 Bibliography

[33] A. Modena, Z. Najmudin, A. E. Dangor, C. E. Clayton, K. A. Marsh, C. Joshi,
V. Malka, C. B. Darrow, C. Danson, D. Neely, and F. N. Walsh. “Electron
acceleration from the breaking of relativistic plasma waves”. In: Nature 377,
pp. 606–608, 1995, pp. 606–608. (See p. 16)

[34] C. I. Moore, A. Ting, K. Krushelnick, E. Esarey, R. F. Hubbard, B. Hafizi, H. R.
Burris, C. Manka, and P. Sprangle. “Electron Trapping in Self-Modulated Laser
Wakefields by Raman Backscatter”. In: Physical Review Letters 79, pp. 3909–3912,
1997, pp. 3909–3912. (See p. 16)

[35] W. P. Leemans, D. Rodgers, P. E. Catravas, C. G. R. Geddes, G. Fubiani, E.
Esarey, B. A. Shadwick, R. Donahue, and A. Smith. “Gamma-neutron activation
experiments using laser wakefield accelerators”. In: Physics of Plasmas 8, pp. 2510–
2516, 2001, pp. 2510–2516. (See p. 16)

[36] V. Malka, J. Faure, J. R. Marquès, F. Amiranoff, J. P. Rousseau, S. Ranc, J. P.
Chambaret, Z. Najmudin, B. Walton, P. Mora, and A. Solodov. “Characterization
of electron beams produced by ultrashort (30 fs) laser pulses”. In: Physics of
Plasmas 8, pp. 2605–2608, 2001, pp. 2605–2608. (See pp. 16, 136)

[37] D. Gordon, K. C. Tzeng, C. E. Clayton, A. E. Dangor, V. Malka, K. A. Marsh,
A. Modena, W. B. Mori, P. Muggli, Z. Najmudin, D. Neely, C. Danson, and
C. Joshi. “Observation of Electron Energies Beyond the Linear Dephasing Limit
from a Laser-Excited Relativistic Plasma Wave”. In: Physical Review Letters 80,
pp. 2133–2136, 1998, pp. 2133–2136. (See p. 16)

[38] S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E.
Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski,
A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton,
and K. Krushelnick. “Monoenergetic beams of relativistic electrons from intense
laser–plasma interactions”. In: Nature 431, pp. 535–538, 2004, pp. 535–538. (See
p. 16)

[39] C. G. R. Geddes, C. Toth, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler,
C. Nieter, J. Cary, and W. P. Leemans. “High-quality electron beams from a laser
wakefield accelerator using plasma-channel guiding”. In: Nature 431, pp. 538–541,
2004, pp. 538–541. (See p. 16)

[40] J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P.
Rousseau, F. Burgy, and V. Malka. “A laser–plasma accelerator producing mo-
noenergetic electron beams”. In: Nature 431, pp. 541–544, 2004, pp. 541–544. (See
p. 16)

[41] D. Strickland and G. Mourou. “Compression of amplified chirped optical pulses”.
In: Optics Communications 56, pp. 219–221, 1985, pp. 219–221. (See p. 17)

[42] P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou. “Generation of
ultrahigh peak power pulses by chirped pulse amplification”. In: IEEE Journal of
Quantum Electronics 24, pp. 398–403, 1988, pp. 398–403. (See p. 17)

http://dx.doi.org/10.1038/377606a0
http://dx.doi.org/10.1038/377606a0
http://dx.doi.org/10.1103/PhysRevLett.79.3909
http://dx.doi.org/10.1103/PhysRevLett.79.3909
http://dx.doi.org/10.1063/1.1352617
http://dx.doi.org/10.1063/1.1352617
http://dx.doi.org/10.1063/1.1374584
http://dx.doi.org/10.1063/1.1374584
http://dx.doi.org/10.1103/PhysRevLett.80.2133
http://dx.doi.org/10.1103/PhysRevLett.80.2133
http://dx.doi.org/10.1038/nature02939
http://dx.doi.org/10.1038/nature02900
http://dx.doi.org/10.1038/nature02900
http://dx.doi.org/10.1038/nature02963
http://dx.doi.org/https://doi.org/10.1016/0030-4018(85)90120-8
http://dx.doi.org/10.1109/3.137
http://dx.doi.org/10.1109/3.137


207 Bibliography

[43] M. D. Perry and G. Mourou. “Terawatt to Petawatt Subpicosecond Lasers”. In:
Science 264, pp. 917–924, 1994, pp. 917–924. (See p. 17)

[44] W. Lu, M. Tzoufras, C. Joshi, F. S. Tsung, W. B. Mori, J. Vieira, R. A. Fonseca,
and L. O. Silva. “Generating multi-GeV electron bunches using single stage laser
wakefield acceleration in a 3D nonlinear regime”. In: Physical Review Special
Topics - Accelerators and Beams 10, p. 061301, 2007, p. 061301. (See pp. 17, 20,
39, 47, 48, 51, 82, 118, 120)

[45] A. B. Borisov, A. V. Borovskiy, V. V. Korobkin, A. M. Prokhorov, O. B. Shiryaev,
X. M. Shi, T. S. Luk, A. McPherson, J. C. Solem, K. Boyer, and C. K. Rhodes.
“Observation of relativistic and charge-displacement self-channeling of intense
subpicosecond ultraviolet (248 nm) radiation in plasmas”. In: Physical Review
Letters 68, pp. 2309–2312, 1992, pp. 2309–2312. (See p. 17)

[46] L. M. Chen, H. Kotaki, K. Nakajima, J. Koga, S. V. Bulanov, T. Tajima, Y. Q.
Gu, H. S. Peng, X. X. Wang, T. S. Wen, H. J. Liu, C. Y. Jiao, C. G. Zhang,
X. J. Huang, Y. Guo, K. N. Zhou, J. F. Hua, W. M. An, C. X. Tang, and Y. Z. Lin.
“Self-guiding of 100TW femtosecond laser pulses in centimeter-scale underdense
plasma”. In: Physics of Plasmas 14, p. 040703, 2007, p. 040703. (See p. 17)

[47] A. Zigler, Y. Ehrlich, C. Cohen, J. Krall, and P. Sprangle. “Optical guiding of
high-intensity laser pulses in a long plasma channel formed by a slow capillary
discharge”. In: J. Opt. Soc. Am. B 13, pp. 68–71, 1996, pp. 68–71. (See p. 17)

[48] Y. Ehrlich, C. Cohen, D. Kaganovich, A. Zigler, R. F. Hubbard, P. Sprangle, and
E. Esarey. “Guiding and damping of high-intensity laser pulses in long plasma
channels”. In: J. Opt. Soc. Am. B 15, pp. 2416–2423, 1998, pp. 2416–2423. (See
p. 17)

[49] r. Durfee C. G. and H. M. Milchberg. “Light pipe for high intensity laser pulses”.
In: Phys Rev Lett 71, pp. 2409–2412, 1993, pp. 2409–2412. (See p. 17)

[50] H. M. Milchberg, T. R. Clark, C. G. Durfee, T. M. Antonsen, and P. Mora.
“Development and applications of a plasma waveguide for intense laser pulses”. In:
Physics of Plasmas 3, pp. 2149–2155, 1996, pp. 2149–2155. (See p. 17)

[51] R. J. Shalloo, C. Arran, L. Corner, J. Holloway, J. Jonnerby, R. Walczak, H. M.
Milchberg, and S. M. Hooker. “Hydrodynamic optical-field-ionized plasma chan-
nels”. In: Physical Review E 97, p. 053203, 2018, p. 053203. (See p. 17)

[52] A. Picksley, A. Alejo, R. J. Shalloo, C. Arran, A. von Boetticher, L. Corner, J. A.
Holloway, J. Jonnerby, O. Jakobsson, C. Thornton, R. Walczak, and S. M. Hooker.
“Meter-scale conditioned hydrodynamic optical-field-ionized plasma channels”. In:
Physical Review E 102, p. 053201, 2020, p. 053201. (See p. 17)

[53] B. Miao, L. Feder, J. Shrock, A. Goffin, and H. Milchberg. “Optical Guiding in
Meter-Scale Plasma Waveguides”. In: Physical Review Letters 125, p. 074801,
2020, p. 074801. (See p. 17)

http://dx.doi.org/doi:10.1126/science.264.5161.917
http://dx.doi.org/doi:10.1126/science.264.5161.917
http://dx.doi.org/10.1103/PhysRevSTAB.10.061301
http://dx.doi.org/10.1103/PhysRevSTAB.10.061301
http://dx.doi.org/10.1103/PhysRevLett.68.2309
http://dx.doi.org/10.1103/PhysRevLett.68.2309
http://dx.doi.org/10.1063/1.2720374
http://dx.doi.org/10.1364/JOSAB.13.000068
http://dx.doi.org/10.1364/JOSAB.15.002416
http://dx.doi.org/10.1103/PhysRevLett.71.2409
http://dx.doi.org/10.1063/1.871668
http://dx.doi.org/10.1063/1.871668
http://dx.doi.org/10.1103/PhysRevE.97.053203
http://dx.doi.org/10.1103/PhysRevE.102.053201
http://dx.doi.org/10.1103/PhysRevE.102.053201
http://dx.doi.org/10.1103/PhysRevLett.125.074801
http://dx.doi.org/10.1103/PhysRevLett.125.074801


208 Bibliography

[54] B. Miao, J. Shrock, L. Feder, R. Hollinger, J. Morrison, R. Nedbailo, A. Picksley,
H. Song, S. Wang, J. Rocca, and H. Milchberg. “Multi-GeV Electron Bunches from
an All-Optical Laser Wakefield Accelerator”. In: Physical Review X 12, p. 031038,
2022, p. 031038. (See p. 17)

[55] A. Gonsalves, K. Nakamura, J. Daniels, C. Benedetti, C. Pieronek, T. de Raadt,
S. Steinke, J. Bin, S. Bulanov, J. van Tilborg, C. Geddes, C. Schroeder, C. Tóth,
E. Esarey, K. Swanson, L. Fan-Chiang, G. Bagdasarov, N. Bobrova, V. Gasilov,
G. Korn, P. Sasorov, and W. Leemans. “Petawatt Laser Guiding and Electron
Beam Acceleration to 8 GeV in a Laser-Heated Capillary Discharge Waveguide”.
In: Physical Review Letters 122, p. 084801, 2019, p. 084801. (See pp. 17, 20)

[56] I. Blumenfeld, C. E. Clayton, F.-J. Decker, M. J. Hogan, C. Huang, R. Ischebeck,
R. Iverson, C. Joshi, T. Katsouleas, N. Kirby, W. Lu, K. A. Marsh, W. B. Mori,
P. Muggli, E. Oz, R. H. Siemann, D. Walz, and M. Zhou. “Energy doubling of
42GeV electrons in a metre-scale plasma wakefield accelerator”. In: Nature 445,
pp. 741–744, 2007, pp. 741–744. (See p. 18)

[57] R. Assmann, R. Bingham, T. Bohl, C. Bracco, B. Buttenschön, A. Butterworth,
A. Caldwell, S. Chattopadhyay, S. Cipiccia, E. Feldbaumer, R. A. Fonseca, B.
Goddard, M. Gross, O. Grulke, E. Gschwendtner, J. Holloway, C. Huang, D.
Jaroszynski, S. Jolly, P. Kempkes, N. Lopes, K. Lotov, J. Machacek, S. R. Mandry,
J. W. McKenzie, M. Meddahi, B. L. Militsyn, N. Moschuering, P. Muggli, et al.
“Proton-driven plasma wakefield acceleration: a path to the future of high-energy
particle physics”. In: Plasma Physics and Controlled Fusion 56, p. 084013, 2014,
p. 084013. (See p. 18)

[58] E. Gschwendtner, E. Adli, L. Amorim, R. Apsimon, R. Assmann, A. M. Bachmann,
F. Batsch, J. Bauche, V. K. Berglyd Olsen, M. Bernardini, R. Bingham, B. Biskup,
T. Bohl, C. Bracco, P. N. Burrows, G. Burt, B. Buttenschön, A. Butterworth,
A. Caldwell, M. Cascella, E. Chevallay, S. Cipiccia, H. Damerau, L. Deacon, P.
Dirksen, S. Doebert, U. Dorda, J. Farmer, V. Fedosseev, et al. “AWAKE, The
Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN”.
In: Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip.
829, pp. 76–82, 2016, pp. 76–82. (See p. 18)

[59] S. Lee, T. Katsouleas, P. Muggli, W. B. Mori, C. Joshi, R. Hemker, E. S. Dodd,
C. E. Clayton, K. A. Marsh, B. Blue, S. Wang, R. Assmann, F. J. Decker, M.
Hogan, R. Iverson, and D. Walz. “Energy doubler for a linear collider”. In: Physical
Review Special Topics - Accelerators and Beams 5, p. 011001, 2002, p. 011001.
(See p. 18)

[60] S. Wang, C. E. Clayton, B. E. Blue, E. S. Dodd, K. A. Marsh, W. B. Mori, C.
Joshi, S. Lee, P. Muggli, T. Katsouleas, F. J. Decker, M. J. Hogan, R. H. Iverson,
P. Raimondi, D. Walz, R. Siemann, and R. Assmann. “X-Ray Emission from
Betatron Motion in a Plasma Wiggler”. In: Physical Review Letters 88, p. 135004,
2002, p. 135004. (See p. 18)

http://dx.doi.org/10.1103/PhysRevX.12.031038
http://dx.doi.org/10.1103/PhysRevX.12.031038
http://dx.doi.org/10.1103/PhysRevLett.122.084801
http://dx.doi.org/10.1038/nature05538
http://dx.doi.org/10.1038/nature05538
http://dx.doi.org/10.1088/0741-3335/56/8/084013
http://dx.doi.org/10.1088/0741-3335/56/8/084013
http://dx.doi.org/https://doi.org/10.1016/j.nima.2016.02.026
http://dx.doi.org/https://doi.org/10.1016/j.nima.2016.02.026
http://dx.doi.org/10.1103/PhysRevSTAB.5.011001
http://dx.doi.org/10.1103/PhysRevSTAB.5.011001
http://dx.doi.org/10.1103/PhysRevLett.88.135004
http://dx.doi.org/10.1103/PhysRevLett.88.135004


209 Bibliography

[61] A. Rousse, K. T. Phuoc, R. Shah, A. Pukhov, E. Lefebvre, V. Malka, S. Kiselev, F.
Burgy, J.-P. Rousseau, D. Umstadter, and D. Hulin. “Production of a keV X-Ray
Beam from Synchrotron Radiation in Relativistic Laser-Plasma Interaction”. In:
Physical Review Letters 93, p. 135005, 2004, p. 135005. (See p. 18)

[62] S. Fourmaux, S. Corde, K. Ta Phuoc, P. M. Leguay, S. Payeur, P. Lassonde,
S. Gnedyuk, G. Lebrun, C. Fourment, V. Malka, S. Sebban, A. Rousse, and
J. C. Kieffer. “Demonstration of the synchrotron-type spectrum of laser-produced
Betatron radiation”. In: New Journal of Physics 13, p. 033017, 2011, p. 033017.
(See p. 18)

[63] M. Schnell, A. Sävert, I. Uschmann, O. Jansen, M. C. Kaluza, and C. Spielmann.
“Characterization and application of hard x-ray betatron radiation generated by
relativistic electrons from a laser-wakefield accelerator”. In: Journal of Plasma
Physics 81, p. 475810401, 2015, p. 475810401. (See p. 18)

[64] M. Heigoldt, A. Popp, K. Khrennikov, J. Wenz, S. Chou, S. Karsch, S. Bajlekov,
S. Hooker, and B. Schmidt. “Temporal evolution of longitudinal bunch profile in
a laser wakefield accelerator”. In: Physical Review Special Topics - Accelerators
and Beams 18, p. 121302, 2015, p. 121302. (See pp. 18, 93, 128, 172)

[65] K. T. Phuoc, R. Fitour, A. Tafzi, T. Garl, N. Artemiev, R. Shah, F. Albert,
D. Boschetto, A. Rousse, D. E. Kim, A. Pukhov, V. Seredov, and I. Kostyukov.
“Demonstration of the ultrafast nature of laser produced betatron radiation”. In:
Physics of Plasmas 14, p. 080701, 2007, p. 080701. (See p. 18)

[66] J. C. Wood, D. J. Chapman, K. Poder, N. C. Lopes, M. E. Rutherford, T. G.
White, F. Albert, K. T. Behm, N. Booth, J. S. J. Bryant, P. S. Foster, S. Glenzer,
E. Hill, K. Krushelnick, Z. Najmudin, B. B. Pollock, S. Rose, W. Schumaker,
R. H. H. Scott, M. Sherlock, A. G. R. Thomas, Z. Zhao, D. E. Eakins, and S. P. D.
Mangles. “Ultrafast Imaging of Laser Driven Shock Waves using Betatron X-rays
from a Laser Wakefield Accelerator”. In: Scientific Reports 8, p. 11010, 2018,
p. 11010. (See p. 18)

[67] K. T. Phuoc, S. Corde, R. Shah, F. Albert, R. Fitour, J.-P. Rousseau, F. Burgy, B.
Mercier, and A. Rousse. “Imaging Electron Trajectories in a Laser-Wakefield Cav-
ity Using Betatron X-Ray Radiation”. In: Physical Review Letters 97, p. 225002,
2006, p. 225002. (See p. 18)

[68] F. Albert, R. Shah, K. T. Phuoc, R. Fitour, F. Burgy, J.-P. Rousseau, A. Tafzi, D.
Douillet, T. Lefrou, and A. Rousse. “Betatron oscillations of electrons accelerated
in laser wakefields characterized by spectral x-ray analysis”. In: Physical Review
E 77, p. 056402, 2008, p. 056402. (See p. 18)

[69] S. Fourmaux, S. Corde, K. T. Phuoc, P. Lassonde, G. Lebrun, S. Payeur, F.
Martin, S. Sebban, V. Malka, A. Rousse, and J. C. Kieffer. “Single shot phase
contrast imaging using laser-produced Betatron x-ray beams”. In: Optics Letters
36, pp. 2426–2428, 2011, pp. 2426–2428. (See p. 18)

http://dx.doi.org/10.1103/PhysRevLett.93.135005
http://dx.doi.org/10.1103/PhysRevLett.93.135005
http://dx.doi.org/10.1088/1367-2630/13/3/033017
http://dx.doi.org/10.1017/S0022377815000379
http://dx.doi.org/10.1017/S0022377815000379
http://dx.doi.org/10.1103/PhysRevSTAB.18.121302
http://dx.doi.org/10.1103/PhysRevSTAB.18.121302
http://dx.doi.org/10.1063/1.2754624
http://dx.doi.org/10.1063/1.2754624
http://dx.doi.org/10.1038/s41598-018-29347-0
http://dx.doi.org/10.1038/s41598-018-29347-0
http://dx.doi.org/10.1103/PhysRevLett.97.225002
http://dx.doi.org/10.1103/PhysRevLett.97.225002
http://dx.doi.org/10.1103/PhysRevE.77.056402
http://dx.doi.org/10.1103/PhysRevE.77.056402
http://dx.doi.org/10.1364/OL.36.002426
http://dx.doi.org/10.1364/OL.36.002426


210 Bibliography

[70] J. Cole, K. Behm, E. Gerstmayr, T. Blackburn, J. Wood, C. Baird, M. Duff,
C. Harvey, A. Ilderton, A. Joglekar, K. Krushelnick, S. Kuschel, M. Marklund,
P. McKenna, C. Murphy, K. Poder, C. Ridgers, G. Samarin, G. Sarri, D. Symes,
A. Thomas, J. Warwick, M. Zepf, Z. Najmudin, and S. Mangles. “Experimental
Evidence of Radiation Reaction in the Collision of a High-Intensity Laser Pulse
with a Laser-Wakefield Accelerated Electron Beam”. In: Physical Review X 8,
p. 011020, 2018, p. 011020. (See pp. 18, 19)

[71] M. Z. Mo, Z. Chen, S. Fourmaux, A. Saraf, K. Otani, J. C. Kieffer, Y. Y. Tsui,
A. Ng, and R. Fedosejevs. “Laser wakefield generated X-ray probe for femtosecond
time-resolved measurements of ionization states of warm dense aluminum”. In:
Review of Scientific Instruments 84, p. 123106, 2013, p. 123106. (See p. 18)

[72] B. Kettle, E. Gerstmayr, M. Streeter, F. Albert, R. Baggott, N. Bourgeois, J.
Cole, S. Dann, K. Falk, I. Gallardo González, A. Hussein, N. Lemos, N. Lopes,
O. Lundh, Y. Ma, S. Rose, C. Spindloe, D. Symes, M. Šmíd, A. Thomas, R. Watt,
and S. Mangles. “Single-Shot Multi-keV X-Ray Absorption Spectroscopy Using
an Ultrashort Laser-Wakefield Accelerator Source”. In: Physical Review Letters
123, p. 254801, 2019, p. 254801. (See p. 18)

[73] N. Mounet. European Strategy for Particle Physics - Accelerator RD Roadmap.
Vol. 1. 2022. (See p. 19)

[74] M. Wing. “Particle physics experiments based on the AWAKE acceleration
scheme”. In: Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences 377, p. 20180185, 2019, p. 20180185. (See p. 19)

[75] P. C. Bhat and R. Rubinstein. “The International Committee for Future Acceler-
ators (ICFA): History and the Future”. In: Reviews of Accelerator Science and
Technology 10, pp. 303–309, 2019, pp. 303–309. (See p. 19)

[76] E. Adli. “Towards a PWFA linear collider — opportunities and challenges”. In:
Journal of Instrumentation 17, T05006, 2022, T05006. (See p. 19)

[77] W. Herr and B. Muratori. “Concept of luminosity”. In: Cern Document Server,
2006. (See p. 19)

[78] F. Gianotti, M. L. Mangano, T. Virdee, S. Abdullin, G. Azuelos, A. Ball, D. Bar-
beris, A. Belyaev, P. Bloch, M. Bosman, L. Casagrande, D. Cavalli, P. Chumney, S.
Cittolin, S. Dasu, A. De Roeck, N. Ellis, P. Farthouat, D. Fournier, J. B. Hansen,
I. Hinchliffe, M. Hohlfeld, M. Huhtinen, K. Jakobs, C. Joram, F. Mazzucato,
G. Mikenberg, A. Miagkov, M. Moretti, et al. “Physics potential and experimental
challenges of the LHC luminosity upgrade”. In: The European Physical Journal C
- Particles and Fields 39, pp. 293–333, 2005, pp. 293–333. (See p. 19)

[79] J. Gillies. Luminosity? Why don’t we just say collision rate? Quantum Diaries,
2011. 2011 url: http://cds.cern.ch/record/1997001 (visited on Nov. 15,
2022) (see p. 19)

http://dx.doi.org/10.1103/PhysRevX.8.011020
http://dx.doi.org/10.1103/PhysRevX.8.011020
http://dx.doi.org/10.1063/1.4842237
http://dx.doi.org/10.1063/1.4842237
http://dx.doi.org/10.1103/PhysRevLett.123.254801
http://dx.doi.org/10.1103/PhysRevLett.123.254801
http://dx.doi.org/doi:10.1098/rsta.2018.0185
http://dx.doi.org/doi:10.1098/rsta.2018.0185
http://dx.doi.org/10.1142/s1793626819300159
http://dx.doi.org/10.1142/s1793626819300159
http://dx.doi.org/10.1088/1748-0221/17/05/T05006
http://dx.doi.org/10.1088/1748-0221/17/05/T05006
http://dx.doi.org/10.5170/CERN-2006-002.361
http://dx.doi.org/10.5170/CERN-2006-002.361
http://dx.doi.org/10.1140/epjc/s2004-02061-6
http://dx.doi.org/10.1140/epjc/s2004-02061-6
http://cds.cern.ch/record/1997001


211 Bibliography

[80] C. B. Schroeder, E. Esarey, C. G. R. Geddes, C. Benedetti, and W. P. Leemans.
“Physics considerations for laser-plasma linear colliders”. In: Physical Review
Special Topics - Accelerators and Beams 13, p. 101301, 2010, p. 101301. (See
p. 20)

[81] C. M. S. Sears, A. Buck, K. Schmid, J. Mikhailova, F. Krausz, and L. Veisz.
“Emittance and divergence of laser wakefield accelerated electrons”. In: Physical
Review Special Topics - Accelerators and Beams 13, p. 092803, 2010, p. 092803.
(See pp. 20, 57, 79, 156)

[82] S. Kneip, C. McGuffey, J. L. Martins, M. S. Bloom, V. Chvykov, F. Dollar, R.
Fonseca, S. Jolly, G. Kalintchenko, K. Krushelnick, A. Maksimchuk, S. P. D.
Mangles, Z. Najmudin, C. A. J. Palmer, K. T. Phuoc, W. Schumaker, L. O. Silva,
J. Vieira, V. Yanovsky, and A. G. R. Thomas. “Characterization of transverse
beam emittance of electrons from a laser-plasma wakefield accelerator in the
bubble regime using betatron x-ray radiation”. In: Physical Review Special Topics
- Accelerators and Beams 15, p. 021302, 2012, p. 021302. (See pp. 20, 54, 156)

[83] D. H. Dowell. “Sources of Emittance in RF Photocathode Injectors: Intrinsic
emittance, space charge forces due to non-uniformities, RF and solenoid effects”.
In: arXiv e-prints, arXiv:1610.01242, 2016, arXiv:1610.01242. (See p. 20)

[84] Z. Qin, C. Yu, W. Wang, J. Liu, W. Li, R. Qi, Z. Zhang, J. Liu, M. Fang, K.
Feng, Y. Wu, L. Ke, Y. Chen, Y. Xu, Y. Leng, C. Wang, R. Li, and Z. Xu.
“Ultralow-emittance measurement of high-quality electron beams from a laser
wakefield accelerator”. In: Physics of Plasmas 25, p. 023106, 2018, p. 023106. (See
pp. 20, 156)

[85] A. Cianchi, M. P. Anania, M. Bellaveglia, M. Castellano, E. Chiadroni, M. Ferrario,
G. Gatti, B. Marchetti, A. Mostacci, R. Pompili, C. Ronsivalle, A. R. Rossi, and L.
Serafini. “Challenges in plasma and laser wakefield accelerated beams diagnostic”.
In: Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip.
720, pp. 153–156, 2013, pp. 153–156. (See pp. 20, 157)

[86] P. Poole, S. Trendafilov, G. Shvets, D. Smith, and E. Chowdhury. “Femtosecond
laser damage threshold of pulse compression gratings for petawatt scale laser
systems”. In: Optics Express 21, pp. 26341–26351, 2013, pp. 26341–26351. (See
p. 20)

[87] C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A.
Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps,
Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma,
C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J. Rocca,
A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, et al. “Petawatt and
exawatt class lasers worldwide”. In: High Power Laser Science and Engineering 7,
e54, 2019, e54. (See p. 20)

http://dx.doi.org/10.1103/PhysRevSTAB.13.101301
http://dx.doi.org/10.1103/PhysRevSTAB.13.101301
http://dx.doi.org/10.1103/PhysRevSTAB.13.092803
http://dx.doi.org/10.1103/PhysRevSTAB.13.092803
http://dx.doi.org/10.1103/PhysRevSTAB.15.021302
http://dx.doi.org/10.1103/PhysRevSTAB.15.021302
http://dx.doi.org/
http://dx.doi.org/10.1063/1.5019987
http://dx.doi.org/https://doi.org/10.1016/j.nima.2012.12.012
http://dx.doi.org/https://doi.org/10.1016/j.nima.2012.12.012
http://dx.doi.org/10.1364/OE.21.026341
http://dx.doi.org/10.1017/hpl.2019.36
http://dx.doi.org/10.1017/hpl.2019.36


212 Bibliography

[88] S. Steinke, J. van Tilborg, C. Benedetti, C. G. Geddes, C. B. Schroeder, J. Daniels,
K. K. Swanson, A. J. Gonsalves, K. Nakamura, N. H. Matlis, B. H. Shaw, E.
Esarey, and W. P. Leemans. “Multistage coupling of independent laser-plasma
accelerators”. In: Nature 530, pp. 190–3, 2016, pp. 190–3. (See pp. 21, 160, 188)

[89] J. van Tilborg, S. Steinke, C. Geddes, N. Matlis, B. Shaw, A. Gonsalves, J. Huijts,
K. Nakamura, J. Daniels, C. Schroeder, C. Benedetti, E. Esarey, S. Bulanov,
N. Bobrova, P. Sasorov, and W. Leemans. “Active Plasma Lensing for Relativistic
Laser-Plasma-Accelerated Electron Beams”. In: Physical Review Letters 115,
p. 184802, 2015, p. 184802. (See pp. 21, 22)

[90] F. Albert, M. E. Couprie, A. Debus, M. C. Downer, J. Faure, A. Flacco, L. A.
Gizzi, T. Grismayer, A. Huebl, C. Joshi, M. Labat, W. P. Leemans, A. R. Maier,
S. P. D. Mangles, P. Mason, F. Mathieu, P. Muggli, M. Nishiuchi, J. Osterhoff,
P. P. Rajeev, U. Schramm, J. Schreiber, A. G. R. Thomas, J.-L. Vay, M. Vranic,
and K. Zeil. “2020 roadmap on plasma accelerators”. In: New Journal of Physics
23, p. 031101, 2021, p. 031101. (See p. 21)

[91] C. Thaury, F. Quéré, J. P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard,
F. Réau, P. d’Oliveira, P. Audebert, R. Marjoribanks, and P. Martin. “Plasma
mirrors for ultrahigh-intensity optics”. In: Nature Physics 3, pp. 424–429, 2007,
pp. 424–429. (See pp. 21, 162)

[92] G. Raj, O. Kononenko, M. F. Gilljohann, A. Doche, X. Davoine, C. Caizergues,
Y. Y. Chang, J. P. Couperus Cabadağ, A. Debus, H. Ding, M. Förster, J. P.
Goddet, T. Heinemann, T. Kluge, T. Kurz, R. Pausch, P. Rousseau, P. San
Miguel Claveria, S. Schöbel, A. Siciak, K. Steiniger, A. Tafzi, S. Yu, B. Hidding,
A. Martinez de la Ossa, A. Irman, S. Karsch, A. Döpp, U. Schramm, et al.
“Probing ultrafast magnetic-field generation by current filamentation instability in
femtosecond relativistic laser-matter interactions”. In: Physical Review Research
2, p. 023123, 2020, p. 023123. (See pp. 21, 171, 174, 196)

[93] J. Luo, M. Chen, W. Wu, S. Weng, Z. Sheng, C. Schroeder, D. Jaroszynski, E.
Esarey, W. Leemans, W. Mori, and J. Zhang. “Multistage Coupling of Laser-
Wakefield Accelerators with Curved Plasma Channels”. In: Physical Review Letters
120, p. 154801, 2018, p. 154801. (See p. 21)

[94] Y. Ma, D. Seipt, K. Krushelnick, and A. G. R. Thomas. “Generation of straight
and curved hollow plasma channels by laser-generated nonlinear wakefields and
studies of ultra-intense laser pulse guiding”. In: Physics of Plasmas 28, p. 063104,
2021, p. 063104. (See p. 21)

[95] R. Assmann and K. Yokoya. “Transverse beam dynamics in plasma-based linacs”.
In: Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip.
410, pp. 544–548, 1998, pp. 544–548. (See p. 21)

[96] S. Cheshkov, T. Tajima, W. Horton, and K. Yokoya. “Particle dynamics in
multistage wakefield collider”. In: Physical Review Special Topics - Accelerators
and Beams 3, p. 071301, 2000, p. 071301. (See p. 21)

http://dx.doi.org/10.1038/nature16525
http://dx.doi.org/10.1103/PhysRevLett.115.184802
http://dx.doi.org/10.1103/PhysRevLett.115.184802
http://dx.doi.org/10.1088/1367-2630/abcc62
http://dx.doi.org/10.1088/1367-2630/abcc62
http://dx.doi.org/10.1038/nphys595
http://dx.doi.org/10.1038/nphys595
http://dx.doi.org/10.1103/PhysRevResearch.2.023123
http://dx.doi.org/10.1103/PhysRevResearch.2.023123
http://dx.doi.org/10.1103/PhysRevLett.120.154801
http://dx.doi.org/10.1103/PhysRevLett.120.154801
http://dx.doi.org/10.1063/5.0048897
http://dx.doi.org/10.1063/5.0048897
http://dx.doi.org/https://doi.org/10.1016/S0168-9002(98)00187-9
http://dx.doi.org/https://doi.org/10.1016/S0168-9002(98)00187-9
http://dx.doi.org/10.1103/PhysRevSTAB.3.071301
http://dx.doi.org/10.1103/PhysRevSTAB.3.071301


213 Bibliography

[97] C. Chiu, S. Cheshkov, and T. Tajima. “High energy laser-wakefield collider with
synchronous acceleration”. In: Physical Review Special Topics - Accelerators and
Beams 3, p. 101301, 2000, p. 101301. (See p. 21)

[98] F. Wu, Z. Zhang, X. Yang, J. Hu, P. Ji, J. Gui, C. Wang, J. Chen, Y. Peng, X. Liu,
Y. Liu, X. Lu, Y. Xu, Y. Leng, R. Li, and Z. Xu. “Performance improvement of a
200TW/1Hz Ti:sapphire laser for laser wakefield electron accelerator”. In: Optics
Laser Technology 131, p. 106453, 2020, p. 106453. (See p. 21)

[99] A. Zingale, N. Czapla, D. Nasir, S. Barber, J. Bin, A. Gonsalves, F. Isono, J.
van Tilborg, S. Steinke, K. Nakamura, G. Cochran, J. Purcell, W. Leemans, C.
Geddes, C. Schroeder, E. Esarey, and D. Schumacher. “Emittance preserving thin
film plasma mirrors for GeV scale laser plasma accelerators”. In: Physical Review
Accelerators and Beams 24, p. 121301, 2021, p. 121301. (See p. 21)

[100] N. Kirby, M. Berry, I. Blumenfeld, M. J. Hogan, R. Ischebeck, and R. Siemann.
“Emittance growth from Multiple Coulomb Scattering in a plasma wakefield accel-
erator”. In: 2007 IEEE Particle Accelerator Conference (PAC). 2007. Pp. 3097–
3099. (See p. 21)

[101] C. B. Schroeder, E. Esarey, C. Benedetti, and W. P. Leemans. “Control of
focusing forces and emittances in plasma-based accelerators using near-hollow
plasma channels”. In: Physics of Plasmas 20, p. 080701, 2013, p. 080701. (See
p. 21)

[102] C. A. Lindstrøm and M. Thévenet. “Emittance preservation in advanced accelera-
tors”. In: Journal of Instrumentation 17, P05016, 2022, P05016. (See p. 21)

[103] T. Mehrling, J. Grebenyuk, F. S. Tsung, K. Floettmann, and J. Osterhoff. “Trans-
verse emittance growth in staged laser-wakefield acceleration”. In: Physical Review
Special Topics - Accelerators and Beams 15, 2012. (See p. 21)

[104] M. Migliorati, A. Bacci, C. Benedetti, E. Chiadroni, M. Ferrario, A. Mostacci, L.
Palumbo, A. R. Rossi, L. Serafini, and P. Antici. “Intrinsic normalized emittance
growth in laser-driven electron accelerators”. In: Physical Review Special Topics -
Accelerators and Beams 16, p. 011302, 2013, p. 011302. (See pp. 21, 183)

[105] I. Dornmair, K. Floettmann, and A. Maier. “Emittance conservation by tailored
focusing profiles in a plasma accelerator”. In: Physical Review Special Topics -
Accelerators and Beams 18, p. 041302, 2015, p. 041302. (See p. 22)

[106] K. Sjobak, E. Adli, R. Corsini, W. Farabolini, G. Boyle, C. Lindstrøm, M. Meisel,
J. Osterhoff, J. H. Röckemann, L. Schaper, and A. Dyson. “Strong focusing
gradient in a linear active plasma lens”. In: Physical Review Accelerators and
Beams 24, p. 121306, 2021, p. 121306. (See p. 22)

[107] J. van Tilborg, S. Barber, H. E. Tsai, K. Swanson, S. Steinke, C. Geddes, A.
Gonsalves, C. Schroeder, E. Esarey, S. Bulanov, N. Bobrova, P. Sasorov, and W.
Leemans. “Nonuniform discharge currents in active plasma lenses”. In: Physical
Review Accelerators and Beams 20, p. 032803, 2017, p. 032803. (See p. 22)

http://dx.doi.org/10.1103/PhysRevSTAB.3.101301
http://dx.doi.org/10.1103/PhysRevSTAB.3.101301
http://dx.doi.org/https://doi.org/10.1016/j.optlastec.2020.106453
http://dx.doi.org/https://doi.org/10.1016/j.optlastec.2020.106453
http://dx.doi.org/10.1103/PhysRevAccelBeams.24.121301
http://dx.doi.org/10.1103/PhysRevAccelBeams.24.121301
http://dx.doi.org/10.1063/1.4817799
http://dx.doi.org/10.1088/1748-0221/17/05/P05016
http://dx.doi.org/10.1103/PhysRevSTAB.15.111303
http://dx.doi.org/10.1103/PhysRevSTAB.15.111303
http://dx.doi.org/10.1103/PhysRevSTAB.16.011302
http://dx.doi.org/10.1103/PhysRevSTAB.16.011302
http://dx.doi.org/10.1103/PhysRevSTAB.18.041302
http://dx.doi.org/10.1103/PhysRevSTAB.18.041302
http://dx.doi.org/10.1103/PhysRevAccelBeams.24.121306
http://dx.doi.org/10.1103/PhysRevAccelBeams.24.121306
http://dx.doi.org/10.1103/PhysRevAccelBeams.20.032803
http://dx.doi.org/10.1103/PhysRevAccelBeams.20.032803


214 Bibliography

[108] C. Lindstrøm, E. Adli, J. Allen, W. An, C. Beekman, C. Clarke, C. Clayton,
S. Corde, A. Doche, J. Frederico, S. Gessner, S. Green, M. Hogan, C. Joshi,
M. Litos, W. Lu, K. Marsh, W. Mori, B. O’Shea, N. Vafaei-Najafabadi, and
V. Yakimenko. “Measurement of Transverse Wakefields Induced by a Misaligned
Positron Bunch in a Hollow Channel Plasma Accelerator”. In: Physical Review
Letters 120, p. 124802, 2018, p. 124802. (See pp. 22, 23)

[109] G. Sarri, W. Schumaker, A. Di Piazza, K. Poder, J. M. Cole, M. Vargas, D.
Doria, S. Kushel, B. Dromey, G. Grittani, L. Gizzi, M. E. Dieckmann, A. Green,
V. Chvykov, A. Maksimchuk, V. Yanovsky, Z. H. He, B. X. Hou, J. A. Nees,
S. Kar, Z. Najmudin, A. G. R. Thomas, C. H. Keitel, K. Krushelnick, and M.
Zepf. “Laser-driven generation of collimated ultra-relativistic positron beams”. In:
Plasma Physics and Controlled Fusion 55, p. 124017, 2013, p. 124017. (See p. 22)

[110] G. Sarri, J. Warwick, W. Schumaker, K. Poder, J. Cole, D. Doria, T. Dzelzainis,
K. Krushelnick, S. Kuschel, S. P D Mangles, Z. Najmudin, L. Romagnani, G.
M Samarin, D. Symes, A. G R Thomas, M. Yeung, and M. Zepf. “Spectral and
spatial characterisation of laser-driven positron beams”. In: Plasma Physics and
Controlled Fusion 59, p. 014015, 2017, p. 014015. (See p. 22)

[111] M. J. V. Streeter, C. Colgan, N. Cavanagh, E. Los, A. F. Antoine, T. Audet, M. D.
Balcazar, L. Calvin, J. Carderelli, H. Ahmed, B. Kettle, Y. Ma, S. P. D. Mangles,
Z. Najmudin, P. P. Rajeev, D. R. Symes, A. G. R. Thomas, and G. Sarri. “Laser
Generation of Near-GeV Low Emittance Positron Beams”. In: arXiv e-prints,
arXiv:2205.13850, 2022, arXiv:2205.13850. (See p. 22)

[112] S. Corde, E. Adli, J. M. Allen, W. An, C. I. Clarke, C. E. Clayton, J. P. Delahaye,
J. Frederico, S. Gessner, S. Z. Green, M. J. Hogan, C. Joshi, N. Lipkowitz, M.
Litos, W. Lu, K. A. Marsh, W. B. Mori, M. Schmeltz, N. Vafaei-Najafabadi,
D. Walz, V. Yakimenko, and G. Yocky. “Multi-gigaelectronvolt acceleration of
positrons in a self-loaded plasma wakefield”. In: Nature 524, pp. 442–445, 2015,
pp. 442–445. (See p. 22)

[113] C. S. Hue, G. J. Cao, I. A. Andriyash, A. Knetsch, M. J. Hogan, E. Adli, S.
Gessner, and S. Corde. “Efficiency and beam quality for positron acceleration
in loaded plasma wakefields”. In: Physical Review Research 3, p. 043063, 2021,
p. 043063. (See p. 22)

[114] S. Diederichs, T. Mehrling, C. Benedetti, C. Schroeder, A. Knetsch, E. Esarey,
and J. Osterhoff. “Positron transport and acceleration in beam-driven plasma
wakefield accelerators using plasma columns”. In: Physical Review Accelerators
and Beams 22, p. 081301, 2019, p. 081301. (See p. 22)

[115] S. Diederichs, C. Benedetti, E. Esarey, J. Osterhoff, and C. Schroeder. “High-
quality positron acceleration in beam-driven plasma accelerators”. In: Physical
Review Accelerators and Beams 23, p. 121301, 2020, p. 121301. (See pp. 22, 82)

http://dx.doi.org/10.1103/PhysRevLett.120.124802
http://dx.doi.org/10.1103/PhysRevLett.120.124802
http://dx.doi.org/10.1088/0741-3335/55/12/124017
http://dx.doi.org/10.1088/0741-3335/55/12/124017
http://dx.doi.org/10.1088/0741-3335/59/1/014015
http://dx.doi.org/10.1088/0741-3335/59/1/014015
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/10.1038/nature14890
http://dx.doi.org/10.1038/nature14890
http://dx.doi.org/10.1103/PhysRevResearch.3.043063
http://dx.doi.org/10.1103/PhysRevResearch.3.043063
http://dx.doi.org/10.1103/PhysRevAccelBeams.22.081301
http://dx.doi.org/10.1103/PhysRevAccelBeams.22.081301
http://dx.doi.org/10.1103/PhysRevAccelBeams.23.121301
http://dx.doi.org/10.1103/PhysRevAccelBeams.23.121301


215 Bibliography

[116] T. Wang, V. Khudik, and G. Shvets. “Positron Acceleration in an Elongated
Bubble Regime”. In: arXiv e-prints, arXiv:2110.10290, 2021, arXiv:2110.10290.
(See p. 22)

[117] S. Gessner, E. Adli, J. M. Allen, W. An, C. I. Clarke, C. E. Clayton, S. Corde,
J. P. Delahaye, J. Frederico, S. Z. Green, C. Hast, M. J. Hogan, C. Joshi, C. A.
Lindstrøm, N. Lipkowitz, M. Litos, W. Lu, K. A. Marsh, W. B. Mori, B. O’Shea,
N. Vafaei-Najafabadi, D. Walz, V. Yakimenko, and G. Yocky. “Demonstration of
a positron beam-driven hollow channel plasma wakefield accelerator”. In: Nature
Communications 7, p. 11785, 2016, p. 11785. (See p. 23)

[118] T. Silva, L. Amorim, M. Downer, M. Hogan, V. Yakimenko, R. Zgadzaj, and
J. Vieira. “Stable Positron Acceleration in Thin, Warm, Hollow Plasma Channels”.
In: Physical Review Letters 127, p. 104801, 2021, p. 104801. (See pp. 23, 82)

[119] F. L. Pedrotti, L. M. Pedrotti, and L. S. Pedrotti. Introduction to Optics. 3rd ed.
1987. (See p. 25)

[120] W. S. C. Chang. Principles of lasers and optics. Cambridge: Cambridge University
Press, 2005. (See p. 25)

[121] S. Feng and H. G. Winful. “Physical origin of the Gouy phase shift”. In: Optics
Letters 26, pp. 485–487, 2001, pp. 485–487. (See p. 25)

[122] S. M. Sepke and D. P. Umstadter. “Exact analytical solution for the vector
electromagnetic field of Gaussian, flattened Gaussian, and annular Gaussian laser
modes”. In: Optics Letters 31, pp. 1447–1449, 2006, pp. 1447–1449. (See p. 25)

[123] M. Born and E. Wolf. Principles of optics : electromagnetic theory of propagation,
interference and diffraction of light. 7th (expanded) ed. Cambridge ; Cambridge
University Press, 1999. (See p. 26)

[124] S. P. D. Mangles, G. Genoud, S. Kneip, M. Burza, K. Cassou, B. Cros, N. P.
Dover, C. Kamperidis, Z. Najmudin, A. Persson, J. Schreiber, F. Wojda, and
C. G. Wahlström. “Controlling the spectrum of x-rays generated in a laser-plasma
accelerator by tailoring the laser wavefront”. In: Applied Physics Letters 95,
p. 181106, 2009, p. 181106. (See pp. 27, 131)

[125] A. Popp, J. Vieira, J. Osterhoff, Z. Major, R. Hörlein, M. Fuchs, R. Weingartner,
T. P. Rowlands-Rees, M. Marti, R. A. Fonseca, S. F. Martins, L. O. Silva, S. M.
Hooker, F. Krausz, F. Grüner, and S. Karsch. “All-Optical Steering of Laser-
Wakefield-Accelerated Electron Beams”. In: Physical Review Letters 105, p. 215001,
2010, p. 215001. (See p. 27)

[126] B. Beaurepaire, A. Vernier, M. Bocoum, F. Böhle, A. Jullien, J. P. Rousseau, T.
Lefrou, D. Douillet, G. Iaquaniello, R. Lopez-Martens, A. Lifschitz, and J. Faure.
“Effect of the Laser Wave Front in a Laser-Plasma Accelerator”. In: Physical
Review X 5, p. 031012, 2015, p. 031012. (See p. 27)

[127] J. M. Cole. “Diagnosis and Application of Laser Wakefield Accelerators”. Thesis.
2016. (See pp. 27, 136)

http://dx.doi.org/
http://dx.doi.org/10.1038/ncomms11785
http://dx.doi.org/10.1038/ncomms11785
http://dx.doi.org/10.1103/PhysRevLett.127.104801
http://dx.doi.org/10.1364/OL.26.000485
http://dx.doi.org/10.1364/OL.26.000485
http://dx.doi.org/10.1364/OL.31.001447
http://dx.doi.org/10.1063/1.3258022
http://dx.doi.org/10.1063/1.3258022
http://dx.doi.org/10.1103/PhysRevLett.105.215001
http://dx.doi.org/10.1103/PhysRevLett.105.215001
http://dx.doi.org/10.1103/PhysRevX.5.031012
http://dx.doi.org/10.1103/PhysRevX.5.031012


216 Bibliography

[128] Z. H. He, B. Hou, V. Lebailly, J. A. Nees, K. Krushelnick, and A. G. R. Thomas.
“Coherent control of plasma dynamics”. In: Nature Communications 6, p. 7156,
2015, p. 7156. (See p. 27)

[129] S. Dann, C. Baird, N. Bourgeois, O. Chekhlov, S. Eardley, C. Gregory, J. N. Gruse,
J. Hah, D. Hazra, S. Hawkes, C. Hooker, K. Krushelnick, S. Mangles, V. Marshall,
C. Murphy, Z. Najmudin, J. Nees, J. Osterhoff, B. Parry, P. Pourmoussavi, S.
Rahul, P. Rajeev, S. Rozario, J. Scott, R. Smith, E. Springate, Y. Tang, S. Tata,
A. Thomas, et al. “Laser wakefield acceleration with active feedback at 5 Hz”.
In: Physical Review Accelerators and Beams 22, p. 041303, 2019, p. 041303. (See
p. 27)

[130] P. Mora and J. Thomas M. Antonsen. “Kinetic modeling of intense, short laser
pulses propagating in tenuous plasmas”. In: Physics of Plasmas 4, pp. 217–229,
1997, pp. 217–229. (See p. 29)

[131] L. V. Keldysh. “Ionization in the field of a strong electromagnetic wave”. In: Sov.
Phys. JETP 20, pp. 1307–1314, 1965, pp. 1307–1314. (See p. 31)

[132] M. V. Ammosov, N. B. Delone, and V. P. Krainov. “Tunnel ionization of complex
atoms and of atomic ions in an alternating electromagnetic field”. In: Sov. Phys.
JETP 64, p. 4, 1986, p. 4. (See pp. 31, 171)

[133] A. Perelomov, V. Popov, and M. Terent’ev. “Ionization of Atoms in an Alternating
Electric Field”. In: Sov. Phys. JETP 23, 1966. (See p. 31)

[134] A. Perelomov, V. Popov, and M. Terent’ev. “Ionization of Atoms in an Alternating
Electric Field: II”. In: Sov. Phys. JETP 24, 1967. (See p. 31)

[135] D. L. Bruhwiler, D. A. Dimitrov, J. R. Cary, E. Esarey, W. Leemans, and R. E.
Giacone. “Particle-in-cell simulations of tunneling ionization effects in plasma-
based accelerators”. In: Physics of Plasmas 10, pp. 2022–2030, 2003, pp. 2022–
2030. (See p. 31)

[136] P. Sprangle, E. Esarey, and A. Ting. “Nonlinear theory of intense laser-plasma
interactions”. In: Physical Review Letters 64, pp. 2011–2014, 1990, pp. 2011–2014.
(See pp. 36, 47, 48)

[137] E. Esarey and M. Pilloff. “Trapping and acceleration in nonlinear plasma waves”.
In: Physics of Plasmas 2, pp. 1432–1436, 1995, pp. 1432–1436. (See pp. 36, 50,
201)

[138] V. I. Berezhiani and I. G. Murusidze. “Relativistic wake-field generation by an
intense laser pulse in a plasma”. In: Physics Letters A 148, pp. 338–340, 1990,
pp. 338–340. (See p. 36)

[139] S. V. Bulanov, V. I. Kirsanov, and A. S. Sakharov. “Excitation of ultrarelativistic
plasma waves by pulse of electromagnetic radiation”. In: JETP Letters 50, pp. 176–
178, 1989, pp. 176–178. (See p. 36)

http://dx.doi.org/10.1038/ncomms8156
http://dx.doi.org/10.1038/ncomms8156
http://dx.doi.org/10.1103/PhysRevAccelBeams.22.041303
http://dx.doi.org/10.1063/1.872134
http://dx.doi.org/10.1063/1.872134
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/10.1063/1.1566027
http://dx.doi.org/10.1063/1.1566027
http://dx.doi.org/10.1103/PhysRevLett.64.2011
http://dx.doi.org/10.1063/1.871358
http://dx.doi.org/https://doi.org/10.1016/0375-9601(90)90813-4
http://dx.doi.org/https://doi.org/10.1016/0375-9601(90)90813-4
http://dx.doi.org/
http://dx.doi.org/


217 Bibliography

[140] W. Lu, C. Huang, M. Zhou, M. Tzoufras, F. S. Tsung, W. B. Mori, and T.
Katsouleas. “A nonlinear theory for multidimensional relativistic plasma wave
wakefields”. In: Physics of Plasmas 13, p. 056709, 2006, p. 056709. (See pp. 38,
39)

[141] A. Pukhov and J. Meyer-ter Vehn. “Laser wake field acceleration: the highly
non-linear broken-wave regime”. In: Applied Physics B 74, pp. 355–361, 2002,
pp. 355–361. (See p. 38)

[142] I. Kostyukov, A. Pukhov, and S. Kiselev. “Phenomenological theory of laser-
plasma interaction in “bubble” regime”. In: Physics of Plasmas 11, pp. 5256–5264,
2004, pp. 5256–5264. (See pp. 39, 51)

[143] W. B. Mori. “The physics of the nonlinear optics of plasmas at relativistic
intensities for short-pulse lasers”. In: IEEE Journal of Quantum Electronics 33,
pp. 1942–1953, 1997, pp. 1942–1953. (See pp. 40, 41, 45)

[144] P. Sprangle, C. M. Tang, and E. Esarey. “Relativistic Self-Focusing of Short-Pulse
Radiation Beams in Plasmas”. In: IEEE Transactions on Plasma Science 15,
pp. 145–153, 1987, pp. 145–153. (See p. 42)

[145] J. E. Ralph, K. A. Marsh, A. E. Pak, W. Lu, C. E. Clayton, F. Fang, W. B. Mori,
and C. Joshi. “Self-Guiding of Ultrashort, Relativistically Intense Laser Pulses
through Underdense Plasmas in the Blowout Regime”. In: Physical Review Letters
102, p. 175003, 2009, p. 175003. (See p. 44)

[146] M. Streeter, S. Kneip, M. Bloom, R. Bendoyro, O. Chekhlov, A. Dangor, A.
Döpp, C. Hooker, J. Holloway, J. Jiang, N. Lopes, H. Nakamura, P. Norreys,
C. A. Palmer, P. Rajeev, J. Schreiber, D. Symes, M. Wing, S. P. D. Mangles,
and Z. Najmudin. “Observation of Laser Power Amplification in a Self-Injecting
Laser Wakefield Accelerator”. In: Physical Review Letters 120, p. 254801, 2018,
p. 254801. (See pp. 46, 124, 152, 172, 179)

[147] L. M. Gorbunov and V. I. Kirsanov. “Excitation of plasma waves by an electro-
magnetic wave packet”. In: JETP 66, p. 290, 1986, p. 290. (See p. 47)

[148] B. A. Shadwick, C. B. Schroeder, and E. Esarey. “Nonlinear laser energy depletion
in laser-plasma accelerators”. In: Physics of Plasmas 16, p. 056704, 2009, p. 056704.
(See pp. 47, 124, 172, 179)

[149] C. D. Decker, W. B. Mori, K. Tzeng, and T. Katsouleas. “The evolution of
ultra-intense, short-pulse lasers in underdense plasmas”. In: Physics of Plasmas 3,
pp. 2047–2056, 1996, pp. 2047–2056. (See pp. 47, 48, 122, 179)

[150] S. V. Bulanov, M. Yamagiwa, T. Z. Esirkepov, J. K. Koga, M. Kando, Y. Ueshima,
K. Saito, and D. Wakabayashi. “Spectral and dynamical features of the electron
bunch accelerated by a short-pulse high intensity laser in an underdense plasma”.
In: Physics of Plasmas 12, p. 073103, 2005, p. 073103. (See pp. 50, 52)

http://dx.doi.org/10.1063/1.2203364
http://dx.doi.org/10.1007/s003400200795
http://dx.doi.org/10.1007/s003400200795
http://dx.doi.org/10.1063/1.1799371
http://dx.doi.org/10.1063/1.1799371
http://dx.doi.org/10.1109/3.641309
http://dx.doi.org/10.1109/3.641309
http://dx.doi.org/10.1109/TPS.1987.4316677
http://dx.doi.org/10.1109/TPS.1987.4316677
http://dx.doi.org/10.1103/PhysRevLett.102.175003
http://dx.doi.org/10.1103/PhysRevLett.102.175003
http://dx.doi.org/10.1103/PhysRevLett.120.254801
http://dx.doi.org/10.1103/PhysRevLett.120.254801
http://dx.doi.org/
http://dx.doi.org/10.1063/1.3124185
http://dx.doi.org/10.1063/1.872001
http://dx.doi.org/10.1063/1.872001
http://dx.doi.org/10.1063/1.1948347


218 Bibliography

[151] C. A. Coverdale, C. B. Darrow, C. D. Decker, W. B. Mori, K. C. Tzeng, K. A.
Marsh, C. E. Clayton, and C. Joshi. “Propagation of Intense Subpicosecond Laser
Pulses through Underdense Plasmas”. In: Physical Review Letters 74, pp. 4659–
4662, 1995, pp. 4659–4662. (See p. 51)

[152] I. Kostyukov, E. Nerush, A. Pukhov, and V. Seredov. “Electron Self-Injection in
Multidimensional Relativistic-Plasma Wake Fields”. In: Physical Review Letters
103, p. 175003, 2009, p. 175003. (See p. 51)

[153] A. G. R. Thomas. “Scalings for radiation from plasma bubbles”. In: Physics of
Plasmas 17, p. 056708, 2010, p. 056708. (See pp. 51, 117, 118, 125, 155, 179, 187)

[154] S. P. D. Mangles, G. Genoud, M. S. Bloom, M. Burza, Z. Najmudin, A. Persson,
K. Svensson, A. G. R. Thomas, and C. G. Wahlström. “Self-injection threshold
in self-guided laser wakefield accelerators”. In: Physical Review Special Topics -
Accelerators and Beams 15, p. 011302, 2012, p. 011302. (See p. 51)

[155] S. Kalmykov, S. A. Yi, V. Khudik, and G. Shvets. “Electron Self-Injection and
Trapping into an Evolving Plasma Bubble”. In: Physical Review Letters 103,
p. 135004, 2009, p. 135004. (See pp. 52, 179)

[156] H. Suk, N. Barov, J. B. Rosenzweig, and E. Esarey. “Plasma Electron Trapping
and Acceleration in a Plasma Wake Field Using a Density Transition”. In: Physical
Review Letters 86, pp. 1011–1014, 2001, pp. 1011–1014. (See p. 52)

[157] J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, and V. Malka. “Controlled
injection and acceleration of electrons in plasma wakefields by colliding laser
pulses”. In: Nature 444, pp. 737–9, 2006, pp. 737–9. (See p. 52)

[158] A. V. Brantov, T. Z. Esirkepov, M. Kando, H. Kotaki, V. Y. Bychenkov, and
S. V. Bulanov. “Controlled electron injection into the wake wave using plasma
density inhomogeneity”. In: Physics of Plasmas 15, p. 073111, 2008, p. 073111.
(See p. 52)

[159] A. J. Gonsalves, K. Nakamura, C. Lin, D. Panasenko, S. Shiraishi, T. Sokollik,
C. Benedetti, C. B. Schroeder, C. G. R. Geddes, J. van Tilborg, J. Osterhoff, E.
Esarey, C. Toth, and W. P. Leemans. “Tunable laser plasma accelerator based on
longitudinal density tailoring”. In: Nature Physics 7, pp. 862–866, 2011, pp. 862–
866. (See p. 52)

[160] M. Hansson, B. Aurand, X. Davoine, H. Ekerfelt, K. Svensson, A. Persson, C. G.
Wahlström, and O. Lundh. “Down-ramp injection and independently controlled
acceleration of electrons in a tailored laser wakefield accelerator”. In: Physical
Review Special Topics - Accelerators and Beams 18, p. 071303, 2015, p. 071303.
(See p. 52)

[161] K. Schmid, A. Buck, C. M. S. Sears, J. M. Mikhailova, R. Tautz, D. Herrmann,
M. Geissler, F. Krausz, and L. Veisz. “Density-transition based electron injector
for laser driven wakefield accelerators”. In: Physical Review Special Topics -
Accelerators and Beams 13, p. 091301, 2010, p. 091301. (See p. 52)

http://dx.doi.org/10.1103/PhysRevLett.74.4659
http://dx.doi.org/10.1103/PhysRevLett.74.4659
http://dx.doi.org/10.1103/PhysRevLett.103.175003
http://dx.doi.org/10.1103/PhysRevLett.103.175003
http://dx.doi.org/10.1063/1.3368678
http://dx.doi.org/10.1063/1.3368678
http://dx.doi.org/10.1103/PhysRevSTAB.15.011302
http://dx.doi.org/10.1103/PhysRevSTAB.15.011302
http://dx.doi.org/10.1103/PhysRevLett.103.135004
http://dx.doi.org/10.1103/PhysRevLett.103.135004
http://dx.doi.org/10.1103/PhysRevLett.86.1011
http://dx.doi.org/10.1103/PhysRevLett.86.1011
http://dx.doi.org/10.1038/nature05393
http://dx.doi.org/10.1063/1.2956989
http://dx.doi.org/10.1038/nphys2071
http://dx.doi.org/10.1038/nphys2071
http://dx.doi.org/10.1103/PhysRevSTAB.18.071303
http://dx.doi.org/10.1103/PhysRevSTAB.18.071303
http://dx.doi.org/10.1103/PhysRevSTAB.13.091301
http://dx.doi.org/10.1103/PhysRevSTAB.13.091301


219 Bibliography

[162] A. Buck, J. Wenz, J. Xu, K. Khrennikov, K. Schmid, M. Heigoldt, J. M. Mikhailova,
M. Geissler, B. Shen, F. Krausz, S. Karsch, and L. Veisz. “Shock-Front Injector
for High-Quality Laser-Plasma Acceleration”. In: Physical Review Letters 110,
p. 185006, 2013, p. 185006. (See p. 52)

[163] T. P. Rowlands-Rees, C. Kamperidis, S. Kneip, A. J. Gonsalves, S. P. D. Mangles,
J. G. Gallacher, E. Brunetti, T. Ibbotson, C. D. Murphy, P. S. Foster, M. J. V.
Streeter, F. Budde, P. A. Norreys, D. A. Jaroszynski, K. Krushelnick, Z. Najmudin,
and S. M. Hooker. “Laser-Driven Acceleration of Electrons in a Partially Ionized
Plasma Channel”. In: Physical Review Letters 100, p. 105005, 2008, p. 105005.
(See p. 53)

[164] C. McGuffey, A. G. R. Thomas, W. Schumaker, T. Matsuoka, V. Chvykov, F. J.
Dollar, G. Kalintchenko, V. Yanovsky, A. Maksimchuk, K. Krushelnick, V. Y.
Bychenkov, I. V. Glazyrin, and A. V. Karpeev. “Ionization Induced Trapping in
a Laser Wakefield Accelerator”. In: Physical Review Letters 104, p. 025004, 2010,
p. 025004. (See pp. 53, 125)

[165] A. Pak, K. A. Marsh, S. F. Martins, W. Lu, W. B. Mori, and C. Joshi. “Injec-
tion and Trapping of Tunnel-Ionized Electrons into Laser-Produced Wakes”. In:
Physical Review Letters 104, p. 025003, 2010, p. 025003. (See p. 53)

[166] M. Chen, E. Esarey, C. B. Schroeder, C. G. R. Geddes, and W. P. Leemans.
“Theory of ionization-induced trapping in laser-plasma accelerators”. In: Physics
of Plasmas 19, p. 033101, 2012, p. 033101. (See p. 53)

[167] L. L. Yu, E. Esarey, C. Schroeder, J. L. Vay, C. Benedetti, C. Geddes, M. Chen,
and W. Leemans. “Two-Color Laser-Ionization Injection”. In: Physical Review
Letters 112, p. 125001, 2014, p. 125001. (See pp. 54, 155)

[168] X. Xu, Y. Wu, C. Zhang, F. Li, Y. Wan, J. Hua, C. H. Pai, W. Lu, P. Yu, C. Joshi,
and W. Mori. “Low emittance electron beam generation from a laser wakefield
accelerator using two laser pulses with different wavelengths”. In: Physical Review
Special Topics - Accelerators and Beams 17, p. 061301, 2014, p. 061301. (See
p. 54)

[169] R. Weingartner, S. Raith, A. Popp, S. Chou, J. Wenz, K. Khrennikov, M. Heigoldt,
A. R. Maier, N. Kajumba, M. Fuchs, B. Zeitler, F. Krausz, S. Karsch, and F.
Grüner. “Ultralow emittance electron beams from a laser-wakefield accelerator”.
In: Physical Review Special Topics - Accelerators and Beams 15, p. 111302, 2012,
p. 111302. (See pp. 54, 156)

[170] J. C. Wood. “Betatron Radiation from Laser Wakefield Accelerators and its
Applications”. Thesis. 2016. (See pp. 54, 77, 130, 181)

[171] K. Floettmann. “Some basic features of the beam emittance”. In: Physical Review
Special Topics - Accelerators and Beams 6, p. 034202, 2003, p. 034202. (See pp. 56,
183)

http://dx.doi.org/10.1103/PhysRevLett.110.185006
http://dx.doi.org/10.1103/PhysRevLett.110.185006
http://dx.doi.org/10.1103/PhysRevLett.100.105005
http://dx.doi.org/10.1103/PhysRevLett.104.025004
http://dx.doi.org/10.1103/PhysRevLett.104.025004
http://dx.doi.org/10.1103/PhysRevLett.104.025003
http://dx.doi.org/10.1103/PhysRevLett.104.025003
http://dx.doi.org/10.1063/1.3689922
http://dx.doi.org/10.1063/1.3689922
http://dx.doi.org/10.1103/PhysRevLett.112.125001
http://dx.doi.org/10.1103/PhysRevLett.112.125001
http://dx.doi.org/10.1103/PhysRevSTAB.17.061301
http://dx.doi.org/10.1103/PhysRevSTAB.17.061301
http://dx.doi.org/10.1103/PhysRevSTAB.15.111302
http://dx.doi.org/10.1103/PhysRevSTAB.15.111302
http://dx.doi.org/10.1103/PhysRevSTAB.6.034202
http://dx.doi.org/10.1103/PhysRevSTAB.6.034202


220 Bibliography

[172] S.-Y. Lee. Accelerator Physics (Fourth Edition). Accelerator Physics. World
Scientific, 2019. (See p. 59)

[173] J. D. Jackson. Classical electrodynamics. 3rd ed. New York ; Wiley, 1999. (See
p. 60)

[174] C. J. Hooker, J. L. Collier, O. Chekhlov, R. Clarke, E. Divall, K. Ertel, B. Fell, P.
Foster, S. Hancock, A. Langley, D. Neely, J. Smith, and B. Wyborn. “The Astra
Gemini project A dual-beam petawatt Ti:Sapphire laser system”. In: Journal de
Physique IV 133, pp. 673–677, 2006, pp. 673–677. (See p. 62)

[175] K. Poder. “Characterisation of self-guided laser wakefield accelerators to multi-GeV
energies”. Thesis. 2016. (See pp. 62, 93, 130)

[176] eCat2. Central Laser Facility url: https://gemini.clf.stfc.ac.uk/ecat2/

(visited on Nov. 1, 2022) (see p. 63)

[177] S. Semushin and V. Malka. “High density gas jet nozzle design for laser tar-
get production”. In: Review of Scientific Instruments 72, pp. 2961–2965, 2001,
pp. 2961–2965. (See p. 66)

[178] D. B. Atkinson and M. A. Smith. “Design and characterization of pulsed uni-
form supersonic expansions for chemical applications”. In: Review of Scientific
Instruments 66, pp. 4434–4446, 1995, pp. 4434–4446. (See p. 66)

[179] N. Lemos, N. Lopes, J. M. Dias, and F. Viola. “Design and characterization
of supersonic nozzles for wide focus laser-plasma interactions”. In: Review of
Scientific Instruments 80, p. 103301, 2009, p. 103301. (See p. 66)

[180] S. Kuschel, M. Schwab, M. Yeung, D. Hollatz, A. Seidel, W. Ziegler, A. Sävert, M.
Kaluza, and M. Zepf. “Controlling the Self-Injection Threshold in Laser Wakefield
Accelerators”. In: Physical Review Letters 121, p. 154801, 2018, p. 154801. (See
pp. 66, 155)

[181] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q. Lamb, P.
MacNeice, R. Rosner, J. W. Truran, and H. Tufo. “FLASH: An Adaptive Mesh
Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes”. In:
The Astrophysical Journal Supplement Series 131, p. 273, 2000, p. 273. (See p. 67)

[182] C. J. Dasch. “One-dimensional tomography: a comparison of Abel, onion-peeling,
and filtered backprojection methods”. In: Appl. Opt. 31, pp. 1146–1152, 1992,
pp. 1146–1152. (See p. 73)

[183] J. Lindström. “Radioluminescence:A simple model for fluorescent layers - analysis
and applications”. Thesis. 2021. (See p. 75)

[184] Y. Glinec, J. Faure, A. Guemnie-Tafo, V. Malka, H. Monard, J. P. Larbre, V.
De Waele, J. L. Marignier, and M. Mostafavi. “Absolute calibration for a broad
range single shot electron spectrometer”. In: Review of Scientific Instruments 77,
p. 103301, 2006, p. 103301. (See pp. 76, 165)

http://dx.doi.org/10.1051/jp4:2006133135
http://dx.doi.org/10.1051/jp4:2006133135
https://gemini.clf.stfc.ac.uk/ecat2/
http://dx.doi.org/10.1063/1.1380393
http://dx.doi.org/10.1063/1.1380393
http://dx.doi.org/10.1063/1.1145338
http://dx.doi.org/10.1063/1.1145338
http://dx.doi.org/10.1063/1.3233895
http://dx.doi.org/10.1063/1.3233895
http://dx.doi.org/10.1103/PhysRevLett.121.154801
http://dx.doi.org/10.1086/317361
http://dx.doi.org/10.1086/317361
http://dx.doi.org/10.1364/AO.31.001146
http://dx.doi.org/10.1364/AO.31.001146
http://dx.doi.org/10.1063/1.2360988
http://dx.doi.org/10.1063/1.2360988


221 Bibliography

[185] E.-J. Popovici, L. Muresan, A. Hristea-Simoc, E. Indrea, M. Vasilescu, M. Nazarov,
and D. Y. Jeon. “Synthesis and characterisation of rare earth oxysulphide phos-
phors. I. Studies on the preparation of Gd2O2S:Tb phosphor by the flux method”.
In: Optical Materials 27, pp. 559–565, 2004, pp. 559–565. (See p. 76)

[186] J. Lindström, G. Alm Carlsson, E. Wåhlin, Carlsson Tedgren, and G. Poludniowski.
“Experimental assessment of a phosphor model for estimating the relative extrinsic
efficiency in radioluminescent detectors”. In: Physica Medica 76, pp. 117–124,
2020, pp. 117–124. (See p. 76)

[187] LANEX screens. Carestream url: https://www.carestream.com/en/us/

medical / products / radiography / film - systems / film - solutions - for -

radiology/lanex-screens (visited on Dec. 5, 2022) (see p. 76)

[188] X-ray Phosphor Screens. Scintacor url: https://scintacor.com/products/x-

ray-scintillator-screens/ (visited on Dec. 5, 2022) (see p. 76)

[189] G. C. Tyrrell. “Phosphors and scintillators in radiation imaging detectors”. In:
Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 546,
pp. 180–187, 2005, pp. 180–187. (See p. 76)

[190] DRZ Screens. MCI Optonix LLC url: http://www.mcio.com/Products/drz-

screens.aspx (visited on Dec. 5, 2022) (see p. 76)

[191] A. Buck, K. Zeil, A. Popp, K. Schmid, A. Jochmann, S. D. Kraft, B. Hidding,
T. Kudyakov, C. M. S. Sears, L. Veisz, S. Karsch, J. Pawelke, R. Sauerbrey, T.
Cowan, F. Krausz, and U. Schramm. “Absolute charge calibration of scintillating
screens for relativistic electron detection”. In: Review of Scientific Instruments
81, p. 033301, 2010, p. 033301. (See p. 76)

[192] S. G. Gales and C. D. Bentley. “Image plates as x-ray detectors in plasma
physics experiments”. In: Review of Scientific Instruments 75, pp. 4001–4003,
2004, pp. 4001–4003. (See p. 76)

[193] I. J. Paterson, R. J. Clarke, N. C. Woolsey, and G. Gregori. “Image plate response
for conditions relevant to laser–plasma interaction experiments”. In: Measurement
Science and Technology 19, p. 095301, 2008, p. 095301. (See p. 77)

[194] K. A. Tanaka, T. Yabuuchi, T. Sato, R. Kodama, Y. Kitagawa, T. Takahashi,
T. Ikeda, Y. Honda, and S. Okuda. “Calibration of imaging plate for high energy
electron spectrometer”. In: Review of Scientific Instruments 76, p. 013507, 2004,
p. 013507. (See p. 77)

[195] K. Zeil, S. D. Kraft, A. Jochmann, F. Kroll, W. Jahr, U. Schramm, L. Karsch,
J. Pawelke, B. Hidding, and G. Pretzler. “Absolute response of Fuji imaging plate
detectors to picosecond-electron bunches”. In: Review of Scientific Instruments
81, p. 013307, 2010, p. 013307. (See p. 77)

[196] S. Kneip. “Laser Plasma Accelerator and Wiggler”. Thesis. 2010. (See p. 77)

http://dx.doi.org/https://doi.org/10.1016/j.optmat.2004.07.006
http://dx.doi.org/https://doi.org/10.1016/j.ejmp.2020.07.009
http://dx.doi.org/https://doi.org/10.1016/j.ejmp.2020.07.009
https://www.carestream.com/en/us/medical/products/radiography/film-systems/film-solutions-for-radiology/lanex-screens
https://www.carestream.com/en/us/medical/products/radiography/film-systems/film-solutions-for-radiology/lanex-screens
https://www.carestream.com/en/us/medical/products/radiography/film-systems/film-solutions-for-radiology/lanex-screens
https://scintacor.com/products/x-ray-scintillator-screens/
https://scintacor.com/products/x-ray-scintillator-screens/
http://dx.doi.org/https://doi.org/10.1016/j.nima.2005.03.103
http://dx.doi.org/https://doi.org/10.1016/j.nima.2005.03.103
http://dx.doi.org/https://doi.org/10.1016/j.nima.2005.03.103
http://www.mcio.com/Products/drz-screens.aspx
http://www.mcio.com/Products/drz-screens.aspx
http://dx.doi.org/10.1063/1.3310275
http://dx.doi.org/10.1063/1.3310275
http://dx.doi.org/10.1063/1.1789256
http://dx.doi.org/10.1063/1.1789256
http://dx.doi.org/10.1088/0957-0233/19/9/095301
http://dx.doi.org/10.1088/0957-0233/19/9/095301
http://dx.doi.org/10.1063/1.1824371
http://dx.doi.org/10.1063/1.1824371
http://dx.doi.org/10.1063/1.3284524
http://dx.doi.org/10.1063/1.3284524


222 Bibliography

[197] G. E. Giakoumakis and D. M. Miliotis. “Light angular distribution of fluorescent
screens excited by x-rays”. In: Physics in Medicine Biology 30, p. 21, 1985, p. 21.
(See p. 77)

[198] Y. Yamazaki, T. Kurihara, H. Kobayashi, I. Sato, and A. Asami. “High-precision
pepper-pot technique for a low-emittance electron beam”. In: Nucl. Instrum.
Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 322, pp. 139–145,
1992, pp. 139–145. (See p. 80)

[199] R. P. Shanks, M. P. Anania, E. Brunetti, S. Cipiccia, B. Ersfeld, J. G. Gal-
lacher, R. C. Issac, M. R. Islam, G. Vieux, G. H. Welsh, S. M. Wiggins, and
D. A. Jaroszynski. “Pepper-pot emittance measurement of laser-plasma wakefield
accelerated electrons”. In: Proc.SPIE. Vol. 7359. P. 735907. (See p. 80)

[200] E. Brunetti, R. P. Shanks, G. G. Manahan, M. R. Islam, B. Ersfeld, M. P. Anania,
S. Cipiccia, R. C. Issac, G. Raj, G. Vieux, G. H. Welsh, S. M. Wiggins, and
D. A. Jaroszynski. “Low Emittance, High Brilliance Relativistic Electron Beams
from a Laser-Plasma Accelerator”. In: Physical Review Letters 105, p. 215007,
2010, p. 215007. (See pp. 80, 156)

[201] M. Zhang. Emittance Formula for Slits and Pepper-pot Measurement. Technical
Report. FERMILAB-TM, 1988 (see p. 80)

[202] F. Irshad, S. Karsch, and A. Döpp. “Multi-objective and multi-fidelity Bayesian
optimization of laser-plasma acceleration”. In: arXiv e-prints, arXiv:2210.03484,
2022, arXiv:2210.03484. (See pp. 82, 107)

[203] L. Fedeli, A. Huebl, F. Boillod-Cerneux, T. Clark, K. Gott, C. Hillairet, S. Jaure,
A. Leblanc, R. Lehe, A. Myers, C. Piechurski, M. Sato, N. Zaim, W. Zhang, J. Vay,
and H. Vincenti. “Pushing the Frontier in the Design of Laser-Based Electron
Accelerators with Groundbreaking Mesh-Refined Particle-In-Cell Simulations on
Exascale-Class Supercomputers”. In. 2022. (See p. 82)

[204] J. L. Vay, A. Almgren, J. Bell, L. Ge, D. P. Grote, M. Hogan, O. Kononenko, R.
Lehe, A. Myers, C. Ng, J. Park, R. Ryne, O. Shapoval, M. Thévenet, and W. Zhang.
“Warp-X: A new exascale computing platform for beam–plasma simulations”. In:
Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 909,
pp. 476–479, 2018, pp. 476–479. (See p. 82)

[205] J. P. Boris. “Relativistic Plasma Simulation - Optimization of a Hybrid Code”. In:
Numerical Simulations of Plasmas. Ed. by J. P. Boris. Vol. 3. 1970. (See p. 83)

[206] J. L. Vay. “Simulation of beams or plasmas crossing at relativistic velocity”. In:
Physics of Plasmas 15, p. 056701, 2008, p. 056701. (See p. 83)

[207] B. Ripperda, F. Bacchini, J. Teunissen, C. Xia, O. Porth, L. Sironi, G. Lapenta, and
R. Keppens. “A Comprehensive Comparison of Relativistic Particle Integrators”.
In: The Astrophysical Journal Supplement Series 235, p. 21, 2018, p. 21. (See
p. 83)

http://dx.doi.org/10.1088/0031-9155/30/1/003
http://dx.doi.org/https://doi.org/10.1016/0168-9002(92)90021-U
http://dx.doi.org/https://doi.org/10.1016/0168-9002(92)90021-U
http://dx.doi.org/https://doi.org/10.1016/0168-9002(92)90021-U
http://dx.doi.org/10.1103/PhysRevLett.105.215007
http://dx.doi.org/10.1103/PhysRevLett.105.215007
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1016/j.nima.2018.01.035
http://dx.doi.org/https://doi.org/10.1016/j.nima.2018.01.035
http://dx.doi.org/https://doi.org/10.1016/j.nima.2018.01.035
http://dx.doi.org/10.1063/1.2837054
http://dx.doi.org/10.1063/1.2837054
http://dx.doi.org/10.3847/1538-4365/aab114


223 Bibliography

[208] K. Yee. “Numerical solution of initial boundary value problems involving maxwell’s
equations in isotropic media”. In: IEEE Transactions on Antennas and Propagation
14, pp. 302–307, 1966, pp. 302–307. (See p. 83)

[209] R. Nuter, M. Grech, P. Gonzalez de Alaiza Martinez, G. Bonnaud, and E.
d’Humières. “Maxwell solvers for the simulations of the laser-matter interac-
tion”. In: The European Physical Journal D 68, p. 177, 2014, p. 177. (See p. 84)

[210] R. Lehe, A. Lifschitz, C. Thaury, V. Malka, and X. Davoine. “Numerical growth
of emittance in simulations of laser-wakefield acceleration”. In: Physical Review
Special Topics - Accelerators and Beams 16, p. 021301, 2013, p. 021301. (See
p. 85)

[211] A. D. Greenwood, K. L. Cartwright, J. W. Luginsland, and E. A. Baca. “On the
elimination of numerical Cerenkov radiation in PIC simulations”. In: Journal of
Computational Physics 201, pp. 665–684, 2004, pp. 665–684. (See p. 85)

[212] O. Buneman, C. W. Barnes, J. C. Green, and D. E. Nielsen. “Principles and
capabilities of 3-D, E-M particle simulations”. In: Journal of Computational
Physics 38, pp. 1–44, 1980, pp. 1–44. (See p. 85)

[213] J. Derouillat, A. Beck, F. Pérez, T. Vinci, M. Chiaramello, A. Grassi, M. Flé,
G. Bouchard, I. Plotnikov, N. Aunai, J. Dargent, C. Riconda, and M. Grech.
“Smilei : A collaborative, open-source, multi-purpose particle-in-cell code for
plasma simulation”. In: Computer Physics Communications 222, pp. 351–373,
2018, pp. 351–373. (See pp. 85, 171)

[214] A. Grassi, M. Grech, F. Amiranoff, F. Pegoraro, A. Macchi, and C. Riconda.
“Electron Weibel instability in relativistic counterstreaming plasmas with flow-
aligned external magnetic fields”. In: Physical Review E 95, p. 023203, 2017,
p. 023203. (See p. 85)

[215] A. Grassi, M. Grech, F. Amiranoff, A. Macchi, and C. Riconda. “Radiation-
pressure-driven ion Weibel instability and collisionless shocks”. In: Physical Review
E 96, p. 033204, 2017, p. 033204. (See p. 85)

[216] R. Lehe, M. Kirchen, I. A. Andriyash, B. B. Godfrey, and J.-L. Vay. “A spectral,
quasi-cylindrical and dispersion-free Particle-In-Cell algorithm”. In: Computer
Physics Communications 203, pp. 66–82, 2016, pp. 66–82. (See pp. 86, 112, 149,
178)

[217] I. V. Il’ina, T. Y. Cherezova, and A. V. Kudryashov. “Gerchberg—Saxton algo-
rithm: experimental realisation and modification for the problem of formation of
multimode laser beams”. In: Quantum Electronics 39, p. 521, 2009, p. 521. (See
p. 87)

[218] A. Borot and F. Quéré. “Spatio-spectral metrology at focus of ultrashort lasers: a
phase-retrieval approach”. In: Optics Express 26, pp. 26444–26461, 2018, pp. 26444–
26461. (See p. 87)

http://dx.doi.org/10.1109/TAP.1966.1138693
http://dx.doi.org/10.1109/TAP.1966.1138693
http://dx.doi.org/10.1140/epjd/e2014-50162-y
http://dx.doi.org/10.1103/PhysRevSTAB.16.021301
http://dx.doi.org/10.1103/PhysRevSTAB.16.021301
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2004.06.021
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2004.06.021
http://dx.doi.org/https://doi.org/10.1016/0021-9991(80)90010-8
http://dx.doi.org/https://doi.org/10.1016/0021-9991(80)90010-8
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2017.09.024
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2017.09.024
http://dx.doi.org/10.1103/PhysRevE.95.023203
http://dx.doi.org/10.1103/PhysRevE.95.023203
http://dx.doi.org/10.1103/PhysRevE.96.033204
http://dx.doi.org/10.1103/PhysRevE.96.033204
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2016.02.007
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2016.02.007
http://dx.doi.org/10.1070/QE2009v039n06ABEH013642
http://dx.doi.org/10.1364/OE.26.026444
http://dx.doi.org/10.1364/OE.26.026444


224 Bibliography

[219] S. V. Rozario. “Novel injection and targetry in laser wakefield acceleration”. Thesis.
2020. (See pp. 93, 130)

[220] R. J. Shalloo, S. J. D. Dann, J. N. Gruse, C. I. D. Underwood, A. F. Antoine, C.
Arran, M. Backhouse, C. D. Baird, M. D. Balcazar, N. Bourgeois, J. A. Cardarelli,
P. Hatfield, J. Kang, K. Krushelnick, S. P. D. Mangles, C. D. Murphy, N. Lu,
J. Osterhoff, K. Põder, P. P. Rajeev, C. P. Ridgers, S. Rozario, M. P. Selwood,
A. J. Shahani, D. R. Symes, A. G. R. Thomas, C. Thornton, Z. Najmudin, and
M. J. V. Streeter. “Automation and control of laser wakefield accelerators using
Bayesian optimization”. In: Nature Communications 11, p. 6355, 2020, p. 6355.
(See pp. 93, 102)

[221] V. Leroux, T. Eichner, and A. R. Maier. “Description of spatio-temporal cou-
plings from heat-induced compressor grating deformation”. In: Optics Express 28,
pp. 8257–8265, 2020, pp. 8257–8265. (See p. 94)

[222] C. Iaconis and I. A. Walmsley. “Spectral phase interferometry for direct electric-
field reconstruction of ultrashort optical pulses”. In: Optics Letters 23, pp. 792–794,
1998, pp. 792–794. (See p. 95)

[223] Fastlite Dazzler product information. Fastlite url: https://fastlite.com/

produits/dazzler-ultrafast-pulse-shaper/ (visited on Oct. 12, 2022) (see
pp. 95, 164)

[224] HASO4 FIRST. Imagine Optic url: https : / / www . imagine - optic . com /

products/haso4-first-wavefront-sensor/ (visited on Nov. 17, 2022) (see
pp. 95, 134)

[225] J. Strehlow, P. Forestier-Colleoni, C. McGuffey, M. Bailly-Grandvaux, T. S.
Daykin, E. McCary, J. Peebles, G. Revet, S. Zhang, T. Ditmire, M. Donovan,
G. Dyer, J. Fuchs, E. W. Gaul, D. P. Higginson, G. E. Kemp, M. Martinez,
H. S. McLean, M. Spinks, H. Sawada, and F. N. Beg. “The response function of
Fujifilm BAS-TR imaging plates to laser-accelerated titanium ions”. In: Review
of Scientific Instruments 90, p. 083302, 2019, p. 083302. (See p. 98)

[226] iKon-M 934 BR-DD information. Andor url: https://www.photonicsonline.

com/doc/deep-depletion-ccd-camera-ikon-m-934-br-dd-0002 (visited on
Dec. 12, 2022) (see p. 100)

[227] J.-N. Gruse. “Development of Laser Wakefield Accelerators”. Thesis. 2020. (See
pp. 100, 188)

[228] S. Fritzler, E. Lefebvre, V. Malka, F. Burgy, A. E. Dangor, K. Krushelnick, S. P. D.
Mangles, Z. Najmudin, J. P. Rousseau, and B. Walton. “Emittance Measurements
of a Laser-Wakefield-Accelerated Electron Beam”. In: Physical Review Letters 92,
p. 165006, 2004, p. 165006. (See p. 156)

http://dx.doi.org/10.1038/s41467-020-20245-6
http://dx.doi.org/10.1364/OE.386112
http://dx.doi.org/10.1364/OE.386112
http://dx.doi.org/10.1364/OL.23.000792
http://dx.doi.org/10.1364/OL.23.000792
https://fastlite.com/produits/dazzler-ultrafast-pulse-shaper/
https://fastlite.com/produits/dazzler-ultrafast-pulse-shaper/
https://www.imagine-optic.com/products/haso4-first-wavefront-sensor/
https://www.imagine-optic.com/products/haso4-first-wavefront-sensor/
http://dx.doi.org/10.1063/1.5109783
http://dx.doi.org/10.1063/1.5109783
https://www.photonicsonline.com/doc/deep-depletion-ccd-camera-ikon-m-934-br-dd-0002
https://www.photonicsonline.com/doc/deep-depletion-ccd-camera-ikon-m-934-br-dd-0002
http://dx.doi.org/10.1103/PhysRevLett.92.165006
http://dx.doi.org/10.1103/PhysRevLett.92.165006


225 Bibliography

[229] G. R. Plateau, C. G. R. Geddes, D. B. Thorn, M. Chen, C. Benedetti, E. Esarey,
A. J. Gonsalves, N. H. Matlis, K. Nakamura, C. B. Schroeder, S. Shiraishi, T.
Sokollik, J. van Tilborg, C. Toth, S. Trotsenko, T. S. Kim, M. Battaglia, T.
Stöhlker, and W. P. Leemans. “Low-Emittance Electron Bunches from a Laser-
Plasma Accelerator Measured using Single-Shot X-Ray Spectroscopy”. In: Physical
Review Letters 109, p. 064802, 2012, p. 064802. (See p. 156)

[230] S. Barber, J. van Tilborg, C. Schroeder, R. Lehe, H. E. Tsai, K. Swanson, S.
Steinke, K. Nakamura, C. Geddes, C. Benedetti, E. Esarey, and W. Leemans.
“Measured Emittance Dependence on the Injection Method in Laser Plasma
Accelerators”. In: Physical Review Letters 119, p. 104801, 2017, p. 104801. (See
pp. 156, 158)

[231] A. Curcio, M. Anania, F. Bisesto, E. Chiadroni, A. Cianchi, M. Ferrario, F. Filippi,
D. Giulietti, A. Marocchino, M. Petrarca, V. Shpakov, and A. Zigler. “Trace-
space reconstruction of low-emittance electron beams through betatron radiation
in laser-plasma accelerators”. In: Physical Review Accelerators and Beams 20,
p. 012801, 2017, p. 012801. (See p. 156)

[232] F. Brunel. “Not-so-resonant, resonant absorption”. In: Physical Review Letters
59, pp. 52–55, 1987, pp. 52–55. (See pp. 162, 174)

[233] B. H. Shaw, S. Steinke, J. van Tilborg, and W. P. Leemans. “Reflectance charac-
terization of tape-based plasma mirrors”. In: Physics of Plasmas 23, p. 063118,
2016, p. 063118. (See p. 162)

[234] M. B. Reid. “Electron beam emittance growth in thin foils: A betatron function
analysis”. In: Journal of Applied Physics 70, pp. 7185–7187, 1991, pp. 7185–7187.
(See pp. 165, 184)

[235] V. L. Highland. “Some practical remarks on multiple scattering”. In: Nuclear
Instruments and Methods 129, pp. 497–499, 1975, pp. 497–499. (See pp. 165, 184)

[236] D. Marx, J. Giner Navarro, D. Cesar, J. Maxson, B. Marchetti, R. Assmann, and P.
Musumeci. “Single-shot reconstruction of core 4D phase space of high-brightness
electron beams using metal grids”. In: Physical Review Accelerators and Beams
21, p. 102802, 2018, p. 102802. (See p. 166)

[237] Y. Lang, X. H. Yang, H. Xu, Z. Jin, and H. B. Zhuo. “Influence of field ionization
effect on the divergence of laser-driven fast electrons”. In: Plasma Physics and
Controlled Fusion 60, p. 075002, 2018, p. 075002. (See pp. 171, 174)

[238] E. S. Weibel. “Spontaneously Growing Transverse Waves in a Plasma Due to an
Anisotropic Velocity Distribution”. In: Physical Review Letters 2, pp. 83–84, 1959,
pp. 83–84. (See p. 174)

[239] B. D. Fried. “Mechanism for Instability of Transverse Plasma Waves”. In: The
Physics of Fluids 2, pp. 337–337, 1959, pp. 337–337. (See p. 174)

http://dx.doi.org/10.1103/PhysRevLett.109.064802
http://dx.doi.org/10.1103/PhysRevLett.109.064802
http://dx.doi.org/10.1103/PhysRevLett.119.104801
http://dx.doi.org/10.1103/PhysRevAccelBeams.20.012801
http://dx.doi.org/10.1103/PhysRevAccelBeams.20.012801
http://dx.doi.org/10.1103/PhysRevLett.59.52
http://dx.doi.org/10.1103/PhysRevLett.59.52
http://dx.doi.org/10.1063/1.4954242
http://dx.doi.org/10.1063/1.4954242
http://dx.doi.org/10.1063/1.349761
http://dx.doi.org/https://doi.org/10.1016/0029-554X(75)90743-0
http://dx.doi.org/https://doi.org/10.1016/0029-554X(75)90743-0
http://dx.doi.org/10.1103/PhysRevAccelBeams.21.102802
http://dx.doi.org/10.1103/PhysRevAccelBeams.21.102802
http://dx.doi.org/10.1088/1361-6587/aabd05
http://dx.doi.org/10.1088/1361-6587/aabd05
http://dx.doi.org/10.1103/PhysRevLett.2.83
http://dx.doi.org/10.1103/PhysRevLett.2.83
http://dx.doi.org/10.1063/1.1705933
http://dx.doi.org/10.1063/1.1705933


226 Bibliography

[240] F. Fiuza, R. A. Fonseca, J. Tonge, W. B. Mori, and L. O. Silva. “Weibel-Instability-
Mediated Collisionless Shocks in the Laboratory with Ultraintense Lasers”. In:
Physical Review Letters 108, p. 235004, 2012, p. 235004. (See p. 174)

[241] P. Gibbon. Short pulse laser interactions with matter. London: Imperial College
Press, 2005. (See pp. 174, 198)

[242] N. Dover. “Exploring novel regimes for ion acceleration driven by intense laser
radiation”. Thesis. 2013. (See p. 174)

[243] S. C. Wilks, W. L. Kruer, M. Tabak, and A. B. Langdon. “Absorption of ultra-
intense laser pulses”. In: Physical Review Letters 69, pp. 1383–1386, 1992, pp. 1383–
1386. (See p. 176)

[244] M. Tzoufras, W. Lu, F. S. Tsung, C. Huang, W. B. Mori, T. Katsouleas, J. Vieira,
R. A. Fonseca, and L. O. Silva. “Beam Loading in the Nonlinear Regime of
Plasma-Based Acceleration”. In: Physical Review Letters 101, p. 145002, 2008,
p. 145002. (See p. 179)

[245] Kapton Properties. Particle Data Group, LBNL url: https://pdg.lbl.gov/

2005/AtomicNuclearProperties/substances/kapton.html (visited on Dec. 10,
2022) (see p. 184)

[246] R. Ariniello, C. Doss, K. Hunt-Stone, J. Cary, and M. Litos. “Transverse beam
dynamics in a plasma density ramp”. In: Physical Review Accelerators and Beams
22, p. 041304, 2019, p. 041304. (See p. 190)

http://dx.doi.org/10.1103/PhysRevLett.108.235004
http://dx.doi.org/10.1103/PhysRevLett.108.235004
http://dx.doi.org/10.1103/PhysRevLett.69.1383
http://dx.doi.org/10.1103/PhysRevLett.69.1383
http://dx.doi.org/10.1103/PhysRevLett.101.145002
http://dx.doi.org/10.1103/PhysRevLett.101.145002
https://pdg.lbl.gov/2005/AtomicNuclearProperties/substances/kapton.html
https://pdg.lbl.gov/2005/AtomicNuclearProperties/substances/kapton.html
http://dx.doi.org/10.1103/PhysRevAccelBeams.22.041304
http://dx.doi.org/10.1103/PhysRevAccelBeams.22.041304

	Abstract
	Role of the author
	Acknowledgements
	Introduction
	Conventional particle accelerators
	Plasma accelerators
	Near-term applications
	Towards frontier plasma colliders
	Thesis outline

	Theory
	Laser pulses
	Single particle motion
	Ionisation
	Plasma waves
	Laser pulse evolution 
	Acceleration
	Injection
	Transverse dynamics

	Methods
	Laser diagnostics
	Gas targets
	Interferometry
	Electron beam diagnostics
	Particle-in-cell simulations

	The density-length parameter space of a laser wakefield accelerator
	Experimental setup
	Density-length scans
	Simulations
	Discussion
	Summary

	Measurement of ionisation injected GeV beam emittance
	Experimental setup
	Emittance measurement
	Experimental results
	Simulations
	Discussion
	Summary

	Beam divergence considerations for staged LWFA
	Electron beam measurements
	Laser-tape simulations
	LWFA simulations
	Discussion
	Summary

	Conclusions and outlook
	Conclusions
	Summary and outlook

	Appendix
	Fundamental constants
	Maxwell's equations
	Relativistic single particle motion
	Tunnel ionisation rate for specific electrons
	Plasma dispersion relation
	The quasistatic approximation
	Hamiltonian of electron in a 1D plasma wave

	Bibliography

