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General solutions are derived for least-squares fits of amplitude, phase shift and baseline shift of sinusoidal
modulations to normally distributed time series. Four cases are compared: weighted and unweighted fit, with
and without a baseline shift. Computer simulations have been performed of the statistical distribution of
the amplitude resulting from fits to white noise. A normalised amplitude is defined which follows exactly
a Rayleigh distribution, even for small, uneven-sampled data sets. Equations are provided for the width of the
distribution and the cumulative probability function. A simple criterion for the statistical significance of the

amplitude fitted to a time series is derived and compared for equivalence with the Lomb-Scargle criterion

based on a power function.

1. Introduction

There is a vast literature on the statistical probability of finding
cyclic modulations in noise-generated time series, involving various
mathematical techniques, such as Fourier analysis, maximum likeli-
hood and least-squares methods, or a Bayesian approach [1-20]. Fields
of application are quite diverse, including e.g. astrophysical observa-
tions [3,16,17], the distribution of wind speed [18], height of sea
waves [19], and sound reverberation in rooms [20]. Ref. [1] provides
additional references pertaining to applications in vibration monitor-
ing, speech analysis, meteorology, economics, radar and sonar technol-
ogy, seismology, medical diagnostics, etc. In radionuclide metrology,
the search for cyclic modulations is a topic in the debate on possible
violations of the exponential-decay law [21-30], which is the founda-
tion of the measurement system and nuclear dating [31-37]. At the
core of the problem is the need for rigorous and complete uncertainty
assessments [38-45] to estimate the magnitude of cyclic effects that
can be expected from random and systematic variations in activity
measurements repeated over a long period.

The Lomb-Scargle (L-S) periodogram [2-17] is a convenient tool
to investigate periodicity of unequally spaced data, as it stems from
Fourier analysis, but coincides with the solutions provided by other
approaches. Whereas the L-S periodogram was defined for the most
simple case of an unweighted fit of a sinusoidal modulation [5,7],
equations have been presented to take into account an additional
baseline parameter, symmetric and asymmetric weighting of the data,
and a moving time window [2,3,6,10,13,15]. The result is a power
spectrum over a frequency range, in which the height of local peaks
indicate the frequencies at which the modulations in the data set may
be statistically significant. The standard formula for the probability of
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obtaining a peak of power S or more from normally distributed random
fluctuations is P=e~5.

The periodogram is equivalent to a least-squares method applying
sine fit functions with amplitude A and phase shift ¢. Pommé and
De Hauwere [14] performed computer simulations of least-squares
fits of sinusoidal functions to normally distributed white noise. They
demonstrated that the fitted amplitudes can be normalised to a value
A’ which follows a Rayleigh probability distribution, even for small
data sets. The width of the distribution is proportional to a standard
deviation o4/, and the probability that the amplitude A’ exceeds k times
ouisP = ¢%*/2, In this work, the significance criterion — which reflects
the probability for finding an amplitude equal or larger than the fit
result — is compared to the criterion derived from the power of the L-S
periodogram.

2. Weighted LSQ fit (C#0)
2.1. Sinusoidal fit to time series

A time series y(t) of n data pairs is considered in which y; (i =
1,...,n) is random noise drawn from normal distributions N'(0, o-iz) and
t; is a time variable randomly selected over an interval which covers at
least one full period of a sine wave with angular frequency w =2z f. A
trial sinusoidal function is fitted to the data set

y(t) = Asin(wt + @)+ C 2.1)

— adjusting the free parameters of the amplitude A, the phase shift ¢,
and a baseline shift C — to minimise the square deviations between
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measurements and model, relative to the variances of the y data

& (vi— v\

7= Z <'_> 2.2)
i=1 i

Eq. (2.1) represents a case of linear regression of y as a function of x,

x = sin(wt + @) (2.3)

in which x follows an Arcsine distribution in the interval [a, b] =
[-1,1]. For a sufficiently large, random data set, the variance of x will
converge to its expectation value (b — a)?/8 = 1/2 [14]. Equations for
A, C and ¢ can be derived from the condition that the LSQ solution
corresponds to a minimum in y? (Eq. (2.2)). In the remainder of the
text, the summation signs pertain to the full data set, i.e. T= 3 _,.

2.2. Baseline shift C

The general solution for the baseline parameter C is readily obtained
from the condition that the derivative of 42 to C is zero, i.e. dy2/0C = 0

2072 (y;— Ax; —=C) =0 (2.4)
which immediately leads to
C=y,—Ax, 25

in which x,, = Zw;x; and y,, = Zw,y; are the weighted mean values of x
and y, respectively, using also for x; the weighting factor w; = 6’_—2 / 20;2
associated with the variance of y,.

2.3. Amplitude A

Equating the derivative of »2 to A to zero, dy2/dA =0,
Eai_z ((y,- — V) — Alx; — xw)) (x;—x,)=0 (2.6)

yields the general least-squares (LSQ) solution for the amplitude A of
the cyclic modulation

A= Zw;(y; = y)(x; = x,)

2.7
Sw;(x; — x,)? @7
The amplitude can also be expressed as
_ cov(x,y) _ Sxy (2.8)
var(x) 52
in which s, , is the sample covariance of x and y
et
Svy =7 Zw;(x; = X))V = Vi) (2.9)
Megf
and s? is the sample variance of x
Noce
st = %Zwi(x, —x,)° (2.10)
eff
where ng; = (214;[2)_1 is the ‘effective’ sample size for normalised

weights (Zw; = 1) [46]. It can be verified that E[si] = var(x), since
E [Zwi(x,- - xw)z] =E [Zwixiz] -E [xi]
= var(x) + E[x]* — Zw?var(x) — E[x,,]*

= (1 -2w?) var(x) (2.11)

2.4. Phase shift ¢

Finding the optimum value for the phase shift through dx2/dp =0
leads to
2672 (0 = yi) — Alx; = x,)) (x) = x!)) =0 (2.12)

in which x] = cos(wt; + @) is the derivate of x; to ¢ and x/, = Zw;x;
is its weighted mean. The solution is found by transforming the sine
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wave in Eq. (2.1) to a sum of orthogonal functions, using the sum rule
sin(a + b) = sin(a) cos(b) + sin(b) cos(a)

y&)=Ru+ITv+C (2.13)

in which R = Asin(p + 7), I = Acos(p + 7), u = cos(wt — 7) and
v = sin(wt — 7), and the LSQ solution for C is C = y,, — Ru,, — Iv,,.
The angular shift « is chosen such that Au = (u — u,,) and 4v = (v —v,,)
are orthogonal, i.e. Zw;4u;Av; = 0. This condition is fulfilled when the
variances of the Au; and Av; values reach an extremum, i.e. either a
maximum or minimum value. Four solutions for = can be found within
the range [0, 2x], each solution differing by a value of z/2 from the
next one. For example, using the derivative of the sum of Aviz values
with weighting factors w; and applying sum rules

0Zw; Av?
——— = 2Zw;Av;Ay;
Jat
=2 [Swvu; — vy,
= Zw; sin (Z(a)t,- - T)) —2Xw; sin (a)t,- - T) Zw; cos (a)tl- - T)
= cos (27) [s2 - 251c1] —sin (27) [cz + s% - cﬂ =0 (2.14)
one finds a solution for the angle =
-2
r= 1 tan! [32—251‘”2] (2.15)
2 Gty
in which
¢; = Zw;cos (wt;) ¢y = Zw; cos (201;) (2.16)
sy =Zw;sin (wt;) s, = Zw; sin (201;) ’
The Egs. (2.6) and (2.12) combine into an equivalent set
Sw, [Ay; — RAu; — I Av;] (RAu; + T 4v;) =0 217)
Sw, [Ay;, — RAu; — I Av;] (T Au; — RAv;) =0

which can be manipulated by summing both equations, after multiply-
ing the 1st and 2nd equation with (R and I) or (-I and R), respectively.
Due to the orthogonality, the set reduces to

Sw; (Ay;4u; — RAW?) = 0
¢ (Ayidu /) (2.18)
Sw; (Ay;dv; — T4v?) =0
thus defining R as
R Zwi (i = Y)Wy = ) _ Suy (2.19)
Sw;(u; — uy,)? 52
and I as
I= Zw;(y; = ¥,); — vy,) _ Svy (2.20)
Sw;(v; — v,)? 52
in which s,, ,, s, s2, s> and g are defined in a similar manner as was

done for s, , and 52 in Egs. (2.9)-(2.10).
The phase shift is calculated as the sum of two angles, ¢ = ¢ — 7,
with —z from Eq. (2.15) and ¢ from

2
Suy S
¢ =tan™! (5) =tan”! [ 222
1 sZ s,y
w So.

2.5. Variance of A

(2.21)

Ignoring systematic errors which would introduce correlations be-
tween uncertainties, the variance of the amplitude A obtained from an
inverse-variance weighted LSQ fit with fixed phase ¢ results in [47-49]

(see Section 5.1)
-2
2 o

o2 = (2.22)
4 Se?Exle? — (Sx;072)?

or, in terms of the variance of the weighted mean y,, and the sample
variance of x
2

2 Regr Ty
A= o 1 2 (2.23)
Meft S5
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in which

72, = (277)"

w

(2.24)
2.6. Normalised amplitude A’

The LSQ fit tends to find solutions for ¢ where the variance of x is
comparably small and A is large (see Section 7 for simulation results).
In particular for small data sets, the fitted amplitudes can take extreme
values, which may be misinterpreted as statistically significant. The
variance of the fitted amplitude is inversely proportional to the sample
variance of the x values (Eq. (2.23)). The normalised amplitude A’ is
made to correspond to a standard width of var(x)=1/2 [14]

Sx.y

s2/2

Al = Ay/252 = (2.25)

The variance of the normalised amplitude A’ is independent of the
spread of the x values and proportional to the variance of the weighted
mean y,

n,
o'i, = 952

2.26
Regp — 1 Yw ( )

Normalised versions of the amplitudes R and I obtained at an angular
phase shift —z can be defined as

I'=14/252

There is a simple relationship between A’ and its matching (R, I') pair
for which AAx = RAu + I Av, since

R'=R 252 and (2.27)

Sw, (AAx,)” = Sw,(RAu, + T4v,)? (2.28)
and due to the orthogonality of Au and 4v

A% (Zw;Ax?) = R (Zw; Au?) + 17 (Sw, Av?) (2.29)
which is equivalent to

A% =R?+17 (2.30)

The normalised amplitude A’ follows directly from the squared sum of
R and I'.

3. Weighted LSQ fit (C = 0)
3.1. Fit function

Unlike in Eq. (2.1), the fit function in Eq. (3.1) for a sinusoidal
modulation in a time series does not contain an offset parameter C

¥(t) = Asin(ot + @) 3.1

which has implications on the LSQ fit results for the remaining free
parameters, being the amplitude A and the phase shift . The same
result for A and ¢ as with Eq. (2.1) would be obtained if the x and y
data were pre-treated by subtracting x,, and y,,, respectively, however
x,, depends on the angle ¢. Only in case of a sufficiently large and
homogeneous set of x data, can one assume that x,, — 0 for any angle
@. Pre-treatment of the y data suffices to obtain the same amplitude,
but there is still a difference in the degrees of freedom affecting the
uncertainty and the power (see Section 6).

3.2. Amplitude A

In absence of an offset parameter C, the condition dy2/dA = 0 is
equivalent to

Zw; (yi - Axi) x;=0 3.2)

and a modified LSQ solution for the amplitude is obtained

A= Zw;y;x; (3.3)
Zw,-x%
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The amplitude can also be expressed as

’
_cov(x,y) _ Sxy

=2 -2 3.4
var(x) 572 3.4
in which s/  is the sample covariance of x and y
8%

s;’y =Zw;x;y; (3.5)
and 5;2 is the sample variance of x

2 _ a2
s; = w;x; (3.6)

Similarly to the definition in Eq. (2.25), the normalised amplitude is
then

S/
X,y

The variance of the amplitude can be expressed in terms of the variance
of the weighted mean y,, and the sample variance of x

A= Ay[252 = (3.7)

o2

2 Vw

O'A = ST (3.8)
X

whereas for the normalised amplitude

oy =20, (3.9)

3.3. Phase shift ¢

Similarly as in Section 2.4, the basic equation is transformed to a
sum of orthogonal functions

y(#)=Ru+ Iv (3.10)

in which R = Asin(p + ), I = Acos(p + 7), u = cos(wt — 7) and
v = sin(wt — 7). The angular shift 7 is chosen such that u and v are
orthogonal, i.e. Zw;u;v; = 0. This condition is fulfilled when the spread
of the u; and v; values reach an extremum

0Zw; Uf

Fra 2Zw;v;u;

= 2%w; sin (2(wt; — 7))

=08 (27) [5,] — sin (27) [e3] =0 (3.11)
which occurs at the angle ¢
r= 1! [s—z] (3.12)
2 [

with s, and ¢, as defined in Eq. (2.16).
Owing to the orthogonality of u and v, the set of equations dy2/dA =
0 and dy2/d¢ = 0 is equivalent to

Sw; (yu; — Rul.z) =0
(3.13)
{ Zw; (yiv,- - IU?) =0
thus defining R and I as
Zw,; y;t; S;y
== = 3.14
Zw;u; 52 @19
u
and
!/
I = 2w, y;v; _ Soy (3.15)

ZWIU% Y_iz
in which the sample variances are defined in a similar manner as
Egs. (3.5) and (3.6). The phase shift ¢ = ¢ — 7 is calculated from =
in Eq. (3.12) and from ¢ in

R s/ S/Z
¢ = tan™! (—) = tan™! ( 4y L) (3.16)
T $2 s
u v,y
The normalised versions of R and I are defined as
R =Ry/2s2 and  I'=14/2s? (3.17)
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Starting from Ax = Ru + Iv and the orthogonality of « and o, it is
straightforward to derive the relationship A’2 = R’> + I'?, as was done
in Section 2 for Eq. (2.30).

3.4. Sample variances
There is a simple relationship between the different definitions of

the sample variances used for C = free and C = 0, respectively. Since
Sw;(x; — x,,)y,, = 0, the covariance s, ,, as defined in Eq. (2.9), can be

X,y’
written as
Meff
Sey = —1 Zw;(x; —x,)y;
Aeff —
Meff ’

Repp — 1 Sxw T X“’y“’] (3.18)

and since Tw;(x; — x,,)x,, = 0, the sample variance s> from Eq. (2.10)

is equivalent to

2 Meff ” 2
gl D

(3.19)

Nepp = 1
For data sets with a large degree of freedom (nggp > 1) — ngpp /(np—1) —
1, x,, » 0 and y,, — 0 — both versions differ marginally.

4. Unweighted LSQ fit
4.1. Solutions for A, ¢ and C

In an unweighted fit, the y data carry the same standard uncer-
tainty, o; = o, and the weighting factors are identical to w;=1/n.
The mean values x,, and y, reduce to the arithmetic mean values x
and y, and the ‘effective’ number of data n.; is the sample size n.
Specific solutions under these conditions are easily derived from the
corresponding general formulas in Sections 2 and 3. For convenience,
the solutions for A, ¢ and C as well as other relevant variables have

been collected in the summary Table 1.
4.2. Normalised amplitude A’

The normalised amplitude A’ is defined in a similar manner as for
weighted fits

N
252A = —X_ C=free
, \/52/2
A= s 4.1)
25124 = —=2 c=0

The normalised amplitude A’ equals the squared sum of the normalised
amplitudes R’ and I’, as was also the case in Eq. (2.30).

When the phase shift is kept constant in the LSQ fit, e.g. at ¢ = 0,
the normalised amplitudes A’ are normally distributed around 0, and
their variance shows a simple relationship with the variance of the y
data (o; = 0,) [14]

6> C =free, ¢ = fixed
=1 "7 (4.2)
262 C =0, ¢ = fixed
ny
which are the unweighted versions of the general formulas in
Egs. (2.26) and (3.9).

5. Statistical distributions
5.1. Gaussian

The amplitude A is the result of a linear fit to normally distributed
data y; and its formula in Egs. (2.7) or (3.3) is essentially a linear

combination of the y values. Consequently, for a fixed angular phase
@, A is normally distributed as well, and its standard deviation ¢4 in
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Egs. (2.23) or (3.8) is inversely proportional to the standard deviation
of x (s, or s7).

The normalised amplitude A’ is proportional to A, therefore also
follows a normal distribution. Its width has been compensated for the
value of s, or s, such that it corresponds to a standard spread of the
x data. At a fixed angular phase shift ¢, A’ is always drawn from the
same normal distribution N'(0, ‘7,24/)'

The same reasoning applies to the amplitudes R and I (Egs. (2.19)-
(2.20) or (3.14)-(3.15)) and their normalised versions R’ and I’
(Eq. (2.27) or (3.17)), obtained at a ‘random’ angular phase shift .
Simulation results are shown in Section 7.

For a particular data set x and a fit with fixed phase (¢ = 0) such
that no systematic correlation is created between the x and y data, the
variance of A’ can be calculated from Egs. (2.9)-(2.10) and (2.25) for
C = free (Eq. (2.1)) and w; = 0;2/20;2

Yw;Ax;y;
ai,:VaI 1/25)2(’—'}]'
Zkaxi

52

_ 2 2
= Z—XZZZ (w;Ax7) (w;o7)
(ZwAx2)
e
_p Mt 2 51
Mot — 1% G.1
since w,;0? = (20;2)“ = 0'5 . A similar derivation for C = 0 (Eq. (3.1))

based on Egs. (3.5)-(3.7) leads to

SW. XV
o'i/ = 2Var M
Zwkxi
w;x} —2y-1 2
=23 Zo, ) =20, (5.2)
Ewkxi Y
5.2. Rayleigh

A full scan of the time series for cyclic modulations requires that the
phase shift ¢ is a free fit parameter. As a result, the fit tends to select ¢
values which yield a non-zero (normalised) amplitude, thus altering the
probability density function of A and A’. On the other hand, the angular
phase shift 7 is correlated with the x data, but can still be interpreted
as a ‘random’ choice with respect to the y data. Therefore, R’ and I’
are drawn independently from the same normal distribution N'(0, ‘7,24/)'
The absolute value of the normalised amplitude A’ is the square sum
of the normalised amplitudes R’ and I’

|[A"| = VR2+ 17 (5.3)

The resulting probability density function for |A’| is a Rayleigh distri-
bution Rayleigh(c 4r). It is equivalent to a Weibull (e, p) distribution with

a =2 and p = /20 4. The mean value of the probability distribution is
E(|A']) = o‘A,\/g ~ 12530, (5.4)
The mode is 64/, and the variance is

var(|4']) = (2= 7 ) o3, ~ 042963, (5.5)

5.3. Exponential

Given that k = |A’| /o is Rayleigh(1)-distributed, its squared value
k? follows a chi-squared distribution with N = 2 degrees of freedom,
k2 ~ 2%(2). Its cumulative distribution is FOx; N = 2) = 1 — e™*/2,
Consequently, the probability that |A’| exceeds a value ko 4 follows an
exponential distribution Zxp(1/2)

P(|A'| > koy) = e+/2 (5.6)

This significance test shows a simple relationship with the ratio of the
normalised height |A’| of the sinusoidal cycle relative to the standard
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Table 1
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Equations resulting from LSQ fitting of a cyclic modulation to normally-distributed white noise, either for weighted or unweighted fits, with or without a baseline shift C. Some
0 = ZWw,X;, X = Ix;/n, u; = cos(wt; — 1), v; = sin(wt; — ), s; = Zw, sin (jor;) and ¢; = Zw, cos (jor,) for j € {1,2}.

definitions of variables are repeated here: x; = sin(wt; + @), x,

Weighted fit

Unweighted fit

»t) = Asin(ot + @)+ C

¥(t) = Asin(wt + @)

¥(t) = Asin(wt + @) + C ¥(1) = Asin(ot + @)

Normalised weight w; 0% /2o;? 072 /20;? 1/n 1/n
Effective sample size g — 1 = (wa)_] -1 Nogp = (wa)_] n—1 n
Offset C C=y, - Ax, 0 C=7- A% 0
Amplitude A Zw; (y; — Yu)(x; — X)) Zw,; X Iy =P = %) Iy;x;
Zw,(x; = x,,)? Tw,x? (x; — X)? o2
. Sxy ‘Y;.y Sxy Zw
Amplitude A 2 ? ? ?
et 1 = = 1
Sample cov s, —— 2w (x; = %) = V) Zw;x,¥; — X0 =0 =) —Zx¥;
Regp — 1 n—1 n
Sample width 52 Ll i, (x; — x,)* T, s, 32 Lse
ngp — 1 n—1 n
, Sy 5, Sey Sy
Normalised A 2524 = — (2524 = —— (/2524 = —=2 2524 = —=2
\/$2/2 \/$2/2 \/$2/2 \/$2/2
n
Variance o2, 2 et 262 2621 262
A Y e — 1 Yu Yn—1 y
Variance o , O’% (26’72)7‘ (25:2)7‘ oy /n oy /n
) 2 - 2 2 2
Power S = L 42 267" ngy — 1 Sy Zo; : s,‘il In-1 Sy In Sﬁ;’
203, 2 Regp 52 2 R 2 o2 52 2 o2 572
% x y y x
=2 -2
Orthogonal angle = Liant | 22504 Lian [i] Ligper [ 22204 Lant [Sz
2 o +si-cl 2 2 2 ¢+ 87— 2
. Suy b x’«,y Suy ;U’
Amplitude R v ? ? 5
Suy s s
Amplitude I :’y % 12’ ['2’
5 5 5 5,

Phase =g+ 1

Normalised R’

52/2
Normalised I' (/2520 = —22 V2821 =
52/2
2
CIN 1 _pnge—1 Y Sy 1
Power S = 1 RZ+1% 1 _2' ey [7 2]
Wi 2 a7, 27V g s y‘z 20-}'M K

S/z S/Z
1 wy y
[267 ] 512 + 512
u f

uncertainty o,,. The inverse cumulative distribution or quantile func-
tion Q(p) can be used to determine k such that there is a probability
1 — p that a value |A’| > ko is generated from normally distributed
noise

k=Q)/oy =/=2In(l = p) (5.7)
If the power S is defined as

AN 1,
s=3(p) -3 &

then S is Zap(1)-distributed with expected value E[S]=1 and variance
Var[S]=1 and the significance test is simply P(power > S) = e~5. The
value of S which corresponds to a probability 1 — p that the generated
power is larger than S is calculated from

§=Q(p)=-In(1-p) (5.9)

6. Lomb-Scargle periodogram
6.1. Amplitudes R and I

The L-S solution [5,7] is equivalent to a least squares fit of a
function
y(t)=Ru+ Iv (6.1)

in which 7 is the angle at which u = cos(wt — 7) and v = sin(wt — 7) are
orthogonal. In the classical L-S periodogram, the baseline C is zero,

the standard deviation o; = o, is assumed to be constant (and known a
priori) for all data, and the weighting factors are identical to w; = 1/n.
Without additional difficulty, it can be upgraded to a weighted fit with
w; = 01‘2/20"2.

The least squares solutions for R and I are easily found under the
condition that the sum of cross terms Xuv is zero (Eq. (3.11)). For
example:

07> 0Zw,(y; — Ru; — Iv,)?
R OR
—=2Xw;(y; — Ru; — Iv))y;

=2 (Zw,yu; — REwu?) = 0 (6.2)

The resulting equations for R and I are the same as Egs. (3.14)-(3.15),
therefore R = Asin(p+71), [ = Acos(p+7) and 7 is defined in Eq. (3.12).
The quadratic sum of the amplitudes equals A> = R? + I%. The same
relationship holds for the normalised amplitudes, A”> = R> + I, as
already deduced in Sections 2 and 3.

6.2. Amplitude A and angle ¢

The Lomb-Scargle solution in Eq. (6.1) should match exactly with
the LSQ solution in Eq. (3.1) (for C = 0) for a single sinusoidal function,
i.e. Ax = Ru + Iv. This implies a simple relationship between the
amplitudes

|Al = VR + I2 6.3)
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and the angles

z/2 R=0,1>0

b=p+1= tan—'(§) R#0 (6.4)
—z/2  R=0,1<0

such that

|A| sin(wt + @) = V R + I2sgn(I) sin(wt + ¢ — 7) (6.5)

in which sgn(I) takes the value of +1 if I > 0 and —1 if I <0.

6.3. Power (C =0)
The ‘power’ associated with the L-S solution for an angular period
w is said [7] to equal half the gain in the sum of squares (C = 0)

S =3 (15— 12)

15 5]

o7 (2y,(Ax;) — (Ax)?)]

Il
I»— NI»—NI»— N = NI-—‘

r—1Ar—

S0 ?) [APZw;xY]

A2 7?2 ”n 2
[24%s7] _ %AT - % (6.6)
] 2

NS}
:—\
]
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[}

=

in which use was made of Eq. (3.2). The outcome of Eq. (6.6) —i.e. in
the case of C = 0 - is indeed identical to the definition of the power
given in Eq. (5.8). Based on Eq. (2.30), the power in Eq. (6.6) can be
expressed as

1 R? 4"
S(@) = 27 2
O
2 72
_ 1 5 Suuv su,y
= zo’yw |:st + STZ (6.7)
u v

In the unweighted case (w; = 1/n), one finds

L [(Zyi"i)2 N (Zyivi)z]

S(w) =
265 Zu? Zviz

(6.8)
This is equivalent to the definition given by Scargle [7], except for an
additional factor 0;2 which was missing because he normalised the
variance of the time series (0')2) = 1). The power criterion of the L-S
periodogram is equivalent to the significance test of the LSQ solution
in Eq. (5.6).

6.4. Power (C#0)

The trick with half the gain in the sum of squares does not work
as a means to determine the power when the baseline parameter C is
fitted freely. An adjustment needs to be made to the initial value of the
chi square, replacing y; values by 4y;, and a correction factor has to be
introduced for decreasing the degrees of freedom by one

1 Nt 2 2
S(w) = - —At —
(@) ) Hait 1 (}(1 Iw)

_L nar | (A0 > 5 (A= AL ?
2 ngpp — 1 o; o;
n

= 1 (z072) (4225, 452
2 Reft !
2A2s2 ” 2
B g 69
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6.5. Pre-treatment of data

It has been mentioned in Section 3, that the data set can be pre-
treated by replacing y; with 4y; = y;—y,, and then fed into the equations
for y(r) = Ax (Section 3) instead of y(r) = Ax — C (Section 2). The
analysis for C = 0 would yield the same amplitudes A as for C=free,
albeit it with different ¢ values. By applying a correction factor for
the change in degrees of freedom due to subtracting a mean value, the
correct power is obtained

Metf

— 8
(=A
neff 1 W X

Sym=ax+c = (6.10)

7. Simulations
7.1. Data sets x, y

Eighty thousand simulations were performed of LSQ fits of Egs. (2.1)
and (3.1) to white noise. The x data were generated from uniformly
distributed time t values over a full period. Three types of y data sets
were generated from normal distributions N (0, al.z)

\/4/3,\/8/3}
SSet2 o, ={1,1,1},n=3, ng =3, 04 = 2/3,1}

- Set 3: 0, = {17x1,21x2,12x3}, n = 50, nyr = 30.128, 64 =
{0.291,0.296}

-Setl:o; =(1,2,2}, n=3, ngey =2, oy

The oi, values are obtained from Eq. (3.9) for C = 0, and from
Eq. (2.26) for C = free, respectively.

7.2. Amplitude R', T, A’

The probability distributions of the fitted amplitudes R’, I’, and A’
are shown in Fig. 1. The normalised amplitudes R’ and I’ are not corre-
lated with the y values and follow the expected N(0, ai,) distribution.
The composite amplitude A’ is Rayleigh(c 4/ )-distributed, as expected in
Section 5.2. Owing to the introduction of the ‘effective’ sample size ng;,
the equations are also rigorously applicable to unequally weighted fits,
for which ng # n.

7.3. Erratum

In Ref. [14], simulations were performed of unweighted LSQ fits
of Egs. (2.1) and (3.1), and graphs were shown of the statistical
distributions of A’ for data sets with n = 3, 8 and 50. The Gaussian
(¢ = 0) and Rayleigh (¢ = free) distributions were perfectly reproduced
for C = free, yet somewhat distorted for C = 0. This was due to the way
the variance of x was calculated to convert A into A’, using the Excel
function stdev(x) which is equivalent to s, but deviates somewhat from
s; (see Eq. (3.19)).

7.4. Power S

Since A’ is Rayleigh(o 4r)-distributed, it is true that the power .S =
k%/2 in Eq. (5.8) is Exp(1)-distributed (see Section 5.3). This is con-
firmed in Fig. 2, showing a similar exponential distribution for all
simulations.
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Fig. 1. Frequency distribution of the normalised amplitudes k = A'/6,,, R'/c,, and
I' /o, obtained from weighted fits of a cyclic modulation — either through Eq. (3.1)
for C =0 or Eq. (2.1) for C = free — to sets of (n,ny) = {(3,2),(3,3),(50,30)} white
noise data (see Section 7.1). The red curves indicate the theoretical distributions.
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Fig. 2. Frequency distribution of the power S = k?/2 (Eq. (5.8)) obtained from
weighted fits of a cyclic modulation — either through Eq. (3.1) for C =0 or Eq. (2.1) for
C = free - to sets of (n,n.) = {(3,2),(3,3),(50,30)} white noise data (see Section 7.1).
The red curves indicate the theoretical distributions.

7.5. Angle ¢

Whereas the angles ¢ and r are uniformly distributed, their sum
¢ = @ + 7 is not. From Fig. 3 it is clear that ¢ (modulo r) takes values
close to 0 or +x/2, i.e. close to solutions for the angle r indicating
extreme values in the dispersion of u and v. Defining z,,,;, as the = value
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Fig. 3. Frequency distribution of the angles ¢ = ¢+ and ¢* = ¢ + 1,;, obtained from
weighted fits of a cyclic modulation - either through Eq. (3.1) for C =0 or Eq. (2.1) for
C = free - to sets of (n,n.) = {(3,2),(3,3),(50,30)} white noise data (see Section 7.1).
The red lines correspond to uniform distributions.

min = 7% /2 if 7 indicates max(s?) -
it turns out that ¢* = ¢+ 7,,;, (modulo ) is centred around 0. The LSQ
fit is attracted to solutions with low dispersion in x —i.e. ¢ —» —7;,
and s> — min(s2) — because this generally leads to larger values of
the normalised amplitude through Egs. (2.25) or (3.7), a high power
through Eq. (5.8) and ultimately a low x?2 through Egs. (6.6) or (6.9).
The smaller the data set, the more gain is made from ¢ approaching
—Tin- For the examples shown in Fig. 3, the effect is the largest for
n = 3 and C = free, both for ny; = 2 and 3, because the degree
of freedom is zero and y2 = 0. For ny; = 30, there is still a visible
attraction of ¢* towards 0.

corresponding with min(s2) - i.e. z

8. Conclusions

Analytical equations have been derived for the statistical signif-
icance of sinusoidal modulations fitted to normally distributed time
series. They are based on the ratio of the normalised amplitude A’
to its standard deviation parameter o, . The relevant equations are
summarised in Table 1. The significance criterion P = /2 in Eq. (5.6)
is universally valid for weighted and unweighted fits, either with or
without a free baseline shift parameter C. It is equivalent with the
power criterion of the Lomb-Scargle periodogram for C = 0. However,
when C is a free fit parameter, precautions are needed when deriving
the power from the change in the y? of the fit, or when power formulas
for C = 0 are used in combination with a pre-treated data set in which
a mean value is subtracted.
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