J. London Math. Soc. (2) 104 (2021) 1384-1432 doi:10.1112/jlms.12463

The local motivic DT /PT correspondence

Ben Davison and Andrea T. Ricolfi

ABSTRACT

We show that the Quot scheme Q7 = Quot,s(#L,n) parameterising length n quotients of the
ideal sheaf of a line in A® is a global critical locus, and calculate the resulting motivic partition
function (varying n), in the ring of relative motives over the configuration space of points in A®.
As in the work of Behrend—Bryan—Szendréi, this enables us to define a virtual motive for the
Quot scheme of n points of the ideal sheaf .o C Oy, where C C Y is a smooth curve embedded
in a smooth 3-fold Y, and we compute the associated motivic partition function. The result
fits into a motivic wall-crossing type formula, refining the relation between Behrend’s virtual
Euler characteristic of Quoty (#c,n) and of the symmetric product Sym™ C. Our ‘relative’
analysis leads to results and conjectures regarding the pushforward of the sheaf of vanishing
cycles along the Hilbert-Chow map Q7 — Sym™(A®), and connections with cohomological Hall
algebra representations.
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1. Introduction

1.1. Overview

Let C be a smooth curve embedded in a smooth 3-fold Y with ideal sheaf .- C Oy . For an
integer n > 0, the Quot scheme

Q¢ = Quoty (He,n)

parameterises closed subschemes Z C Y containing C' and differing from it by an effective
zero-cycle of length n. The main purpose of this paper is to construct a virtual motive
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for this Quot scheme, that we view as a 1l-dimensional analogue of the degree 0 motivic
Donaldson—Thomas invariant [Hilb™ Y]y, defined by Behrend, Bryan and Szendréi [3].

The Quot scheme Q7 can be seen as a moduli space of curves and points in Y, where
the curve C is fixed. This geometric situation presents a new feature that was absent in the
purely 0-dimensional case: wall-crossing. More precisely, it is proved in [32, Proposition 5.1]
that the generating function of the Behrend weighted Euler characteristics x(Q¢:) satisfies the
wall-crossing type formula

doX@Qe)" = M=t (14 1), (2)

n=0

where M(t) = ]],,>,(1 — ™)~ is the MacMahon function. We show that the motivic partition
function encoding the motivic classes (0.1) admits a factorisation similar to (0.2), where the
point contribution, refining the factor M(—t)X(Y), is precisely the motivic partition of the
Hilbert schemes Hilb" Y computed in [3]. The curve contribution, on the other hand, refines
the factor (14 ¢)"X(©) and is given by the (shifted) motivic zeta function of the curve C,
namely

Z L% [Sym" O] ' (3)

n=0

Our approach to the problem is a natural extension of the approach of Behrend, Bryan and
Szendrdi, in that our definitions and calculations take place with respect to the natural local
model L C A? given by fixing a line in affine space — since they consider only finite-dimensional
quotients of @s, their local model is simply A3. As in their work, for general embeddings
C CY, we build [Q%]vir out of the local model via power structures. We leave for another day
the question of whether this virtual motive accords with the virtual motive one obtains from
the machinery of (—1)-shifted symplectic stacks, and concentrate on calculating everything
in sight for the local theory. Furthermore, since the key to gluing local models appears to
be the direct image of the vanishing cycles sheaf to the configuration space of points on A3,
we prove all of our results in the lambda ring of motives relative to this configuration space.
We conjecture, moreover, that the wall-crossing type identity (0.2) can be categorified, that
is, lifted to an isomorphism between the vanishing cycle cohomologies of the relevant moduli
spaces (see Section 5.1).

Just as Behrend, Bryan and Szendrdi realise the local model Hilb™ A® as a critical locus and
show that the associated motivic Donaldson-Thomas invariants [Hilb" A?’]Vir are determined,
via power structures, by the motivic weights of the punctual Hilbert schemes Hilb" (A%),, we
show, for two convenient local models that can also be realised as critical loci, that the induced
virtual motives are determined by the motivic contribution of the punctual loci. In our case,
we also need to consider the contribution of points embedded on the curve C C Y, and this is
what gives rise to the factor (0.3) in our motivic wall-crossing formula.

The appearance of symmetric products is pretty natural and has a neat interpretation in
terms of the (C-local) DT/PT correspondence: on a Calabi-Yau 3-fold Y, the symmetric
products Sym" C C Py(g.)+n(Y,[C]) are precisely the C-local moduli spaces in the stable
pair theory of Y, just as QF C I, (g.)+n (Y, [C]) are the C-local moduli spaces in Donaldson—
Thomas theory.

For a rigid curve C' C Y in a Calabi—Yau 3-fold, one can interpret the classes (0.1) as motivic
Donaldson—Thomas invariants, in the same spirit as in the 0-dimensional case.

We next give an overview of our main results. The main technical tool we use is a motivic
stratification technique, that we apply to the study of the (relative) motivic Donaldson—Thomas
invariants of the Quot schemes Q¢ , where Cy C X is the exceptional curve in the resolved
conifold X = Tot(Op1(—1) ® Op: (—1)).
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1386 BEN DAVISON AND ANDREA T. RICOLFI

Main results

The first step towards the construction of the motivic classes (0.1) consists in setting up a
convenient local model. With respect to the local model

L C A3,

we then prove the following as part of Theorem 2.2.
THEOREM A. The Quot scheme @7} is a global critical locus.

An analogous statement is proven in [3, Proposition 3.1] for the Hilbert scheme Hilb"(A?),
which is realised as the critical locus of a function on the non-commutative Hilbert scheme.
Via the theory of motivic vanishing cycles [12], Theorem A produces a relative virtual motive

I n n h n n
QLe/lA3 = Z (-1 [QL =% Sym Ag} vir € Msym(as),
n=0
where the maps hc,, are Hilbert—Chow morphisms. The following result, proven in Section 4.2,

follows from Corollary 4.6 and the main calculation of Section 3.

THEOREM B. There is an identity

Qi =B, (3 (10 4] m0) ) o, (011> 4 (1)),

n>0

(4)

where A,,: A> — Sym" A? is the small diagonal, and

sL2 —L—%
QBBS — (—1)”L_5ﬁ € Me.

Passing to absolute motives, the first factor in (0.4) becomes the (signed) motivic partition
function of Hilb™(A?) computed in [3] and reviewed in Section 1.7. The operation Exp, in
Theorem B is a lift to the lambda ring Mgy, (a3) of the usual plethystic exponential for power
series with coefficients in the ring of absolute motives. These motivic exponentials are reviewed
in Section 1.5.1. We let

Quae(t) =) [QF] ;"

n>=0

be the absolute partition function. Up to a sign, it is obtained by pushing (0.4) forward to a
point. The absolute version of Theorem B then reads

~L3¢t ,
s(—t) = & — L2 .
Quyas(=1) = Exp <(1 +L-3¢t) (1+ L) t) ®)

Let P, C QF be the closed subset parameterising quotients .#;, — .% such that .% is entirely

supported at the origin 0 € L. We assign a motivic weight
[P&v]vir € Mc

to this locus. The subscript ‘crv’ stands for ‘curve’. The punctual Hilbert scheme Pp, C Q7F,
which we view as parameterising quotients supported at a single point in A%\ L, also inherits a
motivic weight, that agrees (as shown in Proposition 4.3) with the class [Hilb" (A®)g]y;, defined
in [3] starting from the critical structure on Hilb" (A3). We show in Theorem 4.7 that [Q7]yi, is
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determined by these two types of ‘punctual’ motivic classes. They moreover allow us to define
a virtual motive [Q¢]vir € Mc for every smooth curve C'C Y in a smooth quasi-projective
3-fold Y. In other words, the class we define satisfies x[Q%]vir = X(Q%).

We then consider the generating function

Qoyv () =Y [Q¢],, 1" (6)

n=0

For a smooth quasi-projective variety X of dimension at most 3, let

Zx(t)=">_ [Hib"X] -t

n=0

be the motivic partition function of the Hilbert scheme of points. In Theorem 4.9, we prove
the following explicit formula, generalising (0.5).

THEOREM C. LetY be a smooth quasi-projective 3-fold, C' C 'Y a smooth curve. Then
[Qg] vir = Z [Hllbn7J Y} vir ’ [Sym7 C} vir (7)
j=0
in Mc. In other words, we have a factorisation
Qc/y =2y - Zc,

that, rewritten in terms of the motivic exponential, reads

Qcyy (—t) = Exp (—t[Y]vir Exp(—t[P']yi) — t[Clyir).

In the above formulas, one has [U];, = L~ (4™ U)/2[7] € Mc for a smooth scheme U. One can
view the factorisation Qc/y = Zy - Z¢ as a motivic refinement of the identity (0.2). Indeed, we
have M (—t)X(Y) = xZy (t), and (1 +¢)™X() =3 ¥(Sym" C)t" = xZc(t). The relation (0.2)
says that Quot schemes and symmetric products are related by a y-weighted wall-crossing type
formula, and Theorem C upgrades this statement to the motivic level.

Calabi—Yau 3-folds

Let Y be a smooth projective Calabi—Yau 3-fold. For an integer m € Z and a homology class
B € Hy(Y,Z), the moduli space I,,(Y,8) of ideal sheaves .#; C Oy with Chern character
(1,0,—8,—m) carries a symmetric perfect obstruction theory and the Donaldson—Thomas
invariant DTZ” € Z is by definition the degree of the associated virtual fundamental class.
These invariants are related to the stable pair invariants of Pandharipande-Thomas [25] by
a well-known wall-crossing formula [6, 41], and the same is true for the C-local invariants
DT¢ € Z. The numbers DT¢ represent the contribution of C' to the full virtual invariants
DT{c). The C-local wall-crossing formula [31, Theorem 1.1], written term by term, reads

DT¢ = DTy -PTL, (8)

Jj=0

where DTE = X(Hilb* V) are the degree 0 DT invariants of Y, PTZ, = n, ¢ - X(Sym? C) are the
C-local stable pair invariants of Y and n, ¢ is the BPS number of C (see [26] and Section 4.3).
There is an identity x[Q%]vic = DT¢ when ng o =1 (Corollary 4.10). Indeed, in this case,
equation (0.8) is equivalent to (0.2). This is especially meaningful from the point of view of
motivic DT theory in the situation of the following example.
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1388 BEN DAVISON AND ANDREA T. RICOLFI

EXAMPLE 0.1. Assume C C Y is a smooth rigid curve, that is, H°(C, N¢yy) = 0. Then
C has BPS number 1, the Quot scheme Q¢ is a connected component of the Hilbert scheme
Ly6c)+n(Y,[C]), and the motivic class [Qf]vir is a motivic Donaldson-Thomas invariant in
the sense that its Euler characteristic computes the degree of the virtual fundamental class
of Q¢. In this case, the formula Qc/y = Zy - Z¢ of Theorem C can be regarded as a C-local
motivic DT/PT correspondence, refining the enumerative correspondence DT = DTy - PTo
spelled out in (0.8).

Organisation of contents

The paper is organised as follows. In Section 1, we recall foundational material on rings of
motivic weights and we revisit the main formula of [3] expressing the virtual motive of Hilb™ X
for 3-folds. In Section 2, we prove Theorem A by restricting the critical structure on Q¢ ,
where C =2 P! is the exceptional curve in the resolved conifold X = Tot(Op1 (—1) & Op1(—1)).
In Section 3, we prove that the virtual motives of Q7 and Q¢ are determined by motivic
classes Qp, €U, expressing the contributions of ‘fully punctual loci” (cf. Definition 3.16
and Theorem 3.17). By explicitly calculating these motives in Section 4.2, we finally prove
Theorem B. We then use these classes to define (cf. Definition 4.8) a virtual motive of Q7 for

every smooth curve C in a smooth 3-fold Y, and in Section 4.2 we also prove Theorem C.

2. Background material

In this section, we set up the notation and introduce the main tools that will be used in the
rest of the paper.

2.1. Grothendieck rings of varieties

DEFINITION 1.1. Let S be a locally finite type algebraic space over C.

(i) If S is a variety, the Grothendieck group of S-varieties is the free abelian group
Ky(Varg) generated by isomorphism classes [X — S] of finite type varieties over S, modulo
the scissor relations, namely the identities [p: Y — S] = [p|x: X = S|+ phx: Y \ X = 5]
whenever X — Y is a closed S-subvariety of Y. For general .S, we impose the locality relation
[f: X - S]=[g: X' — 5] if for all varieties U C S there is an identity [f|y: X xsU = U] =
[glv: X' xg U — U] in Ky(Vary). The group Ko(Varg) is a ring via [Y — S]-[Z — S| =
Y xg Z — S5].

(ii) We denote by L = [AL] € Ko(Varg) the Lefschetz motive, the class of the affine line
over S.

(iii) The Grothendieck group of S-stacks is the free abelian group Ko(St%') generated by
isomorphism classes [X — 5] of locally finite type Artin S-stacks X — S with affine stabilisers,
modulo the scissor and locality relations, and the following additional relation: if f: X — S is
an S-stack, such that f factors as gox for g: Y — S an S-stack and 7 the projection from the
total space of a rank r vector bundle, then

xLs=L-y%g.

(iv) Define the group K (Varg) = Image(Ky(Varg) — Ko(St%1)), and give it the induced
ring structure.

Where S =[]

S; is a possibly infinite union of algebraic spaces, we will write

Solx s8] = [H(Xi X, Si)].

icl i€l

i€l
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By results of Kresch [18, Section 4], we have
Ko(St3T) = Ko(Varg)[L™!, (L" = 1) |n > 1]
and so we can alternatively define K (Varg) as the quotient of Ky(Varg) by the ideal
Jg =ker(L)+ Y ker(-(L" — 1)) C Ko(Varg). (1.1)
n>1

For S and S’ two varieties, there is an external product

K (Vars) x K(Varg/) = K(Varsxs),
defined on generators by

[g: YV = SIK[h: Z - S)|=[gxh:Y xZ—Sx5].

In particular, K (Varg) is a K (Varc)-module. When we are considering the action of absolute
motives on relative motives, we will often abbreviate

XX L= X s ptR xS 9

=[x = x/ I g

Often for a relative motive [X — S] € K(Varg) we will denote it by [X]g, retaining the
subscript to at least remind the reader of which motivic ring it lives in.
Given a morphism f: S — T of varieties, there is an induced pullback map

f*: K(Vary) — K(Varg),

which is a ring homomorphism given by f*[X]r =[X xr S]s on generators. Composi-
tion with f defines a direct image homomorphism f: K(Varg) — K(Vary), which is
K (Vary)-linear.

If S comes with an associative map v: S x S — S, we define the convolution ring structure
via X, = v o X, that is, we set

AR, B=w(AX B) € K(Varg). (1.2)
The resulting associative product on K(Varg) is commutative if v commutes with the

symmetrising isomorphism.
The ring

Mg = K(Varg) [L™?]

is called the ring of motivic weights over S. The structures f*, f;, W and X, carry over to
M without change. When f: S — Spec C is the structure morphism of S, we use the special
notation |, ¢ for the pushforward fi.

DEFINITION 1.2. We define Sy(Varg) C Mg to be the sub semigroup of effective motives,
that is, the subset of sums of elements of the form
(-L#)"[X — S].
REMARK 1.3. By Definition 1.2, the motive —IL'/2 is effective, as opposed to L'/2. This is

dictated by the fact that in the language of lambda rings (Section 1.3), we make definitions so
that L'/2 is not a line element, while —L'/2 is.
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1390 BEN DAVISON AND ANDREA T. RICOLFI

2.2. Equivariant K-groups, quotient and power maps

Let G be a finite group. A G-action on a variety X is said to be good if every point of X has
a G-invariant affine open neighbourhood; all actions are assumed to be good throughout. For
instance, any G-action on a quasi-projective variety is good. Moreover, for a good G-action,
an orbit space X/G exists as a variety.

DEFINITION 1.4. Let S be a variety with good G-action. We let I?g;(\/'arg) denote the
abelian group generated by isomorphism classes [X — S] of G-equivariant S-varieties, modulo
the G-scissor relations (over S). The equivariant Grothendieck group K§'(Varg) is defined
by imposing the further relations [V — X — S] = [A%], whenever V — X is a G-equivariant
vector bundle of rank r, with X — S a G-equivariant S-variety. The element [A’] in the right-
hand side is taken with the G-action induced by the trivial action on A" and the isomorphism
AT =A" x X.

There is a natural ring structure on I~(§ (Varg) given by fibre product; if X and Y are
G-equivariant S-varieties, we give X xg Y the diagonal G-action.
We shall consider the quotient rings

K§ (Varg) — K% (Varg), K§(Varg) — K¢(Varg)
obtained by modding out the ideal

1 = ker(-L) + Z ker(-(L" — 1)) ¢ K§(Vars)

n>1
and its image J& C K§ (Varg), respectively. We let
MG = K€ (Varg)[L™2], M$ = K¢(Vars)[L ]

be the rings of G-equivariant motivic weights.
There exists a natural ‘quotient map’

ra: K§ (Varg) — Ko(Varg,), (1.3)
defined on generators by taking the orbit space:
ma[X — S] = [X/G — S/G].

If the G-action on S is trivial, I?g; (Varg) becomes a Ky(Varg)-algebra, and g is Ko(Varg)-
linear. More generally, we have the following:

LEMMA 1.5. The map (1.3) is Ko(Varg,)-linear.

Proof. The action of a generator u = [U — S/G| € Ko(Varg,) on a G-equivariant motive
z=1[h: X - S] € K§(Varg) is given by

w-m=hh*q (u) = [U xg0 X 225 X 2 9],
where ¢: S — S/G is the quotient map. We have
u-mg(r) =u-[X/G— S/G] =[U xg/qd X/G — X/G — S/G],

and this is the same motive as ng(u - z) = 7g[U xg/¢ X — X — 5], since G does not act on
U. O
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By Lemma 1.5, the map (1.3) sends the ideal J% onto the ideal Jsja € Ko(Varg,q) defined
in (1.1), therefore it descends to a K (Varg,)-linear map

7o K (Varg) — K(Vargq).

This map extends to a map Mvg — Mg/ q, still denoted 7g, by setting ag(L™? - [X = 8]) =
L"? . 7q([X — S]).

Furthermore, by [4, Lemma 3.2], if the G-action on S is free,! ¢ descends to a K (Varg,)-
linear map

leR KG(Vars) — K(Varg,q),

which again extends to a morphism 7g: Mg — Mg/c.
Let &,, be the symmetric group on n elements.

LEMMA 1.6 [3, Lemma 2.4]. For every n > 0, there exists an nth power map
()" Ms = Mg,
where S™ carries the natural &,,-action, defined by the property that for

1

T=(-L5)* . [AL S| +L° . [BL 8] - (-L3)7-[C 2 §]-L- [D 5 S] € Ms,
we have
T®N . Z (_1)c+d(_L%)aa/2+b/3+cv/2+d6[Xa’b,c’d S,
atbtctd=n
where X, p.¢,q is the space of homomorphisms of schemes

s:{l,...,n} > AUBUCUD

with the domain considered as a scheme with n points, a of which are sent to A, b of which
are sent to B and so on. We consider this variety as a &,,-equivariant variety over S™, sending
s to the point (j(s(1)),...,j(s(n))), where j: AUBUCUD — S is the union of the maps

f?gah7i-

The above lemma is proved in [3] in the case S = Spec C, but the proof for the general case
is the same. We remark that, by definition, there is an identity

(—[A = S)®" = (=1)"[4A — S]®™. (1.4)

2.2.1. The monodromic motivic ring. Let u, = Spec C[z]/(z™ — 1) be the group of nth
roots of unity. We define a good action of the procyclic group

fo = Tim g,
as an action that factors through a good pu.,-action for some n. The additive group
i
Mg
carries a commutative bilinear associative product ‘*’ called the convolution product. See [12,
Section 5] or [19, Section 7] for its definition. The product ‘*’ provides an alternative ring

structure on the group of fi-equivariant motivic weights, and it restricts to the usual product
> on the subring

Mg c M~

TWithout freeness, the naive quotient map may fail to respect the relation identifying G-bundles with trivial
G-bundles.
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1392 BEN DAVISON AND ANDREA T. RICOLFI

of classes with trivial fi-action. The main role of ‘*’ will be played through the motivic Thom—
Sebastiani theorem (cf. Theorem 1.19).

2.3. Lambda ring structures

Let A € Mg. We define
©"(A) =7e, (A%") € Mgn/s,, -

The lambda ring operations on Ko(Varc)[LL='/?] are defined by setting o™ (A) = %" (A) for
A effective, and then taking the unique extension to a lambda ring on Ko(Varc)[L~/?],
determined by the relation

> (X] =YD ([Y]) = o™ ((X]). (1.5)
i=0
Note that o™ (—L'/2) = (—L'/?)". By [8, Remark 3.5 (4)], these operations induce a lambda
ring structure on the localisation Ko (St )[L='/2], and thus a lambda ring structure on Mc.

REMARK 1.7. Note that by definition, ¥"(A) = ¢"(A) for A effective. The logical structure
of the paper is such that we will often end up proving relations involving & first, and then
using them to prove that the motives we consider are effective, so that we can state those same
relations in terms of the more well-behaved operations o”.

If S comes with a commutative associative map v: S x S — S, and A € Mg, we likewise
define

7)(A4) = (7" (4)) = n(rs, (A7) € Ms,

where we abuse notation by denoting by v the map S™/&,, — S. As above, using the analogue
of the relation (1.5) there is a unique set of lambda ring operators o”' agreeing with %, on
effective motives.

As a special case, we obtain operations " and ¢” on Mc [t] via the isomorphism

Mc[t] = My (1.6)
defined by
S Xt = l]_[ X, — {n} (1.7)
n=>0 neN
for Xy, X1,... varieties, and then extending by linearity. Here, N is a considered as a scheme

by identifying each natural number with a distinct closed point, and this scheme is considered
as a commutative monoid under the addition map.

2.4. Motivic measures

Ring homomorphisms with source K (Varc) or Mc are frequently called motivic measures,
realisations, or generalised Euler characteristics. We recall some of them here.

Let Ko(HS) be the Grothendieck ring of the abelian category HS of Hodge structures. For a
complex variety X, taking its Hodge characteristic

Xo(X) =Y (-1)'[HL(X,Q)] € K,(HS)

i>0
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defines a motivic measure. The E-polynomial is the specialisation

E(X)= ) (-1 h (BT 9(X, Q))uPv! € Zfu, v].
P,q=0

As E(A{) = uv, the E-polynomial can be extended to a motivic measure
E: M¢ — Z[u,v, (uv)_%]

satisfying E(IL'/2) = —(uv)/2. The further specialisations u = v = ¢/2, (uv)'/? = ¢'/? define
the weight polynomial W: Mc — Z[g*'/?] and one has W(L) = ¢. Finally, specialising to
q'/? =1 recovers the Euler characteristic x: K(Varc) — Z, extending to x: Mc — Z after
setting

See [12, Section 2] for a natural extension to a ring homomorphism
X: Mé — Z.

REMARK 1.8. Our sign conventions differ slightly from [3]. We have chosen them so that all
specialisations are homomorphisms of pre A-rings. Note that, putting all the changes together,
our convention that y(L~'/2?) = —1 is the same as theirs.

2.5. Power structures and motivic exponentials

We recall the notion of a power structure on a commutative ring R, mainly following [14, 15].
DEFINITION 1.9. A power structure on a ring R is a map
(1+tR[t]) x R—=1+tR[t]
(A(t), X) = A()",

satisfying the following conditions:

(1) A1) =1;

(2) At)" = A(b);

(3) (A(t)-B(t)* = A(t)* - B(t)™;
(4) AT =AW~ - AW

(5) AW)™Y = (A®)™)Y;

6) (1+t)X =1+ Xt+O(t?);

(7) AQ) X |ime = A(tF)X.

NotATION 1.10. If o is a partition of an integer n, which we indicate a F n, by writing
o= (1% ...¢4% ...r%) we mean that there are «; parts of size ¢, so that we recover n as the sum
|a| =3, ic;. The number of distinct parts of o is denoted I(a) = >, ;. The automorphism
group of a is the product of symmetric groups G, =[], &,,-

Let us focus on R = Ko(Varc). If X is a variety and A(t) = 143 . Ant™ is a power series
in Ko(Varg) [¢], we define

(A0 =1+ 7e, QH X%\ A

-HA?“")t'a. (1.8)

7
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In the above formula, A C [[, X% =X @) is the ‘big diagonal’ (where at least two entries are
equal), and the class

[H X\ A] JJ AP € K= (Varc)

is G4-equivariant due to the ‘power map’ of Lemma 1.6. Gusein-Zade, Luengo and Melle-
Hernéndez have proved [14, Theorem 2] that there is a unique power structure on Ky(Varc)
for which the restriction to the case where all A; are effective is given by the formula (1.8), for
every variety X. Moreover, by [14, Theorem 1], such a power structure is determined by the
relation

(1 -1~ =),
where
C[X] (t) = Z [Symn X] -t" € Ko(Vare) [¢] (1.9)
n=0

is the Kapranov motivic zeta function of X. Since we always consider effective exponents when
taking powers, we just recall the recipe for dealing with general A(t) and effective exponent
[X]. First, note that for any such A(t) there is an effective B(t) such that A(t) - B(t) = C(t)
is effective. Then we have

X X]\—
AP = (@) - (B)SH
where both factors in the right-hand side are defined via (1.8).

LemMMA 1.11. Let [X] € Ko(Varc) be invertible in Ko(St&"). Then (—)5* and ()X are
injective maps.

Proof. By [9, Remark 3.7], the power structure can be extended to Ko(St&"), and so the
second statement follows from (A(t)PNXT™ = A(1).

Next we consider the first statement. Assume A(t)gX] = B(t)gx]. Write A(t) = >, Ait and
B(t) = Zi>0 B;t, where Ag = By = 1, and assume that we have shown that A; = B; for i < n.

Let o = n. Comparing the contributions from « in the ¢" coeflicients of A(t)LX] and B(t)LX],
by assumption they agree for o # (n), since these terms only involve A; and B; for i < n. We
deduce that the terms for o = (n!) agree, and so [X] - A,, = [X] - B,,, and the result follows by
injectivity of [X]-. O

As noted in [3], there is an extension of the power structure to M¢ uniquely determined by
the substitution rules

AL = A@)ED = Aq)|

1 .
t—(—L2)nt
2.5.1. Motivic exponential. It is often handy to rephrase motivic identities in terms of the
motivic exponential, which is a group isomorphism’
Exp: tMc[t] =1+ tMc[t].
Under (1.6), this can be seen as an inclusion of groups

Ky (VarN\O) — K()(VaI"N) X,

TThe group structures are the additive one on the source and the multiplicative one on the target.
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First, define °Exp = 271/20 o™, relative to the monoid (N,+). Then if A and B are effective
classes, we set

Exp(A — B) = °Exp(A) - °Exp(B) "

As in the proof of Lemma 1.11, °Exp and Exp are injective.
Now if (S,v: S xS — S) is a commutative monoid in the category of schemes, with a
submonoid S, such that the induced map ]_[n>1 Si™ — S is of finite type, we similarly define

°Exp,(A4) = ) ¥)(A),

n>0

and for A and B effective classes, we define
Exp, (A — B) = °Exp,(4) - *Exp, (B) ™"
The principal example will be
S =Sym(U) = [] Sym"(

n>0

for U a variety, and S, = [],,», Sym"(U). We define
U: Sym(U) x Sym(U) — Sym(U)

to be the morphism sending a pair of sets of unordered points with multiplicity to their union.
Note that Exp, sends effective motives to effective motives, as the same is true of o] for
each n.
In order to recover a formal power series from a relative motive over Sym(U), we consider
the operation

n=0 n=0

In other words, we take the direct image along the ‘tautological’ map #: Sym(U) — N which
sends Sym"(U) to the point n — recall that via (1.6) we consider power series in ¢t with
coefficients in M as the same thing as elements of My.

PROPOSITION 1.12. Let U,V be varieties. Set S = Sym(U x V) = [[,,5, Sym" (U x V), and
for i € N denote by U: Sym(U x V) — Sym(U x V) the map taking i sets of points (with
multiplicity) to their union (with multiplicity). Let

In: U x Sym"™ (V) — Sym" (U x V)

be the inclusion of the n-tuples ((u1,v1), ..., (tn,vy,)) such that uy = - -+ = u,,. Write B =1+
Y ns0Bn = Exp (32,20 An) = “Exp(A) for some set of A, B, € K(Vargy,n(y)). Define
the S-motive

. ®a;
2= 3 S umaii( (U % 1E8) )

where j, is the G,-equivariant inclusion from the space of points in Hila#o Symi(U x V)i

that are not sent to the big diagonal after projection to [[;,, .o Sym‘(U)*. Then

Z = °Exp,, <Z (U S UK An)>.

n>0

85U8017 SUOLILLOD BA1e810 3dealdde 8y Aq peusenob ae Sapoie YO ‘8sN JO SajnJ o} Akeid18UlUO A8]IM UO (SUOTIPUOD-pUe-SW.BIW0D A8 |Im A eIq 1jpul|Uo//Sdny) SUORIPUOD pUe SWiB | 81 88S *[7202/80/.T] Uo AriqiauluO AB[IM ‘E9vZT SW(ZTTT OT/I0P/W0d"A8| 1M AlRIq | U1 [UO™00SYTRWPUO |//SdNY Wi} papeojuMod ‘€ ‘T20Z ‘0S2L697T
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and if A is effective, one has

#Z = (#B)V.

Proof. The second statement follows directly from the definition of the power structure.
The first arises from the decomposition of the right-hand side according to incidence partition
in the U factor. O

2.6. The virtual motive of a critical locus

Let X be a complex scheme of finite type, and let vx : X (C) — Z be the canonical constructible
function introduced by Behrend [2]. The weighted (or virtual) Euler characteristic of X is
defined via vx as

(X) = /X xdy =31 x(wi ().

When X is a proper moduli space of stable sheaves on a Calabi—Yau 3-fold, this number agrees
with the Donaldson-Thomas invariant of X by the main result of [2]. The following definition
is central to this paper.

DEFINITION 1.13 [3]. A virtual motive of a scheme X is a motivic weight £ € M such that
x(€) = X(X).

DEFINITION 1.14. A scheme X is a critical locus if it is of the form
X = erit(f) = Z(df),

where f: U — Al is a regular function on a smooth scheme U.

The Behrend function of a critical locus X = crit(f) C U agrees with the Milnor function
wr, the function counting the number of vanishing cycles [27, Corollary 2.4 (iii)]. In particular,
vx(z) = (=1)4mU=L(y(MF; ) — 1), where MF , is the Milnor fibre of f at 2. More globally,
one can write

vx = x(®s[dimU — 1]),

where @;[dimU — 1] € Perv(X) is the perverse sheaf of vanishing cycles, the image of the
constant perverse sheaf @ [dimU] under the vanishing cycle functor ¢¢[—1]: Perv(U) —
Perv(Uy). Here Uy = f~1(0) denotes the hypersurface determined by f. The pair (U, f) also
determines a canonical relative virtual motive

MFu; =L~ =g € M5 € M, (1.10)
where d = dimU and [¢/]x is the relative motivic vanishing cycle class introduced by Denef
and Loeser [12]. It is a class in K{/(Vary,), supported on X = crit(f), that we view as an

element of ./\/lg( We write [¢;] for the pushforward of [¢]x to a point. We will repeatedly use
the following proposition, due to Bittner [4].

ProprosITION 1.15. Let G be a finite group acting freely on a smooth variety U, let q: U —
U/G be the quotient map and let f be a regular function on U/G. Then:
(1) there is a well-defined equivariant motivic vanishing cycle [, € K$ ™" (Vary, ) such

that the relative motive in K/} (Vary,) induced by forgetting the G-action is [¢ 4], ;
(2) there is an equality of motives

mc([614l6,) = [61lvesc € K§ (Vary, jc).
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NoTAaTION 1.16. If X = crit(f) — Y is a morphism of varieties, we denote by

[erit(f) — Y], = (crit(f) = Y)MFp ;€ ME

vir

the induced relative virtual motive. More generally, if ¢: Z < crit(f) is a locally closed
subscheme and Z — Y is a morphism, we let

[Z = Y] = (Z = Y)"MFy ;€ ME.
When Y = Spec C, we denote [Z — Spec Clyi; simply by [Z]vir.

Since the fibrewise Euler characteristic of MFy ; equals vx as a function on X [3,
Proposition 2.16], the absolute class

X = [ My =1%o/ € M (1.11)
X
is a virtual motive for X in the sense of Definition 1.13.

REMARK 1.17. A critical locus X = crit(f) C U has a canonical virtual fundamental class
[X]VI" € AgX, attached to the symmetric perfect obstruction theory determined by the Hessian
of f. When X is proper, Behrend’s theorem [2] can be phrased as

X[Xoi = / 1eZ
[

REMARK 1.18. If X is a smooth scheme, it can be considered as a critical locus via the zero
function f =0 € I'(€x). The associated virtual motive is
dim X

[X]yir = L™ %% . [X] € M.

Via the stated sign conventions, we see that x[X]yi, recovers the virtual Euler characteristic of
the smooth scheme X, namely ¥(X) = (—1)4™ Xy (X).

We end this subsection with two results that are of crucial importance in calculations
involving motivic vanishing cycles. Recall from Section 1.2.1 that the groups M/ carry the
convolution product ‘*” besides the ordinary product.

THEOREM 1.19 [11, 19]. Let f: U — A' and g: V — A! be regular functions on smooth
varieties U and V. Consider the function f @ g: U x V. — A given by (z,y) — f(z) + g(y). Let
i: Ug x Vo = (U x V)q be the inclusion of the zero fibres, and let py; and py be the projections
from Uy x V. Then one has

i* [reg] (UxV)o — pi[¢7] Uy * PV [%]Vu € My v;-
The following result will be used in Propositions 2.9 and 2.11.

THEOREM 1.20 [3, Theorem B.1]. Let f: U — A! be a regular function on a smooth complex
quasi-projective variety, with critical locus X. Assume U is acted on by a connected complex
torus T in such a way that f is T-equivariant with respect to a primitive character x: T — G,,.

(i) If there is a one parameter subgroup G,, C T such that the induced action is circle
compact, then

(6] = [ ' (D] = [f1(0)] € Mc € ME.
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X
’
Z

FIGURE 1. The framed 3-loop quiver QBgs.-

(ii) Let 7: X — Y be a map to an affine variety. If, in addition to the assumption in (i), the
hypersurface f~'(0) C U is reduced, then the relative class [¢f]y = m[¢¢|x lies in the subring

My C Mé‘, of classes with trivial monodromy.

REMARK 1.21. The original statement of this theorem in [3] fixed Y to be the affinisation of
X — the statement above then follows from the fact that 7 must factor through the affinisation,
and the direct image of a monodromy-free motive is monodromy-free.

2.7. The virtual motive of the Hilbert scheme of points

Quivers with potentials provide a large class of examples of critical loci. For instance, consider
the framed 3-loop quiver @Qpps (studied by Behrend-Bryan—Szendréi) depicted in Figure 1.
The arrow 1 — oo is called a framing, and oo is the framing vertex. Throughout the paper, the
vertices of a framed quiver are ordered so that the framing vertex is last.

The space of (n,1)-dimensional right CQpps-modules is the affine space End(C")? x C"
parameterising triples of n x n matrices (A, B, C) and vectors v € C"™. Consider the potential
W = zly, z], viewed as an element of the path algebra C(z,y,z) of the (unframed) 3-loop
quiver. Then by [3, Proposition 3.1], one has, as schemes,

Hilb"(A?) = crit(Tr W) c NCHilb",

where NCHilb" is the non-commutative Hilbert scheme, defined as follows. The open
subscheme

V,, C End(C")? x C" = tMod,,1)(CQggs),

parameterising tuples (A, B, C,v) such that v € C™ generates the C(x, y, z)-module defined by
the triple (A, B,C), carries a free GL,-action, and NCHilb" = V,,/ GL,, is a smooth quasi-
projective variety of dimension 2n? +n. The generating function Zys(t) for which the t"
coefficient is the virtual motive

2n 2+n

[Hilb"(A%)] . =L~ 2 [—¢nw] € Mc

vir

was computed in [3, Theorem 3.7]. The result is the equation

Zys(t) = H ﬁ (1 —11]”2*%:5’”)‘1 € Mc[t].

m>1 k=0

Let

vir

[Hilb™ (A®)o] . :/ t*"MFxchibr, e w € Mc (1.12)
Hilb™ (A%)o
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be the virtual motive of the punctual Hilbert scheme ¢: Hilb™(A%)y < Hilb™(A?%) (cf. Nota-
tion 1.16), the closed subscheme parameterising subschemes entirely supported at the origin
0 € A3. Then the generating series

Zo(t) =Y [Hilb"(A%)o] "

n=0

Zo(—t) = Exp <( Lt ) (1.13)

satisfies the relation

1+L-2t)(1+L2t)

REMARK 1.22. As a corollary of Formula (1.13), the motive (—1)"[Hilb"™ (A%)o].i, is effective,
that is, it belongs to the sub semigroup Sy(Varc) C Mc.

Behrend, Bryan and Szendréi also define a virtual motive [Hilb"™ X|y;, for arbitrary smooth
3-folds. The motivic partition function

Zx(t) =) [Hilb" X], -t" € Mc[¢]
n=0
is again fully determined by the punctual contributions, that is, by [3, Proposition 4.2], one
has

Zx(—t) = Zo(—t)X]. (1.14)

REMARK 1.23 (Related work on Quot schemes). The identity (1.14), as well as its
reformulation in terms of the motivic exponential, has been generalised in [34] to the case
of Quot schemes Quoty (F,n) where F is an arbitrary locally free sheaf on a smooth 3-fold. See
also [33] for the ‘non-virtual’ setup. In higher rank, the starting point of motivic DT theory is
the observation that Quot,s(0®" n) is a global critical locus [1, Theorem 2.6]. This has also
been exploited to prove a plethystic formula (the Awata—Kanno conjecture in String Theory)
for the partition function of higher rank K-theoretic DT invariants [13].

3. The local model as a critical locus
For a smooth curve C' embedded in a smooth 3-fold Y with ideal sheaf .7 C Oy, we let
& = Quoty (Fo,n) = {Fc — F|dim(Supp F) =0, x(F) =n}

denote the Quot scheme of n points of Z. Given a surjection 0: Yo — %, we can consider
its kernel .#; C #¢, and thus think of [f] € QF as a closed 1-dimensional subscheme Z C Y
containing C' as its maximal purely 1-dimensional subscheme. We will switch between these two
interpretations of Q¢ without further comment. Note that we generally suppress the ambient
3-fold Y from the notation.

REMARK 2.1. When Y is projective, the association [0] — ker § defines a closed immersion
into the moduli space of ideal sheaves

QTCL' — Ix(ﬁc)+n(yv [C])7
as proved in [32, Lemma 5.1]. This closed immersion can be generalised to higher rank sheaves,

see [1, Proposition 5.1].

Let now L C A® be a line; for concreteness set %, = (z,y) C C[z,y, 2]. The scheme Q%
parameterises surjections ., - N of Cl[z,y, z]-modules, where N is n-dimensional as a
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C-vector space. As such there is a forgetful map from Q7 to the stack of n-dimensional Clz, y, z]-
modules, and postcomposing with the affinisation map for this stack, a ‘Hilbert-to-Chow’
morphism

hcys: QF — Sym”(A®). (2.1)

This map is a special case of [35, Corollary 7.15].

The goal of this section is to prove the following result, which is a 1-dimensional counterpart
of the analogous statement for Hilb™(A?), considered in [3]. Part (A) is Theorem A from the
introduction.

THEOREM 2.2. Consider the embedding L C A® from above. Then:

(A) the Quot scheme Q7 is a global critical locus, that is, there is a smooth variety U and
a function f: U — A' such that Q7 = crit(f);

(B) the relative motive [¢]gymn(a3) is an element of the subring Mgymn(as) C ngmn (A%)"

Part (A) is proved at the end of Section 2.1, and part (B) is proved in Proposition 2.11.
The main step in the proof consists of realising ()7 as a suitable open subscheme of the
Quot scheme Q¢ , where Cy C X is the exceptional curve in the resolved conifold X. In the
next subsection, we review the critical locus structure on @7, , and more generally, the non-
commutative Donaldson-Thomas theory of the conifold as introduced in [39].

3.1.  Conifold Geometry

Given a quiver Q = (Qo, Q1) with potential W and a field K, we define K(Q, W) to be the
associated Jacobi algebra, that is, the quotient of the free path algebra K@ by the non-
commutative derivatives 0W/0a for a € Q1 ranging over the arrows of Q.

Given a dimension vector d = (d(4));cq, € N?°, we define

rModq(CQ) = H Hom((Cd(j), Cd(i))
(i—j)€Q1

to be the affine space of d-dimensional right CQ-modules. Given a King stability condition
¢ € Q9, we denote by

rMod§(CQ) C rModa(CQ),

the open subscheme of (-semistable CQ-modules. Both schemes are acted on by the gauge
group
GLd = H GLd<7;)
1€Qo
by change of basis.
Throughout the paper, we let X denote the resolved conifold, namely the total space of the

rank 2 locally free sheaf Opi(—1) @ Opi(—1). We denote by Cy C X the zero section of this
vector bundle, so Cy =2 P*. Let

7T:X—>C()

denote the projection onto the zero section. The local Calabi—Yau 3-fold X is the crepant
resolution of the conifold singularity

Spec Clz,y, z,w]/(zy — zw) C A,

and Cy is the exceptional curve, the only strictly positive dimensional proper subvariety of
X. Since Cy is a rigid smooth rational curve in X, the Hilbert scheme I,,41(X,[Co]) of
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FIGURE 2. The framed conifold quiver Qwu.

1-dimensional subschemes Z C X with homology class [Cp] and x(€z) =n+ 1 agree (as a
scheme) with the Quot scheme Q¢ - This space was realised as a global critical locus by Nagao

and Nakajima [24], by studying representations of the Jacobi algebra (C(QCOH,WCOH). Here,
Qcon is the (framed) conifold quiver depicted in Figure 2, and

Weon = a1biazby — arbaaszby (2'2)

is the Klebanov—Witten potential [16]. We denote by Qcon the quiver obtained by removing
from Qcon the framing vertex oo and the arrow ¢. Since we consider right modules, a KQcon-
module p is defined by the following data.

(1) A right K Qcon-module p, with KQcon-action defined via the K Qcon-action on p and the
inclusion KQcon < KQcon-
(2) A linear map V' — py, with V = p.

REMARK 2.3. The orientation of Qcon differs from [24, Figure 4], but our noti0n~of framing is
the same as loc. cit. (see (1) and (2) above) — note that we are considering right CQ.on-modules
throughout — see Remark 2.4.

We identify quasicoherent ¢'x-modules with triples (., oy, as) where .# € QCoh(P!) and
ai, az € Homg,, (F,.%(—1)) commute in the sense that a;(—1) o az = az(—1) o a;. Then the
above noncommutative conifold is the natural enhancement of Beilinson’s noncommutative P':
given a complex of quasicoherent sheaves .# on P!, we set p; and py to be the complexes of
vector spaces RHomg, (Op1,.#) and RHomg,, (Op: (1), 7). We let

p(bl), p(bg) : RHomﬁpl (ﬁ]})l (1), ﬁ\) — 'R,}IOIH(}Pl (ﬁ[pl N j)

be the maps induced by the two sections x and y of Tp1(1). We set p(a;) = «; for i = 1,2, and
it is easy to check that the commutativity conditions are given precisely by the superpotential
relations for Weon, so that we obtain in this way a right C(Qcon, Weon )-module.

This description of the non-commutative conifold makes the translation of various geo-
metrically defined functors rather transparent. For instance, the direct image along the
projection map 7, : D?(QCoh(X)) — D?(QCoh(P!)) becomes the forgetful map from the non-
commutative conifold to Beilinson’s non-commutative P!, forgetting the action of the arrows
a1, az, and the direct image along the inclusion Cy < X becomes the extension by zero functor.

Let

& =71"(0p @ Op (1))
and let
Acon = Endpy (6)
2 C(Qcons Weon)-
We denote by
® = RHom(&, 8): D (Coh X) = D"(Acon-mod)
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1402 BEN DAVISON AND ANDREA T. RICOLFI

the equivalence of derived categories, where on the right-hand side of the equivalence we have
the derived category of right A..,-modules with finitely generated total cohomology. We denote
by

L
U:M—>MQay, &,

con

the quasi-inverse.

REMARK 2.4. As one sees from the above, the general setup leads us to consider right Acon-
modules. On the other hand, for an arbitrary quiver @), there is an equivalence of categories
between K-linear Q-representations and left K @-modules. Since we consider right modules (as
in [24]), if one wants to think of modules over algebras such as A.o, as quiver representations,
one should reverse the orientation of the underlying quiver.

The chamber decomposition of the space of stability parameters for Qcon was worked out
by Nagao and Nakajima in [24], where the DT and PT chambers were precisely characterised.
For a generic stability condition

¢ = (¢, —(C(n+1)+Gn)) €R?

in the ‘DT region’ for X, defined by the conditions (; < {» and (; + (> < 0, we consider the
moduli space

Nn = I‘MOdfn_‘_lmr’l)(Qcon)/ GLn+l X GLn (23)

of (-stable framed representations of Qcon, having dimension vector (n+ 1,n,1). Here the
dimension vector (n + 1,n,1) refers to the vertices ordered as (1,2, c0).

The work of Nagao-Nakajima then implies that Q¢ is isomorphic to the subscheme of
N,, defined by the defining relations of A,,. Since these are exactly the non-commutative
derivatives of the Klebanov—Witten potential (2.2), it follows from [38, Proposition 3.8] that

¢, is identified with the critical locus of the function

Gn: N;, — Al

given by taking the trace of (2.2).
Consider the open subset

N2 C N,

parameterising stable representations p such that the linear map p(by): C* — C™*! is injective,
and let

frn: N2 — Al
be the restriction of the function g,,. We now prove that
v erit(f,) N
Proof of Theorem 2.2 (A). For skyscraper sheaves of points &, corresponding to represen-

tations of dimension vector (1,1) under ®, injectivity of p(by) corresponds to the condition that
7(x) # oo. We identify A3 with X \ 7~!(c0), and we have the following Cartesian diagram

L —— A8

RN

CO_)X

where the horizontal maps are closed inclusions, and vertical maps open inclusions.
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Let 2 be the tautological C(Qcon, Weon) ® Orit(g,)-module. Let ¢ be the submodule
generated by

p(01)Z + plbs) 2.
Consider the exact sequence
0-9¥Y—->2L—->V =0

of C(Qcon, Weon) ® Oeyit(g,)-modules. Let Spec (K) < N, be a geometric point of crit(g,),
corresponding to a K(Qcon, Weon)-module p. By the above-mentioned result of Nagao—
Nakajima, ¥(p) corresponds to a K-point of QF, and so admits a unique (up to scalar)
surjective map to O¢, ® K, with kernel a coherent sheaf % with 0-dimensional support. It
follows that p admits a unique (up to scalar) non-zero map to the nilpotent simple module at
vertex 1, with kernel isomorphic to ®(%). In particular, the space spanned by the image of
p(b1) and p(bs) is n-dimensional. It follows that dim(Vx) = 1 for all K-points, and so V is a
locally free Ot (y,)-module of rank 1, and thus ¢ is locally free of rank (n,n).

Let Spec (K) < crit(g,) be the inclusion of a point, and let ¢: X x Spec (K) < X X crit(g,)
be the induced inclusion. The O y cri (g, )-module ¥(¥) is a coherent sheaf after pullback along
i, and so is a coherent sheaf in [5, Lemma 4.3]. The coherent sheaf ¥U(.Z) is equipped with a
tautological map from Ox ycrit(y,), Surjective by stability, inducing the tautological surjective
map

fr: jco & ﬁcrit(gn) — g

The condition on p(bg) defining N implies that each i*¥ (%) has support away from 7~ (00).
Since crit(f,) = crit(g,) NN?, the inverse image sheaf of ¥ (%) on crit(f,) x A® is a vector
bundle on crit(f,), equipped with a surjection from % X Oy (y,). This defines the map
crit(f,) — Q7. The inverse is defined similarly: given a family of surjections %, — %, we
obtain a family of surjections S, — u..f, — u.F. O

This completes the proof of Theorem A from the Introduction.

3.2. Relative virtual motives

Via the coherent sheaf W(¥) of Ox yit(g,)-modules constructed in the proof, we obtain the
map

hex: Qf, — Sym"(X) (2.4)

extending the map (2.1). It is again a special case of the Quot-to-Chow map [35, Corollary 7.15].
In particular, we can write

Q7 = QF, Xsymn(x) Sym” (A%) (2.5)

via the map hcy and the inclusion u: A®* — X. Via projection to the Sym™(A3%)-factor, we
recover the map

hcys: Q7 — Sym”(A®).
Where it is clear which of the two Hilbert—Chow maps we mean, we will drop the subscript.
REMARK 2.5. In a little more detail, at a K-valued point of Q¢ , the corresponding
K(Qcon, Weon)-module admits a filtration by (1, 1)-dimensional ({1, (2)-stable K(Qcon, Weon)-

modules, that is, quadruples (ai,as,B1,32) € C* such that ) # 0 or By # 0, modulo the
equivalence relation

(0417042751,ﬂ2) ~ (Z s, 2 O[Q,Z_l . th_l . 52)
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FIGURE 3 (colour online). A singular point of the Quot scheme Q3.

for z € C*. This is the fine moduli space of point sheaves on X, and we identify it with X.
Then taking the union of the supports of the subquotients in the filtration gives the map (2.4)
to Sym" (X).

Theorem 2.2 (A) has the following immediate consequence.

COROLLARY 2.6. The function f,: N° — A' induces a relative virtual motive
2n243n i
- _ it
L | ¢fn,]Q7L1 € MQza
that is the pullback under the inclusion Q7 — Q¢ of the relative virtual motive

_2n243n

L 2 [7(25971,]@%0 € Mﬂgo~

Proof. The space N,, is a smooth scheme of dimension 2n? + 3n, so the machinery recalled
in Section 1.6 gives the relative motive

_ 2n243n

MFy, g, =172 [*ngn}QvCLU

according to (1.10). The statement follows since f,, is defined as the restriction of g, to the
smooth open subscheme NS C A,. O

According to Notation 1.16, we can write down the absolute motives

[ng}vir = /n ]L7 . 2+3n [_¢9"]ng
“ (2.6)

_ 2n243n

@l = [ L ol

We end this subsection with two examples of the geometric and motivic behaviour of Q7 for
low n.

EXAMPLE 2.7. The scaling action of the torus G2, on A? lifts to an action on Q7. Let us
consider the Quot scheme Q%. We will exhibit a singular point belonging to the torus fixed
locus. First of all, we have dim Q% = 6. Consider the point p € Q% corresponding to

jZ = ($27y27$%$2792’) - jL - (C[x,y,z]

This is depicted in Figure 3. It is easy to check that Homys (.2, .91 /.97), the tangent space
of Q% at p, is 10-dimensional, so that p is a singular point.

EXAMPLE 2.8. The Hilbert scheme Hilb"™ A? is non-singular if n < 3 and singular otherwise,
whereas ()} is already singular if n = 2, by Example 2.7. Let us fix n = 1, so that both trace
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functions (the ones giving rise to Hilb' A® and to Q1 , respectively) vanish, and the virtual
motives are a shift of the naive motives by IL.=3/2. On the Hilbert scheme side we have, using
Remark 1.18,

[Hilb' A%]  =L7%.L° =12,
while on the Quot scheme side we find, using that Q} = Bl A3,
[Q1],, =177 - [BlL A%]

Mw

[A®\ L]+ [L x P'))

M»—

L% (|
L2 +1L3.

e

This is the first instance of formula (0.7).

3.3. Equivariance of the family

Let R, = rMod(n+1,n71)(CC~260n) be the affine space parameterising framed Qcon-modules of
dimension vector (n+1,n,1). Let us set G = GL,;+1 x GL,, and let S C T'(0,) be the
subalgebra of functions scaling, under the G-action, as a positive power of the given character
realising framed stability. Then by general GIT we have N,, = Proj S, and the natural inclusion
['(O,) C S induces a projective morphism

pn: N, — Yy = Spec I'(Ox, ), (2.7)
where the affine scheme Yj can be viewed as the GIT quotient R, /oG at the trivial character.

PROPOSITION 2.9. There is an identity

[66.] = [92" (V)] = [9:,1(0)] € Mc € ME.
In particular, [Q¢, |vir lies in Mc.

Proof. The 4-dimensional torus T = G? acts on A, by
t- (A1, Az, Bi, By, v) = (t1A1,t2A2,t3B1, taBa, t1tatstav).

Moreover, the trace function g,: N, — A! is T-equivariant with respect to the primitive
character x(¢) = titatsts. This means that for all P € N,,, we have g, (t - P) = x(t)g,(P). We
claim that the induced action on A, by the diagonal torus G,, C T is circle compact, that is,
it has compact fixed locus and the limits lim;_,ot - P exist in N, for all P € N,,. Following
the proof of [3, Lemma 3.4], we note that (2.7) is a projective G,,-equivariant map, where Yy
has a unique G,,-fixed point, and moreover all orbits have this point in their closure. In other
words, limits exist in Y. Therefore, by properness of p,,, we conclude that the G,,-fixed locus
in NV, is compact and limits exist. This proves the claim.

Then the equation involving g, follows by part (i) of Theorem 1.20, proved by Behrend,
Bryan and Szendrdi. In particular, the absolute virtual motive of Q¢ carries no monodromy,

[QCO]VIT =L"

3.4. A direct critical locus description

2n, +3r1

[ 459"] e Mc. O

There is a way of writing down the above critical locus description of 7} that does not
involve pulling back from a moduli space of representations for the non-commutative conifold.’

T Although, to be precise, for the proof that the description really does recover Q7 , the only method we offer
will rely on the geometry of the non-commutative conifold.
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FIGURE 4. The quiver Q.

Consider again the space N;. In the definition, we have imposed an open condition on
representations in N,,, namely

(1) p(be) is injective.

We have seen above that the points of crit(f,,) correspond to Qcon—representations p satisfying
the extra condition that the short exact sequence of vector spaces

0 — Image(p(b2)) = p1 — Coker(p(b2)) — 0
is induced by a short exact sequence of C(Qcon; Weon)-modules, and in particular,
Tmage(p(b1)) C Image(p(b2)). Stability then imposes the extra open condition
(2) Span(Image(p(:)), Image(p(b2))) = p1-

Let N32° C N, be the open substack defined by the open conditions (1) and (2) above. For a
(CQCOH—module parameterised by a point in N,2°, there is a canonical direct sum decomposition
p1 = Image(p(bs)) @ Image(p(¢)) and moreover an identification between Image(p(b2)) and po
via the action of p(b2), and an identification of Image(p(:)) and poo via p(r). It follows that
there is an isomorphism

s NS5 1Mod?, |1 (Q,)/ GL, (2.8)

(n,

with the fine moduli space of (’-semistable (n,1)-dimensional CQ,-representations of the
‘reduced’ quiver @), depicted in Figure 4.

In (2.8), we have put ¢’ =(—1,n). In a little more detail, given p a CQcon-module
corresponding to a point in N2°, we set

Poc = Image(p(t))
p2 = p2 (= Image(p(b2))).

Then for s = 1,2, we set

(
P(01) =Timage(p()) © P(b1)
(01) =Ttmage(p(b>)) © P(b1)
=p(as)|mmage(p(b2))»
where 7 denotes the projection maps. Then
hy, = fn\Nﬁo = Tr(W,)oT, (2.9)
for W,. the potential

_ "yl ! "yl ! aNIwii VaNIwii
W, = aibiay — asbia; + aibiay —aybial.
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PRrOPOSITION 2.10. There is an isomorphism of schemes
Q7 = crit(hy,).

The result follows directly from our analysis of the non-commutative conifold. From that
description, we see that in the stable locus, we have p(b]) = 0. Then the superpotential relations
become

aya) = a\al

alal = ayay

a/ll /1/ _ &/G/Y

bl = af
and the stable locus is identified with the moduli space of triples (v,,v,, N) where N is a
Clz,y, z]-module, v;,v, € N generate under the action of C[z,y, z|, and zv, = yv,. This is the
same data as a C[z, y, z]-linear surjection 6: (z,y) — N, by setting v, = 6(z) and v, = 6(y).

The next result contains the statement of Theorem 2.2 (B).

ProrosITION 2.11. There is an identity
[67.] = [ha' (V] = [ (0)] € Mc € ME.

In particular, [Q7]vi: lies in Mc. Moreover, the relative motive [¢y, |symn(as) belongs to the
subring Mgymn(a3) C ngm"( A%) of monodromy-free motives.

Proof. The first statement is proved the same way as Proposition 2.9, noting that by
construction, [¢y, ] = [¢n,], and by (2.8), h, is a potential on a GIT moduli space of quiver
representations admitting a contracting C*-action for which Tr(W,.) has weight three.

Next, we claim that the hypersurface h,,1(0) C N2° is reduced. This will follow from the claim

that the variety cut out by the function Tr(Weey,) on rMod%n t1n 1)(Qcon) is reduced, which is

in turn weaker than the claim that the variety cut out by Tr(Wee,) on fMOd(n+1,n,1)(Qcon)
is reduced. This variety is affine, and so it is enough to show that the function Tr(Weep) is
reduced. With respect to the T-grading this function has degree (1,1,1, 1), and so it cannot be
factorised with a repeated factor.

The statement regarding [¢, |symn (as) then follows from part (ii) of Theorem 1.20. g

The proof of Theorem 2.2 is complete.

4. Relative DT theory of the conifold

The goal of this section is to express the motive [Qf ]vir defined in (2.6) in terms of motivic
contributions coming from the ‘punctual loci’ inside Q¢ . For n € N, we define:

(i) P C Q¢,, the subvariety parameterising quotients ¢, — % such that 7 is set-
0
theoretically supported at a fixed single point, away from Cy; and
(i) Pg, C Qf,, the subvariety parameterising quotients ¢, — .# such that 7 is set-
theoretically supported at a fixed single point on the curve Cj.

TItems (i) and (ii), respectively, will lead (cf. Definition 3.16) to the definition of motivic weights
Q. QL. € Mc,

pt>
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which will be the basic building blocks for the construction of a virtual motive of the Quot
scheme Q¢ for an arbitrary curve C' C Y in a 3-fold.

4.1. Motivic stratifications I: partially punctual strata

In what follows, we streamline proofs by deducing results for the embedded curve Cy C X from
the embedded curve L C A3. In order to achieve this, we introduce two automorphisms of N/,
(see (2.3)):

ax - (p(t), plar), plaz), p(b1), p(b2)) = (p(v), p(ai), p(az), p(b1) + Ap(bz), p(b2)),

Ex - (p(1), plar), plaz), p(br), p(b2)) = (p(1), p(ar), plaz), p(br), p(b2) + Ap(b1)).
Note that both of these automorphisms preserve Tr(W.,) and the (-stable locus, and so they
induce automorphisms of Q¢ preserving [¢gn]ng~ The two automorphisms of C* defined by
ox(x,y, z,w) = (x,y, 2 + Aw,w) and &\(x,y, z,w) = (x,y, z,w + Az) induce automorphisms of
X commuting with hcx in the sense that Sym” (o)) o hcx = hex og) and Sym”™(€)) o hex =
hcy of, (see Remark 2.5).

LEMMA 3.1. Let a € M"”

Sym™(X)
(1) (Sym"(A?) — Sym"(X))*a = 0;
(2) cla=a forall A € C;
(3) &a=a forall A e C.

Then o = 0.

satisfy:

Proof. The space Sym”(X) has an open cover by open subsets of the form U; = Sym"(X \
7= L(t)) for t € PL:if v € Sym”(X) is in the complement of U;c7Uy; for |T| > n, then the support
of 7 is spread across more than n fibres of the projection 7: X — P!. By our assumptions, the

restriction of « to Uy is zero. By the scissor relations, it follows that a = 0. d
COROLLARY 3.2. Leta,f € ngm"(X) satisfy conditions (2) and (3) from Lemma 3.1, and

(Sym™(A3) — Sym"™(X))*a = (Sym"™(A3) — Sym"™(X))*B. Then o = 3.

The next lemma is an incarnation of the fact that taking box sum with a quadratic function
(locally) does not change the vanishing cycle complex, while for global triviality one has to be
mindful of monodromy. The implication is that we can pass to a ‘minimal’ potential at the
expense of keeping track of some extra monodromy data, which in the Kontsevich—Soibelman
framework, and then elsewhere, is called orientation data. In the language of potentials on
3-Calabi—Yau categories, one can think of the proof of part (2) of Lemma 3.7 as working by
proceeding to a ‘partially minimised’ potential.

LEMMA 3.3. Let w: Tot(V) — X be the projection from the total space of a vector bundle
on a smooth connected variety X, and let f: Tot(V) — C be a function that is quadratic in
the fibres, that is, f(z-v) = 2% f(v) for z € C, where we have given Tot(V) the scaling action
of C*. Assume X = crit(f), where we have identified X with the zero section of Tot(V').

(1) For x € X, there is an equality

()i =L~ 5% € Me € ME (3.1)
(2) Assume that V = V_ &V, where f|rot(v_) = flrot(v,) = 0. Then there is an equality
[~¢¢] = [id: X = X] € Mx C MA. (3.2)
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THE LOCAL MOTIVIC DT/PT CORRESPONDENCE 1409

(3) Under the conditions of (2), let G be a finite group acting freely on X, let V= V_ &V be
a direct sum decomposition of G-equivariant vector bundles, and assume that f is G-invariant.
Then

[_¢f]§ = [id: X —>X] c Mg’( c ng’l,

In part (3), we include the assumption that G acts freely so that we may apply
Proposition 1.15.

Proof. Part (1): Zariski locally, we can write Tot(V) = X x A™, and f =3",, i, fijtit;
for F = (fij)1<i,j<m & matrix of functions on X, and ty,...,%,, coordinates on A”. We can,
and will, assume that f;; = f;; for all i and j. For every closed point x € X, the functions
(0/0t;)f and (0/0s)f, for s local coordinates at x, generate

(1, tm)Ox 2t oo tm] /(s e tm) 2 Ox o[t - ooy ).

On the other hand, (0/0s) f = 0 in this quotient. It follows that det(fi;)1<; j<m is an invertible
function on X. In an analytic open neighborhood of z, we may thus apply a change of
coordinates and obtain f;; = d;—;, and then the first result follows from direct calculation,
or the explicit formula of Denef and Loeser [12, Theorem 4.3.1].

Part (2+3): By nondegeneracy of F, if V= V_ @ V, is a decomposition as in the statement
of the lemma, then dim(V_)=m/2, and the symmetric bilinear form F establishes an
isomorphism of vector bundles V. = (V_)*. Replacing V; by (V_)* we obtain

0 Id
F= m/2><m/2>'
(Idm/2><m/2 0

Letting C* act by scaling V,, the function f is equivariant of weight one. The proof of
[8, Theorem 5.9] shows that if we have a smooth variety Y, an integer r and a function
g=7>_giti on Y x A", then 7y, ([¢g]g-1(0)) = [V(91,---,9r)]. Moreover the proof generalises
without modification to the case in which 7y : Y x A" — Y is a projection from the total
space of a G-equivariant vector bundle. The second and the third parts follow, putting
Y = X x Tot(V_). O

REMARK 3.4. If we relax the condition on f, part (2) may fail. For instance, consider the
function f = zz? on Spec C[z*! z] = C* x Al. Tt is easy to check that the associated virtual
motive satisfies [C*];, = 0.

REMARK 3.5. Likewise, if we relax the condition on the G-action on V', part (3) may fail.
For instance, let G be the cyclic group of order 2, let Tot(V) = Spec C[z,y] = A2, with f = xy
and G swapping x and y. Then it is easy to check that for the associated equivariant critical
structure, we have [pt]yi; = [G] — [pt], where on the right-hand side [G] is a pair of points,
permuted by the G-action, and pt carries the trivial G-action. This is a consequence of the fact
that the G-action on H(A?, ®,,) is the sign representation, see, for instance, [29, Lemma 4.1].

The ultimate goal of this section is to show that as a relative motive over Sym(X), the
virtual motive

S QE, 25 sym™(X)],, (3.3)

n=0

is generated under Exp , by motives that are supported on the punctual locus, and constant
away from Cj, as well as constant on Cjy. To get to this point will require some work, and
we break the proof up by showing first that (3.3) is at least generated by motives supported
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1410 BEN DAVISON AND ANDREA T. RICOLFI

on a ‘partially punctual’ locus. By Lemma 3.1, it is enough to prove the analogous result for

h .
>, (=1)"[QF = Sym™ (A%)]yi.
We explain here what we mean by the partially punctual locus. Consider again the map

hc: Q7 — Sym”"(A?).

The embedding of the zy-plane in A% induces an embedding of varieties

L Sym™(A?) < Sym"(A%) (3.4)
and we denote by QZ"’HHP’" the preimage of Sym”(A?) under he, that is,
Q™" = he ! (Sym"(A%) € Q7. (3.5)

The map ¢, is the inclusion of the subspace of configurations of points which all have z-
coordinate 0, which explains the notation (e, e nilp) — the scheme-theoretic version of this
condition is that the operator corresponding to the action of z is nilpotent. So, ordering the
operators corresponding to x,y, z alphabetically, the first two are unconstrained, and the third
is nilpotent.

NOTATION 3.6. More generally, for #,, #,, #. € {uni, nilp, e} we define Qf“”#y’#z’n CQ}
by imposing the closed conditions that for w € {x,y, z} the operator -w is nilpotent if #,, =

e 0 0n

nilp, or unipotent if #,, = uni — so, for instance, Q7 = Q}

There is an action of A! on Sym"(A?) via simultaneous addition on the z coordinate of all
points in a configuration, and we let

n: Sym™(A?) x A' — Sym"(A%) (3.6)

be the restriction of this action. It is again an embedding, this time of the subvariety of n-tuples
of points which all have the same z-coordinate (not necessarily zero). It is this locus that we
call ‘partially punctual’. Finally, consider the morphism

q-: Symn(Ag) — Sym"(Al)

obtained by projecting onto the z coordinate. We define hc® = ¢, o hc. More generally, for
ai,...,a, distinct elements of {x,y,z} and T C Q7, we denote by

hc™ % : T — Sym"(A")

the map given by composing the restriction of he to T’ with the projection Sym(A?) — Sym(A")
induced by the projection A% — A" defined by forgetting the coordinates not contained in
A1y...,Qp.
The space Sym™(A!) is stratified according to partitions of n, and for o - n we denote by
7%% C Q7 the corresponding stratum of the stratification of Q7 given by pulling back along
hc”: Q7 — Sym”(A'). So, for instance,

Z-.,(n) = (Sym"(A?) x Al) Xgymn (a3) QT C QT

is the fibre product of 7,, and hc.

LEMMA 3.7. (1) There is an equality

Q" 25 Sy (A7), = 5 [QF 25 Sym”(A%)],, W [AT =5 A']

vir

in Mgymn(a2)xat- In other words, the motive on the left-hand side is constant in the Al-factor.
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(2) Moreover, for o= n there is an equality

‘ . ) Ra;
[ z’.,a — Symn(Ag)} vir = U'ﬂ-Gm‘?;< 2:.70) - SymZ(AQ) ) A1:| > (3'7)

2|
i|a; #0 vir
where j, is the G,-equivariant inclusion of the complement of the pullback of the big diagonal
under the G,-equivariant projection onto z-coordinates:

[T (Sym'(A%) x A1) — A%,
i\aﬁéo

Here G, is the automorphism group for the partition type a, and U is the union of points map
on Sym(A?).

Before we begin the proof, we give some guidance for how to read the right-hand side of
(3.7). Firstly, recall from Section 1.5 that the infinite union of algebraic varieties Sym(A?) has
a symmetric monoidal structure U, given by taking unions of unordered points with multiplicity.
We consider Sym’(A2) x A! as a subvariety of Sym’(A®) via ;. We abuse notation by writing
U again for the map Sym(A3)™ — Sym(A3) taking an m-tuple of sets of unordered points with
multiplicity to their union. The term in big round brackets on the right is a G,-equivariant
motive via Lemma 1.6.

Proof. Consider again the space N2° C N, from Section 2.4. We define the subspace T,, C
N2° by the condition that Tr(p(b})) = 0. Then there is an isomorphism

T x AV SN2
given by

(p(a?), plaz), p(b7), pat), play), p(b)), t) = (p(ay), p(ay), p(bY) +t - Idnxn, p(ay), p(as), p(b})),

and the function h,, = f|aee (cf. (2.9) and Proposition 2.10) is pulled back from a function hy,
on 7y,. The stratification by partition type of p(b) for Q7 C N;2° is induced by a stratification
of T,,: for a a partition of n, define T, C T, to be the locally closed subvariety whose C-points
correspond to Q,-representations for which the partition type of the generalised eigenvalues of
p(b}) are given by a. Then crit(h,,) N T,y = Q3*""™", that is, the isomorphism 7;, x A SN2
sends (crit(h,,) N Tiny) x {0} onto Q3 *™'P".

Let Sym( (A') € Sym"(A') be the closed subvariety of n-tuples summing to zero. Let

A N2 — Sym™(Al)

be the morphism taking a module p to the eigenvalues (with multiplicity) of p(b/). Note that
Algr = hc”. Then the first equality follows from the commutativity of

T, x Al = N
len xidy1 A
Symg(Al) < Al (tryer b ) )= H L Ly H L) Sym”(Al)

and the fact that, pulling back along the top isomorphism, the function h,, becomes h,, @ 0.
Let o= (1°1---7%") Fn be a partition. We write l(a) =3, a; for the total number
of parts of a. For the proof of the second part of the lemma, we adapt the proof of [3,
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" V4
A, Ay

7
b1,2

FIGURE 5. The quiver Q., for the case in which l(«) = 2. The index k varies in {1,2}.

Proposition 2.6], via the following commutative diagram, which will take some time to define
and describe.

L) e P B0 s § - N,
|

K. A

Vv closed

I ( L) s

U « l
m { S < Nee
R
U -

~

Qa closed Qn
L L

All of the dotted arrows correspond to the inclusion of the critical locus of a function. All
hooked arrows denote open inclusions.

The open subspace U C [],(Q% )% is defined by the condition that the set of eigenvalues of
p(bY) in each of the I(«) factors of the product are distinct from the set of eigenvalues for p(b)
in any other factor in the product. The open subset U C Q7 is the image of the étale map
U — Q7 given by sending the I(a)-tuple {1 — Z;};<i(a) to

fL—» @ yj.
i<i(a)

The closed subset V C U is defined by the condition that in each of the I(a) factors in
the product decomposition there is only one eigenvalue. It is in fact the preimage of Qf =
he™*(Sym®(A%)) € U under the map U — U.

We form the quiver @, (Figure 5) and dimension vector d,, as follows. Set

(Qa)o = {217--~,21(a)7@}

_ ! ! / // 1 1"
(Qa)r = {‘h,m%,i» 1,is 1,1’}1@@(&) U {al,i,j7a2,i,j 1<i,j<l(@)"

We set
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t(a’/ll,i,j) = t(a’/Ql,iA,j) = zj

S(a’lll,i,j) = S(a/QI,i,j) =2,
We give @, the dimension vector d,, = (1**,...,7%", 1), that is, we always assign the vertex

oo dimension 1, and then the rest of the dimension vector is given by the ordered set of numbers
a. We give this quiver the stability condition

Ca - (*1,...,71,71).

A (¢,-stable) CQ,-module is the same data as a ((’-stable) CQ,-module p, along with an
ordered vector space decomposition of the vector space ps that is preserved by the operation
p(b]). As such, there is a forgetful functor from CQ,-modules to CQ,-modules, inducing a
generically finite morphism

st N, = rModfi‘; (Qa)/ GLy — N2°,

which at the level of points amounts to setting

= @ pa,.

i<l(a)

The scheme is G,-equivariant, via the obvious G,-action on the quiver Q.
There is a unique potential W, on @, such that Tr(W,) is the pullback of Tr(W,) under
this forgetful map. Precisely, we define

_ 1" / !/ / ! /! 12 1’ /! 1
Wo= > (al ;b ab; —ay by jai,) + Y (af b7 a8, —ab ;b saf; ;).
1<ij<I() 1<ij<l(e)

We define the open subscheme Sc N, by the condition that for every 4,j <I(«) the
endomorphisms p(b} ;) and p(by ;) share no eigenvalues. The map

5:8 = N°°

is quasi-finite, and factors through a finite morphism S — S where S C N2° is an open sub-
scheme.

Let p € SN erit(Tr(W, )) Then s(p )(b’ ) =0 by stability, and so from the superpotential
relations we deduce that af; ;b7 ; = b/ ;af; ; and a3, ;b = b} ;a5 , ; for all i,j and so from
our condition on the elgenvalues of the bY; we deduce that for all 1 < # j <I(a) we have
play; ;) = play,; ;) = 0. As such, in calculating the relative vanishing cycle [pre(w,)]g we can

restrict to the set S° C S defined by the condition that p remains stable after setting all
play; ;) = plas, ;) = 0 for i # j. So both the inclusions U — S and U — S° are the inclusions
of the critical locus of the function Tr(W,,) on the respective targets.

The space S° is a vector bundle over

P c [T, (38)

the open subset defined by the condition that the generalised eigenvalues of the p(by)-operators
from different factors are distinct. The projection from S° to P is given by forgetting the values
of p(ajy; ;) for k=1,2 and i # j.

The map 7 is a Galois cover with Galois group Ga, and the map S° — S is a Galois cover
in a formal neighbourhood of the morphism .

The space P carries the free G -action inherited from N,,, and furthermore the vector bundle
S° has a direct sum decomposition V_ @ V,, where V_ keeps track of the entries of plai; ;)
for i # j and V, keeps track of the entries of p(ay; ;) for i # j, and so the decomposition is
preserved by the G,-action.
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1414 BEN DAVISON AND ANDREA T. RICOLFI

Let m = rk(V,) = rk(V_). If we let G; = C* act on S° by scaling V; with weight 1 and V_
with weight —1, then Tr(W,,) is C*-invariant. Let Go = C* act by scaling both V. and V_ with
weight one. Then since each term in the potential contains at most two instances of aj ; ;, for

k =1,2, for every p € 5°, there is a fixed constant C for which | Tr(W,)(z -2 p)| < C|2|* where
the action is via the Gs-action. We deduce that on S° we can write
Tr(Wa) = g0 + 91,

where go is a function pulled back from the projection to P and g1 is a Gi-invariant function
on S°, quadratic in the fibres. After passing to a G-invariant Zariski open subset, we can
trivialise the vector bundle S° and write

g1 = E gi,jtis;,
1<ij<m

where t; and s; are coordinates on the fibre of Tot(V, ) and Tot(V_), respectively. From the
equality crit(Tr(W,)) = crit(go), arguing as in the proof of the second part of Lemma 3.3,
the matrix {g;;}1<i j<m is invertible, and after a change of coordinates on Tot(V}) we may
assume that ¢;; = d;—;. By the Thom-Sebastiani isomorphism, and the third part of Lemma 3.3

we deduce that [qur(Wa)]g;‘ = [(ﬁqo]g“ € ./\/lg“x’l. Finally, we note that go is the sum of the
potentials on the factors of [[,(N;°)*¢, and the result follows from Proposition 1.15 and the
Thom-Sebastiani theorem. O

Recall from (3.5) the subvarieties Q3™ "™ c Q7 relative over Sym™(A?) via the map hc®™.
The next corollary follows from Proposition 1.12.

COROLLARY 3.8. Define classes ®,, € Mgypn a2y via

> QI 2 sy (4], = “Bxp | 3 @

n=0 n=1
Then
> ()"[QF 75 sym"(AY)]

n=0

=°Exp, [ Y (Sym”(A2) x Al sym”(AS)) (&, ®[AL 1 A1)

n=1 :
Proof. By Lemma 3.7 (2) and (1.4), we deduce that for a - n

i [ee (@) P2 119
B [QL %Sym(A)xA} )

vir

(1) (@3 - Sy (49)],,, = U
The result then follows from Proposition 1.12 and

[QF = Sym™ (A7), = >_ [QL™ = Sym™(A%)],,,.

abn

4.2. Motivic stratifications II: fully punctual strata

Corollary 3.8 says that, considered as relative motives over Sym(A!), via projection to the
z coordinate, the DT invariants are generated by classes on the small diagonals, which are
moreover constant as relative motives over A'. In other words, there are relative motives over
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Sym"™(A?) that generate the motivic DT partition function under taking the external product
with the constant motive on A! and taking exponentials.

We next show that these relative motives are themselves supported on the small diagonal
(although they are non-constant, with a ‘jump’ at the intersection A2 N L) so that considered
as a relative motive over Sym(A?), the virtual motive of Q7 is generated on the small diagonal.

For n’ < n and « a partition of n — n/, we define

Qn/,a _ Qz,.711i1p,7L n (hcy)_l(jéln/’a)7

where A, , is the subvariety of Sym”(A') defined by the condition that 0 occurs n’ times, and
the partition defined by the (n — n’)-tuple of points away from 0 is a. We denote by

kb Sym™(A') < Sym"(A?) k0 Sym™(A') < Sym"(A?)
(215 .y 2n) = ((71,1), ..., (20, 1)) (21, -y2n) = ((21,0),...,(2,0))
and

R o Sym™(AY) x Al — Sym™(A?)

(21, 2n),2) = ((21,2), - -+, (20, 2))

the inclusions analogous to ¢, and 7, defined in (3.4) and (3.6). Let [,: Sym"(A!) x G,,, —
Sym"™(A') x A! be the inclusion.

LEMMA 3.9. (1) There is an equality

A [ 2 sy (A7)

= mp” [QLP™ 2 Sym" (A%)] ;B [Grn < G

vir vi

in Mgymn(a1)xG,,- In other words, away from 0, the motive

R [P 27, 5y (42)]

vir
is constant along the A'-factor.
(2) More generally, there is an equality

[0 %, S at)]  =[@r 2%, e (42)]

vir vir

. Ty . Qo
U WGaj:(l &7&0 [QO,(Z) e, Sym‘(A') x A1:| . )7

where j, is the inclusion of the complement to the preimage of the big diagonal in AXi @i
under the projection [[;(Sym’(A!) x A1) — AX: o,

See the remarks following the statement of Lemma 3.7, as well as equation (1.2), for some
guidance on how to read the right-hand side of the second equation.

Proof. Let G,, act on N2° via

z - (p(ah), plas), p(b)), plal), p(ay), p(b))) = (zp(a}), 2z~ " plas), p(b)), zp(al), 2~ " plasy), p(bY)).

Then Tr(W,) is invariant under the G,,,-action. We define the space U,, C N;>° by the condition
that det(p(ay)) = 1. Consider the morphism

J: Uy x Gy — NS°

given by restricting the G,,-action. This is a Galois cover of the open subscheme Y C N;2°
defined by the condition that p(a}) is invertible. Let V,, C U,, be the subvariety defined by
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the condition that p(a3) has only one eigenvalue. Then as a u,-equivariant variety, there is an
isomorphism

Vi EWh X fin,

where the action on the first factor is trivial, and is the action of group multiplication on the
second. Here W,, C U,, is the subvariety defined by the condition that p(a3) is unipotent.

Recall from Section 2.4 the function h, on N?2°. The function h, oJ factors through a
function k on U,, since h is G,,-invariant. By Proposition 1.15,

(Y = N2 [0 oo = V= N2 T A([Blet, B (G 25 G,
It follows that
L hegn, e = Ui herma, J((65)u, B (G 5 G])
= &5 herm, A(95)v, B G 2% Gy))
= &5 he (65w, B (G~ G,

implying the triviality along the G,,-factor required for part (1). The second equality follows

from the fact that only the part of the motive over V,, can contribute to the pullback along &,

since by definition this is the pullback along the locus where p(a3) has only one eigenvalue.
For part (2), consider the quiver @), defined as follows. Set

(Q;)O = {20, ce ,Zl(ay@}

/ _ / ! / 1" I
(Qu)1 = {al,i7a2,ia 1,1‘7“1,1}0@@(& U {b1 Qg0 2,1‘,;'}0@’]-@(&)

with
t(ay,;) = t(ay,) = s(by ;) = o0
5(“1,1) = s(ay,;) = t(by,;) = t(alzl,i) = 5(a/2/,¢) =2
t(a/1/7 J) = t( lll,i,j) = 2_]
S(a/llz,j) = s( /1/,1‘,7) =2,
We give this quiver the dimension vector d = (n/,1%*,... 7% 1) and the stability condition
(=1,...,—1,n). As in the proof of Lemma 3.7, a (stable) Q) -representation corresponds to a

(¢’-stable) @Q,-representation p along with a direct sum decomposition of py that is respected
by the operator p(aj). A point in Q™ ** gives rise to a d-dimensional @/ -representation, in a
formal neighbourhood of which the forgetful map is a Galois covering — from this point, the
proof proceeds exactly as in the proof of Lemma 3.7. ([

The following is proved in the same way as Corollary 3.8.

COROLLARY 3.10. Define classes U7 € Mgymn(ary for # € {nilp, uni}, via

S (-nr[@pF e B symt(al)] = Bxp, | Y v

n=0 n>1

Then
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THE LOCAL MOTIVIC DT/PT CORRESPONDENCE 1417

D (1R R sym (A7),

n=0

— °Exp,, (Z (sym"(Al) X Gy F2olmy Gym™ (A ))'(\If,ulni R (G D G])

n>1

+ (Sym"(Al) — Sym"(A2)> qu“P).
!

We are now two-thirds of the way toward showing that the relative DT invariants are fully
punctual over Sym(A?). Since the proof of Lemma 3.11 is almost identical to that of Lemma 3.9,
while the proof of Lemma 3.12 is strictly simpler, we omit them. Before stating them, we
introduce one last stratification; for n’ < n, and a+n —n’, let

rPn/,a c Qz,nilp,nilp,n

be the preimage under the map
anllp ,nilp,n hC Sym (Al)

of the space of tuples of length n’ at the origin, and for which the partition type of the tuple
away from the origin is «. Likewise, for o F n we define

U c Qo,uni,nilp,n

to be the preimage of Sym®(A!) under QL’um nilp,n he?, —— Sym"(A!). Let also A,: Al —
Sym"(A') be the diagonal.

LEMMA 3.11. (1) There is an equality

A '|Gm

(Gm n Sym"(Al))* [QZ nilp,nilp,n hC Sym (Al)]

({1} ‘{1} mn(Al))* [szlp ,nilp,n hc Sym ( 1)]Vir X [Gm E_> Gm]

e nilp,nilp,n

in Mg,,. In other words, away from 0, the motive A} [Q7 — Sym"™ (A')],i, is constant.

(2) Moreover, there is an equality

[P 25 sym (A1)

vir

= [P0 2 sy (a1)]

vir

. T . Qa;
Xy Urg,, ( X [770’(1) LN Sym® (Al)} )

i|a; #0 vir

LEMMA 3.12. (1) There is an equality

An, n * e uni, ,n1 n C
(A1 22 Sym™ (A1) [Qp"™ P 25 sym” (A1)

vir

= ({0} 21 symn () [@p™ I 2 sy (al)] @ (Al 2 A1)
e, uni,nilp,

in M. In other words, the motive A% [Qy"™ ™™™ — Sym" (A, is constant.
(2) Moreover, there is an equality

[ua he?, symn(Al)}vir —U e, <Z_Qg¢0 [u< i) B’y Gy (Al)} f)
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1418 BEN DAVISON AND ANDREA T. RICOLFI

By the same argument as Corollary 3.8, we deduce the following.

COROLLARY 3.13. Define classes A#f for # € {nilp,uni} in Mc via

Z (_l)n [Qf,nilp,nilp,n] = OEXp Z A# ) (39)

n=0 n>1
Then
>° (D@ 2 syme (A1),
n=0
—“Exp,, | 3 AR [, ~2E Sym™(A1)] + AL K [0 < Sym”™ (A)]

n>1

COROLLARY 3.14. Define A,, € Mc¢ via

Z (_1)77, [erl/ilp,uni,nilp,n] i _ OEXp Z An ) (310)

n=0 n>1

Z (_1)71[ z,uni,nilp,n ﬁ Symn(Al)} = OEXpU Z A, X [Al i} Sym”(Al)]

n=0 n>1

LeEMMA 3.15. In the notation of Corollaries 3.13 and 3.14, there is an equality
Azni _ An

for all n.

Proof. There is an automorphism S,, of N2°, for all n, defined by

/ /
play) = —p(ay),
which leaves Tr(W,) invariant, and so preserves [Q} — Q7 ]vir. Now
uni,nilp,nilp,n _ nilp,uni,nilp,n
Sny!{ L %QL}._[ L *QL}
vir
nilp,uni,nilp,n]
i

and so [ani’nﬂp’nﬂp’"]vir = [Q} sivr The lemma then follows from the defining
equations (3.9) and (3.10). O

vir

DEFINITION 3.16. Let us set

n __ Auni n  __ Anilp
th - A chv - An .

n

These fully punctual motives express the contribution of points away from the curve and
embedded on the curve, respectively.
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Let
v Lo A3, tey: Co = X
denote the closed inclusions, and let
up: A3\ L= A% ug,: X\ Cp— X

denote the inclusions of the open complements.

THEOREM 3.17. There is an equality in Mgy (a3):

ST (1M [QF 2 sym™(A)]

n>0

—Bxp, | D (25 8 [A%\ L 25 Sym™(4%)] + 0

pt crv
n>1

® [L 225 sym™ (A%)]) |,

(3.11)

and an equality in Mgy (x):

3 (1" Qe 25 sym™(X)]

n>0

An

=Exp, | Y (Qgt 5 [X \ Cp —20% Sym™(X)] + Qr, B [C -~y symn(X)]>

crv
n>=1

(3.12)

Proof. By Corollary 3.8, we have

ST (1M QF 2 sym™(A)]

n>=0

=°Exp, [ Y (sym”(A?) x Al I sym”(A3)) (@K [ % A1)

n>1

!
Then by Corollary 3.10 and Proposition 1.12, we deduce that

ST 1)1 [QF 2 symn(a%)]

n=0

= °Exp,, (Z (Sym"(A') x G, x A' < Sym™(A%)) VI K [G, x A' G, x A
n=1
+(Sym™(A") x {0} x A" < Sym™(A%)) ¥ K [{0} x A" X {0} x A1]> :

Then by Corollaries 3.13 and 3.14 and Proposition 1.12 again, we deduce that
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1420 BEN DAVISON AND ANDREA T. RICOLFI

ST -1 [QF S sym (AY)]

n=0

= °Exp,, (Z (A' X G, x Al < Sym™(A%)) Q2 B [A X Gy, x AY 15 A X Gy x A

n>1

+ (G x {0} x A s Sym™(A%)), Q0 B [Gy, x {0} x A' 15 G,y x {0} x A]

+({0} x {0} x A" — Sym"(A3)) QL W [{0} x {0} x A" = id = {0} x {0} x A1]>

and the first statement follows. For the second statement, we observe that the right-hand
side of (3.12) satisfies conditions (2) and (3) of Lemma 3.1, and is obviously equal to the
right-hand side of (3.11) after restriction to Sym(A?). Then the second statement follows from
Corollary 3.2. O

5. The virtual motive of the Quot scheme
In this section, we define a virtual motive
[ 7(7,‘} vir = M(C

for an arbitrary smooth curve C' C Y in a smooth 3-fold Y. Before getting to this point, we
give an explicit formula for the generating series

Qr/us(t) =D [QF],, -t

n=0
QCO/X(t) = Z [QCo]vu
n=>0
encoding the local absolute virtual motives attached to L C A% and Cy C X. We shall also
prove Theorems B and C from the introduction.
5.1. The local absolute virtual motives

Let X be, as usual, the resolved conifold. Then Theorem 3.17 implies that for ¢: z < X the
inclusion of a point, the absolute motive

(Sym™ 0)*[Q%, 2% Sym"(X)]

only depends on whether z is in Cy or not. We define:

vir

o [Pr].. = (Sym" )*[Qp, 25 Sym™(X)].. for x ¢ Co;
. [P” = (Sym" ¢)* [an hex, Sym” ’(X)]Vir for x € Cj.

crv} vir

Explicitly, these motives are determined by the identities
>_ (D" [Pyl 1" = "Exp (Z @ 't”>
n=0 n>0

for # € {pt, crv}. We define the generating functions

Fu(t) = [Ph],, -t

n=0
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Via the morphisms defining power structures for varieties, Lemmas 3.7, 3.9, 3.11, 3.12 and 3.15
can be neatly summed up in the following corollary.

COROLLARY 4.1. There are equalities in Mc [t]
3
QL/A?’(_t) = Fpt(_t)% - Fch(_t)E;
3 2
Qe (=) = Fpe(—t)g 7 770 Fae (<)

REMARK 4.2. Note that the exponents in the statement of the corollary are effective (despite
the minus signs). Indeed, L® — L is the class of A3\ L, and L + L? —L — 1 is the class of
X \ Cy. The ‘¢’ subscripts are in the statement because we are yet to prove that the classes
(=1)"[Pl]vic and (=1)"[Pg, ]vir are effective. As a result of Corollaries 4.4 and 4.6, we will be
able to remove them and the statements remain true, now expressed properly in terms of the
power structures on the Grothendieck rings of varieties.

The rest of this subsection is devoted to removing the decorations ‘¢’ from the formulas in
Corollary 4.1. We start with # = pt.

PropPOSITION 4.3. For all n > 0, there is an identity
[Pgt] vir [Hilbn(AS)o]vir = MC'

Proof. By definition

[Pid e =72 [QF =% Sym™ (A0,
where 7, : p = Sym™(A?) is the inclusion of the point p = ((1,1,1),...,(1,1,1)). Consider
the open subvariety U, C rtMod,, 1)(Q,) defined by the condition that p(a}) and p(ah) are
invertible, and the image of p(a}) generates p, under the action of p(af), p(ay) and p(bY).
Note that this is a stronger notion of stability than (’-stability. However, after restricting to
the critical locus of Tr(W,.), using our invertibility assumptions, we have that for p € U,, the

relation
p(al) " pas)p(ay) = plah)

holds, and so we deduce that p satisfies our stronger notion of stability if it is ¢’-stable, lies
in crit(Tr(W;.)), and satisfies the above invertibility assumptions. It follows that, after setting

U, =U,/GL,, one has

(PR, = du[Un 0 crit(Te(W,)) 2% Sym"™ (A%)] .
Let @pgs denote the quiver obtained from @, by removing a}, and b, in other words the framed
3-loop quiver of Figure 1. Then NCHilb" := rModfn 1)(QBBS) / GL,, is the noncommutative

Hilbert scheme considered by Behrend, Bryan and Szendrdi in [3] (cf. Section 1.7), and
U, =U,/GL, is a vector bundle over NCHilb], the open subscheme of NCHilb" defined
by invertibility of p(af) and p(a}). B
We introduce a new set of matrix coordinates on U,, by considering the matrices
Ay = plal) B=plah) B =pt))
Ay = p(ay)p(ay) — play)p(ay) A} = p(ai)p(as) B} = p(by).
With respect to these coordinates, we can write

Tr(W,)|v, = F + Tr(B}AS),
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1422 BEN DAVISON AND ANDREA T. RICOLFI

where
F =Tr(A]) Tr(BY) Tr(AY) — Tr(AY) Tr(BY) Tr(AY)

is a function on NCHilb" considered as a function on U,, by composition with the vector bundle
projection U,, — NCHilb". It follows from Lemma 3.3 (2) and the motivic Thom—Sebastiani
theorem that

§2 (U, N erit(Te(W,)) 2% Sym™(A%)] . = ji [NCHilb" N erit(Tr(F)) 2% Sym™(A%)]

= ji[Hilb"(A%) 2% Sym™ (A%)]

vir

= [Hilb"(A%)]

vir
as required. O
COROLLARY 4.4. For all n > 0, there is an identity
L3 —L-%
Qgt = (—1)”]14 2 m € M(C.

In particular, Q7 is effective.

Proof. By definition, we have
S [pal = (S i)
n=0 n>0

Since [Pl ]vir = [Hilb" (A%)o]ir, we deduce (see Remark 1.22) that (—1)"[P[]vi is effective,
and by Formula (1.13) we deduce also that

L% L%
Sy = (D )
n>0 n>0 2 —L72

The result follows since “Exp is injective, and agrees with Exp on effective motives. (I

The corollary implies that in the right-hand side of the formulas in Corollary 4.1, we can
remove the decoration ‘¢’ from the first factor. In other words, for all smooth quasi-projective
3-folds U, one has

For (=) = Foo (=) = Zo(=t)V] = 7 (—1). (4.1)

Next we deal with # = crv.

In [20, Proposition 4.3], the full motivic DT and PT theories of the resolved conifold X
are computed. The sign conventions in loc. cit. are different from ours, but the discrepancy
amounts to the substitution

L2 — —L3.
After this change is done, the motivic partition function of the stable pair theory of X reads

m—1

Zpr(— H H (lJrJL*L"+ (-~ )mT).

m>=1 7=0

On the other hand, the DT partition Zpt function satisfies
ZDT(—87T) = Zx(—s) . ZpT(—S,T)7
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where s is the point class and T is the curve class. Again, we have adjusted the sign in the
point contribution Zx. Extracting the coefficient of T (which corresponds to picking out the
contribution of the reduced curve class) and multiplying by —s~! (so that the (—s)" coefficient

is I,,41(X, [Co]) = Q¢ on the DT side) yields an identity
DTCO/X(fs) = ZX(fs) . PTCO/X(fs),
where

PTc,/x(—s) = Z (—=1)"[Sym" Co] ;. - "

n=0
= (1+Lzg) "D

=(1- L 2s+L1s2—... et
On the other hand,

DTCO/X(_S) = Z (_1)”[ go}vir st = QCo/X(_S)7

n=0
and the latter equals

Fch(_s)HonLl

L+1 _
ZX\CO(_S) “Ferv(=8)s" =Zx(—s) - ZO(_S)JL+1
by Corollary 4.1 and Proposition 4.3. It follows that

Fcrv(fs)]};Jrl = ZO(fs)LJrl ' (1 - L7%$ + ]]"7152 - )]LJrIa

1 L+1
= (Z()(—S)~(1—L_53+L_152_...)> )
We shall need the following:

LEMMA 4.5. There is an identity
Fcrv(_s) = ZO(_S> ' (1 +L_%S)_1 S M(C [[S]] .

In particular, Fe.,(—s) is effective.

Proof. Since Zo(—s) - (1 =L~ 2s+L"1s2 —...) is effective, we have
. L+1 . L+1
(ZO(—S) (1-L 3s4+L 12— ... )) - (Zg(—s) (1-L 3s+L 12— ... ))

<

Since L 4 1 is invertible in K (St27), by Lemma 1.11 and (4.3) we deduce the lemma.

COROLLARY 4.6. There is an equality of motives

L7 - L~ ifn=1

(M)

Q’!L —

crv

—
I
—_
~—
3
|
Nl
=&
vl N3
I
3

B
— otherwise.
3

In particular, Q. is effective.

Proof. From Lemma 4.5 and the equations

(1+ L_%s)fl = Exp(—]L_%s)

(4.2)
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1424 BEN DAVISON AND ANDREA T. RICOLFI
L —L—%
Zo(—s) = EBxp | S L~ 3]5 — (=" |,

n>=1

we deduce that

where

_sLr —L™% " 1
P= YL e |~

n>1

Since P is effective, “Exp(P) = Exp(P). On the other hand, by definition we have the equality
Fery(—s) = <>Exp(z Qnr s™). The result then follows by injectivity of “Exp. O

Corollary 4.1 can now be restated as follows:

THEOREM 4.7. The absolute virtual motives of L C A3 and Cy C X are given by
Qpryas(—t) = Zps\ () - Feru (—1)"
Qey/x(—t) = Zx\cy (—1) - Fero (=)

Proof. Combining (4.1) with Lemma 4.5, we get Fo.,(—t)"! = Fo. (—t)5H1 O

5.2.  Proof of Theorems B and C
Proof of Theorem B. By (3.11), there is an equality

ST (1M [QF 22 sym™(AY)]

n=0

—Exp, | D (2 B [A7\ L 225 sym(4%)] + 0

crv
n>1

R [ 2ty Sym”(A3)])

Plugging in the results of Corollaries 4.6 and 4.4, we deduce

(1" = sym" (A7),

n=0
= °Exp,, <Z( Pos B [A%\ L 27 Gym™ (A%)]
n>1
+ s B[ 22 sym"(AS)]) — LT3 [L A syml(Af*)})
= Exp, <Z (QEBS X [Aff An, Symn(AB)])
n>2

— L3 [L 22 Sym!(A%)] L2 [A 2L syml(AS)]>,
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where the removal of the ‘¢’ comes from the effectiveness statements in Corollaries 4.6
and 4.4. O

Guided by Theorem 4.7, we can now define a virtual motive for an arbitrary Quot scheme

Qe

DEFINITION 4.8. Let Y be a smooth 3-fold. For a smooth curve C C Y, we define classes
[Q¢]vir € Mc by the identity

3 QB (D" = Zyro(—t) - Far(—).

n=0

We also define
Qoyv(t) = Z [ EL/‘]vir A

n=0

At this point, it is not yet clear that [Q%]vir is a virtual motive for QF, but we incorporate
this in the proof of Theorem C from the introduction:

THEOREM 4.9. For all n > 0, there is an equality of motives

n

[Qg] vir = Z [Hllb“_J Y] vir [Symj O] vir®

j=0
In other words, we have a product decomposition
Qeyy(t) =Zy(t) - Zo(t),

where for a smooth variety X of dimension at most 3, Zx(t) denotes the motivic partition
function of the Hilbert scheme of points of X.

Proof. Combining the power structure with Lemma 4.5, we find

Qv (—t) = Zy\c (=) - Fer (=)
= Zo(—t)Y1-[€) . Zo(=1)(€) . (1 4 L=3¢) ¢
=Zy(—t) - Zc(—t).
In particular, the classes [Q¢]vir are virtual motives, because
XQcyy (8) = XZy (1) - XZe(t) = M(=t)Y) - (14 )X
and this equals Y X(Q¢)t" by [32, Proposition 5.1]. O
The proof of Theorem C is complete.
5.2.1. Equivalent formulations. Using the power structure on M¢ and the explicit formulas

for Zx (t) available from [3, Section 4], we find an identity

co m—1

Qc/y(t) = (H H (1 _Lkl’;tm)—[Y]> _ (1 —L*%ty[c].

m=1 k=0
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1426 BEN DAVISON AND ANDREA T. RICOLFI

Another equivalent way to express the same identity is via motivic exponentials. If ¢ is the
variable used in the definition of motivic exponential (cf. Section 1.5.1), then

_ Ex —t[Yvir _ .
Qv (=) = Exp <(1 L) +L ) t[@m)

= Exp (—t[Y]vir Exp(—t[P']vir) — t[Clvir).

5.3. Local Donaldson—Thomas invariants

Let Y be a projective Calabi—Yau 3-fold, and let C' C Y be a smooth curve of genus g. Recall
the C-local DT invariants
DT% :/ vr dX
Q

&
defined by restricting the Behrend function of the Hilbert scheme I = 1I;_,,,(Y,[C]) to its
closed subset |Q| C I. The BPS number ny ¢ of C' C Y is the integer
ng.c =vr,_,v,cn(He) € L.

Theorem 4.9 immediately implies the following:

COROLLARY 4.10. Let Y be a projective Calabi—Yau 3-fold, C' C'Y a smooth curve with
BPS number nyc = 1. Then

X[Q’ré}vir = DT%
Proof. The main result of [31] proves that
DTZ‘ = Ng,c - %(Qg>

By the proof of Theorem 4.9, we know that [Q%]vir is a virtual motive, so the result follows. O

When C is infinitesimally rigid in Y, that is, H(C, N¢yy) = 0, the integer DT is the degree
of the virtual fundamental class

[QE]™ € Ao(QR),

naturally defined (by restriction) on the connected component
Qe C hi—ga(Y,[C)).

So, by Corollary 4.10, the class [Q%]vir € Mc can be seen as a motivic Donaldson-Thomas
invariant.

REMARK 4.11. In [40, Example 5.7], one can find an example of a cohomological DT
invariant in the projective case. We are not aware of other explicit examples of motivic DT
invariants for projective Calabi—Yau 3-folds, in a setting where the moduli space parameterises
curves and points. Without a curve in the picture, there is the virtual motive [Hilb" Y]y,
constructed in [3] for arbitrary 3-folds, and if Y is an open Calabi-Yau there are plenty of
examples, see, for instance, [8, 9, 20, 21, 23].

REMARK 4.12. The formula Qa3 = Zys - Z1, was conjectured in the second author’s PhD
thesis [30], where the problem was reduced to proving a motivic identity (with no ‘virtualness’
left to deal with) involving essentially only the stack of finite length coherent sheaves over
A2, As it turned out, such an identity could in principle be checked by hand after performing
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a complete classification of finite length modules over the polynomial ring C[z,y], which is
known to be a wild problem. This classification was accomplished by Moschetti and the second
author in [22] for modules of length n < 4. As a consequence, the motivic wall-crossing formula
Qpr/as = Zys - Zy, could be proven by hand up to order 4 using this classification.

6. Categorification

In this final section, we outline a programme for future work on a categorified DT/PT
correspondence. Just as, since any smooth threefold analytically locally looks like A%, one may
patch together the full cohomological understanding of the DT theory of degree 0 DT theory on
A? obtained in [7] to try to understand the degree 0 cohomological DT theory of any Calabi—
Yau 3-fold (see [42, Section 3.1]), analytically locally, the inclusion of a smooth curve inside a
smooth Calabi-Yau 3-fold can be modelled by L C A®, and so the intention is that by proving
the conjectures below we can approach a cohomological version of the DT /PT correspondence.

6.1. Further directions I: categorification

By our Theorem A, the moduli space Q7 arises as the critical locus of the function Tr(W,)
on the moduli space N2°. Shifting the associated virtual motives, we define the generating
function

_n n hc,
L/A?’ Z]L Q S m Ad]vir € MSym(Aig)'
n=0

Then by Theorem B, we can write

Qs = Exp,, (Z A (5 [47 2 A3])> K, Expy, (A (L7 R [L =A%), (5.1)

n>0

where
Q?rh _ L72(1 + ]Lfl N Llfn)

and A, : A3 — Sym"(A3?) is, as ever, the inclusion of the small diagonal.

For the rest of this section, we will make free use of the language and foundational results
concerning monodromic mixed Hodge modules, see [36, 37] for background on mixed Hodge
modules, [17] for an introduction to monodromic mixed Hodge structures, and [10] for the
theory of monodromic mixed Hodge modules in cohomological Donaldson—Thomas theory. In
particular, we will use the same functor

e,y : MHEM(N®) — MMHM(N;?)

considered in [10, Section 2.1], following the discussion of a monodromic mixed Hodge structure
on vanishing cycle cohomology in [17, Section 7.4].

In what follows, for a space X, we write Q. for the constant complex of mixed Hodge
modules on X, which we think of as a complex of monodromic mixed Hodge modules by
endowing it with the trivial monodromy operator. Where the choice of space X is clear, we
may drop the subscript.

Given an element [V ER ARS M%, where Z is a variety, pick n € N such that the [ action
on Y factors through the projection ji — p,,. Then we form the mapping torus

Y X, Gy = (Y x Gy / pin,
where j,, acts via z - (y,2') = (2 -y, 2712’). We define
f:Y %, G, — Z x Al
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(y,2") = (f(y),2")-
Set F = ngYX c € DP(MHM(Z x A')). By construction, the cohomology sheaves of this

direct image are lbcally constant along the fibres of the projection Z x A — Z, away from the
zero fibre. In particular, F is a bounded complex of monodromic mixed Hodge modules, and
so [F] € Ko(MMHM(Z)). Sending [Y — Z] — [F] defines a group homomorphism

W M2 — Ko(MMHM(Z)),

which is a A-ring homomorphism in the event that Z is also a commutative monoid.
Now consider ¥( ih/ 43)- This is the class of the complex of monodromic mixed Hodge
modules

2
./—"L/Aa = @hcnl ¢}1§r()(rll/vr,-)@./\/jso ® (T1/2)—4n—2n , (52)

where T'/2 is a tensor square root of the complex of mixed Hodge structures H.(A',Q) — that
is, a half Tate twist, concentrated in cohomological degree 1. From (5.1), we deduce that

V(Q3Y4s) = [Fryas]

—1—n
= |Sym | (A1Q,, T & |PAa.Q,, ® (@ Ti> : (5.3)

n>1 i=—2

It follows as in [10, Proposition 3.5] from finiteness of the map U: Sym(A3) x Sym(A3) —
Sym(A3) that the object in the square brackets on the right-hand side is pure, in the sense that
its ith cohomology is pure of weight i. From semisimplicity of the category of pure mixed Hodge
modules (proved by Saito, see above references), the following two statements are equivalent:

e the complex of monodromic mixed Hodge modules F7, /s is pure;
e there is an isomorphism

—1—-n
]:L/A3 = Sym (Al!@Al ®T_1) &) @An!@A:S ® ( @ T7> . (54)
n>1 i=—2

CONJECTURE 5.1. The above two statements are true. In particular, there is an isomorphism
of Z-graded mixed Hodge structures

—n—1
P H(Q1, o Q eo) @ T-27"" =~ Sym ¢ ( &P Ti> ® Sym(V),

n=0 n>=l \i=-2

with n keeping track of the degree on both sides, and where V' is a 1-dimensional pure weight
zero Hodge structure placed in degree 1. The Z-grading on the right-hand side comes from the
grading on the object we are taking the symmetric algebra of (that is, we ignore the fact that
Sym of any object acquires an extra Z-grading).

The isomorphism in (5.4) would categorify our Theorem B, and would lift it from a formula
to an isomorphism (that is, categorify it). Since it would take quite some time to even fill in
the requisite definitions for the above discussion, we leave this conjecture to future work.

6.2. Further directions II: A new CoHA module

We recall some very general theory regarding critical cohomological Hall algebras and
their representations.
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First, we fix a quiver () and a potential W. The Euler form for @) is defined by
XQ: Z9° x 29 - Z

=YV D Vs Vi)

1€Qo a€Q1

A stability condition ¢ € Q¥° is called generic if for any two non-zero dimension vectors of
the same slope, we have (v,7’) = 0. Recall that a quiver is called symmetric if for all vertices
1,J € Qq, we have

#{a|s(a) =i, t(a) = j} = #{a|s(a) =7, t(a) =1}.

Note that the genericity condition is vacuous for symmetric quivers such as the three loop
quiver obtained by removing the framing from the quiver Qpps from Section 1.7, and the
quiver Qeon from Section 2.1.

Fix a generic stability condition ¢ € Q90 and a slope 6 € (0, 00). We set Ag C N%° to be the
submonoid of dimension vectors of slope 6. Then as in [17] we endow the graded monodromic
mixed Hodge structure

Heywo = €D HrModg(Q)/ GLa, ¢y Q) @ TX /2 (5.5)
deA§

with the Hall algebra product arising from the stack of short exact sequences of right CQ-
modules. The multiplication respects the monodromic mixed Hodge structure on (5.5) —
in other words (5.5) is made into an algebra object in the tensor category of Ag—graded
monodromic mixed Hodge structures.

In fact we will only consider the cohomological Hall algebra for which @Q is symmetric, and
¢ =1(0,...,0) is the degenerate stability condition, with § = 0. So we will drop ¢ and 6 from
the notation and just write Hqg w for the cohomological Hall algebra associated to () and W.

Let Q C Qg be an inclusion of quivers, with @ a full subquiver. We do not assume that Qg
is symmetric. Let I C CQy be the two-sided ideal generated by all paths in Qg not contained
in Q. Then CQ = CQx /I, and we let ¢: CQp — CQ be the induced surjection.

Let Wy, be a potential extending W, in the sense that gWg, = W. Let ¢ € Q90 be a stability
condition extending the degenerate stability condition, that is, such that ¢|g, = 0. Let f €
NQ#0\Qo be a framing dimension vector. Define

NG r = D HMody, 4 (Qn)/ GLa, $5ifiy, ) Q) ® TX(D/2xan (0.00) (5.6
deN@o

fr7

Via the usual correspondences, it is standard to check that ./\/Cgf“f is a module for Ho w .

Now we make this setup more specific. Let Q be the three loop quiver, obtained by removing
oo and all arrows containing it from @,.. Considering the inclusion @ C Qpps, and setting
(oo = —1 and f = 1, the module N _ 1 is precisely the vanishing cycle cohomology of Hilb(A3).
It was shown in version one of [10] that in fact this module is cyclic over the CoHA Hq w .
For a more recent example of a geometrically motivated class of modules for this CoHA, that
falls under the general construction above, the reader may consult [28], where an action on
the space of spiked instantons is considered.

The purpose of this subsection is to add one more geometrically motivated example to the
list, namely, we consider the inclusion @ C @Q,, the framing vector f = 1, and the stability
condition (., = —1. Then by Proposition 2.10, we obtain

—n—n?
Nt = DHQL 1) Qo) @ T, (5.7)

n=0
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that is, the module constructed for the above data is precisely the vanishing cycle cohomologies
of all of the quot schemes (. Keeping track of the various Tate twists, (5.7) is the
hypercohomology of the Verdier dual of the monodromic mixed Hodge module

¢$I‘CEI‘]/VT)@NSO ® Tiznin

considered in (5.2). According to the conjecture of the previous subsection, this module should
itself be isomorphic to the underlying graded mixed Hodge module of a symmetric algebra.
In fact by utilising the factorization sheaf structure implicit in our calculations in Section 3,
it is not hard to find a cocommutative coproduct on (5.7), and a candidate for a compatible
product, leading to our final conjecture:

CONJECTURE 5.2. The graded mixed Hodge structure N; éfmf is a universal enveloping alge-
bra.

The connection with Conjecture 5.1 is that by proving a version of Conjecture 5.2 over the
base Sym(A?), one would deduce the purity conjecture as in [7, Theorem Al.

REMARK 5.3. The above module Néf , is in fact the third in a natural sequence, the first
two elements of which will be well known to the reader. Firstly, we can remove the arrow
al, from @, to obtain a new quiver Q.. The pullback of Tr(W,.) along the extension by zero
morphism

rMod¢, ; (Q))/ GLy, — rMod}, | (Qy)/ GL,

is induced by the potential W/ = a//b{ay — alba} — afb}a), and it is easy to check that there

IS an lsomorphlsm
mon —n—’n2 ~Y : n —n
H (rMod(Cn 1(@Q1)/ L, T,OW,)Q) ®T ~ {(Hilb" A%, Q) ® T

with the usual cohomology of the Hilbert scheme for A2. Going further, we can remove the
arrow b}, recovering the framed BBS quiver, with its usual potential, and the MacMahon
module provided by the (vanishing cycle) cohomology of Hilb™ A3. That the cohomology of
Hilb™ A? finds itself sandwiched between the vanishing cycle cohomology of the Hilbert scheme
of A% and the quot scheme Q7 in this way is a mystery that we leave to future research to
understand properly.

Acknowledgements. Much of the work was done while BD was a guest of the University
of British Columbia in the summer of 2018, supported by a Royal Society research fellows
enhancement award. He would like to thank Jim Bryan and Kai Behrend for helping to make
this stay so enjoyable and productive. AR would like to thank Martin Gulbrandsen and Lars
Halle for the many helpful discussions related to the subject of this paper. He would also like
to thank Max-Planck Institut fiir Mathematik (Bonn) and SISSA (Trieste) for the excellent
working conditions offered during the completion of this project.

References

1. S. BEENTJES and A. T. Ricorrl, ‘Virtual counts on Quot schemes and the higher rank local DT/PT
correspondence’, Math. Res. Lett., to appear.

2. K. BEHREND, ‘Donaldson-Thomas type invariants via microlocal geometry’, Ann. of Math. (2) 2 (2009)
1307-1338.

3. K. BEHREND, J. BRYAN and B. SzENDROI, ‘Motivic degree zero Donaldson-Thomas invariants’, Invent.
Math. 192 (2013) 111-160.

4. F. BITTNER, ‘On motivic zeta functions and the motivic nearby fiber’, Math. Z. 249 (2005) 63-83.

5. T. BRIDGELAND, ‘Equivalences of triangulated categories and fourier—mukai transforms’, Bull. Lond. Math.
Soc. 31 (1999) 25-34.

85U8017 SUOLILLOD BA1e810 3dealdde 8y Aq peusenob ae Sapoie YO ‘8sN JO SajnJ o} Akeid18UlUO A8]IM UO (SUOTIPUOD-pUe-SW.BIW0D A8 |Im A eIq 1jpul|Uo//Sdny) SUORIPUOD pUe SWiB | 81 88S *[7202/80/.T] Uo AriqiauluO AB[IM ‘E9vZT SW(ZTTT OT/I0P/W0d"A8| 1M AlRIq | U1 [UO™00SYTRWPUO |//SdNY Wi} papeojuMod ‘€ ‘T20Z ‘0S2L697T



10.

11.

12.

13.

14.

15.

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

33.

THE LOCAL MOTIVIC DT/PT CORRESPONDENCE 1431

T. BRIDGELAND, ‘Hall algebras and curve counting invariants’, J. Amer. Math. Soc. 24 (2011) 969-998.
B. DAvisoN, ‘The integrality conjecture and the cohomology of preprojective stacks’, Preprint, 2016,
arXiv:1602.02110v3.

B. DavisoN and S. MEINHARDT, ‘Motivic Donaldson-Thomas invariants for the one-loop quiver with
potential’, Geom. Topol. 19 (2015) 2535-2555.

B. DavisoN and S. MEINHARDT, ‘The motivic Donaldson-Thomas invariants of (—2)-curves’, Algebra
Number Theory 11 (2017) 1243-1286.

B. DAvisON and S. MEINHARDT, ‘Cohomological Donaldson—Thomas theory of a quiver with potential and
quantum enveloping algebras’, Invent. Math. 221 (2020) 777-871.

J. DENEF and F. LOESER, ‘Motivic exponential integrals and a motivic Thom—Sebastiani theorem’, Duke
Math. J. 99 (1999) 285-309.

J. DENEF and F. LOESER, ‘Geometry on arc spaces of algebraic varieties’, 3rd European Congress of
Mathematics (ECM), Barcelona, Spain, July 10-14, 2000, Vol. I (eds C. Casacuberta, R. M. Mir6-Roig,
J. Verdera and S. Xambd; Birkhauser, Basel, 2001) 327-348.

N. Fasora, S. Monavarr and A. T. Ricorrl, ‘Higher rank K-theoretic Donaldson-Thomas theory of
points’, Forum Math. Sigma 9 (2021) 1-51.

S. M. GUSEIN-ZADE, I. LUENGO and A. MELLE-HERNANDEZ, ‘A power structure over the Grothendieck
ring of varieties’, Math. Res. Lett. 11 (2004) 49-57.

S. M. GUSEIN-ZADE, I. LUENGO and A. MELLE-HERNANDEZ, ‘Power structure over the Grothendieck ring
of varieties and generating series of Hilbert schemes of points’, Michigan. Math. J. 54 (2006) 353-359.

I. R. KLEBANOV and E. WITTEN, ‘Superconformal field theory on threebranes at a Calabi-Yau singularity’,
Nuclear Phys. B 536 (1999) 199-218.

M. KonTsEvicH and Y. SOIBELMAN, ‘Cohomological Hall algebra, exponential Hodge structures and
motivic Donaldson-Thomas invariants’, Commun. Number Theory Phys. 5 (2011) 231-352.

A. KRrESCH, ‘Cycle groups for Artin stacks’, Invent. Math. 138 (1999) 495-536.

E. LOOENGA, Motivic measures, Séminaire Bourbaki. Volume 1999/2000. Exposés 865-879 (Société
Mathématique de France, Paris, 2002) 267-297.

A. MORRISON, S. Mozcovoy, K. NAGAo and B. SZENDROI, ‘Motivic Donaldson—Thomas invariants of the
conifold and the refined topological vertex’, Adv. Math. 230 (2012) 2065-2093.

A. MORRISON and K. NAGAO, ‘Motivic Donaldson—Thomas invariants of small crepant resolutions’, Algebra
Number Theory 9 (2015) 767-813.

R. MoscHETTI and A. T. RICOLFI, ‘On coherent sheaves of small length on the affine plane’, J. Algebra
516 (2018) 471-489.

S. Mozaovoy, ‘On the motivic Donaldson—Thomas invariants of quivers with potentials’, Math. Res. Lett.
20 (2013) 107-118.

K. NaGao and H. NAkAJIMA, ‘Counting invariant of perverse coherent sheaves and its wall-crossing’, Int.
Math. Res. Not. 2011 (2011) 3885-3938.

R. PANDHARIPANDE and R. P. THOMAS, ‘Curve counting via stable pairs in the derived category’, Invent.
Math. 178 (2009) 407-447.

R. PANDHARIPANDE and R. P. THOMAS, ‘Stable pairs and BPS invariants’, J. Amer. Math. Soc. 23 (2010)
267-297.

A. PaARuUSINSKI and P. PrAGACz, ‘Characteristic classes of hypersurfaces and characteristic cycles’, J.
Algebraic Geom. 10 (2001) 63-79.

M. RAPCAK, Y. SOIBELMAN, Y. YANG and G. ZHAO, ‘Cohomological hall algebras, vertex algebras and
instantons’, Comm. Math. Phys. 376 (2020) 1803-1873.

J. REN and Y. SOIBELMAN, ‘Cohomological Hall algebras, semicanonical bases and Donaldson-Thomas
invariants for 2-dimensional Calabi-Yau categories (with an appendix by Ben Davison)’, Algebra,
geometry, and physics in the 21st century, Progress in Mathematics 324 (eds D. Auroux, L. Katzarkov,
T. Pantev, Y. Soibelman and Y. Tschinkel; Birkhauser/Springer, Cham, 2017) 261-293.

A. T. RicoLFl, ‘Local Donaldson—Thomas invariants and their refinements’, PhD Thesis, University of
Stavanger, Stavanger, 2017.

A. T. Ricorri, ‘The DT/PT correspondence for smooth curves’, Math. Z. 290 (2018) 699-710.

A. T. Ricorrl, ‘Local contributions to Donaldson-Thomas invariants’, Int. Math. Res. Not. 2018 (2018)
5995-6025.

A. T. RicoLFI, ‘On the motive of the Quot scheme of finite quotients of a locally free sheaf’, J. Math.
Pures Appl. (9) 144 (2020) 50-68.

A. T. RicoLFI, ‘Virtual classes and virtual motives of Quot schemes on threefolds’, Adv. Math. 369 (2020)
107182.

D. RypH, ‘Families of cycles and the Chow scheme’, PhD Thesis, KTH, Stockholm, 2008.

M. SarITo, ‘Introduction to mixed Hodge modules’, Astérisque 179 (1989) 839-921.

M. Sarro, ‘Mixed Hodge modules’, Publ. Res. Inst. Math. 26 (1990) 221-333.

E. SEGAL, ‘The As deformation theory of a point and the derived categories of local Calabi-Yaus’, J.
Algebra 320 (2008) 3232-3268.

B. SzENDROI, ‘Non-commutative Donaldson-Thomas invariants and the conifold’, Geom. Topol. 12 (2008)
1171-1202.

85U8017 SUOLILLOD BA1e810 3dealdde 8y Aq peusenob ae Sapoie YO ‘8sN JO SajnJ o} Akeid18UlUO A8]IM UO (SUOTIPUOD-pUe-SW.BIW0D A8 |Im A eIq 1jpul|Uo//Sdny) SUORIPUOD pUe SWiB | 81 88S *[7202/80/.T] Uo AriqiauluO AB[IM ‘E9vZT SW(ZTTT OT/I0P/W0d"A8| 1M AlRIq | U1 [UO™00SYTRWPUO |//SdNY Wi} papeojuMod ‘€ ‘T20Z ‘0S2L697T



1432 BEN DAVISON AND ANDREA T. RICOLFI

40. B. SzENDROI, ‘Cohomological Donaldson—Thomas theory’, String-math 2014, Proceedings of Symposia
in Pure Mathematics 93 (eds V. Bouchard, C. Doran, S. Méndez-Diez and C. Quigley; American
Mathematical Society, Providence, RI, 2016) 363-396.

41. Y. Topa, ‘Curve counting theories via stable objects. I: DT/PT correspondence’, J. Amer. Math. Soc. 23
(2010) 1119-1157.

42. Y. Topa, ‘Gopakumar—Vafa invariants and wall-crossing’, Preprint, 2017, arXiv:1710.01843.

Ben Davison Andrea T. Ricolfi
School of Mathematics and Hodge Institute ~ SISSA Trieste
University of Edinburgh Via Bonomea 265
James Clerk Maxwell Building Trieste 34136
Peter Guthrie Tait Road Italy

Edinburgh EH9 3FD

United Kingdom aricolfi@sissa.it

ben.davison@ed.ac.uk

The Journal of the London Mathematical Society is wholly owned and managed by the London Mathematical
Society, a not-for-profit Charity registered with the UK Charity Commission. All surplus income from its
publishing programme is used to support mathematicians and mathematics research in the form of research
grants, conference grants, prizes, initiatives for early career researchers and the promotion of mathematics.

85U8017 SUOLILLOD BA1e810 3dealdde 8y Aq peusenob ae Sapoie YO ‘8sN JO SajnJ o} Akeid18UlUO A8]IM UO (SUOTIPUOD-pUe-SW.BIW0D A8 |Im A eIq 1jpul|Uo//Sdny) SUORIPUOD pUe SWiB | 81 88S *[7202/80/.T] Uo AriqiauluO AB[IM ‘E9vZT SW(ZTTT OT/I0P/W0d"A8| 1M AlRIq | U1 [UO™00SYTRWPUO |//SdNY Wi} papeojuMod ‘€ ‘T20Z ‘0S2L697T


mailto:ben.davison@ed.ac.uk
mailto:aricolfi@sissa.it

	1. Introduction
	2. Background material
	3. The local model as a critical locus
	4. Relative DT theory of the conifold
	5. The virtual motive of the Quot scheme
	6. Categorification
	References

