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The notion of divergence information of an ensemble of probability distributions was

introduced by Jain, Radhakrishnan and Sen in Jain et al. (2002; 2009) in the context of the

‘substate theorem’. Since then, divergence has been recognised as a more natural measure of

information in several situations in both quantum and classical communication.

We construct ensembles of probability distributions for which divergence information may

be significantly smaller than the more standard Holevo information. As a result, we establish

that bounds previously shown for Holevo information are weaker than similar ones shown

for divergence information.

1. Introduction

In this article, we study the relationship between two different measures of information

contained in an ensemble of probability distributions. The first measure, Holevo inform-

ation , is a standard notion from information theory, and is equivalent to the notion of

mutual information between two random variables. Consider jointly distributed random

variables XY , with X taking values in a sample space X. Consider the ensemble of

distributions E = {(λi, Yi) : i ∈ X}, where λi = Pr(X = i) and Yi = Y |(X = i), which

is obtained by conditioning on values assumed by X. The Holevo information of the

ensemble is given by χ(E) = I(X : Y ) = �i∼XS(Yi‖Y ), where S(·‖·) measures the relative
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entropy of a random variable (equivalently, distribution) with respect to another. This

notion may be extended to ensembles of quantum states (see, for example, Nielsen and

Chuang (2000)), and the term ‘Holevo information’ is derived from the literature in

quantum information theory.

The second measure, the divergence information , was originally introduced in Jain

et al. (2002; 2009) and arises in the study of relative entropy, and its connection with

a ‘substate property’. The observational divergence (or simply divergence) of two classical

distributions P ,Q on the same finite sample space is maxE P (E) log2(P (E)/Q(E)), where E

ranges over all events. We may view this as a (scaled) measure of the factor by which P

may exceed Q for an event of interest. The notion of divergence information is derived

from this as D(E) = �i∼XD(Yi‖Y ), in analogy with Holevo information. A quantum

generalisation of this measure may also be defined (Jain et al. 2009).

Relative entropy and Holevo (or mutual) information have been studied extensively in

communication theory and beyond (see, for example, Cover and Thomas (1991)) since

they arise in a variety of applications. Since the discovery of the substate theorem (Jain

et al. 2002), divergence has been recognised as a more natural measure of information

in a growing number of applications (Jain et al. 2009, Section 1). The applications

include privacy trade-offs in communication protocols for computing relations (Jain et al.

2005), message compression (Jain et al. 2005), bit-string commitment (Jain 2008) and

the communication complexity of remote state preparation (Jain 2006). In particular,

divergence captures, up to a constant factor, the substate property for probability

distributions. It thus becomes relevant in every application where the substate theorem is

used.

We begin by constructing ensembles of probability distributions (equivalently, jointly

distributed random variables) for which the Holevo and divergence information are

quantitatively different.

Theorem 1.1. For every positive integer N, and real number k � 1 such that N > 236k2

,

there is an ensemble E of distributions over a sample space of size N such that D(E) = k

and χ(E) ∈ Θ(k log logN).

A more precise statement of this theorem (Theorem 3.1) and related results are given in

Section 3.

The ensembles we construct satisfy the property that the ensemble average (that is, the

distribution of the random variable Y in the description above) is uniform. We show

that the above separation is essentially the best possible whenever the ensemble average

is uniform (Theorem 3.5). The result also applies to ensembles of quantum states, where

the ensemble average is the completely mixed state (Theorem 3.6). We leave open the

possibility of larger separations for classical or quantum ensembles with non-uniform

averages.

The difference between the two measures demonstrated by Theorem 1.1 shows that in

certain applications, divergence is quantitatively a more relevant measure of information.

In Appendix A, we describe three applications where functionally similar bounds have

been established in terms of both measures. This article shows that the bounds in terms

of divergence information are, in fact, stronger.
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In earlier work on the subject, Jain et al. (2009, Appendix A) compared relative entropy

and divergence for both classical and quantum states. For pairs of distributions P ,Q

over a sample space of size N, they showed that D(P‖Q) � S(P‖Q) + 1, and S(P‖Q) �
D(P‖Q) · (N − 1). This extends to the corresponding measures of information in an

ensemble: D(E) � χ(E) + 1 and χ(E) � D(E) · (N − 1). They also showed qualitatively

similar relations for ensembles of quantum states. In addition, they constructed a pair of

distributions P ,Q such that S(P‖Q) = Ω(D(P‖Q) · N). However, they did not translate

their construction to a similar separation for ensembles of probability distributions. Our

work in this paper fills this gap for ensembles (of classical or quantum states) with a

uniform average.

2. Preliminaries

In this section, we summarise our notation and the information-theoretic concepts we will

use later in the paper – see Cover and Thomas (1991) for a deeper treatment of (classical)

information theory. While the bulk of this article refers to classical information theory,

as mentioned in Section 1, it was motivated by studies in (and has implications for)

quantum information – see Nielsen and Chuang (2000) for an introduction to quantum

information.

For a positive integer N, let [N] represent the set {1, . . . , N}. We view probability

distributions over [N] as vectors in �N . The probability assigned by distribution P to a

sample point i ∈ [N] is denoted by pi (that is, with the same letter in small case). We

use P ↓ to denote the distribution obtained from P by composing it with a permutation π

on [N] so p
↓
i = pπ(i) and p

↓
1 � p

↓
2 � · · · � p

↓
N . For an event E ⊆ [N], we use P (E) =

∑
i∈E pi

to denote the probability of that event. We use UN to denote the uniform distribution

over [N]. The expected value of a function f : [N] → � with respect to the distribution P

over [N] is abbreviated to �P f.

We will appeal to the majorisation relation for some of our arguments. The relation

tells us which of two given distributions is ‘more random’.

Definition 2.1 (Majorisation). Let P ,Q be distributions over [N]. We say that P major-

ises Q, denoted by P 	 Q, if

i∑
j=1

p
↓
j �

i∑
j=1

q
↓
j

for all i ∈ [N].

The following fact is straightforward.

Fact 2.1. Any probability distribution P on [N] majorises UN , the uniform distribution

over [N].

Throughout this paper, we will use ‘log’ to denote the logarithm with base 2 and ‘ln’ to

denote the logarithm with base e.
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Definition 2.2 (Entropy and relative entropy). Let P ,Q be probability distributions on [N].

The entropy of P is defined as H(P )
def
= −

∑N
i=1 pi log pi. The relative entropy between P

and Q, denoted S(P‖Q), is defined by

S(P‖Q)
def
=

N∑
i=1

pi log
pi

qi
.

Note that the relative entropy with respect to the uniform distribution is connected to

entropy since S(P‖UN) = logN − H(P ).

We can formalise the connection between majorisation and randomness through the

following fact.

Fact 2.2. If P ,Q are distributions over [N] such that P majorises Q, that is, P 	 Q, then

H(P ) � H(Q).

The notion of observational divergence was defined in Jain et al. (2002) in the context

of the ‘substate theorem’.

Definition 2.3 (Observational divergence). Let P ,Q be probability distributions on [N].

Then the observational divergence between them, denoted D(P‖Q), is defined by

D(P‖Q)
def
= max

f:[N]→[0,1]
(�P f) log

�P f

�Qf
.

Note that we allow the quantity to take the value +∞. Throughout this paper we will

simply refer to ‘observational divergence’ as ‘divergence’.

The divergence D(P‖Q) is always non-negative, and it is finite precisely when the

support of P is contained in the support of Q (Jain et al. 2002). Due to convexity, the

divergence between two distributions is attained by the characteristic function of an event.

Lemma 2.3.

D(P‖Q) = max
E⊆[N]

P (E) log
P (E)

Q(E)
.

Proof. Let F denote the (convex) set of functions from [N] to [0, 1]. The extreme points

of F are precisely the characteristic functions of events in [N]. For an extreme point, say

the characteristic function fE of the event E ⊆ [N], we have �P fE = P (E).

If the divergence is +∞, there is an event for which the right-hand side also takes the

value +∞. So assume that the divergence is finite. In this case, the right-hand side is also

finite since the support of P is contained in the support of Q. By restricting f : [N] → [0, 1]

to characteristic functions of events, we see that D(P‖Q) is at least the expression on the

right-hand side above.

For the inequality in the other direction, note that the function

g(x) = (ax + b) log

(
ax + b

cx + d

)

defined on [0, 1] is convex in x, for any a, b, c, d ∈ � such that ax + b � 0 and cx + d > 0

when x ∈ [0, 1]. Therefore, the function g(x) attains its maximum at either x = 0 or x = 1.
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The convexity of g(x) implies that for any α ∈ [0, 1], and functions f, f′ ∈ F, we have

(�P (αf + (1 − α)f′)) log
�P (αf + (1 − α)f′)

�Q(αf + (1 − α)f′)

= (α(�P f − �P f
′) + �P f

′) log
α(�P f − �P f

′) + �P f
′

α(�Qf − �Qf′) + �Qf′

� max

{
(�P f) log

�P f

�Qf
, (�P f

′) log
�P f

′

�Qf′

}
.

So the divergence is attained at an extreme point of F, which proves the claim.

From now on, we will only use the equivalent definition of divergence given by this

lemma.

The divergence of any distribution with respect to the uniform distribution is bounded.

Lemma 2.4. For any probability distribution P on [N], we have 0 � D(P‖UN) � logN.

Proof. Consider the event E that achieves the divergence between P and UN . Without

loss of generality, the event E is non-empty. Therefore

P (E) � UN(E) � 1/N,

and

0 � D(P‖UN) � P (E) log(P (E)N) � logN.

Note that we only need to maximise over N events to calculate the divergence with

respect to the uniform distribution.

Lemma 2.5. For any probability distribution P on [N] such that P ↓ = P , that is,

p1 � p2 � · · · � pN , we have

D(P‖UN) = max
i∈[N]

P ([i]) log
N · P ([i])

i
.

Proof. By the definition of observational divergence, the right-hand side in the above

is bounded by D(P‖UN). Note that for the inequality in the other direction, the

probability P (E) of any event E with size nE = |E| is bounded by P ([nE]), the probability

of the first nE elements in [N]. So we have

D(P‖Q) = max
E⊆[N]

P (E) log
N · P (E)

nE

� max
E⊆[N]

P (E) log
N · P ([nE])

nE

� max
E⊆[N]

P ([nE]) log
N · P ([nE])

nE
,

since P majorises UN (Fact 2.1) and

P ([nE]) � nE
N
.

This is equivalent to the right-hand side in the statement of the lemma.
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Definition 2.4 (Ensemble). An ensemble is a sequence of pairs {(λj , Qj) : j ∈ [M]} for

some positive integer M, where Λ = (λj) ∈ �M is a probability distribution on [M] and Qj

are probability distributions over the same sample space Y.

Definition 2.5 (Holevo information). The Holevo information of an ensemble E = {(λj , Qj) :

j ∈ [M]}, denoted χ(E), is defined by

χ(E)
def
=

M∑
j=1

λj S(Qj‖Q),

where Q =
∑M

j=1 λjQj is the ensemble average.

Definition 2.6 (Divergence information). The divergence information of an ensemble E
given by E = {(λj , Qj) : j ∈ [M]}, denoted D(E), is defined by

D(E)
def
=

M∑
j=1

λj D(Qj‖Q),

where Q =
∑M

j=1 λjQj is the ensemble average.

3. Divergence versus relative entropy

In this section we describe the construction of an ensemble for which there is a large

separation between the divergence and Holevo information. The ensemble has the property

that the ensemble average is uniform. As a by-product of our construction, we will also

obtain a bound on the maximum possible separation for ensembles with a uniform

average.

We begin with the construction of the ensemble. Let

fL(k,N) = k(ln log(kN) − ln(6k) + 1) − log(1 + k ln 2) − 1 − 1

ln 2

on points in the positive orthant in �2 with Nk > 1.

Theorem 3.1. For every integer N > 1, and every positive real number k with

16
N

� k < logN,

there is an ensemble

E =
{
( 1
N
, Qi) : i ∈ [N]

}
with

1
N

∑
i

Qi = UN,

where UN is the uniform distribution over [N], and with D(E) � k and

χ(E) � fL(k,N).

To construct the ensemble described in the above theorem, we first construct a

probability distribution P on [N] with observational divergence D(P‖UN) � k such that
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its relative entropy S(P‖UN) is large in comparison with k. Let fU = k(ln log(Nk)−ln k+1)

be defined on points in the positive orthant of �2 with kN > 1.

Theorem 3.2. For every integer N > 1, and every positive real number k, with

16
N

� k < logN,

there is a probability distribution P with D(P‖UN) = k, and

fL(k,N) � S(P‖UN) � fU(k,N).

The construction of the ensemble is now immediate.

Proof of Theorem 3.1. Let Qj = P ◦ πj , where πj is the cyclic permutation of [N]

by j − 1 places. We endow the set of the N cyclic permutations {Qj : j ∈ [N]} of P

with the uniform distribution. By construction, the ensemble average is UN . Since both

observational divergence and relative entropy with respect to the uniform distribution are

invariant under permutations of the sample space, D(E) = D(P‖UN) � k, and χ(E) =

S(P‖UN) � fL(k,N).

We turn to the construction of the distribution P . Our construction is such that P ↓ = P ,

that is, p1 � p2 � · · · � pN . Lemma 2.5 tells us that we only need to ensure that

P ([i]) log
N · P ([i])

i
� k, ∀ i ∈ [N], (1)

to guarantee D(P‖Q) � k. Since S(P‖UN) = logN − H(P ), we wish to minimise the

entropy of P subject to the constraints in Equation (1). This is equivalent to successively

maximising p1, p2, . . ., and motivates the following definitions.

Define the function g(y, x) = y log(Ny/x) − k on the positive orthant of �2. Consider

the function h : �+ → �+ defined implicitly by the equation g(h(x), x) = 0.

Lemma 3.3. The function h : �+ → �+ is well defined, strictly increasing and concave.

Proof. Fix an x ∈ �+, and consider the function gx(y) = g(y, x). This function is

continuous on �+, tends to −k < 0 as y → 0+, and tends to ∞ as y → ∞. By

the Intermediate Value Theorem, for some y > 0, we have gx(y) = 0. Moreover,

gx(y) < −k for 0 < y � x/N, and is strictly increasing for y > x/Ne (its derivative

is g′
x(y) = log(eNy/x)). Therefore, there is a unique y such that gx(y) = 0 and h(x) is well

defined.

The function h satisfies the equation h log(Nh/x) = k, and thus the identity

x = Nh exp
(
− k ln 2

h

)
.
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Differentiating with respect to h, we see that

dx

dh
=N

(
1 +

k ln 2

h

)
exp

(
− k ln 2

h

)

d2x

dh2
=

N(k ln 2)2

h3
exp

(
− k ln 2

h

)
.

So dh/dx > 0 for all x > 0, and h is a strictly increasing function. Note that d2x/dh2 > 0

for all h > 0, so x is a convex function of h. Since h is an increasing function, convexity

of x(h) implies concavity of h(x).

Let v0 = 0. For i ∈ [N], let vi = h(i), that is, vi log(Nvi/i) = k. Let si
def
= min{1, vi}

for i ∈ [N]. Let p1 = s1, and pi = si − si−1 for all 2 � i � N. Lemma 3.3 guarantees that

these numbers are well defined. We claim the following lemma.

Lemma 3.4. The vector P = (pi) ∈ �N defined above is a probability distribution,

and P ↓ = P , that is, p1 � p2 � · · · � pN .

Proof. By definition, we have vi > 0 for all i ∈ [N]. Therefore s1 = min {1, v1} > 0.

Since h(x) is an increasing function in x, the sequence (vi) is also increasing, so (si) is

non-decreasing. Therefore pi = si − si−1 � 0 for i > 1.

Now vN log vN = k > 0. Since x log x � 0 for x ∈ (0, 1], we have vN > 1. So sN =

min {1, vN} = 1. Therefore
∑N

i=1 pi = sN = 1. So P is a probability distribution on [N].

Note that

(v2/2) log(Nv2/2) = k/2 < k,

so v1 > v2/2. So s1 � s2/2, that is, p1 � p2. For i � 2, we have

pi − pi+1 = (si − si−1) − (si+1 − si) = 2si − si−1 − si+1.

Since h(x) is concave, the function min {1, h(x)} is also concave. Therefore, si � (si−1 +

si+1)/2, and the sequence (pi) is non-decreasing.

The vector S = (si) ∈ �N , and thus represents the (cumulative) distribution function

corresponding to P .

Proof of Theorem 3.2. We claim that the probability distribution P constructed above

satisfies the properties stated in the theorem.

Since P ↓ = P , by Lemma 2.5, we only need to verify that si log(Nsi/i) � k for i ∈ [N].

If si = vi, the condition is satisfied with the equality. (Note that since k < logN, we

have s1 = v1 < 1.) Otherwise, si = 1 < vi, so si log(Nsi/i) < vi log(Nvi/i) = k.

We now bound the relative entropy S(P‖UN) from below. Let n be the smallest positive

integer such that vn−1 � 1 and vn > 1. Note that n > 1. We also have n � N since vN > 1

(as vN log vN = k > 0). Therefore, we have si = vi (equivalently, Nsi = i2k/si ) for i ∈ [n− 1]
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and sn = 1 < vn. Thus, for 1 < i < n,

Npi = i2
k
si − (i − 1)2

k
si−1

= 2
k
si + (i − 1)(2

k
si − 2

k
si−1 )

= 2
k
si + (i − 1)2

k
si−1 (2

k
si

− k
si−1 − 1)

= 2
k
si + Nsi−1(2

k
si

− k
si−1 − 1)

� 2
k
si + Nsi−1

(
k

si
− k

si−1

)
ln 2

= 2
k
si − Npik

si
ln 2.

The penultimate line follows from the inequality 2x � 1 + x ln 2 for all x ∈ �. Thus we

have

Npi �
2

k
si

1 + k
si

ln 2
. (2)

Since Np1 = Ns1 = 2(k/s1), this also holds for i = 1.

We can now bound the relative entropy using Equation (2).

S(P‖UN) =

N∑
i=1

pi logNpi

=

n∑
i=1

pi logNpi

�
n−1∑
i=1

pi log
2

k
si

1 + k
si

ln 2
+ pn logNpn

�
n−1∑
i=1

pik

si
−

n−1∑
i=1

pi log

(
1 +

k ln 2

si

)
+ pn logNpn. (3)

We bound each of the three terms in the right-hand side of Equation (3) separately.

We start with
n−1∑
i=1

pik

si
.

Let p = p1, and let m = �1/p�. For every j ∈ [m], there is an i ∈ [n], say i = ij , such

that jp � sij � (j + 1)p. (Otherwise, for some i > 1, the probability pi = si − si−1 is strictly

larger than p, an impossibility.)

We interpret the sum
n−1∑
i=2

pi

si
=

n−1∑
i=2

si − si−1

si

as a Riemann sum approximating the area under the curve 1/x between s1 and sn−1 by

the area under the solid lines in Figure 3. This area is bounded from below by the area

under the dashed lines, which corresponds to the area of rectangles of uniform width p
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s1 s3s2 s4

p 2p 3p

s5 s6

4p

1/s1

1/s2

1/s3

1/s4
1/s5

1/s6

and height 1/sj+1 for the jth interval. Thus,

n−1∑
i=1

pik

si
� k + k

m∑
j=1

p · 1

sij+1

� k + k

m∑
j=1

p · 1

(j + 2)p

= k + k

m∑
j=1

1

j + 2

� k + k

∫ m+3

3

1

x
dx

= k + k ln
m + 3

3
. (4)

We lower bound m = �(1/p)� next. Recall that g1(y) = y log(Ny) − k is an increasing

function for y > 1/eN, and p = p1 � 1/N. Consider the value of g1(y) at the point q =

2k/log kN:

g1(q) =
2k

log kN
log

2Nk

log kN
− k > 2k

(
1 − log log kN

log kN

)
− k � 0,

since kN � 16. As g1(q) > g1(p) > 0, we have q > p. Therefore,

m � 1
p

− 1 � log kN
2k

− 1.
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Taken together with Equation (4), we get

n−1∑
i=1

pik

si
� k(ln log kN − ln 6k + 1). (5)

We next derive a lower bound for the second term in Equation (3).

−
n−1∑
i=1

pi log

(
1 +

k ln 2

si

)
= −

n−1∑
i=1

pi log(si + k ln 2) +

n−1∑
i=1

pi log si

� − log(1 + k ln 2) +

n−1∑
i=1

pi log si. (6)

Viewing the second term above as a Riemann sum, we get

n−1∑
i=1

pi log si �

∫ sn−1

0

log x dx

�

∫ 1

0

log x dx

= − 1

ln 2
. (7)

Combining Equations (6) and (7), we get

−
n−1∑
i=1

pi log

(
1 +

k ln 2

si

)
� − log(1 + k ln 2) − 1

ln 2
. (8)

We bound the third term in Equation (3) crudely as pn logNpn � −1. Along with the

bounds for the previous two terms, Equations (5) and (8), this shows that

S(P‖UN) � fL(k,N)
def
= k(ln log kN − ln 6k + 1) − log(1 + k ln 2) − 1 − 1

ln 2
. (9)

This proves the lower bound on the relative entropy.

Moving to an upper bound, we have for i � 2,

Npi = i2
k
si − (i − 1)2

k
si−1

= 2
k
si + (i − 1)(2

k
si − 2

k
si−1 )

� 2
k
si ,

since the second term is negative. This also holds for i = 1, since p1 = s1 and s1 logNs1 = k.
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Therefore,

S(P‖UN) =

n∑
i=1

pi logNpi

�
n∑

i=1

kpi

si

� k + k

∫ 1

s1

1

s
ds

= k − k ln s1

� k + k ln

(
logNk

k

)

= k(1 − ln k + ln(logNk)).

In the final inequality we have used the lower bound s1 � k/ logNk.

The upper and lower bounds on the relative entropy of P with respect to the uniform

distribution both behave as k log logNk up to constant factors.

Proof of Theorem 1.1. The dominating term in both the lower and upper bounds on

the relative entropy S(P‖UN), with P as in Theorem 3.2, is k ln logNk when N is large

compared with k. Specifically, when N > 236k2

, we have

1

2
k log logNk � S(P‖UN) � 2k log logNk.

By hypothesis, 1 � k, and by Lemma 2.4, we have k � logN. Thus,

S(P‖UN) ∈ Θ(D(P‖UN) log logN).

The same holds for the ensembles constructed in Theorem 3.1.

The separation we have demonstrated above is the best possible for ensembles of

distributions that have a uniform average distribution.

Theorem 3.5. For any positive integer N, and any ensemble E = {(λj , Qj) : j ∈ [M]} of

distributions over [N] such that
∑M

j=1 λjQj = UN , we have

χ(E) � K(2 ln logN − lnK + 1) + 16,

where K = D(E).

Proof. Let D(Qj‖UN) = kj . We will show that

S(Qj‖UN) � kj(2 ln logN − ln kj + 1)

when kj � 16/N. When kj < 16/N, we have S(Qj‖UN) < 16. Since k(2 ln logN − ln k + 1)

is a concave function in k, averaging over j with respect to the distribution Λ = (λj) gives

the claimed bound.

Fix a j such that kj > 16/N. Let R = Q
↓
j . Note that D(R‖UN) = kj and S(R‖UN) =

S(Qj‖UN). Consider the distribution P constructed as in Theorem 3.2 with k = kj . Using
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notation as in this construction, we have si log(Nsi/i) = kj for all i < n, and sn = 1.

Let ti =
∑i

l=1 rl , where rl
def
= Pr(R = l). By definition, we have

ti log(Nti/i) � kj = si log(Nsi/i).

Since the function gi(y) = y log(Ny/i) is strictly increasing for y � i/Ne, and ti � i/N

(Fact 2.1), we have ti � si for i < n. Since si = 1 for i � n, we have ti � si for these i

as well. In other words, P 	 R. By Fact 2.2, we have H(P ) � H(R). This is equivalent

to S(R‖UN) � S(P‖UN). By Theorem 3.2,

S(P‖UN) � kj(ln log(Nkj) − ln kj + 1).

Since kj � logN, this is at most kj(2 ln logN − ln kj + 1).

Finally, note that this is also the best separation possible for an ensemble of quantum

states with a completely mixed ensemble average.

Theorem 3.6. For any positive integer N, and any ensemble

E = {(λj , ρj) : j ∈ [M]}

of quantum states ρj over a Hilbert space of dimension N such that

M∑
j=1

λjρj = I
N
,

the completely mixed state of dimension N, we have

χ(E) � K(2 ln logN − lnK + 1) + 16,

where K = D(E).

Proof. Let Qj be the probability distribution on [N] corresponding to the eigenvalues

of ρj . By the definition of observational divergence for quantum states,

D(Qj‖UN) � D(ρj‖ I
N

).

Furthermore, we have

S(ρj‖ I
N

) = S(Qj‖UN).

We now apply the same reasoning as in the proof of Theorem 3.5, and then note that

the divergence of the ensemble {(λj , Qj) : j ∈ [M]} is bounded by D(E) and that the

right-hand side in the statement is a non-decreasing function of K . This gives us the

stated bound. (Note that we do not need
∑M

j=1 λjQj = UN to use the reasoning in

Theorem 3.5.)

Appendix A. Implications for quantum protocols

A.1. Quantum string commitment

A string commitment scheme is an extension of the well-studied and powerful cryptographic

primitive of bit commitment . In such schemes, one party, Alice, wishes to commit an entire

https://doi.org/10.1017/S0960129510000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000289


R. Jain, A. Nayak and Y. Su 990

string x ∈ {0, 1}n to another party, Bob. The protocol is required to be such that Bob

cannot identify the string until it is revealed by Alice. In turn, Alice should not be

able to renege on her commitment at the time of revelation. Formally, quantum string

commitment protocols are defined as follows (Buhrman et al. 2006; Jain 2008).

Definition A.1 (Quantum string commitment (QSC)). Let P = {px : x ∈ {0, 1}n} be a

probability distribution and B be a measure of information contained in an ensemble

of quantum states. An (n, a, b)-B-QSC protocol for P is a quantum communication

protocol between two parties, Alice and Bob. Alice gets an input x ∈ {0, 1}n chosen

according to the distribution P . The starting joint state of the qubits of Alice and Bob

is some pure state independent of x. The protocol runs in two phases: the commit

phase, followed by the reveal phase. There are no intermediate measurements during

the protocol. At the end of the reveal phase, Bob measures his qubits according to a

POVM {My : y ∈ {0, 1}n} ∪ {I −
∑

y My} to determine the value of the committed string

by Alice or to detect cheating. The protocol satisfies the following properties.

1 (Correctness) Suppose Alice and Bob act honestly. Let ρx be the state of Bob’s

qubits at the end of the reveal phase of the protocol, when Alice gets input x. Then

(∀x, y) Tr Myρx = 1 if and only if y = x, and 0 otherwise.

2 (Concealing property) Suppose Alice acts honestly, and Bob possibly cheats, that is,

deviates from the protocol in his local operations. Let σx be the state of Bob’s qubits

after the commit phase when Alice gets input x. Then the B-information B(E) of the

ensemble E = {px, σx} is at most b. In particular, this also holds when both Alice and

Bob follow the protocol honestly.

3 (Binding property) Suppose Bob acts honestly and Alice possibly cheats. Let c ∈ {0, 1}n
be a string in a special cheating register C that Alice keeps independent of the rest of

the registers until the end of the commit phase. Let τc be the state of Bob’s qubits at

the end of the reveal phase when Alice has c in the cheating register. Let qc
def
= Tr Mcτc.

Then ∑
c∈{0,1}n

pcqc � 2a−n.

The idea behind the above definition is as follows. At the end of the reveal phase

of an honest run of the protocol, Bob identifies x from ρx by performing the POVM

measurement {My}y ∪ {I −
∑

y My}. He accepts the committed string to be x if and only

if the observed outcome y = x; this happens with probability Tr Mxρx. He declares that

Alice is cheating if outcome I −
∑

x Mx is observed. Thus, at the end of an honest run

of the protocol, with probability 1, Bob accepts the committed string as being exactly

Alice’s input string. The concealing property ensures that the amount of B-information

about x that a possibly cheating Bob gets is bounded by b. In bit-commitment protocols,

the concealing property is quantified in terms of the probability with which Bob can

guess Alice’s bit. Here instead we use different notions of information contained in the

corresponding ensemble. The binding property ensures that when a cheating Alice wishes

to postpone committing to a string until after the commit phase, she succeeds in forcing

an honest Bob to accept her choice with bounded probability (in expectation).
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Strong string commitment, in which both parameters a, b above are required to

be 0, is impossible for the same reason that strong bit-commitment protocols are

impossible (Mayers 1997; Lo and Chau 1997). Weaker versions are nonetheless possible,

and exhibit a trade-off between the concealing and binding properties. The trade-off

between the parameters a and b has been studied by several researchers (Kent 2003;

Buhrman et al. 2006; Jain 2008). Buhrman et al. (2006) studied this trade-off in both

the scenario of a single execution of the protocol and in the asymptotic regime, with an

unbounded number of parallel executions of the protocol. In the asymptotic scenario,

they showed the following result in terms of Holevo information (which is denoted by χ).

Theorem A.1 (Buhrman et al. 2006). Let Π be an (n, a1, b)-χ-QSC scheme. Let Πm represent

m independent, parallel executions of Π (so Π1 = Π). Let am represent the binding

parameter of Πm and let a
def
= limm→∞ am/m. Then, a + b � n.

Jain (2008) shows a similar trade-off result regarding QSCs, but in terms of the

divergence information of an ensemble (denoted by D).

Theorem A.2 (Jain 2008). For a single execution of the protocol of an (n, a, b)-D-QSC

scheme,

a + b + 8
√
b + 1 + 16 � n.

As we mentioned earlier, for any ensemble E, the divergence information is bounded

by the Holevo χ-information D(E) � χ(E) + 1. This immediately implies the following

theorem.

Theorem A.3 (Jain 2008). For a single execution of the protocol of an (n, a, b)-χ-QSC

scheme,

a + b + 8
√
b + 2 + 17 � n.

As Jain shows, this implies the asymptotic result in Buhrman et al. (2006 Theorem A.1).

The separation that we demonstrate between divergence and Holevo information

(Theorem 1.1) shows that for some ensembles over n qubits, D(E) may be a log n factor

larger than χ(E). For such ensembles, the binding–concealing trade-off of Theorem A.2 is

stronger than that of Theorem A.1.

A.2. Privacy trade-off for two-party protocols for relations

Let us consider two-party protocols between Alice and Bob for computing a relation f ⊆
X × Y × Z. The goal here is to find a z ∈ Z such that (x, y, z) ∈ f, when Alice and Bob

are given x ∈ X and y ∈ Y, respectively. Jain et al. (2002) studied the extent to which

the two parties may solve f while keeping their respective inputs hidden from the other

party. They showed the following result.

Result A.4 (Jain et al. 2005, informal statement). Let μ be a product distribution

on X × Y. Let Q
μ,A→B
1/3 (f) represent the one-way distributional complexity of f for a

single communication from Alice to Bob and distributional error under μ at most 1/3.
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Let X and Y represent the random variables corresponding to the inputs to Alice and

Bob, respectively. If there is a quantum communication protocol for f in which Bob

leaks divergence information at most b about his input Y , then Alice leaks divergence

information at least Ω(Qμ,A→B
1/3 (f)/2O(b)) about her input X. A similar statement also holds

with the roles of Alice and Bob interchanged.

From the upper bound on the divergence information in terms of Holevo information,

this immediately implies the following result.

Result A.5 (Jain et al. 2005, informal statement). Let μ be a product distribution on X ×
Y. Let Q

μ,A→B
1/3 (f) represent the one-way distributional complexity of f for a single

communication from Alice to Bob and distributional error under μ at most 1/3. Let X

and Y represent the random variables corresponding to the inputs to Alice and Bob,

respectively. If there is a quantum communication protocol for f where Bob leaks Holevo

information at most b about his input Y , then Alice leaks Holevo information at least

Ω(Qμ,A→B
1/3 (f)/2O(b)) about her input X. A similar statement also holds with the roles of

Alice and Bob interchanged.

It follows from Theorem 1.1 that Result A.4 is much stronger than Result A.5 when the

ensemble arising in the protocol between Alice and Bob has divergence information much

smaller than its Holevo information.

A.3. Message compression

Jain et al. (2005) showed the following message compression result.

Result A.6 (Jain et al. 2005, informal statement). Let E def
= {pi, ρi} be an ensemble. Alice

on getting i, with probability pi, intends to transmit state ρi to Bob. They are willing

to tolerate a small constant ε loss in fidelity during transmission. There is a one-way

protocol P that uses prior entanglement between Alice and Bob, and compresses Alice’s

state ρi to a classical message with expected length of the order of D(E) bits long. Using

this classical message and the shared entanglement, Bob can reconstruct a quantum state

whose fidelity with ρi is 1 − ε.

This immediately gives us the following result in terms of Holevo information of E (using

D(E) � χ(E) + 1).

Result A.7 (Jain et al. 2005, informal statement). Let E def
= {pi, ρi} be an ensemble. Alice

on getting i, with probability pi, intends to transmit state ρi to Bob. They are willing

to tolerate a small constant ε loss in fidelity during transmission. There is a one-way

protocol P that uses prior entanglement between Alice and Bob, and compresses Alice’s

state ρi to a classical message with expected length of the order of χ(E) bits long. Using

this classical message and the shared entanglement, Bob can reconstruct a quantum state

whose fidelity with ρi is 1 − ε.

It follows from Theorem 1.1 that Result A.6 is much stronger than Result A.7 when

the ensemble E has divergence information much smaller than its Holevo information.
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