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Preface

In this paper I discuss some topics interesting for me long time. These
themes relate with the following subjects:
1. Hecke surfaces and K- regular graphs.
2. Duality transformations for generalized Potts models. Each of them
relates with deep mathematical and physical theories and they have nothing
in common at the first sight. However, it become more evident in the
last year that a deep internal relations between all these problems exist.
Especially interesting and mysterious is the role of Hecke groups in this
context. I consider only few examples of these topics. The paper is mainly
expository.Some of the results are based on the paper jointly written with
my colleagues. I would like to mention Robert Brooks, whose untimely
death left without a remarkable friend and coauthor. His ideas of spectral
characteristics of Laplacians on ”typical” Riemann surfaces are currently
not enough appreciated and then will be undoubtedly recognized.

1. The Basic Construction

Let Γ be a finite k-regular graph.

Definition 1. An orientation O on Γ is an assignment for each vertex
υ ∈ Γ, of a cyclic ordering of the edges emanating from υ.

A graph (Γ,O) with orientation is often referred to in the literature as a
fatgraph.
Generalizing the construction of [2] for the case k = 3, we will associate to
the oriented graph, (Γ,O) a pair of Riemann surfaces, and SO(Γ,O) and
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SC(Γ,O). SO(Γ,O) will be a finite-area Riemann surface, and SC(Γ,O)
will denote its conformal compactification. As in [2], the idea is that the
spectral geometry of the non-compact surface SO(Γ,O) is controlled (up to
geometric constants) by the spectral geometry of the oriented graph (Γ,O),
which may then be studied combinatorially. The spectral geometry of the
closed surface SC(Γ,O) will be close to the spectral geometry of the open
surface SO(Γ,O), provided that SO(Γ,O) satisfies a large cusps condition,
which will be explained below.
A central part of the construction is the following.

Definition 2. For given k, the Hecke group Hk is the discrete subgroup of
PSL(2, R) generated by the matrices

Ak =
(

1 2 cos(π/k)
0 1

)
Bk =

(
0 −1
1 0

)
.

A fundamental domain Fk for Hk is given by the region shown in Figure 1,
where ρ0 is the intersection in the upper half plane of the circles of radius
1 centered at 0 and 2 cos(π/k). Nothing that i is the fixed point of Bk, we
see that ρ0 is the fixed point of

AkBk =
(

2 cos(π/k) −1
1 0

)
,

and hence
p0 = cos(π/k) + i sin(π/k).

The corresponding circles meet at p0 with angle 2π/k.
The fact that Ak and Bk generate a discrete group can be read off from
the Poincaré Polygon Theorem, the fact that Ak preserves the horocycle
y = 1, and the fact that AkBk is a rotation through angle 2π/k about p0
and sends i to 2 cos(π/k) + i.
In the particular case k = 3, we have 2 cos(π/k) = 1, and we have the
well-known generators and fundamental domain for PSL(2, Z).

2. Hecke Surfaces

For each k, let H denote the collection of surfaces

Hk = {S : S = SC(Γ,O) for some k-regular (Γ,O)}.
Note that Hk is precisely the set B of Belyi surfaces, for which several
characterizations are known, see [3, 4].
We will show:

Theorem 3. For each k, Hk = B.
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It follows, for instance, that for any Riemann surface S and for any ε, there
is a k-regular (Γ,O) such that SC(Γ,O) is ε-close to S (for any reasonable
metric on the moduli space of surfaces).

The point here is that the description of S as S = SC(Γk,Ok) for some k
may be very complicated, while for another k′, the graph Γk′,Ok′ might be
quite simple.

Proof. By definition, a surface S lies in B if there is a holomorphic mapping

S → S2

with precisely three branch values.

Now suppose that S = SC(Γ,O) for a k-regular Γ. Then there are finitely
many points {pi} on S such that

SO = S − ∪{pi} = H/H,

where H is a finite-index subgroup of the Hecke group Hk. Thus, SO covers
H/Hk, which is S2 minus three singular points. This covering map extends
over the points {pi} to give a holomorphic map S → S2 branched over
three points. This shows that

Hk ⊂ B.

To show the other direction, we begin by considering the k-regular oriented
graph (Γ2,k,O2,k) on two vertices υ1 and υ2. The cyclic ordering at υ1 is
the cyclic ordering 0, 1, . . . , k − 1), while the cyclic ordering at υ2 is the
inverse ordering 0, k − 1, . . . , 1). Each LHT path is of length 2.

It is then easy to calculate that S0(Γ2,k,O2,k) is S2 with punctures at the
k points e2πil/k.
Thus, S will lie in Hk if there are finitely many points {pi} such that S⋃{pi}
covers SO(Γ2,k,O2,k). But if S is a Belyi surface, there is a holomorphic
map φ : S → S2 branched over three points, which we may take to be
1, e2πi/k , e4πi/k. Deleting from S the inverse image under φ of these points
and also the inverse images of the other points e2πl/k exhibits S minus a
finite number of points as a cover of SO(Γ2,k,O2,k).
This shown that

B ⊂ Hk,

completing the proof of the theorem.

We would like to mention that the result of the theorem is not new. Some
similar realization of Belyi surfaces see in [8, 7]. We give only the new and
simple proof, related to the graph theory.
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3. Riemann surfaces SO(Γ) andSC(Γ)

In this section we describe how to read off some geometric properties of the
surfaces SO(Γ) and SC(Γ) from the combinatorics of the graph Γ(G,O).

Definition 4. A left-hand -turn path (LHT) on Γ(G,O). is a closed path
on Γ such that, at each vertex, the path turns left in the orientation O.

Traveling on a path on Γ which always turn left describes a path on
SC(Γ,O) which travels around a cusp . Let l= l(Γ(G),O) to be the
number of disjoint LHT paths , then the topology of SO(Γ,O) is describ-
able in terms of l and the number of vertices 2n. The graph Γ divides
SO(Γ,O) into l regions , each bordered by a LHT path and contain-
ing one cusp in interior. (Γ,O) Using the Euler characteristic formula :
χ(SO(Γ,O) = 2n − ln + l = 2 − 2g. So the genus g( SO(Γ,O)) is given by
g = 1 + (n − l)/2 and the number of cusps is l.

Remark 5. The topology of SO(Γ,O)is heavily dependent on the choice of
orientation Ω.

Example 6. [2] The usual orientation on the 3-regular graph which is the
1-skeleton of cube contains six LHT paths, giving the associate surface of
sphere with six punctures, while a choice on this can have either two,four
or six LHT paths, so that the the associated surface can have genus 0, 1, 2.

Example 7. Platonic solids. Let πk be the k-th Platonic graph of [4]. It
is the k-regular graph defined by

{(a, b) ∈ Z/k × Z/k, a, b relatively prime to k}/(a, b) ∼ (−a,−b).

Two vertices (a, b) and (c, d) are joined by an edge provided that

det
(

a b
c d

)
≡ ±1(mod k).

An orientation O on πk may be defined as follows: at the vertex (a, b), let
< (a, b), (c, d) > be an edge. We choose the sign of c, d) so that

det
(

a b
c d

)
≡ 1(mod k).

Then the next edge in the cyclic order at (a, b) is < (a, b), (c−a), (d− b) >.

With this orientation all LHT paths are of length 3, by virtue of the se-
quence

< (a, b), (c, d) >→< (c − a, d − b), (−a,−b) >→< (c, d), (a − c, b − d) > .

sequence

< (a, b), (c, d) >→< (c − a, d − b), (−a,−b) >→< (c, d), (a − c, b − d) > .
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The surface SC(πk,O) is the Platonic surface Pk, which is the compactifi-
cation of the modular surface

Sk = H
2/Γk, Γk =

{(
a b
c d

)
≡ ±

(
1 0
0 1

)
(mod k)

}
.

Example 8. Let (Γ,O) be an oriented k-regular graph, all of whose LHT
paths have length l. Then we may define the dual oriented graph (Γ∗,O∗)
as an l-regular graph, all of whose LHT paths are of length k, as follows:
the vertices of Γ∗ are the LHT paths of Γ. The edges {e} correspond to the
edges e of Γ, and {e} joins the two (not necessarily distinct) LHT paths to
which e belongs.
The orientation O∗ on Γ is given as follows: given a LHT path γ and an
edge e on Γ, the next element in the cyclic ordering at {γ} is {e′}, where
e′ is the edge following e along the path γ.

Theorem 9.
SC(Γ,O) = SC(Γ∗,O∗).

This duality concerns with two types of compactification of surface by horo-
cycles and to add the points of absolute by geodesics going to cusps.
The point here is that it may be that (Γ,O) is difficult to analyze, but
(Γ∗,O∗) may be relatively easy to understand. For instance, bounding
the Cheeger constant and first eigenvalue of the dual Platonic graphs π∗

k
uniformly from below is equivalent to Selberg’s Theorem [10] up to constant,
but the Cheeger constant and first eigenvalue of π∗

k may be calculated in
an elementary manner [?].

4. Large Cusps

The geometry of the cusps can also be read off from Γ(G,O). In [6] R.
Brooks suggested the following construction.

Definition 10. Let SO be a finite area Riemann surface. SO has cusps of
length � L (shortly large cusps conditions) if there is a system ci of closed
horocycles such that :

i) Each horocycle has length at least L,
ii) Each cusp is contained in the interior of one of the ci ,
iii)The interior of the ci are disjoint.

The importance of this conditions follows from the theorem that asserts:

When SO satisfies the large cusps conditions, the spectral geometry of SO

and SC are close. See the exact statement in [6]
We give an outline of the proof. If each cusp has a horocycle of length at
least 2π, than you can close off the cusp with a metric of negative curvature
by changing the metric conformally inside the cusp. The number 2π arises
as necessary condition for this by Gauss-Bonnet theorem. D. Mangoubi



256 M. Monastyrsky

[14] shows it is sufficient. The corresponding number for k-regular graphs
would be the first integer m such that 2m cos(π/k) > 2π. So the limiting
behavior as k is going to infinity is m = 4 and for k = 3 (modular group),
m = 7. In particular, Mangoubi calculate how long the cusps must be to
guarantee that SC carries a metric of negative curvature. He shows that
this will be the case provided that the cusps have length ≥ 2π.
We remark that the large cusps condition does not imply that all the closed
paths on the graph Γ are short. It is a condition only on the LHT paths.
Thus, the oriented graph (Γ,O) may have plenty of short geodesics, while
still having cusps of length ≥ L for some large L.
Of course, it is not always convenient to change the metric within closed
horocycles. For instance, the Platonic graphs πk have LHT paths all of
length 3, and so do not have large cusps. In [14] it is shown by example
that one cannot weaken the large cusps condition by, for instance, replacing
horocycles with a general condition such as large geodesic curvature and
convexity. However, in special cases we may still modify the metric on
SO(Γ,O) in a canonical way to obtain the desired results. Here is an
example geared to handle the Platonic graphs:
Theorem 11. There exists a k0 and a number d0 with the following prop-
erty: let (Γ,O) be a k-regular graph, for k ≥ k0, such that all the LHT
paths have length equal to 3. Then there exist neighborhoods of the cusps
and of the vertices of SO(Γ,O) and SC(Γ,O), depending only on k0, such
that outside of these neighborhoods, the metrics ds2

C and ds2
O satisfy

1
d0

ds2
O ≤ ds2

C ≤ d0ds2
O.

The notation is meant to emphasize that we do not have d0 → 0 as k → ∞.

5. Geodesics on Graphs and surfaces

The geodesics of SO(Γ,O)) is possible to describe in terms of (Γ,O). Let
L = and R = A closed path P of length k on the graph may be described by
starting at a midpoint of an edge, and then giving a sequence (w1, .., wn),
where each wi is either l or r, signifying a left or right turn at the upcoming
vertex. Let Mp = W1 · · ·Wk, where Wj = L if wj = l and Wj = R if wj = r.
The closed path P on Γ is then homotopic to a closed geodesic γ(P ) on
SO(Γ,O)) whose length γ(P ) is given by
The length γ(P ) depends strongly on ω. For instance, if the path P contains
only left hand turns then length γ(P ) =0. If the pathP of length r consists
of alternating left and right hand turns, then length(γ(P )) =r log(3+

√
5

2 ).

6. The generalized Potts models

In this section I consider some relations of Hecke groups with Potts models.
I briefly remind the definition of classical Potts model in the planar case.
I refer for details to the book of R. Baxter [5]
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A. Zn Potts model Let L be a two-dimensional lattice. With each site i
we associate a ”spin” σi which takes n values. Two adjacent spins σi and
σj interact with the energy −Jδ(σi, σj)) where δ(, ) is the usual Dirac δ(, )
-function. The total energy is

E = −J
∑
(i,j)

δ(σi, σj)) (1)

where the the summation is over all edges(i, j) of L. The partition function
is

Zn =
∑
σ

exp{K
∑
(i,j)

δ(σi, σj))} (2)

Here the summation is over all values of spinσ(i).

Remark 12. The Potts model is possible to determine on any graph L.

In 1969 P. W. Kasteleyn and C. M. Fortuin have found that Z − n Potts
model can be expressed as a dichromatic polynomial ,known in the graph
theory (H.Whitney,T.Tutte). We set v=exp(K) − 1. Consider a typical
graph G containing l bonds and c connected components(including isolated
sites). Let E be the number of edges of the graph L. Then the summand in
(1) is the sum of two terms 1 and vδ(i, j). So the product can be expanded
as the sum of 2E terms . Each of these 2E terms can be associated with a
bond-graph on L. Then the corresponding term in the expansion contains
factor vl. Summing over independent spins and over all components we
obtain the contribution of these terms ncvl.So the partition function Zn=
(2). The summation is over all graphs G drawn on L.
The expression (2) is called a dichromatic polynomial or Whitney-Tutte
polynomial.

In the anti ferromagnetic case K = −∞ and v = −1. Zn =
∑

qC(−1)l =
Pn(q) reduces to chromatic polynomial.
It is clear that Pn(q) determines the number of ways of coloring the sites
of L with q colors ,no two adjacent sites having the same color. So Pn(q)
is the polynomial in q, which coincides with partition function Zn (2) with
v = −1.

Remark 13. It is important to mention that the expression (2) is de-
termined for any complex numbers q, not necessary integers. There is a
beautiful conjecture concerning the behavior of zeros of chromatic polyno-
mials.

Conjecture 14. Let us consider a chromatic polynomial Pn(q) for arbi-
trary large planar graph. Then the real zeros of Pn(q) cluster round limit
points. These limit points are so called”Beraha numbers” q = [2 cos(π/k)]2,
k = 2, 3..



258 M. Monastyrsky

This conjecture is still unproved. There is an interesting approach using
quantum groups [10] . I would like to outline another approach using Hecke
graphs.In this case it is necessary to consider the Cayley graph generating
by Hecke groups. The partition function of Potts model determined on this
graph reduces to the chromatic polynomials with desire properties.

Remark 15. We mention at the end that the famous problem of four colors
on a planar graph is exactly equivalent to the property that Pn(4) is always
equal zero.

7. Generalized Potts model

In the paper[12, 13] we generalized Kramers-Wannier (KW) duality to the
case where spins take values in any finite groups , not necessary abelian.
In the paper[13] it was generalized to compact groups. The idea of these
papers is to study instead of of the relation of the group G, where spins
take it values , and the dual object Ĝ the pairs of two algebras , namely
the group algebra[G] and the space of regular functions on G,C(G).This
approach is very natural in the spirit of quantum groups. From this point
of view is interesting to study the so called McKay correspondence which
attached to any finite group K of SU(2) a certain graph which coincides
with affine extensions of Dynkin diagrams . Recently these results were
extended by I.Dolgachev (in Press) to the cocompact discrete subgroups γ
of SU(1, 1). It is interesting problem to consider McKay correspondence
to Hecke groups. Remark 3. The last which I would like only to mention
is the relation of Hecke groups with the two-dimensional quantum field
theory. These groups appeared as the monodromy representations of some
colored braid groups and determined the correlation functions in Z3 and
parafermionic Potts models.[1, 9, 15]
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