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Abstract. A certain interest in the experimental nuclear physic community has been expressed
for the precise detection of the β-shape of low Q-value decays, such as 99Tc →99 Ru+e−+ν̄e, tied
to the search for the absolute mass of the neutrino. The necessity of a reliable way to compute
the single-particle matrix elements for second forbidden operators has driven the implementation
of a general algorithm to obtain the nuclear matrix elements for any given transition of generic
forbiddenness K. Particular attention is then placed on the accuracy of the approximations
commonly used in this context.

1. Introduction
The renewed interest in the double β-decay, stimulated by the discovery of neutrino oscillations
[1, 2], reignited the interest in simple and more extreme types of β-decay to fix the problem
of the quenching of the axial coupling constant gA [3]. These extreme transitions, labelled as
forbidden, are typically characterized by longer partial half-lives then the allowed decays as
a consequence of the two following conditions: (1) an angular-momentum and parity change
between the initial and final nuclear state is required, or (2) the transition Q value is relatively
low (∼ 100 keV).

These conditions are of interest to probe the absolute mass scale of neutrinos and the effective
values of the weak coupling constants [4, 5]. On one hand the measurement of the electron
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spectrum in β-decays can provide a direct determination of the values of neutrino masses, while
on the other hand, the values of the vector coupling constant gV and the axial-vector coupling
constant gA [6, 7] enter the β-decay theory as means of renormalizing the hadronic current.

Corrections to these bare values should account for the nuclear many-body effects that include
the truncations in the model space and shortcomings in handling the many-body quantum
mechanics. It is worth noting that the neutrinoless double β-decay rate is proportional to g4

A
and for this reason the uncertainty related to the value of the axial-vector coupling constant is
fundamental when considering the experimental verification of this decay.

The level of the required precision for this decay questions the validity of the usual
approximations that are adopted. In particular, we have analyzed the effect of the
approximations that account for the electromagnetic finite-size of the nucleus and for the
deformation of the outgoing electronic wave-function [8, 9]. We have performed this study
on the second forbidden non-unique β-decay of 99Tc into 99Ru.

This decay is of particular interest since it involves nuclei in the neighbourhood of the 100Mo,
one of the most promising candidates for the detection of the neutrinoless double β-decay.
Moreover, recently, we have calculated the nuclear matrix element of this decay within the
framework of the Realistic Shell Model [10]. The same framework, with the same inputs, is used
in the current work. For this reason, the present analysis represents an important test.

2. Theory of forbidden β-decays
To approach the treatment of forbidden β-decays it is appropriate to start from the definition of
the emission probability of an electron in an infinitesimal energy interval [We,We + dWe]. This
probability defines the shape of the β-decay spectrum and is given by

P (We) =
G2
F

(h̄c)2

1

2π3h̄
C(We)pecWe(W0 −We)F (Z,We), (1)

where GF is the Fermi coupling constant, pe is the electron momentum and W0 is the endpoint
energy, i.e. the maximum electron energy in a given transition and the function C(we) is the
nuclear shape function that contains the information coming from the nuclear matrix elements
(NMEs). The function F (Z,We) is the Fermi function, and it takes into account the effects of
the Coulomb interaction between the electron and the daughter nucleus. To obtain the decay
rate for the corresponding process it is useful to define the following constant

κ =
2πh̄ln(2)

(mec2)5(GF cosθC)2(h̄c)−6
= 6147 s, (2)

where me is the electron mass and θC is Cabibbo angle.
The measure of the half-life is given by the quantity f0t1/2 called ft-value that for an allowed
β-decay is given by

ft =
κ

B(a)
with a = F,GT, (3)

where

f0 =

∫ w0

1
pwe(w0 − we)F (Z,we). (4)

However in the case of forbidden decays the nuclear shape function C(We) depends explicitly
on the total energy of the electron We. Therefore it is useful to introduce an averaged nuclear
shape factor so that the partial half-life t1/2 can be obtained as t1/2 = κ/C.
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C =
1

f0

∫ w0

1
C(we)pwe(w0 − we)F (Z,we), (5)

where the previous expressions uses the adimensional quantities w0 = W0/mec
2, we = We/mec

2

and p = pe/mec
2 =

√
w2
e − 1. The Fermi function has been factorised as F (Z,we) =

F0(Z,we)L0(Z,we) to account for the electromagnetic finite-size effect where

L0(Z,We) =
1 + γ1

2

(
1− αZWeR+

7

15
α2Z2 − γ1αZR

2We

)
(6)

where γ1 =
√

1− (αZ)2, α is the fine structure constant and R is the nuclear charge radius of
the daughter nucleus.

The information about the nuclear structure is contained in the shape factor C(we) that
consist of following combination of the NMEs

C(we) =
∑

ke,kν ,K

λke

[
M2
K(ke, kν) +m2

K(ke, kν)− 2γke
kewe

MK(ke, kν)mK(ke, kν)

]
. (7)

Here the indices ke and kν come from the partial-wave expansion of respectively the electron and
neutrino and within a given order of forbiddeness K leading contributions respect the relation
ke+kν = K+1 or ke+kν = K+2 depending on the angular momentum transfer. Furthermore we
introduced the quantity γke =

√
k2
e − (αZ)2 and the Coulomb function λke , whose approximated

expression is

λke =
Fke−1(Z,We)

F0(Z,We)
. (8)

The generalized Fermi function that appear in the previous expression is defined as

Fke−1(Z,We) = 4ke−1(2ke)(ke + γke)[(2ke − 1)!!]2eπy
(

2peR

h̄

)2(γke−ke)( |Γ(γke + iy)|
Γ(1 + 2γke)

)2

, (9)

where y = αZwe/p. The nuclear momenta MK(ke, kν) and mK(ke, kν) that appear in the
shape factor are evaluated in the formalism of Behrens and Bühring [11, 12] using the leading-

order contributions from the form-factor coefficients M(N)
KLS(ke,m, n, ρ), by assuming impulse

approximation, whose explicit expression can be found in the appendix.

The form-factors M(N)
KLS(ke,m, n, ρ) contain the NMEs with the information on the nuclear

structure, and for the above equations, are given by the general form

V/AM(N)
KLS(pn)(ke,m, n, ρ) =

√
4π

Ĵi

V/A∑
pn

m
(N)
KLS(pn)(ke,m, n, ρ)〈ψf ||[c†pc̃n]K ||ψi〉, (10)

where m
(N)
KLS(pn)(ke,m, n, ρ) denotes the single-particle matrix element of the K forbidden decay

operators [13, 14] and 〈ψf ||[c†pc̃n]K ||ψi〉 is the necessary one-body transition density (OBTD) that
has been computed within the framework of the large scale shell model.
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3. Single-particle matrix elements
The single-particle matrix elements of Eq. 10 are generated by the expectation value of the β-
decay transition operators between the initial (neutron) and final (proton) single-particle wave
functions, that is,

Vm
(N)
KLS(pn)(ke,m, n, ρ) =

1

K̂
〈p||TKLS

( r
R

)2NI(ke,m, n, ρ, r)||n〉

Am
(N)
KLS(pn)(ke,m, n, ρ) =

1

K̂
〈p||γ5TKLS

( r
R

)2NI(ke,m, n, ρ, r)||n〉
(11)

where

TKLS =

{
iLrLYLMδLK S = 0
iL(−1)L+1−KrL[YLσ]KM S = 1

(12)

and where the functions YLM are the spherical harmonics.

To compute the single-particle matrix elements the description of the single-particle initial
and final states of Eq. 11 has to take into account by the relativistic single-particle spinor wave
functions

Φnljm =

(
gnljm(r)
fnljm(r)

)
(13)

where gnljm is the large component of the solution of the nonrelativistic Schrödinger equation
for a harmonic oscillator

gnljm(r) = iLgnl(r)[Ylχ1/2]jm (14)

while the small component fnljm is

fnljm(r) =
σ · p

2MNc
gnljm(r). (15)

In the present work for the shell model calculations we use an harmonic oscillator basis where
the single-particle radial wave functions are given in terms of the oscillator parameter b by

gnl(r) =

√
2n!

b3Γ(n+ l + 3
2)

(
r

b

)l
exp(−r2/2b2)L

l+ 1
2

n (r2/b2) (16)

fnl(r) =
1

2

[(
1 + n+ l

r
+
r

b2

)
gnl(r)−

2

b

√
n+ l +

3

2
gnl+1(r)

]
. (17)

The explicit expressions for the single-particle matrix elements that compose the NMEs can
be found in the appendix.

4. 99Tc second forbidden β-decay
The second forbidden non-unique decay of 99Tc(9/2+

1 ) →99 Ru(5/2+
1 ) + e− + ν̄e poses an

interesting challenge as the relatively small Q-window of the reaction, that is the range of energies
that the produced electron can assume, stresses the need of reliable calculation at particularly
low momenta of the e−. In turn this translate into the need of an accurate description of the
electronic wave-function and in particular the set of Coulomb functions λk (Eq. 8) for k = 2, 3.
The values of λ2 and λ3 obtained trough the approximated expression for λk (Eq. 8) are in
very good agreement with the values tabulated by Behrens and Jänecke [15] obtained solving
the Dirac equation for the electron wave-function.
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Table 1. Comparison of the log(ft) values in the L0 = 1, λk = 1 approximation and when no
such approximation is used.

Approx. log(ft)

L0 = 1 12.59
λk = 1 13.17
No approx. 12.58

Regarding the evaluation of the NMEs, in this work, the OBTD were computed adopting the
nuclear shell model code KSHELL [16]. We have considered a valence space that is spanned by
the 0f5/2, 1p3/2, 1p1/2, 0g9/2 proton and 0g7/2, 1d5/2, 1d3/2, 2s1/2 neutron orbitals, also used in
previous works (Ref. [10]).
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Figure 1. Comparison of the β-spectrum in the L0 = 1, λk = 1 approximation and when such
approximation is not used. To perform the comparison between the three, the areas under each
curve are normalized to the respective ft-value.
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The two body effective interaction was obtained within the framework of the many-body
perturbation theory starting from the CD-Bonn nucleon-nucleon potential [17] that has been
renormalized via Vlow−k procedure [18]. In this work the value of the axial-vector coupling
constant adopted is gA = 1.27.

From the comparison in Fig. 1 and the values of the log(ft) shown in Tab. 1 it is apparent
that the commonly used λk = 1 approximation doesn’t provide a good description. While
the correction for the electromagnetic finite-size of the nucleus given by the function L0 plays
a negligible role, it is necessary to not resort to the λk = 1 approximation for the Coulomb
function, especially for low momenta of the electron. This was expected since the λk = 1
approximation [19] requires γke − ke ∼ O{(αZ)2} to vanish faster than y = αZwe/p ∼ O(αZ)
for αZ → 0. However, in this case, since Z = 44 and we → 0, this condition is not satisfied.

The experimental measurement of the β-decay log(ft) of the 99Tc(9/2+
1 ) to the 99Ru(5/2+

1 )
was performed in Ref. ([20]). The experimental result was log(ft) = 12.33.

In the case of a shell-model calculation the operators are defined in a restricted space model
and the excluded degrees of freedom are taken into account defining an effective axial-vector
coupling constant. This is produced via the introduction of a normalization factor such that
geff
A = q gA. Usually, for a β-decay operator q < 1 [21, 22], therefore one refers to it as quenching

factor. In this case, to reproduce the experimental value, a very unorthodox normalization factor
(q = 1.33) is required.

From this we can draw only two possible conclusions: (1) as Engelke and Ullman observe
in their work, it is possible that contaminations in the sample lead to an underestimation of
the half-life of 99Tc(9/2+) and more precise measurements are required or (2) an evaluation on
the quenching factor must be carried out individually on each operator that drives this second
forbidden decay. The second possibility arises from the fact that the nuclear shape factor C(we)
is a non-linear combination of all the possible second forbidden decay operators. For this reason,
a mere global quenching of the axial-vector coupling constant cannot take into account eventual
cancellation or interference terms between these operators. To preserve the predictive power of
the shell-model, however, a framework in which the quenching of the operators arises naturally
from a perturbation theory approach is required, such as the Realistic Shell Model [23], that
offers a microscopic description of the nucleus without resorting to empirical adjustments.
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Appendix A
In the case of ke + kν = K + 1, MK(ke, kν) and mK(ke, kν) are given by

MK(ke, kν) = KKξke+kν (
√
w2
e − 1)ke−1(w0 − we)kν−1

[√
2K + 1

K
R−(K−1)gVVM

(0)
KK−11

−
(

we
2ke + 1

+
w0 − we
2kν + 1

)
ξR−KgVVM

(0)
KK0 −

αZ

2ke + 1
R−KgVVM

(0)
KK0(ke, 1, 1, 1)

+

√
K + 1

K

(
we

2ke + 1
− w0 − we

2kν + 1

)
ξR−KgAAM

(0)
KK1 +

√
K + 1

K

αZ

2ke + 1
R−KgAAM

(0)
KK1(ke, 1, 1, 1)
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− 2

√
K + 1

2K + 1

we
2ke + 1

w0 − we
2kν + 1

ξ2R−(K+1)gVVM
(0)
KK+11

− 2

√
K + 1

2K + 1

αZ

2ke + 1

w0 − we
2kν + 1

ξ2R−(K+1)gVVM
(0)
KK+11(ke, 1, 1, 1)

+
1√

K(2K + 1)

we
2ke + 1

w0 − we
2kν + 1

ξ2R−(K−1)gVVM
(1)
KK−11

+
1

2

√
2K + 1

K

(
1

2ke + 1
− w2

e

2ke + 1
− (w0 − we)2

2kν + 1

)
ξ2R−(K−1)gVVM

(1)
KK−11

+
1√

K(2K + 1)

αZ

2ke + 1

w0 − we
2kν + 1

ξR−(K−1)gVVM
(1)
KK−11(ke, 1, 1, 1)

−
√

2K + 1

K

αZwe
2ke + 1

ξR−(K−1)gVVM
(1)
KK−11(ke, 2, 2, 1)

− 1

2

√
2K + 1

K

(αZ)2

2ke + 1
R−(K−1)gVVM

(1)
KK−11(ke, 2, 2, 2)

]
(18)

mK(ke, kν) = KKξke+kν−1(
√
w2
e − 1)ke−1(w0 − we)kν−1 1

2ke + 1

[
−R−KgVVM

(0)
KK0

+

√
K + 1

K
R−KgAAM

(0)
KK1 − 2

√
K + 1

2K + 1

w0 − we
2kν + 1

ξR−(K+1)gVVM
(0)
KK1

+
1√

K(2K + 1)

w0 − we
2kν + 1

ξR−K−1gVVM
(1)
KK−11 −

1

2

√
2K + 1

K
αZR−(K−1)gVVM

(1)
KK−11(ke, 2, 1, 1)

]
(19)

Where we have introduced the quantity ξ = mec
2R/(h̄c) and

KK =

√
1

2

√
(2K)!!

(2K + 1)!!

√
1

(2ke − 1)!(2kν − 1)!
(20)

In the case of ke + kν = K + 2 instead

MK(ke, kν) = K̃Kξke+kν−2(
√
w2
e − 1)ke−1(w0 − we)kν−1

√
K + 1

(2ke − 1)(2kν − 1)

[
R−(K)gVVM

(0)
KK0

+
ke − kν√
K(K + 1)

R−KgAAM
(0)
KK1 +

√
1

(K + 1)(2K + 1)

(
2ke − 1

2ke + 1
we +

2kν − 1

2kν + 1
(w0 − we)

)
ξR−(K+1)gVVM

(0)
KK+11

+

√
1

(K + 1)(2K + 1)

2ke − 1

2ke + 1
αZR−(K+1)gVVM

(0)
KK+11(ke, 1, 1, 1)

+

√
1

(K + 1)(2K + 1)

(
2(ke − 1)

2ke + 1
we +

2(ke − 1)

2kν + 1
(w0 − we)

)
ξR−(K−1)gVVM

(1)
KK−11

+

√
1

K(2K + 1)

2(kν − 1)

2ke + 1
αZR−(K−1)gVVM

(1)
KK−11(ke, 1, 1, 1)

]
(21)
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mK(ke, kν) = K̃Kξke+kν−1(
√
w2
e − 1)ke−1(w0 − we)kν−1

√
K + 1

(2ke + 1)(2kν + 1)

1

2ke + 1[√
1

(K + 1)(2K + 1)
(2ke − 1)R−(K+1)gVVM

(0)
KK+11 + 2

√
1

K(2K + 1)
(kν − 1)R−KgAAM

(1)
KK1

]
(22)

where the factor KK changes to

K̃K =

√
(2K)!!

(2K + 1)!!

√
1

(2ke − 1)!(2kν − 1)!
ν (23)

Additionally the following terms have to be evaluated

MK+1(ke, kν) = K̃Kξke+kν−2(
√
w2
e − 1)ke−1(w0 − we)kν−1

[
−R−KgAAM

(0)
K+1K1

+

√
K + 1

2K + 3

(
we

2ke + 1
+
w0 − we
2kν + 1

)
ξR−(K+1)gAAM

(0)
K+1K+10

+

√
K + 1

2K + 3

αZ

2ke + 1
R−(K+1)gAAM

(0)
K+1K+10(ke, 1, 1, 1)

−
√

K + 2

2K + 3

(
we

2ke + 1
− w0 − we

2kν + 1

)
ξR−(K+1)gVVM

(0)
K+1K+11

−
√

K + 2

2K + 3

αZ

2ke + 1
R−(K+1)gVVM

(0)
K+1K+11(ke, 1, 1, 1)

]
(24)

Appendix B
In the Condon-Shortley phase convention the single-particle matrix elements are given by

Vm
(N)
KK0(pn)(ke,m, n, ρ) =

√
2

2Ji + 1[
GKK0(κp, κn)

∫ ∞
0

gp(r, κp)

(
r

R

)K+2N

I(ke,m, n, ρ, r)gn(r, kn)r2dr

+GKK0(−κp,−κn)

∫ ∞
0

fp(r, κp)

(
r

R

)K+2N

I(ke,m, n, ρ, r)fn(r, kn)r2dr

] (25)

Am
(N)
KK0(pn)(ke,m, n, ρ) =

√
2

2Ji + 1[
GKK0(κp,−κn)

∫ ∞
0

gp(r, κp)

(
r

R

)K+2N

I(ke,m, n, ρ, r)fn(r, kn)r2dr

−GKK0(−κp, κn)

∫ ∞
0

fp(r, κp)

(
r

R

)K+2N

I(ke,m, n, ρ, r)gn(r, kn)r2dr

] (26)
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Vm
(N)
KL1(pn)(ke,m, n, ρ) = sign(K − L+

1

2
)

√
2

2Ji + 1[
GKL1(κp,−κn)

∫ ∞
0

gp(r, κp)

(
r

R

)L+2N

I(ke,m, n, ρ, r)fn(r, kn)r2dr

−GKK0(−κp, κn)

∫ ∞
0

fp(r, κp)

(
r

R

)L+2N

I(ke,m, n, ρ, r)gn(r, kn)r2dr

] (27)

Am
(N)
KL1(pn)(ke,m, n, ρ) = sign(K − L+

1

2
)

√
2

2Ji + 1[
GKK0(κp, κn)

∫ ∞
0

gp(r, κp)

(
r

R

)L+2N

I(ke,m, n, ρ, r)gn(r, kn)r2dr

+GKK0(−κp,−κn)

∫ ∞
0

fp(r, κp)

(
r

R

)L+2N

I(ke,m, n, ρ, r)fn(r, kn)r2dr

] (28)

where the quantity GKLS(kp, kn) is given by

GKLS(kp, kn) =(−1)jp−jn+lpŜK̂ĵpĵn l̂p l̂n

〈lpln00|L0〉


K S L
jp

1
2 lp

jn
1
2 ln

 (29)

and Ŝ =
√

2S + 1 is the usual hat notation.

The functions I(ke,m, n, ρ, r) account for a finite nucleus with uniform charge distribution
and are tabulated for different values of the parameters ke,m, n, ρ [12].
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[14] Fahlin Strömberg Dag Isak August. Weak interactions in degenerate oxygen-neon cores. pages vi, 111 Seiten,

2020.
[15] H. Behrens and J. Janecke. Numerical Tables for Beta-Decay and Electron Capture. Springer, Berlin, 1969.
[16] Noritaka Shimizu, Takahiro Mizusaki, Yutaka Utsuno, and Yusuke Tsunoda. Thick-restart block lanczos

method for large-scale shell-model calculations. Computer Physics Communications, 244:372 – 384, 2019.
[17] R. Machleidt. Phys. Rev. C, 63:024001, 2001.
[18] L. Coraggio, A. Covello, A. Gargano, N. Itaco, and T. T. S. Kuo. Ann. Phys. (NY), 327:2125, 2012.
[19] H. Behrens and W. Bühring. Electron Radial Wave Functions and Nuclear Beta-decay. International series

of monographs on physics. Clarendon Press, 1982.
[20] C. E. Engelke and J. D. Ullman. Observation of a weak beta-decay branch in 99Tc. Phys. Rev. C, 9:2358–

2362, Jun 1974.
[21] L. Coraggio, L. De Angelis, T. Fukui, A. Gargano, N. Itaco, and F. Nowacki. Renormalization of the

gamow-teller operator within the realistic shell model. Phys. Rev. C, 100:014316, Jul 2019.
[22] B. Alex Brown and K. Rykaczewski. Gamow-teller strength in the region of 100Sn. Phys. Rev. C, 50:R2270–

R2273, Nov 1994.
[23] L. Coraggio, A. Covello, A. Gargano, N. Itaco, and T. T. S. Kuo. Prog. Part. Nucl. Phys., 62:135, 2009.


