ACAT 2019 IOP Publishing
Journal of Physics: Conference Series 1525(2020) 012047 doi:10.1088/1742-6596/1525/1/012047

Fips: An OpenGL based FITS viewer

Matwey Kornilov, Konstantin Malanchev

Sternberg Astronomical Institute, Lomonosov Moscow State University
Universitetsky pr. 13, Moscow 119234, Russia

National Research University Higher School of Economics

21/4 Staraya Basmannaya Ulitsa, Moscow 105066, Russia

E-mail: malanchev@physics.msu.ru

Abstract. FITS (Flexible Image Transport System) is a common format for astronomical
data storage. [1]. Even though astronomical data is now processed mostly using software, visual
data inspection by a human is still important during equipment or software commissioning and
while observing. We present Fips [2, 3], a cross-platform FITS file viewer released as open
source software'. To the best of our knowledge, it is for the first time that the image rendering
algorithms are implemented mostly on GPU (graphics processing unit). We show that it is
possible to implement a fully-capable FITS viewer using OpenGL [4] interface, including movie
support for representing 3D data. We also emphasise the advantages of using GPUs for efficient
image handling.

1. Introduction

Modern GPUs have many hard-wired features accelerating typical 2D and 3D-rendering tasks.
GPU acceleration has been already used for various astronomical tasks, i.e. solving visualisation
problems [5], computational linear algebra problems [6, 7], or real-time rendering and colouring
of 3D FITS data [8].

In this work, we concentrate on how typical image manipulation operations may be offloaded
to the GPU. Here we prove that the end-to-end OpenGL rendering of FITS file data can
be practically implemented as a software application. We propose a FITS viewer software
implementation based on the GPU acceleration. Raw FITS file data loaded into the GPU
memory, and then the geometric and colour transformations are handled by GPU. The sample
application screenshot is given in Fig. 1.

2. OpenGL based FITS viewer

OpenGL is essentially a programming interface, i.e. a library with a standardised set of functions
allowing us to control GPU hardware. In an OpenGL application, different kinds of objects may
exist: a vertex defining surfaces, and a texture containing images to be drawn on the surfaces.
In our case, it is enough to have only four vertexes to define a rectangular plane. The texture
containing a FITS image is drawn on this plane. The plane position, orientation, and size are
controlled by special GPU routines, so-called vertex shaders. It is useful that the image is drawn
on the plane using its local coordinate frame, while the user sees automatically transformed the
final image. Therefore, OpenGL gives us a way to perform such operations as pan, zoom,

! https://fips.space
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY

of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOIL.
Published under licence by IOP Publishing Ltd 1

https://fips.space

ACAT 2019 IOP Publishing
Journal of Physics: Conference Series 1525(2020) 012047 doi:10.1088/1742-6596/1525/1/012047

rotation and flipping. All these operations require us to have only a few lines of source code
that executes on GPU in a very efficient manner.

It appeared that handling FITS image as a texture is a possible but complex task. First, we
need to load a FITS image into the graphics memory as a texture. Second, we should render
the image using the required colour-mapping, contrast level, etc.

If any transformation between the FITS image memory representation and GPU texture
representation is needed, it would use additional CPU-based calculations. This is why we focus
on cases where byte-representations are similar. This saves us a huge amount of computational
time that is usually required for FITS file data parsing and transformation. FITS image data
loading is performed quickly and is only limited by CPU to GPU memory transfer rate. It can
be done only for some FITS data formats. For instance, a 16-bit FITS image is an array of
subsequent 16-bit integers. A monochrome 16-bit texture is also an array of subsequent 16-bit
integers. Since it is monochrome (i.e. single-channel), a single integer represents a whole single
pixel. This means that memory representations of the 16-bit FITS image and the 16-bit single
channel texture should be identical except for the byte order. Unfortunately, it isn’t always
the case: 32- and 64-bit integers are not supported by OpenGL texture formats. To overcome
this kind of difficulties, we present the colour deinterleaving technique that allows us to recover
FITS image pixel value in the fragment shader. An example of the technique applied to a 64-bit
integer FITS is given in Fig. 2.

Since FITS pixel values are available within the texture, we may apply an arbitrary
transformations to them using a fragment shaders. In particular, we use a fragment shader to
recover the pixel value from the multi-channel representation in cases when colour deinterleaving
is necessary (see Fig. 2). Also, the fragment shader is used to apply colour maps, adjust
brightness and contrast levels without precision loss. Note, that the fragment shader is executed
on GPU in parallel threads which is a fast and energy-efficient way to make such transformations.
Detailed benchmarks are presented in [2].

The OpenGL application may be helpful for astronomical purposes not only due to its ability
to perform simple FITS image rendering. The so-called texture arrays available with OpenGL 3
may be properly used to support 3D FITS data. A 3D data cube stored in GPU video memory
in the form of texture array representation may allow us to implement efficient GPU video
playback. Since data cube is preloaded into GPU memory the next frame rendering is as simple
as setting frame number in the fragment shader. It saves a lot of computation time on CPU side
while playing the movie. The representation of data cubes in the form of a video is currently
implemented in e.g. Ginga and FITSWebQL FITS viewers [9, 10] and it is also currently
supported in the coming F1pPs 3.4 release.

3. Installation

Fips can be easily installed on all supported operation systems: Linux-based openSUSE
and Fedora official repositories contain Fi1pPs packages, other Linux-based operation systems
are supported via FlatPak?, cross-distribution Linux desktop package manager with isolation,
macOS package can be installed using Homebrew Caskroom®, macOS and Windows packages

are available on project’s GitHub page. Find below detailed information on F1pPs installation.

3.1. openSUSE Leap 15.1 and openSUSE Tumbleweed
zypper in fips

2 https://flatpak.org
3 https://brew.sh

https://flatpak.org
https://brew.sh

ACAT 2019 IOP Publishing
Journal of Physics: Conference Series 1525(2020) 012047 doi:10.1088/1742-6596/1525/1/012047

2 M31.fit — FIPS v~

File View Help

Levels o @
Min < 10 000 <
Max 0 <
Auto
..
¢ Rotation °Q
— 0 C Deg

: , E ; A [Horizontal flipping

[vertical flipping

Color map °®
® Grayscale

O Purple—Blue

x: 3919y 240 value: 1285

Figure 1: Fips interface on openSUSE operating system. The user interface looks the same
both on Linux and Windows. A M31 galaxy image obtained by the MASTER robotic telescopes
network [11] is shown here.

(k — 1)-th pixel k-th pixel (k + 1)-th pixel
FITs date |01]ab|90|7d60[95]40]00]01]64]92|37]36|7b|68]a0]01]82|£d £ 1[55|78]c9]00]
Tesure |ab|01|7d|90|95]60 [IJIY 64|01 |37 | 92| 7|36 Y 52|01 |11 |£a|78]55 [T
Red Green Blue Alpha
6.515 - 10—’37'// 5.;W 5.W
Sampler output 5-644 - 10: 5.711 - 10:1 9.919 - 10:1
3.772 - 10 2.128 - 10 3.338 - 10
2.500 - 101 4.087 - 101 7.851-10" 1

Figure 2: Memory layout example. At the top layer, FITS image linear memory data represent
64-bit integer pixels in big-endian order. At the middle layer, the texture memory representation
for a 16-bit RGBA (Red, Green, Blue, Alpha) pixel in little-endian architecture is given. At
the bottom layer, floating point vectors are shown that are returned by the sampler when the
texture is accessed.

3.2. Fedora 30
dnf in fips

3.3. FlatPak
flatpak install flathub space.fips.Fips

ACAT 2019 IOP Publishing
Journal of Physics: Conference Series 1525(2020) 012047 doi:10.1088/1742-6596/1525/1/012047

3.4. macOS

Download release package from GitHub releases (https://github.com/matwey/fips3) or
install using Homebrew Caskroom:

brew cask install fips

3.5. Windows
Download release package from GitHub releases (https://github.com/matwey/fips3).

3.6. Building from sources
F1Ps can be built on target operation system using modern C++ compiler and Qt* library.
git clone https://github.com/matwey/fips3
mkdir -p fips3/build
cd fips3/build
cmake
make

4. Conclusion
In this proceeding, we have presented the software for rendering astronomical data in the form
of FITS images and movies. The major design novelty is using GPU acceleration: the image
geometry and colour transformation are programmed in GPU using the OpenGL programming
interface. It turns out that the full processing stack, starting with loading bytes from a FITS
file into the GPU memory, to rendering the picture on the user screen, may be implemented by
applying all necessary data transformations in the GPU. Note, that OpenGL is still supported in
environments without hardware GPU by efficient CPU software implementations such as Mesa
llvmpipe °, that provides Fips users with a good experience even in such cases.

We offer astronomical community to enjoy a modern graphical user interface of Fips and to
contribute new ideas and code to the project.

Acknowledgements

Authors thank the referee for the constructive comments which helped to improve the paper.
The study was partially supported by RBFR grants 18-32-00426 and 18-32-00553, and MSU
Development Program “Outstanding Scientific Schools of Moscow State University: Physics of
Stars, Relativistic Compact Objects and Galaxies”.

References
[1] Wells D C, Greisen E W and Harten R H 1981 A&AS 44 363
[2] Kornilov M and Malanchev K 2018 Fips: An OpenGL based FITS viewer Astrophysics Source Code Library
ascl:1808.006
[3] Kornilov M and Malanchev K 2019 Astronomy and Computing 26 61 (Preprint 1901.10189)
[4] Segal M and Akeley K 2018 The OpenGL Graphics System: A Specification (Version 4.6) Tech. rep. The
Khronos Group Inc. URL https://khronos.org/registry/OpenGL/specs/gl/glspecd6.core.pdf
[6] Perkins S, Questiaux J, Finniss S, Tyler R, Blyth S and Kuttel M M 2014 New Astronomy 30 1 — 7 ISSN
1384-1076
| Fromang S, Hennebelle P and Teyssier R 2006 A&A 457 371-384
[7] Liska M, Hesp C, Tchekhovskoy A, Ingram A, van der Klis M and Markoff S 2018 MNRAS 474 L81-L85
| Vohl D, Fluke C J, Barnes D G and Hassan A H 2017 MNRAS 471 3323-3346 (Preprint 1707.00442)
| Jeschke E, Inagaki T and Kackley R 2013 Introducing the Ginga FITS Viewer and Toolkit Astronomical Data
Analysis Software and Systems XXII (Astronomical Society of the Pacific Conference Series vol 475) ed
Friedel D N p 319

4 https://qt.io
5 https://www.mesa3d.org/llvmpipe.html

https://github.com/matwey/fips3
https://github.com/matwey/fips3
1901.10189
https://khronos.org/registry/OpenGL/specs/gl/glspec46.core.pdf
1707.00442
https://www.mesa3d.org/llvmpipe.html

ACAT 2019 IOP Publishing
Journal of Physics: Conference Series 1525(2020) 012047 doi:10.1088/1742-6596/1525/1/012047

[10] Zapart C, Shirasaki Y, Ohishi M, Mizumoto Y, Kawasaki W, Kobayashi T, Kosugi G, Morita E, Yoshino A
and Eguchi S 2018 (Preprint 1812.05787)

[11] Lipunov V, Kornilov V, Gorbovskoy E, Shatskij N, Kuvshinov D, Tyurina N, Belinski A, Krylov A, Balanutsa
P, Chazov V, Kuznetsov A, Kortunov P, Sankovich A, Tlatov A, Parkhomenko A, Krushinsky V, Zalozhnyh
I, Popov A, Kopytova T, Ivanov K, Yazev S and Yurkov V 2010 Advances in Astronomy 2010 349171

1812.05787

