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1 Introduction

Mellin amplitudes are an alternative representation of conformal correlation functions that
are analogous to scattering amplitudes. In particular, we shall show that the Operator
Product Expansion (OPE) leads to the factorization of the residues of the poles of Mellin
amplitudes. In the future, we hope these factorization properties can be used to compute
Mellin amplitudes more efficiently with BCFW-type recursion relations.

The existence of a convergent OPE is a basic property of a Conformal Field Theory
(CFT). This means that we can replace the product of k local operators (inside a correlation
function) by an infinite sum of local operators

O1(z1) ... O(zp) Zcull ];f (T1,. ., Tk, Y, Oy) O (y), (1.1)

where p runs over all primary local operators. This sum converges inside a n-point corre-
lation function if there is a sphere centred at y that contains all points x1, ...,z and does
not contain any of the other n — k points, as depicted in figure 1. Therefore, we can write

(O1(z1) ... 20(1 B (21, y, 0y) (OB () Opga (Th41) - - On()) -

(1.2)
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Figure 1. In a CFT correlation function, one can replace multiple operators inside a sphere by a
(infinite) sum of local operators inserted at the center of the sphere.

Notice that the OPE coefficient function is entirely determined by the (k+1)-point function,

(01 (21) ... Ok () O (2)) = CL8D) (3w, y, 9y) (OB147 (y) OL+7 (2)), (1.3)

= Mprepg

where we have chosen a basis of operators that diagonalizes the two-point functions. This
suggests that using the OPE one should be able to factorize n-point functions in products
of lower point functions (in this case, k 4+ 1 times n — k + 1). Following Mack [1, 2], we
shall argue that this factorization is best formulated in Mellin space.

Consider the Mellin amplitude associated with a n-point function of scalar primary
operators O; of dimension A;,!

(O1(21) ... Op (2)) —/[dﬂM(%j) IT TOw) @), (1.4)

1<i<j<n

where the integration [dv] is subject to the constraints?
n
Z%‘j =0, Yig = Vji s Yii = —Ai, (1.5)
i=1

ensuring that the correlation function transforms appropriately under conformal transfor-
mations. The integration contours for the independent ~;; variables run parallel to the
imaginary axis. The Mellin amplitude M depends on the variables v;; subject to the
constraints (1.5) but we shall often keep this dependence implicit to simplify our formulas.

It is convenient to introduce a set of auxiliary vectors {p1, ..., pn} such that v;; = p;-p;.
Then, the constraints (1.5) follow from momentum conservation ) ;' ; p; = 0 and on-
shellness p? = —A,;.

"We use ~yi; for Mellin variables, instead of the standard notation d;; to avoid confusion with the
Kronecker-deltas that proliferate in this work. Throughout this paper, M(y;;) denotes a function
M (12,713, - .. ) of all Mellin variables.

*The notation [dv] includes the a factor of ;= for each one of the n(n — 3)/2 independent ;; variables.
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Figure 2. The multiple OPE of figure 1 leads to the factorization of the residues of the poles of
the Mellin amplitude in terms of lower-point Mellin amplitudes.

As explained in [3] (section 2.1), for each primary operator O,, with dimension A
and spin J, that appears in the OPE (1.1), the Mellin amplitude has an infinite sequence
of poles

Om

M~ . om=0,1,2,..., 1.6
vor — (A — J +2m) (1.6)

in the variable

k 2k n
VLR =~ <Zpa> =3 ai- (1.7)

a=1i=k+1
Notice that the position of the poles can be thought as the on-shellness condition for the
total momentum injected into the first k operators. Moreover, the residues Q,,, factorize in
terms of the Mellin amplitudes for a (k + 1)-point function (Left) and a (n — k 4 1)-point
function (Right), as depicted in figure 2. When the exchanged operator has spin zero, the
formulas are particularly simple?

—2T(A)m!
(a9

m

Qy= —20(A) My Mp,  Qn = LR, (1.9)

where (z),, = I'(z + m)/I'(z) is the Pochhammer symbol and d is the spacetime dimen-
sion. My, (Mpg) is the Mellin amplitude associated with the left (right) sub-diagram in
figure 2 and

(Vab)nab

nab!

Ly = Z ML(Fyab + nab) H

Nngp=>0 1<a<b<k
S ngp=m

(1.10)

and similarly for R,,. In sections 4 and 5 we will derive these and similar factorization
formulas for the residues associated with primary operators with non-zero spin. However,
before that we must discuss the generalization of the Mellin representation (1.4) for corre-
lation functions involving tensor operators (section 3). In order to make the analogy with
scattering amplitudes more explicit, we start by reviewing their factorization properties

3These formulas were first derived in [3] for correlation functions given by Witten diagrams in AdS. This
expression differs by a factor of
I'(A)
A=—75 .
28T (14 A — 9)
from the result of [3]. This mismatch follows from a different choice of normalization for the operators O.
In [3], the following choice was made (O(2)0(0)) = Calx| 4.

(1.8)
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Figure 3. Scattering amplitudes have poles when the momentum p = 25:1 Pa approaches the
mass shell, p? + M? = 0, of a particle in the theory. The residue of this pole factorizes in terms of
lower point scattering amplitudes.

in section 2. In section 6, we generalize a formula proposed in [4], relating the Mellin
amplitude of a CFT correlator to the scattering amplitude of the dual bulk theory through
the flat space limit of Anti-de Sitter (AdS) spacetime. In addition in appendix C we check
that, in the flat space limit, our factorization formulas for Mellin amplitudes reduce to the
standard factorization formulas for scattering amplitudes. Finally, we conclude in section 7
with some ideas for the future.

2 Factorization of scattering amplitudes

In this section, we review the factorization properties of scattering amplitudes of n scalar
particles. In particular, we study their poles associated to the exchange of particle with
mass M and spin J. The residues of these poles factorize in terms of left and right scattering
amplitudes (see figure 3) involving the exchanged particle as an external state. The case
of spin J = 0 is particularly simple,

Res (T)=T.Tr (2.1)

p2=— M2

where p = 25:1 Pq is the total momentum injected on the left part of the diagram and 77,
and Tp are the scattering amplitudes associated to the left and right scattering amplitudes
(see figure 3). Before generalizing this formula for general spin J we must introduce some
notation for scattering amplitudes involving one particle with spin J.

2.1 Scattering amplitudes for spinning particles

A scattering amplitude of a massive vector boson and k scalars is a function of the polar-

ization vector € and the momenta p and p; (see figure 4). It can be written as

k
T(e,p,pi) = Y _e-paT*(pi - py) (2.2)
a=1

where the 7% are functions of the Lorentz invariants p; - p;. Notice that momentum con-

servation

k
P+ pa=0 (2.3)
a=1
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Figure 4. Scattering amplitude of k scalar particles and one particle with spin. The polarization
of the spinning particle is encoded in the null vector €.

can be used to write p - p; in terms of p; - p;. Moreover, the condition ¢ - p = 0 leads to the
redundancy

T(pi - pj) = T*(pi - pj) + Alpi - pj) (2.4)

for any function A of the Lorentz invariants p;-p;. If the vector particle is massless (photon)

then we have gauge invariance
T(€ + )\pvpvpl) = T(Eapapi) ) VA€ Ra (25)

which leads to the constraint
k
> ppaTpi-p;) =0 (2.6)
a=1

Consider now the scattering amplitude of a massive spin J boson and k scalars. In
this case the polarization vector is a symmetric and traceless tensor with J indices, which
we shall encode with a null polarization vector with just one index €. In this way we can
write the scattering amplitude as a function of € and the momenta p and p; as follows

k J
T(Evpvpi) - Z (H € 'p:;;_;) T (pi : pj) (2'7)

at,...,ay=1 \4=1

where T %/ (p;-p;) are functions of the Lorentz invariants p; - p;, totally symmetric under
permutations of the indices a;j ...a;. The condition € - p = 0 leads to the redundancy

J
Ta.a; (pi . pj) —y Taray (pi . pj) + Z AGL-Am—1Gm41...0 (pi . pj) (2.8)

m=1

where A®1@m=10mi1--@J(p,.p:) is any function of p; - p; that depends on one less index and
it is symmetric under permutations of its indices.

When the spin J field is massless, the gauge invariance 7T (e + Ap,p,p;) = T (,p, ;)
leads to the constraint

k
> D pay T (pi - pj) = 0. (2.9)

a;=1



2.2 Factorization on a vector particle

We start from the spin J = 1 case. We consider a vector field A* with mass M and the
following Proca propagator

11, (p) 1 1
p2 + M2 = p2 T M2 Juv + Wp,upu (2.10)

where g,,,, is the Euclidean space metric. If such a particle exists then we expect a pole in

the scattering amplitude T of n scalar particles when the sum of momenta of the first k
particles,

k
p=3 pa, (2.11)
a=1

satisfies the on-shell condition p? + M? = 0. Moreover, the residue of this pole is given by

QE{GS Z Z Ta <guu ]\;Zpupu> —Z Z 7-L (212)

N a=1i=k+1 a=1i=k+1

where T/ is the scattering amplitude for the first k scalars and one vector particle in the
notation of equation (2.2) (similarly for 73). For later convenience we introduced

1

Qj = P Pi T (p) = (i - pi) + 350 Pi) (P - p))- (2.13)

We point out that in (2.12) there is no divergence when M = 0 due to the transversality
condition (2.6).

2.3 Factorization on a spin 2 particle

A particle with mass M and spin J = 2 can be represented as a symmetric and traceless

tensor h*¥ such that 9,h*” = 0. These conditions can be used to fix its propagator in

Puvop(p)

momentum space Dyqp(p) = FEanve:

where P,,q,(p) must be
— transverse with respect to the momentum p of the particle, i.e. p*P,,5,(p) = 0,

— symmetric in the exchange of y <> v and p < o,

traceless, i.e. ¢"" Puqp(p) =0,

— a projector, i.e. Puyaﬁ(p)Paﬁgp(p) = Puop(p)-
The result is

1 1
e 1,,11,, (2.14)

Dul/ap(p) Huaﬂup + Hupﬂl/o - E

where I1,, = gu + ﬁpup,, is the on-shell projector onto the space orthogonal to p and
gy is the flat metric for R4

4We work in d+ 1 dimensions for later convenience when considering the flat space limit of AdSg41 dual
to a CFT in d dimensions.



The residue of a scattering amplitude of n scalars at the pole associated to an exchanged
spin 2 particle, factorizes as follows

Res Z Z TLabT“ [Qaszj anszg (2.15)

2:,M2
p a,b=114,j=k+1

where 7'L“b is the scattering amplitude of the first £ scalar particles and one spin 2 particle
in the notation of equation (2.7).

2.4 Factorization on a spin J particle

A particle with mass M and spin J can be represented as a symmetric, traceless and
divergenceless tensor with J indices. Once again we can fix its propagator in momentum

space D w,(p) providing P(p) to be a traceless projector

_ 1
1oy ot (p) = i D)
transverse to the momentum p and totally symmetrlc in the exchange of the p; and the p/

separately. The result can be written as [5]

2 I S S
an S TR T4 ARG (2.16)

(—1)T (14+J —2r)9
22ry) (% —14+J- r)r

b, = (2.17)
where we have suppressed the indices in the expression and II, II’ and II” are the already
defined projector II,, with respectively zero, one or two primed indices. The II" are defined
with the unprimed index first and each term in the sum is meant to be symmetrized in the
primed and unprimed indices separately.

The factorization formula for the residue associated with the exchange of a spin J
particle is then given by

[J/2] r J
Res Z Z 'TLal aJ’T"l UZb <Hﬂa2t Lasy i, 1th> H Qaqiq (2.18)

ap=1iy=k+1 q=2r+1

where 7%/ is defined in equation (2.7).

To better understand the physical meaning of €2;; we consider the scattering of k
particles going into n — k with energy-momenta p!’ = (E;, p;) in the center of mass frame.
Calling E.,, = 25:1 E, the total energy in the center of mass we have p# = 22:1 ph =
(Eem, 0). Noticing that at the factorization pole E,, = M, we find

(_EiEcm)(_EjEcm)

Qij = —EiEj + pi - pj + e = Pi - P - (2.19)

In the case of 2 — 2 scattering (k = 2 and n = 4), we have py = —pi, py = —p3 and
P1 - D3 = |p1]|p3| cos B, with 6 the scattering angle. This gives

BT = gy T2 TR AP IR CT cos) (2.20)



where Cg/ 271((:05 0) is the Gegenbauer polynomial and

To= Y (-)Fmgeea = 3 (cpEe e (201

ap=1,2 1p=3,4

Notice that the scattering amplitude between two scalars and a spin J particle is charac-
terized by a single number. This is not obvious in the representation (2.7) which involves
J+1 terms (TAH-1, T2 .. TA%+2), but it follows from the redundancy (2.8) which can
be used to eliminate J terms. As a consistency check one can verify that 7 and Tg are
invariant under the redundancy (2.8).

3 Mellin representations for tensor operators

The goal of this section is to generalize the Mellin representation (1.4) for correlation func-
tions of scalar operators, to correlation functions involving tensor operators. In particular,
we shall focus our attention on correlators of k scalar operators and one tensor operator
because this is what we need to write factorization formulas for n-point functions of scalar
operators.

Throughout this paper, we will make significant use of the embedding formalism for
CFTs [6-11]. In this formalism, points in R% are mapped to null rays through the origin of
M%*+2 and the conformal group acts as the Lorentz group SO(d + 1,1). Primary operators
of dimension A and spin J are encoded into homogeneous functions of two null vectors
P Z € M2,

O\P,aZ) =\A"2a’O(P,2), Va,NeR . (3.1)

The vector P parametrizes the light cone of the embedding space M2 and Z is an auxiliary
polarization vector that encodes the tensor nature of the operator. Finally, we impose
Z-P=0and

O(P,Z+pP)=0(P,Z2), VB eR. (3.2)

for each operator to avoid over-counting of degrees of freedom [12].

3.1 Vector operator

Let us start with the case of a vector primary operator and k scalars,
(O(P, 2)01(Py)... OK(Py)) - (3.3)

A possible Mellin representation for this correlator is

b b ING? i L(vi +6%)
Z-P dy] M*® i) : 3.4
S2z k) [l T 5 5 I oy (3.4

1<j

where 6 is the Kronecker-delta and

=Y Wi, W= v == (3.5)



as required by (3.1) applied to each scalar operator. Imposing (3.1) for the vector operator,
we obtain the final constraint

k
ij=1
In this case, it is convenient to think of v;; for 1 <7 < j < k as the independent Mellin

variables subject to the single constraint (3.6) (recall that ~v; = —A;). From (3.2), we
conclude that the Mellin amplitudes M“ are constrained by

k
> YaM*=0. (3.7)
a=1

Another possible Mellin representation for the correlator (3.3) is

k k k
'Yzy L(vi + 6a)
D, [ [dv] T :
22l 11 cogp s W g e 5
a= o =
where the D, is the following differential operator,®
Da=(P-P)(Z-0p)—(Z- P)(P-0p—Z-03) . (3.9)

This was suggested in [14] from the study of Witten diagrams. In this representation, the
Mellin variables obey the same constraints (3.5) and (3.6). Acting with the differential
operator, it is not hard to see that the two representations are related through

= f:% (a1~ a1*) . (3.10)

b=1
Notice that the constraint (3.7) on M? is automatic in terms of M?. On the other hand,
the second description M?® is redundant because the shift

M® — M®*+ A (3.11)

leaves M® invariant for any function A of the Mellin variables 7;;. Since these two repre-
sentations are equivalent, we shall use them according to convenience. For example, M?
seems to be more useful to formulate factorization and impose conservation, while M®
leads to a simpler formula for the flat space limit.

3.2 Tensor operator

Let us now generalize the Mellin representation for the correlator (3.3) involving one pri-
mary operator O(P, Z) with spin J. The first representation is

k J k
ij [(vi+{a
Z (H(Z ’ Pae)) /[d’}/ M{a} H QP(?I}BJ.)’YU H ( QE;Y —;J;yj-{)a}l (3'12)

at,...,ag=1 \l=1 1J<1
i<j

®Notice that D, is exactly the operator D12 defined in equation (3.25) of [13].



where {a} stands for the set a1,...,a; and {a}; counts the number of occurrences of i in

the list ay,...,ay, i.e.
{a}; =6 +--- 4677 . (3.13)
The constraints on the Mellin variables are
k k
V==Y Wi W= Ya=-0i, Y w=J-A, (3.14)
j=1 i,j=1
and the Mellin amplitudes are symmetric under permutations of the indices ai,...,ay
and obey
k
> (Yay 4052 4+ 00 + - + 607 ) M2 =0, (3.15)
a1=1

The generalization of the second representation is

k J v fa F( U) 1“( l+{a}1)
> (En) / dy) e I (_237 Py 1H (—2131- Ty (310)

at,..,ay=1 1<i<j<k <i<k

Since [Dg, D] = 0, we can choose M@ 27 inyariant under permutation of the indices a;.
Moreover, from the identity

k
(v +{a}i)

> Da ]I S =0 (3.17)

a1 1 \iey (T2B p)vitiak

we conclude that the correlator is invariant under
J
Mal...aJ N Mal...aJ + Z AOL@m—1Gm 1. 7 (318)
m=1
where A?2--%J ig any function of the Mellin variables that depends on one less index. Notice
that this is the direct analogue of the redundancy (2.8) of scattering amplitudes.
To see how is the relation between the two representations we first give the example
of J =2
k
M2 =" (v, + 652 + 62) (o, + 052) [Mz Y ) Mblbﬂ
by,ba=1
k
= 37 O+ 0wy + G 00 [T — AP — hpPee g A ] (3.19)
bi,ba=1

From (3.19) it is clear that the map
M (3i5) = M () + [A%(35) + A () (3.20)

leaves M@ invariant. Moreover, since M®192 — Nfb1a2 — pfarbz o Nrbibe ig antisymmetric in
the exchange of a; <> by, it is immediate to see that the constraint

D (Yay +622)M™* =0 (3.21)

al

is automatically satisfied by the M representation.

~10 -



For a generic J we conjecture that the relation between the two representations is

k J J J J
RSP SIDILLED 5 (CF SEARD D7) NI
(=1

{b}=1¢=0 =1 =041
020

where, given the permutation group Sy of J elements, we defined

1 ' Z Mbo1)ba(q)Ba(q+1) 0o () (3.23)

apoer — 1
a q'(J —q)

og€S

as the sum over all possible terms with ¢ indices from the set {a} and J — ¢ indices from
the set {b}. This formula was built as a generalization of (3.10) and (3.19) in a way such
that the following two properties hold: the constraint (3.15) is automatically satisfied for
any M+ and (3.19) is invariant under the redundancy (3.18).

3.3 Comnserved currents

When the vector operator is a conserved current (thus A = d—1), its correlation functions
must satisfy

aap . 88Z<O(P’ 2)O1(Py)...0k(Py)) =0 (3.24)
Using the representation (3.4), this is equivalent to
k
Z Yab [Ma]ab =0, (325)
a,b=1
asb

where, given a function f of the variables v;;, we define

[F(vi)]®® = f(yij + 6862 + 6957) [f (Vi)]ab = f (i — 6862 — 6567) . (3.26)
The variables 7,4, in equation (3.25) are subject to the constraints

k
Yab = Vba 5 Yaa = _Aaa Z Yab = _d7 (327)

so that the arguments of the Mellin amplitude M“ satisfy the constraint (3.6).
A conserved tensor (with A = J + d — 2) satisfies a similar equation [12],
0
——DY(O(P,2)O1(Py)...Ox(Pp)) =0, (3.28)
0Py
where ng is the operator defined by
d 0 0 1 o 0
DM =147z )| ——-2M = . — . 3.29
z <2 * az)aZM 2”97 0z (8:29)

This imposes an additional constraint on the Mellin amplitudes,

k k
(2J +d— 4) Z ,Yab[MaCQ...CJ]ab _ (J o 1) Z ,.)/ab[]\4abcg...c‘]]ab7 (330)
a,b=1 a,b=1
a#b a#b

where the variables v, satisfy the constraints (3.27).

- 11 -



4 Factorization from the shadow operator formalism

Using the multiple OPE (1.1), one can write a CFT n-point function as a sum over the
contribution of each primary operator (and its descendants), as written in equation (1.2).
As explained in [3], each term in this sum gives rise to a series of poles in the Mellin
amplitude. In this section, our strategy to obtain these poles is to use the projector [15, 16]

|O|:NlA/ddyddZ,O(y»mw(z)\ (4.1)

inside the correlation function. The conformal integral

o [0 - 00w OGOk - Ouli) . (4.2
A (y — 2)2d=4)

gives the contribution of the operator O in the multiple OPE of O; ... Ok, to the n-point
function (O1(z1)...Op(xy)). In fact, this integral includes an extra shadow contribution,
which can be removed by doing an appropriate monodromy projection [16]. Fortunately, if
we are only interested in the poles of the Mellin amplitude, this monodromy projection is
very simple to perform in Mellin space. The reason is that the Mellin amplitude of (4.2) has
poles associated with the operator O and other poles associated with its shadow. Therefore,
the monodromy projection amounts to focusing on the first set of poles. This follows from
the fact that each series of poles in Mellin space gives rise to a power series expansion in
position space with different monodromies.

Let us start by considering the case where the exchanged operator O is a scalar. If
we normalize the operator to have unit two point function (O(z)O(0)) = |z|~22, the
normalization constant N is given by

T (A-9)T(5-4)

Na = F(QA) , (4.3)

as we show in appendix A.4. We start by writing the correlation functions that appear
in (4.2) in the Mellin representation,

O Ota0w) = [laxan T o2 T oo o

— 2)2Xa
1<acher Fap) Sy (Ba =)
where
k k
)\a = - Z )\aba )\ab = )\bav )\aa = _Aa7 Z )\ab =-A. (45)
b=1 a,b=1

The integration measure [d\| denotes (k—2)(k+1)/2 integrals running parallel to the imagi-
nary axis, over the independent variables A, that remain after solving the constraints (4.5).
Similarly, the second correlator in (4.2) reads

@O Oulen) = [laddtn [T o482 T] ol o)

. 2pi
T2, — 2)2pi
k:<i<j§n( ij k<i<n V" )
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where
n n
=Y piis P =pis pa= A, > opy=-A. (4.7)
Pt ij=k+1

We use a, b to label the first k points of the n-point function and i, 5 to denote the other
n — k points. In appendix A.1, we insert (4.4) and (4.6) in (4.2) and simplify the resulting
integral in Mellin space, until we arrive at

aT (2A2—d) T (d_AQ_’YLR)

™

M(f) :./\TA - (A*;LR) FL X FR (4.8)
where v = 2521 Z?:k—&-l Yai and
T(Xap) T (Yap — Aa
Fu= [l ] FOe st (49)
1<a<b<k @
4, r % ij
Fp = / [dp] Mr(pi)  |] Llp J)F((’Ya) pij) (4.10)
k<i<j<n Vij

Expression (4.8) is the final result for the Mellin amplitude My of the conformal inte-
gral (4.2). As expected, the Mellin amplitude Mo has poles at vpp = d — A + 2m for
m = 0,1,2,..., which are associated with the shadow of ©@ . We are not interested in
these poles because they are not poles of the Mellin amplitude M of the physical n-point
function. On the other hand, My has poles at y.p = A + 2m for m = 0,1,2,..., which
are also present in the n-point Mellin amplitude M with exactly the same residues. Our
goal is to compute these residues. From (4.8), we conclude that both Fp and Fr must
have simple poles at ypr = A 4+ 2m. In appendix A.1, we deform the integration contours
in (4.9) and arrive at the following formula for the residues of Fp,

—2(=1)™ (Vab)
P2 S ) [ e (4.11)
VLR = A= 2m R >0 1<a<b<k | lab:
2 ngp=m

We can now return to (4.8) and conclude that the poles of the Mellin amplitude associated
with the exchange of a scalar operator O (of dimension A) between the first k& operators
and the other (n — k) operators of a n-point function, is given by equations (1.6)—(1.10).

With this method, one can find similar factorization formulas for the residues of poles
associated with tensor operators. Ome just needs to generalize the projector (4.1) for
tensor operators and perform several conformal integrals using (a generalized) Symanzik’s
formula. We describe this calculation in appendix A.2 for the case of vector operators. The
result is that the residues Q,, in equation (1.6) are given by

AI( k”a d—2A
s oF L) NS g

j=k+1
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where

("Vab)
L= > Mf(va+mnw) ] :L rat (4.13)
(a2 1<a<b<k ¥
Ngp="m

is constructed in terms of the Mellin amplitude M7 of the correlator of the first k scalar
operators and the exchanged vector operator, as defined in (3.4) and similarly for the right
factor R:,. Notice that the second term vanishes for m = 0 due to the transversality
constraint (3.7). This leads to a particularly simple formula for the residue of the first pole

k

Q =AT(A-1))" > yuMj My . (4.14)

a=1i=k+1

In appendix A.3 we extend this method to compute factorization formulas for operators
with spin 2. However, the calculations quickly become very lengthy as spin increases. In
the next section, we shall describe an alternative method to achieve the same goal.

5 Factorization from the conformal Casimir equation

Given a n-point function, we can perform a multiple OPE expansion of the first k operators
as described in (1.2) to obtain a sum over the contributions of the exchanged primary
operators O, and their descendants,

(O1(Py).. ZG (P1,...,P,) . (5.1)

Let us define the conformal Casimir for the firsts k£ operators as

1
=3 Z /@] : (5.2)
where 9 5
/AB:PAapB _PBaPA’ P e M2, (5.3)

are the generators of the Lorentz group acting on the embedding space M%t2. Then each
Gp(P1,...,P,) is an eigenfunction of the Casimir ¢ with eigenvalue

eanj=AA—-d)+J(J+d-2),
where J and A are the spin and the conformal dimension of the exchanged operator O, i.e.
CGp(Pr,...,Py) = —casGp(Pr,...,Py) . (5.4)

This equation takes a simpler form in Mellin space. In fact, the Mellin transform M, (7;;)
of Gp(P1, ..., P,) has to satisfy the following shifting relation [3]

[(vzr = A)(d = A —7Lr) + J(J + d = 2)|My+ (5:5)

k n
,bj bij
P> [%m’j (MP - [Mp]Z}é) +Yab Vi [Mplapi | =0,
a,b=1 i,j=k+1
agb it
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where we recall that vy p = 2521 hya 41 Yai and that the definition for the square brackets
was given in (3.26). The Mellin amplitude M)y (v,,) has the following pole structure
Om
M, ~ ,
P Nr— (A+2m —J)
where the residues Q,, are functions of the Mellin variables ~,,, which satisfies the on shell

condition v g = A + 2m — J. Therefore, the full Mellin amplitude M = Zp M, will also
have these poles with the same residues.® Studying equation (5.5) close to the poles (5.6),

m=0,1,2,... . (5.6)

we obtain an equation for the residues Q,,,, which can be written as
C(Qm)=0, m=0,1,2,..., (5.7)

where C is the operator

k n
C(Qm) =nQm + Z Z [’Yaz%j (Qm = [Qm]Z;%) + ’Vab’Yij[Qm—l]Z?:g' (5.8)
a,b=1 i,j=k+1
atb itj

and n = (2m — J)(d — 2A —2m + J) + J(J + d — 2). In particular, we notice that for
m > 0 (5.7) is a recurrence equation for Q,, in terms of Q,,_1, while for m = 0 (5.7)
reduces to a constraint on Qy (since Q_1 = 0). In the rest of this section, we present a
way to find Q,, using

5.1 Factorization for scalar exchange

In the scalar case it is natural to guess a factorization formula of the kind

|
OQm = kA0 ( o LRy, , (5'9)

1—-44+A)

m

where L,, and R, are respectively functions of the Mellin variables on the left (v, with
a,b = 1,...k) and on the right (v;; with ¢,5 = k + 1,...n) such that Ly = Mp, and

Ry = Mpg. The overall constant xa o will be fixed later and is a function of m

m!
(1-24+A)m
that we introduced for convenience and that could in principle be absorbed in the definition
of L, and R,,. Since Q,, does not depend on the mixed variables 7,; (with a = 1,...k

and i =k +1,...n), then [Qm]ai’bj = Q,, trivially. Therefore, equation (5.7) reduces to

aj,bi T
k n y
2m(d — 28 = 2m)Qm + > > Yarij[Qm-1]"" = 0. (5.10)
ab=1 i,j=k+1
a#b i#]

This equation is automatically satisfied for m = 0. Notice that the ansatz Q,, is consistent
with equation (5.10). In fact, given a Q,,_1 factorized in functions of left and right Mellin
variables, (5.10) implies that Q,, is also factorized in the same way. Replacing Q,, in (5.10)
we get a recurrence equation for L,, and R,,

n

LmRm::QilﬁéW%UWlﬂw><;ﬁ > %ﬂRm1W>> (5.11)

a,b=1 ij=k4t1
a#b i#£]

5In an interacting CFT, we do not expect that different primary operators give rise to coincident poles.
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which can be solved separately for L,, and R,, in terms of Lo = M and Ry = Mpg. In
appendix B.3.1, we show that

k K
1 (Yab)
L =5~ > Aallma)® = Lm= Y Mi(va+naw) [] ; ;“” (5.12)
— n a.b= ao-*
gy s s

and similarly for R,,. The final result exactly matches (1.9) up to an overall factor that
cannot be fixed by the Casimir equation, since it is a homogeneous equation. We will
discuss how to fix the normalization in section 5.5.

5.2 Factorization for vector exchange

For spin J = 1 the left and right Mellin amplitudes can be represented as functions M7 and
M}, that satisfy the transersality condition 2521 YoM} = 0 as discussed in (3.7), where

we recall that v, = — Zlgzl Yab = Y isk Vai-
The solution of (5.7) should depend on the left and the right Mellin amplitudes M7

and M}é in a form invariant under permutations of the left points P, witha =1,...,k and
of the right points P; with ¢ =k + 1,...,n. Considering that the scalar solution takes the
form (5.5), the first natural ansatz for the vector case is

k

oM =>"3" uLLRL, (5.13)

a=11i=k+1

with L2 and R!, defined in (4.13). This ansatz is actually the complete solution in the case
m = 0, but it fails to solve the Casimir equation (5.7) for higher m. In fact, acting with
the Casimir operator (5.8) on the ansatz O times a function fT(n1 ) that does not depend
on the Mellin variables, we find (see appendix B.1)

C(rPQW) =2m ((d =24 —2m) (D +2mfi) ) @ +2 (£D - £ ) @@ (5.19)
where

k
0% = [, R,,  with L, =— Z%Lﬁn (5.15)
a=1

and similarly for R,,. Notice that L = M{ so that Ly = — 22:1 YoM} = 0 due to the
transversality condition (3.7). Therefore Q((]Q) =0 and Q" automatically solves (5.14) for
m = 0. Acting with the Casimir operator (5.8) on fr(,f) Q,,%) we find (see appendix B.1)

C(PQD) = (nf2 +4m— 1212 ) ). (5.16)

Notice that the action of the Casimir operator C on the structures Q%) and Q%) closes
because it does not produce any new structure. Thus, we can find the solution of the
problem fixing the functions f,g% ) and f,(n2 ) such that

C(rHolh) + f2 oy = . (5.17)
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Since Q,%) and Qg) are linearly independent, we need to set to zero the coefficients multi-
plying each structure in (5.17). Setting to zero the coefficient of Qﬁ}) we get a recurrence
relation for fr(,}),

(d—2A8—2m)fD +omf =0,  m>o0, (5.18)

that can be solved up to an overall constant fo that we will call ka1,

|
(1) — m 5.19
Jm' =R TR A (5-19)
Setting to zero the terms multiplying Q(Q) we find a recurrence relation for f,g ),
nf@ 4 4(m — )f<2>1+2<f<>_f1§j)_1):0, m>1, (5.20)
that, once we substitute (5.19), can be solved as
! d—2A
2) — m 21
Jm AMA=d2+ A 2m(A—d+1) (5:21)
Therefore the final result is
d—2A
m = La g at a'lt ) 22
Om = kot d/2+A ZZ Bim ('V m(AdH)'”) (5:22)

=1i=k+1
which matches the result (4.12) that we found in the previous section using the shadow
method.

5.2.1 Conserved currents

The conformal dimension of a conserved current is A = d — 1. For such a value of A
equation (5.22) naively looks divergent. However, the conserved current relation (3.25)
implies that 0% = 0. To sece this, we use the fact that L,, can be defined by (formula (B.5)
as explained in appendix B.3)

b= qw (L% 4]", m>1. (5.23)
a,b=1
a#b

Using (5.23) it is easy to see that

L= § Yap [IMF® =0, (5.24)
a,b=1
a#b

using the conservation constraint (3.25). Since Ly, can also be defined recursively (see (B.6)

in appendix B.3)

. ab

L = _1 §jwab[m1} . m>2, (5.25)
a,b=1
a#b

we conclude that L,, = 0 for any m. So we can simplify (5.22) as follows

O = K 11( Z Z Yai L%, RE . (5.26)

ma 1i=k+1
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5.3 Factorization for spin J = 2 exchange

As in the vector case, a natural way to construct the ansatz for J = 2 is to take the left
and right Mellin amplitudes Mgb and Mg and “contract” them with two mixed variables
Yoi (Witha=1,...kandi=Fk+1,...n), as follows

k n
S vuiw LR, (5.27)

ab=114,j=k+1
where L% is defined by
ab ab £ (fyef)"ef
Ly, = Z My, ('Vef +nef) H 1 (5.28)
nef>0 e, f=1 Nef:
Znefizm e<f

and similarly for RY. This time our guess does not work even for m = 0 but this is easily
fixed including the structure ) ’yang“M]’g, as explained in appendix B.2. The final result

can be written in a concise way as

k n
Qo=rn2 Y, Y. ailyej + 0505 MMy, (5.29)

a,b=11,j=k+1

where ka2 is an overall constant not yet fixed.

To find the result for general m we use the same idea as in the vector case. We promote
Qo to be a function of m replacmg M7 ab 1y L2 and My ) by R . Then we act on this ansatz
with the Casimir operator C and we get new structures until the action of C closes. The
structures that we find are (see appendix B.2)

k n k n
QW =>" N quilwy + 6505 LR Q=2 D il
ab=14j=k+1 a=1i=k+1 (5.30)
QS{) = LmRm 5 QS}L) = EmRm + Lmﬁm ) Qg;) - Emﬁm y
where
. k . k . ~ k ab
Ly, = Z(’Yb + 51()1)[/%7, L, = Z'yaLfn, L, = Z Yab [L%’_l} . (5.31)
b=1 a=1 a,b=1
a#b

Finally, we take a linear combination of all the structures and fix all the coefficients im-
posing (5.7), as detailed in appendix B.2. The final result is

!
2
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with”

d—2A d—2A -2
M _ 1 (2 d-27 3 _ @
o =1 o’ = A=) " = = (A —dy 1) )
2A —d +2m A(A - 1) ‘
(4) - 2= 7T A (3) G [1aeo9m_1)[1- 222 (4)
fim A —dg2 mo [ +2(m )< d2A—d) )|

5.3.1 Stress-energy tensor

For the stress-energy tensor (A = d) we can once again simplify the factorization for-
mula (5.32) using the conserved tensor relation (3.30). As we show in appendix B.3.4, one
can define LY, as

k
=3 qw [L2 )7 (5.34)
a(,ll;:bl

Then, relation (3.30) can be rewritten as

. L

ngjl Ve=1,...,n. (5.35)
Since L¢, and L, satisfy exactly the same recurrence relation (equations (B.20) and (B.25)
in appendix B.3.4), we conclude that Lﬁn = LT’”. Using this fact we can rewrite the

structures Qg), Qg), Q%) in terms of QS{) as follows

_ =2
ofy =Moo =Thral. o = Throl, (5.36)

where ¥, = d + 2m — 2. The final form of the residues is then

m! 1 1
_ (1) _ hl (5)

5.4 Factorization for general spin J exchange

The hope of having a closed formula for general spin J and general m was lost after we
found the J = 2 result. The proliferation of different structures and the complicated
functions that multiply them do not seem easy to generalize. However, we conjecture the
following factorization formula for the residue of the first pole,®

Oo = KAJ Z Z M{G}M{Z} H (Yagi, + 5ae+15u+1 4 5275:41) (5.38)
{a}=1 {i}=k+1

where KAy is a coefficient that we will fix in section 5.5 and {a} = a1...ay and {i} =
i1...17. We were not able to prove that (5.38) solves the Casimir equation (5.7) in full

"Notice that Q(Q) = 0 which means that the divergence of héQ) is immaterial and Qp is finite. Moreover,
since 2 Q(g) Q(4) = ZQ(S), also the residue Q; is finite because the combination h£,§> + 2h£3) + hg,?) does
not diverge at m = 1.

8In the appendix B.4 we write (5.38) in a more compact way at the expense of introducing more notation.
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generality, but we proved it for J up to 7 using Mathematica (and also for higher spin J
fixing k and n).

The knowledge of (5.38) is itself a fairly interesting result. In fact, using (5.38) as the
seed of the recurrence relation (5.7) and imposing that Q,, is a polynomial of degree J
in the mixed variables ,;, one can recursively compute Q,, for any m. Moreover, (5.38)
encodes the contribution of the exchanged primary operator and all its descendants with
minimal twist (dimension minus spin), which dominate in the Lorentzian OPE limit.

5.5 Factorization of the four point function

In the four-point function case (n = 4 and k = 2), the residues of the Mellin amplitudes
for any J are known [1, 17]. We want to match this result with our conjecture (5.38) for
the first residue Qy. To do so we need to replace the actual expressions for the left and
right Mellin amplitudes in (5.38). In this case, the left and right Mellin amplitudes are
just constants because they correspond to three-point functions. We first consider the left
three point function of two scalar operators Oy, Oy and the exchanged operator O with
spin J and conformal dimension A

((Z3- P))(—2Py - P3) — (Zs - Py)(=2P1 - Py))’

P P Z3, P3)) = .
(O1P)OAP)OZs, B)) = 1201 5 b p v (—apy - Pyt (=2, - Pypatd 39
where c120 is the usual structure constant and
Al +Ay—A+J A+A—-Ay—J Ao+ A—NA—J
M2 = 5 ;M= 5 , Y2 = 5 . (5.40)

Comparing with the Mellin representation (3.12), we find (as shown in detail in ap-
pendix B.4.1)

J J—j .
et Vs (_1)J—j

ML-1202 o _ _
L(yi2)T(y1 + )T (v + J = 4)

and all other components of M are related to this by permutations of the indices,

(5.41)

which in this case can only take the values 1 or 2. Replacing this expression for My (and
similarly for Mp with 1 — 3 and 2 — 4) in (5.38) we obtain’

J J
O — pip, 1206310 (—12L (A—1); Z(_l)j (714)J—j(j2?;)J—j (713)3‘5724)]'  (542)
F(712)F(734) Hle F(,}/f + J) j=0 (‘] - ]) J:
Matching this result with the one computed in [17] we find agreement if
kag= (=2 7(A+T-1I(A-1). (5.43)

Even though kA ; was determined for the case of K = 2 and n = 4, we conjecture that Ka s
does not depend on the parameters k and n. This conjecture is supported by the results
obtained using the shadow method for J = 0,1,2. Moreover, in appendix C.3 we find an
independent hint that (5.43) holds. In particular we matched the leading behavior at large
A of (5.43) asking that, in the flat space limit, formula (5.38) reproduces a piece of the
amplitude factorization (2.18).

9We derive this result in appendix B.4.1. Actually we had to use a combinatorial identity that we were
not able to prove in general but which we verified extensively.
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6 Flat space limit of AdS

The Euclidean conformal group in d dimensions is isomorphic to SO(d + 1,1). The gener-
ators of the algebra #ap (with A,B =0,1,...,d + 1) are antisymmetric and satisfy the
usual commutation relations

| ZaB, Zcpl =1i(ap_Bc +nBc Zap —nac £BD —1BD FAC) - (6.1)

The quadratic and quartic Casimirs of the conformal group are defined by

1 1
¢ =5 7 Jas, ¢ =5 7 Jue 7P Joa (6.2)

A conformal primary operator with scaling dimension A and spin J is an eigenfunction of
the Casimirs with eigenvalues

R =AA—d)+ I +d—2), (6.3)
& = A2A—d)? 4+ T2(T +d—2)° + %(d — DAAA —d) + (d—4)J(J+d—2)]. (6.4)

The group SO(d + 1,1) is also the isometry group of Euclidean AdS;11 (or hyperbolic
space) defined by the hypersurface

—(X0)2—|—(X1)2+'--+(Xd+1)2:—R2, (6.5)

embedded in (d + 2)-dimensional Minkowski space. R is the radius of curvature of AdS.
The flat space limit amounts to approximating AdS by its tangent space R%*! at the point
XA = (R,0,...,0), as shown in figure 5. The Poincaré group of R is then obtained
as the Inonii-Wigner contraction of the conformal group. The translation generators are
given by

1
P, = lim —

=1,...,d+1 .
R%OOR/HO, H ) ) + ) (66)

and the rotation generators are simply given by _#Z,, with u,v =1,...,d + 1. This leads
to the usual Poincaré algebra

[/04,37 /75] = i(nadjﬁ'y + 7]57/045 - "7017/65 - 77,36/047) ) (67)
[Faps Py] = i (187 P 0 = Nary P) (P, Pu] = 0. (6.8

We can also write the Casimirs of the Poincaré group in terms of the Casimirs of the
conformal group,

2 1 e
P = P}gréo ﬁ%( ) (6.9)

2150 4o v o8 70— tim —— (@) @ L aa—1e®
V2= S P Jh 4 PP J Fgy = lim (6®) -% +5d(d-1)E? . (6.10)

1011 4 dimensional flat space, #;, = %suwpﬁ)”/”" is the Pauli-Lubanski pseudovector.
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Figure 5. Euclidean AdS,;; embedded in Minkowski space M2, The tangent space R%*! is a
good local approximation to AdS in a region smaller than the AdS radius of curvature.

From the physical point of view, the flat space limit requires the radius of curvature of AdS
to be much larger than any intrisic length ¢, of the bulk theory.'! In the dual CFT, the
dimensionless ratio R/{s = 0 is a coupling constant that parametrizes a family of theories.
However, not all observables of a CFT with 6 > 1 correspond to flat space observables
of the dual bulk theory. For example, states of the CFT on the cylinder S%~! x R with
energy A of order one, are dual to wavefunctions that spread over the scale R and can
not be described in flat space. On the other hand, states with large energy such that
limg_,, A/O = « correspond to states with mass M = «/¢, in flat space. In fact, for such
a state with energy A and spin J, we obtain the usual eigenvalues M? and M2.J(J +d —2)
of the Casimirs 222 and #2, associated with massive particles of spin J in flat space.

It is natural to ask what happens to other observables under this flat space limit. In
particular, in this section we will be interested in obtaining scattering amplitudes on R4*!
as a limit of the Mellin amplitudes of the same theory in AdS. The Mellin amplitudes
depend on the Mellin variables v;; and on the CFT coupling constant ¢. As explained
in [4, 18], the flat space limit corresponds to

0 — oo, Yij — 00, with % fixed . (6.11)

We shall consider a local interaction vertex between a set of fields (scalar, vector,
etc) and compare the associated tree level scattering amplitude in flat space with the
corresponding Mellin amplitude of the CFT correlation function obtained by computing
the tree-level Witten diagram using the same vertex in AdS (see figure 6). By considering
an infinite class of local interactions we will be able to derive a general relation between the
scattering amplitude and the Mellin amplitude, as it was done in [4, 18] for scalar fields.
To make the exposition pedagogical we will start with a simple interaction vertex for a
vector particle and k scalar particles and then generalize to interactions involving a spin J
particle.

11n string theory, the intrinsic length £, can be the string length or the Planck length.
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Ok(Py)

Dk
T = W M= o(p, 2)
n
O:1(Py)
Figure 6. (Left) Scattering amplitude associated with a tree level Feynman diagram with a

single interaction vertex. (Right) Mellin amplitude associated with tree level Witten diagram using
the same interaction vertex but now in AdS. The flat space limit of AdS leads to the general
relation (6.34) between the two amplitudes.

6.1 Scattering amplitude with a vector particle
6.1.1 Simple local interaction

Let us start with the simplest example involving a massive vector field A,. Consider the
local interaction vertex!?

gAL(V d1) g2 ... ¢y, (6.12)

with scalar fields ¢; and coupling constant g. The associated scattering amplitude is
T=9e-m (6.13)

where ¢ is the polarization vector of the massive vector boson and p; is the momentum
of the particle ¢;. The polarization vector obeys € - p = 0 where p is the momentum of
the vector boson. Comparing with equation (2.2), we conclude that all 7% vanish except
T =g

The basic ingredients to evaluate the Mellin amplitude associated with the tree-level
Witten diagram using the same interaction vertex in AdS are the bulk to boundary prop-
agators of a scalar field,'3

Cap
II X, P)=——FF""—— .14
A,O( ) ) (_QPX)A ) (6 )
and of a vector field,
4 (X, P; Z) = Ca [PA(Z - 9p) — ZA(P - 9p)] _ (6.15)
,1 s A (—2P . X)A )

where X is a point in AdSy;; embedded in M9*2 (i.e. X2 = —1), A is an embedding AdS
index, and [19]
(J+A-1I(A)

-
(A-1Dr(A+1-9)

Cag=—3 (6.16)
2

2T

12Generically, the coupling constant g is dimensionful and therefore it defines an intrinsic length scale £,
of the bulk theory, as discussed above.
13We set the AdS curvature radius R = 1. We shall reintroduce R at the end, in the final formulas.
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The correlation function of k scalars and one vector operator associated with the interac-
tion (6.12) is

k

(O(P,Z)01(P1) ... Ox(Pp)) = g /Ads dXTIR (X, P; Z)V alla, o(X, Py) [ [ Ta,0(X, P)
=2
k
_ 281CA0CA 0 ax
N gf Dl AdS (_QP . X)A(_2P1 i X)AlJrl iHQHAi,O(X’ -P’L) (617)

where D; is precisely the differential operator given in equation (3.9) that was used to
define the Mellin amplitudes M. The AdS covariant derivative V 4 can be easily computed
using the embedding formalism. As explained in [19], it amounts to projecting embedding
space partial derivatives 8)% with the projector

UR =68 + X, XP. (6.18)

Performing the integral over the bulk position X,'* we conclude that the correlation func-
tion can be written as

> A+ A+1—d
gﬂ.% CA,lF (f> ﬁ CA.L,O Dy /[d ] ﬁ F(’Yij) ﬁ F(’V@ + 521)
F(A + 1) paiey F(Al) i< (—QPZ- . Pj)“/ij paley (—2P . PZ.)%'—HS}

where the Mellin variables v;; obey the constraints (3.5) and (3.6). Comparing with the
Mellin representation (3.8), we obtain

k
v d k ; - C Ca, 0
Ml _ dF(Zz:I A;+A+1 d) Al iy 9

e 2 r(a+1n Ty (6.20)

and M! = 0 for | = 2,3,...,k. We conclude that for this simple interaction both the
scattering amplitudes 7% and the Mellin amplitudes M' are constants. In addition, they
are proportional to each other M! o« 7T!. This suggests, as already observed in [14],
that the representation M' is more suitable to study the flat space limit of AdS than the
representation M' also introduced in section 3.

6.1.2 Generic local interaction

The interaction (6.12) is the simplest local vertex for one vector and k scalar operators.
The generalization to other interactions follows essentially the same steps with minor mod-
ifications. Take the following local interaction vertex

gV ... VAN ... V(VF)V ... Vy... V...V (6.21)

! This type of integral can be done using the (generalized) Symanzik formula [20],

/Adst,H 2P X %”%F( )/[d ZP%},)) (6.19)

where the integration variables satisfy Z _ 1 Yij = 0 with v;; = —A;.
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where there are «;; derivatives acting on the field ¢; contracted with derivatives acting on
the field ¢; and o; derivatives acting on A, contracted with derivatives acting on ¢;.

total, the vertex contains 1 + 2 Zz—l a; +2 Zz<]
amplitude associated to this interaction is given by

aj;j = 1+ 2N derivatives. The scattermg

k k k
T(eppi) =ge-pi [[(=p-p)* [[(=pi-2)* =D - T (i - py)- (6.22)
i=1 i<j I=1

where the last equality defines the partial amplitudes introduced in section 2.1. Notice
that, as in the previous example, only 7 is non-zero.

Consider now the correlation function of k scalars and a vector operator associated with
the Witten diagram using the same interaction vertex but now in AdS. One should replace
the fields in (6.21) by bulk-to-boundary propagators, compute their covariant derivatives,
contract the indices and integrate over the interaction point X in AdS. As we shall argue
below, in the flat space limit one can replace covariant derivatives by simple partial deriva-
tives in the embedding space (i.e., we drop the second term in the projector (6.18)). Using
this simplifying assumption, the Witten diagram is given by

Ca1 Ca;0 i . .
_o\N s iy . P\ o . «;
29(-2) TA+ 1) |:| ) Dy i|<jl( 2P; - P}) i||1( 2P; - P) (6.23)

/dX T(A+ Y, i) ﬁPA + 6+ o+ 3N o)
(-

2P . X A+ Pl ( 2P X A; +5 +%+Z]¢10¢u

The integral over X is again of Symanzik type and can be done using (6.19). After shift-
ing the integration variables ;; in (6.19) to bring the result to the standard form (3.8),
we obtain

k k

. P kA +A+2N+1—d Can Ca, 0
M! :9(_2)NW2P<ZZ_1 +2+ - ) T(A+1) HF H (Vij) e H(%“i“sz’l)ai
z:l z<] i=1

(6.24)

and M! = 0 for I > 1. We conclude that the Mellin amplitude is a polynomial of degree
N. Moreover, its leading behaviour at large v;; is M x HZ <j 'yw H " 17", Notice that
this is exactly the form of the scattering amplitude (6.22) if we identify ~;; <> p; - p; (which
implies v; <> p - p;). In fact, we can write a general formula for the relation between the
Mellin amplitude at large 7;; and dual scattering amplitude,

k
a C C ifptaciod
M og) et o T / app e T (i p; = 26) . (6.25)

=1

where the goal of the S-integral is to create the first I-function in (6.24), which has infor-
mation about the number of derivatives in the interaction vertex.

Let us return to the approximation used to compute AdS covariant derivatives. Notice
that the term we neglected in the projector (6.18) would contribute to (6.23) with similar
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expressions but with lower powers of (—2P;- P;). In other words, the effect of the neglected
terms can be thought of as an interaction with smaller number of derivatives. Therefore,
they give rise to subleading contributions in the large v;; limit of the Mellin amplitude M.

6.2 Scattering amplitude with a spin J particle

Consider a local interaction of the form
g(V...Vha, a,)(V...Vo1)...(V...Vy). (6.26)

with a total of 2NV +J derivatives distributed in the following way: there are «;; derivatives
acting on ¢; contracted with derivatives acting on ¢;; there are «; derivatives acting on
ha,..a, contracted with derivatives acting on ¢;; there are f3; derivatives acting on ¢;
contracted with indices of the spin J field. The scattering amplitude associated to this
interaction is given by

k k k
T(ep.pi) =g [ )" [1(=p - p)* [[(=pi-pj)* . (6.27)
=1 =1 1<j

Comparing with the representation (2.7), we conclude that the only non-zero components
of T are the ones with 3; indices equal to 1,

BL B2 B k k
N N
Ttz 2k ok :gl I(—p-pi)ai | |(_pl.,pj)04ij . (6.28)
i=1 1<j

Consider now the correlation function of k scalars and a tensor operator associated with
the Witten diagram using the same interaction vertex but now in AdS. One should replace
the fields in (6.21) by bulk-to-boundary propagators, compute their covariant derivatives,
contract the indices and integrate over the interaction point X in AdS. For the same
reason that was explained in the last subsection, in the flat space limit, we can replace
AdS covariant derivatives by the corresponding embedding partial derivatives. The main
difference from the spin one example is that the bulk-to-boundary propagator for a spin J
field has more indices. It is convenient to write the spin J bulk-to-boundary propagator as

(=2P-X)(W - Z2) +2(W - P)(Z- X))’

B (—2P - X)AT7 (6.29)
:(CAA;‘(]]((P.I/V)(Z.ap)—(Z.[/V)(P.ﬁp_Z'(?Z))J(_ﬂjl.X)A

where the normalization constant Ca s is given by (6.16) and the vector W is null, to encode
the property that the field is symmetric and traceless. Notice that the vector W is just
an artifact to hide bulk indices and for that reason it will not appear in the final formula.
In fact these indices should be contracted with J derivatives that act on the remaining
fields. Let us focus on these contractions since they are the only difference compared to
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the previous case,

hay..Ag Br..Byy.. (VA VA510) (VP VB209) 0 —

k
Ha (X, PyW, Z) [[(W - 0p,) 1A, o(X, P;) (6.30)
=1

where the notation W denotes that we should expand the expression and use
wha L wAWBL | wBr = pArAs BBy , (6.31)

where P is a projector onto symmetric and traceless tensors. After taking the partial

embedding derivatives and performing the index contractions encoded in W, we obtain'®

k
Ay (X,P;W,2) W - 0p,)" 1A, 0(X, P)
=1
_ 2 ﬁ Cano(Bisi g, Cag
(A)s \ 1% (=2P - X)&t0i 0 J(=2P - X)&

Acting with the remaining 2N derivatives, we conclude that the Witten diagram associated

with (6.26), in the flat space limit, is given by

27 (—2)N Ca.s (H Ca.0 D’B’> ﬁ(QP,,P,)%ﬁ(QP.,P)m (6.32)
g r(a+ )\ 1@y v ' ‘

i<j i=1

/dX FA+), ) ﬁ (A + Bi + ai + Z?;éi aij) .
(—2P - X)A+Zi O i1 (=2P; - X)Ai‘f‘ﬁi-‘rai'f'z:??gi Qi

The integral over X is again of Symanzik type and can be done using (6.19). After shift-
ing the integration variables ~;; in (6.19) to bring the result to the standard form (3.8),

we obtain
B1 B2 B
M1...12..‘2...k..‘k:g( N2J lﬂgr( H—A+2N+J—d)
Ca,J i A, k
(A +J) ( H YiiJay [+ Ba; (6.33)
)i T(8) <j i=1

and all other components of M@ % are zero. We conclude that the Mellin amplitude is
a polynomial of degree N. Moreover, its leading behaviour at large +;; is proportional to
the scattering amplitude (6.27) if we identify v;; <+ p; - p;. In fact, we can write a general
formula for the relation between the Mellin amplitude at large 7;; and dual scattering
amplitude,

k+1)(1—d 0 i Ag+A—d4J
A=) 1 gy1-g %ﬁf
o B

5Notice that the differential operator in equation (6.29) can be written as W*Da where D4 is
null, i.e. DaD? = 0 on the null cone (P> = P-Z = Z? = 0). This implies that Da, ...Da, =
’PAl"“L\J‘Bl”'BJDB1 ...Dp,, which greatly simplifies the computation.

] 2
Mal...aJ %NR C_BTalmaJ ( zp] - R/B2,Y’L]> 9 (634)
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where we reintroduced the AdS radius R and

3

N = r29/-1

i VCa0
J 11 5 A“) (6.35)
z:l t

/'1
>

In the last equation, we have converted to the standard CFT normalization of operators,

which corresponds to (O(x)O(0)) = |z|~22 for scalar operators and (A.34) for tensor

operators. This differs from the natural AdS normalization by Oags(z \/(TJ Ocrr(z
The inverted form of equation (6.34),

raj... _ R? )
Tal..AaJ(p' 'p l1m /loo da d— ZZA A Jea Mar---ag (’Yij = 55 Di .p])
i " Pj) =

i RUHE L d1-g

. (6.36)

realizes the flat space limit intuition that the Mellin amplitude can be used to define the
scattering amplitude. The final formulas (6.34) and (6.36) were derived based on the
interaction vertex (6.26). However, this vertex is a basis for all possible interactions, so
we expect the final formulas to be valid in general. As a consistency check, we show in
appendix C that using (6.34) in the factorization formulas for Mellin amplitudes derived in
the previous sections, we recover the correct factorization properties of flat space scattering
amplitudes reviewed in section 2.

7 Conclusion

In the context of scattering amplitudes, understanding their factorization properties is the
starting point for the construction of recursion relations (like BCFW [21]). Such recursion
relations determine n-particle scattering amplitudes in terms of scattering amplitudes with
a smaller number of particles. In some cases (gluons or gravitons), this can be iterated
successively until all scattering amplitudes are fixed in terms of the 3-particle amplitudes.
Our long term goal is to generalize this type of recursion relations for Mellin amplitudes. ¢

This work was the first step in this direction. We derived factorization formulas for the
residues of n-point Mellin amplitudes of scalar operators, associated with the exchange of
primary operators of spin J = 0,1,2. For J > 2, we only obtained partial results because
formulas become rather complicated.

The next step is to understand the factorization of Mellin amplitudes of operators with
spin. In particular, the case of correlation functions of the stress-energy tensor 7}, should
be particularly interesting, in analogy to graviton scattering amplitudes. This approach
might eventually explain in what circumstances the 3-point function of T}, completely
fixes all correlation functions of 7. Notice that this is the missing link to prove the
conjecture [23] that any CFT with a large N expansion and with a parametrically large
dimension of the lightest single-trace operator above the stress tensor, is well described by
pure Einstein gravity in AdS. In fact, an important part of this conjecture was recently
proven in [24]. In this work, the authors showed that the existence of such a large gap in

16See [22] for a similar proposal for recursion relations for correlators associated with Witten diagrams.
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the spectrum of single-trace operators implies that the 3-point function of 7}, is given by
Einstein gravity in AdS (with higher curvature corrections parametrically small).

Simpler but still very interesting objects to study are correlation functions of conserved
currents. Here, one can explore the analogy with gluon scattering amplitudes. The first
obstacle to surpass, is to define a Mellin representation for the n-point function of conserved
currents

(O1(P1, Z1) ... Ox(Pn, Zy)) - (7.1)

A natural generalization of (3.4) is

S (%P (Zo Pa) / [dn] M-+ 0 Sy 35 (&)
alw-_,;v_z:l 1<i<j<n (_2Pi . Pj)’YU a; 0%,
where the Mellin variables obey
n
Yij = Vi Vi =1 — Ay, Z%j =0. (7.3)
j=1

Unfortunately, this is incomplete because in general the correlation function also contains
terms proportional to Z; - Z;. It is unclear what is the most convenient definition of the
Mellin amplitudes in this case. This is a question for the future.
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A Factorization from the shadow operator formalism

In this appendix, we detail the calculations involved in the factorization method described
in section 4. We consider exchanged operators of spin 0, 1 and 2. Auxiliary calculations
are presented in the last three subsections: in A.4 we construct the projector for traceless
symmetric tensors, in A.5 we evaluate some useful conformal integrals and in A.6 we derive
an identity involving Mellin integrals.
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A.1 Factorization on a scalar operator

In this subsection we fill in the gaps of the derivation presented in section 4. We shall use
the notation

Y — v T
[Tap)? = [Tq — )" = m (A1)

to shorten the expressions that follow. Using (4.4) and (4.6), expression (4.2) can be written
as follows

o S nnate Tl T G, (A2)

1
A o
1<a<b<lk k<i<j<n

where [ is the scalar conformal integral

1= [ays fy "2 I fea = I o= (A3)

1<a<k k<i<n

which, in appendix (A.5.2), we show it can be written as

I = Wd/[dfy] I'(B)I'(A - B) H (2] (A.4)

1<p<v<n

with B = 2574 and A = Y i<a<b<k Yab = %. Replacing this expression in (A.2) and
shifting the integration variables 7,,, to absorb the factors [z4]* and [z;;]° leads directly
to (4.8).

We shall now determine the residue of Fy, at v, = A+2m by deforming the integration
contours in (4.9). Using the constraints (4.5) we can solve for

k k
1
Mz =3 [A+2) Mot Y Aa (A.5)
a=3 a,b=2
and use as independent integration variables Ai3, Ad14,..., A\ and Ay, for 2 < a < b < k.

Then, the measure reads

fior- [ 11 % 11 e

00 3<a<k 2<a<b<k

These (k — 2)(k + 1)/2 integrals can be done by deforming the contour to the right and
picking up poles of the integrand in (4.9). There are explicit poles of the I'-functions at
Aab = Yab + Nap With ngy = 0,1,2,..., and possibly other poles of the Mellin amplitude
My,. This gives

P (n2=M2)  pr (D" (ab)n,,
L(712) 11 !

Fr =Y Mi(vab+nab)
Nab:
+ contributions from poles of My,

Ngp>0

(A7)

1<a<b<k
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where \j3 is given by (A.5) with Agp = Yap + Nap

/
1
A12 =712 — 3 A—vLr+2 Z Nab (A.8)
1<a<b<k

and the prime denotes that ab = 12 is absent from the sum or product. From (A.7),
it is clear that Fp will have poles when v19 — A13 = —nj9 with nis = 0,1,2,.... This
corresponds to a pole at

YLr = A+ 2m, m = Z Nab (A.9)
1<a<b<k
with residue
—2(=1)™ (Yab)
Foe 2T S Myt [ T (ad0)
YLR E"abzo 1<a<b<k ab-
name

A.2 Factorization on a vector operator

This section will be very similar to the scalar case. The main difference is that we will use
the embedding formalism to simplify the calculations. The goal is to determine the poles
and residues of the Mellin amplitude associated with

(OLP) ... Ok (Po)|O|Opsr (Poss) - .. On(Pp)) :/dQldQ2<Ol(P1) . Os(P)OQ1, Z1))
T(d—A+1) (21 Z2)(Q1- Q2) — (Z1- @2)(Q1 - Zo)

(O(Q2, Z2)Op11(Pit1) - - - On(Pr))

Na (—2Q1 - Q2)d-A+1
(A.11)
where we have used the projector for tensor operators described in appendix A.4.
We shall use the notation
I'(a) I'(a)
PQI*=——r—"—— P =[PPl = ————— A.12
[ 7@] (—2P . Q)a ) [ J] [ j] (_2PZ i Pj)a ( )

to shorten the expressions that follow. We start by writing the correlation functions that
appear in (A.11) in the Mellin representation,

k
<Ol (Pl) e Ok(Pk) (Ql, Zl / Z Pl ML H [Pab])\ab H [Pav Ql])\a-i-é(ll
=1

1<a<b<k 1<a<k

where &), is the Kronecker-delta and

k
S e Aww=-Das A=A, D Aa=1-A. (A.13)
a,b=1
Similarly,
(0@ 20 (Pus) - On(P) = [ldel Y (Zoeponty ] (P [T 10 Qe
r=k+1 k<i<j<n k<i<n
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where
n n
- Z Pij » pii = —A, pij = Pji Z pij =1—-A. (A.14)
=kt ij=k+1
Expression (A.11) can then be written as follows

k

1 n
o J Y S wiar I e T] e

=1 r=k-+1 1<a<b<k k<i<j<n

« [d@ui, TT 1P TT (o

1<a<k k<i<n

X (AQ_d(Pz P [Qa) = (P Qa)(Pr - Ql)[@lz]dA+1) (A.15)

where 6! and 0; are Kronecker-deltas. Expanding the last line, we obtain two integrals
with different structure. The integral over )1 and Q2 of the first term in (A.15) can be
done using the conformal integral for scalars (A.72). The integral over @); and @2 in the
second term of (A.15) can be done using the vector conformal integral (A.81). Putting all
ingredients together we obtain that that the factorization for the vector case is given by

n

7Td ( - [ T
MO(’Y}U/) = NA,I 4F A T1 Z Z (A(d AR 1)’717" - B’YI/YT)FL X FR (A16)

=1 r=k+1
with B = 244 = 8=k anqd
r )\ab r Yab — )\ab
R L | P (A.17)
1<a<b<k Yab
. . L(0i;)T(vij — pij)
Fr= [ty T S (A1)
k<i<j<n Vij

L

Looking for the poles of y,r we obtain T'(A + 1) =~ ((_2) O™ and FL =~

D' ypr—A—2m+1
(=2)(=D™ 11
oA A—omTd L,, where

L= Y M@Aw+ns) ][] (%b)T“b (A.19)

Nab-
S ngp=m 1<a<b<k ab

and similarly for R] . The contribution of the physical operator O to the pole structure of
Mo can therefore be written as

n

d—2A

k
N m! KA1 I o
M0 a9 yn-A+i—2m Zk [7” (A —dt 1) 1| dtn
(A.20)
where we used I'(A — B) = (— )m% and where we defined
0259 T (E22) (A—d—1DI'(A—d+1
™ ( 2 ) ( 2 )( )I( i ):AF(A—l). (A.21)

KA1 =
2Na 1
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A.3 Factorization on a spin 2 operator

The derivation of factorization corresponding to the exchange of an operator of spin two
follows the same steps as the scalar and vector cases.We first consider the projector for
spin two operators defined in appendix A.4,
I'd—A+2)
o] = ==~
A2
R - N2
(2 22)(Q1- Q) — (21 - Q)@ - 2)
(—2Q1 . Qz)d—A+2

where spin two primary field O is inserted at the points @1 and Q2. We insert |O] in the

x / 4Q1dQ510(Q1, Z1)) (O(Qa, 22)

scalar n—point function in such a way to have k£ + 1 operators on the left and n — k41 on
the right, namely

(O1(P1) -+ Ok(P) O[O 1(Pi41) - - - On(Pn)) (A.22)
k n l1l2 TIT2 (4.
_ / [dhat) [dpi] S Y M (i‘g’i\]}iz (pij) I ®e ] e

l1,la=171,r9=k+1

1 l r ”
< [a@uage w ] (P Q05 T (2 Qup 4 jQua)t 212,

1<a<k k<i<n

1<a<b<k k<i<j<n

where the factor W comes from the projector and is given by,
= =
W =16 (P, Z0)(Py 20)(Z1-Z2)(Q2 Q1) ~ Q2 Z1)(Q1- 22))*(Pry 20) (Pry Z2) - (A.23)

More concretely, W is given by the sum of the following 6 terms

2 Pl1l2Pr1r2Q%2 ~ o~
Wi = P Plyr, @1 5 Wir=-———1—""", Wrir = =2P,r Py 2Pry 1 Q12
2P,,r, Py 1 Pl 2Q12 2P,,1, Py 1Py 2Q - - -
WIV = 172 1d 2, , WV — l1lo Tl; 12,212 7 WVI = Pll,QPlQ,ZP’f’1,1P7’2,17

(A.24)

where we used the notation ]3,1,1- = —2P, - ;. Notice that both Wy, and Wy have fac-
tors that can be absorbed in (A.22) bringing down factors of (N, + 5;?) and (pr, + 9;2)
respectively. These structures project to zero once the transversality condition (3.15) is
used. The integrals involving the structures W and Wy can be done using the conformal
integral for scalars (A.72). Using (A.80), they give the following contribution to the Mellin
amplitude of (A.22)

d k n
¢ (d—A) T'(B)['(A — B) l 111
M — 5 267'2 F 1 2F7'17"2

100m) 16 Na2 I'(A) 11%;17"1 rzz::k-i-l ar (s 4 O 0rJFL

(A.25)
k n

Z Z Yty Ve ro [F£1l2]lll2 [FETQ]HTQ’

l1,lg=1 r1,rog=k+1
L1 #l2 r1#T2

74d — Ay T(B)I'(A— B +1)
16 d Nag T(A+1)

Mir(Vw) =

(A.26)

— 33 —



where we have used B = 2A2_d, A= A*Q;VLR and
)T _
1<a<b<k F(’Vab)
rir 7 pij )T (Vij — pij
P2 = /[dp]MRl 2(pi) |1 I J)F(( J) i) (A.28)
k<i<j<n Vij

The square brackets [ - |% shift the integration variable ., by one as defined in (3.26)

and they arise from the terms [[dA](yi,, — )\ZIZQ)MEIQ (Aab) [T1<acper W =

Vials [FillQ]lll? Notice that My is written in terms of such square brackets while in My
they do not appear. This is because when we absorb the factors [Py]* (and [P;;]#¥) in
the single term [P,,]" we need to shift the variables v, by Aq (and by p;;) only if 7, is
a variable with both indices u,v < k (or p,v > k). Close to the pole in y7 i the following
formulas hold

-2)(=1)™ (2™
Fl1l2 ~ ( Ll112 Fl1l2 l1ls s il l1l2 ) A9
YLrR — A —2m +2 mo [ L ] 'yLR—A—Qm-i-Q[ _1] ( 9)

It is then easy to see that the structures coming from M; and M;; have respectively the
same form of Qm and Qm in (5.30). The contribution from the structure Wjy; can be
computed using the conformal integral for vectors (A.81),

d
m(d - A+1)T(B) Il
M = — F 1 2FT1T2
1 SNas A 1) Z Z Tary
’ l1,lo=17r1,r9=k+1

X [A(Yrgly + 072010) + By, + 6,) (9 + 672)] (A.30)

The result of M gives two terms that have the same form of Q%) and Qg). The structure
Wy involves the spin two conformal integral (A.88). The contribution of Wy to the
factorization is given by

d
__m TI(B) (1) (2) ) A
Myr = 16NA,2 A +2) l 121 Z [(ylllﬂl?“z + yl1l27"17"2 + yhlzmrz)FLl ZFR1 ’
1,lo=17r1,ro=k+1

(y(4 L) [FlllQ]lllQFrlT2 + y(4 ,R) Fl1l2 [Frlrg]rlrg) +yl1l2r1r2 [Féllz]hlz [Fgrz]mm

l1larire lilarire

(A.31)

where y}f}Q r1r 18 defined in (A.103). Notice that every term y}f}Q rirp 1L My has the same
form of the structure an. After gathering all structures from My, Mrr, Mrr and My, and
looking for the poles in v7 g, as was done for the scalar and vector cases, we obtain (5.32).
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A.4 Projector for tensor operators

In the embedding formalism, the projector for tensor operators takes the form [16]

I'(d—A+J)

0| =
O] Ny

((Zl - Zo)(Py - Py) — (Z1 - Py)(P; - Zz))J
(—2P1 . Pg)d_A+‘]

X/dpldP2|0(P1,Z1)> <O(P27Z2)|

where the symbols 71 and Z, mean that we should expand and contract using

FBr . FB1 g gA1 _ pAveArBrB) (A.32)

A1...A;,B1.

where 7 ~BJ is the projector onto traceless symmetric tensors with .J indices. To

determine the normalization constant Na j we impose that
(O(P,Z)...) =(0(P,2)|O|...) (A.33)

where the dots stand for any other operators. We normalize the operator O to have the
following two point function

(Z2-2)(=2P - P) - 22 P)(P-Z))"

(O(P, 2)0(P1, Z1)) = (2P BT

(A.34)

In general, the correlation function (O(P,Z)...) of O with any other operators can be
written as a linear combination (or integral) of

(Z-Y1)(P-Y2) = (Z-Ya)(P- Y1)’

(—2P - X)A+J (A.35)
with different X, Y7 and Y. Therefore, equation (A.33) is equivalent to
Z-Y)(P-Yy)— (Z-Ya)(P-Y1))’
((Z-11)( (_22])3 ' )(()AJ)( 1)) (A.36)
~2/T(d— A+ ) dPydPy Q(Z, P, Py, Py, Y1,Y5)
- Na,s /(—QP'Pl)AH(—?Pl-Pz)d_A+J(—2P2‘X)A+J
where the numerator Q(Z, P, P, P»,Y1,Y2) is given by
(z-P)P-20)~ (2 2)(P-P)) (2 Zo)(Pr - Po)— (Zi - P)(P1 - Z5))
<(Z2 Y1) (P2 Ys) — (Zy - Yo) (P - Y1)>J (A.37)
= [(Pl )P -Y1)(Pa-P)(Py-Ys) — (P - P)(Z-Y1)(Py- Pr) (P2 Y2)
(P 2)(P-Po)(Yo- P)(P2- Y1) — (P P)(Z - P)(Ya- P1) (P Y1) (A.38)
(Pi-P)(Z-P)(Yi- P) (P Ya) — (P~ Z)(P - P)(Yi - PL)(P - Ya)
(P P)(Z-Y2)(Py - P)(P2 Y1) — (Py- Z)(P - Y2)(Py - Py)(Py - 1))



To perform the integrals we use the following trick

/ dPy QZ, P, Py, P,,Y1,Y3) (A.39)
(=2P; - Py)d=A+J (2P, . X)A+] ‘
(A - ) 10 dPy
_a-J) - 9 A4
T(A T J)Q (Pz — 2 8X> / (2P, - Py)d—A+J (2P, - X)A—J (A.40)
h 7 _ v2\h—A+J
_Ta-J), P, 19\ I'(A-J—-h) (-X°) _ (A.41)
T T(A+ ) 20X T(A—J) (=2P - X)d-A+J
_a'T(A—J —h) AT 10 X 1
— X2y S A
rarn Y . <P “aax T AT % ) (—2Py - X)d=A+7
7'T(A — J — h) AT 0 QUZ, P, Py, P2, Y1,Y5)
_ _ _ . ) ) ) ) . 2
2I)IT(A +J) (=X%) <DX 8P2> (—2P - X)d=A+ (442
where h = d/2 and
10 X
Dx=5oe+(h-A+ T4 (A.43)
Doing the integral over P; using the same technique we obtam
/ dPydPy Q(Z, P, Py, P»,Y1,Y5) (A.44)
(~2P - P)AHI (2P - Py)T-AH (<2Py - X)AH |
TI0(A —J = )T(h—A—J),  onatry o\
_ _x2)h L A4
G T T d—arn X)) <D X apz) (A.45)
19 0 *1Q(Z,P, Py, Py, Y1, Y5) (=X 2)A-h+J
20X 0P (—2P - X)A+J
(A —J—R)T(h—A—J) (A.46)
C2NPT(A+ J)D(d—A+J) '

10 0 2J(7X 2)h-At) 1o 0 QJ( X2)A- e SUZ, P, P, Py, Y1, Ys)
20X 0P 20X 0P, (—2P - X)A+]

It is not hard to see that expanding the derivatives in the last expression leads to

ZQnXZPYhYz)

2P X A+J+n (A'47)

where @, are homogeneous polynomials of degree n in X, degree (J 4+ n) in P and degree
Jin Z, Y7 and Ys. Moreover, the polynomials @), inherit the following properties from the

function €2,
Qn(X)Z)PaYi)YQ):Qn(sz+aP)PaY1)Y2) (A48)
:Qn(X; Z,P,Y1+aY2,Y2) (A49)
:Qn(szv-P?YlaYVZ_Fayl) (A50)
This means that @, can only depend on Z, Y7 and Y5 through the antisymmetric tensors
ZAPBl and Y[ } All these properties together, imply that ), must be proportional to
(2P - X)" ((Z-V1)(P-Y2) = (Z-Y2)(P- V1)) . (A.51)
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Therefore, we conclude that

(18'(9)2‘](_)( )h= A+J<1 9 0 >2J(_XQ)A—IH—JQ(Z’P7P17P27Y17Y2)

20X 0P 20X 0P (—2P - X)A+]
(Z - V)(P-Ya) = (Z-Ya)(P- V1))’
= A A.52
Al (—2P - X)A+7 (A.52)
for some constant A ;. Putting everything together, the normalization constant is
given by
2770 (A—4—J)T (4 —A-1)

= An g . A.53
Na (2)2T(A + J) &7 (4.53)

Finally, we conjecture that

Apng = (-D)7272 202 (A-1), (A - g + 1) <A — g - J> (A—d—J+2);. (A.54)
J J

Using Mathematica we verified this formula up to J = 3. Unfortunately, higher values of
J take too much time to compute all the derivatives in (A.52).

A.5 Conformal integrals
A.5.1 Integration over one point

The basic integral we need is given by Symanzik’s formula

_ / dQ [J1Fu, Q2 = =2 / Ay J] (Buwl™ (A.55)
p=1

1<p<v<n

where Zzzl A, = d and the measure [dv,,] is the usual measure over the constraint surface
Yoo 2y T = A,,. It will be useful to write this integral in alternative ways,

:/ Hdtutﬁ“‘l/dQeQQ'@tHPH) (A.56)
:/ Hdtutﬁ“_l/dQe2Q'T/ dsé | s— Zt“ (A.57)

(—2Q - T)°

oo M . C?
d)/o gdt“tﬁ Ls 1—2@ / (A.58)

° = Au-1 I'(d/2)
= 7rd/2/ I dtute™ Z t L (A.59)
(R —t T

where ¢, are real variables, TA = Zzzl tqu are vectors in the embedding space M?+2
and we have used results of [16] (for example, equation (2.21)). Consider now the more
general integral

IAL”AZ: /lﬂ2th‘-JQAlII[Fbaanu Q&60)

p=1
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where 377 A, =d + 1. We can write

A

1 Q7
IAI...A[ _ d+l / H dt tuu 1 _ Zt / Q QQ T o, (A61)

427 g l J Afﬁl(g T4 . TA — traces A

72D(d/2 + 1) H ot (1 - Ztu> o (A.62)

0 pu=1 ( )
— /2 Z Pcﬁl .. Prle /[d%(ﬁj)] H [Puu]%(ﬁ) — traces (A.63)

a;=1 1<p<v<n

where the integration variables have to satisfy a constraint that depends on the set of
ai,...,q;, namely Zu:u;ﬁ# fy,(f;) = A, + 0, + -+ 05! In practice we will often need to
compute only a piece of (A.63) because we will have a special point that we can now call
P, and we will be interested only in the terms of I41+4! that are not proportional to PlAi
for any i = 1,...l. With this simplification we can rewrite the integral ! in such a way

to avoid the dependence on « of the constraint as follows

Py P Jlana) TL BuP= TT (2w (A.64)

;=2 2<u<v<n 2<u<n
where the dots stand by contributions proportional to PlAl. We defined
n
- Z Yuv + AM (A65)
kv

in such a way that there is only one constraint to impose on the integration variables,

namely
S =Y A Ar+1=d+2-2A;. (A.66)
w;:? n=2
pnAY

We can similarly rewrite 14142 neglecting terms proportional to PlA1 and P1A2. In this case
we have to be more careful since we also need to subtract the trace

A1As d/2 - Ay UAIAQ Poqozg () ,Y(?é/)
I - Z Pal POQ B (d + 2) —9 [d7uu ] H [P,uz/] K (A.67)
a1,02=1 1<p<v<n
(@)
Z PA1 PA2 / d,-yl(ﬁl/)] H [P‘uy]’y‘“’ + ...
a1,02=2 1<u<v<n
d/ A1A2 (a) ’Y<?;) 6041632 _6042631
- _2 d+2 Z dﬁy;u/ 7041042 - 1) H [P;L ] " # ® (A68)
1 C;f . 1<p<v<n
ay#ag

where the dots are the terms proportional to PlA1 and P1A2, and where in the second line
we just absorbed P, q, in the integrand. Now we can simplify the first integral as we did
n (A.64). Moreover we can shift the integration variables of the second integral as follows
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V,S?j) —0316,2 — 05,2001 = 4. In this way the sum over oy and as only acts on the variable
Yoras and can therefore be simplified using > 'a;.as=1 Jayay = d + 2. The final result is

ayFag

=g S e [l T[ (Bl [T e o

a1,a2=2 2<pu<v<n 2<pus<n
A1 Ag
77 ~ ~ ~
w2 [ TT w1 Pl (469
2<u<v<n 2<u<n

where the integration variables satisfy the constraint

n n n
> Y+ A S =3 A - Ar+2=d+4-2A;, (A70)
v=2 w,r=2 #:2
g nFY
n n n
= A+ Ay, S A=Y A -Ar=d+2-2A;. (A7)
v=2 p,v=2 H:Q
v v
A.5.2 Conformal integral — integrating over two points

Scalar conformal integral. The goal of this section is to compute the integral,
1= [ @iz (@2 T 1w T (P (A72)
1<a<k k<i<n

where the variables A\, and p; satisfy,

k
d A=A, > pi=A (A.73)
a=1 i

Let us compute first the Q1 integral,

/ Q1 [Quzl"* T [Pw Qi =2 / [@g) I Pl ] [Pa @) (A74)

1<a<k 1<a<b<k 1<a<k

where 25:1 Boa = d— A and sza#b Bapb = Aa — Ba, in particular we have Za,b:a;éb Bap =

2A — d. The integration over ()2 can also be done using Symanzik’s rule,
. d -
 QCHE | QECAREEE TN | LS (A.75)
k<i<n 1<a<k 1<pu<v<n

where the variables 7, satisfy Zzzl Tuw = 0, Taqa = —Ba Tii = —pi- The integral I can be
written as

== [dgar) ] zal T (Bul™ (A76)
1<a<b<k 1<u<v<n

We can change variables,

— 1 =a < =bH <
TM,,:{%Z) Bab if p=a<k and v=0<k (A77)

Yo otherwise
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The function I can be rewritten as,

r=xt flagas T D090 T qppe

Tr
1<a<b<k (Yab) 1<p<v<n

where the integration variables v, satisfy the following constraints

- a=1,...k
Z%“’ =0, Yaa = —Aa s Yii = —Pi s for { . . (A.79)
o i=k+1,...n
The function I is then given by,
r'(B)IrA-B
1=t [ T ipa (A.80)

1<p<v<n

with B = Zngbgk Bab = 2A2_d and A = Zl§a<b§k Yab = Af;LR. In the derivation of
this result we have used the identity (A.106).

Vector integral. The goal of this section is to compute the conformal integral,

I, = / dQ1dQ2 (P~ Q2)(Pr - Q)[Qu ™2 [T [P, @™ T [P, Qa7+ (A.81)

1<a<k k<i<n

where the variables A, and p; satisfy,

k n
D d=A-1, Y p=A-1 (A.82)
a=1

i=k+1

This integral enters in the factorization of the vector and spin two, where we have the
transversality condition (3.15). A moment of thought shows that it is sufficient to compute
I;, up to terms proportional to A; or p,, so in the following we will drop these. Let us
integrate first over )1, using (A.64) we have

[0 @) (@ul 2+ T (R

1<a<k

k
—et Y s [ (P T (PeQi™ e (a8
c=1

1<a<b<k 1<a<k

where the dots stand by terms proportional to P, - ()9 that we can drop since they give rise
to a contribution proportional to p, and where the variables [, satisfy

k k
Ba=—_ Bab, Baa = —Aa s > B =2A—d. (A.84)
b=1 a,b=1
a#b
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Now we compute the integral over ()2 which is also of Symanzik type. Using (A.55) and
shifting the integration variables in order to absorb the factors P.. and [Pab]ﬂab in a single
term, we obtain

7Td k -
Ip="3 / @8l e (B +05) T[] [Pwl™ ] L(Bab) T (Yab = Bab)
c=1

T
1<p<v<n 1<a<b<k (Vaa

where the integration variables 7,, have to satisfy the following constraints

n
a=1,...k
ZPY/»LV:O’ ’Yaa:_Aaa Yii = —Pi fOI’ {Z:k+1,n (A85)

To integrate over § we use (A.106) and (A.107). The function I;, can be simplified to

I'NA-B
/ i) NS e (A + 89+ B - 3) T [Pl
1<pu<v<n
where A = % and B = # and where we defined as usual v = >, 1 Vi

Simplifying the sum over ¢ and dropping terms proportional to \; we finally obtain!”

I'(B)I'(A-B)
I, —/ (A%«z + Bw%) H [P . (A.87)
A + 1) 1<p<v<n

Spin two integral. The goal of this section is to evaluate the integral,

Tty rars = / 4Q1dQs (P - Q2)(Pry - Q2)(Pry - Q1) (Pry - Q1)
(@222 T [P @t +08 TT [P Qa0+ (A-88)

1<a<k k<i<n

where

Aa=A—2 Y pi=A-2. (A.89)
i=k+1

e
Il =
—_

Such integral enters the factorization formula of the spin two operator where we can neglet
terms proportional to p,, + ;2 or A;; + 6;3 (and also for terms with [; <> I3 and ] <> 73)
because they do not contribute in the final result due to the transversality condition (3.15).
As in the previous cases we start by doing the integral over Q1

Iy |
d—A+2 Aa+0a +84
L = /dQl(Pm Q1)(Pry - Q1)[Q12) 2T H [Py, Q] 00 T (A.90)
1<a<k
"The full integral, without dropping terms proportional to A; or p., is obtained by adding
1
B-1 [(A=B)(1+ A~ B)Apr + (A~ B)(B — 1)y +mpr)] - (A.86)

to the bracket in the integrand of (A.87).
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Using (A.69) we obtain

k
P’!’ a P’I‘ a a ! ! a a
L = 74/2 Z % /[d/@ab] H [Pa,Qz]’B O +62 4851 4652 H [Pab]ﬁab 4
ai,az=1 1<a<k 1<a<b<k
roy Prir ) Ba+oul+612 B,
7rd/2( -4 2) 172 /[dﬁab] H [Pa,QQ]B +0q + H [Pab]ﬂab_ (A.91)

1<a<k 1<a<b<k

where the dots stand for contributions proportional to Q)2 - P, and ()2 - P, that do not
contribute to the final result due to transversality. The integration variables satisfy the

constraints
k k
> Bab+ Aas > Baw=2A-d, (A.92)
a;b a&zé:bl
== Bab+ A, > Baw=20-d-2. (A.93)
a;b agll;éil

Let us rewrite rewrite the two integrands absorbing the factor (Q2 - P, )(Q2 - P,),
1 l a a
Q2 Pi)( Q2+ Py) [] [Pa Qo)fete! #0400 4322
1<a<k

1 a a a a a a
= Z(ﬁll + 5l11 4 5112 + 5;3)(552 + 5121 + 5l22) | | [P, Q2]6a+6a1+5a2 7 (A.94)
1<a<k

(@ P)Qz Py) T 1P QP08 = 2B +05, [T 1P Qal™ . (A95)

1<a<k 1<a<k

The integral over Q2 can be done using Symanzik formula

111121“11”2 :ﬂd/[dﬂ H [P/W]WW |:_7T1T2(1_5:f)/[d6](5l1 + 5 612 a ﬁafﬁ Fﬂ{’;ljb 5ab)

1<p<v<n 1<a<b<k
k
F a. F a (3
+ " Vagrs (Vi +822672) / [dB) (B, + 012 +0L +6U ) (B, +012 +6%2 ) Bf%é’@:ﬁ“]
ay,a2=1 1<a<b<k

where we have shifted the integration variables to repack all the factors [Py)%, (P -
Q2), (P, - Q2), Prr, in the single term [P,,]". The new integration variables ~,, are
constrained as follows

" “ a=1,...k
al/:>\a w — P f . ’ . A.96
> = or{zzkﬂ’_“n (A96)

v=1 v=1
v#a v#i

We then integrate over B and By using (A.106), (A.107) and (A.110). Thus we con-
clude that

I'A- B)I'(B
Iiigriry = m /[dﬂ (1—‘(14_‘_)2)() Viilorirs H [P/W]%w ) (A.97)
1<p<v<n
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where YV} 1,r,r, is given by the sum of the following structures

Vi rirs =2A(A + 1Y, (Yigry + 672672) (A.98)
V) e =AB(A+ Dy, (1 + 82) (g + 672) (A.99)
V2 =B(B 4 Dy + 82 (y + 672) (A.100)
yzfzﬁ)m =B(A — B)Yi1,%r, (9, + 62)(1 — 6,2) (A.101)
ylllzrlrg =B(A = B)Yryry 7, (15 + 02)(1 = 672) (A.102)
VO =(A= B4+ 1) (A= B)(1—82)(1— 621, rurs » (A.103)
with
A= D %b:w7 = D Ba=1+ ) By = 221 , (A.104)
1<a<b<k 1<a<b<k 1<a<b<k
and where the variables +, are defined as usual by
- i a=1,...k

%:@':;A%i’ %’:;Vai; for {z‘—k:rl,...n . (A.105)

A.6 Constrained Mellin integral identity

The goal of this section is to analyze an integral over Mellin variables B, constrained by
Y i<a<b<r Bav = B. Using recursively the first Barnes lemma we can prove the following
identity'®

L(Bap)T (ap — Bap)  T'(B)I'(A— B)
/ [dB] 1<a1:[b<k o) = =14 (A.106)

where A =), <a<b<k Cab- This type of integral can be easily generalized to the case where
we have also a linear or quadratic dependence in 5,. Let us consider first the linear case

sty ] Foalfeazie) _, TELIEZD a0
1<a<b<k @

where we have shifted the integration variables to reduce this case to the previous one.
Given a function defined by

J

Fifipit (Bab) = H <ijpj + Za}”eagf ?zégj) : (A.108)

8 Imposing the constraint Y 1<acb<i Bab = B, one can solve for f12 in terms of the other (k4 1)(k—2)/2
variables P14 for a = 3,...,k and Bap for 2 < a < b < k. Then, the integrals over

oo K dBi, B
/[d’g]:/,mg omi 11 omi

2<a<b<k

can be done by successive use of the first Barnes lemma.
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it easy to check that, shifting the integration variables, formula (A.106) can be generalized
as follows

/ 487y () [

1<a<b<k

L(Bap)L(ap — Bav) P ( )F(B + J)I'(A - B)
T(cap) = S{fi,pi} \Aab T(A+J)

(A.109)

We can now generalize this type of integrals to the case of any polynomial dependence in
Bap just taking linear combination of (A.109), since Fyy, ,,.1(Bab) can be used as a basis for
the polynomials in B,;. A useful example is given by a quadratic term in §,. In fact, using
Btior Brare = Brin + 0R 052 + 872607 — 612087 — 872617) By and (A.109), we find

1

F Ba F Qgp — Ba
/[dﬁ]ﬁflplﬁfzm H ( b)F((a b) b) (A.llO)
1<a<b<k ab
I'(B+2)I'(A - B) f I(B+1)I(A—B+1)
= Qfip1 Cfops F(A + 2) — Qfopy (5ff(5£f + 5?351])?) P(A T 2)

B Factorization from the Casimir equation

The goal of this appendix is to fill in the gaps in the derivation of the factorization formulas
in section 5 of the main text. In the next subsection, we detail the vector case and in
subsection B.2, we discuss the spin J = 2 case. In subsection B.3, we prove some recurrence
formulas that are useful in the cases J = 0,1,2. In the last subsection B.4, we provide
more details about the residue of the first pole of the Mellin amplitude associated with the
exchange of an operator of general spin J. In particular, we will match with the results for
the four point function found in [1, 17].

B.1 Factorization for spin J =1

In this subsection we prove formulas (5.14) and (5.16). First we consider that in the action

of the casimir operator C defined in (5.8) there is a term of the kind []Z;ZZZ, which only
shifts the mixed variable and it does not act on L,, and R,,. Moreover the action of |- ]Z;’ZZ
on a mixed variable 7. can be written in a simple way, namely
b , , , ,
Nellagis = Yei + 020] + 006] — 6467 — 6267 - (B.1)
So that we easily obtain
k n o
DT> vaiwg (QS%’ —~ [Qs,?];;f;g) = —2(A—1+2m)QW 4+ 20? (B.2)
a,b=1 4,j=k+1
aZb i#j
k n
b
S e (QF - [@21) =0 (B.3)
a,b=1 i,j=k+1
a#b  i#j
The second part of the computation is more subtle since C also contains a term [Qm_l]zg’gg

that has a shift both in the Mellin variables and in m. To simplify this term we find (see
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appendix B.3) the following recurrence relations to connect structures defined at m — 1 to
structures defined at m

k
1 ab
Lfn = % zb;l Yab [ ?n—l] ) (B4)
ot
. k b
Ly, = Z Vab [Lgn—l]a ’ (B5)
a(;l;é_—bl
k
. 1 . ab
b= [L . } . B.6
m Q(m—l) ;1 Yab m—1 ( )
a#b

Using (B.4), (B.5), (B.6) we easily find

k n
ST qanlQl) e = —202 + (2m)*QY) (B.7)
a,b=1 i,j=k+1

a#b i#]

k n )

ab,ij

S5 vl e = 4m - 1)2Q2). (B.8)
a,b=1 i,j=k+1

a#b i#]

Formulas (5.14) and (5.16) descend respectively from (B.2) and (B.7) and from (B.3)
and (B.8).

B.2 Factorization for spin J =2

B.2.1 Solving the m =0 case

In the case of spin J = 2 we consider the following ansatz for the first residue
k n
1 ij
ol = SN vwiw MMy (B.9)
ab=114,j=k+1

Acting with the Casimir equation operator (5.8) on (B.9) and using the transverse rela-
tion (3.15) we obtain

oMy = —2a0? — 208, with (B.10)
k n k k

o =3 N quMpami, o) = (ZVGME‘L) (Zij}g> . (B.11)
a=11i=k+1 a=1 b=1

The action of 5 on QSQ) is

c(oly =240 + 204 (B.12)

It is trivial to see that Qél) + Q((J2) solves the Casimir equation. Moreover we can rewrite
the final result in a compact form as shown in formula (5.29).
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B.2.2 Solving for a general m

As a new ansatz we consider the natural generalization of (5.29) to any m

k n
O =" 3" quilywy + 080 LERY. (B.13)
ab=14,j=k+1

We start applying the Casimir operator (5.8) and the transverse relation (3.15) to (B.13).
This action generates some structures. We then act with C' on the new structures until its
action closes. We find

CUDQW) = (= 46Tr + DAY + @m)Ari2 ] @ +4lfD — 15210 +2£), )
CP QD) = [(n—27ea) 52 + 2(m — 1)) £12,] @2 + 2042 — 210D + 241 oY
— 2/, Q)

(S Q) = [nf + 20m =27, | @) +4(m — 2150, QD + 45, Q)

CUD QD) = [nf0 +4m = 1)(m — 2)£12,] QP +8(m — 1)1,

CPAD) = [nf? - @(m —1))*£7,] o)

Q)

where the definitions of Q' are given in (5.30) and where 7,5 = A 4+ 2m — 2. The
computations are similar to the J = 1 case and we had to make use of some recurrence
relations that are written in appendix B.3.4. One more time to fix the féf) we need to set
c (Z?Zl j}gf) Qﬁfb)) = 0 and require that fr(,f) = f,S% )hg{i) with h,(fl) rational functions of m. In
this way we get formula (5.32).

B.3 Recurrence relations

In this appendix we demonstrate formula (5.12) for the scalar case and (B.4), (B.5), (B.6)
for the vector case. We also show some similar formulas useful in the spin two case.

First we write some formulas important to demonstrate the following results. We often
deal with the set of integer compositions

A — {{Al,...kn}:ZAi:m,/\ieNO},

i=1
where from now on we will denote {A1, ...\, } = {\;}. We shall now show a simple property
of the integer composition that will be very useful in the rest of this section. It is a trivial
fact that for any j € {1,...,n} the set

i=1

AT = {{Ai+53}:ZAi—m, AZ»GNO}

is contained in the set A™*!. Moreover, it is clear that A’" contains all the elements of
A"+ except the ones that have Aj = 0, namely

AmH\A?—{{/\i}:Z)\,-—m—i—l, )\j_O,)\Z‘ENo} .

i=1
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Using this fact it is easy to show the following formula. Given a function of n variables
F{A1,... ) =F{ND). It F({)‘i})‘x—o =0 for a fixed j € {1,...,n} then!’
=

Yoo Fn+dh = Y FHAD . (B.14)
im1 Ai=m S Ai=me1
We can use (B.14) to find
Yoo DG+ = Y NGEAD, (B.15)
g Ai=m S Ai=mAl
> Z NADGEN+ ) =m+1) DY GUAY, (B.16)
2o di=m =1 S Ai=mA+l

for any function G({\:}).

B.3.1 Demonstration of (5.12) and (B.4)

A proof of (5.12) can be given as follows

k k . f
> waliml? =3 S Bt nal” [T D
a

e it Ena=m-l
: k (’Yab) f
ab+050
=Y > (g DM(a +na +658)) [[ ——=
e, f=1 Znab m—1 a,b=1 (nab + 5(151) )‘
o<t a<b
T O
=m Z (Yab + Mab) H - Nab
Znab:m b<:b ab
=mLy,,

where we used [],_, [(Vab)nab]ef =

ﬁHa<b(%b)nab+6gég and (B.16). Clearly the same
demonstration holds for a Mellin amplitude with one or more indices that are not summed,

namely
k
Z ’Yef La1 aJ mL?,%...CLJ, with L%.‘.a‘] _ Z MalmaJ(’Yef‘i‘nef) H (76f)7'lef
- nef.
s 2 mes=m s

In particular (B.4) holds.

9Property (B.14) holds because

Y. Fah= > F(A) - > F(fxh= > F({a,

(iYear (nieamts {Ajeamtiyam (hiyeamtt

where we used the fact that F({)\;}) = 0 for any {\;} € A™'\ AT
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B.3.2 Demonstration of (B.5)

First we note that L, = 25:1 YeL¢, can be also defined as follows

k
Lm: Z ZnefM 7ab+nab H

e, f=1 a,b=1
D Nap=m et a<h

B.17
) (B.17)

where we consider n.; symmetric in its indeces, so that ny. = n.y when f > e. For-
mula (B.17) is true because of the transversality condition (3.7), in fact

k k k
Z’Y M*® (’Yab"f_nab Z ’Yef"i_nef_nef)Me(’yab'i_nab) = Z nefMe(’Yab'i_nab) .
e=1 e, f=1 e, f=1
e#f e#f

Using (B.17) we can now prove (B.5)

k
Z YerlLy 1 = > qeplL s + L 17
e, f=1 e, f=1
AT ey

Nap:
e, f=1 E =m—
< ngp=m—1

k of T [(Vab)ng)
= Z Yef Z [(Me"FMf)('Yab"i‘nab)} H 7?

k
= Z”fM“er Yab + Tlab) H %b"‘“’

Do Mab= m e.f=1

e<f
:Lma

where followed the same steps of demonstration in the previous subsection except that we
used formula (B.16) instead of (B.15).

B.3.3 Demonstration of (B.6)
k ] ab k
Z Yab |:Lm—1:| Z Yab |:Z '76 m 1:|

a,b=1
a#b a#b
k

where in we have used the relations (B.4) and (B.5).
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B.3.4 Recurrence relations for the J = 2 factorization formula

In this section we present the J = 2 analog of the recurrence relations (B.4), (B.5), (B.6).
Since the technology we needed was similar to the J = 1 case we will not write here any
demonstration. The formulas are

k
L6 = (va+062)L%, (B.18)
a=1
- (Yab)
. b)n,
L1Cn = Z Z nefMec(’Vab + nab) H % ) (B'lg)
> ngp=m & f=1 a<b ab:
e#f
i ! Zk: e ]" (B.20)
SR .
™o 2(m—1) = m
a#b
. k b
Le, ="y [L )", (B.21)
aj;g:bl
.. k .
L= 7L, (B.22)
a=1
. ~ k - ab
Lm = Lm + Z Yab [mel} ) (B23)
a,b=1
a#b

k
L= > > negM (v +nap) [ | (%b)T“b : (B.24)

> Nab=m eéJ;:fl ach ab’
o1 Loal” B.25
m_2(m_1) ;17ab[ m71:| 3 ( . )
astb
k
~ ab ab
L= w [Lm,l} . (B.26)
aj;g:bl

B.4 The first residue

In this subsection we study the first residue Qg of the factorization formula for a generic
spin J exchange. We first rewrite formula (5.38) in a nicer way and we then match it with
the known result for the first residue of the four point Mellin amplitude.

Any object S#1#/ symmetric in its indices ui,...,ps (where p; = 1,...n) can be
written in terms of the occurrence of the values 1,...,n in the indices p1,...,puy. In
particular given ay occurrences of ¢ € {1,...,n} we define a new object Sy, .q, (With
down indices) as follows

———
Sal...an531"'12"‘2“'n"'n- (B27)
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Rewriting (5.38) in the down indices notation (B.27) we find a remarkably simple formula

Qv =rasdt D | TT 50 | MM (B.28)
Ell,ijgiO:J iéj;: Jai:

JaiZ

where j, = > 1" ) Jai and j; = 25:1 Jai (Where a=1,...;kandi=k+1,...n).

B.4.1 The first residue for k =2 and n =4

We want to show that for £k = 2 and n = 4 (5.38) reduces to the known formula for the
first residue of the four point function computed in [1, 17] once we fix

kang = (=27 (A+T-1DT(A-1). (B.29)

The first part of the computation consists in finding the Mellin amplitude associated to a
three point function. Then we will plug such a formula in (B.28) and we will compare the
result with [17].

A three point function of two scalars with and a spin J operator is given by

(O1(P1)02()0(Z3, P3))
c120((Z3 - P)(=2Py - Ps) — (Z3 - Py)(—2Py - P3))”

= (—2P1 . P2) A1+A22—A3+J (—2P1 ‘ Pg)AﬁAg;AﬁJ (_2P2 . Pg) A2+A32—A1+J
J . .
J Z3- P (=23 - Py)’~7
_ 120 S (7 (Z3- 1) (=23 - Py) _ (B.30)
(—2P1 . P2)’712 = j (_2P1 . P3)71+J(_2P2 . P3)72+J J
with
A1+ Ay — A3+ J A1+ A3 —Ny—J Ao +A3—A1—J
Y12 = B » M= B V2= 9 - (B.31)
According to (3.12) we have,
(O1(P1)02(P2)O(Z3, P3)) = (B.32)

J ) . )
I'(712) 3 J : j—j_Tn+j)  ThetJ—j) 77353
P UV Ta- P (Za- Py)! I : pLeee12ee
(—2P1 - P2)712 par . ( 3 1) ( 3 2) (—2P1-P3)71+] (_2P2‘P3)'yg+]—]

so that the Mellin amplitudes can be written in the down indices notation as
(-1)7~
L(y12)T(m + )T (2 + 7 — )

Replacing (B.33) in (B.28) and using the identity
holds for any n,J € Z) we find

M; j—j = c120 (B.33)

1 . (71)n+.]
Ply+n) = T(v+J)

(1=~ —=J)j_p (that

4
0y = C120C340KAJ (_1)JJ! (_1)j13+j24 (Vai)jui H(l — =)
= E - —J
[(712)T (734) HZ}:1 D(ve+J) S i dai=T a=1,2 Jai! =1 ‘
Jai20 i=3,4
(B.34)

where j, = ja3 + Jaa and j; = j1; + Joi (With a=1,2and 7= 3,4).
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We can match (B.34) with formula (166) in [17]. The formulas look similar but the
sum in (B.34) contains only mixed variables 7,; while the one in (166) also depends on
the spacetime dimension d. To factorize such a dependence from (166) we need to use the
identity (B.36) with 1 = A—% = x9. In this way, once we fix (B.29), we find an agreement
between the two formulas.

We can also match equation (127) in [17]. In fact we can simplify (B.34) applying the
conjectured identity (B.37)

(—=1)7 (714) 7 (23) 7 (A = 1) 5
T(y12)0 (v34) [Ti—y T(e + )
where we used the constraint v13+723+7v14+724 = A—J. We can further use the following

Qo = C120C340KA T 3Fo(—J, 13,7243 1= J —y14, 1 =J —23; 1),

hypergeometric relation
(d—1b)s(e—1b)
(d)s(e)s
valid for any integer J to get
(=17 (A=1)7 (m)s(13)s
T (12)T (y34) [Ti=y T(ve + J)

where we could have also exchanged 1 — 2 and 3 — 4 adding a factor (—1)7 in the formula.
Formula (B.35) matches exactly (127) in [17] if we fix (B.29).

sFy(=J,b,c;dye; 1) = J3F2(—J, b+c—d—e—J+1,b;b—d—J+1,b—e—J+1;1)

Qo = C120C340KA T 3Fo(—J, A = 1,73571,73;5 1) (B.35)

B.4.2 Conjectured Identity

Consider the following polynomial in the variables 13, V14, V23, V24, 1, 2,

4

N 2
s esva) = Y (072 [ ] % [T0—vat+za=T) 05 [[O=%=T)0

; — Jai- _ i—
> aidai=J f:;glﬂi a=1 =3

where the sum is over ju; > 0 with ji3 + jo3 + j1a + joa = J. We also defined v, = Y43 + Vas
and v; = Y1; + 7y2; and the same for j, and j;. It is clear from the definition that f7 is
a polynomial of degree 3.J in the variables 7,; and degree J in the variables z,. We first
conjecture that the following ratio is independent of z; and xo,

J o J  YVai
f7 (21, 223 Yai) _ S0, 0:70) 7 (B.36)
(ver—21—z2+J—1);  (vr+J—1)

where YL r = Y13 + Y14 + Y23 + Y24. We conclude that (B.36) is a polynomial of degree 2.J

in the variables v,;. In fact, we also conjecture that

J(0.0:~.. J .
m = }!]Z%(—l)J <j> (v14)5-5(123)5-5(113)5(124); (B.37)

1
= j(’YM)J(’YZS)J sFo(=J,m3,72451 = J — 14,1 = J —2351) . (B.38)
Where in the last line we can also exchange 1 — 2 or 3 — 4 adding a factor (—1)7 in
the formula. We verified both conjectures in general up to J = 8. We also checked their
consistency up to J = 80 setting all the entries of the functions to random integers between

1 and 100.
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C Flat space limit of the factorization formulas

The mass of a spin J field in AdSy, is M? = % where A is the conformal dimension
of the operator in the dual CFT and R is the radius of AdSyy1. In the flat space limit R
goes to infinity and to keep M finite we need to assure that A scales like R. In terms of

the Mellin variables the flat space limit amounts to (6.11), so that we can be more precise

ij
The factorization formulas often contain functions of the kind

(vi5) ij
fm(vij) = E g(vij + nij) H 7;] ‘TJ (C.1)
ni;>0 i<j
Znijzm

where g(v;;) is a function of v;;. We want to know what is the leading behavior of fy,(7vi;)
in the flat space limit. It is easy to to show [3] that if g(~;;) is a polynomial of degree x in
the variables +;;, then, for any finite m, fy,(vi;) is also a polynomial of degree x + m and
its leading term (the highest degree part of the polynomial) is the same as that of

(mvzi<j Yij +m)

m 1 _
fm(yij) = Dy where D{™") = —or L (C.2)

g r}/’ij)}tzl )

With this in mind, we can now review the scalar case. To keep the formulas more
compact we rewrite (1.6)—(1.10) as

m!
M =~ LRy, , where g(m) = kno————— C.3
mzo VLR — VLR g(m) A0 (1-2+A), (©3)

and ¥y p = A + 2m is the position of the poles. The leading behavior of L,, and R,, is
found using (C.2) and moreover we can apply formula (6.34). Using units where R = 1 the
result for L, (and similarly for R,,) is

L = DI ™ My (ta)|,,

. . d ZaAa+A d
_D AL / BL e L TL (2Brtrvan) |,

dﬁL Za Aa+A d

2-A) _
S o, (2B07a) Di e it | (C.4)
0

tr=1

where v, = 3, p<p Yab = Zszl % — %TR and N, is the normalization of the left Mellin

amplitude defined in (6.35). Notice that to get to (C.4) we just performed the replacement
Br — Br/tr in the integration variable. Replacing in formula (C.3) the flat space limit of
L, found in (C.4) and a similar formula for R,,, we obtain

M~ N/ dﬁL sy Secd L= /O %BRZH%TL (2B17ab) Tr (2BrYi5) S(BL, Br) »
(C.5)
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where A is the normalization of (6.34) associated to the full scalar n-point function and
where we defined

S(BL, Br) = Z

~ d
with N/ = %Nﬁ = ”TQFC(%Q. As we will see later we can drastically simplify S(8r, 8r)

_A4dy _BL A _Br A
0 VLR — ’YLR tr=1

to get
441 1

—28rYLR + A%
With this simplification we finally match the flat space factorization of scalar scattering
amplitudes (2.1)

dﬁ ooy ba=d 5[ TL (pa-po) Tr (Pi - D))
M~ N/ oo | T2l ) T -

S(Br,Br) =~ §(BL — Br)e Prp;

(C.7)

(C.8)

pu'PVZQB’Y,uu

where we defined p = Zl; 1Pa = — 2_i i1 Pi (so that pQ}p py=2Bry = —2ByLr) and we
identified M? = A2. This shows that the poles of M, in the flat space limit, give rise to a
cut that can be obtained by the integral over § in (C.8) of the unique pole of the scattering
amplitude 7.

We now explain how to find formula (C.7). We need the following Mellin transform

. (myy) _g iy — 5 T _ F([L’ + y)
16 =t — Foy= [ D) - (o)
Using (C.9) we can Mellin transform S(5r, Sr) in both the variables 57 and (g,
A A
S(zr,zR) J\/Z oz + 3) Plert3) (C.10)

’YLR 'YLR ml(zp + 952) _m ml(zr + 52)m

When m is of order one, the summand gives a negligible contribution. In fact the terms
that are going to contribute are the ones with m of order A?. We can then define a new
variable s = 4A—7§ and, since s will slowly vary when m increases by a step of one, we can

take a continuum limit and turn the sum into an integral

o0 4 fe'e)
ZN"'—}/O ds... . (C.11)
m=0

Using the Stirling approximation in the integrand we then find

Staram~ [T :
YL, TR) = 0 8 stLtertd/2 951~ p 4 A2
© q8y, / B [ S A :
) B C.12
o Br 3, bt Br —— B 6(BL — Br)e "L B} —261vLR + A? (€42

where we performed the change of variable s = 1/8;. Formula (C.12) is the definition of
a double Mellin transform, therefore we can identify the term in the square brackets with
S(BL,Br) and finally recover formula (C.7).
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C.1 Vector operator

The position of the poles of the Mellin amplitude at vrr = A + 2m, turned into poles at
yLr = A?/(2f) in the integral in formula (C.8). This means that in the flat space limit
the contribution of the infinite sum over m will be dominated by the poles which have a
value of m that scales like A%2. This simple observation is proven to be very effective to
simplify the factorization formulas for the exchange of operators with non zero spin. In
fact, in these cases, one has to deal with formulas of the kind

with

(5) = rar—

M b o =rar e (1
where the position of the poles is at ¥, = A + 2m — J. The residue Q,, is expressed
as a sum over structures labeled by s and we will now see that it is easy to drop some of
such structures checking that they give rise to a subdominant contribution in the flat space
limit (once we consider that m scales like A?).

The factorization formula for the vector case is (C.13) where s runs from 1 to 2 and
the two structures are defined as follows

k n
hi(m) =1, oW =>">" qu L&R.,, (C.14)
k n
d—2A
ha(m) =—————— | (2) = WviLe R C.15
20 Zom(a ) WL 2wt o
%/_/ ~

~A—2

where we put in evidence the scaling behavior in A. Naively one would think that the two
structures (C.14) and (C.15) have the same leading behavior in A since o) contains only
one Mellin variable that scales like A2 and Q,(g) has two Mellin variables which scale as
A* but it is suppressed by A~2 because of the contribution of hy(m). This analysis is too
simplistic because we did not consider that the Mellin amplitudes satisfy the transversality
condition (3.7), namely 2521 YoM® = 0. Using this condition is enough to ensure that
the second structure (C.15) is subdominant because its naive leading term in A is actually
zero. To see this we recall that the flat space limit of L% and R! can be computed
using (C.2), then

k k
YL+
Z’)/aLZ1 = Z'Ya,Dgn T m)Mz(tL’Vl1l2)’tL:1 +
a=1

k
, 1)
— D§T7L+m Z (trYa ML tL’Vlllz)‘t 4+
a=1

=04..., (C.16)



where we used (3.7) with v, = ZZ:l % — %TR and where the dots stand for subleading
contributions in the flat space limit (y;; ~ A? — 00). This analysis allows us to drop (C.15)
and to just compute the flat space limit of (C.14). The computation is similar to the scalar
case but now, in order to use formula (6.34), we need to express the Mellin amplitudes M
in terms of their check representation A/¢.20 In particular the following equation holds

k n k n

DD WMiMp= " Y vaiwy (M}, — ME)(Mp, — M) (C.17)

a=1i=k+1 ap=11j=k+1

k n ) ' ) '

= > D ey (MLM}, — MMy — MM, + M{My) (C.18)

a,b:lij:k—H
= VLR Z Z —Ya%i + YaiVLr)Mf Mp (C.19)

a=1i=k+1

in which we used 2221 Ya = VLR = Y_i—j41 V- When the on shell condition yLr = Fpp
holds, we can rewrite (C.19) as follows

k n k n
Z Z ’VaiM(LlMIZ'% = W%R Z Z QaiMzM;‘% ) (0'20)
a=1i=k+1 a=11i=k+1
-« 1 =1,...,k
Qai = (’Yai - ﬁ%ﬁz) {j = k+1, (021)

In this way we can compute the flat space limit of the structure Q,(%)

e

n

k n
oW :Z Z wiL& Rl ~ D DR D> Vi ME(t L) M (R Ve )

a=1 a=1i=k+1

H.

(va+1+m)D(va+1+m LRZ Z QuiM e (tpy,1,) M (tRYe ) - (C.22)
a=1i=k+1

Replacing this result in (C.13), dropping the contribution of QS? and using (6.34) we find

M3 I gl (C.23)

m=0 ’YLR ’YLR

d >a Aa+1 d
NN/m&

> ZZA +1—d )
4R g Z Z T 2B Y1) TE(2BR V10 )SY (BL: BR) |

fBR a—=1i=k+1

20Notice that in the scalar case M = M.
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where we rescaled the integration variables f;, — B /tr, and Sr — Sr/tr and we defined
N to be the normalization of (6.34) associated to the full scalar n-point function and

S (B, Br) Qui
oi” (L. B ZOVLR—VLR LR
B A B A
% |:,D§7Ln 1— A-i—h tf 5 ] |:,D§Zm 1— A-i—h) t,’: BR:| ’ ((124)
tr=1 tr=1

where N = %A/ﬁ . 2F @ +1) Using the same kind of computation as in the scalar case

and identifying A = M, we find

Qai

P+ I , (C.25)

S(S)(BL,BR) =~ 5(/BL — ﬂR)e*IBLBL% |:

]pi P =2BLij

where €,; is defined in (2.13). Replacing (C.25) into (C.22) we get to the final formula

(C.26)

pu'pV:26L'Yp,u

d,B Xha=18a—d 1Af¥ 4 _ - T2 (P - piy) T (Pry - Pry)
M ~ N/ L 1 2/'R 1 2 Qai
[(; = ;—4—1 p T M2

C.2 Spin two operator

The flat space limit for the factorization formula for spin J = 2 can be found in a similar
way as in the previous cases. First we find that in (5.32) there are only two structures that
contribute, namely the first and the last one. The procedure to see this is analogous to the
vector case. Once we consider 7;; ~ m ~ A? all the structures naively seem to have the
same leading term in A (except the fourth one that is obviously subdominant). It is then
easy to show that the naive leading term of L‘}n and of f/‘,’n is actually zero because of the
tranversality condition . (y; + 65 YM% = 0. This fact allows us to drop all the structures
which contain L% or L%, therefore we can restrict our computation to just o)) and QY.
We then write the flat space limit of L% and L

Lab = DI M (1) o (C.27)
k
L= = > 4Dy M (tye) 1= (C.28)
a,b=1

where vy, = 25:1 % - %TR' Formula (C.27) is obtained using (C.2) and to find the flat
space limit of L, = 3 ab Yab [L%’_l]ab we first use (C.2) to get?!

ab
[t~ it o DO A5 (€20
Then, since m ~ ~;;j, we can further simplify (C.29) considering the following relation
DI M (e m = =DM (e, m> 1. (C30)

Combining (C.29)and (C.30) we find that (C.28) holds.

21We assume that L2 is polynamially bounded.
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Using formulas (C.27) and (C.28) we can write the flat space limit of o) and Q) as
follows

k n
K + b ,+ 0J
Q%) ~ Dgzn T m)Dg?n YRtm) E E ’Yai"ijMgb(tL’YlllQ)Mlz%j (tR7T1T2)‘tL7tR:1 ) (031)
ab=114,j=k+1

k n
b + b + LJ
Qgg) Z'Dgn T m)Dgr TRFm) E E 'Yab%ngb(tL%llz)Mg(tR%"lm)‘tL,tRzl : (0‘32)
ab=14,j=k+1

Now we need to express M in terms of M. To do so we use the following identities?? valid
in the flat space limit and where yLr =75

k n k n
Z Z Yavyig MEP M SﬁRZ Z Qap$iy MM

a,b=11,j=k+1 a,b=11,j=k+1
k
ab b l
Z Z 'Vaﬂ/bjML M] = 'VLR Z Z Qasz] M] (0'33)
a,b=11,7=k+1 a,b=11,j=k+1

where €,; was defined in (C.21) and

. 1 a,b=1,...,k
Qap = (Yab + =) or . (C.34)
YLR a,b=k+1,...,n

Putting everything together and using (6.34) we find

M ~ h )4 p (5) C.35
Z o /LR —’YLR [ 1(m)Qm * 5(m)Qm} ( )
d g Aa+2-d oo > A +2—d
~ /\// ﬂBL 2 ;RBR 2
0 R
Z S T B0 T () S5 (BL. Br) + S50 (Br. Br)| L (C:36)
a,b=114j=k+1

where N is the normalization (6.35) for a scalar n—point function,

s (81, Br) =N Qi
abij (O Or) Z ‘ VLR — ’YLR Tin K
B B
" [Dﬁlﬁ A+h) _tfﬂg] [Dgzﬂ Ath) - gﬁg] ’
tr=1 tr=1
S50 Br) = — =S (B, ), (C.37)

and N = 2 3\//\[ B — 1593 I AA+ 22)2, where N7, and Ny are normalization constants that arise

from using (6.34) respectively on the left and on the right Mellin amplitudes. Notice that

2ZA proof of such identities is given in appendix C.3.1. Notice that the difference of signature in the
definition of € comes from the fact that Z’; b—1 Yab = —YLR While 25:1 Y i kq1 Yai = YLR-
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the factor —J in (C.37) comes from the leading term in A in the expansion of h5(m) (when
we consider m ~ A2). Once again following the same steps that we wrote in the scalar
case we can simplify the form of S D) and S

abij abij’
a 1 [ Qs
—Br paa—1 ai? bbj
(B, BR) = 8(BL — Br)e L B2 [2 2] : (C.38)
% K PP+ M PiPi=2BLij
Replacing (C.38) in (C.36) one gets the final result
Sh_y Aa—d
M ~ N/ dﬂ e e P
— T, - pz2)77§j (Pry - Pry) 1
Z > 21 Qaildy; — S Qaij ;
a,b=11,j=k+1 PP =267

that is exactly what we expect from the flat space factorization formula (2.15).

C.3 General spin J

In (5.38) we wrote the factorization formula for any J but just for m = 0. We now want to
check that this contribution reduces in the flat space limit to one piece of the result (2.18).
If we use the notation (C.13) we now have only one structure (we denote it with s = 1) and
the other ones are unknown. From our recipe we can uplift the result of (5.38) to a general
m just putting the prefactor g(m) in front of it and replacing My — L,, and Mgr — R,,.
In this way the contribution that we want to analyze (that we will call M(1)) becomes

o0 ()
Z g(m) (C.39)
’YLR YLR
J
o) = H (Yayi; + Z Bad i) Lt ik (C.40)
q=j+1

with ¥, = A 4+ 2m — J. In particular in the flat space limit we have

J

Q[ =~ Dy DR Z Z <H’Yam> Mt M (i), g
{a}=1 {i}=k+1

(C.41)

where v, = 22:1 % - %TR (and similarly for yg) and {a} = a1, ...,a; (and the same for

{i}). We need to express the result in terms of M. We will use the following identity that
can be proved in the flat space limit when y,r =7 r

k n J .
> (H%m) M (o) MY (735)

{a}*l{‘}*k-}—l =1
n J

~ 52, Z 3 (HQ) M (o) IS () (C.42)
{a}=1{i}=k+1 \U=1



where g is defined in (C.21). A proof of (C.42) is given in appendix C.3.1. Putting
everything together and using formula (6.34) we find

DaBatiod 00 Ggn  Tibtsd
MO ~ N / et | 26y ¢
R

Z Z T QBL’Yab)T]%i}(QBR%j)Sg)}{i}(BL,BR)- (C.43)

{a}=1{i}=k+1

where

J
B 7B J Qai
Stay iy (Brs Br me ~ iR I i,

y |:,D(mJ A+d 52 ’%} [D(m,J—A+§)Bge—ﬁf]
tr=1 tr=1

with N = % = 15921 &A_F{]) . In the flat space limit we can simplify S%a)} [y 38

explained in the scalar case. The result is

S&)}{i}(ﬂL,ﬁR) ~6(BL — 5R)6_5L52 (1;[)[]_ Ajfg”) : (C.44)
pi p]_QBL’YZ]

Replacing (C.44) in (C.43) we get

MW :N/OO @522112Aa_d6_5

n Tal .ay o 7-11 D J
|3y BRI,

{a}=1{i}=k+1 =1

Pu 'pu:25%w

that corresponds to the r = 0 contribution of (2.18).

C.3.1 Proof of (C.42)

We start considering that the relation (3.22) to express the representation M in terms of
M simplifies drastically in the flat space limit, since we can drop all the Kronecker-deltas.
Thus we can define the leading behavior of M in the flat space limit as follows

k J
My = 3 ey (DI (C.45)
b1,...by=1 q=0
where M}b}{a} is defined in (3.23). In this notation, the leading contribution (in the flat
space limit) of the left hand side of (C.42) is given by

k
L= Z Yaiir * " Vayiy MZ{JC}}SIMI{%Z}SZ (C.46)
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Equation (C.45) also makes clear that My satisfies a simpler transversality condition,
namely

k
> Y MEL =0 (C.47)
a1=1
For convenience we define §;,. ;, = Z’fa}zl Yaqi; * "ya.IiJMéc}}sh a totally symmetric object
in the indices {i}. Using property (C.47) we immediately find >°7 _, | Si; i, = 0, that
can be used to show

n J
L= Z Siv.igVir Vis Z(—l)qMé{J}{i}
{i}v{j}:k+1 q:0

= D Sy (Mgt = Mgttt )
{i}{a}=k+1
n

n
= Z Sil-..i]7j1 e fijMIZ%l“‘” = ’yiR Z SZ'I._Z‘JMIZ%'“ZJ . (048)
{i}.{i}=k+1 {i}=k+1

We can further simplify £ replacing the definition of S; using (C.45) and considering

1.8
that for symmetry reasons each Mt}{b}{a} just contributes as (g) MP1-baq+1--05  The result is

n k J
I\ ypbrbagriean ypiy..i
3D DD MR R R RENS el o e

{i}=k+1 {a} {b}=1 4=0 q

1 P
3 3 () (i) (oo e

{} k+1{a} 1¢=0

= 'VLR Z Z Qayiy - Qayi, M {a}M{z}
{i}=k+1{a}=1

where €,; is defined in (C.21). Once we set yLr = 7 p We recover formula (C.42).
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