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A B S T R A C T

General solutions are derived for least-squares fits of amplitude, phase shift and baseline shift of sinusoidal
modulations to normally distributed time series. Four cases are compared: weighted and unweighted fit, with
and without a baseline shift. Computer simulations have been performed of the statistical distribution of
the amplitude resulting from fits to white noise. A normalised amplitude is defined which follows exactly
a Rayleigh distribution, even for small, uneven-sampled data sets. Equations are provided for the width of the
distribution and the cumulative probability function. A simple criterion for the statistical significance of the
amplitude fitted to a time series is derived and compared for equivalence with the Lomb–Scargle criterion
based on a power function.

1. Introduction

There is a vast literature on the statistical probability of finding
cyclic modulations in noise-generated time series, involving various
mathematical techniques, such as Fourier analysis, maximum likeli-
hood and least-squares methods, or a Bayesian approach [1–20]. Fields
of application are quite diverse, including e.g. astrophysical observa-
tions [3,16,17], the distribution of wind speed [18], height of sea
waves [19], and sound reverberation in rooms [20]. Ref. [1] provides
additional references pertaining to applications in vibration monitor-
ing, speech analysis, meteorology, economics, radar and sonar technol-
ogy, seismology, medical diagnostics, etc. In radionuclide metrology,
the search for cyclic modulations is a topic in the debate on possible
violations of the exponential-decay law [21–30], which is the founda-
tion of the measurement system and nuclear dating [31–37]. At the
core of the problem is the need for rigorous and complete uncertainty
assessments [38–45] to estimate the magnitude of cyclic effects that
can be expected from random and systematic variations in activity
measurements repeated over a long period.

The Lomb–Scargle (L–S) periodogram [2–17] is a convenient tool
to investigate periodicity of unequally spaced data, as it stems from
Fourier analysis, but coincides with the solutions provided by other
approaches. Whereas the L–S periodogram was defined for the most
simple case of an unweighted fit of a sinusoidal modulation [5,7],
equations have been presented to take into account an additional
baseline parameter, symmetric and asymmetric weighting of the data,
and a moving time window [2,3,6,10,13,15]. The result is a power
spectrum over a frequency range, in which the height of local peaks
indicate the frequencies at which the modulations in the data set may
be statistically significant. The standard formula for the probability of
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obtaining a peak of power S or more from normally distributed random
fluctuations is P=e−𝑆 .

The periodogram is equivalent to a least-squares method applying
sine fit functions with amplitude A and phase shift 𝜑. Pommé and
De Hauwere [14] performed computer simulations of least-squares
fits of sinusoidal functions to normally distributed white noise. They
demonstrated that the fitted amplitudes can be normalised to a value
𝐴′ which follows a Rayleigh probability distribution, even for small
data sets. The width of the distribution is proportional to a standard
deviation 𝜎𝐴′ , and the probability that the amplitude 𝐴′ exceeds k times
𝜎𝐴′ is 𝑃 = 𝑒−𝑘2∕2. In this work, the significance criterion – which reflects
the probability for finding an amplitude equal or larger than the fit
result – is compared to the criterion derived from the power of the L–S
periodogram.

2. Weighted LSQ fit (𝑪≠𝟎)

2.1. Sinusoidal fit to time series

A time series y(t) of n data pairs is considered in which 𝑦𝑖 (𝑖 =
1,… , 𝑛) is random noise drawn from normal distributions  (0, 𝜎2𝑖 ) and
𝑡𝑖 is a time variable randomly selected over an interval which covers at
least one full period of a sine wave with angular frequency 𝜔 = 2𝜋𝑓 . A
trial sinusoidal function is fitted to the data set

𝑦(𝑡) = 𝐴 sin(𝜔𝑡 + 𝜑) + 𝐶 (2.1)

– adjusting the free parameters of the amplitude A, the phase shift 𝜑,
and a baseline shift C – to minimise the square deviations between
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measurements and model, relative to the variances of the y data

𝜒2 =
𝑛
∑

𝑖=1

(

𝑦𝑖 − 𝑦(𝑡)
𝜎𝑖

)2
(2.2)

Eq. (2.1) represents a case of linear regression of y as a function of x,

𝑥 = sin(𝜔𝑡 + 𝜑) (2.3)

in which x follows an Arcsine distribution in the interval [a, b] =
[−1, 1]. For a sufficiently large, random data set, the variance of x will
converge to its expectation value (𝑏 − 𝑎)2∕8 = 1∕2 [14]. Equations for
A, C and 𝜑 can be derived from the condition that the LSQ solution
corresponds to a minimum in 𝜒2 (Eq. (2.2)). In the remainder of the
text, the summation signs pertain to the full data set, i.e. Σ ≡

∑𝑛
𝑖=1.

2.2. Baseline shift C

The general solution for the baseline parameter C is readily obtained
from the condition that the derivative of 𝜒2 to C is zero, i.e. 𝜕𝜒2∕𝜕𝐶 = 0

Σ𝜎−2𝑖
(

𝑦𝑖 − 𝐴𝑥𝑖 − 𝐶
)

= 0 (2.4)

which immediately leads to

𝐶 = 𝑦𝑤 − 𝐴𝑥𝑤 (2.5)

in which 𝑥𝑤 = Σ𝑤𝑖𝑥𝑖 and 𝑦𝑤 = Σ𝑤𝑖𝑦𝑖 are the weighted mean values of x
and y, respectively, using also for 𝑥𝑖 the weighting factor 𝑤𝑖 = 𝜎−2𝑖 ∕Σ𝜎−2𝑘
associated with the variance of 𝑦𝑖.

2.3. Amplitude A

Equating the derivative of 𝜒2 to A to zero, 𝜕𝜒2∕𝜕𝐴 = 0,

Σ𝜎−2𝑖
(

(𝑦𝑖 − 𝑦𝑤) − 𝐴(𝑥𝑖 − 𝑥𝑤)
)

(𝑥𝑖 − 𝑥𝑤) = 0 (2.6)

yields the general least-squares (LSQ) solution for the amplitude A of
the cyclic modulation

𝐴 =
Σ𝑤𝑖(𝑦𝑖 − 𝑦𝑤)(𝑥𝑖 − 𝑥𝑤)

Σ𝑤𝑖(𝑥𝑖 − 𝑥𝑤)2
(2.7)

The amplitude can also be expressed as

𝐴 =
cov(𝑥, 𝑦)
var(𝑥)

=
𝑠𝑥,𝑦
𝑠2𝑥

(2.8)

in which 𝑠𝑥,𝑦 is the sample covariance of x and y

𝑠𝑥,𝑦 =
𝑛eff

𝑛eff − 1
Σ𝑤𝑖(𝑥𝑖 − 𝑥𝑤)(𝑦𝑖 − 𝑦𝑤) (2.9)

and 𝑠2𝑥 is the sample variance of x

𝑠2𝑥 =
𝑛eff

𝑛eff − 1
Σ𝑤𝑖(𝑥𝑖 − 𝑥𝑤)2 (2.10)

where 𝑛eff =
(

Σ𝑤2
𝑖
)−1 is the ‘effective’ sample size for normalised

weights (Σ𝑤𝑖 = 1) [46]. It can be verified that E[𝑠2𝑥] = var(𝑥), since

E
[

Σ𝑤𝑖(𝑥𝑖 − 𝑥𝑤)2
]

= E
[

Σ𝑤𝑖𝑥
2
𝑖
]

− E
[

𝑥2𝑤
]

= var(𝑥) + E[𝑥]2 − Σ𝑤2
𝑖 var(𝑥) − E[𝑥𝑤]2

=
(

1 − Σ𝑤2
𝑖
)

var(𝑥) (2.11)

2.4. Phase shift 𝜑

Finding the optimum value for the phase shift through 𝜕𝜒2∕𝜕𝜑 = 0
leads to

Σ𝜎−2𝑖
(

(𝑦𝑖 − 𝑦𝑤) − 𝐴(𝑥𝑖 − 𝑥𝑤)
)

(𝑥′𝑖 − 𝑥′𝑤) = 0 (2.12)

in which 𝑥′𝑖 = cos(𝜔𝑡𝑖 + 𝜑) is the derivate of 𝑥𝑖 to 𝜑 and 𝑥′𝑤 = Σ𝑤𝑖𝑥𝑖
is its weighted mean. The solution is found by transforming the sine

wave in Eq. (2.1) to a sum of orthogonal functions, using the sum rule
sin(𝑎 ± 𝑏) = sin(𝑎) cos(𝑏) ± sin(𝑏) cos(𝑎)

𝑦(𝑡) = 𝑅𝑢 + 𝐼𝑣 + 𝐶 (2.13)

in which 𝑅 = 𝐴 sin(𝜑 + 𝜏), 𝐼 = 𝐴 cos(𝜑 + 𝜏), 𝑢 = cos(𝜔𝑡 − 𝜏) and
𝑣 = sin(𝜔𝑡 − 𝜏), and the LSQ solution for C is 𝐶 = 𝑦𝑤 − 𝑅𝑢𝑤 − 𝐼𝑣𝑤.
The angular shift 𝜏 is chosen such that 𝛥𝑢 = (𝑢 − 𝑢𝑤) and 𝛥𝑣 = (𝑣 − 𝑣𝑤)
are orthogonal, i.e. Σ𝑤𝑖𝛥𝑢𝑖𝛥𝑣𝑖 = 0. This condition is fulfilled when the
variances of the 𝛥𝑢𝑖 and 𝛥𝑣𝑖 values reach an extremum, i.e. either a
maximum or minimum value. Four solutions for 𝜏 can be found within
the range [0, 2𝜋], each solution differing by a value of 𝜋/2 from the
next one. For example, using the derivative of the sum of 𝛥𝑣2𝑖 values
with weighting factors 𝑤𝑖 and applying sum rules

𝜕Σ𝑤𝑖𝛥𝑣2𝑖
𝜕𝜏

= 2Σ𝑤𝑖𝛥𝑣𝑖𝛥𝑢𝑖

= 2
[

Σ𝑤𝑖𝑣𝑖𝑢𝑖 − 𝑣𝑤𝑢𝑤
]

= Σ𝑤𝑖 sin
(

2(𝜔𝑡𝑖 − 𝜏)
)

− 2Σ𝑤𝑖 sin
(

𝜔𝑡𝑖 − 𝜏
)

Σ𝑤𝑖 cos
(

𝜔𝑡𝑖 − 𝜏
)

= cos (2𝜏)
[

𝑠2 − 2𝑠1𝑐1
]

− sin (2𝜏)
[

𝑐2 + 𝑠21 − 𝑐21
]

= 0 (2.14)

one finds a solution for the angle 𝜏

𝜏 = 1
2
tan−1

[

𝑠2 − 2𝑠1𝑐1
𝑐2 + 𝑠21 − 𝑐21

]

(2.15)

in which
{

𝑐1 = Σ𝑤𝑖 cos
(

𝜔𝑡𝑖
)

𝑐2 = Σ𝑤𝑖 cos
(

2𝜔𝑡𝑖
)

𝑠1 = Σ𝑤𝑖 sin
(

𝜔𝑡𝑖
)

𝑠2 = Σ𝑤𝑖 sin
(

2𝜔𝑡𝑖
) (2.16)

The Eqs. (2.6) and (2.12) combine into an equivalent set
{

Σ𝑤𝑖
[

𝛥𝑦𝑖 − 𝑅𝛥𝑢𝑖 − 𝐼𝛥𝑣𝑖
] (

𝑅𝛥𝑢𝑖 + 𝐼𝛥𝑣𝑖
)

= 0

Σ𝑤𝑖
[

𝛥𝑦𝑖 − 𝑅𝛥𝑢𝑖 − 𝐼𝛥𝑣𝑖
] (

𝐼𝛥𝑢𝑖 − 𝑅𝛥𝑣𝑖
)

= 0
(2.17)

which can be manipulated by summing both equations, after multiply-
ing the 1st and 2nd equation with (R and I) or (–I and R), respectively.
Due to the orthogonality, the set reduces to
{

Σ𝑤𝑖
(

𝛥𝑦𝑖𝛥𝑢𝑖 − 𝑅𝛥𝑢2𝑖
)

= 0

Σ𝑤𝑖
(

𝛥𝑦𝑖𝛥𝑣𝑖 − 𝐼𝛥𝑣2𝑖
)

= 0
(2.18)

thus defining R as

𝑅 =
Σ𝑤𝑖(𝑦𝑖 − 𝑦𝑤)(𝑢𝑖 − 𝑢𝑤)

Σ𝑤𝑖(𝑢𝑖 − 𝑢𝑤)2
=

𝑠𝑢,𝑦
𝑠2𝑢

(2.19)

and I as

𝐼 =
Σ𝑤𝑖(𝑦𝑖 − 𝑦𝑤)(𝑣𝑖 − 𝑣𝑤)

Σ𝑤𝑖(𝑣𝑖 − 𝑣𝑤)2
=

𝑠𝑣,𝑦
𝑠2𝑣

(2.20)

in which 𝑠𝑢,𝑦, 𝑠𝑣,𝑦, 𝑠2𝑢, 𝑠2𝑣 and 𝑛eff are defined in a similar manner as was
done for 𝑠𝑥,𝑦 and 𝑠2𝑥 in Eqs. (2.9)–(2.10).

The phase shift is calculated as the sum of two angles, 𝜑 = 𝜙 − 𝜏,
with −𝜏 from Eq. (2.15) and 𝜙 from

𝜙 = tan−1
(𝑅
𝐼

)

= tan−1
(

𝑠𝑢,𝑦
𝑠2𝑢

𝑠2𝑣
𝑠𝑣,𝑦

)

(2.21)

2.5. Variance of A

Ignoring systematic errors which would introduce correlations be-
tween uncertainties, the variance of the amplitude A obtained from an
inverse-variance weighted LSQ fit with fixed phase 𝜑 results in [47–49]
(see Section 5.1)

𝜎2𝐴 =
Σ𝜎−2𝑖

Σ𝜎−2𝑖 Σ𝑥2𝑖 𝜎
−2
𝑖 − (Σ𝑥𝑖𝜎−2𝑖 )2

(2.22)

or, in terms of the variance of the weighted mean 𝑦𝑤 and the sample
variance of x

𝜎2𝐴 =
𝑛eff

𝑛eff − 1

𝜎2𝑦𝑤
𝑠2𝑥

(2.23)

2
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in which

𝜎2𝑦𝑤 =
(

Σ𝜎−2𝑖
)−1 (2.24)

2.6. Normalised amplitude 𝐴′

The LSQ fit tends to find solutions for 𝜑 where the variance of x is
comparably small and A is large (see Section 7 for simulation results).
In particular for small data sets, the fitted amplitudes can take extreme
values, which may be misinterpreted as statistically significant. The
variance of the fitted amplitude is inversely proportional to the sample
variance of the x values (Eq. (2.23)). The normalised amplitude 𝐴′ is
made to correspond to a standard width of var(x)=1/2 [14]

𝐴′ = 𝐴
√

2𝑠2𝑥 =
𝑠𝑥,𝑦

√

𝑠2𝑥∕2
(2.25)

The variance of the normalised amplitude 𝐴′ is independent of the
spread of the x values and proportional to the variance of the weighted
mean 𝑦𝑤

𝜎2𝐴′ =
𝑛eff

𝑛eff − 1
2𝜎2𝑦𝑤 (2.26)

Normalised versions of the amplitudes R and I obtained at an angular
phase shift −𝜏 can be defined as

𝑅′ = 𝑅
√

2𝑠2𝑢 and 𝐼 ′ = 𝐼
√

2𝑠2𝑣 (2.27)

There is a simple relationship between 𝐴′ and its matching (𝑅′, 𝐼 ′) pair
for which 𝐴𝛥𝑥 = 𝑅𝛥𝑢 + 𝐼𝛥𝑣, since

Σ𝑤𝑖
(

𝐴𝛥𝑥𝑖
)2 = Σ𝑤𝑖(𝑅𝛥𝑢𝑖 + 𝐼𝛥𝑣𝑖)2 (2.28)

and due to the orthogonality of 𝛥𝑢 and 𝛥𝑣

𝐴2 (Σ𝑤𝑖𝛥𝑥
2
𝑖
)

= 𝑅2 (Σ𝑤𝑖𝛥𝑢
2
𝑖
)

+ 𝐼2
(

Σ𝑤𝑖𝛥𝑣
2
𝑖
)

(2.29)

which is equivalent to

𝐴′2 = 𝑅′2 + 𝐼 ′2 (2.30)

The normalised amplitude 𝐴′ follows directly from the squared sum of
𝑅′ and 𝐼 ′.

3. Weighted LSQ fit (𝑪 = 𝟎)

3.1. Fit function

Unlike in Eq. (2.1), the fit function in Eq. (3.1) for a sinusoidal
modulation in a time series does not contain an offset parameter C

𝑦(𝑡) = 𝐴 sin(𝜔𝑡 + 𝜑) (3.1)

which has implications on the LSQ fit results for the remaining free
parameters, being the amplitude A and the phase shift 𝜑. The same
result for A and 𝜑 as with Eq. (2.1) would be obtained if the x and y
data were pre-treated by subtracting 𝑥𝑤 and 𝑦𝑤, respectively, however
𝑥𝑤 depends on the angle 𝜑. Only in case of a sufficiently large and
homogeneous set of x data, can one assume that 𝑥𝑤 → 0 for any angle
𝜑. Pre-treatment of the y data suffices to obtain the same amplitude,
but there is still a difference in the degrees of freedom affecting the
uncertainty and the power (see Section 6).

3.2. Amplitude A

In absence of an offset parameter C, the condition 𝜕𝜒2∕𝜕𝐴 = 0 is
equivalent to

Σ𝑤𝑖
(

𝑦𝑖 − 𝐴𝑥𝑖
)

𝑥𝑖 = 0 (3.2)

and a modified LSQ solution for the amplitude is obtained

𝐴 =
Σ𝑤𝑖𝑦𝑖𝑥𝑖
Σ𝑤𝑖𝑥2𝑖

(3.3)

The amplitude can also be expressed as

𝐴 =
cov(𝑥, 𝑦)
var(𝑥)

=
𝑠′𝑥,𝑦
𝑠′2𝑥

(3.4)

in which 𝑠′𝑥,𝑦 is the sample covariance of x and y

𝑠′𝑥,𝑦 = Σ𝑤𝑖𝑥𝑖𝑦𝑖 (3.5)

and 𝑠′2𝑥 is the sample variance of x

𝑠′2𝑥 = 𝑤𝑖𝑥
2
𝑖 (3.6)

Similarly to the definition in Eq. (2.25), the normalised amplitude is
then

𝐴′ = 𝐴
√

2𝑠′2𝑥 =
𝑠′𝑥,𝑦

√

𝑠′2𝑥 ∕2
(3.7)

The variance of the amplitude can be expressed in terms of the variance
of the weighted mean 𝑦𝑤 and the sample variance of x

𝜎2𝐴 =
𝜎2𝑦𝑤
𝑠′2𝑥

(3.8)

whereas for the normalised amplitude

𝜎2𝐴′ = 2𝜎2𝑦𝑤 (3.9)

3.3. Phase shift 𝜑

Similarly as in Section 2.4, the basic equation is transformed to a
sum of orthogonal functions

𝑦(𝑡) = 𝑅𝑢 + 𝐼𝑣 (3.10)

in which 𝑅 = 𝐴 sin(𝜑 + 𝜏), 𝐼 = 𝐴 cos(𝜑 + 𝜏), 𝑢 = cos(𝜔𝑡 − 𝜏) and
𝑣 = sin(𝜔𝑡 − 𝜏). The angular shift 𝜏 is chosen such that u and v are
orthogonal, i.e. Σ𝑤𝑖𝑢𝑖𝑣𝑖 = 0. This condition is fulfilled when the spread
of the 𝑢𝑖 and 𝑣𝑖 values reach an extremum

𝜕Σ𝑤𝑖𝑣2𝑖
𝜕𝜏

= 2Σ𝑤𝑖𝑣𝑖𝑢𝑖

= 2Σ𝑤𝑖 sin
(

2(𝜔𝑡𝑖 − 𝜏)
)

= cos (2𝜏)
[

𝑠2
]

− sin (2𝜏)
[

𝑐2
]

= 0 (3.11)

which occurs at the angle 𝜏

𝜏 = 1
2
tan−1

[

𝑠2
𝑐2

]

(3.12)

with 𝑠2 and 𝑐2 as defined in Eq. (2.16).
Owing to the orthogonality of u and v, the set of equations 𝜕𝜒2∕𝜕𝐴 =

0 and 𝜕𝜒2∕𝜕𝜑 = 0 is equivalent to
{

Σ𝑤𝑖
(

𝑦𝑖𝑢𝑖 − 𝑅𝑢2𝑖
)

= 0
Σ𝑤𝑖

(

𝑦𝑖𝑣𝑖 − 𝐼𝑣2𝑖
)

= 0
(3.13)

thus defining R and I as

𝑅 =
Σ𝑤𝑖𝑦𝑖𝑢𝑖
Σ𝑤𝑖𝑢𝑖

=
𝑠′𝑢,𝑦
𝑠′2𝑢

(3.14)

and

𝐼 =
Σ𝑤𝑖𝑦𝑖𝑣𝑖
Σ𝑤𝑖𝑣2𝑖

=
𝑠′𝑣,𝑦
𝑠′2𝑣

(3.15)

in which the sample variances are defined in a similar manner as
Eqs. (3.5) and (3.6). The phase shift 𝜑 = 𝜙 − 𝜏 is calculated from 𝜏
in Eq. (3.12) and from 𝜙 in

𝜙 = tan−1
(𝑅
𝐼

)

= tan−1
(

𝑠′𝑢,𝑦
𝑠′2𝑢

𝑠′2𝑣
𝑠′𝑣,𝑦

)

(3.16)

The normalised versions of R and I are defined as

𝑅′ = 𝑅
√

2𝑠′2𝑢 and 𝐼 ′ = 𝐼
√

2𝑠′2𝑣 (3.17)

3



S. Pommé Nuclear Inst. and Methods in Physics Research, A 968 (2020) 163933

Starting from 𝐴𝑥 = 𝑅𝑢 + 𝐼𝑣 and the orthogonality of 𝑢 and 𝑣, it is
straightforward to derive the relationship 𝐴′2 = 𝑅′2 + 𝐼 ′2, as was done
in Section 2 for Eq. (2.30).

3.4. Sample variances

There is a simple relationship between the different definitions of
the sample variances used for C = free and 𝐶 = 0, respectively. Since
Σ𝑤𝑖(𝑥𝑖 − 𝑥𝑤)𝑦𝑤 = 0, the covariance 𝑠𝑥,𝑦, as defined in Eq. (2.9), can be
written as

𝑠𝑥,𝑦 =
𝑛eff

𝑛eff − 1
Σ𝑤𝑖(𝑥𝑖 − 𝑥𝑤)𝑦𝑖

=
𝑛eff

𝑛eff − 1

[

𝑠′𝑥,𝑦 − 𝑥𝑤𝑦𝑤
]

(3.18)

and since Σ𝑤𝑖(𝑥𝑖 − 𝑥𝑤)𝑥𝑤 = 0, the sample variance 𝑠2𝑥 from Eq. (2.10)
is equivalent to

𝑠2𝑥 =
𝑛eff

𝑛eff − 1
[

𝑠′2𝑥 − 𝑥2𝑤
]

(3.19)

For data sets with a large degree of freedom (𝑛eff ≫ 1) – 𝑛eff∕(𝑛eff−1) →
1, 𝑥𝑤 → 0 and 𝑦𝑤 → 0 – both versions differ marginally.

4. Unweighted LSQ fit

4.1. Solutions for A , 𝜑 and C

In an unweighted fit, the y data carry the same standard uncer-
tainty, 𝜎𝑖 = 𝜎𝑦, and the weighting factors are identical to 𝑤𝑖=1/n.
The mean values 𝑥𝑤 and 𝑦𝑤 reduce to the arithmetic mean values 𝑥
and 𝑦, and the ‘effective’ number of data 𝑛eff is the sample size n.
Specific solutions under these conditions are easily derived from the
corresponding general formulas in Sections 2 and 3. For convenience,
the solutions for A, 𝜑 and C as well as other relevant variables have
been collected in the summary Table 1.

4.2. Normalised amplitude 𝐴′

The normalised amplitude 𝐴′ is defined in a similar manner as for
weighted fits

𝐴′ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

√

2𝑠2𝑥𝐴 =
𝑠𝑥,𝑦

√

𝑠2𝑥∕2
𝐶 = free

√

2𝑠′2𝑥 𝐴 =
𝑠′𝑥,𝑦

√

𝑠′2𝑥 ∕2
𝐶 = 0

(4.1)

The normalised amplitude 𝐴′ equals the squared sum of the normalised
amplitudes 𝑅′ and 𝐼 ′, as was also the case in Eq. (2.30).

When the phase shift is kept constant in the LSQ fit, e.g. at 𝜑 = 0,
the normalised amplitudes 𝐴′ are normally distributed around 0, and
their variance shows a simple relationship with the variance of the y
data (𝜎𝑖 = 𝜎𝑦) [14]

𝜎2𝐴′ =

⎧

⎪

⎨

⎪

⎩

2
𝑛 − 1

𝜎2𝑦 𝐶 = free, 𝜑 = fixed

2
𝑛
𝜎2𝑦 𝐶 = 0, 𝜑 = fixed

(4.2)

which are the unweighted versions of the general formulas in
Eqs. (2.26) and (3.9).

5. Statistical distributions

5.1. Gaussian

The amplitude A is the result of a linear fit to normally distributed
data 𝑦𝑖 and its formula in Eqs. (2.7) or (3.3) is essentially a linear
combination of the y values. Consequently, for a fixed angular phase
𝜑, A is normally distributed as well, and its standard deviation 𝜎𝐴 in

Eqs. (2.23) or (3.8) is inversely proportional to the standard deviation
of x (𝑠𝑥 or 𝑠′𝑥).

The normalised amplitude 𝐴′ is proportional to A, therefore also
follows a normal distribution. Its width has been compensated for the
value of 𝑠𝑥 or 𝑠′𝑥, such that it corresponds to a standard spread of the
x data. At a fixed angular phase shift 𝜑, 𝐴′ is always drawn from the
same normal distribution  (0, 𝜎2𝐴′ ).

The same reasoning applies to the amplitudes R and I (Eqs. (2.19)–
(2.20) or (3.14)–(3.15)) and their normalised versions 𝑅′ and 𝐼 ′

(Eq. (2.27) or (3.17)), obtained at a ‘random’ angular phase shift 𝜏.
Simulation results are shown in Section 7.

For a particular data set x and a fit with fixed phase (𝜑 = 0) such
that no systematic correlation is created between the x and y data, the
variance of 𝐴′ can be calculated from Eqs. (2.9)–(2.10) and (2.25) for
C = free (Eq. (2.1)) and 𝑤𝑖 = 𝜎−2𝑖 ∕Σ𝜎−2𝑘

𝜎2𝐴′ = Var

(

√

2𝑠2𝑥
Σ𝑤𝑖𝛥𝑥𝑖𝑦𝑖
Σ𝑤𝑘𝛥𝑥2𝑘

)

= 2
𝑠2𝑥

(

Σ𝑤𝑘𝛥𝑥2𝑘
)2

Σ
(

𝑤𝑖𝛥𝑥
2
𝑖
) (

𝑤𝑖𝜎
2
𝑖
)

= 2
𝑛eff

𝑛eff − 1
𝜎2𝑦𝑤 (5.1)

since 𝑤𝑖𝜎2𝑖 = (Σ𝜎−2𝑘 )−1 = 𝜎2𝑦𝑤 . A similar derivation for 𝐶 = 0 (Eq. (3.1))
based on Eqs. (3.5)–(3.7) leads to

𝜎2𝐴′ = 2Var

⎛

⎜

⎜

⎜

⎝

Σ𝑤𝑖𝑥𝑖𝑦𝑖
√

Σ𝑤𝑘𝑥2𝑘

⎞

⎟

⎟

⎟

⎠

= 2Σ

(

𝑤𝑖𝑥2𝑖
Σ𝑤𝑘𝑥2𝑘

)

(Σ𝜎−2𝑘 )−1 = 2𝜎2𝑦𝑤 (5.2)

5.2. Rayleigh

A full scan of the time series for cyclic modulations requires that the
phase shift 𝜑 is a free fit parameter. As a result, the fit tends to select 𝜑
values which yield a non-zero (normalised) amplitude, thus altering the
probability density function of A and 𝐴′. On the other hand, the angular
phase shift 𝜏 is correlated with the x data, but can still be interpreted
as a ‘random’ choice with respect to the y data. Therefore, 𝑅′ and 𝐼 ′

are drawn independently from the same normal distribution  (0, 𝜎2𝐴′ ).
The absolute value of the normalised amplitude 𝐴′ is the square sum
of the normalised amplitudes 𝑅′ and 𝐼 ′

|

|

𝐴′
|

|

=
√

𝑅′2 + 𝐼 ′2 (5.3)

The resulting probability density function for |

|

𝐴′
|

|

is a Rayleigh distri-
bution Rayleigh(𝜎𝐴′ ). It is equivalent to a Weibull (𝛼, 𝛽) distribution with
𝛼 = 2 and 𝛽 =

√

2𝜎𝐴′ . The mean value of the probability distribution is

E(|
|

𝐴′
|

|

) = 𝜎𝐴′

√

𝜋
2
≈ 1.253𝜎𝐴′ (5.4)

The mode is 𝜎𝐴′ , and the variance is

var(|
|

𝐴′
|

|

) =
(

2 − 𝜋
2

)

𝜎2𝐴′ ≈ 0.429𝜎2𝐴′ (5.5)

5.3. Exponential

Given that 𝑘 = |

|

𝐴′
|

|

∕𝜎𝐴′ is Rayleigh(1)-distributed, its squared value
𝑘2 follows a chi-squared distribution with 𝑁 = 2 degrees of freedom,
𝑘2 ∼ 𝜒2(2). Its cumulative distribution is 𝐹 (𝑥;𝑁 = 2) = 1 − 𝑒−𝑥∕2.
Consequently, the probability that |

|

𝐴′
|

|

exceeds a value 𝑘𝜎𝐴′ follows an
exponential distribution Exp(1∕2)

P(|
|

𝐴′
|

|

> 𝑘𝜎𝐴′ ) = e−𝑘
2∕2 (5.6)

This significance test shows a simple relationship with the ratio of the
normalised height |

|

𝐴′
|

|

of the sinusoidal cycle relative to the standard

4
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Table 1
Equations resulting from LSQ fitting of a cyclic modulation to normally-distributed white noise, either for weighted or unweighted fits, with or without a baseline shift C. Some
definitions of variables are repeated here: 𝑥𝑖 = sin(𝜔𝑡𝑖 + 𝜑), 𝑥𝑤 = Σ𝑤𝑖𝑥𝑖, 𝑥 = Σ𝑥𝑖∕𝑛, 𝑢𝑖 = cos(𝜔𝑡𝑖 − 𝜏), 𝑣𝑖 = sin(𝜔𝑡𝑖 − 𝜏), 𝑠𝑗 = Σ𝑤𝑖 sin

(

𝑗𝜔𝑡𝑖
)

and 𝑐𝑗 = Σ𝑤𝑖 cos
(

𝑗𝜔𝑡𝑖
)

for 𝑗 ∈ {1, 2}.

Weighted fit Unweighted fit

𝑦(𝑡) = 𝐴 sin(𝜔𝑡 + 𝜑) + 𝐶 𝑦(𝑡) = 𝐴 sin(𝜔𝑡 + 𝜑) 𝑦(𝑡) = 𝐴 sin(𝜔𝑡 + 𝜑) + 𝐶 𝑦(𝑡) = 𝐴 sin(𝜔𝑡 + 𝜑)

Normalised weight 𝑤𝑖 𝜎−2
𝑖 ∕Σ𝜎−2

𝑘 𝜎−2
𝑖 ∕Σ𝜎−2

𝑘 1/n 1/n

Effective sample size 𝑛eff − 1 =
(

Σ𝑤2
𝑖

)−1 − 1 𝑛eff =
(

Σ𝑤2
𝑖

)−1 𝑛 − 1 𝑛

Offset C 𝐶 = 𝑦𝑤 − 𝐴𝑥𝑤 0 𝐶 = 𝑦 − 𝐴𝑥 0

Amplitude A
Σ𝑤𝑖(𝑦𝑖 − 𝑦𝑤)(𝑥𝑖 − 𝑥𝑤)

Σ𝑤𝑖(𝑥𝑖 − 𝑥𝑤)2
Σ𝑤𝑖𝑦𝑖𝑥𝑖
Σ𝑤𝑖𝑥2𝑖

Σ(𝑦𝑖 − 𝑦)(𝑥𝑖 − 𝑥)
Σ(𝑥𝑖 − 𝑥)2

Σ𝑦𝑖𝑥𝑖
Σ𝑥2𝑖

Amplitude A
𝑠𝑥,𝑦
𝑠2𝑥

𝑠′

𝑥,𝑦

𝑠′2𝑥

𝑠𝑥,𝑦
𝑠2𝑥

𝑠′

𝑥,𝑦

𝑠′2𝑥

Sample cov 𝑠𝑥,𝑦
𝑛eff

𝑛eff − 1
Σ𝑤𝑖(𝑥𝑖 − 𝑥𝑤)(𝑦𝑖 − 𝑦𝑤) Σ𝑤𝑖𝑥𝑖𝑦𝑖

1
𝑛 − 1

Σ(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦) 1
𝑛
Σ𝑥𝑖𝑦𝑖

Sample width 𝑠2𝑥
𝑛eff

𝑛eff − 1
Σ𝑤𝑖(𝑥𝑖 − 𝑥𝑤)2 Σ𝑤𝑖𝑥

2
𝑖

1
𝑛 − 1

Σ(𝑥𝑖 − 𝑥)2 1
𝑛
Σ𝑥2𝑖

Normalised 𝐴′
√

2𝑠2𝑥𝐴 =
𝑠𝑥,𝑦

√

𝑠2𝑥∕2

√

2𝑠′2𝑥 𝐴 =
𝑠′

𝑥,𝑦
√

𝑠′2𝑥 ∕2

√

2𝑠2𝑥𝐴 =
𝑠𝑥,𝑦

√

𝑠2𝑥∕2

√

2𝑠′2𝑥 𝐴 =
𝑠′

𝑥,𝑦
√

𝑠′2𝑥 ∕2

Variance 𝜎2
𝐴′ 2𝜎2

𝑦𝑤

𝑛eff
𝑛eff − 1

2𝜎2
𝑦𝑤

2𝜎2
𝑦

𝑛
𝑛 − 1

2𝜎2
𝑦

Variance 𝜎2
𝑦𝑤

, 𝜎2
𝑦

(

Σ𝜎−2
𝑖

)−1 (

Σ𝜎−2
𝑖

)−1 𝜎2
𝑦∕𝑛 𝜎2

𝑦∕𝑛

Power S = 1
2

𝐴′2

𝜎2
𝐴′

[

Σ𝜎−2
𝑖

2
𝑛eff − 1
𝑛eff

][

𝑠2𝑥,𝑦
𝑠2𝑥

] [

Σ𝜎−2
𝑖

2

][

𝑠′2𝑥,𝑦
𝑠′2𝑥

] [

1
2
𝑛 − 1
𝜎2
𝑦

][

𝑠2𝑥,𝑦
𝑠2𝑥

] [

1
2

𝑛
𝜎2
𝑦

][

𝑠′2𝑥,𝑦
𝑠′2𝑥

]

Orthogonal angle 𝜏 1
2
tan−1

[

𝑠2 − 2𝑠1𝑐1
𝑐2 + 𝑠21 − 𝑐21

]

1
2
tan−1

[

𝑠2
𝑐2

]

1
2
tan−1

[

𝑠2 − 2𝑠1𝑐1
𝑐2 + 𝑠21 − 𝑐21

]

1
2
tan−1

[

𝑠2
𝑐2

]

Amplitude R
𝑠𝑢,𝑦
𝑠2𝑢

𝑠′

𝑢,𝑦

𝑠′2𝑢

𝑠𝑢,𝑦
𝑠2𝑢

𝑠′

𝑢,𝑦

𝑠′2𝑢

Amplitude I
𝑠𝑣,𝑦
𝑠2𝑣

𝑠′

𝑣,𝑦

𝑠′2𝑣

𝑠𝑣,𝑦
𝑠2𝑣

𝑠′

𝑣,𝑦

𝑠′2𝑣

Phase 𝜙 = 𝜑 + 𝜏 tan−1
(

𝑠𝑢,𝑦
𝑠2𝑢

𝑠2𝑣
𝑠𝑣,𝑦

)

tan−1
(

𝑠′

𝑢,𝑦

𝑠′2𝑢

𝑠′2𝑣
𝑠′
𝑣,𝑦

)

tan−1
(

𝑠𝑢,𝑦
𝑠2𝑢

𝑠2𝑣
𝑠𝑣,𝑦

)

tan−1
(

𝑠′

𝑢,𝑦

𝑠′2𝑢

𝑠′2𝑣
𝑠′
𝑣,𝑦

)

Normalised 𝑅′
√

2𝑠2𝑢𝑅 =
𝑠𝑢,𝑦

√

𝑠2𝑢∕2

√

2𝑠′2𝑢 𝑅 =
𝑠′

𝑢,𝑦
√

𝑠′2𝑢 ∕2

√

2𝑠2𝑢𝑅 =
𝑠𝑢,𝑦

√

𝑠2𝑢∕2

√

2𝑠′2𝑢 𝑅 =
𝑠′

𝑢,𝑦
√

𝑠′2𝑢 ∕2

Normalised 𝐼 ′
√

2𝑠2𝑣𝐼 =
𝑠𝑣,𝑦

√

𝑠2𝑣∕2

√

2𝑠′2𝑣 𝐼 =
𝑠′

𝑣,𝑦
√

𝑠′2𝑣 ∕2

√

2𝑠2𝑣𝐼 =
𝑠𝑣,𝑦

√

𝑠2𝑣∕2

√

2𝑠′2𝑣 𝐼 =
𝑠′

𝑣,𝑦
√

𝑠′2𝑣 ∕2

Power S = 1
2

𝑅′2+𝐼 ′2

𝜎2
𝐴′

[

1
2
𝜎−2
𝑦𝑤

𝑛eff − 1
𝑛eff

]

[

𝑠2𝑢,𝑦
𝑠2𝑢

+
𝑠2𝑣,𝑦
𝑠2𝑣

]

[ 1
2
𝜎−2
𝑦𝑤

]

[

𝑠′2𝑢,𝑦
𝑠′2𝑢

+
𝑠′2𝑣,𝑦
𝑠′2𝑣

]

[ 1
2
𝜎−2
𝑦

𝑛 − 1
𝑛

]

[

𝑠2𝑢,𝑦
𝑠2𝑢

+
𝑠2𝑣,𝑦
𝑠2𝑣

]

[ 1
2
𝜎−2
𝑦

]

[

𝑠′2𝑢,𝑦
𝑠′2𝑢

+
𝑠′2𝑣,𝑦
𝑠′2𝑣

]

uncertainty 𝜎𝐴′ . The inverse cumulative distribution or quantile func-
tion Q(p) can be used to determine k such that there is a probability
1 − 𝑝 that a value |

|

𝐴′
|

|

> 𝑘𝜎𝐴′ is generated from normally distributed
noise

𝑘 = Q(𝑝)∕𝜎𝐴′ =
√

−2 ln(1 − 𝑝) (5.7)

If the power S is defined as

𝑆 = 1
2

(

𝐴′

𝜎𝐴′

)2
= 1

2
𝑘2 (5.8)

then S is Exp(1)-distributed with expected value E[S]=1 and variance
Var[S]=1 and the significance test is simply P(𝑝𝑜𝑤𝑒𝑟 > 𝑆) = e−𝑆 . The
value of S which corresponds to a probability 1 − 𝑝 that the generated
power is larger than S is calculated from

𝑆 = Q(𝑝) = − ln(1 − 𝑝) (5.9)

6. Lomb–Scargle periodogram

6.1. Amplitudes R and I

The L–S solution [5,7] is equivalent to a least squares fit of a
function

𝑦(𝑡) = 𝑅𝑢 + 𝐼𝑣 (6.1)

in which 𝜏 is the angle at which 𝑢 = cos(𝜔𝑡 − 𝜏) and 𝑣 = sin(𝜔𝑡 − 𝜏) are
orthogonal. In the classical L–S periodogram, the baseline C is zero,

the standard deviation 𝜎𝑖 = 𝜎𝑦 is assumed to be constant (and known a
priori) for all data, and the weighting factors are identical to 𝑤𝑖 = 1∕𝑛.
Without additional difficulty, it can be upgraded to a weighted fit with
𝑤𝑖 = 𝜎−2𝑖 ∕Σ𝜎−2𝑘 .

The least squares solutions for R and I are easily found under the
condition that the sum of cross terms Σ𝑢𝑣 is zero (Eq. (3.11)). For
example:

𝜕𝜒2

𝜕𝑅
=

𝜕Σ𝑤𝑖(𝑦𝑖 − 𝑅𝑢𝑖 − 𝐼𝑣𝑖)2

𝜕𝑅
= −2Σ𝑤𝑖(𝑦𝑖 − 𝑅𝑢𝑖 − 𝐼𝑣𝑖)𝑢𝑖

= −2
(

Σ𝑤𝑖𝑦𝑖𝑢𝑖 − 𝑅Σ𝑤𝑖𝑢
2
𝑖
)

= 0 (6.2)

The resulting equations for R and I are the same as Eqs. (3.14)–(3.15),
therefore 𝑅 = 𝐴 sin(𝜑+𝜏), 𝐼 = 𝐴 cos(𝜑+𝜏) and 𝜏 is defined in Eq. (3.12).
The quadratic sum of the amplitudes equals 𝐴2 = 𝑅2 + 𝐼2. The same
relationship holds for the normalised amplitudes, 𝐴′2 = 𝑅′2 + 𝐼 ′2, as
already deduced in Sections 2 and 3.

6.2. Amplitude A and angle 𝜑

The Lomb–Scargle solution in Eq. (6.1) should match exactly with
the LSQ solution in Eq. (3.1) (for 𝐶 = 0) for a single sinusoidal function,
i.e. 𝐴𝑥 = 𝑅𝑢 + 𝐼𝑣. This implies a simple relationship between the
amplitudes

|𝐴| =
√

𝑅2 + 𝐼2 (6.3)
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and the angles

𝜙 = 𝜑 + 𝜏 =

⎧

⎪

⎨

⎪

⎩

𝜋∕2 𝑅 = 0, 𝐼 ≥ 0
tan−1

(

𝑅
𝐼

)

𝑅 ≠ 0
−𝜋∕2 𝑅 = 0, 𝐼 < 0

(6.4)

such that

|𝐴| sin(𝜔𝑡 + 𝜑) =
√

𝑅2 + 𝐼2sgn(𝐼) sin(𝜔𝑡 + 𝜙 − 𝜏) (6.5)

in which sgn(I) takes the value of +1 if 𝐼 > 0 and −1 if 𝐼 < 0.

6.3. Power (𝐶 = 0)

The ‘power’ associated with the L–S solution for an angular period
𝜔 is said [7] to equal half the gain in the sum of squares (𝐶 = 0)

𝑆(𝜔) = 1
2
(

𝜒2
0 − 𝜒2

𝜔
)

= 1
2

[

Σ
(

𝑦𝑖 − 0
𝜎𝑖

)2
− Σ

(

𝑦𝑖 − 𝐴𝑥𝑖
𝜎𝑖

)2
]

= 1
2
[

Σ𝜎−2𝑖
(

2𝑦𝑖(𝐴𝑥𝑖) − (𝐴𝑥𝑖)2
)]

= 1
2
(

Σ𝜎−2𝑘
) [

𝐴2Σ𝑤𝑖𝑥
2
𝑖
]

= 1
2

[

2𝐴2𝑠′2𝑥
]

[

2𝜎2𝑦𝑤

] = 1
2
𝐴′2

𝜎2𝐴′

= 𝑘2

2
(6.6)

in which use was made of Eq. (3.2). The outcome of Eq. (6.6) – i.e. in
the case of 𝐶 = 0 – is indeed identical to the definition of the power
given in Eq. (5.8). Based on Eq. (2.30), the power in Eq. (6.6) can be
expressed as

𝑆(𝜔) = 1
2
𝑅′2 + 𝐼 ′2

𝜎2𝐴′

= 1
2
𝜎−2𝑦𝑤

[

𝑠′2𝑢,𝑦
𝑠′2𝑢

+
𝑠′2𝑣,𝑦
𝑠′2𝑣

]

(6.7)

In the unweighted case (𝑤𝑖 = 1∕𝑛), one finds

𝑆(𝜔) = 1
2𝜎2𝑦

[
(

Σ𝑦𝑖𝑢𝑖
)2

Σ𝑢2𝑖
+

(

Σ𝑦𝑖𝑣𝑖
)2

Σ𝑣2𝑖

]

(6.8)

This is equivalent to the definition given by Scargle [7], except for an
additional factor 𝜎−2𝑦 which was missing because he normalised the
variance of the time series (𝜎2𝑦 = 1). The power criterion of the L–S
periodogram is equivalent to the significance test of the LSQ solution
in Eq. (5.6).

6.4. Power (𝐶≠0)

The trick with half the gain in the sum of squares does not work
as a means to determine the power when the baseline parameter C is
fitted freely. An adjustment needs to be made to the initial value of the
chi square, replacing 𝑦𝑖 values by 𝛥𝑦𝑖, and a correction factor has to be
introduced for decreasing the degrees of freedom by one

𝑆(𝜔) = 1
2

𝑛eff
𝑛eff − 1

(

𝜒2
1 − 𝜒2

𝜔
)

= 1
2

𝑛eff
𝑛eff − 1

[

Σ
(

𝛥𝑦𝑖
𝜎𝑖

)2
− Σ

(

𝛥𝑦𝑖 − 𝐴𝛥𝑥𝑖
𝜎𝑖

)2
]

= 1
2
(

Σ𝜎−2𝑘
)

[

𝐴2 𝑛eff
𝑛eff − 1

Σ𝑤𝑖𝛥𝑥
2
𝑖

]

= 1
2

[

2𝐴2𝑠2𝑥
]

[

2𝜎2𝑦𝑤

] = 1
2
𝐴′2

𝜎2𝐴′

= 𝑘2

2
(6.9)

6.5. Pre-treatment of data

It has been mentioned in Section 3, that the data set can be pre-
treated by replacing 𝑦𝑖 with 𝛥𝑦𝑖 = 𝑦𝑖−𝑦𝑤 and then fed into the equations
for 𝑦(𝑡) = 𝐴𝑥 (Section 3) instead of 𝑦(𝑡) = 𝐴𝑥 − 𝐶 (Section 2). The
analysis for 𝐶 = 0 would yield the same amplitudes A as for C=free,
albeit it with different 𝜑 values. By applying a correction factor for
the change in degrees of freedom due to subtracting a mean value, the
correct power is obtained

𝑆𝑦(𝑡)=𝐴𝑥+𝐶 =
𝑛eff

𝑛eff − 1
𝑆𝑦(𝑡)=𝐴𝑥 (6.10)

7. Simulations

7.1. Data sets x, y

Eighty thousand simulations were performed of LSQ fits of Eqs. (2.1)
and (3.1) to white noise. The x data were generated from uniformly
distributed time t values over a full period. Three types of y data sets
were generated from normal distributions  (0, 𝜎2𝑖 )

- Set 1: 𝜎𝑖 = {1, 2, 2}, 𝑛 = 3, 𝑛eff = 2, 𝜎𝐴′ =
{

√

4∕3,
√

8∕3
}

- Set 2: 𝜎𝑖 = {1, 1, 1}, 𝑛 = 3, 𝑛eff = 3, 𝜎𝐴′ =
{

√

2∕3, 1
}

- Set 3: 𝜎𝑖 = {17 × 1, 21 × 2, 12 × 3}, 𝑛 = 50, 𝑛eff = 30.128, 𝜎𝐴′ =
{0.291, 0.296}

The 𝜎2𝐴′ values are obtained from Eq. (3.9) for 𝐶 = 0, and from
Eq. (2.26) for C = free, respectively.

7.2. Amplitude 𝑅′, 𝐼 ′, 𝐴′

The probability distributions of the fitted amplitudes 𝑅′, 𝐼 ′, and 𝐴′

are shown in Fig. 1. The normalised amplitudes 𝑅′ and 𝐼 ′ are not corre-
lated with the y values and follow the expected  (0, 𝜎2𝐴′ ) distribution.
The composite amplitude 𝐴′ is Rayleigh(𝜎𝐴′ )-distributed, as expected in
Section 5.2. Owing to the introduction of the ‘effective’ sample size 𝑛eff ,
the equations are also rigorously applicable to unequally weighted fits,
for which 𝑛eff ≠ 𝑛.

7.3. Erratum

In Ref. [14], simulations were performed of unweighted LSQ fits
of Eqs. (2.1) and (3.1), and graphs were shown of the statistical
distributions of 𝐴′ for data sets with 𝑛 = 3, 8 and 50. The Gaussian
(𝜑 = 0) and Rayleigh (𝜑 = free) distributions were perfectly reproduced
for C = free, yet somewhat distorted for 𝐶 = 0. This was due to the way
the variance of x was calculated to convert A into 𝐴′, using the Excel
function stdev(x) which is equivalent to 𝑠𝑥, but deviates somewhat from
𝑠′𝑥 (see Eq. (3.19)).

7.4. Power S

Since 𝐴′ is Rayleigh(𝜎𝐴′ )-distributed, it is true that the power 𝑆 =
𝑘2∕2 in Eq. (5.8) is Exp(1)-distributed (see Section 5.3). This is con-
firmed in Fig. 2, showing a similar exponential distribution for all
simulations.
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Fig. 1. Frequency distribution of the normalised amplitudes 𝑘 = 𝐴′∕𝜎𝐴′ , 𝑅′∕𝜎𝐴′ , and
𝐼 ′∕𝜎𝐴′ obtained from weighted fits of a cyclic modulation – either through Eq. (3.1)
for 𝐶 = 0 or Eq. (2.1) for C = free – to sets of (𝑛, 𝑛eff ) = {(3, 2), (3, 3), (50, 30)} white
noise data (see Section 7.1). The red curves indicate the theoretical distributions.

Fig. 2. Frequency distribution of the power 𝑆 = 𝑘2∕2 (Eq. (5.8)) obtained from
weighted fits of a cyclic modulation – either through Eq. (3.1) for 𝐶 = 0 or Eq. (2.1) for
C = free – to sets of (𝑛, 𝑛eff ) = {(3, 2), (3, 3), (50, 30)} white noise data (see Section 7.1).
The red curves indicate the theoretical distributions.

7.5. Angle 𝜙

Whereas the angles 𝜑 and 𝜏 are uniformly distributed, their sum
𝜙 = 𝜑 + 𝜏 is not. From Fig. 3 it is clear that 𝜙 (modulo 𝜋) takes values
close to 0 or ±𝜋∕2, i.e. close to solutions for the angle 𝜏 indicating
extreme values in the dispersion of u and v. Defining 𝜏min as the 𝜏 value

Fig. 3. Frequency distribution of the angles 𝜙 = 𝜑+ 𝜏 and 𝜙∗ = 𝜑+ 𝜏min obtained from
weighted fits of a cyclic modulation – either through Eq. (3.1) for 𝐶 = 0 or Eq. (2.1) for
C = free – to sets of (𝑛, 𝑛eff ) = {(3, 2), (3, 3), (50, 30)} white noise data (see Section 7.1).
The red lines correspond to uniform distributions.

corresponding with min(𝑠2𝑢) – i.e. 𝜏min = 𝜏±𝜋∕2 if 𝜏 indicates max(𝑠2𝑢) –
it turns out that 𝜙∗ = 𝜑+ 𝜏min (modulo 𝜋) is centred around 0. The LSQ
fit is attracted to solutions with low dispersion in x – i.e. 𝜑 → −𝜏min
and 𝑠2𝑥 → min(𝑠2𝑢) – because this generally leads to larger values of
the normalised amplitude through Eqs. (2.25) or (3.7), a high power
through Eq. (5.8) and ultimately a low 𝜒2

𝜔 through Eqs. (6.6) or (6.9).
The smaller the data set, the more gain is made from 𝜑 approaching
−𝜏min. For the examples shown in Fig. 3, the effect is the largest for
𝑛 = 3 and C = free, both for 𝑛eff = 2 and 3, because the degree
of freedom is zero and 𝜒2

𝜔 = 0. For 𝑛eff = 30, there is still a visible
attraction of 𝜙* towards 0.

8. Conclusions

Analytical equations have been derived for the statistical signif-
icance of sinusoidal modulations fitted to normally distributed time
series. They are based on the ratio of the normalised amplitude 𝐴′

to its standard deviation parameter 𝜎𝐴′ . The relevant equations are
summarised in Table 1. The significance criterion 𝑃 = 𝑒−𝑘2∕2 in Eq. (5.6)
is universally valid for weighted and unweighted fits, either with or
without a free baseline shift parameter C. It is equivalent with the
power criterion of the Lomb–Scargle periodogram for 𝐶 = 0. However,
when C is a free fit parameter, precautions are needed when deriving
the power from the change in the 𝜒2 of the fit, or when power formulas
for 𝐶 = 0 are used in combination with a pre-treated data set in which
a mean value is subtracted.

7
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