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Abstract

As detectors become smaller and more densely packed, signals become smaller and crosstalk
between adjacent channels generally increases. Since it is often appropriate to use the dis-

tribution of signals in adjacent channels to make a useful measurement, it is imperative

that inter-channel crosstalk be well understood. In this paper we shall describe the manner

in which Poissonian fluctuations can give counter-intuitive results and offer some methods

for extracting the desired information from the highly smeared, observed distributions.
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Introduction

As modern high energy physics experiments try to perform ever more precise measurements,
one trend observed is that the granularity of detectors becomes smaller. Wire chambers are
giving way to silicon and gas microstrips, and hodoscopes are being abandoned for scintillating
fiber ribbons. As the ratio of area to volume increases, edge effects become more important
than ever. Since most detectors depend on ionization or other energy loss mechanisms, smaller
detectors imply less energy loss, which implies in turn smaller signals. This paper addresses
these two future problems, small signals and large edge effects.

In the case of small signals, as in the case of photoelectrons seen in scintillating fibers,
typically the signal is small enough that the effects from Poisson statistics become important.
Even in the case of perfectly monochromatic dE/dz loss, there will be a significant width

associated with Poisson fluctuations.

One edge effect that is becoming more important is crosstalk between adjacent cells. As
the effect of crosstalk increases, it becomes more important to understand it. On the face of
it, this appears to be a simple problem. One should look at the signal in the ‘hit’ cell (x) and
~ plot against that the signal in an adjacent cell (y). The slope of the plot Ay/Az will be the
crosstalk fraction. Such an approach was tried by the D@ Central Preshower Group (1] in their
analysis of their prototype module. However, when such a plot was made, a very peculiar curve
was observed. While it was expected that their plot would be a single line with an intercept
through the origin, actually two distinct slopes were observed (see figure (1).)

The source of this inexplicable behavior stems from fact that the signal in each channel
fluctuates independently with a large RMS relative to the mean. A detailed understanding of
the effect can be had by investigating the effect of statistical smearing on the observables.

Analysis

Suppose a large number of particles separately transit a detector cell, each losing an identical
amount of energy, which corresponds to an average hit cell signal S. Further suppose that
the average signal in an adjacent cell (the crosstalk signal) is s and that s is a function of §,
s = s(S). Because of statistical fluctuations in a particular event, what would be observed
is (X,0) where for a particular S, the hit cell signal ¥ occurs with probability P(X,S) and
similarly the adjacent cell signal o occurs with probability p(e, s). Since S and s are fixed, and
P(X,S) and p(o, s) fluctuate independently, the probability to observe both X in the main cell

and o in the adjacent cell is Prob(c, X) = p(c, s) P(X%, S).

If one allows the energy loss (and associated average signals) to vary, then S and s are no
longer fixed. Let the distribution of S be f(S), then one has to sum over contributions from

various S when calculating Prob(e, X) for this general case :

Prob(0, %) = % [ p(o,5(5)) P(Z, 5) £(5)dS



where N is the normalization constant for f(S) (N = [ f(S)dS.) Similarly, the probability

to observe signal ¥ in the main cell is
Prob(%) = — / P(Z, 8) £(S)dS.

Now given a main cell signal ¥, the average crosstalk signal is

> o, 0 Prob(o, %
<o(Z)> =) oProb(s|T) = lProb(Zg )

o=1

where Prob(c|X) is the conditional probability that one observes crosstalk signal ¢ in the
adjacent cell given that the main cell has signal X.

Therefore, for the general case, we reach
%, 5(5) (S, 8) £(5) d "
JZ% P(%,8) f(S)dS

after the relation s(S) = Y22, o p(c,s(5)) is used.

<o(X)>

While equation (1) is in general true, it is instructive to explore a physically useful case.
In the case of close-packed scintillating fibers, photoelectrons arrive in discrete packets and are
governed by Poisson statistics. Thus P(Z,S) = e~5S*/%!. Since the average observed signal
(both in the central and adjacent fiber) is proportional to the light emitted in the main fiber,
one might expect that s = kS, where k is the crosstalk fraction. One might imagine that near
the cell edge the main signal might drop while the crosstalk signal rises, thus invalidating the
assumption of crosstalk linearity, however it is usually possible to restrict an analysis to a region
where the crosstalk proportionality constant k is locally both constant and stable. Making these
assignments, and realizing that for Poissonian statistics S > 0, equation (1) transforms to:

f°° "SSEHf(S)dS 9
e SSE(5)dS (@)

<o(X)>=

The remainder of this paper shall explore the behavior of this useful Poisson case, with
linear crosstalk. Equation (2) has very interesting properties, which can be illustrated by some
extremes. Consider the following three (un-normalized) probability distribution functions:

Case 1
f(8)Y=6(S—a)(a>0) = <o(X)>=ka

Case 2
_JE §>0 3
f(5) = { 0 otherwise = <o(®)>=kZ+1)
Case 3
§) = £ a< S<b(a,b>0) 5 _k[—szfﬂéﬁ%ﬁszﬂ al4
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These three results are plotted in figure (2) and illustrate the scope of the effect. In case 1,
the mean S is given a single value from a delta function, which implies that the mean s (= &S)
is also single valued. Since both ¥ and o fluctuate independently, the result is a graph with
a slope of zero. In case 2, all values of § occur with equal probability (for S > 0) and the
result most nearly resembles the naive result. Case 3, the square function, is in some sense a
compromise between the first two cases and the observed (, < o(X)>) distribution is bracketed
by the first two cases. Thus, the function of the underlying signal f(S) significantly affects the
observed results. Specifically, although fuzzily defined, the width of the underlying distribution

is very important.

So far, the multi-slope behavior observed in figure (1) is not reproduced. Consider a square

function with a low signal tail:

=13 530

where h < H and the fraction of ‘background’ F = (ha)/[H(b — a) + ha] is correspondingly
small. When this function is put into equation (2) and evaluated, dual slope behavior is

observed. See figure (3).

While the nature of the functions used for examples in this paper (square functions) is not
typically observed in nature, they do illustrate two important sensitivities in the behavior of
equation (2). The first is the ‘width’ of the underlying function. Skinny functions result in
(X, < o(E) >) plots that are substantially different than those caused by broader functions.
Secondly, the ratio of ‘signal’ (data in the peak) to ‘background’ (low probability data far from
the peak) has considerable impact on the observed (%, < o(X)>) plots.

It is therefore important to get the unobserved, underlying, function f(S) ‘right’. What
can be observed is the function

F(E) = /O ” £(8)e~SSEds /5! (3)

which is the function f(S) smeared by Poisson statistics. While in general determining f(5)
from F(X) is quite difficult, it is possible to do this by the use of fitting techniques. If one has
a functional form f(S;a,b,c,...), where a,b,c,... are parameters of the function, this function
can be smeared by Poisson statistics, compared to F(X) and the process iterated until the best
parameters are determined. Then the analysis suggested by equation (2) may be done and the
crosstalk fraction k can be extracted.

An alternative method for extracting f(5) comes from using inverse Mellin transforms (2].
A Mellin transform is:

M(N) = /0 ” 2N F(z)de (4)

which is isomorphic to equation (3), if one makes the correspondence M(N) = (B! F(X) and
F(S) = Se~5f(S), and further restricts f(5) =0 for 5§ <0 (the physical case.) Thus one may
find the inverse Mellin transform of (X!) F(Z) and from the resulting F(S) determine f(S).

In the preceeding discussion, three assumptions have been made: (1) the observed distri-
butions have been smeared by Poisson statistics from a true distribution, (2) prior to Poisson
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smearing, the crosstalk signal is proportional to the main signal (s = kS), and (3) the un-
derlying distribution f(S) is both stable and meaningful (e.g. proportional to the Landau
distribution of dE/dz loss.) As we have seen, these assumptions are not -explicitly required and
it is therefore important to understand under what conditions they are valid.

The assumption of Poissonian statistics is most likely valid in all cases where a quantized
signal, consisting of small numbers, is present (i.e. in a case where individual photons or
electrons are measured.) This represents a vast range of detectors, fronr scintillating fibers to
semiconductor devices. As the size of detectors becomes smaller, the presence of quantized

signals will certainly increase.

We have assumed in our examples that s(.S) = kS. As discussed above, crosstalk is in some
sense an edge effect. It is therefore reasonable that near the edge of the main cell, the crosstalk
is larger and probably the main signal is smaller, thus invalidating the assumption of crosstalk
linearity. Luckily, it is often relatively easy to restrict the signal to a portion of the detector
where the linearity assumption is locally valid, which greatly s1mphﬁes the a.na.lys1s One would

then be required to redo the analysis for the different regions. Tar

Assumption (3) simply requires that the main cell signal before Poisson smearing is propor-
tional to the energy loss in the detector. This is generally true. However, it is probable that
different channels have somewhat different responses to equal energy loss.. Thus it is important
to have calibrated each channel properly. In addition, if one wishes to:compare two different
detectors (say scintillating fibers with two different types of dopants,) one expects different sig-
nal for identical energy loss. In order to compare the crosstalk behavior:of these two detector
types, one must account for these differences. One may do this by finding the slightly different

f(S) functions.

Finally, one must interpret the crosstalk fraction k& with some care: By -definition, k = 3/S.
If both the main cell and the adjacent cell had the same signal in them, then & = 1. In order to
determine the ratio of cross talk signal to total signal, one must solve [g/{s + S) = k/(k + 1)].
Which result is needed is dependent on the question one is asking. s

Results and Conclusions

Thus an important observation regarding detector crosstalk is made.- In the region of small,
quantized signals, independent Poisson fluctuations in the signals of the main cell and its
adjacent cell can substantially alter the data from simple expectations:: The details of the
underlying signal distribution, f(S), can have a dramatic impact on the observed crosstalk
behavior. However, with a judicious model of the underlying signal distribution, it is possible
to extract the desired quantity, the fractional crosstalk k. This extraction is quite trivial, as

equation (2) is linear in k.
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Figure Captions

1. Figure 1. Shown is observed crosstalk data [1] taken by the D@ Central Preshower group.
Contrary to naive expectations, there are two slopes in each of the above plots. The
closed circles denote a higher amount of crosstalk, while the open squares denote a case

where the crosstalk is purported to be lower.

2. Figure 2. Shown is the effect of the shape of the average signal distribution on the observed
(3, < o(Z)>) plot. Case 1is a delta function (a = 20), case 2 is a uniform probability
distribution (S > 0), and case 3 is a restricted uniform probability distribution (f(S)
constant for 15 < § < 25, 0 otherwise.) The range of possible observed curves is striking
and underscores the effect of the width of the underlying distribution on the observed

plots.

3. Figure 3. Shown is the effect of ‘background’ (i.e. low probability behavior, far from the
“bulk behavior.) Six curves are shown and correspond to background fractions of 10%,
1%, 0.1%, 0.01%, 0.001%, and 0% respectively. The 10% and 1% curves are explicitly
labelled. The lower background curves decrease monotonically as one moves to the left.
The curve which does not have the sharp turn over corresponds to 0% background. The
bulk behavior f(S) is a constant for (15 < S < 25) and 0 otherwise. In all plots, the

fraction of crosstalk is 10%.
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Observed Photoelectrons (Adjacent Cell)

Effect of Function Shape on Apparent Crosstalk
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Observed Photoelectrons (Adjacent Cell)

Effect of Background on Crosstalk
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