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Abstract

Quantum computers have the potential to speed up certain computational tasks. A possibility this opens up within the field of
machine learning is the use of quantum techniques that may be inefficient to simulate classically but could provide superior
performance in some tasks. Machine learning algorithms are ubiquitous in particle physics and as advances are made in
quantum machine learning technology there may be a similar adoption of these quantum techniques. In this work a quantum
support vector machine (QSVM) is implemented for signal-background classification. We investigate the effect of different
quantum encoding circuits, the process that transforms classical data into a quantum state, on the final classification perfor-
mance. We show an encoding approach that achieves an average Area Under Receiver Operating Characteristic Curve (AUC)
of 0.848 determined using quantum circuit simulations. For this same dataset the best classical method tested, a classical
Support Vector Machine (SVM) using the Radial Basis Function (RBF) Kernel achieved an AUC of 0.793. Using a reduced
version of the dataset we then ran the algorithm on the IBM Quantum ibmg_casablanca device achieving an average AUC
of 0.703. As further improvements to the error rates and availability of quantum computers materialise, they could form a
new approach for data analysis in high energy physics.

Keywords Quantum machine learning - Quantum support vector machines - Particle physics - Continuum suppression -
Belle IT

Introduction we design and implement a quantum support vector machine

approach for the signal-background classification task in B

There are a number of measurements in flavour physics that
are statistically limited due to lack of precision in signal-
background classification. A superior classification algo-
rithm would allow improved measurements and may result
in the discovery of physics beyond the standard model. With
the emergence of programmable quantum computer devices,
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meson decays. In a B meson factory an electron and a posi-
tron are collided; in our dataset this results in the creation of
either a pair of B and anti-B mesons (BB) decayed from the
Y (4S), or a lighter quark and anti-quark pair (¢g). The BB
pair event is referred to as a signal event; the ¢gg pair event is
referred to as a continuum background event. The task is to
classify events as either signal or background.

The BB will quickly decay and the gg will hadronise into
an array of other longer-lived particles which are measured
by the detector. To investigate a specific B meson decay
mode, such as B — KTK~, we select only events that contain
particle tracks identified as K* K~ that could have originated
from B mesons (which will include some falsely identified
K* K~ tracks from the ¢g pair). We refer to these particles as
originating from the B candidate. If we use particles from the
B candidate itself to perform the classification then we run
the risk of sculpting the background to look like signal [10].
We therefore exclude particles associated with the B candi-
date and use the variables from the other B meson which are

@ Springer


http://orcid.org/0000-0003-2123-7026
http://crossmark.crossref.org/dialog/?doi=10.1007/s41781-021-00075-x&domain=pdf

27 Page 2 of 9

Computing and Software for Big Science (2021) 5:27

not correlated with the kinematic variables of the signal B.
This limits the possibilities of sculpting our background to
look like our signal. Therefore, given the momentum data
of all the other final particles in the event (excluding those
from the B candidate), we need to classify between the two
scenarios of an initial BB signal pair or g background pair.
The gg continuum background events comprise the primary
background for many studies of B-meson decays, many of
which have branching ratios smaller than 107, It is therefore
important to suppress the presence of continuum background
events in the data. A better classification algorithm between
signal and background events enables improved precision in
measurements of these rare B-meson decays.

Quantum computer hardware is advancing rapidly. Quan-
tum supremacy has been achieved [3, 28] by demonstrat-
ing a calculation on a quantum machine that outperformed
classical high performance computers. Additionally, a pho-
tonic quantum system achieved a sampling rate of order 10'4
above state-of-the-art simulations, completing a task that
would be estimated to take current supercomputers several
billions of years [30]. As the size and quality of quantum
computers continues to advance, with large-scale entangle-
ment achieved on a range of platforms [16], so does the
feasibility of using quantum machines to perform classifica-
tion tasks in particle physics. In particular, there are various
ways in which the field of machine learning may benefit
from the advent of quantum computing. These benefits range
from speed-ups to specific subroutines, such as gradient
descent [21], to quantum analogues of classical algorithms,
for example quantum neural networks [11]. We focus on
the quantum analogue of the support vector machine that
is proposed by Havlicek et al. [9], specifically the kernel
estimation technique. This QSVM approach involves using
a quantum circuit to estimate the inner product between two
datapoints that have been encoded into a higher dimensional
quantum Hilbert space. This forms a kernel matrix which is
then passed to a classical support vector machine. QSVM
approaches have been found to outperform classical SVMs
on various machine learning benchmark datasets [18] and
techniques involving preprocessing for QSVM approaches
have led to improved performance on Character Recognition
datasets [29].

It has been suggested that variational quantum machine
learning models can be fundamentally formulated as quantum
kernel methods [22]. The global minimum of the cost function
for a given quantum model is therefore defined by the kernel
and thus the data encoding strategy. This highlights the impor-
tance of the data encoding step in any quantum model. Tech-
niques such as quantum metric learning have demonstrated
trainable data encoding strategies that aim to maximise dis-
tance between separate classes in the higher dimensional Hil-
bert space [15]. In this paper we explore various data encoding
methods that aim to capture the underlying structure of the
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data while also being easy to implement on current quantum
machines.

Machine learning is widely employed in High Energy Phys-
ics [2]. Classically the signal-background classification task
has been tackled with the use of constructed variables. This
involves creating metrics from the momentum data, such as
Fox-Wolfram moments, which are then used as inputs to a
classical machine learning algorithm e.g. a boosted decision
tree [12, 14]. Our focus is on using the raw momentum data
as the input to a quantum algorithm. This quantum algorithm
then generates a kernel matrix that can be passed to a classical
algorithm (a Support Vector Machine) to perform the clas-
sification. This approach allows us to test whether quantum
circuits are capable of generating useful novel encodings for
this classification problem.

It has been shown that quantum machine learning tech-
niques can be used for the discrimination of interesting events
from background [25-27]. Alternative applications of quantum
algorithms within particle physics have also included particle
track reconstruction, utilising both quantum annealers [4] and
quantum neural networks [5]. A review of quantum machine
learning in particle physics was carried out by Guan et al [8].

Problem Statement

Excluding the particles from the B candidate, our final dataset
consists of p particles with known momentum and therefore
3p inputs corresponding to the 3 momentum components of
each particle. Our aim is to produce an algorithm that takes
particle momenta as an input and outputs a classification score
of 0 for background events and 1 for signal events. The two
performance metrics we report are the accuracy (percentage of
correct classifications from all predictions) and the Area Under
Receiver Operating Characteristic Curve (AUC).

Implementation

This method focuses on encoding raw momentum data into
a quantum state using a quantum circuit. To use the raw data
in this way, each event is subject to the preprocessing steps
illustrated in Fig. 1. We first boost our coordinates to the centre
of momentum frame of the event. We then rotate the event
such that @ = 0 and 8 = =z are aligned with the thrust axis of
the event. The thrust axis f is calculated by maximizing 7'(f),
defined as

N Zi |Pi'ﬁ|
T(hy= 2"
W= 5P

Where P, is a momentum vector belonging to the ith particle
from either the B candidate or all of the other particles in
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Fig.1 An illustration of the preprossessing steps performed on an
example gg event

the event (excluding the B candidate) [7]. The momentum
of a particle in this frame is represented by three variables in
spherical coordinates (p, 8, ¢) where p is the absolute value
of the momentum, 0 is the angle between the particle and the
thrust axis and ¢ the angle about the thrust axis.

In the centre of mass frame the e*e™ — ¢g pair are formed
with substantially more individual momentum than the
ete™ — Y (4S) — BB pair. Thus the overall distribution of
background final state particles are far more “jet-like” than
the “spherically” distributed signal particles. Machine learn-
ing algorithms can be trained to distinguish these differences.

Quantum rotation gates accept inputs in the range [0, 27].
The 6 and ¢ inputs fall naturally into this range. The absolute

momentum value p for our data is normalised by a factor ——,

max

where p,,. is the highest momentum value found in all train-
ing and testing datasets, in order for the absolute momentum
to take a value between [0, z]. This ensures the momentum
values of 0 and p,,, are maximally separated. After preproc-
essing the data, it is then possible to classify the data using a
Quantum Support Vector Machine model [9].

Quantum Support Vector Machine

A classical Support Vector Machine usually works by con-
structing a hyperplane to separate datapoints that are encoded
into a higher dimensional space [19, 23]. In this construction
it aims to maximise the distance between the hyperplane and
the nearest datapoint of any class. Given N training vectors X;
each with one of two class labels denoted by y; € 1, —1, this
construction can be achieved by optimising the following

min %aTQa —e'a; subjecttoy’a =0. )

Where e is a vector with all elements equal to one. The «; are
referred to as the dual coefficients and are adjusted during
the optimisation. Q is an N by N positive semidefinite matrix
Q; = yiy;K(x;, X)) [24]. The term K(x;, X;) = ¢p(x;)" p(x;) is
referred to as the kernel matrix. Each datapoint is trans-
formed into a higher dimension by the encoding X; — ¢(x;).

The explicit form of this encoding is not required by the

Support Vector Machine, which only needs to know the ker-
nel matrix that is usually given as an explicit function.

For the Quantum Support Vector Machine [9] the higher
dimensional encoding x; — |w(xj)) is a quantum state which
can not be read by a classical algorithm. However, as only
the inner product between these quantum encoded states is
required, it is possible to measure |<I[I(Xi)|l//(Xj)>|2 which
may be used as an estimate for the kernel matrix correspond-
ing to datapoints x; and x;. The main difference between the
quantum and classical support vector machines is that in the
classical case an explicit kernel function equation is often
known, for example the Radial Basis Function (RBF) kernel

. —|x,—x;|?
defined as K(x;,X;) = exp ( !

1 20-2
parameter that can be optimised. In the quantum case the
kernel matrix is instead calculated using a quantum circuit.
The classical and quantum support vector machine
approaches are summarised in Fig. 2.

The first step of the QSVM is to encode classical data
X, into a quantum state |y (x;)). In Havlicek et al. [9], the
encoding circuit comprises of gates that are parameterised
by the classical data. The aim of this encoding circuit U(x)
is to transform each event, a classical n dimensional array
consisting of the momentum coordinates of each particle,
into a 2" dimensional quantum state. The motivation here
is that in this higher dimensional Hilbert space it may be
easier to separate signal and background events. The input
data can be represented as a vector x € R” containing all the
momentum variables of the particles considered for an event.
This vector is mapped onto a quantum state |y (X)) using n
qubits in the following circuit

), where o is a free

L
W (X)) = UX)[0)®" = <H UH®" |[0)®". 3)
i=0

An encoding circuit (x) is applied to an initial |0)®” state.
H®" is a parallel implementation of a Hadamard gate on
each of the n qubits and U(x) is the n-qubit encoding opera-
tion. Note that the encoding operation U(X) can be repeat-
edly applied L times to create an L layered encoding circuit,
where it is thought that the quantum kernel would be harder
to simulate classically as more layers are used.

Combinatorial Encoding

The encoding operation U(x) that was used in the technique
suggested by Havlicek et al. [9] is illustrated in Fig. 4. It is
formally defined as

n

n—-1 n
U(x) = exp <i Dz i), Zf(xz,xm)zlzm>, “@

k=1 =1 m>Il
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Fig.2 (Lower path) The concept of a classical SVM. Data is encoded
in a higher dimensional space where the separation is performed. The
inner products between datapoints forms the kernel matrix; this can
usually be given as an explicit equation. (Upper path) The concept of
a QSVM. Raw data is encoded into a quantum state using a quan-

where Z, represents the Pauli Z matrix applied to qubit k.
This circuit first introduces a phase shift to each individual
qubit by an amount x,. This is followed by an entangling step
where the function f effectively quantifies some form of a
phase shift between the two qubits that are to be entangled.
The entangling function we used is
1

F0%,) = — (5 = m)(x, = 7). 5)
This circuit explicitly entangles every qubit with every other
qubit, meaning all combinations of qubits are entangled. We
will therefore refer to this circuit throughout this paper as the
combinatorial encoding circuit [9].

The purpose of the encoding operation is to turn classical
data into a quantum state. To use a support vector machine,
we need to calculate the inner product between every event in
this quantum space (y (x;)|y (x;)). By referring to Eq. (3) this
quantity can be written as

(wx)ly(x)) =

(OIH®"UT (x)H®"U" (x))U(x;) H®"U(x;)H®"|0). ©)
This kernel estimation circuit, which is illustrated in
Fig. 5, acts to determine the inner product between the
two quantum states. The circuit is run repeatedly over
many shots (identical runs) and the proportion of |0)"
state measurements is calculated. The proportion of
|0)" measurements is an estimate for the probability
[(O|H®" Ut (x)H®" U (x)U(x) H®"U(x)H®"|0)|>.  This
process therefore produces an estimate for the quan-
tity I(y/(xi)lt//(xj))l2 which can then be used as the kernel
matrix entry for two events x; and x;. This is repeated for
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o(x) p(x;)

K(x;, %)) = | )l (x))

tum circuit that is parameterised by the classical data. The separation
is made between signal and background in the higher dimensional
quantum space. To achieve this we need to measure the inner product
between the quantum states produced in the circuit

all combinations of events in the dataset until a full kernel
matrix is obtained. This kernel is then passed to a classical
support vector machine to perform the classification. The
overall effect of this is to take events of dimension n and
project them into a 2" dimensional quantum space where the
separation is then performed.

Alternative Encoding Methods

The combinatorial encoding circuit that is shown in Fig. 4
corresponds to a specific kernel. By making adjustments
to this encoding circuit we are able to construct entirely
different kernels, which have the potential to perform bet-
ter on our dataset while also using fewer gates and qubits.

Bloch Sphere Encoding

In an effort to encode the same amount of classical infor-
mation into fewer qubits we implemented a model that
encodes the 6 and p variables of each particle into a single
qubit. There are several ways in which multiple classical
variables can be encoded into a single qubit [13]. To test
this concept we construct a circuit that applies an X rota-
tion by @, followed by a Z rotation by p to the Bloch sphere
of the qubit. This encodes the two variables into the Bloch
sphere of a single qubit as shown in Fig. 6. Note that this
circuit contains no quantum entanglement.
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Separate Particle Encoding

The structure of the encoding circuit directly affects the
kernel function and the final classification result. One pos-
sible issue with the combinatorial encoding circuit is that it
treats every classical variable identically; p; would be entan-
gled with 0, in the same manner as p, is entangled with p,,
despite p, being a variable from a different particle. The
circuit has no built-in way of discriminating the individual
particles. Considering this we introduce a separate parti-
cle encoding circuit. The first layer involves entangling the
momentum variables for each particle individually, resulting
in a 2 qubit quantum state for each particle. This is followed
by a layer that entangles the states representing each parti-
cle with every other particle based on their momenta. This
separate particle encoding operation U(x) is shown in Fig. 7
for the 2 particle case.

This technique has the advantage of using fewer quantum
gates in total than the combinatorial circuit, which reduces
the error rate when running on a quantum device. It could
also be adapted to include additional information about
each particle, by expanding the number of qubits to include
variables such as charge, mass etc. without as significant an
increase in the number of gates used compared to the com-
binatorial encoding circuit.

Separate Particle with Bloch Encoding

We can merge the Bloch sphere encoding idea into the sepa-
rate particle circuit, by encoding both angles 6 and ¢ into
the same qubit. This results in all three momentum variables
for a particle being encoded into 2 qubits. In this encoding
gate the @ and ¢ angles of each particle are encoded into the
0 and ¢ angle rotations of one qubit, and the momentum of
the particle is encoded into the other qubit. Entanglement
between these 2 qubits can optionally be introduced here; for
our simulations with noise and real machine run we used a
two qubit entangling gate as shown in Fig. 3 where the phase
shift was given by f(p, 0, ¢) = iz(zr —p)z —0)(xw — ¢p). In
the next step each particle, now represented by 2 qubits,

(a)Z Rotation Gate (b) Two Qubit Entangling Gate

eikak —

i Ctxm)ZiZy _

==== g kg

Fig.3 a The circuit notation for the single qubit part of the encoding
gate. The effect of this Z rotation gate is a Z rotation of the qubit’s
Bloch sphere by an angle x;. b The circuit notation we use for the two
qubit entangling part of the encoding gate. The explicit construction
in a real quantum circuit is shown here using Controlled Not gates.
This gate effectively introduces some form of phase shift between two
qubits that depends on some function of the respective momentum
variables in the classical data x; and x,,

is entangled with every other particle via their momentum
qubit in the same way as the separate particle encoding
operation in Fig. 7.

Result Comparisons

We have limited our simulations to events that contain
exactly 4 particles, which accounts for around 14% of the
total events. We could generalise this approach by build-
ing circuits for different numbers of particles and then com-
bining the end results. However, for the purposes of this
exploratory analysis we will only consider 4 particle events.
The simulations were run with 60,000 training events and
10,000 testing events using the Qiskit statevector_simula-
tor in the absence of noise [1]. This was repeated 10 times
in total using a random selection of events for the training
and testing datasets each time. The results of the different
encoding circuits are summarised in Table 1.

These results suggest that the physically motivated
improvements made in the separate particle circuit have a

(a) Real event from dataset
after preprocessing

(b) = Example Event X;

(p1,01, 1)

25,05, o
0 (P2, 6>, 92)

Dy

Pz

(c) Combinatorial Encoding Gate U(X;)

P10 —
P1:P2 61,2 —

pi.0> 01,6, 1 P2, [—

> ﬁﬁﬂ
SIS =

Fig.4 a An event from the real dataset after preprocessing is shown.
Different coloured points correspond to different types of charged
particles. b An example particle decay event containing two parti-
cles demonstrating the raw momentum data in spherical coordinates.
¢ The circuit structure for the combinatorial encoding operation U(x)
[9]. For readability the circuit omits the ¢ variable

H
0 v FE vy H o e
—{EH H U o}
s

Fig.5 The general circuit for estimating the inner product of two
quantum encoded states. The probability of measuring |0)" as the
final state of this circuit will estimate the quantity |(y (x;)|w(x;)) |2

@ Springer



27 Page 6 of 9

Computing and Software for Big Science (2021) 5:27

(a) Bloch Encoding (¢) Bloch Sphere

Rotation X Rotation Z

(b) X Rotation Gate
elkak _

Fig.6 a An encoding operation that encodes two variables of a par-
ticle into a single qubit. b The definition of the X rotation gate. X is
the Pauli X matrix applied to qubit k. ¢ The resulting Bloch sphere of
a qubit, if initially in the |0) state, after being acted on by this circuit

(a) Raw Data X; (b) Separate Particle Encoding
Particles entangled Particles entangled

individually through their momenta

(p1,01,¢1)

(P2, 62, $2)

I[’l sP2

0, P2, 0

Fig.7 a The raw data classical input for a two particle event. b
The separate particle encoding operation U(x). Initially a 2 qubit
entangled state is produced for each particle based on each parti-
cle’s momentum variables. After individual particles are separately
encoded, each particle is then entangled with every other particle
through one of its qubits

Table 1 Average results from 10 random dataset samples obtained by
classically simulating various encoding circuits using Qiskit statevec-
tor_simulator with 60,000 training events and 10,000 testing events
in each sample

Encoding circuit Accuracy AUC
Combinatorial encoding 0.762 0.822
Separate particle encoding 0.776 0.835
Bloch sphere encoding 0.764 0.836
Separate particle with bloch 0.771 0.848
Classical RBF kernel SVM 0.728 0.793
XGBoost 0.590 0.621

The uncertainty on each of the mean values stated is + 0.001

positive impact on the discriminatory power of the circuit
compared to the combinatorial encoding. Furthermore, com-
bining this method with the Bloch sphere encoding resulted
in our best average AUC score of 0.848. For comparison
we tested classical SVMs on the data for various different
classical kernels with the best result being the radial basis
function (RBF) Kernel with an average AUC of 0.793. We
also included XGBoost as a comparison, deciding on the
hyperparameters (maximum tree depth, number of estimator,
minimum split loss and learning rate) using GridSearchCV

@ Springer

[19]. The uncertainty in the mean values was 0.001 for each
entry in Table 1; this uncertainty was calculated by taking
the standard deviation and dividing by the square root of the
number of samples (which is 10 in this case). This suggests
the dataset size used in these simulations was large enough
to enable statistically significant comparisons between
encoding circuits.

Simulations with Noise and Error Mitigation

The simulation results demonstrate the potential for quan-
tum algorithms on ideal noiseless devices. Modern quantum
devices do however have noticeable error rates which are
dependent on factors such as the number of gates used in
the circuit. To investigate the effect this has on our results
we re-run our simulation with a noise model [1]. To reduce
the impact of these errors we implement a measurement
error mitigation technique [20] recently demonstrated in the
context of verifying whole-array entanglement in the IBM
Quantum ibmq_manhattan device [17]. This procedure con-
sists of performing an initial calibration of the basis states
for the noisy device. The noisy basis state measurements are
used to construct a matrix; the inverse of this matrix when
applied to a noisy basis state should take it to the ideal basis
state. By applying this calibration matrix to our final results
we can reconstruct a final measurement closer to the ideal
noiseless case.

The separate particle with Bloch encoding circuit was
tested using events that contained 3 particles only, which
accounts for 20% of total events. As mentioned previ-
ously, this could be generalised by building circuits with
more qubits for events with more particles and combining
the results. However, for this section we focused on events
that contained only 3 particles so that the circuits could be
run on a 6 qubit quantum machine. The Qiskit gasm_ simu-
lator is used with a simulated noise model based on the
IBM Quantum ibmgq_toronto device. The classification was
repeated with 10 different datasets, each consisting of 30
training and 30 testing points to find an average classifica-
tion performance. The separate particle with Bloch encoding
circuit achieved an average accuracy of 0.670 + 0.100 and
an average AUC of 0.751 + 0.100. For comparison, this test
repeated with an ideal noiseless simulation gives an accu-
racy of 0.750 + 0.050 and an AUC of 0.789 + 0.110.

The average AUC score for the separate particle with
Bloch encoding circuit is 0.751 for this dataset size when
run with simulated noise. In contrast, repeating this inves-
tigation for the combinatorial encoding circuit results in
an average accuracy of 0.530 + 0.086 and an average AUC
of 0.550 + 0.131, a significant reduction in performance.
This could possibly be due to the greater number of gates
used in the combinatorial encoding circuit compared to the
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Table2 Results obtained using the separate particle with Bloch
encoding circuit as the training dataset size is varied

Device Type Training Accuracy AUC
Ideal Simulation 1000 0.77 £ 0.03 0.83 +£0.05
Ideal Simulation 100 0.75 £ 0.05 0.78 + 0.04
Ideal Simulation 30 0.75 £ 0.05 0.79 £ 0.11
Simulated Noise 30 0.67 +£0.10 0.75 £ 0.10
Real Device 30 0.64 0.70

The testing dataset size was fixed at 30. Simulations were run using
Qiskit then repeated and averaged over 10 different datasets. The
Simulated Noise result includes a classical simulation of the noise
found in the IBM Quantum ibmgq_toronto device. The Real Device
result refers to a single dataset being run on the IBM Quantum ibmg_
casablanca device

separate particle with Bloch encoding circuit, resulting in
a larger source of quantum error.

Experimental Testing on Real Quantum
Devices and Comparison

The separate particle with Bloch encoding circuit was
tested on a real device using 3 particle events only. The
dataset consisted of 30 training points and 30 testing
points. This was run using 6 qubits on the IBM Quan-
tum ibmg_casablanca device and repeated 10 times for
the same dataset achieving an average accuracy of 0.640
+ 0.036 and an average AUC of 0.703 + 0.063, where the
quoted uncertainties in this case use the standard deviation
of multiple runs using the same dataset to demonstrate the
effect of quantum noise in the real machine.

The upper section of Table 2 shows the comparison of
ideal simulations of varying training dataset sizes along-
side a simulated noise model of the IBM Quantum ibmg_
toronto device. These results are averaged over 10 random
datasets. The uncertainties quoted are the standard devia-
tion of the distribution of trials. The result for the real
device was a single run and is consistent within uncer-
tainty of the simulated noise runs.

The trend demonstrates that smaller training datasets
result in worse AUC scores with larger uncertainties.
These results suggest that for small dataset sizes there
will be rather large uncertainties, even in the absence of
quantum noise, due to the size of the training dataset itself.
As availability of quantum machines increases it is hoped
that larger datasets could be run, in which case the main
source of uncertainty would be expected to derive from
quantum noise instead.

Conclusion

We have demonstrated on a small scale how quantum
machine learning may be applied to signal-background
classification for continuum suppression in the study of
B mesons. Simulating the combinatorial encoding circuit
on the signal-background classification problem we meas-
ured an average AUC of 0.822, outperforming the classical
SVM and XGBoost methods tested for this dataset. The
separate particle with Bloch encoding circuit, which we
designed for particle data, improved the average AUC fur-
ther to 0.848. This encoding method also used fewer qubits
and quantum gates than the combinatorial circuit. Using a
smaller dataset in the presence of simulated quantum noise
the separate particle with Bloch encoding method achieved
an average AUC of 0.750. In contrast, the combinatorial
circuit in the same set-up performed significantly worse
in the presence of simulated noise with an AUC of 0.550;
a possible explanation for this could be the much higher
number of gates in the combinatorial circuit compared to
the separate particle Bloch encoding circuit. Running the
separate particle encoding circuit on a real quantum device
resulted in an AUC score of 0.703, which lies within the
error range of the simulated noise runs. Further work
could involve using quantum error mitigation techniques
[6] to improve the performance on real quantum devices
in the presence of noise.

When using a limited number of inputs the QSVM out-
performed classical methods in simulations. This result
suggests that the quantum kernel created by the circuit
is useful for signal background classification for certain
datasets. We demonstrate a separate particle Bloch encod-
ing circuit that performed best in our noiseless simulations
and performed significantly better than the combinatorial
circuit in the presence of simulated noise. The number of
input data sets and performance in the quantum approach
was limited due to the size and error rates of current quan-
tum computers. If expanded to use more inputs and larger
dataset sizes it is foreseeable that the QSVM may be able
to compete with current state-of-the-art classical tech-
niques, which can achieve AUCs of 0.930 [10]. There are
a plethora of alternative quantum machine learning meth-
ods that could utilise the encoding circuits discussed here.
There may also be other data classification tasks, from
particle physics or elsewhere, that could benefit from this
method of encoding. Whether the same encoding circuits
that performed well for the QSVM technique also suc-
ceed in other approaches would be a question for further
investigation.
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