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The notion of divergence information of an ensemble of probability distributions was
introduced by Jain, Radhakrishnan and Sen in Jain et al. (2002; 2009) in the context of the
‘substate theorem’. Since then, divergence has been recognised as a more natural measure of
information in several situations in both quantum and classical communication.

We construct ensembles of probability distributions for which divergence information may
be significantly smaller than the more standard Holevo information. As a result, we establish
that bounds previously shown for Holevo information are weaker than similar ones shown
for divergence information.

1. Introduction

In this article, we study the relationship between two different measures of information
contained in an ensemble of probability distributions. The first measure, Holevo inform-
ation, is a standard notion from information theory, and is equivalent to the notion of
mutual information between two random variables. Consider jointly distributed random
variables XY, with X taking values in a sample space 2. Consider the ensemble of
distributions & = {(4;, Y;) : i € X}, where 4; = Pr(X = i) and Y; = Y|(X = i), which
is obtained by conditioning on values assumed by X. The Holevo information of the
ensemble is given by y(&) = (X : Y) = IE;,.xS(Y;||Y ), where S(-||-) measures the relative
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entropy of a random variable (equivalently, distribution) with respect to another. This
notion may be extended to ensembles of quantum states (see, for example, Nielsen and
Chuang (2000)), and the term ‘Holevo information’ is derived from the literature in
quantum information theory.

The second measure, the divergence information, was originally introduced in Jain
et al. (2002; 2009) and arises in the study of relative entropy, and its connection with
a ‘substate property’. The observational divergence (or simply divergence) of two classical
distributions P, Q on the same finite sample space is maxg P(E)log,(P(E)/Q(E)), where E
ranges over all events. We may view this as a (scaled) measure of the factor by which P
may exceed Q for an event of interest. The notion of divergence information is derived
from this as D(&) = E;.xD(Y;|Y), in analogy with Holevo information. A quantum
generalisation of this measure may also be defined (Jain et al. 2009).

Relative entropy and Holevo (or mutual) information have been studied extensively in
communication theory and beyond (see, for example, Cover and Thomas (1991)) since
they arise in a variety of applications. Since the discovery of the substate theorem (Jain
et al. 2002), divergence has been recognised as a more natural measure of information
in a growing number of applications (Jain et al. 2009, Section 1). The applications
include privacy trade-offs in communication protocols for computing relations (Jain et al.
2005), message compression (Jain et al. 2005), bit-string commitment (Jain 2008) and
the communication complexity of remote state preparation (Jain 2006). In particular,
divergence captures, up to a constant factor, the substate property for probability
distributions. It thus becomes relevant in every application where the substate theorem is
used.

We begin by constructing ensembles of probability distributions (equivalently, jointly
distributed random variables) for which the Holevo and divergence information are
quantitatively different.

Theorem 1.1. For every positive integer N, and real number k > 1 such that N > 236K,
there is an ensemble & of distributions over a sample space of size N such that D(&) = k
and y(&) € O(kloglog N).

A more precise statement of this theorem (Theorem 3.1) and related results are given in
Section 3.

The ensembles we construct satisfy the property that the ensemble average (that is, the
distribution of the random variable Y in the description above) is uniform. We show
that the above separation is essentially the best possible whenever the ensemble average
is uniform (Theorem 3.5). The result also applies to ensembles of quantum states, where
the ensemble average is the completely mixed state (Theorem 3.6). We leave open the
possibility of larger separations for classical or quantum ensembles with non-uniform
averages.

The difference between the two measures demonstrated by Theorem 1.1 shows that in
certain applications, divergence is quantitatively a more relevant measure of information.
In Appendix A, we describe three applications where functionally similar bounds have
been established in terms of both measures. This article shows that the bounds in terms
of divergence information are, in fact, stronger.
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In earlier work on the subject, Jain et al. (2009, Appendix A) compared relative entropy
and divergence for both classical and quantum states. For pairs of distributions P,Q
over a sample space of size N, they showed that D(P|Q) < S(P||Q) + 1, and S(P|Q) <
D(P||Q) - (N — 1). This extends to the corresponding measures of information in an
ensemble: D(&) < y(6) + 1 and (&) < D(&) - (N — 1). They also showed qualitatively
similar relations for ensembles of quantum states. In addition, they constructed a pair of
distributions P,Q such that S(P|Q) = Q(D(P|Q) - N). However, they did not translate
their construction to a similar separation for ensembles of probability distributions. Our
work in this paper fills this gap for ensembles (of classical or quantum states) with a
uniform average.

2. Preliminaries

In this section, we summarise our notation and the information-theoretic concepts we will
use later in the paper — see Cover and Thomas (1991) for a deeper treatment of (classical)
information theory. While the bulk of this article refers to classical information theory,
as mentioned in Section 1, it was motivated by studies in (and has implications for)
quantum information — see Nielsen and Chuang (2000) for an introduction to quantum
information.

For a positive integer N, let [N] represent the set {1,...,N}. We view probability
distributions over [N] as vectors in RN, The probability assigned by distribution P to a
sample point i € [N] is denoted by p; (that is, with the same letter in small case). We
use P! to denote the distribution obtained from P by composing it with a permutation 7
on [N] so pil = pr(i) and p% = p% == p]lv. For an event E = [N], we use P(E) =), pi
to denote the probability of that event. We use Uy to denote the uniform distribution
over [N]. The expected value of a function f : [N] — R with respect to the distribution P
over [N] is abbreviated to Epf.

We will appeal to the majorisation relation for some of our arguments. The relation
tells us which of two given distributions is ‘more random’.

Definition 2.1 (Majorisation). Let P,Q be distributions over [N]. We say that P major-
ises Q, denoted by P > Q, if

YIS
j=1 j=1
for all i € [N].

The following fact is straightforward.

Fact 2.1. Any probability distribution P on [N] majorises Uy, the uniform distribution
over [N].

Throughout this paper, we will use ‘log’ to denote the logarithm with base 2 and ‘In’ to
denote the logarithm with base e.
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Definition 2.2 (Entropy and relative entropy). Let P, Q be probability distributions on [N].

The entropy of P is defined as H(P) &

and Q, denoted S(P ||Q), is defined by

—Zfil pilogp;. The relative entropy between P

S(P|Q) < Zp, 1og—

i=1

Note that the relative entropy with respect to the uniform distribution is connected to
entropy since S(P||Uy) = log N — H(P).

We can formalise the connection between majorisation and randomness through the
following fact.

Fact 2.2. If P, Q are distributions over [N] such that P majorises Q, that is, P > Q, then
H(P) < H(Q).

The notion of observational divergence was defined in Jain et al. (2002) in the context
of the ‘substate theorem’.

Definition 2.3 (Observational divergence). Let P,Q be probability distributions on [N].
Then the observational divergence between them, denoted D(P | Q), is defined by

DPIO)Y  max (Erf) log gk

Note that we allow the quantity to take the value +oo. Throughout this paper we will
simply refer to ‘observational divergence’ as ‘divergence’.

The divergence D(P| Q) is always non-negative, and it is finite precisely when the
support of P is contained in the support of Q (Jain et al. 2002). Due to convexity, the
divergence between two distributions is attained by the characteristic function of an event.

Lemma 2.3.
P(E)
O(E)

Proof. Let # denote the (convex) set of functions from [N] to [0, 1]. The extreme points
of & are precisely the characteristic functions of events in [N]. For an extreme point, say
the characteristic function fg of the event E < [N], we have Epfr = P(E).

If the divergence is +oo, there is an event for which the right-hand side also takes the
value +oo. So assume that the divergence is finite. In this case, the right-hand side is also
finite since the support of P is contained in the support of Q. By restricting f : [N] — [0, 1]
to characteristic functions of events, we see that D(P||Q) is at least the expression on the
right-hand side above.

For the inequality in the other direction, note that the function

ax+b>

D(P|Q) = [max P(E)log

ex+d

defined on [0, 1] is convex in x, for any a,b,c,d € R such that ax+b >0 and cx+d >0
when x € [0, 1]. Therefore, the function g(x) attains its maximum at either x =0 or x = 1.

g2(x) = (ax + b)log <
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The convexity of g(x) implies that for any « € [0, 1], and functions f, f’' € &, we have
Ep(of +(1 —2)f")
Eo(af 4 (1 —a)f’)

. B , , wWEpf —Epf')+Epf’
=(Epf —IEpf)+ Epf’) log AEof —Eof) + Eof

(Ep(af + (1 —)f")) log

Epf ni Epf’
<max{(1EPf)log Ep (Erf)los gy }
So the divergence is attained at an extreme point of %, which proves the claim. U]

From now on, we will only use the equivalent definition of divergence given by this
lemma.
The divergence of any distribution with respect to the uniform distribution is bounded.

Lemma 2.4. For any probability distribution P on [N], we have 0 < D(P||Uy) < log N.

Proof. Consider the event E that achieves the divergence between P and Uy. Without
loss of generality, the event E is non-empty. Therefore

P(E) > Un(E) = 1/N,

and
0 < D(P|Uy) < P(E)log(P(E)N) < log N. m

Note that we only need to maximise over N events to calculate the divergence with

respect to the uniform distribution.
Lemma 2.5. For any probability distribution P on [N] such that P! = P, that is,
p1 = p2 = = pn, we have
N - P([i
D(P|[Ux) = max (i) log 12,

Proof. By the definition of observational divergence, the right-hand side in the above
is bounded by D(P|Uy). Note that for the inequality in the other direction, the
probability P(E) of any event E with size ng = |E| is bounded by P([ng]), the probability
of the first ng elements in [N]. So we have

B N - P(E)
D(PHQ)—EH;%P(E)logi

< P 1 )
max ([ng]) log ng

since P majorises Uy (Fact 2.1) and
P([ng]) = %

This is equivalent to the right-hand side in the statement of the lemma. |
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Definition 2.4 (Ensemble). An ensemble is a sequence of pairs {(1;,Q;) : j e [M]} for
some positive integer M, where A = (4;) € RM is a probability distribution on [M] and Q;
are probability distributions over the same sample space %.

Definition 2.5 (Holevo information). The Holevo information of an ensemble & = {(1;,Q;) :
M]}, denoted (&), is defined by

M
= Z S(Q;10).

where Q = Z]Ail 2jQ; is the ensemble average.

Definition 2.6 (Divergence information). The divergence information of an ensemble &
given by & = {(1;,Q;) : j € [M]}, denoted D(&), is defined by

M
D(&) = Y 2, D(Q;1Q).

Jj=1

where Q = 21{1 AjQ; is the ensemble average.

3. Divergence versus relative entropy

In this section we describe the construction of an ensemble for which there is a large
separation between the divergence and Holevo information. The ensemble has the property
that the ensemble average is uniform. As a by-product of our construction, we will also
obtain a bound on the maximum possible separation for ensembles with a uniform
average.

We begin with the construction of the ensemble. Let

fr(k, N) = k(Inlog(kN) — In(6k) + 1) — log(1 + kIn2) — 1 — %
on points in the positive orthant in R?> with Nk > 1.
Theorem 3.1. For every integer N > 1, and every positive real number k with
1—1\? <k <logN,

there is an ensemble

with
x Z Qi =Uy,
where Uy is the uniform distribution over [N], and with D(&) < k and

x(&) = fLk,N).

To construct the ensemble described in the above theorem, we first construct a
probability distribution P on [N] with observational divergence D(P |Uy) < k such that
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its relative entropy S(P |Uy) is large in comparison with k. Let fy = k(Inlog(Nk)—Ink+1)
be defined on points in the positive orthant of IR? with kN > 1.

Theorem 3.2. For every integer N > 1, and every positive real number k, with
% <k <logN,

there is a probability distribution P with D(P|Uy) =k, and

fulk,N) <S(P|Uy) < fu(k,N).

The construction of the ensemble is now immediate.

Proof of Theorem 3.1. Let Q; = P o m;, where m; is the cyclic permutation of [N]
by j— 1 places. We endow the set of the N cyclic permutations {Q; : j € [N]} of P
with the uniform distribution. By construction, the ensemble average is Uy. Since both
observational divergence and relative entropy with respect to the uniform distribution are
invariant under permutations of the sample space, D(&§) = D(P||Uy) < k, and y(&) =
S(P|Un) = fr(k,N). O

We turn to the construction of the distribution P. Our construction is such that P} = P,
that is, p; = p» = -+ = py. Lemma 2.5 tells us that we only need to ensure that

P[] og T

<k, Vie][N], (1)
to guarantee D(P|Q) < k. Since S(P|Uy) = logN — H(P), we wish to minimise the
entropy of P subject to the constraints in Equation (1). This is equivalent to successively
maximising py, p2, ..., and motivates the following definitions.

Define the function g(y,x) = ylog(Ny/x) — k on the positive orthant of R?. Consider
the function h : RT™ — R™ defined implicitly by the equation g(h(x), x) = 0.

Lemma 3.3. The function & : RT™ — R™ is well defined, strictly increasing and concave.

Proof. Fix an x € R*, and consider the function g.(y) = g(y,x). This function is
continuous on R, tends to —k < 0 as y — 07, and tends to oo as y — oo. By
the Intermediate Value Theorem, for some y > 0, we have g.(y) = 0. Moreover,
2«(y) < —k for 0 < y < x/N, and is strictly increasing for y > x/Ne (its derivative
is g'(y) = log(eNy/x)). Therefore, there is a unique y such that g.(y) = 0 and h(x) is well
defined.

The function h satisfies the equation hlog(Nh/x) = k, and thus the identity

x = Nhexp(—*02).
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Differentiating with respect to h, we see that

dl =N (1 + k122> exp(—klﬁz)

dh
d*x  N(kIn2)? N
e (—452)

So dh/dx > 0 for all x > 0, and h is a strictly increasing function. Note that d*x/dh*> > 0
for all h > 0, so x is a convex function of h. Since h is an increasing function, convexity
of x(h) implies concavity of h(x). L]

Let vg = 0. For i € [N], let v; = h(i), that is, v;log(Nv;/i) = k. Let s; def min{1,v;}
for i € [N]. Let p; = s1, and p; = s; — s;_1 for all 2 < i < N. Lemma 3.3 guarantees that
these numbers are well defined. We claim the following lemma.

Lemma 3.4. The vector P = (p;) € RN defined above is a probability distribution,
and P! = P, thatis, py > p, > = pn.

Proof. By definition, we have v; > 0 for all i € [N]. Therefore s; = min {l,v,} > 0.
Since h(x) is an increasing function in x, the sequence (v;) is also increasing, so (s;) is
non-decreasing. Therefore p; = s; —s;_1 = 0 for i > 1.

Now vy logvy = k > 0. Since xlogx < 0 for x € (0,1], we have vy > 1. So sy =
min {1,vy} = 1. Therefore Zfil pi = sy = 1. So P is a probability distribution on [N].

Note that

(v2/2)log(Nv2/2) = k/2 <k,

so vy > v2/2. So 51 = s55/2, that is, p; = p,. For i = 2, we have
pi — Pix1 = (i — 8i—1) — (Siy1 — 1) = 28 — Si—1 — Siy1-

Since h(x) is concave, the function min{1,h(x)} is also concave. Therefore, s; = (si—1 +
si+1)/2, and the sequence (p;) is non-decreasing. ]

The vector S = (5;) € RY, and thus represents the (cumulative) distribution function
corresponding to P.

Proof of Theorem 3.2. We claim that the probability distribution P constructed above
satisfies the properties stated in the theorem.

Since P! = P, by Lemma 2.5, we only need to verify that s;log(Ns;/i) < k for i € [N].
If s; = v;, the condition is satisfied with the equality. (Note that since k < log N, we
have s; = vy < 1.) Otherwise, s; = 1 < v;, so s;log(Ns;/i) < v;log(Nv;/i) = k.

We now bound the relative entropy S(P |Uy) from below. Let n be the smallest positive
integer such that v,y <1 and v, > 1. Note that n > 1. We also have n < N since vy > 1
(as vy logvy = k > 0). Therefore, we have s; = v; (equivalently, Ns; = i2¥/%) for i € [n—1]
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Npi=i2% — (i — 1)257
=24 4 (i— 125 —257)
k ko k_ k.
=25 + (i — 1)25-1 (2Si Sicl — 1)
— 2% 4 Nsi_ (2 1 — 1)
>2% + Ns;_ (k _ K ) In2
Si Si—1
_ob _Npky s
N

The penultimate line follows from the inequality 2¥ > 1 + xIn2 for all x € IR. Thus we
have

.
25
Npiz2 ——(———. 2
P T 2 @
Since Np; = Ns; = 2/s9)_ this also holds for i = 1.
We can now bound the relative entropy using Equation (2).
N
S(P|Un)=>_ pilog Np;
i=1
n
= ZPi log Np;
i=1
n—1 2£
2 ,‘10 7’ + n10 N n
;p 8T Ty P loEND
n—1 n—1
pik kln2
> —_ = i1 1 log Np,. 3
> ;p og( + =, ) TplogNp, (3)

We bound each of the three terms in the right-hand side of Equation (3) separately.
We start with

ni‘i pik
P '
Let p = pi, and let m = [1/p|. For every j € [m], there is an i € [n], say i = ij, such
that jp <s;; < (j+ 1)p. (Otherwise, for some i > 1, the probability p; = s; — ;1 is strictly
larger than p, an impossibility.)

We interpret the sum

n—1 n—1

Z bi _ Z Si — Si—1
S; S;

i=2 ! i=2 !

as a Riemann sum approximating the area under the curve 1/x between s; and s, by
the area under the solid lines in Figure 3. This area is bounded from below by the area
under the dashed lines, which corresponds to the area of rectangles of uniform width p
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A
1/s4
1/s5
______ 1/33
L sy
| L 1isg
i E_______ 1/36
i i i o o o
—_ L1 -
S1 82: 83 : S4 85 86
p 2p 3p 4p
and height 1/s;4; for the jth interval. Thus
> MsiniS
>k—|—kz_:p~(1+2)
1
_k+k§: 12
m+3
>k+k/
—k 4+ kln MTH )

We lower bound m = |(1/p)] next. Recall that g{(y) = ylog(Ny) — k is an increasing
function for y > 1/eN, and p = p; = 1/N. Consider the value of g((y) at the point g =
2k /logkN:

2k 2Nk loglogkN
= 1 — 2k (1——F"— ) —k=0,
g1a) logkN 8 logkN k> 2k ( logkN ) k20

since kN > 16. As g1(q) > g1(p) > 0, we have g > p. Therefore,

m 1 _ 1 lngN 1'
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Taken together with Equation (4), we get
n—1 K
3 % > k(InlogkN — In 6k + 1). (5)
i

i=1

We next derive a lower bound for the second term in Equation (3).

n—1 n—1
) = —Zpilog(si +kin2)+ Zpilogsi
i=1 i=1
n—1
>—log(1 +kIn2)+ > pilogsi. (6)
i=1

n—1
kln2
—Zp,log(l—l— Sn

i=1

Viewing the second term above as a Riemann sum, we get

n—1 Sn_t
Zpi logsi>/ log x dx
i=1 0
1
2/ log x dx
0
1
=" (7
Combining Equations (6) and (7), we get
— kin2 1
—> pilog( 1+ >—log(1 +kln2) — —. (8)
Si In2

i=1

We bound the third term in Equation (3) crudely as p,log Np, = —1. Along with the
bounds for the previous two terms, Equations (5) and (8), this shows that

def 1

S(P|Un) > fu(k.N) € k(InlogkN —In6k + 1) —log(1 +-kIn2) =1 = —.  (9)

This proves the lower bound on the relative entropy.
Moving to an upper bound, we have for i > 2,

Np;=i2% —(i— 1)277
=24 +(i—1)2% —257)

k
<24,

since the second term is negative. This also holds for i = 1, since p; = s; and s; log Ns; = k.
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Therefore,

S(P||lUx) = _ pilog Np;
i=1

<y ko

i=1

S

sp

—k—klns,
<k+k1n<1°gka)

=k(1 —Ink + In(log Nk)).

In the final inequality we have used the lower bound s; > k/log Nk. ]

The upper and lower bounds on the relative entropy of P with respect to the uniform
distribution both behave as k loglog Nk up to constant factors.

Proof of Theorem 1.1. The dominating term in both the lower and upper bounds on
the relative entropy S(P||Uy), with P as in Theorem 3.2, is kInlog Nk when N is large
compared with k. Specifically, when N > 23 we have

%kloglogNk < S(P||Un) < 2kloglog Nk.
By hypothesis, 1 <k, and by Lemma 2.4, we have k < log N. Thus,
S(P||Uy) € ©(D(P |Uy)loglog N).
The same holds for the ensembles constructed in Theorem 3.1. L]

The separation we have demonstrated above is the best possible for ensembles of
distributions that have a uniform average distribution.

Theorem 3.5. For any positive integer N, and any ensemble & = {(1;,Q;) : j € [M]} of
distributions over [N] such that Zj\/’: 14;0j = Uy, we have

2(6)<K(2InlogN —InK + 1) + 16,
where K = D(&).
Proof. Let D(Q;||Ux) = k;. We will show that
S(QIUx) <kj2lnlogN —1Ink; + 1)

when k; > 16/N. When k; < 16/N, we have S(Q;||Ux) < 16. Since k(2Inlog N —Ink + 1)
is a concave function in k, averaging over j with respect to the distribution A = (4;) gives
the claimed bound.

Fix a j such that k; > 16/N. Let R = Q}. Note that D(R|Uy) = k; and S(R|Uy) =
S(Q;lUy). Consider the distribution P constructed as in Theorem 3.2 with k = k;. Using
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notation as in this construction, we have s;log(Ns;/i) = k; for all i < n, and s, = 1.
Let t; = Zle 1, where r; def Pr(R = I). By definition, we have

tilog(Nt;/i) < kj = s;log(N's;/i).

Since the function g;(y) = ylog(Ny/i) is strictly increasing for y > i/Ne, and t; = i/N
(Fact 2.1), we have t; < s; for i < n. Since s; = 1 for i > n, we have t; < s; for these i
as well. In other words, P > R. By Fact 2.2, we have H(P) < H(R). This is equivalent
to S(R||Uy) < S(P||Uy). By Theorem 3.2,

S(P|Uy) < kj(Inlog(Nk;) — Ink; + 1).
Since k; < log N, this is at most k;j(2Inlog N —Ink; 4+ 1). 0

Finally, note that this is also the best separation possible for an ensemble of quantum
states with a completely mixed ensemble average.

Theorem 3.6. For any positive integer N, and any ensemble
& ={(4j,p)) : j€ M}

of quantum states p; over a Hilbert space of dimension N such that

M
Y hipi =N
j=1
the completely mixed state of dimension N, we have
1(&)<KQ2InlogN —InK + 1) + 16,
where K = D(&).

Proof. Let Q; be the probability distribution on [N] corresponding to the eigenvalues
of p;. By the definition of observational divergence for quantum states,

D(Q;Ux) < D(pjll 1),

Furthermore, we have

S(pjll ) = S(Q;IUn).
We now apply the same reasoning as in the proof of Theorem 3.5, and then note that
the divergence of the ensemble {(4;,Q;) : j € [M]} is bounded by D(&) and that the
right-hand side in the statement is a non-decreasing function of K. This gives us the

stated bound. (Note that we do not need Zj\i 14j0; = Uy to use the reasoning in
Theorem 3.5.) U]

Appendix A. Implications for quantum protocols
A.l. Quantum string commitment

A string commitment scheme is an extension of the well-studied and powerful cryptographic
primitive of bit commitment. In such schemes, one party, Alice, wishes to commit an entire
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string x € {0,1}" to another party, Bob. The protocol is required to be such that Bob
cannot identify the string until it is revealed by Alice. In turn, Alice should not be
able to renege on her commitment at the time of revelation. Formally, quantum string
commitment protocols are defined as follows (Buhrman et al. 2006; Jain 2008).

Definition A.1 (Quantum string commitment (QSC)). Let P = {p, : x € {0,1}"} be a
probability distribution and B be a measure of information contained in an ensemble
of quantum states. An (n,a,b)-B-QSC protocol for P is a quantum communication
protocol between two parties, Alice and Bob. Alice gets an input x € {0,1}" chosen
according to the distribution P. The starting joint state of the qubits of Alice and Bob
is some pure state independent of x. The protocol runs in two phases: the commit
phase, followed by the reveal phase. There are no intermediate measurements during
the protocol. At the end of the reveal phase, Bob measures his qubits according to a
POVM {M, : y € {0,1}"}U{I — >  M,} to determine the value of the committed string
by Alice or to detect cheating. The protocol satisfies the following properties.

1 (Correctness) Suppose Alice and Bob act honestly. Let p, be the state of Bob’s
qubits at the end of the reveal phase of the protocol, when Alice gets input x. Then
(Vx,y) Tr Myp, = 1 if and only if y = x, and 0 otherwise.

2 (Concealing property) Suppose Alice acts honestly, and Bob possibly cheats, that is,
deviates from the protocol in his local operations. Let ¢, be the state of Bob’s qubits
after the commit phase when Alice gets input x. Then the B-information B(&) of the
ensemble & = {py, o} is at most b. In particular, this also holds when both Alice and
Bob follow the protocol honestly.

3 (Binding property) Suppose Bob acts honestly and Alice possibly cheats. Let ¢ € {0,1}"
be a string in a special cheating register C that Alice keeps independent of the rest of
the registers until the end of the commit phase. Let 7. be the state of Bob’s qubits at

the end of the reveal phase when Alice has ¢ in the cheating register. Let g, 1y M,z,.

Then
Z Pcde < 20_”-

ce{0,1}"

The idea behind the above definition is as follows. At the end of the reveal phase
of an honest run of the protocol, Bob identifies x from p, by performing the POVM
measurement {M,}, U {I —>_ M,}. He accepts the committed string to be x if and only
if the observed outcome y = x; this happens with probability Tr M,p,. He declares that
Alice is cheating if outcome I — ) M, is observed. Thus, at the end of an honest run
of the protocol, with probability 1, Bob accepts the committed string as being exactly
Alice’s input string. The concealing property ensures that the amount of B-information
about x that a possibly cheating Bob gets is bounded by b. In bit-commitment protocols,
the concealing property is quantified in terms of the probability with which Bob can
guess Alice’s bit. Here instead we use different notions of information contained in the
corresponding ensemble. The binding property ensures that when a cheating Alice wishes
to postpone committing to a string until after the commit phase, she succeeds in forcing
an honest Bob to accept her choice with bounded probability (in expectation).
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Strong string commitment, in which both parameters a,b above are required to
be 0, is impossible for the same reason that strong bit-commitment protocols are
impossible (Mayers 1997; Lo and Chau 1997). Weaker versions are nonetheless possible,
and exhibit a trade-off between the concealing and binding properties. The trade-off
between the parameters a and b has been studied by several researchers (Kent 2003;
Buhrman et al. 2006; Jain 2008). Buhrman et al. (2006) studied this trade-off in both
the scenario of a single execution of the protocol and in the asymptotic regime, with an
unbounded number of parallel executions of the protocol. In the asymptotic scenario,
they showed the following result in terms of Holevo information (which is denoted by y).

Theorem A.1 (Buhrman et al. 2006). Let IT be an (n, ay, b)-x-QSC scheme. Let I1,, represent
m independent, parallel executions of IT (so Il; = II). Let a, represent the binding
parameter of IT,, and let a def lim,, e a/m. Then, a+ b = n.

Jain (2008) shows a similar trade-off result regarding QSCs, but in terms of the
divergence information of an ensemble (denoted by D).

Theorem A.2 (Jain 2008). For a single execution of the protocol of an (n,a,b)-D-QSC
scheme,

a+b+8yb+1+16=n.

As we mentioned earlier, for any ensemble &, the divergence information is bounded
by the Holevo y-information D(&) < y(&) + 1. This immediately implies the following
theorem.

Theorem A.3 (Jain 2008). For a single execution of the protocol of an (n,a,b)-y-QSC
scheme,

a+b+8b+2+17=n.

As Jain shows, this implies the asymptotic result in Buhrman et al. (2006 Theorem A.1).

The separation that we demonstrate between divergence and Holevo information
(Theorem 1.1) shows that for some ensembles over n qubits, D(&) may be a logn factor
larger than y(&). For such ensembles, the binding—concealing trade-off of Theorem A.2 is
stronger than that of Theorem A.1.

A.2. Privacy trade-off for two-party protocols for relations

Let us consider two-party protocols between Alice and Bob for computing a relation f <
X x % x %. The goal here is to find a z € & such that (x,y,z) € f, when Alice and Bob
are given x € 2 and y € %, respectively. Jain et al. (2002) studied the extent to which
the two parties may solve f while keeping their respective inputs hidden from the other
party. They showed the following result.

Result A4 (Jain et al. 2005, informal statement). Let u be a product distribution
on & x %¥. Let Q’l"/gHB(f ) represent the one-way distributional complexity of f for a
single communication from Alice to Bob and distributional error under u at most 1/3.
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Let X and Y represent the random variables corresponding to the inputs to Alice and
Bob, respectively. If there is a quantum communication protocol for f in which Bob
leaks divergence information at most b about his input Y, then Alice leaks divergence
information at least Q(Q’f’/;_}B( £)/2°®)) about her input X. A similar statement also holds

with the roles of Alice and Bob interchanged.

From the upper bound on the divergence information in terms of Holevo information,
this immediately implies the following result.

Result A.5 (Jain et al. 2005, informal statement). Let u be a product distribution on Z X
%. Let Q’f’f;_’B(f) represent the one-way distributional complexity of f for a single
communication from Alice to Bob and distributional error under u at most 1/3. Let X
and Y represent the random variables corresponding to the inputs to Alice and Bob,
respectively. If there is a quantum communication protocol for f where Bob leaks Holevo
information at most b about his input Y, then Alice leaks Holevo information at least
Q(Q’l"/g_’B(f)/ZO(b)) about her input X. A similar statement also holds with the roles of
Alice and Bob interchanged.

It follows from Theorem 1.1 that Result A.4 is much stronger than Result A.5 when the
ensemble arising in the protocol between Alice and Bob has divergence information much
smaller than its Holevo information.

A.3. Message compression

Jain et al. (2005) showed the following message compression result.

Result A.6 (Jain et al. 2005, informal statement). Let & def {pi, pi} be an ensemble. Alice

on getting i, with probability p;, intends to transmit state p; to Bob. They are willing
to tolerate a small constant ¢ loss in fidelity during transmission. There is a one-way
protocol £ that uses prior entanglement between Alice and Bob, and compresses Alice’s
state p; to a classical message with expected length of the order of D(&) bits long. Using
this classical message and the shared entanglement, Bob can reconstruct a quantum state
whose fidelity with p; is 1 —e.

This immediately gives us the following result in terms of Holevo information of & (using
D(&) < x(&) + 1).

Result A.7 (Jain et al. 2005, informal statement). Let & &t {pi,pi} be an ensemble. Alice

on getting i, with probability p;, intends to transmit state p; to Bob. They are willing
to tolerate a small constant ¢ loss in fidelity during transmission. There is a one-way
protocol £ that uses prior entanglement between Alice and Bob, and compresses Alice’s
state p; to a classical message with expected length of the order of y(&) bits long. Using
this classical message and the shared entanglement, Bob can reconstruct a quantum state
whose fidelity with p; is 1 —e.

It follows from Theorem 1.1 that Result A.6 is much stronger than Result A.7 when
the ensemble & has divergence information much smaller than its Holevo information.
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