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Abstract
Quantum computers have the potential to speed up certain computational tasks. A possibility this opens up within the field of 
machine learning is the use of quantum techniques that may be inefficient to simulate classically but could provide superior 
performance in some tasks. Machine learning algorithms are ubiquitous in particle physics and as advances are made in 
quantum machine learning technology there may be a similar adoption of these quantum techniques. In this work a quantum 
support vector machine (QSVM) is implemented for signal-background classification. We investigate the effect of different 
quantum encoding circuits, the process that transforms classical data into a quantum state, on the final classification perfor-
mance. We show an encoding approach that achieves an average Area Under Receiver Operating Characteristic Curve (AUC) 
of 0.848 determined using quantum circuit simulations. For this same dataset the best classical method tested, a classical 
Support Vector Machine (SVM) using the Radial Basis Function (RBF) Kernel achieved an AUC of 0.793. Using a reduced 
version of the dataset we then ran the algorithm on the IBM Quantum ibmq_casablanca device achieving an average AUC 
of 0.703. As further improvements to the error rates and availability of quantum computers materialise, they could form a 
new approach for data analysis in high energy physics.

Keywords  Quantum machine learning · Quantum support vector machines · Particle physics · Continuum suppression · 
Belle II

Introduction

There are a number of measurements in flavour physics that 
are statistically limited due to lack of precision in signal-
background classification. A superior classification algo-
rithm would allow improved measurements and may result 
in the discovery of physics beyond the standard model. With 
the emergence of programmable quantum computer devices, 

we design and implement a quantum support vector machine 
approach for the signal-background classification task in B 
meson decays. In a B meson factory an electron and a posi-
tron are collided; in our dataset this results in the creation of 
either a pair of B and anti-B mesons ( BB̄ ) decayed from the 
� (4S) , or a lighter quark and anti-quark pair ( qq̄ ). The BB̄ 
pair event is referred to as a signal event; the qq̄ pair event is 
referred to as a continuum background event. The task is to 
classify events as either signal or background.

The BB̄ will quickly decay and the qq̄ will hadronise into 
an array of other longer-lived particles which are measured 
by the detector. To investigate a specific B meson decay 
mode, such as B → K+K− , we select only events that contain 
particle tracks identified as K+K− that could have originated 
from B mesons (which will include some falsely identified 
K+K− tracks from the qq̄ pair). We refer to these particles as 
originating from the B candidate. If we use particles from the 
B candidate itself to perform the classification then we run 
the risk of sculpting the background to look like signal [10]. 
We therefore exclude particles associated with the B candi-
date and use the variables from the other B meson which are 
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not correlated with the kinematic variables of the signal B. 
This limits the possibilities of sculpting our background to 
look like our signal. Therefore, given the momentum data 
of all the other final particles in the event (excluding those 
from the B candidate), we need to classify between the two 
scenarios of an initial BB̄ signal pair or qq̄ background pair. 
The qq̄ continuum background events comprise the primary 
background for many studies of B-meson decays, many of 
which have branching ratios smaller than 10−5 . It is therefore 
important to suppress the presence of continuum background 
events in the data. A better classification algorithm between 
signal and background events enables improved precision in 
measurements of these rare B-meson decays.

Quantum computer hardware is advancing rapidly. Quan-
tum supremacy has been achieved [3, 28] by demonstrat-
ing a calculation on a quantum machine that outperformed 
classical high performance computers. Additionally, a pho-
tonic quantum system achieved a sampling rate of order 1014 
above state-of-the-art simulations, completing a task that 
would be estimated to take current supercomputers several 
billions of years [30]. As the size and quality of quantum 
computers continues to advance, with large-scale entangle-
ment achieved on a range of platforms [16], so does the 
feasibility of using quantum machines to perform classifica-
tion tasks in particle physics. In particular, there are various 
ways in which the field of machine learning may benefit 
from the advent of quantum computing. These benefits range 
from speed-ups to specific subroutines, such as gradient 
descent [21], to quantum analogues of classical algorithms, 
for example quantum neural networks [11]. We focus on 
the quantum analogue of the support vector machine that 
is proposed by Havlicek et al. [9], specifically the kernel 
estimation technique. This QSVM approach involves using 
a quantum circuit to estimate the inner product between two 
datapoints that have been encoded into a higher dimensional 
quantum Hilbert space. This forms a kernel matrix which is 
then passed to a classical support vector machine. QSVM 
approaches have been found to outperform classical SVMs 
on various machine learning benchmark datasets [18] and 
techniques involving preprocessing for QSVM approaches 
have led to improved performance on Character Recognition 
datasets [29].

It has been suggested that variational quantum machine 
learning models can be fundamentally formulated as quantum 
kernel methods [22]. The global minimum of the cost function 
for a given quantum model is therefore defined by the kernel 
and thus the data encoding strategy. This highlights the impor-
tance of the data encoding step in any quantum model. Tech-
niques such as quantum metric learning have demonstrated 
trainable data encoding strategies that aim to maximise dis-
tance between separate classes in the higher dimensional Hil-
bert space [15]. In this paper we explore various data encoding 
methods that aim to capture the underlying structure of the 

data while also being easy to implement on current quantum 
machines.

Machine learning is widely employed in High Energy Phys-
ics [2]. Classically the signal-background classification task 
has been tackled with the use of constructed variables. This 
involves creating metrics from the momentum data, such as 
Fox-Wolfram moments, which are then used as inputs to a 
classical machine learning algorithm e.g. a boosted decision 
tree [12, 14]. Our focus is on using the raw momentum data 
as the input to a quantum algorithm. This quantum algorithm 
then generates a kernel matrix that can be passed to a classical 
algorithm (a Support Vector Machine) to perform the clas-
sification. This approach allows us to test whether quantum 
circuits are capable of generating useful novel encodings for 
this classification problem.

It has been shown that quantum machine learning tech-
niques can be used for the discrimination of interesting events 
from background [25–27]. Alternative applications of quantum 
algorithms within particle physics have also included particle 
track reconstruction, utilising both quantum annealers [4] and 
quantum neural networks [5]. A review of quantum machine 
learning in particle physics was carried out by Guan et al [8].

Problem Statement

Excluding the particles from the B candidate, our final dataset 
consists of p particles with known momentum and therefore 
3p inputs corresponding to the 3 momentum components of 
each particle. Our aim is to produce an algorithm that takes 
particle momenta as an input and outputs a classification score 
of 0 for background events and 1 for signal events. The two 
performance metrics we report are the accuracy (percentage of 
correct classifications from all predictions) and the Area Under 
Receiver Operating Characteristic Curve (AUC).

Implementation

This method focuses on encoding raw momentum data into 
a quantum state using a quantum circuit. To use the raw data 
in this way, each event is subject to the preprocessing steps 
illustrated in Fig. 1. We first boost our coordinates to the centre 
of momentum frame of the event. We then rotate the event 
such that � = 0 and � = � are aligned with the thrust axis of 
the event. The thrust axis �̂ is calculated by maximizing T(�̂) , 
defined as

Where �i is a momentum vector belonging to the ith particle 
from either the B candidate or all of the other particles in 

(1)T(�̂) =

∑
i ��i ⋅ �̂�∑
i ��i�

.
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the event (excluding the B candidate) [7]. The momentum 
of a particle in this frame is represented by three variables in 
spherical coordinates (p, �,�) where p is the absolute value 
of the momentum, � is the angle between the particle and the 
thrust axis and � the angle about the thrust axis.

In the centre of mass frame the e+e− → qq̄ pair are formed 
with substantially more individual momentum than the 
e+e− → 𝛶 (4S) → BB̄ pair. Thus the overall distribution of 
background final state particles are far more “jet-like” than 
the “spherically” distributed signal particles. Machine learn-
ing algorithms can be trained to distinguish these differences.

Quantum rotation gates accept inputs in the range [0, 2�] . 
The � and � inputs fall naturally into this range. The absolute 
momentum value p for our data is normalised by a factor �

pmax

 , 
where pmax is the highest momentum value found in all train-
ing and testing datasets, in order for the absolute momentum 
to take a value between [0,�] . This ensures the momentum 
values of 0 and pmax are maximally separated. After preproc-
essing the data, it is then possible to classify the data using a 
Quantum Support Vector Machine model [9].

Quantum Support Vector Machine

A classical Support Vector Machine usually works by con-
structing a hyperplane to separate datapoints that are encoded 
into a higher dimensional space [19, 23]. In this construction 
it aims to maximise the distance between the hyperplane and 
the nearest datapoint of any class. Given N training vectors �i 
each with one of two class labels denoted by yi ∈ 1,−1 , this 
construction can be achieved by optimising the following

Where e is a vector with all elements equal to one. The �i are 
referred to as the dual coefficients and are adjusted during 
the optimisation. Q is an N by N positive semidefinite matrix 
Qij = yiyjK(�i, �j) [24]. The term K(�i, �j) = �(�i)

T�(�j) is 
referred to as the kernel matrix. Each datapoint is trans-
formed into a higher dimension by the encoding �j → �(�j) . 
The explicit form of this encoding is not required by the 

(2)min
�

1

2
�TQ� − eT�; subject to yT� = 0.

Support Vector Machine, which only needs to know the ker-
nel matrix that is usually given as an explicit function.

For the Quantum Support Vector Machine [9] the higher 
dimensional encoding �j → ��(�j)⟩ is a quantum state which 
can not be read by a classical algorithm. However, as only 
the inner product between these quantum encoded states is 
required, it is possible to measure �⟨�(�i)��(�j)⟩�2 which 
may be used as an estimate for the kernel matrix correspond-
ing to datapoints �i and �j . The main difference between the 
quantum and classical support vector machines is that in the 
classical case an explicit kernel function equation is often 
known, for example the Radial Basis Function (RBF) kernel 
defined as K(�i, �j) = exp

(
−|�i−�j|2

2�2

)
 , where � is a free 

parameter that can be optimised. In the quantum case the 
kernel matrix is instead calculated using a quantum circuit. 
The classical and quantum support vector machine 
approaches are summarised in Fig. 2.

The first step of the QSVM is to encode classical data 
�i into a quantum state ��(�i)⟩ . In Havlicek et al. [9], the 
encoding circuit comprises of gates that are parameterised 
by the classical data. The aim of this encoding circuit U(�) 
is to transform each event, a classical n dimensional array 
consisting of the momentum coordinates of each particle, 
into a 2n dimensional quantum state. The motivation here 
is that in this higher dimensional Hilbert space it may be 
easier to separate signal and background events. The input 
data can be represented as a vector � ∈ ℝ

n containing all the 
momentum variables of the particles considered for an event. 
This vector is mapped onto a quantum state ��(�)⟩ using n 
qubits in the following circuit

An encoding circuit U(�) is applied to an initial �0⟩⊗n state. 
H⊗n is a parallel implementation of a Hadamard gate on 
each of the n qubits and U(�) is the n-qubit encoding opera-
tion. Note that the encoding operation U(�) can be repeat-
edly applied L times to create an L layered encoding circuit, 
where it is thought that the quantum kernel would be harder 
to simulate classically as more layers are used.

Combinatorial Encoding

The encoding operation U(�) that was used in the technique 
suggested by Havlicek et al. [9] is illustrated in Fig. 4. It is 
formally defined as

(3)�𝜓(�)⟩ = U(�)�0⟩⊗n =

�
L�

i=0

U(�)H⊗n

�
�0⟩⊗n.

(4)U(�) = exp

(
i

n∑

k=1

xkZk + i

n−1∑

l=1

n∑

m>l

f (xl, xm)ZlZm

)
,

Fig. 1   An illustration of the preprossessing steps performed on an 
example qq̄ event
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where Zk represents the Pauli Z matrix applied to qubit k. 
This circuit first introduces a phase shift to each individual 
qubit by an amount xk . This is followed by an entangling step 
where the function f effectively quantifies some form of a 
phase shift between the two qubits that are to be entangled. 
The entangling function we used is

This circuit explicitly entangles every qubit with every other 
qubit, meaning all combinations of qubits are entangled. We 
will therefore refer to this circuit throughout this paper as the 
combinatorial encoding circuit [9].

The purpose of the encoding operation is to turn classical 
data into a quantum state. To use a support vector machine, 
we need to calculate the inner product between every event in 
this quantum space ⟨�(�i)��(�j)⟩ . By referring to Eq. (3) this 
quantity can be written as

This kernel estimation circuit, which is illustrated in 
Fig. 5, acts to determine the inner product between the 
two quantum states. The circuit is run repeatedly over 
many shots (identical runs) and the proportion of �0⟩n 
state measurements is calculated. The proportion of 
�0⟩n measurements is an estimate for the probability 
�⟨0�H⊗nU†(�i)H

⊗nU†(�i)U(�j)H
⊗nU(�j)H

⊗n�0⟩�2.  T h i s 
process therefore produces an estimate for the quan-
tity �⟨�(�i)��(�j)⟩�2 which can then be used as the kernel 
matrix entry for two events �i and �j . This is repeated for 

(5)f (xl, xm) =
1

�
(xl − �)(xm − �).

(6)
⟨𝜓(�i)�𝜓(�j)⟩ =

⟨0�H⊗nU†(�i)H
⊗nU†(�i)U(�j)H

⊗nU(�j)H
⊗n�0⟩.

all combinations of events in the dataset until a full kernel 
matrix is obtained. This kernel is then passed to a classical 
support vector machine to perform the classification. The 
overall effect of this is to take events of dimension n and 
project them into a 2n dimensional quantum space where the 
separation is then performed.

Alternative Encoding Methods

The combinatorial encoding circuit that is shown in Fig. 4 
corresponds to a specific kernel. By making adjustments 
to this encoding circuit we are able to construct entirely 
different kernels, which have the potential to perform bet-
ter on our dataset while also using fewer gates and qubits.

Bloch Sphere Encoding

In an effort to encode the same amount of classical infor-
mation into fewer qubits we implemented a model that 
encodes the � and p variables of each particle into a single 
qubit. There are several ways in which multiple classical 
variables can be encoded into a single qubit [13]. To test 
this concept we construct a circuit that applies an X rota-
tion by � , followed by a Z rotation by p to the Bloch sphere 
of the qubit. This encodes the two variables into the Bloch 
sphere of a single qubit as shown in Fig. 6. Note that this 
circuit contains no quantum entanglement.

Fig. 2   (Lower path) The concept of a classical SVM. Data is encoded 
in a higher dimensional space where the separation is performed. The 
inner products between datapoints forms the kernel matrix; this can 
usually be given as an explicit equation. (Upper path) The concept of 
a QSVM. Raw data is encoded into a quantum state using a quan-

tum circuit that is parameterised by the classical data. The separation 
is made between signal and background in the higher dimensional 
quantum space. To achieve this we need to measure the inner product 
between the quantum states produced in the circuit
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Separate Particle Encoding

The structure of the encoding circuit directly affects the 
kernel function and the final classification result. One pos-
sible issue with the combinatorial encoding circuit is that it 
treats every classical variable identically; p1 would be entan-
gled with �1 in the same manner as p1 is entangled with p2 , 
despite p2 being a variable from a different particle. The 
circuit has no built-in way of discriminating the individual 
particles. Considering this we introduce a separate parti-
cle encoding circuit. The first layer involves entangling the 
momentum variables for each particle individually, resulting 
in a 2 qubit quantum state for each particle. This is followed 
by a layer that entangles the states representing each parti-
cle with every other particle based on their momenta. This 
separate particle encoding operation U(�) is shown in Fig. 7 
for the 2 particle case.

This technique has the advantage of using fewer quantum 
gates in total than the combinatorial circuit, which reduces 
the error rate when running on a quantum device. It could 
also be adapted to include additional information about 
each particle, by expanding the number of qubits to include 
variables such as charge, mass etc. without as significant an 
increase in the number of gates used compared to the com-
binatorial encoding circuit.

Separate Particle with Bloch Encoding

We can merge the Bloch sphere encoding idea into the sepa-
rate particle circuit, by encoding both angles � and � into 
the same qubit. This results in all three momentum variables 
for a particle being encoded into 2 qubits. In this encoding 
gate the � and � angles of each particle are encoded into the 
� and � angle rotations of one qubit, and the momentum of 
the particle is encoded into the other qubit. Entanglement 
between these 2 qubits can optionally be introduced here; for 
our simulations with noise and real machine run we used a 
two qubit entangling gate as shown in Fig. 3 where the phase 
shift was given by f (p, �,�) = 1

�2
(� − p)(� − �)(� − �) . In 

the next step each particle, now represented by 2 qubits, 

is entangled with every other particle via their momentum 
qubit in the same way as the separate particle encoding 
operation in Fig. 7.

Result Comparisons

We have limited our simulations to events that contain 
exactly 4 particles, which accounts for around 14% of the 
total events. We could generalise this approach by build-
ing circuits for different numbers of particles and then com-
bining the end results. However, for the purposes of this 
exploratory analysis we will only consider 4 particle events. 
The simulations were run with 60,000 training events and 
10,000 testing events using the Qiskit statevector_simula-
tor in the absence of noise [1]. This was repeated 10 times 
in total using a random selection of events for the training 
and testing datasets each time. The results of the different 
encoding circuits are summarised in Table 1.

These results suggest that the physically motivated 
improvements made in the separate particle circuit have a 

Fig. 3   a The circuit notation for the single qubit part of the encoding 
gate. The effect of this Z rotation gate is a Z rotation of the qubit’s 
Bloch sphere by an angle xk . b The circuit notation we use for the two 
qubit entangling part of the encoding gate. The explicit construction 
in a real quantum circuit is shown here using Controlled Not gates. 
This gate effectively introduces some form of phase shift between two 
qubits that depends on some function of the respective momentum 
variables in the classical data xl and xm

Fig. 4   a An event from the real dataset after preprocessing is shown. 
Different coloured points correspond to different types of charged 
particles. b An example particle decay event containing two parti-
cles demonstrating the raw momentum data in spherical coordinates. 
c The circuit structure for the combinatorial encoding operation U(�) 
[9]. For readability the circuit omits the � variable

Fig. 5   The general circuit for estimating the inner product of two 
quantum encoded states. The probability of measuring �0⟩n as the 
final state of this circuit will estimate the quantity �⟨�(�i)��(�j)⟩�2
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positive impact on the discriminatory power of the circuit 
compared to the combinatorial encoding. Furthermore, com-
bining this method with the Bloch sphere encoding resulted 
in our best average AUC score of 0.848. For comparison 
we tested classical SVMs on the data for various different 
classical kernels with the best result being the radial basis 
function (RBF) Kernel with an average AUC of 0.793. We 
also included XGBoost as a comparison, deciding on the 
hyperparameters (maximum tree depth, number of estimator, 
minimum split loss and learning rate) using GridSearchCV 

[19]. The uncertainty in the mean values was 0.001 for each 
entry in Table 1; this uncertainty was calculated by taking 
the standard deviation and dividing by the square root of the 
number of samples (which is 10 in this case). This suggests 
the dataset size used in these simulations was large enough 
to enable statistically significant comparisons between 
encoding circuits.

Simulations with Noise and Error Mitigation

The simulation results demonstrate the potential for quan-
tum algorithms on ideal noiseless devices. Modern quantum 
devices do however have noticeable error rates which are 
dependent on factors such as the number of gates used in 
the circuit. To investigate the effect this has on our results 
we re-run our simulation with a noise model [1]. To reduce 
the impact of these errors we implement a measurement 
error mitigation technique [20] recently demonstrated in the 
context of verifying whole-array entanglement in the IBM 
Quantum ibmq_manhattan device [17]. This procedure con-
sists of performing an initial calibration of the basis states 
for the noisy device. The noisy basis state measurements are 
used to construct a matrix; the inverse of this matrix when 
applied to a noisy basis state should take it to the ideal basis 
state. By applying this calibration matrix to our final results 
we can reconstruct a final measurement closer to the ideal 
noiseless case.

The separate particle with Bloch encoding circuit was 
tested using events that contained 3 particles only, which 
accounts for 20% of total events. As mentioned previ-
ously, this could be generalised by building circuits with 
more qubits for events with more particles and combining 
the results. However, for this section we focused on events 
that contained only 3 particles so that the circuits could be 
run on a 6 qubit quantum machine. The Qiskit qasm_ simu-
lator is used with a simulated noise model based on the 
IBM Quantum ibmq_toronto device. The classification was 
repeated with 10 different datasets, each consisting of 30 
training and 30 testing points to find an average classifica-
tion performance. The separate particle with Bloch encoding 
circuit achieved an average accuracy of 0.670 ± 0.100 and 
an average AUC of 0.751 ± 0.100. For comparison, this test 
repeated with an ideal noiseless simulation gives an accu-
racy of 0.750 ± 0.050 and an AUC of 0.789 ± 0.110.

The average AUC score for the separate particle with 
Bloch encoding circuit is 0.751 for this dataset size when 
run with simulated noise. In contrast, repeating this inves-
tigation for the combinatorial encoding circuit results in 
an average accuracy of 0.530 ± 0.086 and an average AUC 
of 0.550 ± 0.131, a significant reduction in performance. 
This could possibly be due to the greater number of gates 
used in the combinatorial encoding circuit compared to the 

Fig. 6   a An encoding operation that encodes two variables of a par-
ticle into a single qubit. b The definition of the X rotation gate. Xk is 
the Pauli X matrix applied to qubit k. c The resulting Bloch sphere of 
a qubit, if initially in the �0⟩ state, after being acted on by this circuit

Fig. 7   a The raw data classical input for a two particle event. b 
The separate particle encoding operation U(�) . Initially a 2 qubit 
entangled state is produced for each particle based on each parti-
cle’s momentum variables. After individual particles are separately 
encoded, each particle is then entangled with every other particle 
through one of its qubits

Table 1   Average results from 10 random dataset samples obtained by 
classically simulating various encoding circuits using Qiskit statevec-
tor_simulator with 60,000 training events and 10,000 testing events 
in each sample

 The uncertainty on each of the mean values stated is ± 0.001 

Encoding circuit Accuracy AUC​

Combinatorial encoding 0.762 0.822
Separate particle encoding 0.776 0.835
Bloch sphere encoding 0.764 0.836
Separate particle with bloch 0.771 0.848
Classical RBF kernel SVM 0.728 0.793
XGBoost 0.590 0.621
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separate particle with Bloch encoding circuit, resulting in 
a larger source of quantum error.

Experimental Testing on Real Quantum 
Devices and Comparison

The separate particle with Bloch encoding circuit was 
tested on a real device using 3 particle events only. The 
dataset consisted of 30 training points and 30 testing 
points. This was run using 6 qubits on the IBM Quan-
tum ibmq_casablanca device and repeated 10 times for 
the same dataset achieving an average accuracy of 0.640 
± 0.036 and an average AUC of 0.703 ± 0.063, where the 
quoted uncertainties in this case use the standard deviation 
of multiple runs using the same dataset to demonstrate the 
effect of quantum noise in the real machine.

The upper section of Table 2 shows the comparison of 
ideal simulations of varying training dataset sizes along-
side a simulated noise model of the IBM Quantum ibmq_ 
toronto device. These results are averaged over 10 random 
datasets. The uncertainties quoted are the standard devia-
tion of the distribution of trials. The result for the real 
device was a single run and is consistent within uncer-
tainty of the simulated noise runs.

The trend demonstrates that smaller training datasets 
result in worse AUC scores with larger uncertainties. 
These results suggest that for small dataset sizes there 
will be rather large uncertainties, even in the absence of 
quantum noise, due to the size of the training dataset itself. 
As availability of quantum machines increases it is hoped 
that larger datasets could be run, in which case the main 
source of uncertainty would be expected to derive from 
quantum noise instead.

Conclusion

We have demonstrated on a small scale how quantum 
machine learning may be applied to signal-background 
classification for continuum suppression in the study of 
B mesons. Simulating the combinatorial encoding circuit 
on the signal-background classification problem we meas-
ured an average AUC of 0.822, outperforming the classical 
SVM and XGBoost methods tested for this dataset. The 
separate particle with Bloch encoding circuit, which we 
designed for particle data, improved the average AUC fur-
ther to 0.848. This encoding method also used fewer qubits 
and quantum gates than the combinatorial circuit. Using a 
smaller dataset in the presence of simulated quantum noise 
the separate particle with Bloch encoding method achieved 
an average AUC of 0.750. In contrast, the combinatorial 
circuit in the same set-up performed significantly worse 
in the presence of simulated noise with an AUC of 0.550; 
a possible explanation for this could be the much higher 
number of gates in the combinatorial circuit compared to 
the separate particle Bloch encoding circuit. Running the 
separate particle encoding circuit on a real quantum device 
resulted in an AUC score of 0.703, which lies within the 
error range of the simulated noise runs. Further work 
could involve using quantum error mitigation techniques 
[6] to improve the performance on real quantum devices 
in the presence of noise.

When using a limited number of inputs the QSVM out-
performed classical methods in simulations. This result 
suggests that the quantum kernel created by the circuit 
is useful for signal background classification for certain 
datasets. We demonstrate a separate particle Bloch encod-
ing circuit that performed best in our noiseless simulations 
and performed significantly better than the combinatorial 
circuit in the presence of simulated noise. The number of 
input data sets and performance in the quantum approach 
was limited due to the size and error rates of current quan-
tum computers. If expanded to use more inputs and larger 
dataset sizes it is foreseeable that the QSVM may be able 
to compete with current state-of-the-art classical tech-
niques, which can achieve AUCs of 0.930 [10]. There are 
a plethora of alternative quantum machine learning meth-
ods that could utilise the encoding circuits discussed here. 
There may also be other data classification tasks, from 
particle physics or elsewhere, that could benefit from this 
method of encoding. Whether the same encoding circuits 
that performed well for the QSVM technique also suc-
ceed in other approaches would be a question for further 
investigation.
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