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Abstract

In this thesis various holographic models are treated, which describe theories of fields where

an internal symmetry is broken, either in relativistic contexts, or in case of violation of the

Lorentz invariance.

The first chapter opens with the revision of the notion of symmetry breaking in pure

relativistic field theory. The case of spontaneous breaking and the Goldstone theorem are

discussed, as well as the case of explicit breaking, where precise Ward identities between

conserved current correlators and scalar operators loaded under such current are derived in a

completely general way.

We then consider two examples of non-relativistic field theories, which will be reproduced

by holographic models: a model in which the invariance of boosts is broken by the presence of

a chemical potential, and a model of Lifshitz’s invariant theory. We show the non-relativistic

realization of Ward’s identities for the symmetry breaking.

In the second chapter we briefly introduce the correspondence gravitation / gauge theory

and we revise the central tool of this thesis, the holographic renormalization.

In the third chapter, we show how to generate field theories with symmetry breaking

by coupling a scalar field to a gauge field, and holographically deriving the Ward identities

predicted by the field theory arguments, first in the Relativistic case. We also obtain an analytic

expression for the scalar two-point function, where we know how to find the massless boson

of Goldstone and the mass of linear mass in the explicit breaking parameter Of the Goldstone

pseudo-boson, respectively in the purely spontaneous case and in the case of an explicit small

break.

We also consider the two-dimensional case on the edge, where we find that Coleman’s

theorem is eluded in the wide limit of N , and Ward’s identities are not affected.

For non-relativistic cases, we first consider a non-abelian model in which the Lorentz

invariance is broken: this situation makes it possible to observe so-called B bosons which

exhibit a quadratic dispersion relation and do not respect Not the law of a single Goldstone

mode for each broken generator.

Finally, we study in detail the holographic renormalization and the two-point functions
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Abstract

for a conserved current and various scalar operators in a space-time of Lifshitz. We also find

the Ward identities of symmetry breaking in their non-relativistic realization.

KEY WORDS: Symmetry breaking, Goldstone bosons, Holography, Gauge/Gravity duality,

Lifshitz.
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Résumé

Dans cette thèse divers modèles holographiques sont traités, qui décrivent des théories des

champs où une symétrie interne est brisée, soit dans des contextes relativistes, soit en cas de

violation de l’invariance de Lorentz.

Le premier chapitre s’ouvre sur la révision de la notion de brisure de symétrie en théorie

des champs relativiste. La cas de brisure spontanée et le théorème de Goldstone sont discutés,

ainsi que le cas de brisure explicite, où des identités de Ward précises, entre correlateurs du

courant conservé et de l’opérateur scalaire chargé sous tel courant, sont derivées de façon

complètement générale.

En suite on considère deux exemples de théories des champs non-relativistes, qui seront

reproduits par les modèles holographiques : un modèle où l’invariance de boosts est brisée

par la présence d’un potentiel chimique, et un modèle de théorie invariante de Lifshitz. On

montre la réalisation non-relativiste des identités de Ward pour la brisure de symétrie.

Dans le deuxième chapitre on introduit brièvement la correspondance gravitation/théorie

de jauge et on revise l’outil central de cette thèse, la renormalisation holographique.

Dans le troisième chapitre, on montre comment générer des théories des champs avec

brisure de symétrie en couplant un champ scalaire à un champ de jauge, et on derive hologra-

phiquement les identités de Ward prédites par les arguments de théorie de champ, d’abord

dans le cas relativiste. On obtient aussi une expression analytique pour la fonction à deux

points scalaire, où on sait retrouver le pôle sans masse du boson de Goldstone et le pôle massif,

de masse linéaire dans le paramètre de brisure explicite, du pseudo-boson de Goldstone, cela

respectivement dans le cas purement spontané et dans le cas de petite brisure explicite petite

par rapport à la brisure spontanée.

On considère aussi le cas à deux dimensions sur le bord, où l’on retrouve que le théorème

de Coleman est éludé dans la limite de large N , et les identités de Ward ne sont pas affectées.

Pour les cas non-relativistes, on considère d’abord un modèle non-abelien où l’inva-

riance de Lorentz est brisée : cette situation permet d’observer des bosons dit de type B, qui

présentent une relation de dispersion quadratique et ne respectent pas la loi d’un seul mode

de Goldstone pour chaque générateur brisé.
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Résumé

Enfin, on étudie en detail la renormalisation holographique et les fonctions à deux points

pour un courant conservé et divers opérateurs scalaires dans un espace-temps de Lifshitz.

On retrouve pour ce cas également les identités de Ward de brisure de symétrie dans leur

réalisation non-relativiste.

MOTS CLEFS : Brisure de symétrie, Bosons de Goldstons, Holographie, dualités gravitation/thé-

orie de jauge, Lifshitz.
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Introduction

Spontaneous symmetry breaking, with its associated Goldstone massless modes, is an ubiqui-

tous phenomenon in physics, especially in particle physics and condensed matter physics.

Emblematically, its first observation was at the intersection of the two fields [1]. It finds its

theoretical grounds in the Goldstone theorem [2], which is a very well defined mathematical

statement, at least in the relativistic framework where it has been first proven [3].

If relativistic invariance is an essential ingredient in particle high energy physics, it is

likely disregarded in condensed matter systems, where Goldstone theorem has known many

successful applications in describing phase transitions (superconductivity, Bose-Einstein

condensation, etc). So, the extension of Goldstone theorem to non-relativistic field theories [4–

7] has drawn attention since the early stages of its conception. In the absence of Lorentz

invariance, the physics of Goldstone bosons (GB) gets richer, and its mathematical foundations

have to be revised and extended.

For instance, the one-to-one matching between broken symmetry generators and Gold-

stone massless modes breaks down in non-relativistic settings [8]. Moreover, the dispersion

relations of gap-less modes can have more diversified forms than the relativistic one ω= ~k .

We can have Goldstone bosons with linear dispersion relation, ω = cs
~k , but with velocity

now non-necessarily equal to the speed of light c ≡ 1. But we can also have Goldstone modes

which present dispersion relations with quadratic or higher-order low-momentum behavior.

In particular, in non-relativistic theories with spontaneously broken non-abelian global sym-

metries, the commutator of two broken charges may get a non-vanishing expectation value. In

such situation, the two corresponding broken generators give rise to a single Goldstone mode,

which presents in turn a quadratic dispersion relation, ω∝ ~k
2

[9–11]. The second ‘would-be

massless’ mode typically gets a mass proportional to the Lorentz breaking parameter [12].

In more recent years, another input for theoretical physicists comes from condensed

matter systems: a large variety of experimental devices presents ‘strange’ behaviors, which

can be ascribed to strong coupling effects. By strange it is meant that are not predicted by

present-day available theoretical models (weakly-coupled Fermi-liquid theory), which are
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Introduction

based on perturbation theory, and so fail at strong coupling.

Of course, whatever is based on symmetries is non perturbative. So, the physics of

symmetry breaking, spontaneous or (slightly) explicit, is particularly relevant for strongly

coupled systems, where it can constitute some of the (few) things we are able to say about. To

this extent, a renewed interest in such an old and broadly discussed topic, enlarged towards

these unconventional non-relativistic frameworks, may be justified.

At the same time, new techniques, that be capable to deal with strong coupling, are

called for. Holography, which is a quite recent and active field of research, is a promising

candidate. Since it has been conjectured, exactly twenty years ago [13], as a duality between

compactifications of string theory to Anti de Sitter spacetime (AdS), in the classical limit,

and supersymmetric conformal field theories on the boundary of AdS, in the ’t Hooft limit

(large N , strong coupling), the holographic principle has been extended to a much larger

class of dualities. In such dualities the classical limit of the gravitational theory in the bulk

corresponds to the strong coupling limit of the quantum field theory on the boundary.

So, holography potentially constitutes a powerful tool to investigate the strong coupling

regime of field theory. Indeed, the classical regime of gravity, which is generically well under-

stood and under control, can be used to gain insights over the physics of field theory at strong

coupling (confinement, bound states, quantum phase transitions, etc).

Non-relativistic behaviors are observed in many of the above-mentioned condensed

matter experiments (high temperature superconductors, cold atoms at unitarity, etc). So, the

ambition to apply holography to condensed matter has raised the challenge of extending the

correspondence to non-relativistic backgrounds [14–19].

A particular class of non-relativistic field theories, which is dealt with in this disserta-

tion, is given by Lifshitz invariant field theories. Lifshitz symmetry [20] is a non-relativistic,

anisotropic version of scaling invariance. In condensed matter theory, Lifshitz scaling is rele-

vant to describe the quantum critical point of certain materials, such as MnP magnets [21],

cuprate superconductors, non-Fermi liquids. The Lifshitz critical point is subject matter of

various theoretical models [22, 23]. From the pure field-theoretical point of view, the subject of

symmetry breaking in Lifshitz field theories has been addressed, and various examples of Lif-

shitz invariant low-energy effective field theories for Goldstone bosons have been realized [24–

27].

In this thesis, we study holography as a powerful tool to generate strongly coupled

field theoretical environments, where to robustly probe our understanding of the physics of

symmetry breaking. At the same time, we provide the opportunity to test the holographic

conjecture in a variety of non-canonical contexts, such as broken Lorentz invariance, Lifshitz

space-times, low dimensions.

The objects that we aim to compute holographically are two-point correlation functions

of conserved currents and of scalar operators, charged under those currents. Such two-point

functions contain the spectrum of the field theory, so in particular the Goldstone pole, and

its dispersion relation, which, in case of broken Lorentz invariance, can exhibit deviations
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Introduction

from the relativistic behavior. Since we are interested in two-point functions of scalars and

conserved currents, gravity is kept non-dynamical throughout all this work. The metric is

chosen each time as a fixed background, making sure that back-reaction of other fields on the

metric be negligible as far as our computations are concerned.

Furthermore, spontaneous or explicit symmetry breaking entails specific relations (Ward

identities) among correlation functions of a conserved current and the scalar operator which

is charged under it. These Ward identities, which are derived in full generality in field the-

ory, can be retrieved in holography through a pure boundary analysis, constituting thus an

independent check of the correspondence. Such boundary analysis typically requires the

treatment of bulk terms that diverge at the boundary, which can be consistently removed by a

procedure called holographic renormalization [28–30].

The holographic renormalization procedure depends sensitively on the number of space-

time dimensions, on the scaling dimensions of the considered field, on the background

metric, etc. So, it can in some occasions present subtleties, which are extensively discussed in

this work, whenever encountered. Furthermore, our interest in non-relativistic field theories

pushes us to study holography for Lifshitz bulk geometry, which is a still not so well established

correspondence in the zoo of gauge/gravity dualities.

So, along the way, we will derive the Ward identities for symmetry breaking in various

holographic setups, recovering the field theoretical expectations. In some favorable cases, we

will also be able to obtain explicit expressions for the scalar two-point function, displaying the

Goldstone (or pseudo-Goldstone) boson pole, together with the complete spectrum of the

theory, which exhibits some typical features of strongly coupled theories (linear confinement).

Outline

Let us go through the contents of this thesis in an orderly fashion. In Part I we discuss some

preliminary material, which consists of well-established subjects, but still presented through a

partially original point of view. This first part prepares the ground for Part II, where the original

contributions of this thesis are reported, based on various published works of the author [I, II,

III, IV].

As far as Part I is concerned, in Chapter 1 we start with reviewing, in a pure field theoretical

approach, the physics of symmetry breaking. In Section 1.1 we recall the Noether theorem

and the relation between symmetry and conserved currents, we introduce the spontaneous

symmetry breaking mechanism, and we reproduce the original non-perturbative proof of

Goldstone theorem [3]. In this section we are close to the approach of Weinberg’s textbook [31].

In Section 1.1.2 we discuss the particular case of 1+1 dimension and the no-Goldstone theorem

by Coleman [32], commenting in particular on its quantum nature [33], and on the peculiarities

of the large N limit [34].

Then, in Section 1.2, we allow for explicit breaking on top of spontaneous one, and we
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derive in maximal generality (without specializing to any specific theory) the corresponding

Ward identities, which in the purely spontaneous case reveal the presence of a massless mode,

and in the case of (little) explicit breaking imply the notorious GMOR relation [35] for the

(little) mass of the pseudo-Goldstone boson. Our derivation is standard, but partially novel

in its formulation, which follows the one presented in [II]. For these initial sections, we also

found a helpful tool in [36].

Then, in Section 1.3, we abandon Lorentz invariance, and we discuss the issues of the gen-

eralization of Goldstone theorem to non-relativistic field theories. We considerably owe to [7,

37], however we give a different, original derivation of non-relativistic dispersion relations,

starting from the symmetry breaking Ward identity. In Section 1.3.1 we consider a field theory

model [38, 39], equipped with a non-abelian global symmetry, where Lorentz invariance is

explicitly broken by a chemical potential, and the so-called type B Goldstone boson arises.

Finally, in Section 1.3.2, we consider another example of non-relativistic field theories, Lifshitz

invariant field theories, and we discuss correlators and Ward identities in this context.

The second chapter is dedicated to the holographic correspondence [13, 40], and in

particular to the technique of holographic renormalization [28–30], which is the main com-

putational tool of this thesis. After giving a sketchy review of the holographic principle, close

in spirit to [41], in Section 2.1 we introduce the renormalization procedure by a simple, but

rather complete example, presented in a quite personal way.

Then, we are ready to move to the second part, where the original contributions of this

thesis are collected [I, II, III, IV]. We present there various holographic setups that originate

field theories with symmetry breaking: in Chapter 3 we have some relativistic examples, while

the non-relativistic examples are left for Chapter 4 and 5.

In Section 3.1 the Ward identities for concomitant spontaneous and explicit symmetry

breaking, shown in Section 1.2, are retrieved holographically [II]. An analytic expression for the

boundary scalar two-point function is provided [II], exhibiting the pseudo-Goldstone poles,

with the proper GMOR linear dependence of the mass on the explicit breaking parameter. We

then move to the 1+1 dimensional case in Section 3.2, where we show that in holography,

as far as Ward identities are concerned, the Coleman theorem breaks down [III], due to the

classical/large-N nature of our boundary analysis, which does not capture the quantum effects

that are responsible for no spontaneous symmetry breaking in two dimensions.

As first non-relativistic example, in Chapter 4 we consider a holographic setup that

produces a type B Goldstone boson, retrieving holographically [I] the non-relativistic Ward

identities of Section 1.3.1.

Finally, in Chapter 5, holographic renormalization and two-point functions for conserved

currents and scalar operators on Lifshitz background are studied in detail, concluding with

the derivation, once more, of the non-relativistic Ward identities for symmetry breaking.
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Notations and conventions

We briefly establish here the main notations and conventions that are used throughout this

manuscript. First of all, we work in natural units c = 1 = }, and in mostly-plus Lorentzian

signature. Then, for the majority of prescriptions regarding analytic continuation and ±i

factors in quantum field theory prescriptions, we employ the same conventions as Weinberg

in his textbooks [31, 42]. Einstein convention about summation over repeated indices is also

understood, unless otherwise specified.

In the holographic sections, we use roman indices m,n,r, s for the (d+1)-dimensional

bulk coordinates, saving greek letters µ,ν,ρ,σ as indices of the flat Minkowski space on the

boundary. When, for non-relativistic examples, a distinction between temporal and spatial

components is required, we make use of roman characters i , j ,k, l for the spatial components.

The notation xµ = (t ,~x) is also widely employed. So, for instance, for the AdSd+1 metric in the

Poincaré patch, we will write

ds2 =dxmdxm = r−2
(
dr 2 +dxµdxµ

)
= r−2

(
dr 2 −dt 2 +dxi dxi

)
.

Moreover, in the holographic parts we will specify the space-time dimensions in the

integration measure, in order to allow to distinguish bulk terms from boundary terms. Oth-

erwise, by simply dx we will indicate integration over all space-time coordinates, and by d~x

integration over all spatial coordinates.

Finally our conventions for Fourier transformations to momentum space are

f (x) =
∫

dk e i kx f (k) =
∫

dωd~k e−iωt+i ki xi f
(
ω,~k

)
,

so that we schematically have ∂t →−iω, and ∂i →+i ki .
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Part I



Preliminary material





1 Symmetry breaking in quantum field

theory

In this chapter we want to review some very well known field-theoretical results, re-deriving

them in a perspective that will make them easier to be compared to the corresponding results

obtained in Part II through holographic techniques.

So we will put on the table the main physical ingredients of this dissertation, that is

internal symmetries and Noether conserved currents, spontaneous breaking and Goldstone

theorem, explicit breaking and Ward identities.

1.1 Spontaneous breaking and Goldstone

theorem

We consider an action functional S on a d-dimensional space-time, depending on some

field content {X A}, and derivatives. The fields X A represent all the real scalar degrees of

freedom occurring in the action. We assume that such action is invariant under some internal

(i.e. spacetime independent) continuous symmetry:

δαS
[{

X A ,∂µX A

}]= 0 , for δαX A = T a
AB XBα

a , (1.1)

where repeated indices imply a summation, and αa is the infinitesimal parameter associated

to the transformation performed by the generator T a of the considered symmetry group, in

the representation under which the field X A transforms.

11



Chapter 1. Symmetry breaking in quantum field theory

Then we can apply this variation on the Lagrangian density, obtaining

δαS =
∫

dx δαL =
∫

dx

[
δL
δX A

δαX A + δL
δ∂µX A

δα∂µX A

]
=

∫
dx

[(
δL
δX A

−∂µ δL
δ∂µX A

)
δαX A +∂µ

(
δL
δ∂µX A

δαX A

)]
=

∫
dx ∂µ

(
δL
δ∂µX A

T a
AB XB

)
αa , (1.2)

where we have integrated by part, and used the equations of motion for the classical fields X A .

We can define a current

J aµ =− δL
δ∂µX A

T a
AB XB (1.3)

for each generator of the symmetry group. Then, the invariance of the action under the

considered symmetry (1.1) implies that the integrated expression (1.2) has to vanish. If we

assume that the spatial part of the current vanishes at large enough distances, which is always

true for sufficiently causal theories, then we have

0 =
∫

dx ∂µ J aµ =
∫ T

0
dt

∫
Rd−1

d~x
(−∂t J a

t +∂i J a
i

)= (1.4)

=−
∫
Rd−1

d~x J a
t (t ,~x)

∣∣∣T

0
=Qa(0)−Qa(T ) ,

where

Qa =
∫

d~x J a
t (t ,~x) = δL

δ∂t X A
T a

AB XB ≡
∫

d~x ΠAT a
AB XB , (1.5)

withΠA being the canonical conjugate momenta of the field X A .

We have thus obtained the central result of Noether theorem: for any given symmetry

of the action a quantity conserved in time arises, the conserved charge. However, the fact

that the integral (1.4) vanishes does not imply that the current (1.3) is locally conserved. It

can still be ∂µ J aµ = ∂µΩµ, withΩµ vanishing at infinity. Then we can redefine the current as

J̃ aµ = J aµ−Ωµ, so that ∂µ J̃ aµ = 0. Furthermore, the current is still defined up to en equivalence

class defined by

J aµ −→ J aµ+∂νK [µν] ,

where the divergence of any anti-symmetric tensor is annihilated by construction under

a further action of ∂µ. So, the conserved current is actually the part which is not trivially

divergence-less1 Anyway, the integration (1.4) ensures that the conserved charge (1.5) is

unambiguously defined.

Let us now consider the very common case where the action is invariant under a certain

symmetry, whereas the ground state is not. Indeed, when a system possesses a certain con-

tinuous global invariance, the space of vacua likely does as well: the lowest energy state is

degenerate, and gives a continuum of possible vacua, related to each other by transformations

1 In the language of differential geometry the current is a closed form which is not exact.
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1.1. Spontaneous breaking and Goldstone theorem

of the symmetry group.2 Then, the ground state of the system is just one specific vacuum

out of the continuum of possible ones, which thus breaks the invariance. This phenomenon

is called spontaneous symmetry breaking, as opposed to explicit symmetry breaking, where

instead the symmetry is broken at the level of the action and the current is not conserved

anymore.

The discussion here is completely general, but if we wish, we can just think, as an example,

of the paradigmatic toy-model of a complex scalar with Goldstone Mexican-hat potential [2].

In that case the action is invariant under a global U(1), and the potential yields a continuum of

vacua, arranged on a circle in the phase space, covered by the U(1) transformations. A specific

choice of vacuum on the ground circle will break the U(1) invariance.

We are now ready to see the physical consequences of such situation, which are con-

densed in the statement of the celebrated Goldstone theorem [2]: for each spontaneously

broken generator of a continuous global internal symmetry, a zero-energy mode appears

in the spectrum. This statement strictly holds in the context of relativistic invariance and

internal symmetries, and so will the proof we are going to report here after. Nonetheless, the

statement can be relaxed and generalized to the non relativistic case, as we will see in the

following. Goldstone theorem can also be applied, in some cases, to the spontaneous breaking

of space-time symmetries [43–46], which however will not be considered in this dissertation.

1.1.1 General proof of relativistic Goldstone theorem

We now outline the general proof (not relying on perturbation theory) of Goldstone theorem,

first given in [3], and presented in more detail in chapter 19 of Weinberg’s textbook [31].

Our assumptions are: (1) the invariance under a global continuous symmetry, which gives

a conserved current and the associated conserved charge; (2) the existence of a vacuum

expectation value (vev) which is not invariant under that symmetry, thus spontaneously

breaking the symmetry. Translational invariance of the vacuum, and Lorentz invariance are

also ingredients that we will make use of in the proof.

Using the defining expressions for conserved current (1.3) and charge (1.5), and the

canonical commutation relation for quantum fields, that is

[
X A(t ,~x),ΠA(t ,~y)

]= iδ(~x −~y) , (1.6)

we can restate the spontaneous symmetry breaking condition as follows

〈[
Qa , X A(0)

]〉
0 =−i T a

AB

〈
XB (0)

〉
0 6= 0 , for some A . (1.7)

2The idea holds equivalently for discrete symmetries, which in turns gives a discrete sets of vacua. However, the
follow-up of the discussion and Goldstone theorem are only valid for continuous symmetries (see for instance the
example of the real scalar field in Goldstone’s original paper [2]).

13



Chapter 1. Symmetry breaking in quantum field theory

Notice that this definition is equivalent to saying that the vacuum be not invariant under the

symmetry generator; if it was the case, then Qa |0〉 = 0, and consequently the commutator (1.7)

would vanish as well. The symmetry breaking vev 〈X A〉 is also called order parameter.

We now take the vacuum expectation value of the commutator between the four-current

and the scalar field, and we insert the decomposition of the identity as sum over the spectrum

of energy-momentum eigenstates |n〉 ≡ ∣∣ω(
~kn

)
,~kn

〉
,3 that is Pµ|n〉 = kµn |n〉. At the same time,

we translate the fields to the origin, that is

e−i Pµxµ Jµ(x)e+i Pµxµ = Jµ(0) ,

and the same for X A , and we use the translational invariance of the vacuum, e i P ·x |0〉 = 0,

finally obtaining

〈[
Jµ(x), X A(y)

]〉
0 = (1.8)

=∑
n

(
e i kn (x−y)〈0|Jµ(0)|n〉〈n|X A(0)|0〉−e−i kn (x−y)〈0|X A(0)|n〉〈n|Jµ(0)|0〉

)
=

∫
dk

∑
n
δ
(
k −kn

)(
e i k(x−y)〈0|Jµ(0)|n〉〈n|X A(0)|0〉−e−i k(x−y)〈0|X A(0)|n〉〈n|Jµ(0)|0〉

)
.

The expression in the parenthesis carries a Lorentz vector index, so Lorentz invariance dictates

that as a function of momentum it must be proportional to kµ. Thus we can define

∑
n
δ
(
k −kn

)〈0|Jµ(0)|n〉〈n|X A(0)|0〉 = i (2π)−d+1 kµθ
(
k0) ρA

(−k2) , (1.9)∑
n
δ
(
k −kn

)〈0|X A(0)|n〉〈n|Jµ(0)|0〉 = i (2π)−d+1 kµθ
(
k0) ρ̃A

(−k2) , (1.10)

where the Heaviside theta step function is there to ensure kn be the d-momentum of a physical

state. If both Jµ and X A are hermitian operators, then the two expressions are just complex

conjugates, and ρ̃A ≡−ρ∗
A . However, even without assuming this, we can write

〈[
Jµ(x), X A(y)

]〉
0 =

= i (2π)−d+1
∫

dk θ
(
k0)kµ

[
e i k(x−y)ρA

(−k2)−e−i k(x−y)ρ̃A

(−k2)]
= (2π)−d+1 ∂

∂xµ

∫
dk θ

(
k0)[e i k(x−y)ρA

(−k2)+e−i k(x−y)ρ̃A

(−k2)]
= ∂
∂xµ

∫
dm2 [

ρA

(
m2)∆+(x − y)+ ρ̃A

(
m2)∆+(y −x)

]
, (1.11)

where we have introduced the standard positive frequency scalar distribution,

∆+(x − y) = (2π)−d+1
∫

dk θ
(
k0)δ(

k2 +m2) e i k(x−y) . (1.12)

3In our notation the sum over n is a shorthand for an integration over spatial momenta. Indeed, the orthonor-
mality condition reads

〈
ω

(
~kn

)
,~kn

∣∣ω(~km ),~km
〉= δ(

~kn −~km
)
, so that

∑
n |n〉〈n| = ∫

d~kn
∣∣ω(
~kn

)
,~kn

〉〈
ω

(
~kn

)
,~kn

∣∣.
14



1.1. Spontaneous breaking and Goldstone theorem

We remind the reader that for space-like separations we have ∆+(x − y) ≡∆+(y −x), so that the

canonical commutator for a complex scalar field φ,

〈[
φ(x),φ†(y)

]〉
0 =∆(x − y) ≡∆+(x − y)−∆+(y −x) (1.13)

vanishes at space-like separations, respecting causality. In the same way, the commuta-

tor (1.11) has to vanish at space-like separations. This implies ρA

(
m2

)=−ρ̃A

(
m2

)
, so giving

〈[
Jµ(x), X A(y)

]〉
0 = ∂

∂xµ

∫
dm2 ρA

(
m2)∆(x − y) . (1.14)

Now we can use the current conservation, and, recalling ∆(x − y) is a solution of the Klein-

Gordon equation, we can write

0 = ∂
∂xµ

〈[
Jµ(x), X A(y)

]〉
0 =�x

∫
dm2 ρA

(
m2)∆(x − y) =

∫
dm2 m2ρA

(
m2)∆(x − y) .

For time-like or light-like separations, this yields the condition

m2ρA

(
m2)= 0 , (1.15)

which implies that ρA must vanish for any value of m2, except m2 = 0. From the definition

of ρA (1.9), it is clear that this latter possibility occurs only if there is a state |n̄〉 in the spectrum

that has zero mass, i.e.: −k2
n̄ = 0.

We now have to see that in case of spontaneously broken symmetry the function ρA

actually cannot vanish everywhere, implying the existence of this massless mode. Let us take

the expression (1.14) for the temporal component, and let us integrate it and evaluate it at

equal times x0 = y0 = t , in order to obtain the symmetry breaking condition (1.7). We find

−i TAB

〈
XB

〉
0 =

∫
dm2ρA

(
m2)∫ d~x

∫
dk (i k0)

(2π)d−1
θ
(
k0)δ(

k2 +m2)(e i~k·~x +e−i~k·~x
)

= i
∫

dm2 ρA

(
m2)∫ d~x

∫
d~k

(2π)d−1
e i~k·~x = i

∫
dm2 ρA

(
m2) ,

where we have used the distributional identity

θ
(
k0)δ(k2 +m2) = 1

2k0 δ
(
k0 −

√
~k 2 +m2

)
. (1.16)

We then conclude

ρA

(
m2)=−TAB

〈
XB (0)

〉
0 δ(m2) ,

as announced, implying the existence of a massless state in the spectrum. Now, a delta

function contribution can only be generated by a single-particle pole. Furthermore, in order

to contribute to ρA , such single-particle state has to couple both to the conserved current

and to the scalar operator that gets a vev, otherwise either 〈0|Jµ(0)|n〉 or 〈n|X A(0)|0〉 would

respectively vanish. The latter condition implies that our single-particle state must be a scalar
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Chapter 1. Symmetry breaking in quantum field theory

(spin 0) particle; the former entails that it inherits the parity and internal quantum numbers

of J 0. This precise gentleman is the notorious Nambu-Goldstone boson.

The proof outlined here has been carried out in generic d +1 space-time dimensions.

However, by an argument first raised by Coleman [32], there is an obstruction to spontaneous

symmetry breaking in (1+1)-dimensions. Actually, nothing really breaks down in the steps of

the proof of Goldstone theorem, it is rather the possibility for a scalar operator to get a stable

vacuum expectation value that is ruled out in two dimensions, so invalidating the very initial

point of the reasoning (1.7). In next section we present Coleman’s mathematical argument

and discuss its physical implications.

1.1.2 Lowering to 1+1 dimensions: Coleman theorem

The key feature, on which Coleman’s argument is founded, is the fact that in one spatial

dimension the scalar two-point correlator (1.12) has a logarithmic behavior in position space,

so having an infrared divergence for massless scalar fields:

〈
φ(x)φ†(y)

〉
0 =∆+d=1(x − y) = (2π)−1

∫
d2p θ

(
k0)δ(

k2 +µ2) e i k(x−y) =

= 1
2π

∫
dk1 e i k(x−y)

2
√

(k1)2 +µ2
=− 1

4π
ln

(−µ2(x − y)
)

, (1.17)

where µ2 is indeed an infrared regulator to escape the divergence of zero mass.

Rather than reproduce Coleman’s proof [32], which is quite mathematical, we will follow

the lines of Ma and Ranjaraman [33], which present a more physical picture of what happens

in a two dimensional quantum field theory with an internal continuous symmetry. Moreover,

this picture will allow to better understand some situations that seem to evade Coleman’s

argument, in particular the strict large N limit of SU(N ) field theories, such as the Thirring

model [47], or the holographic dual theory of Section 3.2.

We consider a U(1)-invariant Lagrangian for a complex scalar field, with an arbitrary

(U(1)-invariant, and bounded from below) potential, and we write the field in the polar

representation, φ= 1p
2
ρ e iϑ:

L =−∂µφ∗∂µφ−V (φ∗φ) =−1
2∂

µρ∂µρ− 1
2ρ

2∂µϑ∂µϑ−V
(
ρ2) . (1.18)

This Lagrangian can be regarded of course as a low-energy effective one of a more general and

involved theory. The vacuum expectation value for this scalar field is dictated by the minimum

of the potential in phase space. If we want to have spontaneous symmetry breaking, we need

the minimum to be away from the origin ρ = 0. We take then ρ2 = |v |2, with v ∈C. Since the

potential is invariant under the global U(1), our minimum in |v |2 represents a continuity of

possible vacua for φ, varying the phase of v . In higher dimensions, the selection of a specific
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1.1. Spontaneous breaking and Goldstone theorem

vacuum, that is of a specific phase, yields the spontaneous breaking. In (1+1)-dimensions,

the IR divergences of the scalar propagator bring large quantum fluctuations of the phase

field ϑ, that would spread away any classically selected phase. Thus, the classical possibility of

picking a vacuum out of the continuum is ruled out at the quantum level.

Let us see this fact explicitly. By making ρ = v non-dynamical, we are left with the

following Lagrangian for ϑ,

L =−1
2 v2∂µϑ∂µϑ . (1.19)

We then consider the expansion of the scalar field ϑ in its annihilation and creation compo-

nents, ϑ=ϑ++ϑ−, with

ϑ+(t , x) =
∫

dk e−iωt+i kx

v
p

4πω
ak , ϑ−(t , x) =

∫
dk e iωt−i kx

v
p

4πω
a†

k , (1.20)

where (k0,k1) have been replaced by (ω,k), and we have an extra v-factor because of the form

of the kinetic term in the Lagrangian (1.19). Then, using the standard commutations relations

for annihilation/creation operators, we straightforwardly have

〈[
ϑ+(x),ϑ−(0)

]〉
0 =

∫
dk e i kx

4πv2
p

k2
= 1

v2 lim
µ2→0

∆+d=1(x) , (1.21)

which, from (1.17), is diverging to positive infinity. So, we can evaluate

〈
e iϑ(x)〉

0 =
〈

e i(ϑ−(x)+ϑ+(x))〉
0 =

〈
e iϑ−(x)e iϑ+(x)e−

1
2 [ϑ+(x),ϑ−(x)]〉

0 = e−
1

2v2 ∆
+
d=1(0) = 0 ,

where we have used the Baker–Campbell–Hausdorff formula for exponentials of operators,

and the annihilation property of the vacuum. Thus, we have shown that the expectation value

of e iϑ(x) is wiped out by the diverging quantum fluctuations, and so
〈

cosϑ(x)
〉

0 and
〈

sinϑ(x)
〉

0

vanish as well. No preferred direction in the phase plane survives the quantum smearing in

two dimensions.

However, if we had an arbitrary small, but non zero explicit breaking term (such for

instance a small mass for ϑ), it would act precisely as the regulator µ2 in (1.17) and make the

commutator (1.21) finite. The concomitant occurrence of spontaneous and explicit breaking,

with explicitly breaking parameter hierarchically suppressed with respect to the spontaneously

breaking vev, gives rise to so-called pseudo-Goldstone bosons. Pseudo-Goldstone bosons are

would-be Goldstone particles that have a mass which is hierarchically lower with respect to

the rest of the spectrum, thanks to the mentioned hierarchy between explicit and spontaneous

breaking.

This last scenario will be discussed in depth in next section, but, before moving to that,

let us discuss a class of model that seems to evade Coleman theorem, that is SU(N )-invariant

theories in the large N limit. Of course we are interested in large N theories in view of the

holographic realizations of symmetry breaking of Part II, where pure boundary computations

correspond to the strict large N limit.
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Chapter 1. Symmetry breaking in quantum field theory

So now we consider the SU(N ) extension of Thirring model [47], proposed by Gross

and Neveu [48], with our focus on understanding the peculiar features of the infinite N limit

for spontaneous symmetry breaking in two dimensions, rather than on the details of the

model. This is a theory of N -component massless fermions with quartic interaction in two

dimensions, which has a smooth, weak-interacting limit for N →∞, so that it can be solved in

a 1/N expansion. On top of the SU(N ) invariance, the system enjoys a U(1) chiral symmetry,

which normally would prevent the fermions from dynamically getting a mass. However, as

pointed out by Gross and Neveu, the theory allows for a minimum of the potential away from

the origin in the phase plane, fermions fields acquire mass, and a massless boson arises: so,

everything suggests that spontaneous symmetry breaking is occurring in two dimensions.

Nonetheless, Witten showed [34] that the physical fermions are actually not charged

under the chiral symmetry, explaining why they are not protected from having a mass, and

that no long-range order is present, so no symmetry breaking and no contradiction to Coleman

theorem. Indeed, the low-energy effective Lagrangian for Gross-Neveu-Thirring model is of

the form [34]

L =− N

4π
∂µϑ∂µϑ , (1.22)

quite analogous to (1.19). Then we have

〈
e−iϑ(x)e+iϑ(0)〉

0 = e
π
N

(
∆+

d=1(x)−∆+
d=1(0)

)
∼ x− 1

N , (1.23)

for large x. So the long-range order is suppressed for x →∞. In a spontaneously broken theory,

this expectation value would be finite (proportional to the vev), even for infinite separations,

as in (1.7). For unbroken symmetry, instead, we would have an exponential fall-off, at the rate

of the lightest excitation in the spectrum:
〈

e−iϑ(x)e+iϑ(0)
〉

0 ∼ e−mx2
. So, this two-dimensional

large N case is in-between: the long range order vanishes, but with a power law, so less quickly

than in an usual unbroken phase.

This was the main result of Witten’s paper [34], but what he did not stress in that work,

since it was not yet relevant at that time, is the fact that in the strict infinite N limit the

long-range order is restored. And indeed, in the holographic setup of Section 3.2, from a

pure boundary analysis (which is at strictly infinite N ), we retrieve the Ward identities of

spontaneous symmetry breaking, as in any higher dimensions.

In next section we derive in full generality such Ward identities, which are a non-per-

turbative feature of symmetry breaking in quantum field theory. Furthermore, as already

announced, we will consider the concomitant occurrence of spontaneous and explicit break-

ing, and analyze the physical predictions that can be extracted just from Ward identities,

independently of any specific theory.
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1.2 Explicit breaking and Ward identities

We consider here an action that is invariant under an internal global continuous symmetry, as

in (1.1), and we add a term that breaks the symmetry explicitly:

Stot = Sinv +Sm , with Sm = 1
2

m
∫

dx
(
O [X ]+O∗[X ]

)= m
∫

dx ReO [X ] , (1.24)

where Oφ is a scalar operator of scaling dimension ∆, which is charged under the symmetry,

and does not depend on derivatives of the fields. For the sake of simplicity, and for an easier

comparison with the results of the holographic model of Section 3.1, we choose as global

symmetry an abelian U(1), and we assume

δαO = iαO , ⇒
{
δαReO =−αImO ,

δαImO =+αReO .
(1.25)

Since δαSinv = 0, as we have seen in Section 1.1, for m = 0 we have a conserved current Jµ.

But in presence of the explicit breaking term, the equations of motion get modified accordingly,

∂µ
δLinv

δ∂µX A
− δLinv

δX A
−m δReO

δX A
= 0 ,

so that in the second line of (1.2) we now have

0 = δαSinv =
∫

dx

[
−m δReO

δX A
δαX A +∂µ

(
δL
δ∂µX A

δαX A

)]
=−

∫
dx α

(
∂µ Jµ−m ImO

)
(1.26)

where we have used the trivial identity δO
δX A

δαX A ≡ δαO . We see that the current is no longer

conserved, instead we have the operator identity

∂µ Jµ = m ImO . (1.27)

We now want to show that such identity holds at the quantum level, and derive the Ward

identities corresponding to the breaking of an internal symmetry. For that we employ the

path integral formulation, and we use the invariance of the measure under the symmetry

transformation.

The path integral and n-point time-ordered correlation functions are defined as follows:

Z =
∫

D[X ] e i Stot[X ] ,
〈
F [X ](x1, . . . , xn)

〉
0 =

∫
D[X ] e i Stot[X ] F [X ](x1, . . . , xn) . (1.28)

If there are no quantum anomalies (violation of the symmetry at the quantum level), the

invariance of the measure D[X ] under field redefinitions assures∫
D[X ] δα

(
e i Stot[X ] F

)
= 0 , ∀ F . (1.29)
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Chapter 1. Symmetry breaking in quantum field theory

This is then true for the path integral itself, allowing to confirm the operator identity (1.27) at

the quantum level. Indeed, from (1.29) we have

0 =
∫

D[X ] δαe i Stot =
∫

D[X ] e i Stot i δαStot . (1.30)

In addition, in order to compute correlation functions involving the divergence of the

current, which classically vanishes, we need to make the global symmetry local. In this way

the variation of the invariant action is not zero anymore, rather δαSinv =−∫
dx Jµ∂µα, and

consequently

δαStot = δαSinv +δαSm =−
∫

dx
(

Jµ∂µα+αmImO
)

, (1.31)

A perfectly equivalent approach is to add to the path integral sources for both the current

and ImO , whose variations compensate the variation of the total action (1.31). The source for

the current then has to be a vector field Aµ transforming under U(1) gauge transformations,

δαAµ = ∂µα; the source for ImO has to be a scalar field m transforming under the U(1) as

δαm = mα. Thus we have ∫
D[X ] e i Sinv+i Sm+i

∫
Aµ Jµ+i

∫
mImO . (1.32)

Now we can choose either to put the total variation (1.31) into the vanishing expres-

sion (1.30), or to vary the sourced path integral (1.32) with respect to the sources only, and

require it to be invariant (since transformations of the sources can be absorbed by transforma-

tions of the fields),

0 =
∫

D[X ] e i Sinv+i Sm+i
∫

Aµ Jµ+i
∫

mImO i
∫

ddx
(

JµδαAµ+ ImOδαm
)
=

=
∫

ddx
〈

Jµ∂µα+αmImO
〉

0 .

In both ways, after integration by parts, we obtain the quantum version of the operator

identity (1.27): 〈
∂µ Jµ

〉
0 = m

〈
ImO

〉
0 . (1.33)

Analogously, we can start with the variation of the path integral for the operator ImO ,

0 =
∫

D[X ] δα
(
e i Stot ImO (x ′)

)
=

∫
D[X ] e i Stot

(
i (δαStot)ImO (x ′)+δαImO (x ′)

)=
=

∫
D[X ] e i Stot

[
α(x ′)ReO (x ′)+ i

∫
dx α(x)

(
∂µ Jµ(x)−mImO (x)

)
ImO (x ′)

]
,

thus obtaining the following Ward identity for symmetry breaking:

〈
∂µ Jµ(x)ImO (0)

〉
0 = m

〈
ImO (x)ImO (0)

〉
0 + i

〈
ReO

〉
0δ(x) , (1.34)

We see that, if spontaneous breaking occurs as well, by the real part of the scalar operator
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1.2. Explicit breaking and Ward identities

taking a non-zero vacuum expectation value,
〈

ReO
〉

0 = v , we have a contact term, which

survives in the m → 0 limit,

〈
∂µ Jµ(x)ImO (0)

〉
0 = i v δ(x) , (1.35)

that is even when the current is perfectly conserved at the classical level. Then, Lorentz

invariance imposes, Fourier transforming to momentum space,

〈
Jµ(k)ImO (−k)

〉
0 = i v

kµ

k2 , (1.36)

manifesting the presence of a massless pole in the spectrum, signature of the Goldstone

boson. Requiring continuity for m going to zero in the Ward identity (1.34), the same massless

pole has to appear in the two-point scalar correlator
〈

ImO ImO
〉

0 as well, although its explicit

computation requires an analysis of the (IR) dynamics, and so knowledge over the specific

theory.

When m 6= 0, instead, thanks to the Ward identity (1.34) and to the operator identity (1.27),

we have that the following two-point functions all depend on a single non-trivial function

f (�):

〈
ImO ImO

〉
0 =−i f (�) , (1.37)〈

∂µ JµImO
〉

0 =−i m f (�)+ i v , (1.38)〈
∂µ Jµ∂ν Jν

〉
0 =−i m2 f (�)+ i mv , (1.39)

where we have kept the delta function implicit. The last correlator is just a consequence of the

operator identity, and when v = 0 (pure explicit breaking case) then also the second correlator

is a trivial consequence of the operator identity.

When both v 6= 0 and m 6= 0, we see that the scalar-current correlator (1.38) exhibits both

features: a term related to (1.37) and a constant term. On the other hand, since the symmetry

is broken explicitly, we do not expect a massless mode in the spectrum contributing to this

set of correlators. However, in the case where m ¿ v
d−∆
∆ (small amount of explicit breaking

compared to spontaneous breaking), we expect to find a light particle, whose mass is sensibly

lower with respect to the rest of the spectrum and goes to zero in the m → 0 limit. We call

such particle pseudo-Goldstone boson, precisely in consequence of this fact that for m → 0 it

‘becomes’ the Goldstone boson. Furthermore, the leading-order contribution to the square

mass of the pseudo-Goldstone for small explicit breaking is linear in m
v , as we will show now in

full generality, requiring continuity in the m → 0 limit. This linear relation for the square mass

of the pseudo-Goldstone boson is renown as GMOR (Gell-Mann–Oakes–Renner) relation [35].

The GMOR relation was first found in the context of the effective description of pions as

pseudo-Goldstone bosons of the approximate chiral symmetry of quantum chromodynamics,

where the role of explicit breaking parameter is played by the masses of the quarks. Standard

derivations of GMOR for the pion can be found in the literature, for instance in [49, 50], and
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Chapter 1. Symmetry breaking in quantum field theory

also [51] for a derivation based on the effective action. Here we derive it in a more general

fashion, as it was done in [II].

In momentum space we can write

〈
ImO ImO

〉
0 =−i f

(
k2) , i kµ

〈
JµImO

〉
0 =−i m f

(
k2)+ i v . (1.40)

Note that the dimensions are [ f ] = 2∆−d , [v] =∆ and [m] = d −∆. Using Lorentz invariance,

which imposes
〈

JµImO
〉

0 = kµg
(
k2

)
, the second relation in (1.40) leads to

〈
JµImO

〉
0 =−kµ

k2

(
m f

(
k2)− v

)
. (1.41)

We immediately see that there cannot be a massless excitation in the
〈

ImO ImO
〉

0 channel,

otherwise there would be a double pole in
〈

JµImO
〉

0. Moreover, the massless pole in the above

correlator should be spurious, which requires f
(
k2

)
to satisfy

m f (0)− v = 0 . (1.42)

So far, everything is valid for any values of m and v . When m2 and k2 are both small

with respect to v , we can approximate f by a pole of mass M , corresponding to the pseudo-

Goldstone mode,

f
(
k2) ' µ

k2 +M 2 − µ

M 2 + v

m
, (1.43)

where we have implemented the condition (1.42), and the residue µ is a dynamical quantity of

dimension 2∆−d +2.

We now require that in the m → 0 limit f
(
k2

)
go over smoothly to what we expect in the

pure spontaneously broken case. Namely, we expect µ to be (roughly) constant in the limit, as

of course v , while M 2 → 0, so that

f
(
k2) m→0−−−→ µ

k2 , (1.44)

up to possibly an additive finite constant. From (1.43) we see that this is possible only if there

is a relation between all the constants such that

M 2 = µ

v
m . (1.45)

This is the generalized form of the GMOR relation [35], which indeed states that, at first

order, the square mass of the pseudo-Goldstone boson scales linearly with the small parameter

which breaks explicitly the symmetry, as announced. The two other constants entering the

expression are both of the order of the dynamical scale generating the vev, i.e. the spontaneous

breaking of the symmetry. We remark that, since µ has to be positive because of unitarity,

then the signs (and more generally the phases) of m and v have to be correlated in order to

avoid tachyonic pseudo-Goldstone bosons. This can be understood by the fact that the small
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1.3. Goldstone theorem in non-relativistic field theories

explicit breaking removes the degeneracy of the vacua, and thus the phase of the vev v is no

longer arbitrary but has to be aligned with the true vacuum selected by m.

We conclude making the link with the usual form in which GMOR relation is stated, which

is in terms of the residue of the full current-current correlator,

〈
Jµ Jν

〉
0 =− iµJ

k2 +M 2 kµkν+ . . . , (1.46)

where the residue µJ is actually given by the square of the decay constant of the pion, f 2
π .

Then we can use the GMOR value of the pole (1.45) into (1.43), and rewrite the longitudinal

correlator (1.39) as

kµkν
〈

Jµ Jν
〉

0 =
i mvk2

k2 +µm
v

. (1.47)

The comparison of these two expressions, (1.46) and (1.47), at the location of the pseudo-GB

pole (1.45) yields

µJ =
v2

µ
, (1.48)

and so

M 2 = v
µJ

m ≡ v
f 2
π

m ,

which is the desired usual form of GMOR relation [35], though completely equivalent to (1.45).

Here we have kept both d and ∆ arbitrary, and the relation is valid in all generality. In

Section 3.1 we will retrieve this relation in a particular holographic model for d = 3 and ∆= 2,

determining as well the value of the residue µ, which is specific to the considered model.

1.3 Goldstone theorem in non-relativistic field theories

In our derivation of Goldstone theorem, we have used Lorentz invariance in defining the spec-

tral density (1.9-1.10), as well as in any occurrence of the Lorentz-invariant distributions∆+(x)

and ∆(x). So, in lack of Lorentz invariance, that proof does not apply. However, the central

statement, that spontaneously broken symmetries imply zero-energy modes in the spectrum,

holds, in a softer formulation and with some modifications, also for non-relativistic field

theories, as we will see.

On the other hand, though in Section 1.1 we have presented Noether theorem as well in a

relativistic formalism, it relies only on the action principle and so it holds independently of the

symmetries of space-time. However, the key assumption in order to have a conserved charge

is that the spatial divergence of the current vanishes at spatial infinity. Actually, to ensure

time-independence of the vev in the spontaneous breaking condition (1.7), it is sufficient that∫
d~x

[
∂i J a

i (~x), X A

]= 0 , (1.49)
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Chapter 1. Symmetry breaking in quantum field theory

so that ∂t

[
Qa , X A

]= 0. In relativistic theories, which are intrinsically causal, this is guaranteed

as long as the operator X A is localized to a finite domain of space-time, and Goldstone theorem

inescapably follows4. On the contrary in non-relativistic theories, which can be non-causal,

long-range interactions can in some cases make the boundary term in (1.49) not vanish. It

can be shown that (1.49) holds as long as the range of interactions is finite [5, 6], otherwise

the applicability of condition (1.49) has to be checked case by case. In the following, we

assume (1.49) as necessary prerequisite for spontaneous breaking to occur, otherwise the

charge commutator and vev itself are not time-independent, and Goldstone theorem cannot

be discussed at all.

We can then take the symmetry breaking commutator (1.7), and rewrite it through the

spectral decomposition of the unity as in (1.8), obtaining

〈[
Qa , X A(0)

]〉
0 = (1.50)

=∑
n

∫
d~x

(
e i kn x〈

J a
t (0)

∣∣n〉〈
n

∣∣X A(0)
〉

0 −e−i kn x〈
X A(0)

∣∣n〉〈
n

∣∣J a
t (0)

〉
0

)
= (2π)d

∑
n
δ(~kn)

(
e−iω(~kn )t 〈J a

t (0)
∣∣n〉〈

n
∣∣X A(0)

〉
0 −e iω(~kn )t 〈X A(0)

∣∣n〉〈
n

∣∣J a
t (0)

〉
0

)
.

We see that, for the left-hand side to be time-independent, the right-hand side must vanish

except for states with vanishing energy at zero momentum, that is: ω
(
~kn≡0

)= 0 [7]. Further-

more, since the left-hand side is non-zero because of the spontaneous breaking condition (1.7),

at least one of such states must exist and contribute to the right-hand side. So, even without

using any Lorentz invariance, we can state that, when an internal continuous symmetry is

spontaneously broken, there exists at least one mode, whose energy goes to zero for spatial

momentum going to zero, and which couples to both the conserved current and the scalar

operator that does not commute with the current.

Let us now point out the crucial differences between the general statement of Goldstone

theorem, which we have just outlined here, and the relativistic one. First, in its more general

version Goldstone theorem is a low-energy statement: for~k → 0 there is a vanishing energy

mode, but it is not assured to survive at high energy, and in any case not with the same

properties. In the relativistic case, the dispersion relation (i.e. the dependence of the energy

of an excitation on the momentum) is fixed to ω~k = ~k , at low as at high energy, and the

Goldstone mode is an actual massless particle.

In a non-relativistic framework a richer range of dispersion relations are recorded. Let

us assume broken Lorentz invariance, but still preserved invariance under spatial rotations.

Then, in such case the Fourier transform of the old same correlator (1.8) has a less constrained

structure than in the Lorentz invariant case, which we can express in a formally Lorentz

4Goldstone theorem predicts a massless particle, but this does not mean that such particle be physically
observable. As high-energy physicists we all have in mind the example of gauge theories and Brout-Englert-Higgs
mechanism, where the Goldstone boson does not appear in the observable spectrum, being ‘hidden’ in the
longitudinal degree of freedom of the newly massive gauge boson.
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1.3. Goldstone theorem in non-relativistic field theories

covariant way using a time-like vector bµ = (1,~0):∫
dx e i kx〈[

Jµ(x), X A(0)
]〉

0 = kµρ1

(
k2,b ·k

)+bµρ2

(
k2,b ·k

)
. (1.51)

In the relativistic case, only the term proportional to kµ was present (1.9-1.10). Then the

current conservation leads to the non-relativistic equivalent [7, 52] of condition (1.15), which

constrains (1.51) to take the form

kµδ
(
k2) ρ̃1

(
b ·k)+ (

k2bµ− (b ·k)kµ
)
ρ̃2

(
k2,b ·k)+bµδ

(
b ·k)

ρ̃3

(
k2)+bµ C4δ

(
k0)δ(

~k
)

, (1.52)

where C4 is just a constant, and the ρ̃’s are functions only of the explicitly indicated arguments.

We can see that the introduction of the second term in (1.51) brings quite more possible

contributions, which in the early stages had been advocated as signals of a breakdown of

Goldstone theorem in the non relativistic framework [4, 52].

However, the last two terms correspond to states with zero energy, and zero energy and

zero spatial momentum, respectively. The latter is a spurious isolated energy-momentum

eigenstates with eigenvalue kµ = 0, whose contribution can be excluded if forces have finite

(exponentially suppressed) range [6, 8] (see also the discussion around eq. (32) of Brauner’s

review [37]).

The former can be one of the degenerate ground states of the continuum of possible

vacua, which are not actual excitations of the spectrum with energy going to zero in the

limit ~k → 0. The possibility of such term contributing to (1.51) is an artifact of working at

infinite volume, and it is ruled out by restricting to a finite volume. In a finite volume, indeed,

the integration in (1.50) does not give exactly a delta, rather a function peaked around zero,

but which allows for values of ~k slightly different from zero. So, at finite volume, the states

contributing to the non-vanishing commutator (1.50) are excitations with gapless dispersion

relation, rather than states with zero energy, so that contributions from ground states or other

spurious states of intrinsically zero energy are ruled out. Taking the limit of infinite volume,

and ~k → 0, it can be explicitly shown [6] that such states keep on not contributing to (1.50).

So, the actual, admissible contributions come from the first two terms in (1.52). The first

one is the analogous of the unique term of the relativistic case, with the exception that there

ρ̃1 is forced by Lorentz symmetry to be just a constant. The second term has a completely

transverse structure, so ρ̃2 is left completely arbitrary. This gives rise to the possibility of

non-linear dispersion relations for non-relativistic Goldstone modes5, as we will show now, by

an argument based on the symmetry breaking Ward identity.

In previous section we have seen that spontaneous symmetry breaking entails a contact

term in the Ward identity (1.35). Such Ward identity holds in absence as in presence of Lorentz

5As a curiosity, we point out that such term was excluded by Guralnik, Hagen, and Kibble in their review [7], by
a not convincing argument relying on the divergence of the spatial current at infinity. The legitimacy of this term
has been restored by Nielsen and Chadha, who indicated it as responsible for non-linear dispersion relations [8],
even though without giving any proof, and without confuting Guralnik-Hagen-Kibble’s argument, and not even
mentioning their work.
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Chapter 1. Symmetry breaking in quantum field theory

invariance, as long as the invariance of the measure and the continuity equation ∂µ Jµ = 0 are

assured.

In the relativistic case, the Ward identity (1.35) implied the presence of the Goldstone

massless pole (1.36), with the completely fixed relativistic dispersion relation, ω
(
~k

) = ~k ,

which is linear with proportionality constant given by the speed of light c ≡ 1. Here, with an

argument inspired by [9] but somehow original, we use the Ward identity to derive the more

general structure of the dispersion relation of non-relativistic GBs.

The non-vanishing contact term proportional to the vev (1.35) implies a pole at dispersion

relation ω~k , with ω~k → 0 as ~k → 0, in the correlator

〈
Jµ(k)X A(−k)

〉
0 = i v

−k0 +ω~k

(
nµ A

(
~k

)+bµB
(
~k

))
, (1.53)

where we have allowed for a completely general non-relativistic structure (which yet preserves

spatial rotational invariance), with nµ = (
1,~k

/
~k

)
, ‘normalized’ light-like vector, and bµ the

same as in (1.51). In this way A and B have the same mass dimensions. Then the Ward identity

becomes an equation for A and B , giving the dispersion relation. Namely,

i v = kµ
〈

JµX A

〉
0 = i v

−k0 +ω~k

((
−k0 + ~k

)
A−k0 B

)
=

= i v (A+B)+ i v

(−ω~k + ~k )
A−ω~k B

−k0 +ω~k
. (1.54)

The realization of the Ward identity demands the term in A +B to be a constant for ~k → 0,

and the term diverging at the location of the Goldstone pole to vanish. We can write

A
(
~k

)= a0 +a1
~k + . . . ;

B
(
~k

)= b0 + . . . .

In this way, the first condition that we extract from (1.54), in order to recover the Ward identity,

is a0 +b0 = 1. Then, the other condition is that the second term must vanish, giving

(−ω~k + ~k )
A−ω~k B = 0 .

It is easy to check that for b0 6= 1 a linear dispersion relation occurs at low momentum

ω~k = (
1−b0

)
~k , (1.55)

with the relativistic one being a special case, at b0 = 0. If instead b0 = 1 (and a1 6= 0), we have

ω~k = a1
~k2 , (1.56)

that is a quadratic dispersion relation. We will see in the following that such quadratic disper-
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1.3. Goldstone theorem in non-relativistic field theories

sion relation can be connected to a non-zero vacuum expectation value of a charge density,

event that clearly can only occur when Lorentz invariance is violated.

As a final remark, we point out that throughout this discussion we have assumed the

dispersion relation to be analytic in the momentum, as a consequence of the analyticity of

the Fourier transform. This is guaranteed if there are no long-range interactions [8]. How-

ever, Goldstone modes can occur also in the presence of long-range interactions (as long as

the divergence of the spatial current is assured to vanish at infinity), and can exhibit non-

analytic dispersion relation, for instance with fractional powers of momentum (see Section 6

of Brauner’s review [37] for concrete examples).

Another main issue of the non-relativistic extension of Goldstone theorem concerns the

number of Goldstone bosons in relation to the number of broken generators. In the relativistic

case we have (at least6) one Goldstone particle for each broken generator. Already in early

times Nielsen and Chadha [8] showed that, in lack of Lorentz invariance, the possibility of

dispersion relations proportional to even powers of momentum demands a modification of

the counting rule, resulting in the inequality

nI +2nI I ≥ nBG , (1.57)

where nBG is the number of broken generators, and nI and nI I are the numbers of type I and

type II Goldstone modes, with type I having odd-power, and type II even-power dispersion

relations. Of course, relativistic Goldstone boson are all necessarily of type I, giving the

inequality nGB ≥ nBG , with nGB being the number of Goldstone bosons.

More than twenty-five years later [39] the missing counting was connected to non-

vanishing vacuum expectation value for the charge operators. More precisely, the statement

of [39] was that if 〈[
Qa ,Qb]〉

0 = 0 (1.58)

for all broken generators, then nGB ≥ nBG , as in the relativistic case. Of course, Lorentz

invariance excludes the possibility of a non-zero vev for a charge, that is defined in term of

the temporal component of a current. Actually, the original statement of [39] was given as

an equality, which does not necessary follows from their argument, and also their reasoning

presented some inaccuracies. Anyway, the statement, in the form of an inequality, is correct,

and the proof can be refined, as you can see for instance in section 5.3 of Brauner’s review [37].

The connection between charge density taking a vev and quadratic dispersion relation

was already pointed-out by means of low-energy effective Lagrangian for non-relativistic

Goldstones [53]. However, a precise counting rule has been established only relatively recently,

6The non-perturbative proof of Goldstone theorem presented here does not rule out the possibility that
Goldstone modes may be more than broken generators. However, in all known example the strict equality
holds, and proofs of Goldstone theorem based on perturbation theory and effective potential (see section 19.2 of
Weinberg’s book [31]) show that there is a one-to-one correspondence between number of Goldstone modes and
number of independent broken generators. Furthermore, the non-relativistic counting of (1.59) reduces to the
equality between numbers of broken generators and Goldstone bosons for the relativistic sub-case rankρ = 0.
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again thanks to a low-energy effective Lagrangian approach with some assumed properties, in

a series of papers [9–11, 54, 55], whose conclusions summarize as follows:

nA = nBG − rankρ , nB = 1
2

rankρ , nA +nB = nGB , nA +2nB = nBG , (1.59)

where nA and nB are the number of type A and type B Goldstones respectively, and

iρab = 〈[
Qa , J 0

b

]〉
0 . (1.60)

The distinction of type A and B, rather than type I and II, is based on the counting rather than

on dispersion relation: a type A GB corresponds to a unique broken generator, whereas a type B

GB corresponds to a pair of canonically conjugated broken generators. Nonetheless, type A

GBs typically have linear dispersion relation, while type B GBs have quadratic dispersion

relation, even if there are exceptions, namely when the breaking of spacetime symmetries is

involved (see sec. VI.A of [55]).

In next section we will briefly analyze a basic field theory model where Lorentz invariance

is explicitly broken by a chemical potential, and both type A and type B Goldstone bosons are

encountered.

1.3.1 Relativistic-like theories with a chemical potential

The field theoretical model that we discuss here is inspired to the one presented in [38, 39],

which shares in turn the same symmetries and the same pattern of symmetry breaking as

the holographic model that we consider in Chapter 4. In the weak coupling limit, we can

compute the two-point correlators at tree level, derive the Ward identities in absence of

Lorentz invariance, but also extract the dispersion relations and the spectrum.

The model consists in theory of a complex scalar doublet Φ of a global U(2) symme-

try, where a non-dynamical abelian gauge field Bµ =
(
µ,~0

)
introduces a non-zero chemical

potential µ, which explicitly breaks Lorentz invariance in the otherwise relativistic action

S =−
∫

ddx
[(
∂µ+ i Bµ

)
Φ†(∂µ− i Bµ

)
Φ+M 2Φ†Φ+λ(

Φ†Φ
)2

]
=

∫
ddx

[(
∂0 + iµ

)
Φ†(∂0 − iµ

)
Φ−∂iΦ

†∂iΦ−M 2Φ†Φ−λ(
Φ†Φ

)2
]

. (1.61)

Using (1.3), we can compute the four conserved currents,

J a
ν = iΦ†T a∂νΦ− i∂νΦ

†T aΦ+2BνΦ
†T aΦ , with a = {0,1,2,3} , (1.62)

where T a are the generators of U(2) in the fundamental representation, namely

T a = 1
2
τa , with τ0 = 12 , τ1 =

(
0 +1
+1 0

)
, τ2 =

(
0 −i
+i 0

)
, τ3 =

(+1 0
0 −1

)
. (1.63)
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It can be easily checked that, for any value of µ (which is real), the currents (1.62) indeed

satisfy the U(2) current algebra, given by
[
T a ,T b

]= i f abc T c , with f abc = 0 if any of the indices

is 0, and f abc ≡ εabc otherwise, where εabc is the usual completely antisymmetric three-

dimensional Levi-Civita symbol.

When µ2 > M 2 (i.e. always if M 2 < 0) the theory settles in a vacuum where the global

symmetry is broken down to a U(1), so we have three broken generators. For definiteness, we

choose a real vev for the bottom component,

Φ0 =
(

0
v

)
, with v2 = µ2 −M 2

2λ
, (1.64)

so that the component 1
2 (1+τ3) is conserved, whereas the other three generators, 1

2 (1−τ3), τ1,

τ2, are broken. We can then consider small fluctuations around the vacuum, in their real and

imaginary parts,

Φ=
(

σ+ iθ
v +ρ+ iπ

)
, (1.65)

and work out the quadratic part of the Lagrangian, which reads

Lquad =−∂µσ∂µσ−∂µθ∂µθ−∂µρ∂µρ−∂µπ∂µπ +
−2µ

(
σ∂tθ−θ∂tσ+ρ∂tπ−π∂tρ

)−4λv2ρ2 . (1.66)

This Lagrangian seems to have only one massive particle, and so three Goldstone bosons for

the three broken generators. However, we will see that it is not the case, as soon as we inspect

the low-momentum eigenvalues of the mass-matrices, which in momentum space (∂t →−iω)

are given by

(
σ θ

)( ω2 −~k2 2iµω

−2iµω ω2 −~k2

)(
σ

θ

)
+ (

ρ π
)( ω2 −~k2−4λv2 2iµω

−2iµω ω2 −~k2

)(
ρ

π

)
. (1.67)

The low-momentum zeros of the determinant of the above matrices yield the dispersion

relations.

For the ρ-π sector, we have

ω2
0 ∼ 4λv2 +4µ2 , ω2

3 ∼ λv2

λv2 +µ2
~k2 . (1.68)

This is the ‘relativistic-like’ sector: indeed we have a Higgs-like massive particle, and a Gold-

stone boson with linear dispersion relation. However, the constant of proportionality depends

on the chemical potential and it is always different from one, except for µ≡ 0, when Lorentz

invariance is restored.

The mass-matrix of the σ-θ sector, instead, yields the following dispersion relations

ω1 ∼ 2µ , ω2 ∼
~k2

2µ
. (1.69)
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Chapter 1. Symmetry breaking in quantum field theory

Remarkably, a massive mode arises even in this sector, leaving a unique Goldstone boson

for a pair of broken generators. Furthermore, this latter exhibits a quadratic dispersion

relation. Notice that the mass of the massive partner is proportional to the Lorentz breaking

parameter [12], so it can be kept hierarchically small by lowering the chemical potential.

Let us see that we are precisely in a situation where a charge density has a non-zero

vacuum expectation value, so that the commutator of two broken generators consequently has.

From the expression of the currents (1.62), and using the definition of conserved charge (1.5),

we have 〈[
Q1,Q2]〉

0 =
∫

d~x
∫

d~x ′ 〈[J 1
t (x), J 2

t (x ′)
]〉

0 = i
∫

d~x
〈

J 3
t (x)

]〉
0 6= 0 , (1.70)

since 〈
J 3

t

〉
0 =−µΦ†

0τ
3Φ0 =−µv2 . (1.71)

We notice that, on the contrary,
〈

J 1
t

〉
0 ≡ 0 and

〈
J 2

t

〉
0 ≡ 0, so that (1.70) is the only charge

commutator having a non-vanishing vev. We conclude the analysis of this field theory model

by deriving the Ward identity for the vev of J 3
t from the tree-level propagators.

1.3.1.1 Non-relativistic propagators and Ward identities

From the mass-matrices (1.67) we can read off the tree-level propagators. We write down here

those of the σ-θ sector, which are those that we will make use of,

−i
〈
σ(−k)σ(k)

〉
0 = ω2 −~k2(

ω2 −ω2
1

)(
ω2 −ω2

2

) ,

−i
〈
σ(−k)θ(k)

〉
0 =

2iµω(
ω2 −ω2

1

)(
ω2 −ω2

2

) = i
〈
θ(−k)σ(k)

〉
0 ,

−i
〈
θ(−k)θ(k)

〉
0 = ω2 −~k2(

ω2 −ω2
1

)(
ω2 −ω2

2

) ,

(1.72)

where the location of the poles are given by the dispersion relations that make the determinant

of the respective mass matrix vanish, and whose low-momentum form are those showed

in (1.68-1.69).

In the broken symmetry vacuum, the currents can also be expanded at the linear order in

the fluctuated fields, obtaining:

J 0
ν =−v∂νπ+2vBνρ =−J 3

ν ,

J 1
ν =−v∂νθ+2vBνσ ,

J 2
ν =−v∂νσ−2vBνθ .

(1.73)

With this expressions we can compute the current-current correlator
〈
∂ν J 1ν J 2

t

〉
0 in momentum
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1.3. Goldstone theorem in non-relativistic field theories

space

−i kν
〈

J 1
ν(−k)J 2

t (k)
〉

0 = v2
[(
ω2 −~k2)((−iω)〈θσ〉0 +2µ〈θθ〉0

)
+2iωµ

(
2µ〈σθ〉0 − iω〈σσ〉0

)]
= 2iµv2 ω2 −~k2−4µ2ω2(

ω2 −ω2
1

)(
ω2 −ω2

2

) ≡−2i f 123 〈
J 3

t

〉
0 , (1.74)

where the simplification in the last line comes from the fact that the numerator is precisely

the determinant of the mass-matrix (1.67) which vanishes at the location of the poles, and we

have used (1.71) as well.

So we have retrieved the Ward identity from the dispersion relations. We have in a sense

reversed the logic of (1.54), where we have shown that is possible to derive the dispersion

relations from the Ward identities. Of course, the kind of current-current Ward identity of (1.74)

can be obtained in full generality from the path integral invariance, as it was done in Section 1.2

for the current-scalar Ward identity (1.34). We have just to start from the the path integral of

the charge density, and repeat the same steps.

In Section 4 we obtain holographically the analogous of the Ward identity (1.74), as well as

all the other Ward identities, for a holographic model that enjoys the same symmetry breaking

pattern as the one presented here.

1.3.2 Goldstone bosons in Lifshitz invariant field theories

In this section we want to very briefly introduce Lifshitz invariant field theories, and discuss in

particular the characteristic features of the elements that we are concerned with: symmetry

breaking, Goldstone dispersion relations, Ward identities. We start by deriving correlators

between currents and order parameters in low-energy effective field theories of Goldstone

bosons. We then discuss how the qualitative features of these correlators can be extracted

from the Ward identities.

Lifshitz invariance is an anisotropic form of scaling invariance: it rescales differently

space and time. Namely,

t −→ λz t ,

xi −→ λxi ,
(1.75)

where Lifshitz scaling parameter z is also called the dynamical critical exponent. For z = 1 we

have the relativistic scaling invariance, whereas with any z 6= 1 Lorentz symmetry is violated.

Thus, one of the theoretical interests in Lifshitz invariant field theories is driven by the will to

find an analogous of conformal invariance for non-relativistic QFTs.

Consider the following low-energy effective action for a Goldstone boson in a field theory

which is invariant under Lifshitz scaling (1.75) [20], as well as under time reversal,

S =
∫

ddx 1
2

(
∂tπ∂tπ− (−1)zξπ∇2zπ

)
, (1.76)
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Chapter 1. Symmetry breaking in quantum field theory

where ∇2 = ∂i∂i , and the sign in front of the second term is chosen such that the dispersion

relation reads ω2 = ξk2z , so that we can set ξ≥ 0. The relativistic case is z = 1, ξ= 1. It can be

more reassuring to think of z as an integer, but it can really take any value (here we will mainly

consider z ≥ 1).

Assuming ξ does not scale, the scaling dimensions are the following:

[∂t ] = z , [∂i ] = 1 , [π] = d −1− z
2

. (1.77)

Note that for d ≤ z +1 the scalar field has vanishing or negative scale dimension, which makes

its fluctuations long range, rendering the effective action ill-defined. This will turn out to be

a problematic case as well in the corresponding holographic setup of Chapter 5, where the

‘BF bound’ for temporal component of the vector field will be given precisely by d = z +1 (see

eq. (5.46) and the discussion below).

The propagator for π, that we can extract from the action (1.76) is the following, in Fourier

space, 〈
π(k)π(−k)

〉
0 =

i

ω2 −ξ~k 2z . (1.78)

It has the correct scaling dimension, since 2[π]− (d −1+ z) =−2z =−2[ω].

The action (1.76) enjoys a shift symmetry π→π+vα, with v the vev and α the parameter

of the transformation. This is indeed expected for a Goldstone boson. In order to find the

current that generates this symmetry (which is broken by the vev v), we promote α to a

space-time dependent function, and define

δαS =
∫

ddx
(
∂tαJt −∂iαJi

)
. (1.79)

We then obtain

Jt = v∂tπ , Ji = (−1)z−1ξv∇2z−2∂iπ . (1.80)

They are linear in the Goldstone field, as it should be for currents of a broken symmetry (at the

lowest order). The conservation law is

−∂t Jt +∂i Ji =−v
(
∂2

t + (−1)zξ∇2z)π= 0 , (1.81)

from the equation of motion. Note that it reads exactly as in the relativistic case, although the

dimensions of the currents are here changed:

[Jt ] = d −1 , [Ji ] = d + z −2 . (1.82)

We can now see how the conservation law appears in two-point functions, that is in

the Ward identities. Recall that here the operator breaking the symmetry is π itself, with
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1.3. Goldstone theorem in non-relativistic field theories

〈
δαπ

〉
0 = v . Using (1.78), we have

〈
Jt (k)π(−k)

〉
0 =−i vω 〈ππ〉0 = vω

ω2 −ξ~k 2z , (1.83)

〈
Ji (k)π(−k)

〉
0 = iξv ki

~k 2z−2〈ππ〉0 =−v ξki
~k 2z−2

ω2 −ξ~k 2z , (1.84)

so that

iω
〈

Jtπ
〉

0 + i ki

〈
Jiπ

〉
0 =

i vω2

ω2 −ξ~k 2z −
i vξ ~k 2z

ω2 −ξ~k 2z = i v . (1.85)

This is again the Ward identity (1.35),

−∂t

〈
Jtπ

〉
0 +∂i

〈
Jiπ

〉
0 = i

〈
δαπ

〉
0 , (1.86)

keeping implicit the delta function of the contact term.

We can briefly consider also the case of a theory which has Lifshitz scaling but not time

reversal symmetry. The low energy action is then7

S =
∫

ddx 1
2

(
i ψ∗∂tψ− (−i )zζψ∇zψ

)
. (1.87)

Again, it is easier to consider z even, but it can be generic. Now the dimension of the Goldstone

field is

[ψ] = d −1

2
. (1.88)

Note that it is always positive as long as d > 1. Its propagator is

〈ψψ∗〉0 = i

ω−ζ~k z , (1.89)

We can again derive the currents,

Jt =−i vψ , Ji =−(−i )z v ζ∇z−2∂iψ . (1.90)

and verify that the Ward identities are realized again:

iω
〈

Jtψ
〉

0 + i ki

〈
Jiψ

〉
0 = i vω

ω−ζ~k z −
i v ζ~k z

ω−ζ~k z = i v . (1.91)

1.3.2.1 From Ward identities to the Goldstone boson

Having seen how the Ward identities are realized in a specific example of a low energy effec-

tive theory, we now reverse the logic and start from the Ward identities in order to find the

7The linearity in time derivatives forces us to take a complex scalar field, otherwise the action would be a
total derivative. However, only one massless physical degree of freedom arises, the Goldstone boson. We assume
boundary terms that make the action real.
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Chapter 1. Symmetry breaking in quantum field theory

Goldstone boson. We have

−∂t

〈
Jt O

〉
0 +∂i

〈
Ji O

〉
0 = i

〈
O

〉
0 , (1.92)

for some operator which transforms under the symmetry generated by the currents, and which

has a vev that breaks the symmetry.

Using the invariance under spatial rotations, we parametrize the correlators in Fourier

space as follows, 〈
Jt O

〉
0 = f

(
ω, ~k

)
,

〈
Ji O

〉
0 =−ki g

(
ω, ~k

)
. (1.93)

Note that [ f ] =∆− z and [g ] =∆−2, where ∆ is the dimension of the operator O . The Ward

identity then implies

ω f −~k2g = 〈O〉0 . (1.94)

Obviously, assuming 〈O〉0 finite and non zero whenω, ~k → 0, then either f or g , or both, have

to blow up, signaling the presence of a massless particle in the spectrum, the Goldstone boson.

Let us be more precise. Take first ~k → 0 with ω 6= 0. Then, assuming g finite in this limit,

we have f → 〈O〉0
ω . Similarly, when ω→ 0 at ~k 6= 0, we have g →− 〈O〉0

~k
2 . We can then rewrite

f = 〈O〉0

ω
f̃ , g = 〈O〉0

~k 2

(
f̃ −1

)
. (1.95)

where f̃ is a dimensionless function of ω and ~k .

There are two trivial ways to satisfy the Ward identity, which is setting either f̃ = 1 or f̃ = 0.

These two choices do not corresponding to propagating degrees of freedom: they correspond

to the two previously taken limits, and yields the degenerate dispersion relations k2 ≡ 0

(independently of ω), and ω ≡ 0 (independently of~k2), respectively. We want rather ω→ 0

as ~k → 0, giving a proper dispersion relation ω=ω(
~k

)
. Thus we consider the relevant case

where f̃ is a non-trivial function.

If we require that the low energy theory has Lifshitz scaling, then f̃ must be a function of

the ratio x = |~k|z
ω . If we also impose time reversal symmetry, then it must be a function of x2.

The conditions on the ω→ 0 and ~k → 0 limits translate into

f̃ (x = 0) = 1 , f̃ (x =∞) = 0 . (1.96)

We can readily find simple functions that satisfy the above requirements, and reproduce the

single-particle correlators obtained previously.

First, we let time reversal be broken, and we take

f̃ = 1
1−ζx

= ω

ω−ζ~k z . (1.97)
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1.3. Goldstone theorem in non-relativistic field theories

In this way, using (1.93) and (1.95), we have

〈
Jt O

〉
0 =

〈O〉0

ω
ω

ω−ζ~k z = 〈O〉0

ω−ζ~k z , (1.98)

〈
Ji O

〉
0 = ki

〈O〉0

~k 2

(
1− ω

ω−ζ~k z

)
=−ζki

~k z−2〈O〉0

ω−ζ~k z , (1.99)

recovering the same form as in (1.91) (with the identification 〈O〉0 ≡ v).

Imposing now time reversal invariance, we can take

f̃T = 1
1−ξx2 = ω2

ω2 −ξ~k 2z , (1.100)

so that

〈
Jt O

〉
0 =

〈O〉0

ω
ω2

ω2 −ξ~k 2z = ω〈O〉0

ω2 −ξ~k 2z , (1.101)

〈
Ji O

〉
0 = ki

〈O〉0

~k 2

(
1− ω2

ω2 −ξ~k 2z

)
=−ξki

~k 2z−2〈O〉0

ω2 −ξ~k 2z , (1.102)

which are the same as (1.83)–(1.84) (again with the identification 〈O〉0 ≡ v).

Note that in both cases, more complicated functions can be taken. However, all these

functions will involve a denominator with a polynomial in x (or x2). Near the roots of this

polynomial, the functions will all be very close to those that we have taken.

Along this first chapter, we have seen in a general fashion and in various simple examples

how the Ward identities for symmetry breaking are a strongly general feature, which applies to

non-relativistic field theories in the same way as they do for relativistic ones. Moreover, we

have pointed out how contact terms in the Ward identities are connected to the presence of

massless Goldstone modes in the spectrum, and we have explored what information they can

unveil over the dispersion relations of such gapless modes.

In part II, we will see how to retrieve the non-perturbative structure of Ward identities

for symmetry breaking in holography. Before, let us introduce, in the next Chapter, the

holographic correspondence, and the main computational tool that we will adopt in part II,

holographic renormalization.
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2 Holography from a boundary-

oriented perspective

The duality between quantum, strongly-coupled field theories and classical, weekly-coupled

gravitational theories has been originally conjectured [13] and affirmed between asymptot-

ically Anti de Sitter (AdS) space-times and conformal field theories in flat space. Yet the

holographic principle seems to hold in a much broader variety of different cases, as for in-

stance in the case, relevant for us, of non-relativistic bulk geometries. As Jared Kaplan affirms

in his lecture notes on AdS/CFT correspondence [56]: “AdS/CFT is many things to many

people”. The gauge/gravity duality is then even more things for at least as many people, so let

us say what it is to us.1

Let us start from the original concrete realization of AdS/CFT [13]. Maldacena considered

N coincident D3-branes in type IIB string theory, where the low-energy limit provides two

alternative descriptions. On the one hand, in perturbative string theory at low-energy, where

only massless excitations are important, massless close strings have irrelevant interactions

and decouple, while massless open strings ending on the D3-branes have dimensionless

coupling and survive. The resulting theory of interacting SU(N ) gauge fields living on the

four-dimensional (flat) world-volume of the N D3-branes is N = 4 SU(N ) super-Yang-Mills

(SYM), with Yang-Mills coupling gYM given in terms of the string coupling gs , by the identi-

fication g 2
YM ∼ gs . On the other hand, D3-branes are black brane solutions of supergravity

(low-energy classical limit of string theory). In this picture the low-energy limit selects the

near-horizon region, and the near-horizon geometry of D3-branes in 10-dimensional type IIB

supergravity is given by AdS5 ×S5, where S5 is the five-sphere and the AdS radius L is given

by L4 ∼ gs N l 4
s , where ls is the string length.

So, we have taken the same limit of a single theory, and obtained two apparently very

different theories, which nonetheless should be equivalent: N = 4 SU(N ) super-Yang-Mills

1Giving a review on holography is far beyond the purpose of this dissertation. For complete and pedagogical
introductions we refer to the copious existing material, as for instance [41, 57–62].
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Chapter 2. Holography from a boundary-oriented perspective

on flat space on one side, and supergravity on AdS5 × S5 on the other. Let us first remark

that the symmetries match on the two sides: the group of isometries of AdS5 coincide with

the conformal group in one less dimension, SO(4,2) (and this is true for any dimensions),

the symmetry of the five-sphere, SO(6), matches the SU(4) R-symmetry of N = 4 SYM, and

supersymmetries are the same on both sides.

However, the two approximations are valid in opposite regimes, which is the essential

property of a duality. Indeed, the perturbative description holds when perturbation theory

applies, that is for gs N ¿ 1. On the other hand supergravity, i.e. the classical approximation, is

reliable if the quantum corrections are negligible, so gs → 0, and if the AdS curvature radius L

is larger than the string length ls , which is true for gs N À 1, which implies N →∞.

Let us summarize by introducing the ’t Hooft coupling λ [63], so that

L4

l 4
s
∼ gs N ∼ g 2

YMN ≡λ . (2.1)

If in SU(N ) Yang-Mills theory one takes N to be large, but gYM small enough so that λ¿ 1,

perturbation theory applies, and ’t Hooft showed [63] that at large N quantum loop diagrams

organize according to the topology, with decreasing powers of N as the genus of the diagram

increases. In this way, planar diagrams are dominant in the large N limit (which for this reason

is also called planar limit).

In conclusion, if we can commute the low-energy limit with the fact of moving continu-

ously between the weak-coupling regime λ¿ 1 and the strong-coupling regime λÀ 1, then

the duality is established. This last assumption is assumed to be true, but it is very hard to be

proved or disproved, precisely for the fact that in the regime where one side of the duality is

controllable, the other is hardly tractable, and vice-versa. At the same time, such duality is a

very powerful and promising tool, precisely for the fact that when one of the side is obscure,

the other is generically under control.

Anyway, many non-trivial checks of the duality have been performed, in particular on

supersymmetry-protected quantities, which can be computed on both sides [64], but also

by a large variety of constructions, which suggests that the duality holds beyond its original

AdS/CFT framework. Actually, in the perspective of our discussion, we precisely wish it to

extend to the broadest possible class of theories (namely non-relativistic space-time, non-

conformal field theories, and so on). On the other hand, since we are mainly interested in

using holography to study quantum field theories at strong coupling (in this sense, a boundary-

oriented perspective), we are happy with the classical approximation for bulk gravity (which

for our purposes will actually be even non-dynamical).

Letting the quantum completion of our classical gravity be string theory as well as what-

ever other theory of quantum gravity, for the aims of this thesis we assume

L4

L4
Pl

À 1 , (2.2)
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meaning that the size L of our bulk space-time is large with respect to the Planck length LPl ,

that is the scale where quantum gravitational effects become relevant, so that the curvature is

weak and the classical description of gravity holds. In turns, this implies that the dual QFT

contains a large number of degrees of freedom.

In this range of validity, a weaker/broader holographic principle can be formulated, which

is embodied by the following statement [40]: the on-shell partition function of a classical

gravitational theory in a given (d+1)-dimensional space-time M is equivalent to the (off-shell)

generating functional for correlation functions of a gauge field theory with no gravity on the

boundary ∂M . In formulæ:

e i Sgrav
cl ≡ exp

[
i
∫
M

dd+1x
√−g Lcl[ϕ]

∣∣∣
on-shell

]
= (2.3)

=
〈

exp
[

i
∫
∂M

ddx
√−ĝ ϕ0 Oϕ

]〉
0
≡ZQFT,

where g is the determinant of the bulk metric, ĝ the one of the corresponding induced metric

on the boundary,ϕ is a generic classical bulk field,ϕ0 is its asymptotic boundary value, and Oϕ

is the boundary operator defined in this way as dual to the bulk field ϕ. Notice that the left-

hand side of this equation explicitly relies on a weak-coupling local Lagrangian formulation,

whereas the right-hand side is the generating functional for correlation function in a general

QFT, which is valid regardless of the strength of the coupling.

The actual meaning of the left-hand side will be made clear in the following, but it is

already evident from the right-hand side, that equation (2.3) furnishes a prescription for

computing QFT n-point correlation functions. Defining WQFT = lnZQFT, we have the following

formula for connected n-point correlation functions

〈
OA1

(x1) · · ·OAn
(xn)

〉
0 ≡ (−i )n

δn WQFT[ϕ0]

δϕ
A1
0 (x1) · · ·δϕAn

0 (xn)

∣∣∣∣∣
ϕ0=0

(2.4)

= (−i )n
δn i Sgrav

cl

δϕ
A1
0 (x1) · · ·δϕAn

0 (xn)

∣∣∣∣∣
ϕ0=0

(2.5)

where we have allowed for various boundary operators OA , dual to various bulk fields ϕA .

Furthermore, we remark that the boundary dual operator has not to be a scalar, it can

be any sort of composite QFT expressions, however, since it couples to the source ϕ0 in

the generating functional ZQFT, it must have the same symmetry properties and quantum

numbers as the corresponding bulk field ϕ. In particular, for a conserved current Jµ we have

exp
[

i
∫
∂M

ddx
√−ĝ A0µ Jµ

]
. (2.6)

As already discussed in Section 1.2 around eq. (1.31), the gauge invariance of the measure

in the generating functional entails that the source of a conserved current undergoes gauge

transformations. Thus, in holography this implies that the dual field of the conserved current
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Chapter 2. Holography from a boundary-oriented perspective

of a global symmetry on the boundary is given by an actual gauge field in the bulk.

Let us now focus on the left-hand side of the foundational equation (2.3): the bulk

action should be put on-shell by means of the bulk equations of motion, and the sources for

dual operators identified. Then, suitable boundary conditions, and the capability to solve

the equations of motion, allow to express the boundary action in terms of the sources only.

However, the operation of reduction on the boundary may produce diverging terms. Such

divergences can be removed in a consistent way, identifying at the same time the sources for

dual operators, by a procedure called holographic renormalization, by analogy with its field

theoretical counterpart. Next section is devoted to illustrate such procedure in detail.

2.1 Holographic renormalization

The idea of holographic renormalization was first proposed in [65, 66], and then developed in

a systematic way in [28–30]. Here we illustrate it through the minimal example of a real scalar

field ϕ of mass mϕ on an AdSd+1 fixed background, following an approach similar to [67].

Several more examples of holographic renormalization will follow throughout the holographic

models of Part II.

We thus consider the following bulk action,

S =−1
2

∫
dd+1x

√−g
(
g mn∂mϕ∂nϕ+m2

ϕϕ
2
)

, (2.7)

where Latin letters indicate indices in the (d+1)-dimensional bulk, while Greek letters indicate

indices in the d-dimensional boundary, which are contracted in the usual way with mostly-

plus Minkowski metric2, and where the AdS metric in the Poincaré patch is defined by

ds2 = 1

r 2

(
dr 2 +dxµdxµ

)
, so that g r r = r 2 , gµν = r 2ηµν , (2.8)

where we have set the AdS radius L ≡ 1. We call r holographic coordinate or radial coordinate,

and the boundary is located at r = 0.

The variational principle gives the following equation of motion

0 =− 1√−g
∂m

(√−g δL
δ∂mϕ

)
− δL
δϕ

= r d+1∂r

(
r−d+1∂rϕ

)
+ r 2�ϕ−m2

ϕϕ , (2.9)

where with the box we indicate the d’Alembertian in Minkowski space,�= ∂µ∂µ. Exact analytic

solutions to this equation are given in terms of Bessel functions, as we will see in Section 2.1.1.

2 We choose to adopt from the beginning the ‘physical’ Lorentzian signature, rather than the Euclidean one, even
if the holographic renormalization and the computation of correlation functions require careful treatments [68, 69],
related to the causal iε prescription for (time-ordered, retarded, advanced) correlation functions in QFT. However,
for the setups presented in this work, which involve no temperature and no time-evolution, the actual Lorentzian
computation would be uselessly complicated and equivalent to the Euclidean one with a final suitable analytic
continuation to real time (Wick rotation), and indeed it is what we will be implicitly doing all the time.

40



2.1. Holographic renormalization

For the moment, we just need the asymptotic behavior, which can be easily determined by

solving the equation order by order in the near-boundary expansion, obtaining [40, 70]

ϕ= r d−∆ (
ϕ0 + r 2ϕ1 + . . .

)+ r∆
(
ϕ̃0 + r 2 ϕ̃1 + . . .

)
, (2.10)

with ∆= d
2
+

√
d 2

4
+m2

ϕ . (2.11)

This power expansion holds whenever 2∆−d is different from zero, and is not an even integer,

so for ∆ 6= d
2 +n, with n non-negative integer. Otherwise, the two parts of (2.10) mix and

logarithmic terms arise, as it can be checked from the equation of motion (2.9) itself. The

presence of logarithms does not represent any insurmountable obstacle, nonetheless we avoid

them for the moment in order to keep the discussion simpler, and we postpone their treatment

to Section 2.1.2.

The value∆= d
2 is a minimal value for∆, and it corresponds to the minimal value that the

scalar mass can get for the argument of the square root in the definition of∆ to be non-negative,

that is

m2
ϕ =−d 2

4
. (2.12)

This defines the BF (Breitenlohner-Freedman) bound for the AdS scalar mass [71]. Masses

below this value correspond to tachyons in AdS. Nonetheless, AdS squared mass can get

negative values, with still positive energy, since AdS curvature compensates with a positive

contribution to the energy.

If we identify the asymptotic leading term ϕ0 as the source for the dual boundary opera-

tor Oϕ (2.3), then ∆ (that is the asymptotic exponent of the sub-leading mode ϕ̃0) turns out to

be the scaling dimension of Oϕ, so that we will call ϕ̃0 the ‘response’. Hence, the BF bound

constitutes a lower bound for the dimension of the boundary operator: ∆≥ d
2 . Actually, in a

conformal field theory there is a lower bound for the dimension of scalar operators, given by

unitarity [72]:

∆> d

2
−1 . (2.13)

However, the BF bound is above the unitarity bound, and there are no reasons from the

boundary point of view for the dimension of Oϕ not to be allowed to go down to the unitarity

bound. And indeed values of the scaling dimension between the unitarity bound and the BF

bound can be accessed by making ϕ̃0 the source, so that the the dual scalar operator is of

dimension d −∆ (i.e. ϕ0 is the response).

Breitenlohner and Freedman themselves [71], demanding finiteness of the AdS action

and positive definiteness of the energy, actually showed that for m2
ϕ >−d 2

4 +1, that is∆> d
2 +1,

only one choice of boundary condition (ϕ0 is the source) is acceptable. Instead, for

−d 2

4
< m2

ϕ <−d 2

4
+1 (2.14)

two alternative AdS-invariant quantizations are admissible. For ϕ0 as source, we have an
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Chapter 2. Holography from a boundary-oriented perspective

operator of dimensions ∆, with d
2 < ∆ < d

2 + 1; for ϕ̃0 as source, we have an operator of

dimensions ∆̃ ≡ d −∆, with d
2 − 1 < ∆̃ < d

2 , filling in this way the window of dimensions

between the BF bound and the unitarity bound [70, 73–75].

We will see in detail how to set these different boundary conditions, and how holographic

renormalization, besides removing divergences, actually allows to fix which are the sources,

and consequently select the quantization.

Now, let us go back to the action (2.7), and try to reduce it to the boundary, in order to be

able to apply our holographic principle (2.3). We first integrate by parts, and use the equation

of motion to put the action on shell:

S =−1
2

∫
dd+1x

[
∂r

(
r−d+1ϕ∂rϕ

)
−ϕ∂r

(
r−d+1∂rϕ

)− r−d+1ϕ�ϕ+ r−d−1m2
ϕϕ

2
]

=−1
2

∫
dd+1x ∂r

(
r−d+1ϕ∂rϕ

)
. (2.15)

We are left with a total derivative in the radial coordinate, so the action can be reduced to a

boundary term3, and expanded according to the asymptotic expression (2.10),

Sreg = 1
2

∫
r=ε

ddx r−d ϕr∂rϕ = (2.16)

= 1
2

∫
r=ε

ddx
(
r d−2∆ (d −∆)ϕ0 + r d−2∆+2 2(d −∆+1)ϕ1 + . . . +d ϕ̃0

)
ϕ0 ,

where we used a small ε as regulator for the potentially divergent terms, and the dots repre-

sent sub-leading terms of the order O
(
r d−2∆+4

)
. We can see that the leading term is always

divergent, the minimal value of ∆ being d
2 , that is at the BF bound, where the divergence is

logarithmic, as we have already pointed out.

Let us focus first on the most dangerous term. We want to remove it by a boundary

counterterm, which should not drastically modify our bulk theory. Then, we demand the

counterterm to be local and invariant under all the symmetries induced on the boundary

by the bulk action (gauge invariance, space-time symmetries and internal symmetries). For

the specific case of the action (2.7), which possesses Poincaré symmetry and a global Z2

invariance, the only terms we can write with the field content of the bulk action, i.e. the

real scalar ϕ, are a kinetic term or a mass term. We will see that the former actually leads to

alternative quantization, but we consider first the latter, namely

S(0)
ct =−1

2

∫
ddx

√−ĝ ϕ2 = (2.17)

=−1
2

∫
ddx

(
r d−2∆ϕ0 + r d−2∆+2 2ϕ1 + . . . +2ϕ̃0

)
ϕ0 ,

where ĝµν is the d-dimensional metric induced on the boundary by the bulk (d +1)-dimensional

3The on-shell action reduces to a purely boundary term because the considered action is quadratic. With cubic
interactions, for instance, bulk terms would survive. However, as far as two-point functions are concerned, the
quadratic part of the action is all we need.
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2.1. Holographic renormalization

metric gmn , which in the present case is just the flat Minkowski metric rescaled by r 2: ĝµν =
r−2ηµν.

This counterterm serves to cancel the leading divergence in the regularized action (2.16),

but leaves sub-leading divergences whenever ∆≥ d
2 +1,

Sreg + (d −∆)S(0)
ct = 1

2

∫
ddx

(
r d−2∆+2 2ϕ1 + . . . + (2∆−d)ϕ̃0

)
ϕ0 . (2.18)

However, the coefficients of sub-leading terms ϕn can always be related to the coefficient of

the leading term ϕ0, by means of the equation of motion. This traces the road to write the

additional counterterms we may need.

For instance for the term proportional to ϕ1, which by the equations of motion is given

by

ϕ1 = 1
2(2∆−d −2)

�ϕ0 , (2.19)

we have

S(1)
ct = 1

2

∫
ddx

√−ĝ ĝµνϕ∂µ∂νϕ= 1
2

∫
ddx

(
r d−2∆+2ϕ0�ϕ0 + . . .

)
=

= 1
2

(2∆−d −2)
∫

ddx
(
r d−2∆+2 2ϕ0ϕ1 + . . .

)
, (2.20)

which, dressed with the suitable numerical factor, is indeed able to cancel the leading surviving

divergence in (2.18). The dots here represent sub-leading terms of order O
(
r d−2∆+4

)
. They can

still be divergent, but again we can use the equation of motion, which actually give, for any n,

ϕn = 1

2n(2∆−d −2n)
�ϕn−1 =

Γ
[
∆− d

2 −n
]

4nn!Γ
[
∆− d

2

] �nϕ0 , (2.21)

as it can be easily verified by induction. Thus, the sub-leading divergences can be removed,

order by order, through a counterterm S(n)
ct , similar to (2.20), but with n powers of d’Alembert

operator, until no divergent terms are left.

However, for the purpose of computing correlators and Ward identities, we do not even

need to do that. Indeed, with the exception of the special case where the scalar mass saturates

the BF bound4, the term proportional to ϕ0ϕ̃0 (i.e. to the two independent leading modes of

the solution (2.10), which will be identified with the source and the vev of the dual operator) is

always finite in the leading counterterm S(0)
ct (2.17), and always vanishing in the rest of sub-

leading counterterms S(n)
ct

5. Thus, precisely this term, bi-linear in the leading and sub-leading,

4 At the BF bound the presence of a logarithm in the leading term affects the definition of the source, forcing the
introduction of a scale a so partially violating conformal invariance [76, 77]. In Section 3.2 we will treat the case of
a Maxwell vector field in AdS3, which is analogous to that of a scalar at the BF bound.

5This fact has been shown more systematically using a different renormalization technique based on dimen-
sional regularization [78].
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Chapter 2. Holography from a boundary-oriented perspective

yields the main part of the renormalized action

Sren =
(
∆− d

2

)∫
ddx ϕ0ϕ̃0 . (2.22)

When logarithmic divergences are present, this renormalized action gets modified by scheme-

dependent finite pieces, as we will see in Section 2.1.2.

Now, we affirm that, in this renormalization scheme (2.17), ϕ0 is the source for the dual

boundary operator Oϕ, which has dimension ∆, with ∆> d
2 by the definition (2.11).6

In the path integral formulation, the source is a field that is coupled to a given operator

of the theory, and whose variation should be set to zero in order to preserve the variational

principle (invariance of the action). In this way, the source is dual to the associated operator,

and allows to generate the correlation functions for that operator.

So, in order to verify that ϕ0 is actually the source, we have to check the variational prin-

ciple on the renormalized action (2.22). The correct variation of the renormalized action is

not the naïve variation of expression (2.22), is rather the variation of the bulk action (2.7), put

on-shell and reduced to the boundary, and then renormalized by the variation of employed

counterterms, which removes divergent pieces. Basically we have to repeat the renormaliza-

tion procedure on the variation δS, so in practice the variation of the renormalized action is

rather the renormalization of the varied action.

For the on-shell variation of the bulk action we have

δS =−
∫

dd+1x
√−g

(
g mn∂mϕ∂nδϕ+m2

ϕϕδϕ
)
=

∫
r=ε

ddx r−d δϕr∂rϕ=

=
∫

r=ε
ddx

[
(d −∆)r d−2∆ϕ0δϕ0 + . . . +∆ϕ̃0δϕ0 + (d −∆)ϕ0δϕ̃0

]
. (2.23)

On the other hand, the variation of counterterm (2.17) yields

δS(0)
ct =−

∫
ddx

√−ĝ ϕδϕ=−
∫

ddx
[

r d−2∆ϕ0δϕ0 + . . . + ϕ̃0δϕ0 +ϕ0δϕ̃0

]
,

which, with the same numerical factor as in (2.18), removes the leading divergence. Possible

additional divergences can be removed by the variation of the respective counterterms, which

yet do not affect the finite terms. Thus, we finally have

δSren = δS + (d −∆)δS(0)
ct = (2∆−d)

∫
ddx ϕ̃0δϕ0 , (2.24)

where only the variation of φ0 appears. The variational principle for the boundary action

imposes δϕ0 = 0, so that ϕ0 is correctly identified as the source for the dual operator.

Finally, we remark that, once ϕ0 is established as the source, the response ϕ̃0 can be

related to the vacuum expectation value of the dual operator Oϕ. Indeed, applying (2.5) on the

6 In the so-called alternative quantization scheme, the renormalized action will be changed by a sign (see
eq. (3.94)) and the source would be ϕ, sourcing a boundary operator of dimension ∆̃= d −∆, with −d

2 < ∆̃< d
2 , as

we will see in the following.
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2.1. Holographic renormalization

renormalized action (2.22),

〈
Oϕ

〉
0 =

δSren

δϕ0

∣∣∣∣
ϕ0=0

= (2∆−d) ϕ̃0

∣∣
ϕ0=0 . (2.25)

For these reason the response is usually referred to as the ‘vev’. A fixed (non-vanishing with

the source) value for the coefficient of the sub-leading mode, then returns a non-vanishing

vacuum expectation value for the dual operator in the boundary theory. This is relevant when

we want to describe spontaneous symmetry breaking in the boundary field theory.

We will now show that a different counterterm can cancel the same divergence as (2.17),

yet giving the opposite quantization, where ϕ̃0 is the source and ϕ0 the response. We recall

that we are in the window (2.14), where double quantization is possible, so d
2 <∆< d

2 +1, and

for this range of values of ∆ the leading divergence is the unique divergence in the on-shell

action (2.16) [74, 75].

We consider the following boundary term,

S̃(0)
ct =−1

2

∫
ddx

√−ĝ
(
r∂rϕ

)2 = (2.26)

=−d −∆
2

∫
ddx

(
(d −∆)r d−2∆ϕ0 +2∆ϕ̃0

)
ϕ0 .

We point out that this counterterm is made out of the square of the conjugate momentum

of ϕ in the holographic coordinate, and it is actually related to counterterm (2.17), which is a

square in ϕ, by a Legendre transform7, namely∫
ddx ϕΠϕ− (d −∆)S(0)

ct = 1
d −∆ S̃(0)

ct , (2.27)

whereΠϕ ≡ r∂rϕ. This expression actually furnishes the suitable numerical factor for (2.26) to

cancel the leading divergence in the regularized action (2.16), yielding

S̃ren = Sreg + 1
d −∆ S̃(0)

ct =−
(
∆− d

2

)∫
ddx ϕ0ϕ̃0 =

(
∆̃− d

2

)∫
ddx ϕ0ϕ̃0 . (2.28)

So, the renormalized action for a real scalar in alternative quantization is identical to the

one in standard quantization (2.22), except for the opposite sign, which again corresponds to

replacing ∆ by ∆̃= d −∆.

It is straightforward now to check the variational principle on this last renormalized

action. From the variation of the bulk action (2.23) and the variation of counterterm (2.26),

we obtain

δS̃ren = δS + 1
d −∆ δS̃(0)

ct = (d −2∆)
∫

ddx ϕ0δϕ̃0 , (2.29)

which indeed requires to set δϕ̃0 to zero, so that now ϕ̃0 is the source.

We are now ready to use the holographic principle (2.3) to explicitly compute two-point

7The fact that the holographic generating functional in alternative quantization is related to the holographic
generating functional in standard quantization by a Legendre transform was first suggested in [70].
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Chapter 2. Holography from a boundary-oriented perspective

correlation functions for the dual operator Oϕ of dimension ∆ (in standard quantization), and

for Õϕ of dimension ∆̃ (in alternative quantization).

2.1.1 Two-point functions from the renormalized action

The two-point correlation function is by definition a non-local function. Let us define, for

conciseness, 〈
Oϕ(x)Oϕ(x ′)

〉
0 ≡−i fϕ(x −x ′) , (2.30)

and then express the generating functional (2.4) at quadratic order in the sources,

WQFT[ϕ0] = i

2

∫
dydy ′ϕ0(y) fϕ(y − y ′)ϕ0(y ′) ,

so that the formula (2.4) on this last expression correctly reproduces (2.30). This suggests that,

in the standardly quantized renormalized action (2.22), the response ϕ̃0 should be related to

the source by a non-local function, namely

(2∆−d)ϕ̃0(x) = fϕ(x −x ′)ϕ0(x ′) . (2.31)

This fact is achieved by imposing ‘boundary’8 conditions in the bulk. Indeed, with the

renormalization procedure we have fixed boundary conditions on the boundary of AdS. In

order to have a unique solution to the second-order equation (2.9), we need to fix another

boundary condition, on the opposite side, that is in the deep bulk r =∞. Precisely this latter

will relate the source and the response of the near-boundary expansion, as we will see explicitly

in a while for the example presented here.

Before, let us apply the formula (2.5) to the renormalized action in standard quantiza-

tion (2.22), and use (2.31) to obtain

〈
Oϕ(x)Oϕ(x ′)

〉
0 =−i

δ2Sren

δϕ0δϕ0

∣∣∣∣
ϕ0=0

=−i (2∆−d)
δϕ̃0(x ′)
δϕ0(x)

=−i fϕ(x −x ′) , (2.32)

again consistently with our renaming (2.30).

If we are in alternative quantization, from (2.28) we get

〈
Õϕ(x)Õϕ(x ′)

〉
0 =−i

δ2S̃ren

δϕ̃0δϕ̃0

∣∣∣∣
ϕ̃0=0

=+i (2∆−d)
δϕ0(x ′)
δϕ̃0(x)

=−i f̃ϕ(x −x ′) , (2.33)

where we have defined

− (2∆−d)ϕ0(x) = f̃ϕ(x −x ′)ϕ̃0(x ′) . (2.34)

8We apologize for the unfortunate recurrence of the word boundary, in this case to design the conditions at
the extremes of a boundary value differential problem, so that we have boundary boundary conditions and bulk
boundary conditions
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2.1. Holographic renormalization

Now we have to find a full solution to the equation of motion, in order to explicitly

determine the non-local functions fϕ, f̃ϕ. Consider the equation of motion (2.9) in momentum

space,

r d+1∂r

(
r−d+1∂rϕk

)
−k2ϕk +∆(d −∆)ϕk = 0 , (2.35)

where ϕk is the boundary Fourier transform of the field, defined by

ϕ(r, x) =
∫

ddk
(2π)d

e i kx ϕk (r ) . (2.36)

Rescalingϕk (r ) ≡ r
d
2 ϕ̄(k,r ), and then performing the change of variable ρ = kr ,9 this equation

reduces to the modified Bessel equation

ρ2 ϕ̄′′(ρ)+ρ ϕ̄′(ρ)−
(
ρ2 + (

∆− d
2

)2
)
ϕ̄(ρ) = 0 , (2.37)

whose solution is given by

ϕ̄(ρ) =C1 I[ν; ρ]+C2 K[ν; ρ] , (2.38)

where we have defined ν=∆− d
2 .

As announced at the beginning of this section, we have to impose boundary conditions

in the interior in order to get rid of one integration constant, the other one being solved by

boundary conditions at the boundary. As you can check in your favorite reference on special

functions, the asymptotic behavior of the modified Bessel function of the first kind I[ν;ρ]

for ρ→∞ is I∼ ρ− 1
2 eρ+e−ρ , while the asymptotic behavior of the modified Bessel function of

the second kind K[ν;ρ] is K∼ ρ− 1
2 e−ρ . We prefer our solution not to explode in the deep bulk,

and rather be small, if we want bulk gravitational effects be negligible. If we assume ρ real and

positive (that means, as priorly discussed in footnote 9, k real and positive), the function K

vanishes at r =∞.

So, we choose C1 = 0, and we finally obtain

ϕk =C2 r
d
2 K[∆− d

2 ; kr
]

. (2.39)

For r → 0, this solution correctly presents

ϕk = r d−∆ C2

2
Γ
[
∆− d

2

](
k

2

)d
2 −∆

+ . . . + r∆
C2

2
Γ
[

d
2 −∆

](
k

2

)∆−d
2 + . . . ,

9Here by k we rather mean
√

k2, which will assume to be real when we impose the bulk boundary condition
here after. This corresponds to k2 > 0, rather than the other way round, as we would expect in our mostly-plus
signature. However, the spectrum of the final correlator will be on the right side, i.e. for k2 < 0. Actually it is a quite
general feature of holography that the domain imposed by bulk regularity requirements and the region where the
spectrum is located be complementary.
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which, by comparison with the boundary expansion (2.10), allows to determine

ϕ0 =
C2

2
Γ
[
∆− d

2

](
k

2

)d
2 −∆

, ϕ̃0 =
C2

2
Γ
[

d
2 −∆

](
k

2

)∆−d
2

, (2.40)

where, with a little abuse of notation, we indicate the Fourier transforms in the same way as

their counterparts in position space. The reader can notice that so far we have not specified

anything about which is the source and which is the response. The solution of the equation

of motion is one and unique, giving the asymptotic expansion (2.10). Everything about

quantization, sources and responses is contained in the renormalization procedure, which

selects either the prescription (2.32) or (2.33).

Since we are in momentum space, the relation (2.31) becomes an algebraic relation,

(2∆−d)ϕ̃0 = fϕ(k)ϕ0, so that in standard quantization, from (2.32), we have

〈
Oϕ(k)Oϕ(−k)

〉
0 =−i fϕ(k) =−i (2∆−d)

ϕ̃0

ϕ0
=−i (2∆−d)

Γ
[d

2 −∆]
Γ
[
∆− d

2

] (
k
2

)2∆−d
.

In order to obtain the correlator in position space, we have to Fourier transform. Using the

formula ∫
ddk

(2π)d
kn = 2n

π
d
2

Γ
[d+n

2

]
Γ
[− n

2

] 1
|x|d+n

,

we obtain 〈
Oϕ(x)Oϕ(0)

〉
0 =−i 2∆−d

π
d
2

Γ
[
∆

]
Γ
[
∆− d

2

] 1
|x|2∆ , (2.41)

which is precisely the expression in conformal field theory for the two-point correlator of a

primary operator of scaling dimension ∆, thus confirming our holographic dictionary for ∆.

On the other hand, in alternative quantization we obtain from (2.33)

〈
Õϕ(k)Õϕ(−k)

〉
0 = i (2∆−d)

ϕ0

ϕ̃0
= i (2∆−d)

Γ
[
∆− d

2

]
Γ
[d

2 −∆] (
k

2

)−2∆+d

≡−i
(
2∆̃−d

) Γ[d
2 − ∆̃]

Γ
[
∆̃− d

2

] (
k

2

)2∆̃−d

,

and Fourier transforming we get

〈
Oϕ(x)Oϕ(0)

〉
0 =−i 2∆̃−d

π
d
2

Γ
[
∆̃

]
Γ
[
∆̃− d

2

] 1

|x|2∆̃
. (2.42)

So, the expressions of the two-point correlator in alternative quantization are identical, both in

momentum and position space, to those in standard quantization, provided that we switch ∆

with ∆̃. This latter indeed represents the scaling dimension of the dual operator in alternative

quantization.
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2.1.2 Holographic renormalization in presence of logarithms:

scheme dependence and anomalies

Let us conclude this crash course on holographic renormalization by briefly considering a

case where logarithms arise. Logarithmic terms are a bit more annoying from the technical

point of view, but they can be treated in a standard way without any conceptual issue. For the

equation of motion (2.9), logarithmic terms appear in the expansion (2.10) whenever 2∆−d is

an even integer (zero included). Let us distinguish two different situations: when we are at the

BF bound, and so ∆= d −∆= d
2 , and when we are away from it.

In the former situation, the logarithmic term is the leading, and it is the source in standard

quantization, meaning with this that a mass-like counterterm (2.17) is employed to renormal-

ize the boundary action; by means of the corresponding Legendre transformed counterterm,

the source can be switched to the term without logarithm, but in both cases an operator of

dimension d
2 is described. In the latter situation, instead, the source and response are not

affected by logarithmic terms, which on the contrary appear in the sub-leading divergences.

In both situations, the renormalization works in the same way as described above, and

counterterms have the same form, except that they may need to be dressed with logarithms

where necessary, in order to remove logarithmic divergences. The only crucial consequence of

logarithmic counterterms is that they introduce scheme dependent terms in the renormalized

action (the coefficient of such terms can be modified by arbitrary finite counterterms).

Let us consider again our real scalar field in AdS, for the case 2∆−d = 2 (other cases are

not conceptually different), and so

ϕ= r
d
2 −1 (

ϕ0 + r 2 lnr ϕ1 + . . .
)+ r

d
2 +1 (

ϕ̃0 + . . .
)

. (2.43)

With this asymptotic expansion, the on-shell action (2.16) becomes

(log)Sreg = 1
2

∫
r=ε

ddx
[

r−2
(

d
2
−1

)
ϕ0 + lnr dϕ1 +d ϕ̃0 +ϕ1

]
ϕ0 . (2.44)

We can notice that, besides the log-divergent term, an additional finite term is present. The

equation of motion (2.9) relates ϕ1 to the source, as in (2.19), which though now reads

ϕ1 =−1
2
�ϕ0 . (2.45)

Thus, a counterterm of the form (2.20), but dressed with an additional logarithmic divergent

factor,
d
2

ln(r )S(1)
ct = d

4

∫
ddx

(
lnr ϕ0�ϕ0

)=−d
2

∫
ddx lnr ϕ0ϕ1 , (2.46)

is able to remove the logarithmic divergence in the the regularized action (2.44). However,

we are still allowed to add (finite) counterterms of the form of S(1)
ct (2.20) (that is, without

logarithmic factor). Such counterterms, which are related to the holographic matter con-

formal anomaly [28, 79, 80], would modify the coefficient of the finite term proportional
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to ϕ0ϕ1 in (2.44), which can be even removed: such term depends therefore on the chosen

renormalization scheme.

On the other hand, there is no way to touch the term proportional to ϕ0ϕ̃0 by means of

finite counterterms: the coefficient of such term is fixed once and for all by the leading coun-

terterm S(0)
ct (2.17). Then, we can eventually state again that the final (scheme independent)

form of the renormalized action is fully determined by the leading counterterm. We finally

have
(log)Sren = 1

2

∫
ddx ϕ0

(
ϕ̃0 + lnΛ�ϕ0

)
, (2.47)

where lnΛ is an arbitrary constant, which we can adapt by choosing a certain renormalization

scheme, and whose logarithmic form will be justified in a second. Let us first notice that the

expressions for the one-point function (2.25) gets shifted by the scheme-dependent piece of

the renormalized action (2.47).

We analyze now the explicit solution, which, for the Fourier transform, can be read off

from (2.39), replacing the current value for ∆:

ϕk =C0 r
d
2 K[1; kr

]
, (2.48)

with C0 a constant. The expansions near r = 0 gives

ϕk ∼ r
d
2 −1 C0

k
+ r

d
2 +1 lnr C0

k
2
+ r

d
2 +1 C0

k
2

(
ln k

2
− 1

2
+γE M

)
, (2.49)

where γE M is the Euler-Mascheroni constant, and from where we read the following expres-

sions for the coefficients:

ϕ0 =
C0

k
, (2.50)

ϕ̃0 =C0
k
2

(
ln k

2
− 1

2
+γE M

)
, (2.51)

ϕ1 =C0
k
2
≡ 1

2
k2ϕ0 , (2.52)

where in the last line we have pointed out that the analytic expression for ϕ1 correctly repro-

duces (2.45).

Finally using the formula (2.5) on the renormalized action (2.47), we obtain the two-point

function 〈
Oϕ(k)Oϕ(−k)

〉
0 =−i k2

4

(
ln k2

Λ2 −1+2γE M − ln4

)
. (2.53)

We see here that the meaning ofΛ: it is a scale, introduced by the conformal anomaly, which

makes the argument of the logarithm dimensionless.

We conclude this chapter by admitting that here we have presented holographic renor-

malization in a very operational way. We do not pretend to be exhaustive about the subject,

and we point out that a more formal and general approach exists, based on Hamiltonian for-
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malism and renormalization group flows [81–86] (see [87] for a pedagogical review). However,

the hope is that this introduction will be adequate to guide the reader through the various

applications of holographic renormalization of Part II.
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Symmetry breaking in holographic

field theories





3 Symmetry breaking in relativistic

holographic setups

In this chapter a minimal holographic model is presented, describing a quantum field theory

where a continuous global symmetry is broken. We consider at the same time the case of an

operator taking a vacuum expectation value, which breaks the symmetry spontaneously, and

the case of a charged operator that breaks it explicitly.

By the procedure of holographic renormalization illustrated in Section 2.1, we retrieve the

Ward identity (1.34), for concomitant spontaneous and explicit breaking. For some specific

values of space-time dimensions and dimension of the dual scalar operator, we provide an

explicit analytic solution for the two-point scalar correlator, exhibiting the pseudo-Goldstone

pole, which correctly reproduce the GMOR relation (1.45).

In Section 3.2 we go down to the two-dimensional case, and investigate the fate of

Coleman theorem in holography, where the large N limit allows for an evasion of the theorem,

as discussed in Section 1.1.2. The derivation of the symmetry breaking Ward identity, however,

will encompass some subtleties related to the holographic renormalization of a vector field

in AdS3.

3.1 Spontaneous and explicit breaking in a holographic-

dual relativistic CFT

As introduced in Chapter 2, eq. (2.6), a global conserved current in the boundary theory is dual

to a local gauge field in the bulk. It is then natural to add a scalar that couples to the gauge

field in the bulk, in order to have a scalar operator that is charged under the global symmetry

on the boundary. The most basic bulk action that we can write with these two fundamental
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Chapter 3. Symmetry breaking in relativistic holographic setups

ingredients1 is then

S =
∫

dd+1x
√−g

[
−1

4
F mnFmn −Dmφ

∗Dmφ−m2
φφ

∗φ
]

, (3.1)

where Fmn = ∂m An −∂n Am , Dmφ= ∂mφ− i Amφ, and gmn is the AdSd+1 metric (2.8). For our

quest of maximal simplicity, we choose an abelian U(1). Non-abelian symmetries will be

treated in the non-relativistic example of Chapter 4. Here, they would add complications

without increase in generality.

The AdS metric is chosen to be a fixed background here and gravity is kept non-dynamical,

since we are not going to compute correlation functions which involve the stress-energy tensor.

Moreover, we are allowed to neglect the back-reaction of the other fields on the metric because

we will carry out a near-boundary analysis, and the back-reaction would emerge at higher

order in the near-boundary expansions with respect to the computations that we will perform.

In the introductory section on holographic renormalization, we have pointed out that

a vacuum expectation value for the boundary operator corresponds to a fixed profile for

the response-mode (2.25). On the other hand, a fixed value for the source-mode would

correspond to a deformation of the boundary QFT by an operator of dimension ∆ (in standard

quantization; d−∆ in alternative quantization). If the operator is charged under the symmetry,

as in our case, due to the coupling to the gauge field, then such deformation breaks the

symmetry explicitly [70, 90, 91]. So, giving a background profile to our complex scalar will

allow to trigger spontaneous and explicit breaking of the boundary global symmetry.

Let us then consider the equation of motion for the complex scalar alone, which are

coming from the variation of the action (3.1) with respect to φ, setting Am ≡ 0. It reads

r d+1∂r

(
r−d+1∂rφ

)
+ r 2�φ−m2

φφ= 0 , (3.2)

which is the same equation as for the real scalar (2.9). Thus the asymptotic solution is

φ= r
d
2 −ν (

φ0 + . . .
)+ r

d
2 +ν (

φ̃0 + . . .
)

, with ν=
√

d 2

4
+m2

ϕ . (3.3)

So, in order to arouse the desired spontaneous and explicit breaking on the boundary, we

should give background values to the leading and the sub-leading, namely

φB = m r
d
2 −ν+ v r

d
2 +ν . (3.4)

1For the reader familiar with the literature of the holographic superconductor, a disclaimer is here in order. The
action (3.1) is identical to the one of the very first holographic superconductor [88, 89]. However, besides the fact
that we will not switch on a background for the vector, since we do not want to break Lorentz invariance having
a chemical potential, our purposes are completely different here. In the holographic superconductor the aim
is to describe a system at finite temperature and to furnish a dynamical mechanism which generates a critical
scale where an order parameter appears and a phase transition occurs. In our case, we want just to mimic an
ordinary relativistic field theory at zero temperature, which enjoys a global symmetry, which in turns is broken
(spontaneously and/or explicitly) by a scalar operator. So, in a sense, we are always in the broken phase.
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3.1. Spontaneous and explicit breaking in a holographic-dual CFT

In standard quantization, the leading piece (source) is triggering explicit breaking, whereas

the sub-leading one (vev) is triggering spontaneous breaking. Of course, in alternative quanti-

zation source and vev are switched, and so are explicit and spontaneous breaking accordingly.

The Ward identity structure for symmetry breaking in the boundary field theory emerges

through the precise holographic renormalization procedure, which therefore constitutes our

first task. Let us stay in the window 0 < ν < 1, where no scheme dependence driven by

logarithmic terms arise in the holographic renormalization procedure, and in addition it is the

window where alternative quantization is possible (2.14). This restriction will not decrease the

generality of our conclusions.

We then apply holographic renormalization to the action (3.1), for fluctuations above

the background (3.4), and we divide also the fluctuations of the complex scalar into real and

imaginary part,

φ= 1p
2

(
φB +ρ+ iπ

)
, (3.5)

where φB is assumed to be real for simplicity (and, as we have already remarked in Section 1.2,

on page 22, also for consistency). The rescaling pre-factor
p

2 with respect to the generic shape

of the scalar profile (3.4) is designed to match the field theory derivations of Section 1.2.

We partially fix the gauge freedom by setting ourselves in the radial gauge Ar = 0, leaving

unbroken the boundary gauge invariance only. In such situation, the equation of motion

for Ar gives a constraint on the other fields, namely

r 2∂r∂µAµ− (φB +ρ)∂rπ+π∂r (φB +ρ) = 0 . (3.6)

The equation of motion for Aµ, instead, reads

r d−1∂r

(
r−d+3∂r Aµ

)+ r 2(�Aµ−∂µ∂νAν
)+ (

φB +ρ)
∂µπ−π∂µρ− (φB +ρ)2 Aµ = 0 , (3.7)

from which we can extract the asymptotic behavior

Aµ = aµ0 + r 2aµ1 . . . + r d−2 (
ãµ0 + . . .

)
. (3.8)

We can notice that for d = 2 the leading and the sub-leading are of the same order (as

for the scalar at the BF bound), and so a logarithmic term appears: this case will be precisely

the subject of next section, Section 3.2, where we also discuss the issues related to Goldstone

theorem in two-dimensions. For d = 4, a logarithm occurs as well, since aµ1 and ãµ0 are of same

order, but this is less problematic since the source aµ0 is not affected2. However, in this section,

we will set d = 3, so that we do not have to renormalize the vector, and we have no scheme

dependence for either the vector and the scalar. Also, for this value of dimensions, we are able

to provide an explicit analytic solution, in Section 3.1.1. Furthermore, we remark that for our

chosen window of values for ν (0 < ν< 1), the scalar background intervenes in the equation

2For an example of holographic renormalization of the gauge field in d = 4, we point the reader to [92], where it
is treated in a similar context.
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of motion for Aµ (3.7) at the order d −2ν > d −2, thus not affecting the sub-leading of Aµ.

Otherwise, we could not have avoided considering a background for the vector as well.

So, we stay at d = 3, and in addition, since we are interested in two-point functions at

most, we will consider the renormalized action up to quadratic order in the fluctuations. In

such case, we can consider the linearized equations of motion for the fluctuated field over φB ,

which read

r 4∂r

(
r−2∂rρ

)+ r 2(�−m2
φ

)
ρ = 0 , (3.9)

r 4∂r

(
r−2∂rπ

)+ r 2(�−m2
φ

)
π− r 2φB∂µAµ = 0 , (3.10)

r 2∂2
r Aµ+ r 2(�Aµ−∂µ∂νAν

)+φB∂µπ−φ2
B Aµ = 0 , (3.11)

r 2∂r∂µAµ−φB∂rπ+π∂rφB = 0 . (3.12)

Then, the on-shell action at quadratic order in the fluctuations reduces to the following

boundary term

Sreg =
∫

r=ε
d3x

[
1

r 2 (∂rφB )ρ+ 1
2

Aµ∂r Aµ+ 1
2r 2

(
ρ∂rρ+π∂rπ

)]
. (3.13)

At this point, we note that the quadratic terms are exactly the same that would arise in a

configuration with vanishing backgrounds. The presence of a non-trivial background must

then show up when expanding the fluctuations near the boundary as powers of r . There

is however one more substitution that we can make, that makes the dependence on the

background manifest even before expanding the fluctuations. We can indeed use the equation

of motion coming from the variation with respect to Ar (3.12), which at linear order in the

fluctuations rewrites

r 2∂r�L−φB∂rπ+∂rφBπ= 0 , (3.14)

where we have also introduced the splitting of the gauge field in its irreducible components,

Aµ = Tµ+∂µL , with ∂µT µ = 0 . (3.15)

Noting that the second term of (3.13) has a longitudinal part that can be rewritten, after

integration by parts, as 1
2 L∂r�L, then the regularized action for the longitudinal part and the

scalars becomes

Sreg = 1
2

∫
d3x

[
T µ∂r Tµ + 2

r 2 ρ∂rφB + 1
r 2 L

(
π∂rφB −φB∂rπ

)+ 1
r 2

(
ρ∂rρ+π∂rπ

)]
. (3.16)

Using the splitting (3.15), we now rewrite the equation of motion for the imaginary part

of the scalar (3.10),

r 4∂r

(
r−2∂rπ

)+ r 2(�−m2
φ

)
π− r 2φB�L = 0 , (3.17)
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and the equation of motion for the vector field (3.11),

r 2∂2
r L+φBπ−φ2

B L = 0 , (3.18)

r 2∂2
r Tµ+ r 2�Tµ−φ2

B Tµ = 0 , (3.19)

where we see that the equation for the transverse part of the vector decouples, exactly as for

the real part of the scalar (3.9). Then, from the equations of motion we can derive the following

asymptotic expansions for the fluctuated fields:

ρ = r
3
2−νρ0 + r

3
2+ν ρ̃0 + . . . , T µ = tµ0 + r t̃ µ0 + . . . ,

π= r
3
2−νπ0 + r

3
2+ν π̃0 + . . . , L = l0 + r l̃0 + . . . .

(3.20)

The regularized action (3.16) then becomes

Sreg = 1
2

∫
d3x

[
t0 · t̃0 + (3−2ν)m

(
r−2νρ0 + ρ̃0

)+ (3+2ν) vρ0 + (3.21)

+
(

3
2
−ν

)
r−2ν (

ρ2
0 +π2

0

)+3
(
ρ0ρ̃0 +π0π̃0

)+2ν l0

(
vπ0 −mπ̃0

)]
.

The counterterm needed to cancel the divergences in standard quantization is analogous to

the one for the real scalar (2.17), and reads

Sct =−
(

3
2
−ν

)∫
d3x

√−ĝ φ∗φ=−1
2

(
3
2
−ν

)∫
d3x r−3 (

2φBρ+ρ2 +π2) . (3.22)

Note that we neglect the constant term, as it would only be relevant with dynamical gravity. Af-

ter adding the counterterm (3.22) to the regularized action (3.21), we obtain the renormalized

action

Sren = 2ν
∫

d3x
[

vρ0 + 1
2
ρ̃0ρ0 + 1

2
π̃0

(
π0 −ml0

)+ 1
2

vl0π0

]
, (3.23)

where we have dropped the term for the transverse part of the vector, since it is completely

decoupled from the scalar sector.

We can then notice that there are two kinds of terms in the quadratic renormalized action:

those which are bilinears of a source and a response of the fluctuations, and those which

involve only sources. The latter are all proportional to the non-trivial scalar background that

we have introduced, thus they would not be there for trivial profile v = 0 = m. In practice, the

background profiles make the scalar and vector sectors ‘talk’ to each others.

However, terms of the second kind are also hidden into terms of the first kind, because of

gauge invariance. Indeed, gauge transformations that preserve our gauge choice Ar = 0 yield

δL =α, δφ= iαφ . (3.24)

The first transformation above tells that α should be considered of the same order as the

fluctuations L and ρ,π. It then implies that the gauge variations of ρ,π have actually terms of
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first and second order

δρ =−απ , δπ=αφB +αρ . (3.25)

On the coefficients of the near-boundary expansions (3.20), the transformations read

δl0 =α , δρ0 =−απ0 , δπ0 =αm +αρ0 ,

δl̃0 = 0 , δρ̃0 =−απ̃0 , δπ̃0 =αv +αρ̃0 .
(3.26)

With the transformations given above, one can check that all the actions Sreg, Sct, and Sren

are gauge invariant. We note that gauge invariance requires the cancellation between the

variations of the linear and quadratic parts of the actions, and we have of course neglected

orders higher than quadratic3 (i.e. in the variations of the quadratic part of the action, only the

terms of first order in the variations of ρ,π are considered).

We want to the derive the holographic correlators, assuming that the terms coupling the

sources to the operators are ∫
d3x

(
ρ0ReOφ+π0ImOφ− l0∂µ Jµ

)
, (3.27)

where the last term comes from integration by parts. We also assume the usual holographic

prescription in its Wick-rotated, Lorentzian version (2.5). In this way, from the renormalized

action (3.23) we immediately have that ReOφ has a non-zero vev, namely

〈
ReOφ

〉
0 =

δi Sren

δiρ0
= v . (3.28)

From (3.23), it is also manifest that the ρ-sector decouples from the L,π-sector. We will focus

on this latter, since it is the sector where we expect the (pseudo) Goldstone boson to appear.

In order to solve for π̃0 in terms of the sources π0 and l0, one should assure that the deep

bulk (IR) boundary conditions preserve gauge invariance, hence they have to be imposed on

gauge invariant combinations. At linear order, the gauge invariant combinations are π0 −ml0

and π̃0 − vl0. As a consequence, one can express the sub-leading mode of π in terms of the

sources as

π̃0 = vl0 + f (�)(π0 −ml0) . (3.29)

The renormalized action for this sector can be rewritten accordingly

Sren =−
∫

d3x
[
− 1

2
(π0 −ml0) f (�)(π0 −ml0)− vl0π0 + 1

2
mvl0l0

]
. (3.30)

We observe that we have a term that is linear in m, which encodes the operator identities that

3It is possible also to parametrize the complex scalar in terms of its modulus and phase as in [92]; the latter
parametrization, being well-adapted to gauge transformations (which consist in shifts of the phase), features
manifest gauge invariance without mixing among different orders in the fluctuations. However, this brings
disadvantages in the renormalization procedure: indeed, given that the phase has to be non-dimensional, the
would-be Goldstone boson mixes non-trivial with the scalar background φB .
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are present when the symmetry is explicitly broken. Then we have a term linear in v , which

embodies the Ward identities when the symmetry is spontaneously broken. Eventually we

have a term which is linear both in m and v and is necessary in order to recover the proper

Ward identities in the case of concomitant spontaneous and explicit breaking.

Indeed, again using the prescription (2.5) for deriving two-point functions, we obtain the

following relations among correlators of the longitudinal sector:

〈
ImOφImOφ

〉
0 =− δ

2i Sren

δπ0δπ0
=−i f (�) , (3.31)

〈
∂µ JµImOφ

〉
0 =

δ2i Sren

δl0δπ0
=−i m f (�)+ i v , (3.32)

〈
∂µ Jµ∂ν Jν

〉
0 =−δ

2i Sren

δl0δl0
=−i m2 f (�)+ i mv . (3.33)

These are exactly the equations (1.37)–(1.39), obtained in Section 1.2 from QFT arguments,

where they have been used to derive the GMOR relation. Now we proceed to compute holo-

graphically the non-trivial function f (�), and show that it reproduces all the physics that one

expects on general grounds.

3.1.1 Analytical study of the fluctuations and

two-point correlators

In this section we study the bulk equations of motion for the fluctuations, in order to extract

exact expressions for the correlators. We will be able to find an analytic solution for m2
φ =−2

(and so ν= 1
2 , ∆= 2), and thus to verify explicitly that the non-local function defined in (3.29)

satisfies the non-trivial conditions discussed in Section 1.2, in particular eq. (1.42).

We start back from the equations of motion for the fluctuations, and we consider the

system of equations involving the longitudinal component of the vector and the imaginary

part of the scalar, that is equations (3.14), (3.17), and (3.18). We rewrite them here for the

special case m2
φ =−2.

r 2∂2
r L+φBπ−φ2

B L = 0 , (3.34)

r 2∂r�L−φB∂rπ+∂rφBπ= 0 , (3.35)

r 4∂r

(
r−2∂rπ

)+ r 2(�−m2
φ

)
π− r 2φB�L = 0 . (3.36)

We can extract π from the first equation,

π=φB L− r 2

φB
∂2

r L . (3.37)

Note that gauge transformations, at linear order, are given by δL =α and δπ=φBα, where α
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does not depend on r because of the gauge fixing condition Ar = 0. We then see that both ∂r L

and π−φB L are gauge invariant quantities.

We then plug (3.37) into (3.35), and we obtain a second order differential equation

for ∂r L ≡ L′ ≡ M (as expected from gauge invariance), which reads

r 2M ′′+2r M ′−2r 2φ
′
B

φB
M ′+ r 2�M −φ2

B M = 0 . (3.38)

The system of three equations is therefore reduced to a single second order ODE.

For the current value of ν = 1
2 , the scalar profile is φB = mr + vr 2, so that the equa-

tion (3.38) yields, in Fourier transformed version,

M ′′− 2v
m + vr

M ′−k2M − (m + vr )2M = 0 , (3.39)

and, by the simple change of variable y = r + m
v

, it reduces to

M ′′− 2
y

M ′− (
k2 + v2 y2)M = 0 , (3.40)

which can be recast as a general confluent hypergeometric equation. Its solutions are given

in terms of the Tricomi’s confluent hypergeometric function U[a,b; x] and the generalized

Laguerre polynomial L[a,b; x]:

M(y) = exp

[
−v y2

2

](
C1 U

[k2 − v

4v
, −1

2
; v y2

]
+C2 L

[ v −k2

4v
, −3

2
; v y2

])
. (3.41)

In the deep bulk (y→∞), we have e−
v y2

2 U∼e−
v y2

2 whereas e−
v y2

2 L∼e+
v y2

2 . Since ∂r L is gauge-

invariant, we are allowed to impose IR boundary conditions on it, and we choose bulk normal-

izability of the solution setting C2 ≡ 0. We thus obtain

M(y) =C1 e−
v
2 y2

U
[k2 − v

4v
, −1

2
; v y2

]
. (3.42)

Note that this solution has a very fast decrease towards the interior of the bulk, confirming

that back-reaction would only affect mildly the correlators that we will extract from it.

In this way we have obtained an exact analytical solution for the derivative of the gauge

field, but we still have to derive a solution for π, in order to compute the scalar correlator (3.31).

If we consider the near-boundary expansion for the fluctuations

π= r π0 + r 2 π̃0 + . . . , (3.43)

L = l0 + r l̃0 + r 2 l1 + r 3 l̃1 + . . . , (3.44)

then we need to know the expressions for π0 and π̃0 in order to compute the scalar correlator.
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Indeed, from (3.29) and (3.31), we see that

〈
ImOφImOφ

〉
0 =−i

δπ̃0

δπ0
=−i f (k2) . (3.45)

In other words, the correlator is essentially extracted from (3.29), that we rewrite here as

π̃0 − v l0 = f (k2)
(
π0 −ml0

)
. (3.46)

Using equation (3.37), we can express the gauge invariant combinations appearing in

eq. (3.46) in terms of L,

π−φB L =− r 2

φB
L′′(r ) . (3.47)

Order by order near the boundary, through the expansions (3.43)-(3.44), we obtain

π0 −ml0 =− 1
m

2l1 ; (3.48)

π̃0 − v l0 = m l̃0 + v
m2 2l1 − 1

m
6l̃1 . (3.49)

We can then realize that l̃0, l1 and l̃1 can be associated to M , M ′ and M ′′ evaluated at r = 0, or

equivalently at y = m
v , as follows:

M
(
x
/p

v
)= L′(0) = l̃0 ,

M ′(x
/p

v
)= L′′(0) = 2l1 ,

M ′′(x
/p

v
)= L′′′(0) = 6l̃1 ,

with x ≡ mp
v

.

Thus we can establish the expression for f in terms of B and its derivatives,

f (k2) = π̃0 − v l0

π0 −ml0
=− v

m
+ M ′′(x

/p
v
)− v x2M

(
x
/p

v
)

M ′(x
/p

v
) . (3.50)

We can then use (3.42) to express the correlator (3.45) in terms of Tricomi functions, finally

obtaining

〈
ImOφImOφ

〉
0 = i

x (k2 − v)
(
4v U

[
k2+3v

4v , 1
2 ; x2

]
+ (k2 +3v)U

[
k2+7v

4v , 3
2 ; x2

])
2
p

v
(
2v U

[
k2−v

4v , – 1
2 ; x2

]
+ (k2 − v)U

[
k2+3v

4v , 1
2 ; x2

]) . (3.51)

Let us show now how this expression reproduces all the physical features required by the

field theory analysis of Section 1.2. First of all, in the limit of zero momenta, f (k2) as given in

(3.50) satisfies the relation (1.42), i.e. f (0) = v
m . This can be easily seen by using (3.40) in order

to obtain

f (k2) = v

m
+k2 M

(
x
/p

v
)

M ′(x
/p

v
) . (3.52)

Moreover, we can graphically find the poles of the propagator by plotting the correlator
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0.01
-k2

i<ImO ImO>

0

Figure 3.1. The lightest pole (PGB) in
〈

ImOφImOφ

〉
0, for v = 1 and x = 0.01, is

displayed at a value of the order of x.

-k2

i<ImO ImO>

0 5 9 13

Figure 3.2. The first poles of the spectrum in
〈

ImOφImOφ

〉
0, for v=1 and x=0.01.

They exhibit a gap of the order of 5v with respect to the lightest pole (PGB).

for specific values of the ratio x = mp
v

. For instance, with x = 0.01, that is spontaneous breaking

dominating on explicit breaking, we find a first pole close to zero (see fig. 3.1), and then a

complete spectrum of higher massive poles with a gap considerably bigger than the mass of

the first pole (see fig. 3.2). This is the hallmark of a pseudo-Goldstone boson. Furthermore, the

gapped spectrum presents an interesting feature that we will show analytically for the purely

spontaneous case in the next section: the poles are separated by a regular gap in squared mass

(except for the first higher pole after the PGB, which exhibits a slightly bigger gap from the rest

of the spectrum). This is reminiscent of linear confinement.4

Finally, we are able to find analytically the GMOR linear relation (1.45). Indeed, one finds

that the numerator of expression (3.51) is just a constant in the limits k2 → 0 and x → 0 (taken

4 Indeed a phenomenological model like [93], that is designed in order to achieve linear confinement, also ends
up having confluent hypergeometric equations for the bulk fluctuations.
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10
-k2

i<ImO ImO>

0

Figure 3.3. The low |k2| portion of the spectrum of
〈

ImOφImOφ

〉
0, for v=0.1 and

x=10; the first pole is of the order of m2 = 100v = 10.

in this precise order). If one then takes the denominator and expands it to the first order in x,

and afterwards to the first order in k2, it vanishes for

k2 =−2
p

v
Γ
[5

4

]
Γ
[3

4

] m , (3.53)

where Γ is the Euler function. So we have found the explicit value of the residue µ appearing

in (1.45) for the specific model at hand, namely

µ= v M 2

m
= 2 v3/2 Γ

[5
4

]
Γ
[3

4

] . (3.54)

It is also possible to find deviations from the linear GMOR behavior at the desired order in mp
v

,

as it is depicted in the appendix B of ref. [II].

Let us underscore that expression (3.50) is valid not only for small m, but actually for

any m. We can then take x À 1 and find that, as expected, the first pole gets larger and larger

with m, and it is pushed towards the rest of the spectrum, as it can be seen in fig. 3.3. Actually,

the ratio between the first gap and the subsequent ones increases with x, so that if one keeps

the first pole fixed, the following poles will be increasingly dense just after it. This is the signal

that a cut is emerging in the x →∞ limit, i.e. in the purely explicit case.

In the next subsections we make further comments on the sub-cases of purely sponta-

neous and purely explicit breaking.

65



Chapter 3. Symmetry breaking in relativistic holographic setups

3.1.1.1 Purely spontaneous case

For purely spontaneous breaking, i.e. m = 0, the equation (3.39) becomes

M ′′− 2
r

M ′−k2M − v2r 2M = 0 . (3.55)

This is the same as (3.40), but directly in the r variable. Its solution is given in (3.42), where

now B is a function of r

M(r ) =C1 e−
v
2 r 2

U
[k2 − v

4v
, −1

2
; vr 2

]
. (3.56)

In this case, we see from eq. (3.26) that, at linear order in the fluctuations, π0 is gauge

invariant by itself, so

f (k2) = π̃0 − vl0

π0
. (3.57)

Then, using the equations of motion (3.34) for φB = vr 2, we obtain

〈
ImOφImOφ

〉
0 =−i f (k2) =−i

M ′′′(0)

2M ′′(0)
= 8i v

3
2

k2

Γ
[

k2+5v
4v

]
Γ
[

k2−v
4v

] , (3.58)

which, in the limit of small momenta, actually exhibits a massless pole, signature of the

expected Goldstone boson,

〈
ImOφImOφ

〉
0 ∼−2i v

3
2
Γ
[5

4

]
Γ
[3

4

] 1
k2 .

As a double check, we can recover the same result of eq. (3.58) by taking the limit m → 0 of

expression (3.51). Furthermore, we are able to find explicitly the position of the gapped poles

of the spectrum. Indeed, Gamma functions have no zeros, and they have poles at non-positive

integer numbers. Therefore from (3.58) we infer the following spectrum

m2
n+1 = (5+4n) v ,

with n being a non-negative integer. As anticipated in the previous section (see fig. 3.2), this

spectrum presents the feature of equally gapped poles, except for the first massive one, whose

gap from zero is bigger than the others by one unit in v .

3.1.1.2 Purely explicit case

For v = 0 the equation reduces to

M ′′− (
k2 +m2)M = 0 . (3.59)
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Note that the limit of vanishing scalar profile is trivially achieved putting m = 0 in the above

equation, and in its solutions. The solutions are

B =C+e
p

k2+m2z +C−e−
p

k2+m2z . (3.60)

Bulk normalizability imposes C+ = 0. The gauge invariant combination is

π− r mL =− r
m

M ′ =C−
p

k2 +m2

m

(
r − r 2

√
k2 +m2 + . . .

)
, (3.61)

where we have used the constraint (3.37), with φB ≡ mr . From this we read

π0 −ml0 =C−
p

k2 +m2

m
, π̃0 −ml̃0 =−C−

k2 +m2

m
. (3.62)

Now we can extract l̃0 directly as the constant term of M , that is l̃0 =C−. This yields

π̃0 =−C−
k2

m
=− k2

p
k2 +m2

(
π0 −ml0

)
. (3.63)

Finally, the correlator is given by

〈
ImOφImOφ

〉
0 =−i

δπ̃0

δπ0
= i k2

p
k2 +m2

. (3.64)

It presents a cut starting after a gap given by m2. This is what is expected from the m
/p

v →∞
limit of the correlator in the general case (3.51). Note that for m = 0 we obtain the conformal

result
〈

ImOφImOφ

〉
0 = i k, with a cut as well, but without any gap.

It is important also to notice that (3.64) goes as k2 for small k, which is necessary to

ensure that the correlator
〈

JµImOφ

〉
0 =−i m kµ

k2

〈
ImOφImOφ

〉
0 (1.41) does not have a spurious

massless pole.

3.2 The 1+1 dimensional case:

Coleman fate in holography

In the previous section we have seen how the procedure of holographic renormalization brings

to light the Ward identities structure of a holographic-dual field theory where a non-trivial

scalar background profile triggers the breaking of a global symmetry. In this section, we

want to consider the the special case of two boundary dimensions, where the arguments of

Coleman theorem [32], as we have seen in Section 1.1.2, put some obstractions to spontaneous

symmetry breaking.

However, as we will see, the procedure of holographic renormalization for a gauge vector

field presents some subtleties in 2+1 bulk dimensions. Most of them are related to the fact that
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a vector in AdS3 has analogous properties as a scalar at the BF bound [71]. We then start the

study of the peculiarities of holographic renormalization in two dimensions with a preliminary

discussion of a free gauge field in AdS3, before coupling it to matter and analyzing the physics

of symmetry breaking.

3.2.1 Maxwell gauge field in AdS3

Let us consider the following bulk action for a free Abelian gauge field in AdS3:5

S =
∫

d3x
√−g

(
−1

4
F mnFmn

)
, (3.65)

where Fmn is the usual Maxwell field strength, and gmn is the AdS3 metric in the Poincaré

patch (2.8). We choose the radial gauge Ar =0, and we divide the remainder into transversal

and longitudinal components,

Aµ = Tµ+∂µL , with ∂µT µ = 0 , (3.66)

so that the action becomes

S =−
∫

d3x r
2

[
−∂r L�∂r L+∂r T µ∂r Tµ−T µ�Tµ

]
. (3.67)

The variation of this action with respect to Ar , L, and T µ respectively leads to the following

equations of motion:

�∂r L = 0 , (3.68)

r∂r (r∂r L) = 0 , (3.69)

r∂r (r∂r Tµ)+ r 2�Tµ = 0 . (3.70)

The first equation allows to drop from the action (3.67) the term involving the longitudinal

component, while from the last two equations we derive the leading asymptotic behaviors of

the fields,

L = lnr l̃0 + l0 + . . . , T µ = lnr t̃µ0 + tµ0 + . . . . (3.71)

We notice the presence of logarithmic terms, as predicted in previous section. The constant

terms, contrary to higher dimensions, are not the leading one here, and we expect logarithmic

divergences in the on-shell action. Moreover, as discussed in Section 2.1.2, logarithms entail

ambiguities for the constant terms in the renormalized action (scheme dependence).

5 Being in three dimensions, one could include a Chern-Simons term for the vector (see for instance [94] for a
careful discussion in a similar perspective). Since our aim is to stay as close as possible to the higher dimensional
case of the previous section, we will take here the minimalistic approach and set it to zero. This choice is of course
protected by parity.
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In particular, in this case, given that the logarithm is one of the leading modes, the

ambiguity will affect the definition of source and vev, analogously to what happens for scalars

at the BF bound. Let us notice, in this respect, that we could reasonably introduce a scale in

order to make the argument of the logarithm dimensionless. This could in turn be reabsorbed

by a redefinition of the constant piece, giving us a hint of the fact that selecting the constant

term as source will entail fixing a scale.

Let us put the action (3.67) on-shell, by integrating by parts and using the equation of

motion for Tµ. The action reduces to the following boundary term:

Sreg = 1
2

∫
r=ε

d2x T µr∂r Tµ = 1
2

∫
r=ε

d2x
(

lnr t̃0 + t0

) · t̃0 , (3.72)

which indeed displays a logarithmic divergence, which needs to be renormalized. If we want

to write a counterterm that removes this divergence and is gauge invariant, we may build

it out of the field strength, but we soon realize that we then have to make it non local. This

turns out to be equivalent to a mass term, which is absolutely local, but gauge invariant only

on-shell, by equation (3.68). Indeed,6

S(0)T
ct =−1

4

∫
d2x

√−ĝ

lnr ĝρσ∂ρ∂σ
ĝκµĝλνFκλFµν = (3.73)

= 1
2

∫
d2x 1

lnr
TµT µ = 1

2

∫
d2x

√−ĝ

lnr
ĝµνAµAν =

= 1
2

∫
r=ε

d2x
(

lnr t̃0 +2t0

) · t̃0 ,

where ĝµν is the induced metric on the two-dimensional boundary, and the identity in the

second line holds indeed thanks to the constraint (3.68).

With such counterterm the renormalized action, Sren=Sreg−Sct, reads

Sren =−1
2

∫
r=ε

d2x t̃0 · t0 . (3.74)

After eq.s (3.71) we have mentioned an ambiguity related to the constant term in the

asymptotic expansion of the vector, which due to the presence of the logarithmic term is not

the leading piece as in higher dimensions. So one may wonder if the constant term is still the

source or not. The source can be established by checking the variational principle, as we have

done in Section 2.1, given that the source is defined as the mode that has to be fixed in order

to satisfy the variational principle.

We then take the variation of the bulk action (3.67) with respect to the fields and we put it

on-shell, obtaining

δSon-shell =
∫

r=ε
d2x

[
δT µ r∂r Tµ−δL�r∂r L

]
=

∫
r=ε

d2x t̃0 ·
(

lnr δt̃0 +δt0

)
.

6A counterterm with a 1
/

lnr pre-factor is typically needed for scalars at the BF bound, see e.g. [30].
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We vary the counterterm (3.73) as well, and we eventually get the variation of the renormalized

action,

δSren = δSon-shell −δSct =−
∫

d2x t0 ·δt̃0 . (3.75)

Hence we see that we have to fix t̃µ0 in order to satisfy the variational principle, and so the

source for the operator dual to Aµ is the coefficient of the logarithm.

We stress that the counterterm we have introduced for two boundary dimensions, which

has the form of a mass term, does not have an equivalent in any higher dimensions. 7 We

wonder if we can introduce a Legendre transformed version of such counterterm, as we have

done for the scalar field in (2.27), in order to obtain an “alternative quantization” for the vector,

and move the source to the constant term.

The answer is given by the following counterterm,

S(2)
ct =−1

2

∫
d2x

√−ĝ r 2 lnr ĝµνFrµFrν

=−1
2

∫
r=ε

d2x lnr
(
t̃0 · t̃0 − l̃0�l̃0

)=−1
2

∫
r=ε

d2x lnr t̃0 · t̃0 , (3.76)

where in the last step we have used the equation of motion (3.68). We notice that, contrary

to (3.73), this counterterm is manifestly gauge invariant and local, and it is in the form of a

square of the conjugate momentum of Aµ. It removes the divergence in (3.67), and yields

S′
ren = Sreg + S̃ct = 1

2

∫
r=ε

d2x t̃0 · t0 , (3.77)

which has opposite sign with respect to (3.74).

The variational principle for this last renormalized action gives

δS′
ren = δSon-shell +δS(2)

ct =
∫

d2x t̃0 ·δt0 .

As announced, the source in this alternative renormalization scheme is the constant term.

The case of a vector in AdS3 was first treated in [77], where it is briefly discussed along

with higher dimensions. In that work was shown that from the point of view of bulk normaliz-

ability only the boundary conditions corresponding to what we called standard quantization

(logarithmic term as source) are admissible. However, in [96] different boundary conditions

were considered, actually all intermediate mixed boundary conditions interpolating between

standard and alternative quantizations, corresponding to double-trace deformations. The

‘standard’ boundary condition indicated by [77] was argued to yield a pure gauge field as dual

boundary operator, whereas the ‘mixed’ boundary conditions chosen by [96] are meant to give

a conserved current with a marginal double-trace deformation. The ‘alternative’ boundary

7This might be reminiscent of the Schwinger model (see e.g. [95] for a modern exposition), where the photon
mass is generated by exactly the same non-local term. Note however that here we are dealing with a non-local
counterterm, due to a non-local UV divergent term, while in two-dimensional QED the loop-generated mass of
the photon is finite.
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condition given by the counterterm (3.76) then would correspond to a conserved current with

no double-trace deformation.

In both papers [77, 96], the dual formulation (special to three dimension) of the (trans-

verse part of the) vector in terms of a massless scalar field was used, that is

∂lϑ=√−g g mr g nsεl mn∂r As , (3.78)

and it was noted that boundary conditions for the vector corresponds to boundary con-

ditions on the scalar. So, as it is straightforward to see, the usual ‘mass’ counterterm for

as scalar in standard quantization (see eq. (2.17)) corresponds to the non-local countert-

erm (3.73), whereas the scalar counterterm in alternative quantization (see eq. (2.26)) corre-

sponds to (3.76).

Anyway, from the point of view of holographic renormalization, we have no reason

at this stage to prefer one boundary condition with respect to the other, even though the

counterterm (3.73) has that non-local form, whereas the counterterm (3.76) has absolutely no

issues. However, in the next section, we will see that coupling the vector to a charged scalar

demands the choice of the alternative boundary condition, in order to describe a conserved

current and retrieve the correct Ward identities.

3.2.2 Holographic renormalization with a charged

scalar

We consider now the holographic model of Section 3.1 for d = 2. The action (3.1) then becomes

S =
∫

d3x
√−g

[
−1

4
F mnFmn − (Dmφ)∗Dmφ−m2

φφ
∗φ

]
. (3.79)

From the equation of motion for the free complex scalar in AdS3, the exponents of the leading

and sub-leading boundary modes in two dimensions are

∆± = 1±ν , with ν=
√

1+m2
φ

. (3.80)

Then, as in the previous section, we fluctuate the complex scalar around a fixed background,

φ= φB +ρ+ iπp
2

, with φB = m r 1−ν+ v r 1+ν , (3.81)

in order to induce symmetry breaking in the boundary field theory. We take m and v to be real

for definiteness. As we know, in standard quantization, the sub-leading piece (proportional

to v) triggers a vev for the real part of the dual boundary operator, and so leads to sponta-

neous symmetry breaking of the global U(1), whereas the leading piece (proportional to m)

corresponds to explicit breaking of the symmetry. In alternative quantization their roles are

inverted. For the moment we keep both of them different from zero.
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Again, we fix the radial gauge Ar = 0 and we conveniently split the gauge field into

transverse and longitudinal components as in (3.66). We then derive from the variation of the

action the following linearized equations of motion for the fluctuated fields:

�r 2∂r L− (
φB∂rπ−π∂rφB

)= 0 , (3.82)

r 2∂2
r Tµ+ r∂r Tµ+ r 2�Tµ−φ2

B Tµ = 0 , (3.83)

r 2∂2
r L+ r∂r L−φ2

B L+φBπ= 0 , (3.84)

r 2∂2
rρ− r∂rρ−m2ρ+ r 2�ρ = 0 , (3.85)

r 2∂2
rπ− r∂rπ−m2π+ r 2�π− r 2φB�L = 0 . (3.86)

As we have seen in the previous section, in three dimensions the vector field is at the BF

bound, and indeed we have the following asymptotic expansions near the boundary:

T µ = lnr t̃µ0 + tµ0 + . . . , L = lnr l̃0 + l0 + . . . . (3.87)

The asymptotic expansion of the two scalar components depends on the value of the bulk mass.

As in the previous section, let us set ourselves in the window between the BF bound (m2=−1)

and the “massless bound” (m2=0), and exclude the two extremal values, which would need to

be treated separately since they entail logarithms. For all values in this window, 0 < ν< 1, the

scalar asymptotic expansions are logarithm-free. We thus have the following expansions,

ρ = r 1−ν (
ρ0 + r 2ρ̃0 + . . .

)+ r 1+ν (
ρ̃0 + r 2ρ̃1 + . . .

)
,

π= r 1−ν (
π0 + r 2π̃0 + . . .

)+ r 1+ν (
π̃0 + r 2π̃1 + . . .

)
.

(3.88)

We can now, integrating by parts and using the equations of motion, reduce the action to

a boundary term, which reads

Sreg =
∫

r=ε
d2x 1

2

[
T µr∂r Tµ−�Lr∂r L+ 1

r

(
π∂rπ+ρ∂rρ+2ρ∂rφB

)]
, (3.89)

where we have neglected the terms at the zeroth order in the fluctuations8. By using the

asymptotic expansions we obtain

Sreg =
∫

r=ε
d2x 1

2

[(
lnr t̃0 + t0

) · t̃0 −
(

lnr l̃0 + l0

)
�l̃0 +

+ρ0

(
(1−ν)

(
ρ0 +2m

)
r−2ν+2ρ̃0

)
+2m(1−ν)ρ̃0 +2v(1+ν)ρ0+

+π0

(
(1−ν)π0 r−2ν+2π̃0

)]
. (3.90)

8 The zeroth order terms would be relevant if we where interested in the zero point energy, but not in our
discussion.
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We see that the divergent pieces of the scalar sector can be removed by the usual coun-

terterm (in which we subtract the background value)

S(m)
ct = (1−ν)

∫
r=ε

d2x
√−ĝ

(
φ∗φ− φ2

B

2

)
(3.91)

= 1
2

(1−ν)
∫

r=ε
d2x

√−ĝ
[
ρ2 +2φBρ+π2

]
,

leaving only the logarithmic divergences of the vector sector:

Sreg −S(m)
ct = 1

2

∫
r=ε

d2x
[(

lnr t̃0 + t0

) · t̃0 −
(

lnr l̃0 + l0

)
�l̃0 +

+2ν
(
ρ0ρ̃0 +2v ρ0 +π0π̃0

)]
. (3.92)

We would like to remove also these divergences, and then express the renormalized action

in terms of the sources only. To do so, we need to identify which are the sources. We could

be tempted to substitute the term �L in (3.92), as we did in Section 3.1, by means of the

constraint (3.82) to, which in d = 2 reads

�l̃0 = 2ν
(
mπ̃0 − v π0

)
. (3.93)

However, until we fix the source of the longitudinal component, we cannot use this constraint.

Indeed, since we want the renormalized action to be eventually expressed in terms of the

sources only, if l̃0 is the source, then we should not remove it from the action. On the contrary,

if the source is l0, then we can use (3.93) with no worries.

So, we do not use the constraint for the moment, first of all we decide which of the two

leading terms we want to be the source. In the previous section, for the transverse part, we

have seen that we have the two choices (and even more, intermediate choices), one of the two

(the logarithmic term as source) however leading to a pure gauge field, rather than a conserved

current, as dual boundary operator. This fact is manifest by considering the longitudinal

component, which here does not disappear from the on-shell action.

The longitudinal part of the vector shifts under gauge transformations, δαL =α, which

in the radial gauge Ar = 0 are constant in r . It is then the constant term in L that shifts, in

two dimensions as in any higher boundary dimensions. In other words, it is the constant part

of Aµ that has gauge transformations, and so should be the source of a boundary conserved

current. On the contrary, the coefficient of the logarithm is gauge invariant, and so it would

source an operator which enjoys gauge transformations: a gauge field.

Thus, if we want to describe a global conserved current, we should choose l0 as the source.

The discussion of the previous section about the vector alone in AdS3 suggests that alternative

quantization should be performed.
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Let us then take the counterterm (3.76) and add it to (3.92)9. We obtain

Sren = Sreg −S(m)
ct +S(2)

ct =
= 1

2

∫
d2x

[
t0 · t̃0 − l0�l̃0 +2ν

(
ρ0ρ̃0 +2v ρ0 +π0π̃0

)]
. (3.94)

Let us check the variational principle, to verify that l0 is indeed the source in this scheme.

We then compute first the variation of the action (3.79), putting it on-shell:

δSon-shell =
∫

r=ε
d2x

[
δT µr∂r Tµ−δL�r∂r L+ 1

r

(
δπ∂rπ+δρ∂rρ+δρ∂rφB

)]
=

∫
r=ε

d2x
[

t̃0 ·
(

lnr δt̃0 +δt0

)−�l̃0

(
lnr δl̃0 +δl0

)+ (3.95)

+ (1−ν)π0

(
r−2νδπ0 +δπ̃0

)+ (1+ν)π̃0δπ0+
+ (1−ν)

(
ρ0 +m

)(
r−2νδρ0 +δρ̃0

)+ (1+ν)
(
ρ̃0 + v

)
δρ0

]
.

As already remarked, it is crucial here not to use the constraint (3.93), which relates the

coefficient of the logarithm to the source and vev of the fluctuating scalar π. The equations of

motion can be used to express vevs in term of sources, but since we do not know yet whether

l̃0 will be a source or not, we have to remain off-shell to check the variational principle. To use

this constraint to remove l̃0 would actually mean to imply already that l̃0 is not a source, that

is precisely what we are trying to prove.

We go on varying the counterterm for the scalar divergences (3.91),

δS(m)
ct = (1−ν)

∫
r=ε

d2x
[(

r−2ν(ρ0 +m
)+ (

ρ̃0 + v
))
δρ0 +

(
ρ0 +m

)
δρ̃0+ (3.96)

+
(
r−2νπ0 + π̃0

)
δπ0 +π0δπ̃0

]
,

and the one for the vector divergences (3.76),

δS(2)
ct =−

∫
r=ε

d2x lnr
(
δt̃0 · t̃0 −δl̃0�l̃0

)
. (3.97)

We finally obtain the variation of the renormalized action (3.94),

δSren = δSon-shell −δS(m)
ct +δS(2)

ct =
=

∫
d2x

[
t̃0 ·δt0 −�l̃0δl0 +2ν

((
ρ̃0 + v

)
δρ0 + π̃0δπ0

)]
, (3.98)

where we see that the sources of the gauge field are the constant terms, as desired. Of course

the scalar sources are those expected in standard quantization, which is customary with the

standard counterterm (3.91).

Furthermore, now that we have established that l̃0 is not the source, we can use the

9We point out that now the term in �l̃0 in (3.76) does not vanish anymore on-shell.
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constraint (3.93) in the renormalized action (3.94) without any issues, obtaining

Sren = 1
2

∫
d2x

[
t0 · t̃0 +2ν

(
ρ0ρ̃0 +2v ρ0 +π0π̃0 −

(
mπ̃0 − vπ0

)
l0

)]
, (3.99)

This renormalized action is completely identical to those in higher space-time dimensions

(see (3.23) for the three-dimensional one), and gives the suitable Ward identities for a pseudo-

Goldstone boson [II].

The counterterm (3.76), however, has an explicit lnr factor, leaving the possibility of

adding an additional finite counterterm with identical structure and arbitrary pre-factor.

This is indeed what was analyzed in [96] in the dual frame (3.78), with the interpretation

of a double-trace current-current deformation appearing, and consequent non-trivial RG

flow. Here we note that such a finite counterterm would spoil the identification of tµ0 and

l0 as sources, shifting them by an arbitrary amount linear in tµ0 and l̃0 respectively. This

corresponds to introducing a scale in the asymptotic expansion (3.71) in order to make the

argument of the logarithm dimensionless. So, in other words, our choice of renormalization

scheme (3.76) is equivalent to fixing a scale, which in turn corresponds to a specific choice of

the parameter characterizing the boundary conditions of [96], the one related to the ‘trivial’

double-trace deformation (i.e. no deformation). In the following, we take the point of view

that the ambiguity in the lnr has been fixed, and we have taken tµ0 and l0 to be our sources.

This prescription allows us to find the expected Ward identities, which nevertheless would not

be affected by double-trace deformations10.

One last comment we should make about the choice of alternative quantization for the

vector field is that, if one holds tµ0 fixed and lets t̃µ0 loose, then according to [77] the fluctuations

are not normalizable. This seems the price to pay to describe in the boundary theory a proper

conserved current, whose existence we have no reason to exclude for a two-dimensional CFT.

In addition, let us say that, at least for scalars, bulk non-normalizability is usually connected

to boundary operators with dimension below the unitarity bound, whereas in the present case

we do not see which problematic scenario this non-normalizability would correspond to in

the dual theory. On the contrary, we will show that everything works as smoothly as in higher

dimensions precisely when we choose the alternative quantization for the vector field.

Thus, before moving to the usual holographic derivation of Ward identities for symmetry

breaking and giving some analytic evidence for holographic Goldstone bosons in two dimen-

sions, let us first briefly discuss the ‘standard quantization’ for the vector, that is when we allow

the coefficient of the logarithm to be the source, and show that in such case the holographic

renormalization in presence of a scalar background presents some difficulties which cannot

be overcome.

10 On the contrary, it will not be possible to derive the correct Ward identities for symmetry breaking in the
‘ordinary’ quantization scheme (which as already said does not describe a conserved current), as we will see in
Section 3.2.2.1.
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3.2.2.1 Ordinary quantization for the vector

Let us go back to the boundary action (3.92), where the scalar divergences are removed whereas

the vector divergences are still present, and try to find a renormalization scheme for the vector

that select the coefficient of the logarithm as the source. A mass-like counterterm like the one

that we have used for the transverse part (3.73) will not help in presence of a scalar background,

since it does not take care of the divergence of the longitudinal component, which now does

not vanish on-shell. We propose instead the following gauge invariant, local counterterm:

S(0)
ct =−

∫
r=ε

d2x

√−ĝ ĝµν

lnr φ2
B

(Dµφ)∗Dνφ (3.100)

=−1
2

∫
r=ε

d2x
[(

lnr t̃0 +2t0

) · t̃0 −
(

lnr l̃0 +2l0 − 2
m
π0

)
�l̃0

]
.

We stress that such counterterm cannot be written in case of vanishing scalar background,

and it is anyway singular at m = 0, that is the purely spontaneous case, already suggesting that

we are not doing the proper way to describe a theory with symmetry breaking. However, it

actually removes the logarithmic divergences, yielding

Ŝren = Sreg −S(m)
ct +S(0)

ct =
= 1

2

∫
d2x

[
− t0 · t̃0 + l0�l̃0 +2ν

(
ρ0ρ̃0 +2v ρ0 +π0π̃0

)]
. (3.101)

Let us check by the variational principle that with this renormalization scheme the

coefficients of the logarithmic terms are indeed the sources. Taking (3.95) and (3.96), and

adding the variation of the counterterm (3.100), we obtain

δŜren =
∫

d2x
[
− t0 ·δt̃0 − �

m

(
π0 −ml0

)
δl̃0 +

(
2νπ̃0 − �

m
l̃0

)
δπ0 +2ν

(
ρ̃0 + v

)
δρ0

]
.

We see that in this way the variational principle is well defined (even if still singular in m → 0),

and in particular l̃0 should be considered as the source11.

If l̃0 is a source, then we have to re-interpret the constraint (3.93) as an expression for π̃0

in terms of the sources l̃0, π0. With this substitution the renormalized action (3.101) becomes

Ŝren = 1
2

∫
d2x

[
− t̃0 · t0 −

(
π0 −ml0

)�
m

l̃0 +2ν
(
ρ0ρ̃0 +2vρ0 + v

m
π0

2
)]

. (3.102)

Again we see that all the terms involving the source of the imaginary part of the dual scalar

operator explode for m = 0. No theory of spontaneous breaking can be extracted out of this,

which is consistent with the fact that the response of the longitudinal component of the

vector, l0, is gauge-dependent in this quantization. Moreover, again in the purely spontaneous

11Notice that the mass parameter m acts here as a regulator in the case of the purely spontaneous case. The
structure of counterterms looks different in the case one fixes m = 0 ab initio.
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case m = 0, the constraint (3.93) becomes

�l̃0 =−2νvπ0 , (3.103)

which strengthens the idea that l̃0 cannot be the source of the conserved current. Indeed, given

that π0 is the source for the imaginary part of the scalar, l̃0 cannot be another source, giving

another signal of the sickness of this renormalization scheme as we remove the regulator m.

So, the issues of the counterterm (3.100), and of the corresponding renormalized ac-

tion (3.101), at m = 0 corroborate the idea that the alternative quantization scheme is not

only the proper one to describe a conserved current and symmetry breaking, but it is also the

unique consistent way of holographically renormalizing the three-dimensional action (3.79)

in presence of a non-trivial scalar background.

We may then wonder if the alternative quantization counterterm (3.76) can be obtained

from the standard quantization counterterm (3.100) through a Legendre transform, as it is the

case for a scalar (2.27) [70]. The answer is of course positive, and is given by the counterterm

S(1)
ct = −ip

2

∫
r=ε

d2x

√−ĝ

φB
ĝµνr∂r Aµ

(
Dνφ− (Dνφ)∗

)
=

=−
∫

r=ε
d2x

[ (
lnr t̃0 + t0

) · t̃0 −
(

lnr l̃0 − 1
m

(
π0 −ml0

))
�l̃0

]
, (3.104)

and it is straightforward to check that indeed S(1)
ct −S(0)

ct = S(2)
ct , and the same for the respective

variations. However, we see that also this boundary term S(1)
ct is singular for m = 0 like S(0)

ct ,

whereas the Legendre transformed one S(2)
ct is independent of m.

Note that this could be interpreted to mean that the limits r → 0 (high UV) and m → 0

(purely spontaneous breaking) do not commute at large N . In order to make explicit this

non-commutativity of the two limits, we can write

S(1)
ct −S(0)

ct = S(2)
ct − 1

2

∫
r=ε

d2x 1
lnr

[
2�l0

π0 + π̃0r 2ν

m + vr 2ν −�π0
π0 +2π̃0r 2ν

m2 +2mvr 2ν+ v2r 4ν

]
.

We see immediately that if we take first the limit r → 0 we correctly get the counterterm S(2)
ct

(which is independent of m and so the subsequent m → 0 limit is ineffective); whereas, if

we take first the limit m → 0, we have no singularities thanks to v 6= 0, but we have surviving

divergences in r when we take the r → 0 limit afterwards, namely:

[
S(1)

ct −S(0)
ct

]
m=0

= S(2)
ct + 1

2

∫
r=ε

d2x

[
2
v
π0�l0

r−2ν

lnr
− 1

v2

(
π0

r−4ν

lnr
+2π̃0

r−2ν

lnr

)
�π0

]
.

One could be tempted to interpret this as a signal of the impossibility of taking v 6= 0

and m = 0 at the same time, i.e. no spontaneous symmetry breaking is allowed. However the

counterterm (3.76) is perfectly legitimate in its own right, and it is the only one which can

still be written also when the scalar background completely vanishes (m = 0 and v = 0), and
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actually even when the scalar is not there at all, as in Section 3.2.1. On the contrary, the stan-

dard quantization counterterm (3.100) and the one necessary to Legendre transform (3.104)

cannot be written in absence of the scalar background.

The main understanding that we have gained from the analysis of this section is that the

‘alternative quantization’ counterterm (3.76) provides the only sensible way of renormalizing

a vector field in AdS3 in presence of a non-trivial scalar back-ground, in order to describe a

conserved current as dual boundary operator and consistently retrieve Ward identities for

symmetry breaking [III]. Let us then compute now those Ward identities embodying sponta-

neous (and explicit) symmetry breaking, in two dimensions exactly as in higher dimensions,

and so confirming the announced holographic evasion of Coleman theorem.

3.2.3 Symmetry breaking and Goldstone boson

in AdS3/CFT2

We start back from the renormalized action in alternative quantization (3.94), which we have

extensively argued to be the proper one to describe a global conserved current and symmetry

breaking in the dual boundary field theory. Then showing that the Ward identities are realized

is straightforward, and proceeds exactly as in Section 3.1. First we rewrite the action as

Sren = 1
2

∫
r=ε

d2x
[

t0 · t̃0 +2ν
(
ρ0ρ̃0 + v

(
2ρ0 +2π0l0 −ml0l0

)+ (
π0 −ml0

)(
π̃0 − vl0

))]
.

Then we remark that the equations of motions and gauge invariance dictate the relations

between vevs and sources to take the following form:

t̃µ0 = ft (�)tµ0 , ρ̃0 = fρ(�)ρ0 , π̃0 − vl0 = fπ(�)
(
π0 −ml0

)
, (3.105)

where the f ’s are typically non-local functions, obtained by solving the equations of motion

with appropriate IR boundary conditions in the deep bulk.

Replacing in the action yields the generating functional for one- and two-point functions,

depending explicitly on sources only:

Sren = 1
2

∫
r=ε

d2x
[

t0 · ft (�)t0 +2ν
(

v
(
2ρ0 +2π0l0 −m l0l0

)+ (3.106)

+ρ0 fρ(�)ρ0 +
(
π0 −ml0

)
fπ(�)

(
π0 −ml0

))]
.

Given the dictionary (2.5), we get, for the correlators that are most relevant to the Ward

identities, 〈
ImO (x) ImO (x ′)

〉
0 =−i 2ν fπ(�) δ(x −x ′) ,〈

∂µ jµ(x) ImO (x ′)
〉

0 =−i 2ν
(
m fπ(�)− v

)
δ(x −x ′) .

(3.107)

As in Section 3.1, we can obtain directly the Goldstone boson pole in the purely spontaneous
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case from the above relations. In momentum space, relativistic invariance and the Ward

identity force the mixed correlator to be

〈
jµ(k) ImO (−k)

〉
0 = v

kµ
k2 , (3.108)

displaying the expected massless pole. Furthermore when turning on m, one can argue that

fπ has to have a pole with a mass square proportional to m. Hence also fπ has a massless pole

in the m = 0 limit. We will not repeat here all these steps, because they are explained in detail

in Section 3.1 and they are clearly independent of the dimension of space-time.

The Coleman theorem kicks in only after one considers (perturbative) quantum cor-

rections due to the massless particle. Clearly holography does not capture such quantum

corrections, which we then assume to be suppressed by the large N limit, as in the example of

Thirring model discussed in Section 1.1.2.

Hence, the main result of [III] has been reproduced, namely to show what is the correct

prescription for the boundary conditions and for the renormalization of the vector in order

to obtain the expected Ward identities in the two-dimensional boundary field theory. This

has been derived through a physically intuitive operational method, based on locality, gauge-

invariance and the variational principle. The same conclusions (counterterms built out of

canonical momenta are necessary to correctly renormalize a Maxwell gauge field in AdS3) can

be obtained in a more formal way through Hamiltonian formalism, as discussed in Section 3.2

of [97].

In the following section, in order to cover all possibilities (namely, all scalar operator

dimensions between 0 and 2), we will briefly perform alternative quantization also in the

scalar sector. Moreover, this will allow us to work out an analytic expression for fπ for a specific

value of the dimension of the dual boundary operator.

3.2.3.1 Scalar correlator in alternative quantization

Here, as we did for the vector field, the goal is to move the sources to the subleading terms for

the scalar as well. That is, we are interested in considering ρ̃0, π̃0 as the sources. As explained

in Section 2.1, in order to change the boundary conditions we should consider a Legendre

transformation of the scalar counterterm (3.91), that is

S̃(m)
ct =

∫
r=ε

d2x
√−ĝ

(
φ∗r∂rφ+φ∗r∂rφ−φB r∂rφB

)
(3.109)

=
∫

r=ε
d2x

[
(1−ν)

(
ρ0

(
ρ0 +2m

)+π0π0

)
r−2ν+2

(
vρ0 +mρ̃0 +ρ0ρ̃0 +π0π̃0

)]
.

Then the following combination is free from scalar divergences,

Sreg +S(m)
ct − S̃(m)

ct = 1
2

∫
r=ε

d2x
[(

lnr t̃0 + t0

) · t̃0 −
(

lnr l̃0 + l0

)
�l̃0 −2ν

(
ρ0ρ̃0 +2m ρ̃0 +π0π̃0

)]
,
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and v and m have opposite meanings with respect to (3.92). We can verify by the variational

principle that indeed the sources and vevs are switched. If we take the expression (3.95) and

subtract the variation of the present countenterm, we obtain

δSon-shell +δS(m)
ct −δS̃(m)

ct =
∫

r=ε
d2x

[
t̃0 ·

(
lnrδt̃0 +δt0

)− (
lnr δl̃0 +δl0

)
�l̃0+

−2ν
((
ρ0 +m

)
δρ̃0 +π0δπ̃0

)]
,

as desired.

Then we use the counterterm (3.76) to remove the vector divergences as well, and we get

the renormalized action where both the vector and the scalar are in the alternative quantiza-

tion:

S̃ren = 1
2

∫
d2x

[
t0 · t̃0 −2ν

(
ρ0ρ̃0 +2mρ̃0 +π0π̃0 +

(
mπ̃0 − vπ0

)
l0

)]
. (3.110)

We remark that, since now the purely spontaneous breaking occurs for v =0, the two

counterterms (3.100, 3.104) are now well behaved for the purely spontaneous case, whereas

they are singular for the purely explicit one. Since we do not expect any obstruction for explicit

symmetry breaking specific to two dimensions, this confirms once more that the ordinary

quantization for the vector should be excluded.

If we now express the vevs in terms of the gauge-invariant sources in the following way:

t̃µ0 = ft (�)tµ0 , ρ0 = f̃ρ(�)ρ̃0 , π0 −ml0 = f̃π(�)
(
π̃0 − vl0

)
, (3.111)

we can rewrite the renormalized action uniquely in terms of the sources,

S̃ren = 1
2

∫
d2x

[
t0 · ft (�)t0 −2ν

(
m

(
2ρ̃0 +2π̃0l0 − v l0l0

)+ (3.112)

+ρ̃0 f̃ρ(�)ρ̃0 +
(
π̃0 − vl0

)
f̃π(�)

(
π̃0 − vl0

))]
.

From this renormalized action we can retrieve Ward identities that are completely equivalent

to those in (3.107), with inverted roles for v and m (and ν going into −ν).

To conclude the discussion, we would like to provide an explicit expression for the two-

point correlator of ImÕ , where the massless Goldstone pole should be found. For v = 0,

that in alternative quantization corresponds to purely spontaneous breaking, and ν = 1/2,

corresponding to the dimension of the boundary operator equal to 1/2, the equation of

motion (3.84) becomes

M ′′(r )− (
k2 +m2r−1)M(r ) = 0 , (3.113)

where M = r∂r L. This equation can be analytically solved, and, if we impose boundary

conditions such that the solution is not exploding in the deep bulk, we obtain the following

well-behaved function

M(r ) =C r e−
p

k2 r U

[
1+ m2

2
p

k2
, 2; 2

√
k2 r

]
, (3.114)
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where U[a,b; x] is the Tricomi’s hypergeometric function.

From the constraint (3.82) we get

π̃0 =− 1

m
k2M

∣∣
r 0 , (3.115)

where M |r 0 is the constant term in the small r expansion. Similarly, from the equation of

motion (3.84) we can express the gauge invariant combination involving π0 in the following

way:

π0 −ml0 =− 1
m

M ′∣∣
r 0 . (3.116)

Then we can derive the final expression for the correlator

〈
ImÕ (k) ImÕ (−k)

〉
0 = i f̃ (k2) = i

π0 −ml0

π̃
(3.117)

=− i

k2

[√
k2 −m2

(
2γE M + ln

(
2
√

k2
)+ψ(2)

[
1+ m2

2
p

k2

])]
,

where γE M is the Euler-Mascheroni constant, and ψ(2)[x] is the di-gamma function. Using the

expansion ψ(2)[1+ x] ' ln(x)+1/(2x)+O (1/x2) for large x, one verifies that both the linear

term ∼ |k| and the logarithmic term ∼ ln |k| in the numerator of the equation above cancel in

the k → 0 limit. In this way, the low energy behavior of this correlator exhibits the expected

Goldstone massless pole, namely

〈
ImÕ ImÕ

〉
0 ≈ i

2m2

k2

(
γE M + lnm

)
. (3.118)

We have thus explicitly confirmed the presence of the Goldstone boson, in addition to the

deduction (3.108) based on Ward identities.
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4 Holographic non-relativistic type B

Godstone boson

In this chapter we will see the first of two examples of non-relativistic holographic setups.

Such example is formulated in completely Lorentz covariant formalism, and Lorentz boost

invariance is explicitly broken by giving a background profile to the temporal component

of the bulk gauge field (in this way preserving invariance under spatial rotations). Taking a

non-abelian gauge group, we will produce a suitable setup for the type B Goldstone boson to

appear.

In Section 1.3, we have seen that the occurrence of Goldstone bosons with quadratic

dispersion relation in non-relativistic field theories can be related to the presence of pairs

of broken generators whose commutator has a non-trivial vacuum expectation value, which

would be instead forbidden in case of Lorentz invariance. Such Goldstone bosons with

quadratic dispersion relation (type B GBs) are usually accompanied by a massive partner

whose mass is proportional to the amount of Lorentz breaking. Eventually, there can still be

massless modes with linear dispersion relations (type A GBs), as in the relativistic case, but

with a model dependent velocity, likely different from c = 1.

In this chapter we will explore in a holographic setup what can be learned on these

different kinds of light modes. In particular, we will focus on what can be extracted just by

specifying how the symmetries are broken. The holographic model is supposed to represent a

field theory, with a large number of degrees of freedom and at strong coupling, which displays

a pattern of symmetry breaking allowing for the various types of Goldstone bosons to be

present. We will study a model with the minimal requirements in order to expect all these light

modes, namely a U(2) global symmetry on the boundary, which will be spontaneously broken,

and a source for the time-like component of the abelian U(1) current, i.e. a chemical potential,

which explicitly breaks boost invariance (but preserves, besides rotations, the global U(2) as

well).

Such model was previously considered in [98], where the system was set at finite temper-
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ature and numerical techniques were essentially employed to produce the results (see also

[99] for a different holographic model). We will rather consider the model at zero temperature,

in analogy with the original field theory model [38, 39], reviewed in Section 1.3.1, and perform

a purely boundary analysis through analytic techniques.

4.1 Renormalized action for a holographic

type B Goldstone model

Let us outline the model discussed in [98]. This is a typically strongly coupled theory rep-

resented by its holographic bulk dual. We will assume that the theory has a non-trivial UV

conformal fixed point. In this UV CFT, we will focus on the conserved currents J a
i which form

a U(2) algebra, and on a relevant operator OΦ which is a doublet of U(2). In the holographic

dual, this means that we need to have a bulk theory in an asymptotically AdS spacetime, which

includes dynamical U(2) gauge fields and a complex doublet scalar with negative squared

mass. Since we are not interested in computations involving the stress energy tensor, we set

gravity in the bulk not to be dynamical. Finally, in order to enjoy the simplifications discussed

in Section 3.1, we choose four bulk dimensions (and hence three dimensions for the boundary

theory), assuming that our results would not be qualitatively modified in higher dimensions.

Then we consider the following action,

S =
∫

d4x
√−g

[
−1

4
F a

mnF a mn −DmΦ
†DmΦ−m2

ΦΦ
†Φ

]
, (4.1)

where F a
mn = ∂m Aa

n −∂n Aa
m + f abc Ab

m Ac
n , DmΦ= ∂mΦ− i Aa

mT aΦ, and the field

Φ≡
(
ψ

φ

)
(4.2)

is a complex scalar doublet. The two-by-two matrices T a = 1
2τ

a , with a = {0,1,2,3}, are the

generators of U(2) in the fundamental representation, where the τa are given by the identity

and the Pauli matrices, as defined in (1.63). They satisfy [T a ,T b] = i f abc T c , with f abc = 0 if

any of the indices is 0, and f abc ≡ εabc otherwise, where εabc is the completely antisymmetric

three-dimensional Levi-Civita symbol.

The metric is fixed to be the AdS one, as defined in (2.8), again with no gravitational

dynamics, given that we are not interested in computing correlators involving the stress-

energy tensor. Moreover, we will not consider any back-reaction on the metric. This is

motivated by the fact that we will in any case restrict our attention to the near-boundary

region, where back-reaction effects can be shown to be sub-leading and actually completely

irrelevant to our considerations. Finally, note that since this is pure AdS, on the field theory
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side it corresponds to considering zero temperature, in contrast with the analysis of [98] where

a non-zero temperature was always required.

Let us first consider the field configuration defining the background, and thus the vacuum

of the dual theory. First of all, as anticipated, the theory is non-relativistic because boost

invariance is broken by the presence of a chemical potential, LQFT ⊃ µJ 0
t . This means that

there should be a non-trivial source for J 0
t , namely A0

t should have a leading mode turned

on. This source breaks Lorentz invariance, but preserves all of U(2) since the U(1) generator

commutes with the whole algebra. In the vacuum of the theory, we expect that non-trivial

dynamics generates vev’s for the operator OΦ, thus breaking U(2) to U(1). For simplicity we

will take this U(1) to be the one generated by T 0 +T 3. The unbroken symmetries allow for

vev’s to be generated also for J 0
t and J 3

t . The latter is crucial for obtaining a non-vanishing vev

for commutators of charges, and thus for the appearance of type B Goldstone bosons. In the

bulk, we will thus have sub-leading modes for the profiles of A0
t , A3

t and for Φ in its bottom

component φ.

From now on, we fix the dimension of OΦ to be two, which implies m2
Φ =−2 (in units of

the AdS radius). The background profiles are thus the following:

φ
B
=φB r 2, A0

t B
=µ+ A0

B r , A3
t B

= A3
B r , (4.3)

where we take φB , µ, A0
B and A3

B to be real constants. These profiles satisfy the free equations

of motion. Normally, in the deep bulk (and in particular in presence of a horizon/temperature)

the equations of motion would relate the sub-leading to the leading mode. However, as a

far as our near-boundary analysis is concerned, the back-reaction of the above profiles on

the metric can be safely neglected,1 and the leading and sub-leading modes can be chosen

independently. In particular, with A0,3
B independent of µ, this latter could be even set to zero.

However this would mean that some physical mechanism should generate spontaneously a

Lorentz breaking vev such as
〈

J 3
t

〉
0. So, in the following we will rather assume that µ 6= 0 even

if it will eventually not appear in any of the results.

We now proceed to fluctuate the fields over the background. The aim is to obtain the

on-shell action up to quadratic order, since we are interested in two- and one-point functions.

As we know, at this order the on-shell action reduces to a boundary term. In the following,

we fix as usual the radial gauge Aa
r = 0. We write then the equations of motion at linear order

in the fluctuations above the backgrounds, which we label in the same way as the respective

fields themselves. The constraint coming from the variation with respect to Aa
r reads:

r∂r∂µAa
µ− r A3

B f 3ab
(

Ab
t − r∂r Ab

t

)
− iφB (T a)21

(
2ψ− r∂rψ

)+ (4.4)

+ iφB (T a)12

(
2ψ∗− r∂rψ

∗)− iφB (T a)22

(
2(φ−φ∗)− r∂r (φ−φ∗)

)= 0 .

The equations of motion for the vector field fluctuations, separated in spatial and temporal

1The back-reaction would intervene at O (r 4) in φ and at O (r 2) in A0,3
t , hence at orders that do not contribute to

the rest of our computations.
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components, are

r 2∂2
r Aa

i + r 2∂2
j Aa

i − r 2∂i∂
µAa

µ− r 4φ2
B Ab

i

{
T a ,T b}

22 + (4.5)

+2r 3 f ab3 A3
B∂t Ab

i − r 3 f ab3 A3
B∂i Ab

t − r 4(A3
B

)2 f ab3 f bc3 Ac
i +

+ i r 2φB

[
(T a)12∂iψ

∗− (T a)21∂iψ− (T a)22∂i (φ−φ∗)
]= 0 ;

r 2∂2
r Aa

t + r 2∂2
i Aa

t − r 2∂t∂i Aa
i + r 3 f ab3 A3

B∂i Ab
i − r 4φ2

B Ab
t

{
T a ,T b}

22 + (4.6)

+ i r 2φB

[
(T a)12∂tψ

∗− (T a)21∂tψ− (T a)22∂t (φ−φ∗)
] +

− r 2 (
µ+ A0

B r
)
φB

[
(T a)21ψ+ (T a)12ψ

∗+ (T a)22(φ+φ∗)
] +

− r 3 A3
BφB

[{
T a ,T 3}

21ψ+{
T a ,T 3}

12ψ
∗+{

T a ,T 3}
22(φ+φ∗)

]= 0 .

Finally, the equations for the scalar fluctuations are

r 2∂2
rψ−2r∂rψ+ r 2∂2

i ψ+2ψ− i r 4φB (T a)12∂i Aa
i + (4.7)

+ i r 2(µ+ A0
B r + A3

B r
)
∂tψ+ 1

4
r 2(µ+ A0

B r + A3
B r

)2
ψ+

+ r 4(µ+ A0
B r

)
φB (T a)12 Aa

t = 0 ;

r 2∂2
rφ−2r∂rφ+ r 2∂2

i φ+2φ− i r 4φB (T a)22∂i Aa
i + (4.8)

+ i r 2(µ+ A0
B r − A3

B r
)
∂tφ+ 1

4
r 2(µ+ A0

B r − A3
B r

)2
φ+

+ r 4(µ+ A0
B r

)
φB (T a)22 Aa

t + r 5 A3
BφB

{
T a ,T 3}

22 Aa
t = 0 .

The last two equations should be supplemented by their complex conjugates.

The on-shell action is obtained expanding (4.1) up to quadratic order in the fluctuations,

and then substituting the equations of motion. At the regularizing surface r = ε, we obtain

Sreg =−
∫

r=ε
d3x

[
A0

B A0
t + A3

B A3
t + 1

2
Aa

t ∂r Aa
t − 1

2
Aa

i ∂r Aa
i + (4.9)

− 2
r
φB (φ+φ∗)− 1

2
r−2 (

ψ∗∂rψ+ψ∂rψ
∗+φ∗∂rφ+φ∂rφ

∗)]
.

Now, we can also use the equation (4.4), which only has first order derivatives in r . However,

we also have to split the vector into its irreducible components. We choose here to split into

transverse and longitudinal parts with respect to the spatial coordinates i , while keeping Aa
t

as the temporal component2, namely

Aa
i = T a

i +∂i La , ∂i T a
i = 0 . (4.10)

2In Appendix A of [I], a different splitting is discussed, where the transverse and longitudinal parts are taken
with respect to the space-time coordinates µ, as in the relativistic case (3.15). Even if the final results are the same,
namely the Ward identities can be correctly recovered by both ways, we find more logical to show the computation
here in this manifestly non-relativistic splitting.

86



4.1. Renormalized action for a holographic type B GB model

We eventually arrive at

Sreg =−
∫

r=ε
d3x

{
A0

B A0
t + A3

B A3
t − 2

r
φB (φ+φ∗)+ 1

2
Aa

t ∂r Aa
t − 1

2
T a

i ∂r T a
i +

+ 1
2

La∂r∂t Aa
t + 1

2
A3

B f ab3La(
Ab

t − r∂r Ab
t

)+
+ i

2r
φB La

[
(T a)21

(
2ψ− r∂rψ

)− (T a)12

(
2ψ∗− r∂rψ

∗)+
+ (T a)22

(
2(φ−φ∗)− r∂r (φ−φ∗)

)]+
− 1

2r 2

(
ψ∗∂rψ+ψ∂rψ

∗+φ∗∂rφ+φ∂rφ
∗)}

. (4.11)

We now consider the following near-boundary expansion of the fluctuating fields, which

can be straightforwardly derived from the equation of motion (4.5–4.8):

Aa
t = aa

0 + r ãa
0 + . . .

T a
i = t a

i 0 + r t̃ a
i 0 + . . .

La = l a
0 + r l̃ a

0 + . . .

ψ= r ψ0 + r 2 ψ̃0 + . . .

φ= r φ0 + r 2 φ̃0 + . . .

(4.12)

We remark that all non-tilded modes will be the sources, while all tilded modes will be the

responses. The fact that the latter occur at next-to-leading order in r is a specific feature of

three boundary dimensions and scalar mass m2
Φ = −2, as we have already remarked in the

pseudo-Goldstone model of Section 3.1.

The divergent terms that one finds in Sreg are taken care of by adding counter-terms,

which are independent of the presence of the profile. Again, due to the involved dimensions,

no logarithms are present, and hence no finite counter-terms arise and no scheme dependence

(see Section 2.1.2). However, as it should be clear in the following, scheme dependent terms

would not affect the part of the renormalized action that we are interested in. Moreover, the

only divergent terms are those involving scalars, so that the only needed counterterm is

Sct =
∫

d3x
√−ĝ Φ†Φ=

∫
d3x

[
1
r

(
ψ∗

0ψ0 +φ∗
0φ0

)+ψ∗
0 ψ̃0 +ψ0ψ̃

∗
0 +φ∗

0 φ̃0 +φ0φ̃
∗
0

]
.

Eventually, we obtain the following renormalized action,

Sren =−
∫

d3x
[

A0
B a0

0 + A3
B a3

0 −2φB

(
φ0 +φ∗

0

)+
− 1

2
t a

i 0 t̃ a
i 0 + 1

2

(
aa

0 −∂t l a
0

)
ãa

0 + 1
2

A3
B f ab3l a

0 ab
0 +

+ i
2
φB l a

0

(
(T a)21ψ0 − (T a)12ψ

∗
0 + (T a)22

(
φ0 −φ∗

0

))+
− 1

2

(
ψ∗

0 ψ̃0 +ψ0ψ̃
∗
0 +φ∗

0 φ̃0 +φ0φ̃
∗
0

)]
. (4.13)
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The first three terms of the above functional, linear in the fluctuations, just give the vev’s of the

corresponding dual operators J 0
t , J 3

t and ReOφ. The other terms, quadratic in the fluctuations,

contain in principle all the information about two-point functions. However, this information

is encoded in the way the sub-leading (tilded) modes with depend on the (untilded) sources.

Such dependence, as we know, is fixed through the bulk boundary conditions and is typically

non-local, but this requires solving the full equations for the fluctuations inside the bulk,

which in this case are quite involved. Instead, in the following we will show what can be

extracted from the renormalized action (4.13) without solving the bulk equations.

4.2 Holographic Ward identities for symmetry breaking

in presence of charge density

A brief inspection of Sren (4.13) shows that again, as discussed in Section 3.1 after eq. (3.23),

there are two kinds of quadratic terms: those which are bilinears of a source and a vev, and

those which involve only sources, and latter would vanish for trivial profiles.

However, terms of the second kind are also hidden into terms of the first kind, because

of gauge invariance. Indeed, if we consider the bulk gauge invariance of the action (4.1), we

have δΦ = iαΦ and δAµ = ∂µα+ i
[
α, Aµ

]
, where, after the gauge fixing Aa

r = 0, the gauge

parameter α does not depend anymore on r . It is then easy to see how the residual gauge

transformations act on each mode in the expansions (4.12). Recalling further that we are only

interested in the quadratic part of the action, we neglect terms in the gauge variations which

are bilinear in the gauge parameter and the mode of the fluctuation. We are then left with:

δψ0 = 0 , δψ̃0 = iαa(T a)12φB ,

δφ0 = 0 , δφ̃0 = iαa(T a)22φB ,

δaa
0 = ∂tα

a , δãa
0 =− f ab3αb A3

B ,

δt a
i 0 = 0 , δt̃ a

i 0 = 0 ,

δl a
0 =αa , δl̃ a

0 = 0 .

(4.14)

By solving the bulk equations of motion for the fluctuations, the sub-leading modes would

be expressed in terms of non-local functions of the sources. However, in order to solve the

equations, we would have to impose boundary conditions in the bulk and, in order to preserve

the gauge symmetry, we should take care of imposing them on gauge-invariant combinations

of the fields. So, we have to consider only the gauge-invariant combinations of both sources

and vev’s, which are respectively

aa
0 −∂t l a

0 , (4.15)
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for the sources, and

ψ̃0 − iφB (T a)12l a
0 , φ̃0 − iφB (T a)22l a

0 , ãa
0 + A3

B f ab3l b
0 , (4.16)

for the vev’s.

We are now able to define the following relations between vev’s and sources:

ψ̃0 =iφB (T a)12l a
0 + fψ(∂)ψ0 + g a

ψ(∂)
(
aa

0 −∂t l a
0

)
,

φ̃0 =iφB (T a)22l a
0 + fφ(∂)φ0 + g a

φ(∂)
(
aa

0 −∂t l a
0

)
,

ãa
0 =− A3

B f ab3l b
0 + f ab

t (∂)
(
ab

0 −∂t l b
0

)+
+ g a

1 (∂)ψ0 + g a
1 (∂)∗ψ∗

0 + g a
2 (∂)φ0 + g a

2 (∂)∗φ∗
0 ,

t̃ a
i 0 = f ab

T (∂)t b
i 0 ,

where all the functions of ∂ collectively indicate expressions that are typically non-local in

space and/or time derivatives, and that cannot be determined without explicitly solving the

equations in the bulk. However, we will see that in some combinations of the correlators the

dependence on these unknown functions drops out.

First we rewrite Sren (4.13) using the expressions above, so that it becomes an expression

in terms of the sources only:

Sren =
∫

d3x
{
− A0

B a0
0 − A3

B a3
0 +2φB

(
φ0 +φ∗

0

)+ 1
2

t a
i 0 f ab

T (∂)t b
i 0 + (4.17)

− 1
2

(
aa

0 −∂t l a
0

)
f ab

t (∂)
(
ab

0 −∂t l b
0

)+ 1
2

A3
B f ab3(2aa

0 −∂t l a
0

)
l b

0 +

+ 1
2
ψ∗

0

(
fψ(∂)+ fψ(∂)∗

)
ψ0 + 1

2
φ∗

0

(
fφ(∂)+ fφ(∂)∗

)
φ0 +

− iφB l a
0

[
(T a)21ψ0 − (T a)12ψ

∗
0 + (T a)22

(
φ0 −φ∗

0

)]+
+ 1

2

[
ψ∗

0

(
g a
ψ(∂)+ g a

1 (∂)∗
)+ψ0

(
g a
ψ(∂)∗+ g a

1 (∂)
)](

aa
0 −∂t l a

0

)+
+ 1

2

[
φ∗

0

(
g a
φ(∂)+ g a

2 (∂)∗)+φ0

(
g a
φ(∂)∗+ g a

2 (∂)
)](

aa
0 −∂t l a

0

) }
.

This is the generating functional for the one- and two-point functions in our theory.3 The

precise relations between sources of operators in the boundary theory and modes of bulk

fluctuations are the following. For the scalar operators we have∫
∂AdS

d3x
(
ψ0Oψ+φ0Oφ+ c.c.

)
, (4.18)

while for the currents ∫
∂AdS

d3x
(
−aa

0 J a
t + t a

i 0 J Ta
i − l a

0 ∂i J a
i

)
, (4.19)

3Note that the scheme-ambiguity, which would arise from possible logarithmic terms in higher dimensions,
would be contained in the possibility to redefine the non-local functions in the above expression. However, the
Ward identity structure (4.20–4.23) is independent of such non-local functions.
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so that t a
i 0 sources the purely transverse part of J a

i , while l a
0 its longitudinal piece.

Some two-point functions will be entirely determined by their non-local part, for instance

those with two transverse currents or two scalar operators, and we will have nothing to say

about them, since we do not solve the bulk equations. On the other hand, we see from the

final expression of our generating functional (4.17) that some other two-point functions might

be directly determined by our analysis. It should be the case for two-point functions involving

the temporal and longitudinal components of the currents, both among themselves or mixed

with scalar operators. Indeed, local constant terms involving the sources of these operators

appear in (4.17).

Let us list here a number of such correlators:

〈
J a

t (x)J b
t (y)

〉
0 =−i

δ2 Sren

δaa
0 (x)δab

0 (y)
= i f ab

t (∂)δ(x − y) ,

〈
∂i J b

i (x)J a
t (y)

〉
0 =−i

δ2 Sren

δl b
0 (x)δaa

0 (y)
= i

(
f ab

t (∂)∂t − A3
B f ab3

)
δ(x − y) ,

〈
∂i J a

i (x)∂ j J b
j (y)

〉
0 =−i

δ2 Sren

δl a
0 (x)δl b

0 (y)
=−i

(
f ab

t (∂)∂2
t − A3

B f ab3∂t

)
δ(x − y) ,

〈
J a

t (x)Oψ(y)
〉

0 =+i
δ2 Sren

δaa
0 (x)δψ0(y)

= i
2

(
g a
ψ(∂)∗+ g a

1 (∂)
)
δ(x − y) ,

〈
∂i J a

i (x)Oψ(y)
〉

0 =+i
δ2 Sren

δl a
0 (x)δψ0(y)

=

= i
2

[(
g a
ψ(∂)∗+ g a

1 (∂)
)
∂t +2iφB (T a)21

]
δ(x − y) ,

〈
J a

t (x)Oφ(y)
〉

0 =+i
δ2 Sren

δaa
0 (x)δφ0(y)

= i
2

(
g a
φ(∂)∗+ g a

2 (∂)
)
δ(x − y) ,

〈
∂i J a

i (x)Oφ(y)
〉

0 =+i
δ2 Sren

δl a
0 (x)δφ0(y)

=

= i
2

[(
g a
φ(∂)∗+ g a

2 (∂)
)
∂t +2iφB (T a)22

]
δ(x − y) .

Then, we immediately see that some combinations are given entirely by the constant terms, or

trivially vanish:

−〈
∂t J a

t (x)J b
t (y)

〉
0 +

〈
∂i J a

i (x)J b
t (y)

〉
0 =−i A3

B f ab3 δ(x − y) , (4.20)

−〈
∂t J a

t (x)∂i J b
i (y)

〉
0 +

〈
∂i J a

i (x)∂i J b
i (y)

〉
0 = 0 , (4.21)

−〈
∂t J a

t (x)Oψ(y)
〉

0 +
〈
∂i J a

i (x)Oψ(y)
〉

0 =−φB (T a)21 δ(x − y) , (4.22)

−〈
∂t J a

t (x)Oφ(y)
〉

0 +
〈
∂i J a

i (x)Oφ(y)
〉

0 =−φB (T a)22 δ(x − y) . (4.23)

These are of course nothing else than the Ward identities relating the two-point functions of

currents associated to broken generators, to the vev’s of the operators that break the symmetry.

In particular, the relations (4.22) and (4.23) are the usual identities for spontaneous symmetry

breaking, which are identical to the relativistic one (3.32).
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Of more interest is the identity (4.20), analogous to the (1.74), derived in the field theoret-

ical model of Section 1.3.1.1, which is non-trivial due to the fact that we allow the temporal

component of a current (J 3
µ here) to have a non-zero vev. We assume that this Lorentz violating

vev is permitted by the presence of a chemical potential, though in our holographic set-up

this is not technically necessary (indeed µ does not explicitly appear anywhere in the above

expressions). In addition, note that the identity (4.21) is consistently trivial since the spatial

(longitudinal) components of the same current cannot get a vev in our setup, otherwise the

invariance under spatial rotations would be violated.

The above Ward identities imply the presence of Goldstone bosons, i.e. of gapless modes

in the spectrum. More precisely, we see that in order to satisfy the identities (4.20)–(4.23),

the Fourier transformed correlators
〈

J a
t J b

t

〉
0(ω,ki ),

〈
J a

t Oψ

〉
0(ω,ki ), and similar ones, must be

singular when the energy ω and the momentum ki go to zero. Indeed, in Fourier space (4.20)

reads

−iω
〈

J a
t J b

t

〉
0 + i ki

〈
J a

i J b
t

〉
0 =−i A3

B f ab3 . (4.24)

We thus deduce the presence of massless poles in all of these correlators. This additional Ward

identity, which defines type B Goldstone bosons [11], requires the dispersion relation to be

quadratic [9], with the following argument.

In the Lorentz invariant case, the dispersion relation of a Goldstone boson is trivially

determined from a Ward identity similar to (4.22) and (4.23), giving

〈
Ji O

〉
0 ∝

ki

ω2 −k2
i

. (4.25)

In lack of Lorentz invariance, we have to consider two different situations, one in which time-

reversal invariance is preserved and one in which it is broken. When it is preserved, for small

values of ω and ki we can admit:

〈
Jt O

〉
0 '

T̃ω

ω2 − c2
s k2

i

,
〈

Ji O
〉

0 '
Ũ ki

ω2 − c2
s k2

i

, (4.26)

while when it is broken, we can have

〈
Jt O

〉
0 '

T̄

Mω−k2
i

,
〈

Ji O
〉

0 '
Ũ ki

Mω−k2
i

, (4.27)

where T̄ , T̃ , Ũ , cs and M are constants. Note now that (4.24) breaks time-reversal invariance

for the currents J 1
i and J 2

i , and actually requires T̄ 6=0 as it was proved in [9]. This implies that

(4.20) and (4.22) lead to quadratic dispersion relations, ω' k2
i

M with M ≡ T̄ /φB . On the other

hand for the Goldstone boson contributing to (4.23), which is of type A [11], the time-reversal

invariance is still preserved and the dispersion relation is linear (assuming Ũ has a finite limit

for vanishing momentum), but with velocity depending on the ratio Ũ /T̃ ≡ c2
s .

We stress once more that in order to obtain quantitative results on all these dispersion
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relations, we should determine the non-local functions that we have left unspecified in (4.17).

The poles in these functions would give us the dispersion relations of the massless modes,

together with all the rest of the massive spectrum. In order to do that, we would need first to

have a background which is reliable down to the deep bulk. Performing the back-reaction,

also on the metric, would then be necessary. One should be warned though that in the present

zero-temperature set-up, that would most inevitably lead to a singular geometry. That should

however not prevent us from imposing boundary conditions in the form of boundedness of

the fluctuations. Any other stratagem to avoid the singularity would introduce a new scale

to the problem, as for instance a finite temperature. That has been carried out by numerical

methods in [98], where however the back-reaction is not studied, thus limiting the analysis to

situations where the temperature and the chemical potential are roughly at the same scale.

Without specifying the unknown non-local functions f ab
t (∂), f a

ψ (∂), f a
φ (∂), etc, we cannot

go further and, for instance, find the exact expression for T̄ , T̃ , Ũ for all the massless (and

light) excitations. In the present model this is of course in principle possible, but would imply

solving the equations of motion for the fluctuations in the bulk. This in turn would necessitate

to find the back-reacted geometry. The point in this chapter was to exploit up to its limits the

technique of holographic renormalization, i.e. to extract the maximal information about the

system purely from boundary considerations.
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5 Conserved currents and symmetry

breaking in Lifshitz holography

In this chapter we will review holographic renormalization and two-point functions for con-

served current and scalar operators on Lifshitz invariant backgrounds, so setting the premises

to study symmetry breaking and Ward identities in Lifshitz holography.

Our goal is to discuss symmetry breaking and Goldstone bosons in theories which enjoy

Lifshitz scaling invariance, rather than relativistic or even conformal invariance. Low-energy

effective theories for such Goldstone bosons were considered for instance in [24–27]. If one is

interested in seeing how such Goldstone bosons arise in strongly coupled theories, the natural

answer is to turn to large N field theories and their holographic description. Holography for

theories with a Lifshitz scaling has been initiated in [16, 17] (see [19] for a recent review). Some

other relevant references are [18, 100–108].

We will be concerned with the breaking of a global symmetry which commutes with the

space-time symmetries of the theory. This entails as usual the presence of a conserved current

(i.e. a charge density and a spatial current related by a conservation equation), independent

from the energy-momentum complex. Holographically, this means that we will have to deal

with a bulk massless vector in a fixed Lifshitz background. In particular, the non-relativistic

form of the latter is typically generated with the help of a massive bulk vector which acquires a

profile. We will not consider the dynamics neither of the metric nor of this massive vector field,

but we will make use of the background massive vector field in order to write more general

bulk actions for the scalar and the massless vector.

Since in order to discuss symmetry breaking, we need to consider the coupled system of

a vector and a scalar, we will need to first make sure we understand how Lifshitz holography

works for a massless vector and a scalar separately, and what are the different options in

the holographic description. Indeed, having less constraints with respect to, i.e., conformal

symmetry, we expect a larger diversity of field theory outcomes from holography, depending

on choices that one makes in the bulk theory.
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We have briefly discussed basic examples of Lifshitz invariant field theories in Sec-

tion 1.3.2. We recall here the defining transformations (1.75) of Lifshitz scaling invariance,

t −→ λz t ,

xi −→ λxi .

Whenever z 6= 1, such scaling transformations are not compatible with Lorentz symmetry, and

they constitute non-relativistic scale transformations. We will always assume that z ≥ 1. If we

add to Lifshitz scaling (1.75) time and space translations as well as spatial rotations, we obtain

what is called the Lifshitz symmetry group.

A d +2-dimensional Lifshitz invariant metric with SO(d) rotational symmetries is unique

and takes the following form

d s2 = dr 2

r 2 − d t 2

r 2z +
∑

i d x2
i

r 2 . (5.1)

It can be shown that such a metric for z 6= 1 is a solution of a suitably chosen theory of Einstein

gravity with a negative cosmological constant and a massive vector field [17] that we will

denote as B and that is given by

B =βdt
r z , with β≡

√
2(z −1)

z
. (5.2)

For z = 1 we recover the standard AdS metric in Poincaré coordinates that has relativistic scale

invariance. The spatial coordinate r will be our holographic coordinate that is zero at the

boundary and that tends to infinity in the bulk.

In the following we will consider the metric (5.1) and the massive vector (5.2) as fixed,

non-dynamical background quantities, and we will study the holographic renormalization

and boundary two-point functions of operators dual to fields on a fixed Lifshitz bulk geometry.

We start reviewing the properties of a scalar field on a Lifshitz background.

5.1 Two-point functions for Lifshitz scalars

The basic setup of a free scalar field in a Lifshitz spacetime has of course been considered

previously in the literature [16, 17, 19]. This simple case in fact already displays some peculiar

features with respect to the AdS version, namely the appearance of imaginary poles in the

two-point function. These diffusive poles at zero temperature are a characteristic feature in

holographic Lifshitz theories, and they will appear also in the vector sector as we will show in

the next section.

Let us consider the (d+1)-dimensional bulk Klein-Gordon action for a complex scalar

field

S =
∫

dd+1x
√−g

(
− gµν∂µφ

∗∂νφ−m2φ∗φ
)

, (5.3)
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5.1. Two-point functions for Lifshitz scalars

where g is the Lifshitz metric, as defined by (5.1). We allow for arbitrary values of the bulk

mass m, but for simplicity, we do not consider higher order potential terms.

From the variation of this action, we obtain the equation of motion

r∂r (r∂rφ)− (d + z −1)r∂rφ− r 2z∂2
tφ+ r 2∂2

i φ−m2φ= 0 , (5.4)

where ∂2
i implies a sum over the d−1 values of i . This equation has two independent solutions,

with the following near boundary asymptotics (r = 0):

φ= r
d̃
2 −ν (

φ0 + . . .
)+ r

d̃
2 +ν (

φ̃0 + . . .
)

, with


d̃ = d + z −1 ,

ν=
√

d̃
2

4
+m2 .

(5.5)

When ν= 0 we have a Lifshitz version of the BF (Breitenlohner-Freedman) bound [71] on the

bulk mass of the scalar, with an ‘effective’ dimension d̃ , obtained by adding the dynamical

critical exponent z to the number of spatial boundary dimensions d −1 (that is, counting the

time dimension z times). From now on, in order to avoid technical difficulties related to the

renormalization procedure, we will take 0 < ν< 1.

Using the equation of motion (5.4) we can put the action (5.3) on-shell, and reduce it to a

boundary term,

Son-shell =
1

2

∫
dd+1x ∂r

[
− r−d̃ (

φ∗ r∂rφ+φr∂rφ
∗)]

(5.6)

=
∫

r=ε
ddx

[(
d̃
2
−ν

)
r−2νφ∗

0φ0 + d̃
2

(
φ0φ̃

∗
0 +φ∗

0 φ̃0

)]
,

where in the second line we have used the asymptotic expansion (5.5), and, since we have a

term diverging at the boundary r =0, kept a small ε as a regulator. We can renormalize such a

divergence through a standard mass counterterm

Sct =
(

d̃
2
−ν

)∫
r=ε

ddx
√−ĝ φ∗φ , (5.7)

where ĝ is the induced metric on the boundary, thus obtaining

Sren = Son-shell −Sct = ν
∫

ddx
(
φ0φ̃

∗
0 +φ∗

0 φ̃0

)
. (5.8)

A full solution to the equation of motion (5.4) would relate the subleading φ̃0 to the leading φ0

through a non-local function, i.e. φ̃0 = fφ(∂t ,∂2
i )φ0, which we assume real. Then we can write

the formula for the two-point correlator of the dual boundary operator Oφ:

〈
Oφ(x)O∗

φ(x ′)
〉

0 =−i
δ2 Sren

δφ0(x)δφ∗
0 (x ′)

=−i 2ν fφ(∂t ,∂2
i ) δ(x −x ′) . (5.9)
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Chapter 5. Symmetry breaking in Lifshitz holography

The equation of motion (5.4) can be analytically solved for z = 2. Writing

φ(r, t , x) = e−iωt+i~k·~xφ(r,ω,ki ) (5.10)

we find for the Fourier modes

r∂r (r∂rφ)− (d +1)r∂rφ− (
m2 +k2

i r 2 −ω2r 4)φ= 0 . (5.11)

The solution is given in terms of confluent hypergeometric functions, of the first kind, M, and

of the second kind, U:

φ(r,ω,k2
i ) = e

i
2ωr 2

r
d+1

2 +ν
(
C1U

[
a,1+ν;−iωr 2]+C2M

[
a,1+ν;−iωr 2]) , (5.12)

with a = 1

2

(
1+ν+ i k2

i

2ω

)
. (5.13)

In order for the solution to be of in-falling type1 at the Lifshitz horizon (r →∞), we need to

set C2 = 0. Indeed the function M
[
a,1+ν;−iωr 2

]
for large argument goes as e−iωr 2

, thus

introducing an outgoing wave. Note that the Fourier mode in (5.12), when C2 is set to zero,

decays in the deep bulk for Imω>0. Wick-rotating to Euclidean signature, this corresponds to

requiring regularity in the deep bulk.

From the expansion of U[a,b; x] around x=0,

U[a,b; x] = Γ[1−b]
Γ[a −b +1]

+·· ·+x1−b Γ[b −1]
Γ[a]

+ . . . , (5.14)

we can read off the coefficient of the leading term, going as r
d+1

2 −ν, which is φ0, and the

coefficient of the subleading term, going as r
d+1

2 +ν, which is φ̃0. Then from the formula (5.9)

we obtain the two-point function of the dual scalar operator with Lifshitz scaling z = 2:

〈
Oφ(k)O∗

φ(−k)
〉

0 =−i 2ν fφ(ω,k2
i ) =−i 2ν

φ̃0

φ0

= 2i (−iω)ν
Γ[1−ν]

Γ[ν]

Γ
[

1
2

(
1+ν+ i k2

i
2ω

)]
Γ
[

1
2

(
1−ν+ i k2

i
2ω

)] . (5.15)

We first remark the branch-cut starting at ω= 0. Then, the Euler gamma function Γ has

poles at negative integer values of its argument and 1/Γ is an entire function, so we find that

the poles of the correlator are given by

ω= −i k2

2(2n +1+ν)
, with n ∈N . (5.16)

1Note that we use here the prescription of [109]. A more rigorous derivation of the analytic structure of the
time-ordered Minkowski correlator should be recovered by accurately performing real-time holography [68, 69].
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5.1. Two-point functions for Lifshitz scalars

We thus see that these poles all lie on the negative imaginary axis.2 In fact the locations of the

poles accumulate as one approaches the origin along the negative imaginary axis. One may

expect this behavior to be a consequence of the singularity at r =∞ where for z>1 Lifshitz

spacetimes display diverging tidal forces [16]. In other words Lifshitz spacetimes with z>1 are,

contrary to AdS, geodesically incomplete. In the next section, we will use “hard wall” boundary

conditions to cut-out the singularity at r =∞, in order to see what happens to the imaginary

poles. For other considerations on the appearance of imaginary poles in Lifshitz holography,

together with a field theoretic perspective on the issue, see [101, 110, 111].

5.1.1 The hard wall solution for Lifshitz Klein-Gordon scalar

We want to see how the two-point function, and its poles, change if we break the Lifshitz scale

invariance setting a hard wall in the IR, i.e. deep in the bulk. We consider exactly the same

bulk action (5.3) as in the previous section, so we have the same solution of the equation of

motion (5.12) for z = 2. But now we impose a different IR regularity condition, namely that the

field vanishes3 in the bulk on a surface at r =µ−1. This yields

φHW (µ−1,ω,k2
i ) ≡ 0 ⇔ C2 =−C1

U
[

a,1+ν;− iω
µ2

]
M

[
a,1+ν;− iω

µ2

] , (5.17)

with the expression for a already given in (5.13), so that the hard wall solution reads

φHW (µ−1,ω,k2
i ) = (5.18)

=C1 e
i
2ωr 2

r
d+1

2 +ν
(
U

[
a,1+ν;−iωr 2]− U

[
a,1+ν;− iω

µ2

]
M

[
a,1+ν;− iω

µ2

] M[
a,1+ν;−iωr 2]) ,

and φHW ≡ 0 for r >µ−1.

In order to determine the two-point correlator, we consider the terms ∝ r
d+1

2 −ν and

∝r
d+1

2 +ν in the series expansion of the solution φHW around r =0. Using the near boundary

expansion (5.14) for the confluent hypergeometric function of the second kind U
[
a,b; x

]
, also

2We notice that the imaginary poles are symmetric under ω→−ω∗, that is the equivalent condition in the
complex ω plane to time-reversal invariance, which is indeed a symmetry of Lifshitz Klein-Gordon equation (5.11).
The branch-cut in (5.15) may also be taken to be symmetric under ω→−ω∗, i.e. lying along the upper imaginary
axis.

3This IR boundary condition might seem closer in spirit to the ones used after a Euclidean rotation. However as
we have noted, IR vanishing and in-falling boundary conditions coincide when going to the upper half ω plane.
See also [106] for a similar situation.
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Chapter 5. Symmetry breaking in Lifshitz holography

known as the Tricomi function, and recalling that M[a,b; x]=1+O(x) for small x, we find

φHW
0 =C1 (−iω)−ν

Γ[ν]

Γ[a]
,

φ̃HW
0 =C1

(
Γ[−ν]

Γ[a −ν]
− U

[
a,1+ν; −µ−2iω

]
M

[
a,1+ν; −µ−2iω

])
.

(5.19)

The correlator of the dual scalar operator, following formula (5.9), is then given by

〈
OφO∗

φ

〉HW
0 =−i 2ν

φ̃HW
0

φHW
0

=−i 2ν (−iω)ν
Γ[a]

Γ[ν]

(
Γ[−ν]

Γ[a −ν]
− U

[
a,1+ν; −µ−2iω

]
M

[
a,1+ν; −µ−2iω

])

= i 2νµ2ν M
[
a −ν,1−ν; −µ−2iω

]
M

[
a,1+ν; −µ−2iω

] , (5.20)

where in the second line we have used the expression of the Tricomi function as a combination

of confluent hypergeometric functions, that is

U[a,b; x] = Γ[1−b]
Γ[a +1−b]

M[a,b; x]+x1−b Γ[b −1]
Γ[a]

M[a +1−b,2−b; x] .

Notice that this simplification precisely removes the branch cut on the real axis which was

present in the pure Lifshitz correlator (5.15).

Note that a depends on ω so that the frequency dependence of M[a,b; x] is through both

a and x. Since the confluent hypergeometric function has no poles, the poles of the hard-wall

correlator are determined by the zeros of M. Since zeros of analytic functions lie isolated we

obtain a discrete spectrum as shown in the numerical plot in Fig. 5.1, for the case of poles that

lie on the real-ω axis. The zeros of M do not have a simple analytic expression and are hard to

find even numerically. The numerical plot in Fig. 5.2 shows that the correlator (5.20) has no

poles that lie exactly on the imaginary axis, as in the pure Lifshitz case (5.16), but it should

have poles that lie off the real and imaginary axes, in the complex plane, that in the µ→ 0 limit

(no hard wall) align on the imaginary axis, at the locations of (5.16).

Indeed, the limit of the correlator (5.20) for µ→0 correctly gives the expression for the

scalar correlator in the absence of the hard wall (5.15), provided we approach the origin from

the half-plane where Imω>0 (in agreement with the choice we made below (5.13)). In fact,

from the first line of (5.20), one can see that the correlator of the hard wall scalar is written

in terms of the correlator of the pure Klein-Gordon scalar, plus a piece proportional to U/M.

In the limit µ→0, so large third argument, we have U[a,b; x] ∝ xa , while M[a,b; x]∝ ex , with

x≡−µ−2iω. So, for Imω>0, the U/M piece is exponentially (and non-analytically) suppressed

as we push the hard wall into the deep bulk, eventually recovering the pure Klein-Gordon

expression in the strict µ=0 limit.
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i 〈OφO∗
φ〉HW

- 0.003 - 0.002 - 0.001 0.001 0.002 0.0030

ω

Figure 5.1. Plot of the hard-wall correlator for real values of ω, at fixed µ = 0.01, ν = 1
4 ,

k2
i = 0.001.

5.1.2 Two-point function for a general scalar

We discuss here a modification of the Klein-Gordon scalar bulk action (5.3), by allowing

couplings to the background massive vector field (5.2). This will allow for a time-reversal

breaking kinetic term inspired by [107], which yields a more general model for a non-relativistic

probe scalar, including a case with enhanced z = 2 Schrödinger symmetry.

The background massive vector is given by equation (5.2). Note that since BµBµ=−β2

we can define the metric orthogonal to Bµ as

γµν = gµν+β−2BµBν . (5.21)

i 〈OφO∗
φ
〉HW

- 1 ´ 106 - 500 000 500 000 1 ´ 106

50

100

150

200

250

−iω

i 〈OφO∗
φ
〉HW

- 0.010 - 0.005 0.000 0.005 0.010

0.5

1.0

1.5

2.0

2.5

3.0

−iω

Figure 5.2. Plot of the hard-wall correlator for purely imaginary values of ω, at fixed µ= 0.01,
ν= 1

4 , k2
i = 0.001. The second plot is a zoom close to the origin of the first plot.
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Chapter 5. Symmetry breaking in Lifshitz holography

We will denote by γµν the above projector with its indices raised with gµν.

Taking into account the fact that Bµ, being massive, has no gauge invariance, the most

general bulk action for a complex scalar is the following:

S =
∫

dd+1x
√−g

[
1

c2β2 Bµ∂µφ
∗Bν∂νφ− i h

2β
Bµ

(
φ∗∂µφ−φ∂µφ∗)+

−γµν∂µφ∗∂νφ−m2φ∗φ
]

, (5.22)

where c and h are real numbers. Note that in order to have the second term, with the h

coefficient, we need a complex scalar for otherwise any term linear in Bµ∂µ would be a total

derivative. The contribution of the second kinetic term with coefficient h to the kinetic energy

is positive for positive frequency modes provided we take h to be positive. We will therefore

assume throughout that h ≥ 0. We recover the Lifshitz Klein-Gordon case of the previous two

subsections for h = 0 and c = 1, whereas the Schrödinger invariant case is recovered for c =∞
as we will see later.

Since Bµ has no radial component, the terms involving Bµ in (5.22) do not contribute

to the on-shell boundary action, which is thus the same as in (5.6). Thus, in our case, with

0 < ν< 1, the counterterm (5.7) removes the only divergence, so that the renormalized action

is again given by (5.8). Therefore, the two-point function is given by (5.9), where the unknown

non-local function is now obtained by solving the equation of motion resulting from the

variation of the generalized action (5.22), which is

r∂r (r∂rφ)− d̃ r∂rφ+ r 2∂2
i φ− c−2r 2z∂2

tφ+ i h r z∂tφ−m2φ= 0 . (5.23)

In order to find analytical results, once again we specialize to z = 2. The above equation,

after Fourier transforming, is identical to the Lifshitz Klein-Gordon equation (5.11), with ω

replaced by ω/c and k2
i replaced by k̃2

i = k2
i +hω:

r∂r (r∂rφ)− (d +1)r∂rφ+ ω2

c2 r 4φ− k̃ 2
i r 2φ−m2φ= 0 . (5.24)

For c →∞ this equation is identical to that of a complex scalar on a Schrödinger spacetime

with z = 2 [15] and hence possesses z = 2 Schrödinger invariance (see also [107]).4 The

solution, again picking the in-falling part as r →∞, is given by

φ(r,ω,k2
i ) =C e

iω
2c r 2

r
d+1

2 +ν U
[

ã,1+ν;− iω

c
r 2

]
, (5.25)

with ã = 1

2

(
1+ν+ i ck̃2

i

2ω

)
. (5.26)

From the expansion of this solution near r = 0, we again extract the source and the VEV

4We note however that this is no longer true for other values of z, i.e. a complex scalar field on a Schrödinger
spacetime with z 6= 2 satisfies a different equation than we would find here for z 6= 2 and c →∞.
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for φ, from which we then derive an expression similar to (5.15). This results in the following

boundary two-point correlator of the operator dual to our more general scalar:

〈
Oφ(k)O∗

φ(−k)
〉

0 = 2i
(
− iω

c

)ν Γ[1−ν]

Γ[ν]

Γ
[

1
2

(
1+ν+ i c

2ω (k2
i −hω)

)]
Γ
[

1
2

(
1−ν+ i c

2ω (k2
i −hω)

)] . (5.27)

This expression matches the pure Klein-Gordon correlator (5.15) for h = 0 and c = 1. Let

us however see how the analytic structure is changed by h > 0, and what happens in the

Schrödinger limit c→∞.

The poles of the correlator are situated where the argument of the Gamma function in

the numerator is a negative integer. In the complex ω-plane, these are located at

ω= i k2
i

2
c

(
2n +1+ν)− i h

, with n ∈N . (5.28)

We can see immediately that for h=0 and c=1 we retrieve the same poles as in the Lifshitz

Klein-Gordon case (5.16). For c À1, instead, the imaginary part of the poles for small n is

very small, and so they lie close to the negative real axis (since h is taken to be positive). Note

that time-reversal invariance is violated, as a consequence of the time-reversal breaking term

proportional to h in the equation of motion (5.23). In the strict c →∞ limit the structure of

the zeros and poles of the correlator changes in a non-trivial manner as we will show next.

We can assume that in the Schrödinger c →∞ limit, i c k̃2

4iω →∞, so that we can use Stirling’s

formula, valid for x →∞,

Γ(x) ' e(x− 1
2 ) log x−x+ 1

2 log2π , (5.29)

which implies
Γ(x +a)

Γ(x +b)
' xa−b . (5.30)

We thus get, 〈
Oφ(k)O∗

φ(−k)
〉

0 = 2i
Γ[1−ν]

Γ[ν]

(
k2

i −hω

4

)ν
, (5.31)

which agrees with [15]. Note that for c=∞ the equation (5.24) reduces to a Bessel equation,

as for a relativistic scalar in AdS. Hence the correlator is similar to the one in the conformal

case, where however the Lorentz invariant q2 = k2 −ω2 is replaced by the Lifshitz covariant

combination k2 −hω. There is a branch cut which we choose to be placed at those points for

which the argument of the fractional power 0 < ν< 1 is negative, that is for real and positive

ω≥ k2

h .

Before concluding our discussion of complex scalar probes on Lifshitz spacetimes, we

consider one final case: c =∞ and z=4. We saw that for c =∞ and z = 2 we obtain the case of

a Schrödinger scalar. In the same limit but with z = 4 we do not see a symmetry enhancement

but we do find an example where we have analytic control of the solution. Since this is rare for

values of z different from 2 we pause here to study this special case in some detail.
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Consider equation (5.23) with c→∞ and z=4. We obtain, for the Fourier transformed

field,

r∂r (r∂rφ)− d̃ r∂rφ− (
m2 +k2

i r 2 −hωr 4)φ= 0 , (5.32)

which is again an equation of the confluent hypergeometric kind. Imposing the usual in-falling

boundary conditions, we obtain the following solution:

φ(r,ω,k) =C e i 1
2

p
hωr 2

r
d+3

2 +ν U
[

â,1+ν;−i
p

hωr 2
]

, (5.33)

with â = 1

2

(
1+ν+ i k2

i

2
p

hω

)
. (5.34)

Repeating the procedure that allowed us to derive the correlator (5.15), we can write the

two-point function for this z=4 scalar as:

〈
Oφ(k)O∗

φ(−k)
〉= 2i

(
−i

p
hω

)ν Γ[1−ν]

Γ[ν]

Γ
[

1
2

(
1+ν+ i k2

2
p

hω

)]
Γ
[

1
2

(
1−ν+ i k2

2
p

hω

)] . (5.35)

This correlator exhibits a branch cut, as well as poles on the negative real axis located at

ω=− k4

4h(2n +1+ν)2 , with n ∈N . (5.36)

It is not straightforward to come with an interpretation of the modes associated with these

poles, besides the obvious fact that the dispersion relations respect the z = 4 Schrödinger

scaling, and that they violate time-reversal invariance, as expected.

5.2 Lifshitz holography for a massless vector

We now discuss conserved currents in a Lifshitz theory, that holographically correspond to

massless vectors in the bulk. This is a set up that has received surprisingly little attention

(see [112] for a rather different set up, at finite density). As we will see, the correlators that

we will be able to compute analytically display very similar features to the case of the Klein-

Gordon scalar.

We consider from the outset the most general bulk action for a massless vector in a fixed

Lifshitz background,

S =−1

4

∫
dd+1x

√−g γµν
(
γρσ− 2κ

β2 BρBσ
)
FµρFνσ , (5.37)

where Bµ and γµν are defined in (5.2) and (5.21), and κ≥ 0 is a parameter which generalizes

the action for the massless vector (by putting κ to one, we recover the Maxwell action for a

free massless vector).

102



5.2. Lifshitz holography for a massless vector

Using bulk gauge invariance δAµ = ∂µα, we can fix the radial component to vanish: Ar = 0.

Hence, the residual gauge transformations will only depend on the boundary coordinates t , xi .

The equations of motion obtained by varying (5.37) with respect to Ar , At , and Ai respectively

are

κr 2z ∂r∂t At − r 2∂r∂i Ai = 0 ,

r d−z∂r

(
r−d+z+2∂r At

)+ r 2(∂i∂i At −∂t∂i Ai

)= 0 ,

r d+z−2∂r

(
r−d−z+4∂r Ai

)−κr 2z(∂2
t Ai −∂i∂t At

)+ r 2(∂ j∂ j Ai −∂i∂ j A j

)= 0 .

We will split the vector Ai into a transverse and a longitudinal part5:

Ai = Ti +∂i L , with ∂i Ti = 0 . (5.38)

Under the residual gauge transformations, we have δTi = 0, δL = α, and δAt = ∂tα. The

splitting leads to the following four equations:

κr 2z ∂r∂t At − r 2∂r∂i∂i L = 0 , (5.39)

r d−z∂r

(
r−d+z+2∂r At

)+ r 2∂2
i

(
At −∂t L

)= 0 , (5.40)

r d+z−2∂r

(
r−d−z+4∂r∂i L

)+κr 2z ∂i∂t

(
At −∂t L

)= 0 , (5.41)

r d+z−2∂r

(
r−d−z+4∂r Ti

)−κr 2z ∂2
t Ti + r 2∂2

j Ti = 0 . (5.42)

Every term in the equations above is gauge invariant.

Starting from (5.37), we now compute the renormalized action. The first step is to reduce

the bulk action to a boundary action, using the equations of motion:

S =
∫

dd+1x r−d−z 1

2

[
κr 2+2z Fr t Fr t − r 4Fr i Fr i

]∣∣∣∣
on-shell

(5.43)

=−
∫

r=ε
ddx

1

2

[
κr−d+z+2 At∂r At − r−d−z+4 Ai∂r Ai

]
. (5.44)

We now use the split (5.38) and the constraint (5.39) to obtain

Sreg =−1

2

∫
r=ε

ddx
[
κr−d+z+2(At −∂t L

)
∂r At − r−d−z+4Ti∂r Ti

]
. (5.45)

All terms in the expression above are manifestly gauge invariant.

The next step is to see if there are any divergent terms, and if so, to add the appropriate

counterterms to cancel the divergences. This procedure depends on the specific values of d

and z, nonetheless we are going to sketch it assuming those values are generic enough.

Let us first consider the timelike/longitudinal part. The purely radial solutions of the

5Note that insisting on a transverse splitting over all boundary coordinates would be very inconvenient here
(contrarily to the case of the previous chapter, where it is eventually equivalent), since ∂m Am =−r 2z∂t At +r 2∂i Ai ,
i.e. the r -dependence does not factorize.
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equations of motion (5.39)–(5.41) are respectively At ∝ 1, r d−z−1 and L ∝ 1, r d+z−3. Hence,

from the equations of motion and assuming z ≥ 1, we expand At and L as

At = a0 +a1r 2 + . . . + ã0r d−z−1 + . . . (5.46)

L = l0 + l1r 2z + . . . + l̃0r d+z−3 + . . . (5.47)

where all coefficients depend on the boundary coordinates t , xi and where we included the

first order corrections with the coefficients a1 and l1 as well. Under the residual gauge trans-

formations we have that δa0 = ∂tα and δl0 =α. To avoid complications (i.e. logarithmic terms

and/or alternative quantization, as for instance in [III]), we assume d − z −1 > 0 (equivalently

d̃ > 2z), which since z ≥ 1 also implies d + z −3 > 0. Let us notice that the constraint (5.39)

imposes

∂t a1 =
z

κ
∂2

i l1 , κ (d − z −1)∂t ã0 = (d + z −3)∂2
i l̃0 . (5.48)

and that (5.40) and (5.41) imply

a1 =
∂2

i

(
a0 −∂t l0

)
2(d − z −3)

, ∂i l1 =
κ

z

∂t∂i

(
a0 −∂t l0

)
2(d − z −3)

. (5.49)

The regularized action is

S(t/L)
reg =−κ

∫
r=ε

ddx
[

r−d+z+3(a0 −∂t l0

)
a1 + . . . + 1

2
(d − z −1)

(
a0 −∂t l0

)
ã0

]
. (5.50)

where the superscript t/L means that we ignore the second T i dependent term in (5.45). The

first term is divergent if d−z > 3. In that case, the dots represent other possibly (less) divergent

terms. We note that if d − z = 3, there would have been log-divergences that would have to be

taken care of. The last term is finite and is the only one involving ã0 as all other terms with ã0

vanish as r → 0.

If the first term diverges, we have to add a proper local, gauge invariant counterterm,

which in this case is

S(t/L)
ct =−

∫
r=ε

ddx
√−ĝ

[
κ

2(d − z −3)
Ft i F t i

]
, (5.51)

where ĝ is the induced metric on the boundary. Using the expression for a1 given in equation

(5.49) we obtain the ‘renormalized’ action for this sector:

S t/L
ren = S t/L

reg −S t/L
ct =−κ

∫
r=ε

d d x

[
1

2
(d − z −1)

(
a0 −∂t l0

)
ã0 +

+ r−d+z+3

2(d − z −3)
∂t Ti∂t Ti

]
.

(5.52)

We observe that our counterterm succeeds in suppressing the divergent terms in the time-

like/longitudinal sector without adding finite terms, but that it leads to an additional term

in the transverse sector. This term is divergent, but, as we will see in a moment, it will be
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canceled by the counterterm in the transverse sector.

So, let us concentrate on the transverse sector. The boundary behaviors of the solutions

of the equation of motion (5.42) are Ti ∝ 1, r d+z−3. By using (5.42), Ti can be expanded near

the boundary as

Ti = t0 + r 2 t1 + . . . + r 2z tz + . . . + r d+z−3 t̃0 + . . . , (5.53)

where we are omitting the i -index on the coefficients and where we have

t1 =
1

2(d + z −5)
∂2

i t0 , tz =− κ
2z(d − z −3)

∂2
t t0 . (5.54)

Again, as a matter of simplicity (no logarithmic terms), we will consider d +z−3 6= 0, 2, 2z. The

boundary action is then

ST
on-shell =

∫
r=ε

d d x
[

r−d−z+5 t0t1 + . . . + z r−d+z+3 t0tz + . . . + 1

2
(d + z −3) t0 t̃0

]
, (5.55)

where the superscript T means that we ignore the first time/longitudinal term in (5.45).

If the first term in (5.55) diverges, it can be canceled by the following counterterm

ST
ct =

∫
r=ε

d d x
√

−ĝ

[
− 1

4

1

d + z −5
Fi j F i j

]
, (5.56)

which does not generate any finite term containing t̃0. Further, if the second term in (5.55)

diverges, this part will be canceled by the second (transverse) term in (5.52). Therefore, by

combining the counterterms of the two sectors, we obtain the fully renormalized action

Sren = Son-shell −S t/L
ct −ST

ct =

=
∫

d d x

[
1

2
(d + z −3) t0 t̃0 −

1

2
κ(d − z −1)

(
a0 −∂t l0

)
ã0

]
. (5.57)

Note that as soon as z 6= 1 the two counterterms (5.51) and (5.56) are of the general form that

we used in the action (5.37).

Solving the equations of motion for the fluctuations with some bulk boundary conditions

would allow us to express ã0 and t̃0 in terms of the gauge invariant combinations of the sources,

(a0 −∂t l0) and t0 respectively, through some non-local function. The sources for the currents

are

Ssources =
∫

d d x
{−a0 Jt − l0∂i Ji + ti 0 J T

i

}
. (5.58)

This results into

〈
Jt Jt

〉= i κ (d − z −1)
δã0

δa0
, (5.59)

〈
J T

i J T
j

〉=−i (d + z −3)

(
δi j −

∂i∂ j

∂2
k

)
δt̃0

δt0
, (5.60)

and the correlators involving ∂i Ji being proportional to (5.59). Note that due to invariance
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under the residual gauge transformations there is an operator identity:

δSren

δl0
= ∂t

δSren

δa0
⇔ ∂i Ji = ∂t Jt , (5.61)

i.e. the current (−Jt , Ji ) is conserved.

5.2.1 Two-point function for a Lifshitz vector

Since we have performed the holographic renormalization of the most general bulk action for

a massless vector field and derived the formulæ (5.59,5.60) for the two-point functions of the

charge densities and currents, we may try, for specific cases, to get analytic expressions for

these correlators. They turn out to be very similar to the scalar case.

Again, when z = 2 the equations for the fluctuations can be solved analytically. The

conditions from the previous subsection for avoiding logarithmic terms imply that d has to be

even. Let us start with the transverse part. The Fourier transformed version of equation (5.42)

reads (we write Ti ≡ T )

r 2∂2
r T − (d −2)r∂r T + r 4 ω̃2T − r 2k2

i T = 0 . (5.62)

where ω̃2 =κω2. Again we have an equation of the confluent hypergeometric form, whose

solution, that is regular in the interior, is

T =CT e
i
2 ω̃r 2

U

[ i k2
i

4ω̃
− d −3

4
,−d −3

2
;−i ω̃r 2

]
. (5.63)

Using the expansion of U[a,b; x] for small small x (5.14), from (5.60) we obtain the correlator

〈
J T

i J T
j

〉
0 = 2i

(
δi j −

ki k j

k2
l

)
(−i ω̃)

d−1
2

Γ
[− d−3

2

]
Γ
[

i k2
i

4ω̃ + d+1
4

]
Γ
[d−1

2

]
Γ
[

i k2
i

4ω̃ − d−3
4

] , (5.64)

for d even. The scaling dimension is the correct one: taking into account that [ω̃]=2, the

correlator has dimension d −1, which is 2[Ji ]− (d +1) given that [Ji ]=d . We notice that it is

similar to the scalar one (5.15), and it also has analogous imaginary poles, located at

p
κω= −i k2

i

4n +d +1
. (5.65)

Let us also investigate the k → 0 and ω→ 0 limits of the correlator (5.64). For k → 0 and

fixed ω, all the Γ-functions approach constants and the propagator is just proportional to

a transverse projector times ω(d−1)/2. For ω→ 0 (so, ω̃→ 0) at fixed k, we have to employ
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Stirling’s formula (see (5.30)), leading to

〈
J T

i J T
j

〉
0 ' 2i

(
δi j −

ki k j

k2
l

)(
k2

l

4

) d−1
2 Γ

(
−d−3

2

)
Γ

(
d−1

2

) . (5.66)

Up to a prefactor both limits are fixed by scaling considerations and the fact that the correlator

is proportional to a projector.

We can also consider the temporal/longitudinal sector. Let us start by establishing an

ordinary differential equation for the temporal part. If we call

Ȧ ≡ ∂t At , L̇ ≡ ∂i∂i L , (5.67)

then the equations (5.39), (5.40) and (5.41) become

κr−d+z+2∂r Ȧ− r−d−z+4∂r L̇ = 0 , (5.68)

∂r

(
r−d+z+2∂r Ȧ

)+ r−d+z+2 (
∂i∂i Ȧ−∂2

t L̇
)= 0 , (5.69)

∂r

(
r−d−z+4∂r L̇

)+κr−d+z+2 (
∂i∂i Ȧ−∂2

t L̇
)= 0 , (5.70)

the third being obviously redundant. The first equation gives

∂r L̇ = κr 2z−2∂r Ȧ , (5.71)

so that we eventually have an equation for Ȧ only:

∂r

(
r d−z−2∂r

(
r−d+z+2∂r Ȧ

))+∂2
i ∂r Ȧ−κr 2z−2∂2

t ∂r Ȧ = 0 . (5.72)

This is a second order equation for Ȧ′ ≡ ∂r Ȧ:

r 2∂2
r Ȧ′− (d − z −2)r∂r Ȧ′+ (d − z −2)Ȧ′−κr 2z∂2

t Ȧ′+ r 2∂i∂i Ȧ′ = 0 . (5.73)

Performing a Fourier transform and setting z = 2, the later equation becomes

r 2∂2
r Ȧ′− (d −4)r∂r Ȧ′+ (d −4) Ȧ′+ r 4ω̃2 Ȧ′− r 2k2

i Ȧ′ = 0 , (5.74)

which is again of the confluent hypergeometric form. Thus, we obtain

Ȧ′ =C A e
i
2 ω̃r 2

r U

[ i k2
i

4ω̃
− d −7

4
,−d −7

2
; −i ω̃r 2

]
. (5.75)

One must be careful with the expansions, because leading and subleading orders can get

inverted. This happens for example for d = 4, 1−b =−1
2 , where the ã0 term is more leading

than a1, with both being subleading to the constant term a0. However their expansions do not

mix and one can still extract the coefficients.
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The two leading modes are identified as follows:

2ωa1 = iC A
d −7

2

Γ
[d−7

2

]
Γ
[

i k2
i

4ω̃ + d−3
4

] , (d −3)ω ã0 = iC A (−i ω̃)
d−5

2
Γ
[− d−5

2

]
Γ
[

i k2
i

4ω̃ − d−7
4

]
so that, using (5.49), we get

(d −3)ã0 =− 2

(d −5)(d −7)
k2

i (−i ω̃)
d−5

2

Γ
[− d−5

2

]
Γ
[

i k2
i

4ω̃ + d−3
4

]
Γ
[d−7

2

]
Γ
[

i k2
i

4ω̃ − d−7
4

] (
a0 + iωl0

)
. (5.76)

Eventually, from (5.59),

〈
Jt (k)Jt (−k)

〉
0 =− i

2
κ k2

i (−i ω̃)
d−5

2

Γ
[− d−5

2

]
Γ
[

i k2
i

4ω̃ + d−3
4

]
Γ
[d−3

2

]
Γ
[

i k2
i

4ω̃ − d−7
4

] . (5.77)

One expects the above correlator to have dimension 2[Jt ]− (d +1) = d −3, which it has. It also

displays poles for
p
κω= −i k2

i

4n +d −3
. (5.78)

In the ω→ 0 limit, the correlator (5.77) becomes

〈
Jt (k)Jt (−k)

〉
0 =−2i κ

(
k2

i

4

)d−3
2 Γ

[− d−5
2

]
Γ
[d−3

2

] , (5.79)

which is finite. It is to be noted that this is in line with the relativistic case, where the correlators

of a conserved current are finite for ω→ 0 and fixed k.

We have thus shown that a general massless vector in a Lifshitz background presents

two-point correlators completely analogous to the ones produced by a Klein-Gordon scalar in

the same background. They display the same analytic structure, comprising a cut ending at

the origin and an accumulation of poles on the upper imaginary axis. It is also worth noting

that for the vector, this is the most general result, since we do not have the possibility (without

introducing other field content) to generalize the bulk action with Schrödinger-like terms.

5.3 Lifshitz holography for symmetry breaking

We are finally ready to study the physics of symmetry breaking for a Lifshitz invariant theory

in a holographic setup. Our main goal is to retrieve the correct non-relativistic Ward identities

for symmetry breaking.

To this end we will consider the most general U(1)-invariant action for a complex scalar

field coupled to a massless vector field on a non-dynamical Lifshitz background. This amounts
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to combining the actions for the most general scalar (5.22) and for the most general massless

vector (5.37), and replacing ordinary derivatives with covariant derivatives, leading to:

S =
∫

dd+1x
√−g

[
− 1

4
γµν

(
γρσ− 2κ

β2 BρBσ
)
FµρFνσ + (5.80)

−γµνDµφ
∗Dνφ+ 1

c2β2 BµDµφ
∗BνDνφ+

− i h
2β

Bµ
(
φ∗Dµφ−φDµφ

∗
)
−m2φ∗φ

]
,

where γµν and Bµ are defined in (5.21,5.2), and

Fµν = ∂µAν−∂νAµ ,

Dµ = ∂µ− i Aµ .

We will partially fix the gauge freedom by imposing radial gauge, i.e. Ar = 0, like we did in

Section 5.2. The equations of motion, obtained by varying the action (5.80) with respect to Ar ,

Ai , At , and φ∗ respectively, are

r 2∂i∂r Ai −κr 2z∂t∂r At + i
(
φ∗∂rφ−φ∂rφ

∗)= 0 , (5.81)

r∂r

(
r∂r Ai

)− (
d̃ −2

)
r∂r Ai + r 2

(
∂2

j Ai −∂i∂ j A j

)
−κr 2z (

∂2
t Ai −∂i∂t At

) +
− i

(
φ∗∂iφ−φ∂iφ

∗)−2φ∗φAi = 0 , (5.82)

r∂r

(
r∂r At

)− (
d̃ −2z

)
r∂r At + r 2 (

∂2
i At −∂t∂i Ai

) + (5.83)

− i
κc2

(
φ∗∂tφ−φ∂tφ

∗)− 2
κc2 φ

∗φAt − h
κ

r−zφ∗φ= 0 ,

r∂r

(
r∂rφ

)− d̃ r∂rφ−m2φ+ r 2 (
∂2

i φ−2i Ai∂iφ− i (∂i Ai )φ− A2
i φ

) + (5.84)

− r 2z

c2

(
∂2

tφ−2i At∂tφ− i (∂t At )φ− A2
tφ

)+ i h r z(∂tφ− i Atφ
)= 0 .

In order to trigger the breaking of the U(1) global symmetry on the boundary, we as-

sign a background profile φB to the scalar, which can be taken to be real by virtue of the

symmetry. In order not to break boundary spacetime symmetries, we will construct a set of

(t , xi )-independent solutions (φB , AB t , ABi ) of the equations of motion where ABi = 0 and

φB ∈ R. As we will see a posteriori, we have to consider AB t 6= 0 otherwise the scalar back-

ground has to be zero. With these specific requirements for the solutions, equations (5.81) and

(5.82) are trivially satisfied and (5.83), (5.84) provide respectively:

r∂r

(
r∂r AtB

)− (
d̃ −2z

)
r∂r AtB − 2

κc2 φ
2
B AtB − h

κ
r−zφ2

B = 0 , (5.85)

r∂r

(
r∂rφB

)− d̃ r∂rφB −m2φB + r 2z

c2 A2
tBφB +h r z AtBφB = 0 . (5.86)

We see that, whenever h 6= 0, on the one hand, if we want to set AtB ≡ 0, then the first of the
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two equations is not satisfied, save for a trivial scalar background φB ≡ 0. On the other hand,

if AtB has a constant term, i.e. a chemical potential (see eq. (4.3)), again the scalar profile must

vanish for eq. (5.85) to be satisfied. Let us then set AtB = 0 in (5.86), so that we have the usual

near-boundary solution

φB = w r
d̃
2 −ν+ v r

d̃
2 +ν . (5.87)

where d̃ and ν are the same as defined in Section 5.1, eq. (5.5). We choose ν ∈]0,1[, so that we

will not have logarithms in the boundary action6, but in this way we also guarantee that the

term r z AtBφB in (5.86) does not affect the profile, since d̃
2 −ν+ z > d̃

2 +ν is always true in our

range of ν.

Then, the profile (5.87), through the term r−zφ2
B in (5.85), sources a background profile

for the temporal component of the vector, namely

AtB = AB r d̃−z−2ν+ . . . with AB = h

κ
w2 . (5.88)

We will see that such background profile is subleading enough in order to disappear from the

boundary action if d > 3, but for the moment we will keep track of it. Finally, let us stress that

for the full Lifshitz case h = 0, the problematic terms in the equations (5.85-5.86) are not there,

and AtB can be set to zero without any issue.

We will now treat the fields as small fluctuations over these background profiles, expand-

ing the action up to quadratic term in the fluctuations. For the scalar fluctuations we also split

into real and imaginary part, so

φ= φB +ρ+ iπp
2

. (5.89)

For the moment we keep both the leading mode with coefficient w and the subleading mode

with coefficient v of the scalar profile, corresponding respectively to explicit and spontaneous

breaking in ordinary quantization, and vice versa in alternative quantization. We can switch

off the appropriate explicit breaking term when studying the case of spontaneous symmetry

breaking. The fluctuations around the time component of the background gauge field will

again be denoted by At . We hope that this will not lead to any confusion. Finally, we split the

spatial component of the gauge field into a transverse and a longitudinal part,

Ai = Ti +∂i L , with ∂i Ti = 0 .

Since we are interested in an action that be quadratic in the fluctuations, we keep equa-

tions motions that are linear in the fluctuations, which read (by also using the equations for

6Also ν> 1 would be fine, but we want to stay in the window where alternative quantization is possible.
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the background profiles):

r 2∂2
i r∂r L−κr 2z∂t r∂r At −φB r∂rπ+πr∂rφB = 0 (5.90)

r∂r (r∂r Ti )− (d̃ −2)r∂r Ti −κr 2z∂2
t Ti + r 2∂2

j Ti −φ2
B Ti = 0 (5.91)

r∂r (r∂r L)− (d̃ −2)r∂r L−φ2
B L+κr 2z∂t

(
At −∂t L

)+φBπ= 0 (5.92)

r∂r (r∂r At )− (d̃ −2z)r∂r At −κ−1c−2φ2
B At −2κ−1c−2ρφB AtB + (5.93)

+ r 2∂2
j

(
At −∂t L

)+κ−1c−2φB ∂tπ−κ−1h r−zφBρ = 0

r∂r (r∂rρ)− d̃ r∂rρ−
(
m2 − r 2∂2

j + c−2r 2z∂2
t − c−2r 2z A2

tB −h r z AtB

)
ρ+ (5.94)

+h r z (
AtφB −∂tπ

)= 0

r∂r (r∂rπ)− d̃ r∂rπ−
(
m2 − r 2∂2

j + c−2r 2z∂2
t − c−2r 2z A2

tB −h r z AtB

)
π+ (5.95)

+h r z∂tρ−φB

(
r 2∂2

j L− c−2r 2z∂t At

)+2c−2r 2z AtB∂tρ = 0

We see that the equation for Ti decouples, whereas we get a system of coupled equations for ρ,

π, L, and At . If h = 0, in which case we take AB t = 0, the real part ρ decouples as well.

Using these equations of motion the part of the action that is quadratic in the fluctuations

can be put on-shell and reduced to a boundary term:

Son-shell = 1
2

∫
r=ε

ddx r−d̃
[

r 2Ti r∂r Ti − r 2L r∂r∂
2
j L−κr 2z At r∂r At + (5.96)

−2κr 2z At r∂r AtB +2ρ r∂rφB +ρ r∂rρ+πr∂rπ
]

where the term containing AB t actually vanishes in the near-boundary expansion of the fields

by virtue of the assumption z > 2ν.

We now have to study the divergent pieces in the regularized action that need to be

renormalized. Since we have already done this for the scalar and the vector when they are de-

coupled, we need only focus on the effects on the procedure of the presence of the background

profilesΦB and AB t .

5.3.1 Holographic renormalization and Ward identities

We start by considering the components of the gauge field. From equations (5.91–5.93) we

can see that the generic backgrounds (5.87–5.88) impact the asymptotic expansions by the

following terms:

Ti = ti 0 + rαT ti 1 + . . .+ ti (z)r
2z + . . . + r d̃−2 (

t̃i 0 + . . .
)

, (5.97)

L = l0 + rαL l1 + . . . + r d̃−2 (
l̃0 + . . .

)
, (5.98)

At = a0 + rαA a1 + . . . + r d̃−2z (
ã0 + . . .

)
. (5.99)
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where the first term appearing in the expansion for At above is present only when h 6= 0 (it is

due to the last term in (5.93)).

It is straightforward to see that none of these background-dependent coefficients will

survive in (5.96), provided we stick to the (simplifying) assumptions ν< 1 and z > 2ν. There-

fore, the renormalization of the vector sector goes through exactly in the same way as for

the free vector discussed in the previous section. Namely, there will be counterterms in the

transverse sector if d̃ > 4 (i.e. d + z −5 > 0), and in the timelike/longitudinal one if d̃ > 2+2z

(i.e. d − z −3 > 0). In any case, such counterterms (5.51) and (5.56) do not affect the finite part

of the action.

To complete the renormalization of the action (5.96), now we only need to remove the

scalar divergences. Note that the expansions for ρ and π are the same as in (5.5), even in

presence of the background. The scalar divergences are then cured by the following standard

counterterm, which includes the effect of the background profile (but removing the zeroth

order term)

Sφct =
d̃

2
(1−ν)

∫
r=ε

ddx
√−ĝ

(
φ∗φ− φ2

B

2

)
(5.100)

= d̃

4
(1−ν)

∫
r=ε

ddx
√−ĝ

(
ρ2 +2φBρ+π2

)
.

The final renormalized action would thus be7

Sren = 1

2

∫
ddx

[
(d̃ −2) ti 0 t̃i 0 − (d̃ −2) l0∂

2
i l̃0 −κ (d̃ −2z) a0ã0 + (5.101)

+2ν
(
ρ0ρ̃0 +2v ρ0 +π0π̃0

)]
,

which, using the constraint (5.90), which reads

(d̃ −2)∂2
i l̃0 −κ (d̃ −2z)∂t ã0 +2ν

(
vπ0 −w π̃0

)= 0 , (5.102)

can be eventually rewritten as

Sren = 1

2

∫
ddx

[
(d̃ −2)ti 0 t̃i 0 −κ (d̃ −2z)

(
a0 −∂t l0

)
ã0 + (5.103)

+2ν
(
ρ0ρ̃0 +

(
π0 −wl0

)(
π̃0 − vl0

)+2v
(
ρ0 +π0l0 − 1

2 w l0l0

))]
.

From this renormalized action it is straightforward to recognize the Ward identities for

symmetry breaking, it is sufficient to express the action only in term of the gauge invariant

combinations of the sources. Recall the non-trivial gauge transformations are

δl0 =α , δa0 = ∂tα , δπ0 = wα , δπ̃0 = vα . (5.104)

7 We keep general d and z, since, once the divergences are taken care of, the form of the renormalized action is
the same, provided that there are no logarithms (so no scheme dependent pieces).
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Then, through the following identifications,

t̃i 0 = ft (�) ti 0 ,

ã0 = fa(�)
(
a0 −∂t l0

)+ ga(�)
(
π0 −wl0

)+h ha(�)ρ0 ,

π̃0 − vl0 = fπ(�)
(
π0 −wl0

)+ gπ(�)
(
a0 −∂t l0

)+h hπ(�)ρ0 ,

ρ̃0 = fρ(�)ρ0 +h gρ(�)
(
a0 −∂t l0

)+h hρ(�)
(
π0 −wl0

)
,

(5.105)

we obtain indeed

Sren = 1

2

∫
ddx

[
(d̃ −2)ti 0 ft (�) ti 0 −κ (d̃ −2z)

(
a0 −∂t l0

)
fa(�)

(
a0 −∂t l0

)+
+ (
π0 −wl0

)(
2νgπ(�)−κ (d̃ −2z) ga(�)

)(
a0 −∂t l0

)+
+hρ0

(
2νgρ(�)−κ (d̃ −2z)ha(�)

)(
a0 −∂t l0

)+
+2ν

(
ρ0 fρ(�)ρ0 +2v

(
ρ0 +π0l0 − 1

2 w l0l0

))
+2hνρ0

(
hπ(�)+hρ(�)

)(
π0 −wl0

)+
+2ν

(
π0 −wl0

)
fπ(�)

(
π0 −wl0

))]
. (5.106)

We point out that the presence of h 6= 0, which couples ρ to π, At ,L, has forced us to introduce

three additional non-local functions that are not present at h = 0 (see [I] for an analogous

example). However, since there is no explicit dependence on h in the on-shell action (5.96),

the terms that are bilinear in π0 and
(
a0 −∂t l0

)
are the same both for h 6= 0 and h = 0. So, the

Ward identities for symmetry breaking are smoothly recovered in both cases. Indeed, we have

〈
∂i Ji (x) ImO (0)

〉
0 = i

δ2Sren

δl0δπ0
(5.107)

= i
[

2ν
(
v −w fπ(�)

)+ (
νgπ(�)− κ

2
(d̃ −2z) ga(�)

)
∂t

]
δ(x) ,

〈
Jt (x) ImO (0)

〉
0 = i

δ2Sren

δa0δπ0
= i

(
νgπ(�)− κ

2
(d̃ −2z) ga(�)

)
δ(x) ; (5.108)

and consequently

−〈
∂t Jt (x) ImO (0)

〉
0 +

〈
∂i Ji (x) ImO (0)

〉
0 = i 2ν

(
v −w fπ(�)

)
δ(x) , (5.109)

which is, as announced, the usual Ward identity for concomitant spontaneous and explicit

symmetry breaking, completely identical to the one derived in the relativistic holographic

models of Chapter 3 (see eq. (3.32) and eq. (3.107)).
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In this dissertation we have accomplished a quite complete journey, deriving Ward identities

and analytic expressions for two-point functions in holography, from the paradigmatic rela-

tivistic case to some non-relativistic examples. We summarize here the main achievements

collected on the road.

In Part I we reviewed the basic material needed for the understanding of the second

part, where the original contributions of this thesis are contained. In the first chapter we

discussed, from a field theory perspective, in relativistic as in non-relativistic contexts, various

features of the physics of symmetry breaking, which then were recovered in the holographic

setups of Part II. Then, in Chapter 2, we briefly introduced the holographic correspondence

and the prescription for computing field theory correlation functions, and we presented the

procedure of holographic renormalization through a paradigmatic example, discussing some

peculiarities as alternative quantization and scheme dependence.

Then, in the second part, various holographic realization of quantum field theories with

symmetry breaking were presented, both in relativistic and non-relativistic frameworks. In

Section 3.1, the Ward identity structure and symmetry breaking pattern were neatly embodied

in a simple and prototypic bulk toy-model for an abelian U(1) symmetry breaking. The precise

relations among correlators are dictated by the field theory arguments of Section 1.2, which

pinpoint the Ward identity structure independently of the strength of the coupling, and are

realized in the AdS/CFT model thanks to holographic renormalization. The holographic

derivation relies just on an asymptotic near-boundary analysis, therefore, as far as Ward

identities are concerned, only UV knowledge is necessary, and we could indeed perform the

analysis before actually solving the model and discussing its IR properties.

In turn, in order to access quantitative data such as masses and residues, the IR properties

are crucial and hence solving for bulk fluctuations becomes necessary. We thus explicitly

studied the toy-model which allows for complete analytic control of its solutions and the

dual correlators. Our analytic correlator exhibited the Goldstone boson massless pole (with a

numeric residue specific to the theory) in the purely spontaneous case, and a hierarchically
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lighter massive pole in the case where a little explicit breaking intervenes. In this latter case,

the squared mass of the pseudo-Goldstone reproduces the expected GMOR relation, linear in

the explicit breaking parameter.

Thus holography, already in such a basic realization, is able to reproduce general quantum

field theoretical expectations and allows explicit quantitative computations. Even if analytic

control was possible only for specific space-time dimensions and scaling dimension of the

dual scalar operator, we expect the results of this analytic study to hold at the qualitative level

for higher space-time dimensions and generic scaling dimensions.

The lower dimensional case was discussed in Section 3.2, where we verified from the

holographic point of view the fact that in the strict large N limit spontaneous symmetry break-

ing can occur in two dimensions. Indeed, considering the AdS3/CFT2 version of the model of

Section 3.1, we retrieved the same Ward identities as they appear in higher dimensions. Nev-

ertheless, the way to get this result involves subtleties and peculiarities which are specific to

two dimensions, and can be regarded as a premonition of the fact that spontaneous breaking

is ruled out as soon as one moves away from strict infinite N . The most crucial subtlety is

that the gauge field has to be renormalized in a sort of ‘alternative quantization’, in order to

have it properly sourcing a conserved current and yielding the correct Ward identities for the

breaking of a global symmetry on the boundary.

In a fashion inspired by [113], quantum corrections can be taken into account, by comput-

ing a bulk tadpole correction to the scalar profile. This may reproduce the infrared divergence

which is responsible for preventing the formation of a vacuum expectation value, that is

the core mechanism of Coleman’s no-Goldstone theorem. Such a quantum effect, by the

holographic correspondence, is equivalent to a 1/N correction in the boundary theory.

However, if the existence of Goldstone bosons in two dimensions is under threat, that is

absolutely not the case for pseudo-Goldstone bosons. Indeed, in 1+1 dimensions, the large

quantum fluctuations of the phase prevent the selection of a specific ground state out of the

continuum of possible vacua; however, if we added an arbitrarily small (but finite) explicit

breaking, this would select a particular ground state, and act as a regulator for the infra-red

divergence, making such vacuum stable under quantum fluctuations. Hence, for explicit

breaking parametrically smaller than the spontaneous one, we expect (even at finite N ) a

mode that is hierarchically lighter than the rest of the spectrum, and whose mass undergoes

the usual GMOR relation. So, there are no obstruction for pseudo-Goldstone bosons in two

dimensions, and we provided a holographic model for them.

Then, Chapter 4 and 5 were dedicated to the non-relativistic examples. In Section 4

we adopted a non-abelian version of the relativistic model of Section 3.1, with a global U(2)

symmetry, and we broke explicitly Lorentz invariance by giving a background profile to the

temporal component of the gauge field. In this way we studied the consequences of the

spontaneous breaking of U(2) to U(1), in a strongly coupled field theory where a chemical

potential breaks explicitly boost invariance, in a holographic dual field theory with the same

symmetry breaking pattern of the toy-model of Section 1.3.1.
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Performing the holographic renormalization of this setup, we showed holographically

how the Ward identities associated to the broken symmetries are reproduced in a non-

relativistic framework. So the system must have Goldstone excitations associated to the

three broken generators. However, because of broken Lorentz symmetry, not only the scalar

operator acquired a symmetry breaking vev’s, but also the temporal components of one of

the three conserved currents. We were thus exactly in the situation where type B Goldstone

bosons arise, i.e. when the commutator of two broken charges has a non-vanishing vev, and

only one massless excitation is associated to these two broken generators. The third broken

generator is not involved in commutators with non-trivial VEVs, and hence gives rise to a

type A Goldstone boson.

From the field theoretical analysis of Section 1.3, we expect the type B GB to have

quadratic dispersion relation and the type A GB to have linear dispersion relation, but with a

velocity smaller than the speed of light c. Moreover, we expect the type B Goldstone boson to

be accompanied by an almost Goldstone boson, i.e. a light mode whose mass is related to the

coefficient of the quadratic dispersion relation of its partner [12]. Unfortunately, due to littler

symmetry and a much more involved system of equations of motion, contrary to Section 3.1,

we were not able to find analytic expressions where such dispersion and mass relations would

appear.

Finally, in Chapter 5, we studied conserved currents and charged scalar operators in

Lifshitz invariant space-times. We first discussed a free scalar field, computing explicit expres-

sions for the two-point function for various bulk actions and different values of the critical

exponent. A peculiar feature of the Lifshitz Klein-Gordon scalar correlator for z = 2 is the

presence of purely imaginary poles, which seems related to the tidal singularity at the center of

Lifshitz geometry. We tried to cure this by cutting out the singularity with hard-wall boundary

conditions, which have analogous consequences as those for AdS space-time (appearance of

a discrete spectrum). The imaginary poles seem to be shifted away from the imaginary axis, in

the complex plan, though surviving.

Then we performed in detail the holographic renormalization for the most general gauge

vector field on Lifshitz background, and we computed the two-point functions, which turn

out to be completely similar to the scalar ones. We finally put together the pieces, coupling

a charged scalar to a gauge field, and giving a background profile to the scalar field in order

to trigger symmetry breaking on the boundary. After renormalization, we obtain again the

proper non-relativistic realization of Ward identities for symmetry breaking.

The study of these various holographic setups allowed a clearer understanding of the

physics of symmetry breaking in quantum field theory, especially in the less well-defined

non-relativistic framework. At the same time, it gave the occasion to explore the holographic

correspondence in a variety of canonical and less canonical examples. The implementation of

holographic renormalization to those various examples has encountered some specificities

and subtleties, which have been extensively discussed, engendering a deeper understanding

of the technique.
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