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Abstract. CUORE is a cryogenic detector consisting of 988 TeO2 crystals, 750 g each, and will
be operated at a temperature of ~10 mK, to search for neutrinoless double beta decay (0v30)
of 13°Te. The detector, in the final stages of construction at the Laboratori Nazionali del Gran
Sasso (Italy), will start its operations in 2016. CUORE-0, its pilot experiment, has proven
the feasibility of CUORE, demonstrating that the target background of 0.01 counts/keV /kg/y
and the energy resolution of 5 keV are within reach. CUORE-0 also made the most precise
measurement of the 2085 decay. The expected sensitivity of CUORE to the 0v33 *3°Te half-
life is 9 -10%%y, for 5 years of data taking. Here, we report the most recent results of CUORE-0,
their implications for CUORE, and the current status of the CUORE experiment.

1. Introduction

Double beta decay (2v/3f) is an extremely rare nuclear transition from a nucleus to its isobar,
with the emission of two electrons and two anti-neutrinos. The transition occurs via a Standard
Model allowed process and it has been observed in several nuclides with half-lives of the
order of 10'°-10%* years. Neutrinoless double-beta (0v3f3) decay is a hypothesized process
that, if observed, would establish the Majorana nature of the neutrino [1]. The decay can
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occur through the exchange of a massive Majorana neutrino, and its occurrence violates lepton
number conservation, thus implying physics beyond the Standard Model. In the Ov3S3 decay,
two neutrons simultaneously decay into two protons, with two electrons and no neutrinos in
the final state. The OvB3 decay amplitude is related to the effective Majorana mass mpgg
through the formula mgg = |Y; U3m;| where U,; are the elements of the neutrino mixing
matrix and m; are the neutrino mass eigenstates. The rate of the Ov35 decay can be written
as: [TID/”Q]_l = Goy|Moy|*mpss 2 where Gy, is the precisely calculable phase space factor and Mo,
is the nuclear matrix element (NME) for the O transition which, at present, has a relatively
large uncertainty. The experimental signature is a mono-energetic peak in the spectrum of
summed electron energies, located at the Q-value. Despite this simple signature, the detection
of Ov 55 decay is extremely challenging due to the fact that the predicted half-life for this kind
of decay is greater than 10%° - 10?6 y. The CUORE experiment will search for Ov3/3 decay of
the isotope 130Te, using an array of TeO, cryogenic bolometers. Until recently, the predecessor
Cuoricino had the best limit on the 0v33 decay of 39Te (2.8-10%* y, 90% C.L.).

In this proceeding, we report on the most recent results of the prototype CUORE-0, with
the implications for CUORE. We also discuss the current status of the CUORE detector and
briefly report on the future generation of bolometer detectors for a further improvement of the
sensitivity.

2. The CUORE detector
The CUORE (Cryogenic Underground Observatory for Rare Events) experiment will search
for OvB3 decay of the isotope ¥°Te using an array of TeOq cryogenic bolometers. The basic
working principle of CUORE is based on the calorimetric technique: the energy released in an
absorber is measured through its temperature rise, which is read out by a sensitive thermal
sensor attached to the absorber. CUORE is made of 988 natural TeOs cryogenic detectors,
mounted in a cylindrical compact and granular structure of 19 towers, each made by 52 crystals
arranged in 13 floors of 4 detectors each. The absorbers are cubic crystals (5x5x5 cm? each),
with a total active mass of 742 kg (206 kg of isotope ®°Te). The temperature sensors that
convert the thermal variation into an electrical signal are neutron transmutation doped (NTD)
germanium semiconductor thermistors, glued on the absorber. The crystals are arranged in
a copper structure, which serves as the heat bath. When operated at cryogenic temperature
(~10 mK), the heat capacity of a 750 g TeOy crystal is so low that an energy deposition of
1 MeV induces a temperature variation of ~100uK. The corresponding variation of the NTD
resistivity is of the order of few %, and can be easily read out with low-noise room temperature
electronics. The expected background rate in the Region of Interest is 0.01 counts/(keV-kg-y),
mainly from contaminations from the surface and bulk of the bolometer components and from
the shielding. To achieve this background level, stringent criteria have been applied both on the
selection of the material used in the construction of the detector and in the cleaning procedure,
handling and storage of the materials. Moreover, the whole detector construction took place in
a dedicated clean room (class 1000) in the CUORE hut, using a set of specially designed glove
boxes, to keep the detector parts under constant nitrogen flux and out of contact with the rest
of the environment of the clean room [2].

The CUORE hut is built at the LNGS underground facility at an average depth of 3650
m water equivalent. The muon flux at LNGS is ~3 107% p/(s-cm?), about six orders of
magnitude smaller than that at the sea level [3]. A heavy shield consisting of layers of borated
polyethylene, boric-acid powder, and lead bricks surrounds the cryostat to attenuate neutron
and v-ray backgrounds. More lead shielding is added inside the cryostat, including ancient
Roman lead to further suppress the ~-rays from the cryostat materials. With a background
index of 0.01 counts/(keV-kg-y), the projected half-life sensitivity for CUORE is 9.5-10%°y (90
% C.L.), corresponding to an upper limit on the effective Majorana mass in the range of 50 —
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130 meV, depending on the adopted NME calculation.

In order to host and cool down the CUORE detector, a custom made cryostat has been
built. The main challenge was to satisfy the cryogenic requirements and the low-radioactivity
ones simultaneously. The CUORE cryostat is cryogen-free, and the first stage of cooling, down
to 4 K is provided by 5 pulse tube coolers. The base temperature <10 mK is provided by a
dilution refrigerator, designed and built by Leiden Cryogenics, with a cooling power of 3uW
at 10 mK. The different stages of the cryostat with their thermal shields are made of OFHC
(oxygen-free high thermal conductivity) copper, specially chosen for its low hydrogen content,
low bulk radioactivity and high thermal conductivity. The detectors are surrounded by different
lead shields. The first one is a 6-cm-thick lateral shield, made from ancient Roman lead [4]
(see Fig. 4). A 24 cm plate of modern low background lead (16+4 Bq/kg) shields the detector
from above. An additional shield, 25 cm minimum thickness, made out of modern lead (150420
Bq/kg) will surround the cryostat.

3. The CUORE-0 detector

CUORE-O0 is a single CUORE-like tower built using the low-background assembly techniques
developed for CUORE. CUORE-0 has been operated in the Hall A of LNGS from 2013 to 2015,
using the old setup already used for the previous CUORE prototypes. Details on the CUORE-0
detector performance and analysis can be found in [5] and [6] while the CUORE-0 result on the
search of O[3 is published in [7]. The detectors were calibrated monthly by inserting a source
of thoriated tungsten wires close to the outer vessel of the cryostat. The data acquired between
two consecutive calibration measurements are referred to as a dataset. Using the known energy
of gamma lines between 511 keV and 2615 keV we are able to evaluate the calibration curve
for each bolometer and for each dataset. We used the strongest line in calibration data (2615
keV from 208T1) to evaluate the detector response to a monoenergetic deposit near the ROI,
for each bolometer and dataset. We estimated the lineshape parameter values by performing
a simultaneous, unbinned extended maximum likelihood (UEML) fit to calibration data. The
physics-exposure-weighted harmonic mean of the FWHM values for each bolometer and dataset
is 4.9 keV, with a corresponding RMS of 2.9 keV. This demonstrates that the CUORE goal of
5 keV of energy resolution is feasible. We evaluated the background index in the alpha-dominated
region (between 2700 keV and 3900 keV) as 0.016+0.001 counts/(keV-kg-y), 6.8 times less than
the background achieved by Cuoricino in the same region, 0.110+0.001 counts/(keV-kg-y). This
is a proof that the background mitigation techniques adopted for the cleaning and assembly of the
detector were effective. We searched for Ov35 decay in the CUORE-0 spectrum corresponding
to a total TeOy exposure of 35.2 kg-y (or 9.8 kg-y of 139Te). We performed a simultaneous
UEML fit in the interval 2470-2570 keV, using a function composed by three parameters: a
signal peak at the Q-value of the transition, a peak at ~2507 keV from °Co double-gammas,
and a smooth continuum background attributed to multi-scatter Compton events from 293T1
and surface decays. The result of the fit is shown in Fig. 1 The best-fit values are I'g, = 0.01 £+
0.12(stat)+0.01(syst) x 10724y~ for the Ov33 decay rate and 0.058+0.004(stat)+0.002(syst)
counts/(keV-kg-y) for the background index in the ROI. With these data, we set a 90% C.L.
lower bound on the decay half-life of 2.7x10%*y. Combining this result with the 19.75 kg-y
exposure of 139Te from the Cuoricino experiment, we find a Bayesian limit of T, > 4.0x10%%y
(90% C.L.), which is the most stringent limit to date on the 3°Te Ov3p half-life [7].

We used the CUORE-0 data also for an extended and comprehensive study of the background
sources that contribute to the count rate in the region of interest. We built a Geant4-based Monte
Carlo (MC) code to study the contribution of particle interactions in the entire CUORE-0 setup
(including the detector components, the cryostat and the shielding). We used, as input to the
code, the values of the material contaminations obtained from screening measurements (i.e.
HPGe and NAA measurements) and we built the energy spectra obtained with the simulation
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line) superimposed on the CUORE-0 data Bottom: ratios between counts in the experi-
(black points) mental spectrum over counts in the MC one.

of the contamination sources in different positions of the setup. We simulated 57 sources, with
an activity obtained by the fit of the CUORE-0 background data. We performed the fit of the
data with a bayesian tool (JAGS) that builds the statistical model and exploits Markov Chain
MC simulations to sample the joint posterior PDF of the model parameters. Gaussian (or half-
Gaussian) priors are defined when the activity of a source (or its upper limit) is known from
screening measurements. Otherwise, uniform non-informative priors from 0 to upper limits
higher than the maximum activities compatible with the CUORE-0 data are used. Finally,
the joint posterior PDF is used to evaluate the activities of the background sources and their
correlations. The reconstruction of the background experimental spectrum is shown in Fig. 2.
In order to properly fit the data, the energy spectrum of the summed electrons from 2v(503
decay must be included. We found that the 2033 decay of *°Te accounts for 10% of the events
in the region from 118 keV to 2.5 MeV. The half-life value obtained for 2v33 decay of 139Te
is T,=8.24 0.2 (stat.)£0.6(syst.)-102y, where the systematic uncertainty was evaluated by
running different fits in which the binning, energy threshold, depth of surface contaminations,
priors, list of background sources, and input data were varied. This result is the most precise
measurement of the Ts, decay of ¥“Te, to date. For more details, see [8].

4. CUORE status

The cryogenic system has been successfully commissioned in spring 2016. During the
commissioning run, a small array of 8 TeOy crystals was operated in the cryostat, to validate the
bolometer performance in the CUORE system. During this run, we were able to operate steadily
an experimental volume of ~1 m? at a base temperature of 6.3 mK for more that 70 days, with
a temperature stability within 0.2 mK (RMS). The encouraging performance of the bolometric
detectors operated during this run allowed us to perform a full debug of the system, including the
electronic readout chain, the DAQ, the temperature stabilisation and the calibration procedure.
After successful commissioning of the cryostat, the 19 towers have been deployed in the cryostat
in August of 2016. In Fig. 3 the 19 towers attached to the cryostat plate are shown. We aim
to begin operation at base temperature before the end of the year and the first data from the
CUORE detector are foreseen to be acquired at the beginning of 2017.

5. Future perspective
The bolometric technique is one of the most promising technologies for future programs to
explore the inverted mass hierarchy region, down to mgg ~10 meV. Recently, the CUPID
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Figure 3. Side view of the 19 CUORE Figure 4. Roman Lead lateral shield,
towers deployed in the cryostat. which surrounds the towers.

(CUORE Upgrade with Particle IDentification) group of interest has formed, in order to
coordinate R&D efforts towards the goal of increasing the sensitivity on To,[9]. Different
approaches are presently investigated, using different isotopes and sensors as well as exploring
the viability of enriching 3*Te. Strong R&D efforts are currently being made to investigate the
different techniques. The goal of CUPID is to probe the entire inverted hierarchy region, with
a sensitivity on To, of 2 — 5 10%"y with 10 years of data, with a corresponding limit on mgg
between 6 and 20 meV [10].
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