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Prüfungsausschuss: Vorsitzender: Prof. Dr. K. Rincke

1. Gutachter: Prof. Dr. G. Bali

2. Gutachter: Prof. Dr. V. Braun
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1. Introduction

Particle physics is well described by the so-called Standard model (SM) [11] which con-
tains the electroweak and the strong interactions, and predicted the recently detected
Higgs boson [22]. The SM is based upon the development of the electroweak theory [33–55],
the proof of renormalizability [66] and the postulation and confirmation of quantum chro-
modynamics (QCD) as the theory of the strong interaction [77].

It was able to predict many of its constituent particles (W±, Z0, top, Higgs) and
certain observables such as the anomalous magnetic moment of the electron with un-
precedented accuracy.

In spite of its enormous success it is unquestionable that it is just an effective low
energy description of a more fundamental theory: No SM effect can explain the abun-
dance of baryonic matter over antimatter in the visible universe [88], or that the majority
of the universe’s matter is not directly observable [99]. Other issues like the surprisingly
light Higgs boson mass, and the large number of parameters11 also indicate the effective
nature of the SM. Furthermore a more unified theory should (and might be required to)
include gravity.

The search for physics beyond the SM aims at directly detecting new particles and
interactions or finding deviations of observables from SM predictions. The energy range
accessible by human build terrestrial experiments is limited by physics and economical
considerations. With presently known technology accelerators cannot reach the Planck
scaleMp and experiments might forever be limited to energies at which the SM is a good
effective description. This possibility increases the importance of indirect searches and
therefore the requirement of precise theoretical predictions.

1.1. QFT on the lattice

The most challenging and therefore least well quantitatively understood interaction of
the SM is QCD. The main difficulty is that the QCD exchange particles, the so-called
gluons, self interact. This gives rise to the running of the coupling αQCD towards small
values at large momentum transfers which facilitates asymptotic freedom, and a large
coupling constant at low energies. Perturbative weak coupling expansions fail when the
coupling becomes of order one. More rigorously defined, this associated energy scale is
commonly referred to as ΛQCD.

1It has more than 20 free parameters. Several of these parameters are required to be finely tuned to
allow the stable universe we see today: The mass of the Higgs particle is restricted to certain ranges
[1010, 1111]. Another example is the electromagnetic coupling αQED in relation to the light quark mass
difference md−mu. If these are outside of a certain parameter space there would either be no nuclear
fusion and therefore no stars or a universe with an abundance of small stars.
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1. Introduction

Nonperturbative methods such as Lattice QCD (LQCD) are required to overcome
this problem. LQCD discretizes spacetime on a lattice and samples the path integral
with Monte Carlo (MC) methods. Infrared and ultraviolet cutoffs can be systemati-
cally removed to give correct infinite volume and continuum results. Modern computer
architectures, development in algorithms and a lot of theoretical progress have allowed
LQCD to evolve from its infancies in the 1970s [1212, 1313] to become a tool that can verify
and predict masses and matrix elements from first principle [1414]. High precision lattice
calculations provide valuable input for SM tests.
Most of the current lattice QCD simulations assume isospin symmetry and neglect

the electromagnetic charge of the quarks, and the non-degeneracy of light quark masses.
The inclusion of these effects is computationally expensive and might have only negligible
effects on most observables within their respective errors. The comparison of QCD and
quantum electrodynamics (QED) coupling constants shows that QED corrections become
relevant for high precision calculations at percent level accuracy. Until recently lattice
QCD+QED calculations have only been performed for hadron and quark masses.
The work presented here is one of the first lattice calculations of QED corrections to

matrix elements. Specifically, this work is a case study for QCD+QED matrix element
calculations on the lattice, showing the feasibility of the method and highlighting the
crucial components. As it turns out full pre- or postdiction of QCD+QED matrix
elements from first principle requires a lot of computer time, and theoretical input for
the understanding of systematic effects - such as the effect of the finite volume, the
definition of the continuum limit, and QED quenching effects.

1.2. Outline

The task of this thesis is the development, description and analysis of lattice calculations
of QCD+QED matrix elements. We try to highlight systematic uncertainties for future
work. The thesis is therefore organized as follows.
The relevant concepts of isospin, its breaking and meson decay in continuum quan-

tum field theory (QFT) are introduced in chapter 22. After establishing QED, QCD
and continuum methodology we will cover hadronic bound states and associated decay
constants. The role of symmetries is discussed, in particular (approximate) isospin and
chiral symmetry which motivates chiral perturbation theory (χPT). χPT in turn plays a
vital role in the extrapolation of lattice results to the physical point in the quark mass
plane.
Chapter 33 is a short introduction into Lattice QCD. It explains how a QFT is dis-

cretized on a finite lattice and how the path integral is evaluated. We describe the
measurement of twopoint correlators which can be used to extract ground state masses
and amplitudes. Basic methods used in analysis and a summary of the required physical
limits conclude this chapter.
Because this is the first work on QED corrections to hadronic matrix elements, chap-

ter 44 is dedicated to a broad review of present QCD+QED lattice simulations. We detail
the different methods used for the simulation of the modified lattice theory, and discuss

10



1.2. Outline

the additional challenges, most notably finite size effects, in the analysis. Furthermore
we present a method for the determination of non-degenerate light quark masses in the
presence of a general dynamic U(1) field.

The specifics of our QCD+QED lattice simulations and their analysis are detailed
in chapter 55. We describe the ensembles used in our analysis and explain our choice
of parameters including the smearing, charges and mass tuning. The analysis of QED
mass-splitting is restricted to pions and kaons which can be used to calculate the up,
down and strange quark masses as well as corrections to Dashen’s theorem. The analysis
of the electromagnetic decay constant splitting will cover all physically relevant light,
strange and charmed pseudoscalars. A particular focus will be given to finite volume
effects which severely limit our predictive power. We are nevertheless able to show QED
splittings that qualitatively conform to phenomenological descriptions. The last section
of the chapter covers the shortcomings of and alternatives to our methodology.

The conclusion in chapter 66 summarizes our findings and gives an outlook into the
future of QCD+QED effects on matrix elements and their calculations.
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2. Continuum QFT

The following chapter intends to introduce mesonic decay constants and their relevance
in Standard model tests. Related concepts and common approximations are explained.

For these purposes quantum field theory (QFT) will be introduced using QED as an
example. The first section will cover the Dirac equation for the fermions, the role of
gauge invariance, the emerging gauge fields and the action. I will further mention basic
theoretical methodology, like the path integral formalism, the perturbative expansion of
the theory and the problems and limitations that arise. The following section 2.22.2 will
introduce QCD, its deviant behavior and characteristics. Its non-perturbative nature is
highlighted.

The introduction of experimental observables in section 2.32.3 will cover bound states,
decays and scattering. The description of decay in the QFT formalism will introduce the
CKM matrix, (hadronic) matrix elements and therefore decay constants. I mention past
and future experimental determinations of pseudoscalar decay constants and remark on
differences of charged and uncharged pion decay constants.

Exact and approximate symmetries of the theory are discussed in section 2.42.4. Discrete
symmetries are used to distinguish bound states and allowed processes. The spontaneous
breaking of approximate chiral symmetry separates the masses of pions from all other
hadrons and motivates chiral perturbation theory (χPT). Approximate isospin symmetry
is discussed.

A good general introduction into the methodology and problematics of QFT can be
found in [1515] or [1616].

2.1. Quantum electrodynamics

The Dirac equation [1717] (
i/∂ −m

)
ψ(x) = 0 (2.1)

unifies quantum mechanics and the special theory of relativity. The slash notation /∂
is a shorthand for γµ∂µ where the Einstein sum convention is used. Equation (2.12.1)
incorporates spin into the equations of motion and requires negative energy solutions.
These were eventually interpreted as antiparticles, whose existence were later confirmed
by the discovery of the positron. Left-multiplying eq. (2.12.1) with the adjoint ψ = ψ†γ0
yields the Lorentz-invariant Lagrangian (density)

ψ
(
i/∂ −m

)
ψ(x) = 0 (2.2)

13



2. Continuum QFT

of the Dirac theory.
Interactions between massive particles were introduced by requiring local gauge in-

variance, meaning the invariance of the Lagrangian under transformations such as

ψ(x)→ ψ′(x) = Ω(x)ψ(x), ψ(x)→ ψ
′
(x) = ψ(x)Ω†(x), (2.3)

where Ω(x) ∈ U(1) for QED, and Ω(x) ∈ SU(2) or SU(3) for the weak interaction or
QCD. Note that Ω(x) is unitary (Ω†(x) = Ω−1(x)). When eq. (2.32.3) is inserted into the
Lagrangian (eq. (2.22.2)) the left hand side

ψΩ†(x)
(
/∂ −m

)
Ω(x)ψ 6= 0 (2.4)

no longer vanishes due to the derivative of a nontrivial Ω(x). Gauge invariance can be
restored by inserting a vector field Bµ(x) which absorbs the Ω†(x)∂µΩ(x) term. This
new field represents the gauge bosons of QED - the so-called photons - and is required
to transform under gauge transformations like

Bµ(x)→ B′
µ(x) = Ω(x)Bµ(x)Ω

†(x) + i
(
∂µΩ(x)

)
Ω†(x). (2.5)

QED thus consist of the fields

ψf (x)α , ψ
f
(x)α and Bµ(x), (2.6)

where the superscript f indicates the individual lepton (or quark) flavor, subscript α
is a spin index and the index µ indicates that the gauge field is a vector field. Their
interaction is fully encoded in the modified fermion action

SF [ψ, ψ,Bµ] =

Nf∑
f=1

∫
d4xψ

f
(x)
(
iγµ

(
∂µ + iefBµ(x)

)
−mf

)
ψf (x) (2.7)

where the fermion charge ef contains the QED coupling e and quantifies the strength of
the fermion-photon interaction. The coupling constant at energies below the positronium
threshold 2me± is given by the fine structure constant α ' 1/137:

e2 = 4πα. (2.8)

The QED gauge action SG can be derived by using the covariant derivative Dµ(x) =
∂µ+iefBµ(x). Its commutator turns out to be the field tensor well known from classical
electrodynamics

Gµν(x) =
−i
ef

[Dµ(x), Dν(x)] = ∂µBν(x)− ∂νBµ(x) (2.9)

which will transform under gauge transformations in the same way as the covariant

14



2.1. Quantum electrodynamics

(a) Photon-fermion
vertex

(b) Photon propagator (c) Fermion propaga-
tor

Figure 2.1.: The basic elements for QED Feynman diagrams. The time direction in this
work is assumed to be in horizontal direction.

derivate itself. The therefore gauge invariant QED gauge action is then given by

SG[Bµ] =
1

2

∫
d4x tr [Gµν(x)Gµν(x)] (2.10)

which is a Lorentz scalar due to summation over the spin indices µ, ν.

2.1.1. The path integral and perturbation theory

The partition sum of a QFT (for QED the replacement [φ] = [ψ, ψ,Bµ] is implied) is
given by

Z[φ] =

∫
D[φ] eiS[φ] (2.11)

and can be used to formally express the expectation value of arbitrary observables O in
equilibrium

〈O〉 = 1

Z[φ]

∫
D[φ] eiS[φ]O[φ]. (2.12)

This equation is often called path integral because the integral averages over all field
configurations [φ], and the field configurations are paths in simple quantum mechanical
settings like the double slit experiment. The exact and explicit evaluation of the path
integral for 4 dimensional field theories, like QED, is impossible due to the infinite
dimensional integral.

Weak coupling allows the systematic Taylor expansion of the path integral in even
powers of the (bare) coupling constant e2. This so-called perturbative approach is tedious
and error prone. Feynman proposed to identify reoccurring elements of the expansion
and to derive laws from the Hamiltonian that are valid to all orders [1818]. The reoccurring
elements (illustrated in fig. 2.12.1) of QED are photon and lepton propagators which connect
photon-fermion vertices. These are then used to construct contributions at a fixed order
and weight them according to their degeneracy. Theses contributions have a useful
symbolic representation the so-called Feynman diagrams. External lines are amputated,
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2. Continuum QFT

(a) 3 gluon vertex (b) 4 gluon vertex

Figure 2.2.: Gluon self interaction.

meaning they are not integrated over and not written out. Contributions can be divided
into diagrams that are fully connected and diagrams that contain disconnected elements.
Disconnected elements also appear in the expansion of the vacuum state and therefore
cancel after normalization with the partition function. The expectation value eq. (2.122.12)
of an observable can in perturbation theory be approximated by a (correctly weighted)
truncated sum of all connected diagrams. Observation of the transition of initial |{k}i〉
to final |{p}f 〉 states can be described by the unitary scatter matrix S = 1 + iT . The
(non-forward) interaction

〈{p}f |iT |{k}i〉 = (2π)4δ(4)

∑
i

kµ,i −
∑
f

pµ,f

 iM
(
{k}i → {p}f

)
(2.13)

can be separated into kinematics and the internal dynamics described by the amplitude
M, which contains the amputated diagrams.

Regularization and renormalization

The perturbative expansion yields ultraviolet divergent loop integrals. The divergences
can be regularized by cutoffs or other means. Prescriptions that can be shown to be
equivalent to any valid regulator, and that only redefine the normalization of the bare
fields and the coupling constant are called renormalization schemes. This procedures can
be performed order by order. Ambiguities are thereby successively pushed into higher or-
ders and until they remain in orders above the order of the truncation. Regardless of the
remaining ambiguity the perturbative expansion accurately predict various experimental
observables such as the anomalous magnetic moment of the electron with unprecedented
accuracy, which is the foundation of the enormous success of QFT. A common continuum
renormalization scheme is the so-called modified minimal subtraction scheme (MS).

2.2. Quantum chromodynamics

Rutherford found [1919] that the angular distribution of α particles scattering of a gold
foil could be explained if the charge distribution of the heavy atomic nuclei is confined
to a sphere with radius r < 10−14m. The fact that no known interaction could explain
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2.2. Quantum chromodynamics

the binding energy of atomic nuclei caused Yukawa to postulated a strong, short ranged
interaction which is mitigated by a massive, spin-zero exchange particle [2020]. The ap-
proximate range (1 fm) of its force led to the first estimate of what is now understood
to be the pion mass.

Early particle accelerator experiments discovered an abundance of new particles, called
hadrons. The mass spectrum of spin-12 hadrons could be described by the so-called
Eightfold way, which assumed that proton, neutron and the newly discovered bound
states were composed of three fermions, the so-called (up, down and strange) quarks.
The hadronic wave function of the Ω− and Σ++ baryon required the fermion fields to
have an additional hidden quantum number to be total antisymmetric and obey Fermi’s
exclusion principle. This quantum number is called color. The observed π0 → γγ decay
rate (which will be discussed in section 2.3.22.3.2) and the cross-section in e+e− → hadron
scattering required the number of colors to be Nc = 3. The fact that only color singlet
states can be observed is called confinement. Scattering experiments revealed further
substructure of the nucleon. Deep inelastic scattering (DIS) showed that the nucleon
contains partons which are asymptotically free at large energies.

Requiring SU(3) gauge invariance and incorporating the color quantum number c into
the fermion fields allows the derivation of QCD, which contains the fields

ψf (x)α,c , ψ
f
(x)α,c and Aµ(x)cd. (2.14)

The vector gauge field Aµ(x)cd is a traceless, unitary matrix. It represents gluons that
carry an octet color in contrast to fermions (quarks) which have a normal color charge.
The electromagnetic charge e in eq. (2.72.7) is replaced by the QCD coupling g in the
analogous QCD action. The non-abelian nature of QCD is non-abelian is explicit in its
field tensor which contains a field commutator

Fµν(x) = −i [Dµ(x), Dν(x)] = ∂µAν(x)− ∂νAµ(x) + i [Aµ(x), Aν(x)] . (2.15)

This commutator yields two vertices that couple three and four gauge fields (see fig. 2.22.2)
in Feynman diagrams.

Careful derivation of QCD Feynman rules reveals an additional element, called Faddeev-
Popov ghost field [2121]. The effective Lagrangian density of the ghost fields c is given by

Lghost = c̄a
(
−∂2δac − g∂µfabcAbµ

)
cc. (2.16)

The corresponding ghost propagator and ghost-gauge vertex must be included into the
Feynman diagrams of the amplitudeM. This removes a remnant gauge ambiguity and
ensures that unphysical gluon polarizations in the amplitude cancel. Faddeev-Popov
ghosts are required in all gauge theories to ensure unitarity. Abelian gauge theories do
not contain a ghost-gauge interaction term and therefore require no additional diagrams.

It can be shown that QCD is renormalizable and that all regulators yield the same
physical results [2222]. Approximate symmetries of QCD, like isospin and chiral symmetry,
are discussed in section 2.42.4.
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2. Continuum QFT

2.2.1. Running of the strong coupling

In order to discuss the QCD properties confinement and asymptotic freedom, it is in-
structive to investigate the momentum dependence of the coupling expressed in the
function

β(g) = − ∂g

∂ lnµ
. (2.17)

This function can be calculated in perturbation theory, which up to next-to leading order
(NLO) yields

β(g) = −β0g3 − β1g5 +O(g7) (2.18)

with β0 =
1

(4π)2

(
11

3
Nc −

2

3
Nf

)
and β1 =

1

(4π)2

(
34

3
N2
c −

10

3
NcNf −

N2
c − 1

Nc
Nf

)
.

The negative slope of eqs. (2.172.17) and (2.182.18) can be attributed to the gauge bosons as
long as the number of colors Nc is sufficiently large. Solutions of eq. (2.172.17) confirm
asymptotic freedom: The coupling g2 converges to zero as the momentum scale µ is sent
to infinity. A large number Nf of effectively massless quarks below the momentum scale
µ prevents this behavior.
The behavior of the coupling constant g at low momenta proofs to be more trou-

blesome: It increases until our approximation of β(g) (eqs. (2.172.17) and (2.182.18)) becomes
invalid and perturbation theory fails at a scale ΛQCD, which is roughly comparable to the
masses of light hadrons. The non-perturbative behavior can be used for a hand waving
explanation of confinement: The coupling is strong when color charges are separated by
more than ΛQCD

−1. Gluons then (due to their self interaction) create flux tubes, the
energy required to separated the charges grows linearly with the distance and will result
in pair creation before isolated color charges can be observed.

2.3. Experimental observables

Elementary particle physics experiments observe and measure bound states, their decay
and scattering processes. We will in the following focus on hadronic observables which
are dominated by the strong interaction. Other interesting observables for SM test are
for example measurements of neutrino oscillations which probe the weak interaction and
the CKM matrix equivalent in the leptonic sector. Hadronic observables can be split
into perturbative and non-perturbative contributions such as high momenta scattering
and (hadron) masses.
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2.3. Experimental observables

pseudoscalar quark content m[MeV] f [MeV] τ [s]

π+ ud̄ 139.57 130.4 2.60× 10−8

π0 uū−dd̄√
2

134.98 “130.0” 8.52× 10−17

K+ us̄ 493.68 156.1 1.24× 10−8

K0
L ds̄ 497.61 5.099× 10−8

K0
S 8.954× 10−10

D+ cd̄ 1869.5 209 1040× 10−15

D0 cū 1864.8 410× 10−15

Ds cs̄ 1969.0 249 500× 10−15

Table 2.1.: Arbitrary listing of pseudoscalar (JPC = 0−(+)) particles and their proper-
ties. Mass values and life times are from [2323], the decay constants are out of
[2424], which are usually calculated with degenerate light quark masses. The
neutral pion decay constant was adjusted according to the approximations in
[2525].

2.3.1. Bound states

Although hadron masses are non-perturbative, their spectrum provides information on
QCD symmetry and dynamics. Particles may be observed directly or as a mass resonance
in scattering cross sections. The most prominent and only stable11 hadron is the proton.
Its mass is notably far larger than the mass of its constituents, almost degenerate to the
mass of its “isospin” partner the neutron (which does decay) and far lighter than the
mass of its negative parity partner N∗. This indicates that most of the nucleons mass is
due to QCD dynamics, approximate isospin symmetry and that chiral symmetry is likely
spontaneously broken. Furthermore protons and neutrons form bound states which are
sometimes stable. Their binding energies can be used to estimate the mass of the pion,
and investigate effective theories of nucleon interaction.

The hadronic mass spectrum contains a large number of states which have a long
enough lifetime such that their mass can be measured. Mass hierarchy and the lightness
of pions strengthens the evidence of the spontaneous breaking of chiral symmetry. The
masses of η and η′ give further information about SU(3) flavor symmetry and η, η′

mixing. Exited states of hadrons give further information about the non-perturbative
regime. Large magnetic fields modify the spectrum of charged particles. Predicted
suppression of the charmonium vector state J/ψ in heavy ion collisions may indicate
the quark gluon plasma and gives information about the QCD high temperature phase.
The ultimate goal in searches for new physics is obviously the detection of particles
whose properties (mass and quantum numbers) cannot be associated with the predicted
spectrum.

1Unified theories allow proton decay. The approximate proton lifetime becomes large when the unifi-
cation scale MGUT is large. Experimental limits on the proton lifetime can therefore put limits on
the unification scale of a specific theory.
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weak decay
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q

q̄

(b) Strong decay of
an exited state

Figure 2.3.: Mesonic decay channels

2.3.2. Decays

The lifetime τ of unstable particles is the inverse of the total decay rate Γ which is
sometimes also called decay width. The total decay rate is made out of the sum of rates
of all channels c

Γ =
∑
c

Γc (2.19)

which is often dominated by a few selected channels. The quantity Bc = Γc/Γ is called
the branching fraction. Many theoretically possible channels are highly unlikely due
to their kinematics and might never have been observed in experiment. Detection of
forbidden decays and deviations from predicted decay rates Γc may indicate new physics
or problems in our theoretical understanding.
Measurement of decay rates and branching ratios generally provide information about

kinematics, matrix elements, couplings and masses. Although all interactions of the
SM can facilitate decay processes (see fig. 2.32.3) we will in the following focus on weak
decays of mesons and rely heavily on information taken out of [2626]. These decays can
be described by the coupling term

GF√
2
Vq′Q

(
q̄′γµ(1− γ5)Q

)(
ūlγµ(1− γ5)vν

)
(2.20)

in the weak interaction Hamiltonian which contains the CKM matrix element Vq′Q. This
is necessary because strong and weak interaction do not couple to the same flavor states.
The individual flavor bases are instead connected by the unitary CKM matrix [2727]ds

b


weak

= VCKM

ds
b


strong

=

VudVusVubVcdVcsVcb
VtdVtsVtb

ds
b


strong

(2.21)

which can be parametrized by 3 mixing angles θi and a CP violating phase δ13. Further
details of the CKMmatrix will be discussed in section 2.4.12.4.1. If radiative QED corrections
are ignored, the dynamics of the decay rate Γ(MQq̄ → X l ν) are described by the
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amplitude

M (MQq̄ → X l ν) = −iGF√
2
Vq′QL

µHµ (2.22)

which can be factorized into the leptonic current

Lµ = ūlγ
µ(1− γ5)vν (2.23)

and a hadronic current which is given by the non-perturbative QCD matrix element

Hµ = 〈X|q̄′γµ(1− γ5)Q|M〉. (2.24)

Formulae for pure leptonic decay (M → lν) can be obtained if q̄ is the anti-quark of the
decay product q′ and |X〉 is assumed to be the vacuum. In this case decay constants f are
used to describe the matrix element in the rest frame of the hadron. Leading order (LO)
QED corrections to pure leptonic decay contain an infrared divergent photon [2828]. The
divergence cancels if the channel is combined with the corresponding radiative channel
M → lνγ. The hadronic matrix element in semi-leptonic decay channels

〈X(pf )|Vµ(q2)|M(pi)〉 =

[
pi + pf − q

m2
i −m2

f

q2

]
µ

f+(q
2)

+

[
q
m2
i −m2

f

q2

]
µ

f0(q
2) (2.25)

can be parametrized with vector f+ and scalar f0 transition form factors [2929] if the final
state |X〉 is also a pseudoscalar. For small lepton mass ml the qµ terms are negligible
and the differential decay rate can be approximated by

dΓ

dq2
=
G2
F |Vq′Q|2p3f
24π3

∣∣f+(q2)∣∣2 . (2.26)

Charged pion decay

The dominant charged pion decay channel is the pure leptonic process π± → µ νµ. The
energetically favored channel π± → e νe is suppressed by helicity. The generic π± → l νl
decay rate is at tree level given by

Γtree
0 (π+ → l+νl) =

G2
F

∣∣V 2
udf

2
π

∣∣
8π

mπm
2
l

(
1−

m2
l

m2
π

)2

(2.27)
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Figure 2.4.: The axial anomaly (eq. (2.292.29)) requires a second term with interchanged
vector vertices.

where Vud is the CKM matrix element that couples up and down type quarks22, and the
decay constant fπ describes the hadronic matrix element

〈0|A0|π±〉 = imπ±fπ± , (2.28)

where A0 is the time component of the axial current Aµ = ūγµγ5d. Depending on the
definition of the states the value of fπ might differ by a factor of

√
2. Measurement of

the π± lifetime τ and branching fractions are used to determine the fπ± value.
Knowledge of fπ± allows to determine |Vud| from the experimentally measured product

fπ± |Vud|. The value of fπ in the chiral limit will turn out to be a fundamental parameter
of an effective theory (χPT).

Neutral pion decay

Neutral pions have different decay channels and a slightly modified decay constant. Mass
isospin breaking effects of fπ0 ↔ fπ± have been estimated in [2525]. The dominating neu-
tral pion decay rate Γ(π0 → γγ) (or the corresponding η decay) is formally strongly
suppressed. This puzzle was solved in a sigma model description [3131] and shortly after-
wards in spinor electrodynamics [3232]. The decay is allowed due to the non-conservation
of the axial current, the so-called axial anomaly

∂µj
µ5 = ∂µψ̄γµγ5ψ ∝ g2εµναβFµνFαβ (2.29)

which is illustrated by the triangle diagram in fig. 2.42.4. The approximate prediction

Γ(π0 → γγ) =
α2m3

π

64π3f2
π0

(2.30)

based on eq. (2.292.29) agrees reasonably well with experimental data. Amonst many
phenomena, the axial anomaly is furthermore responsible for the large η′ mass, the

2The CKM matrix element Vud is well known from measurements of nuclear decay. Lattice calculations
of the ratio fK/fπ and experimental decay rates allow the subsequent determination of Vus[2323, 3030].

22



2.3. Experimental observables

Goldberger-Treiman [3333] relation33

gA =
fπ
mN

gπNN (2.31)

and can be used to derive relations for π − π and π −N scattering [1515].
Nowadays the rate (eq. (2.302.30)) is measured indirectly through Primakoff experiments

γA→ π0A experiments [3434, 3535] by γγ → π0 fusion. Results from these experiments are
model dependent, due to a large hadronic background. The newly proposed experiment
KLEO-2 utilizes π0 production from γγ fusion in e+e− scattering [3636, 3737] and simulations
promise 1% level accuracy.

The decay width Γ(π0 → γγ) is used as a constraint for effective models [3838], which
can be used to calculate the hadronic contribution to the muon anomalous magnetic
moment. Alternatively, LQCD calculations [3939] provide results from first principle.

2.3.3. Scattering

Figure 2.5.: Leading order elastic scattering of two fermions.

Scattering experiments played a vital role in the development of QFT and QCD in
particular. As previously mentioned DIS of electrons on a fixed proton target at the
Stanford Linear Accelerator Center (SLAC) found scaling and therefore point-like par-
tons which were later identified as quarks [4040]. Experiment with an e−e+ storage ring
at SLAC found the heavy τ lepton [4141, 4242].

Scattering is also important for the investigation of the weak interaction and the
CKM matrix. Proton-antiproton collisions at super proton synchrotron (SPS) provided
sufficient energy for the creation of the weak gauge bosons W±, Z0 and the detection of
their signatures [4343, 4444]. Furthermore collision with asymmetrical beam energies proofed
to be highly useful. The B factories BaBar [4545] and Belle [4646] tune their center of mass

energy to the Υ(4S) resonance which decays with to 25% to a B0
d − B0

d meson state.
The forward rapidity prolongs the lifetime of these mesons and allows testing of CP , T
and CPT invariance [4747].

Scattering of gold nuclei at the relativistic heavy ion collider (RHIC) led to the dis-
covery of the quark gluon plasma (QGP) a strongly interacting, high temperature phase
of nuclear matter that appears to contain deconfined quarks and to be a liquid with
almost minimal viscosity [4848]. Lastly inclusive measurements at high energies at the
large hadron collider (LHC) led to the discovery of the Higgs boson [22].

3Experimental results agree within approximately 15%.
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2.3.4. Beyond the standard model

In light of the fact that the standard model is merely an effective theory for the observ-
able universe the question arises how to detect violations and discover the nature of a -
or the - underlying theory. One possibility is to detect small deviations in scattering or
decay processes predicted by the standard model. These follow from the fact that hidden
couplings at large energies (never or currently not accessible by experiments) may mod-
ify the effective interaction. Comparing standard model predictions with experimental
results yields bounds on, or in case of actual violations hints at, possible extensions.

2.4. Symmetries

Symmetry means the invariance of an equation or physical law under a transformation ω.
Symmetries of the action and the Lagrangian are important in classical physics, special
and general relativity, in quantum mechanics, in QFT and in particular in gauge theories
which use gauge invariance to introduce interaction. Weak violations of symmetries are
often negligible or can be treated as a perturbation. There are discrete symmetries
(often used for selection rules and classifying states) and continuous symmetries which
have associated conserved currents. Transformations can be further distinguished to be
global ωg or local transformations ωl(x). Symmetries of a physical (quantum) system
can spontaneously break, meaning the groundstate of such a system does not obey the
symmetry of the action. Every spontaneously broken, continuous symmetry yields a
massless mode, a so-called Nambu-Goldstone boson. Spontaneous symmetry breaking is
responsible for a wide range of physical phenomena such as Bose-Einstein condensation,
super conductors, the light pion masses and many more.

2.4.1. Discrete symmetries

Discrete symmetries are often used to distinguish bound states and isolate the contribu-
tions to scattering processes. The parity operator P mirrors space (t,x)→ (t,−x), the
time reversal operator T does the same with time (t,x) → (−t,x) and charge conjuga-
tion C interchanges particles and antiparticles. All of these symmetry operations have
eigenvalues η± = ±1. Many of the meson resonances44 observed in experiments have
definite P and C quantum numbers in accordance with quark bilinears. Time reversal
symmetry T is violated by the second law of thermodynamics.
Naively QCD and QED are invariant under these transformation, but parity P and

charge conjugation C are maximally violated by the weak interaction because of its chiral
components. This was initially suggested by Lee and Yang in 1956 [4949] and subsequently
observed in 60Co β decay [5050] as well as in π+ and µ+ decay [5151]. QCD theory allows
parity P to be broken by the so-called θ term. Recent experiments suggest to have
found local parity violation of QCD in quark gluon plasma bubbles [5252] although the
interpretation of the data is under debate [5353–5555].

4Only uncharged mesons are eigenstates of C.
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The combined symmetry of charge conjugation and parity CP is violated by a small
amount which is described by the phase δ13 in the CKM matrix that violates the sym-
metry explicitly. It can be shown that the combined CPT symmetry is preserved. CP
violation, which can be found in B meson and kaon (K0) physics, can be categorized
to be direct, indirect or both. All unitary triangles have equal area proportional to the
phase δ13. The CKM matrix can be connected to the Yukawa couplings of Higgs field
and quarks, which do not need to be diagonal. Diagonalization yields the quark masses
and unitary matrices which can be combined to the therefore naturally unitary CKM
matrix [2626].

2.4.2. Isospin and chiral symmetry

The similarity of proton and neutron despite their different charges led to their classi-
fication as different (isospin) states of the nucleon and therefore isospin (SU(2) flavor)
symmetry of the strong interaction. Similary the 3 pions (π+, π0, π−) and other sets of
hadrons could be classified as multiplets of isospin states. The extended, approximate
SU(3) flavor symmetry is suggested by the mass spectrum of light, spin 1/2 baryons
which can be described by an octet, the so-called Eightfold way [5656].

Current algebra predicted many low energy relations such as the Goldberger - Treiman
(eq. (2.312.31)) and the Gell-Mann - Oakes - Renner relation (GMOR) [5757]

F 2
πM

2
π = (m(r)

u +m
(r)
d )Σ(r) (2.32)

describing light pseudoscalar masses in dependence of renormalized quark masses m(r)

and chiral condensate Σ(r) = 〈q̄q〉. The positive and finite constant Fπ is the pion decay
constant in the chiral limit.

As previously mentioned, light quark masses mu,d are small compared to the scale
ΛQCD. Projectors P± = (1± γ5)/2 can be used to separate spinors into left- and right-
handed components ψL,R = P∓ψL,R and ψL,R = ψL,RP±. The fermion Lagrangian of
QCD is then written as

LQCD = ψL /DψL + ψR /DψR + ψLMψR + ψRMψL (2.33)

with the spinors ψ = (u, d)T , ψ = (u, d) and the mass matrix M = diag(mu,md).
Vanishing light quark masses make the (light quark) action invariant under flavor trans-
formations that can be decomposed into

SU(2)L × SU(2)R × U(1)V × U(1)A. (2.34)

The SU(2) transformations correspond to independent flavor rotations ωL and ωR of
left- and righthanded field which are spontaneously broken to SU(2)V : ωL = ωR flavor
symmetry by the chiral condensate 〈q̄q〉. The U(1) vector symmetry enforces baryon
number conservation and the remaining U(1) axial symmetry is broken on the quantum
level due to the axial anomaly discussed in section 2.3.22.3.2.
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The arguments above can also be extended to SU(3)L × SU(3)R symmetry by treat-
ing the strange quark as light. The experimental observed mass gap between pseudo
Goldstone bosons and other light hadrons as well as the absence of parity doubling
m(P = +1) 6= m(P = −1) suggest that chiral symmetry is spontaneously broken. Fol-
lowing the textbook knowledge on symmetry breaking, Noether’s theorem states that
every continuous symmetry (of the action) is associated with a conserved current. Fur-
thermore Goldstone’s theorem states that for every spontaneously broken continuous
symmetry there is a corresponding massless mode, the so-called Goldstone boson. Those
turn out to be the light pseudoscalars, which will be - due to non-vanishing physical quark
masses - (massive) pseudo Nambu-Goldstone bosons.

χPT

Chiral perturbation theory (χPT) is an effective theory based on chiral symmetry which
naturally reproduces the low energy relations from current algebra [5858, 5959]. Its degrees
of freedom are the previously mentioned light pseudoscalar fields. Explicit breaking
by quark masses can be included as currents that perturb chiral symmetry. One dis-
tinguishes SU(2) and SU(3) χPT which ex- and include the strange as a light quark.
Treating the strange quark as light does not converge well. Most of the following infor-
mation is taken out of [6060], other instructive summaries are [6161, 6262].
Experimental data of hadronic quantities shows a separation of scales

pπ ∝ mπ � mρ,mN . (2.35)

χPT separates those scales by introducing an intermediate scale Λ, integrating out the
energies above and replacing them by effective, local interactions (of size Λ−1) as il-
lustrated in fig. 2.62.6. Instead of explicitly integrating out the degrees of freedom, it is
sufficient to identify the symmetries of the microscopic theory, the new degrees of free-
dom and include all possible interactions that are allowed up to an specific order that
one decides to work at. The order of an interaction depends on the power counting.
After truncation the remaining task is to determine the values of so-called low energy
constants (LEC), the unknown couplings of our new vertices, from experimental or lat-
tice data. These values depend on the order of the truncation and are assumed to follow
a hierarchy. Some of them can be estimated or are bound by phenomenology. It is
inevitable that the truncated series breaks down at scales above Λ.
The effective theory can be extended/adjusted for various applications. Examples

include additional coupling to an external electromagnetic field, inclusion of baryon
resonances, estimation of finite volume effects, discretization artifacts, partial quenching
and heavy baryons. χPT and other effective theories are required for the extrapolation
of LQCD results to the physical limit.
χPT predicts chiral logarithms, which describe the dynamics of the new degrees of

freedom, e.g. the pion loops. These contributions have no additional free parameters.
Although LQCD is often well described by χPT without chiral logarithms [6363], is has
recently been able to resolve them [2424].
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(a) QCD Feynman
diagram con-
tributing to a
meson correlator.

(b) Tadpole contribu-
tion to a meson
mass in χPT.

Figure 2.6.: An effective field theory (fig. 2.6b2.6b) can approximate the dynamics of the
microscopic theory (fig. 2.6a2.6a). Note that the diagrams above are not their
respective equivalents.

Note that naive chiral Lagrangians have, in contrast to the microscopic theory of
QCD, an additional symmetry P0 leaving them invariant under interchange of U ↔ U †
55. The so-called Wess-Zumino-Witten term reduces this symmetry to the real parity
P = (−1)NBP0 and inserts the axial anomaly into the effective theory [6464].

5The variable U represents the effective fields and can be written as an exponentiated matrix of pseu-
doscalar fields.
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3. Lattice QCD

In this chapter I want to introduce the basic concepts of Lattice QCD and the methods
relevant to the simulation described in chapter 55. The current status of simulations that
include QED and some of its subtleties will be discussed in the following chapter 44.

After discussing the discretization of the QCD path integral and the Wilson fermion
action, the representation of the gauge fields is addressed. The generation of suitable en-
sembles and the algorithms required for importance sampling are explained in section 3.23.2,
which is followed by section 3.33.3 where techniques for the measurement of euclidean cor-
relation functions are described. The chapter is concluded by section 3.43.4 that examines
the physical limit including continuum, chiral and infinite volume extrapolations as well
as improvement and renormalization.

Good and more extensive introductions into Lattice QCD, on which I relied heavily in
the following summary, are [6565–6868]. Short available primers are [6969, 7070]. An extensive
and useful review of current results is [1414].

3.1. Making the QCD path integral finite

To tackle the non-perturbativeness of low energy QCD it is useful to see how a correlation
function of two operators O2(t),O1(0) is expressed in the path integral formulation of
quantum field theories [6868]. After a Wick rotation t→ τ = −it the correlation function
is written as

〈Ω|O2(t)O1(0)|Ω〉T =
1

ZT
tr
[
e−(T−t)ĤÔ2e

−tĤÔ1

]
=

1

ZT

∫
D[φ] e−Se[φ]O2[φ(·, t)]O1[φ(·, 0)], (3.1)

where |Ω〉 denotes the vacuum state, Ĥ is the Hamilton operator, Se is the euclidean
action, and T refers to a time scale, which is significantly larger than the time separation
of the operators. In the limit T →∞, the correlation functions can be related to energies
En and matrix elements 〈n|O|m〉.

lim
T→∞

1

ZT
tr
[
e−(T−t)ĤÔ2e

−tĤÔ1

]
=
∑
n

〈Ω|Ô2|n〉〈n|Ô1|Ω〉 e−tEn (3.2)

with ZT = tr
[
e−TĤ

]
(3.3)

To compute correlation functions such as eq. (3.13.1) and therefore determine masses and
matrix elements through eq. (3.23.2), spacetime is discretized and restricted to a lattice in
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3. Lattice QCD

the finite volume V = LxLyLzLt, as first worked out in [1212]. The remaining spacetime
points are

xµ → x̃µ = amµ with mµ ∈ [0, Lµ − 1] (3.4)

where µ = 0 . . . 3 represents time and three spatial components. This yields a finite
dimensional integration which can be evaluated stochastically by generating an ensemble
of representative configurations [φ] and averaging over them. To estimate continuum
quantities simulations at several lattice spacings a and volumes V need to be extrapolated
towards a → 0 and V → ∞, which is discussed in section 3.43.4. It will also turn out
that the computation at physical quark masses - especially on large lattice volumes -
is computationally expensive and that the computation is often carried out at heavier
quark masses and then extrapolated towards physical values. The required theory is
briefly described in section 2.4.22.4.2.
The remaining tasks are finding a suitable discretized version of gauge and fermion

action and generating the representative ensemble of configurations. Afterwards lattice
interpolators can be combined to build correlation functions which yield masses and
matrix elements. All such operators suffer from discretization effects such as mixing and
the breaking of rotational symmetry which is restored in the continuum limit. If opera-
tors mix with lower dimensional representations the continuum limit becomes especially
difficult. The generation of configurations is discussed in section 3.23.2. The following
paragraph addresses gauge invariance before the discretization of the QCD action SQCD

is introduced in section 3.1.23.1.2.

3.1.1. Gauge invariance

The SU(3) gauge invariance of the fermion fields ψ,ψ - and therefore their action - can
be assured if oriented link variables Uµ connect neighboring sites

ψ(n)Uµ(n)ψ(n+ µ̂) → ψ
′
(n)U ′

µ(n)ψ
′(n+ µ̂)

= ψ(n)Ω(n)†U ′
µ(n)Ω(n+ µ̂)ψ(n+ µ̂) (3.5)

and the gauge transformation Ω of the links is defined by

Uµ(n)→ U ′
µ(n) = Ω(n)Uµ(n)Ω(n+ µ̂)†. (3.6)

These links will become our new, compact degrees of freedom for the gauge fields. They
are the discretized approximation

U(n) = exp
(
iaA(n)

)
(3.7)
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3.1. Making the QCD path integral finite

of path-ordered, continuum, gauge transporters

G(x, y) = P exp

(
i

∫
Cxy

A · ds

)
, (3.8)

between two neighboring sites x = an, y = an+ aµ̂. The approximation is correct up to
order O(a), at which no path-ordering (P ) is necessary.

The links obey the following relation

U−µ(x) = U−1
µ (x− µ̂) = Uµ(x− µ̂)† (3.9)

because Uµ is unitary and directional. Note that any closed loop of links variables is
automatically gauge invariant.

3.1.2. The discretized Dirac operator

For the fermion action the continuum Dirac equation has to be mapped onto the lattice.
Its naive derivative discretization is

∂µψ(x) =
1

2a

(
ψ(x+ µ̂)− ψ(x− µ̂)

)
. (3.10)

Examining the Fourier transformed operator of this free, massless theory in a box with
discrete spacetime points it is easy to see that the inverse of the operator γµpµ has
unphysical poles at the boundaries of the Brillouin zone pµ = π/a which are called
doublers. These doublers can be removed by an additional term that vanishes in the
continuum. The result is the so-called Wilson Dirac operator

D(f)
W (y ← x) =

(
m(f) +

4

a

)
δxy −

1

2a

±4∑
µ=±1

(1− γµ)Uµ(x)δy+µ̂,x (3.11)

which already incorporates the gauge links Uµ for gauge invariance. This non-unique
choice of the Dirac operator lattice discretization is commonly rewritten as DW = C(1−
κH), where the normalization C = m+ 4/a is absorbed into the definition of the fields
[ψ̄, ψ], κ = (2(am+ 4)−1 is called the hopping parameter and the hopping term

H(y ← x) =
∑
µ

(1− γµ)Uµ(x)δy+µ̂,x (3.12)

collects all the derivatives. The additional term comes at a price since it does break
chiral symmetry of the massless Dirac operator explicitly. A theorem by Nielsen and
Ninomyia states that there cannot be a lattice regulated theory free of doublers and
obeying chiral symmetry [7171]. This is often referred to as the no-go theorem. A possible
solution to this problem is to only require chiral symmetry restoration in the continuum
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as expressed by the Ginsparg-Wilson equation

Dγ5 + γ5D = aD γ5D. (3.13)

The relation, which was found in [7272], was put to use in 1997/98, when two Dirac
operators obeying above equation where found [7373, 7474].
An important property of all discretized Dirac operators which are discussed here is

that they are γ5 hermitian:

D†(n,m) = γ5D(m,n) γ5 (3.14)

This property is also inherited by quark propagators M which are the inverse of the
Dirac operatorM = D−1.

3.1.3. Gauge action

The field strength tensor in the continuum gauge action (eq. (2.102.10)) can be interpreted
as a generalized curl of the gauge potential. This motivated Wilson to propose a gauge
action made out of small loops. The smallest loop (illustrated in fig. 3.13.1)

Pµν(m) = Uµ(m)Uν(m+ µ̂)U−µ(m+ µ̂+ ν̂)U−ν(m+ ν̂) (3.15)

= Uµ(m)Uν(m+ µ̂)Uµ(m+ ν̂)†Uν(m)†

is called the plaquette. The unique sum over all available plaquettes turned out to
converge to the continuum gauge action in the limit a → 0. This so-called Wilson
plaquette action is defined by

SG[U ] =
β

3

∑
m∈V

∑
µ<ν

Re tr [1− Pµν(m)] (3.16)

with β = 6/g20 and is equal to
∑

m Fµν(m)2 up to corrections of O(a2). Generalizations
for different number of colors Nc are straight forward.

3.1.4. Improved actions

The gauge and fermion action presented before have cut-off effects of O(a2) and O(a)
respectively. These orders can be improved by following the Symanzik improvement
program [7575]. Please note that hadronic matrix elements and quark masses are also
subject to discretization errors which can and should be improved following the same
program.
TheO(a) cutoff effects of theWilson fermion action can be removed if the Sheikholeslami-

Wohlert term [7676]

Ssw
F [ψ,ψ, Uµ] = cswa

5
∑
n

∑
µ<ν

ψ(n)
1

2
σµνF̂µν(n)ψ(n) (3.17)
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a

µ

ν

n

Uµ(n)

U−µ(n) =

U †
µ(n− aµ̂)

ψ(n), ψ(n)

m m+ aµ̂

m+ aµ̂+ aν̂m+ aν̂

Uµ(m)

Uν(m+ aµ̂)

U †
µ(m+ aν̂)

U †
ν (m) Pµν(m)a

µ

ν

n

Uµ(n)

U−µ(n) =

U †
µ(n− aµ̂)

ψ(n), ψ(n)

m m+ aµ̂

m+ aµ̂+ aν̂m+ aν̂

Uµ(m)

Uν(m+ aµ̂)

U †
µ(m+ aν̂)

U †
ν (m) Pµν(m)

Figure 3.1.: Fermion fields ψ(m), link variables Uµ(m), and the plaquette Pµν(m) in the
µ-ν-plane of the lattice Λ.

is added. A common choice for the discretization of the field strength tensor F̂µν is

F̂µν(n) =
1

8a2

[
Qµν(n)−Q†

µν(n)
]

(3.18)

with Qµν(n) = Pµ,ν(n) + Pν,−µ(n) + P−µ,−ν(n) + P−ν,µ(n).

The variables P±µ,±ν refer to plaquettes (eq. (3.153.15)) of different orientations. Due to
the pictorial representation (fig. 3.23.2) of F̂µν the extra term is often called Clover term.
The coefficient csw depends on gauge and fermion parameters. It can be determined
perturbatively as well as non-perturbatively. The tree level value is 1.

Improved gauge actions incorporate extended plaquettes. The weights of the individ-
ual extended plaquettes are restricted by positivity of the action. The remaining degrees
of freedom can be determined by different, non-unique criteria. Improvement of spec-
tral quantities to first order in perturbation theory yields the so-called Lüscher-Weisz
action SLW [7777]. Renormalization group considerations motivate other choices, e.g. the
so-called Iwasaki action [7878]. Note that this improvement does not remove leading order
gauge action cut-off effects of any observable.

Fermion actions can be further improved by smearing the links (see section 3.3.33.3.3) of
the covariant derivative. Smeared Wilson fermions break chiral symmetry in a much
milder way than their thin link counterparts [7979]. Furthermore smearing stabilizes the
generation of configurations [8080].
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x
ν

µ

Figure 3.2.: Clover term

3.2. Gaugefield generation

So far the partition function is integrated over all possible discretized field configurations
[ψ̄, ψ, Uµ]. Instead of performing the full integral over gauge and fermion fields, the
fermion part of the lattice QCD action can be integrated out analytically [8181] due to the
fact that the fermion field variables are represented by Grassman variables ηm,f . The
expectation value of an operator therefore becomes

〈O〉 = 1

Z

∫
D[ψ̄, ψ, Uµ] ·O[ψ̄f1 , ψf2 , Uµ] · e−SG[Uµ]−

∑
x

∑
f ψ̄

fDψf

=
1

Z

∫
D[Uµ] ·O[Mf1 ,Mf2 , Uµ] · e−SG[Uµ] ·

∏
f

detDf (3.19)

with the partition function

Z =

∫
D[Uµ] · e−SG[Uµ] ·

∏
f

detDf (3.20)

as normalization.
The remaining multi-dimensional integral over [Uµ] on all sites of the lattice is evalu-

ated by means of importance sampling techniques: Samples are drawn from the finite-
dimensional and continuous configuration space. Instead of directly generating suitable
configurations an updating algorithm is used that transforms the current configuration
into a new one. This is done with Monte Carlo methods. Several such methods are
commonly used [8282]:

• Metropolis: Loop over sites and apply probable transitions from the current value.
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3.3. Measurement of correlation functions

• Heatbath: Loop over sites and find suitable alternative values without using the
current value.

• Hybrid Monte Carlo (HMC) [8383]: Treat fields as generalized coordinates, introduce
random conjugate momenta to the action and evolve this system in an additional
Monte Carlo time. The conjugate momenta must be redrawn periodically. Accept
reject steps are necessary.

The generation of a new ensemble can either start from a unit configuration or a
random SU(3). The first is commonly called a cold start and represents the free theory,
whereas the latter is called a hot start representing infinite coupling. Both starting
points require the trajectory to thermalize before measurements provide reliable data
[6868].

Also note that successive configurations are usually not independent. In theory, mea-
surements should only be performed on configurations that are farther apart in Monte
Carlo time than the integrated autocorrelation time τint of the most correlated variable
or one should correctly account for the error [8484]. Typically, the topological charge is
assumed to have an appropriately large autocorrelation time.

In summary after choosing a suitable action an ensemble of lattice gauge configurations
depends on a small number of important parameters. The gauge coupling β determines
the approximate lattice spacing a and the hopping parameter κ or the bare mass m0 for
the individual quarks is responsible for the mass of the sea quarks. The lattice spacing
and the volume V = N3

s × Nt set temperature T and physical volume. The action
might include an ambiguous choice of improvement parameters. Note that the mapping
between bare and physical values usually depends on all parameters: e.g. the mass of
a sea quark depends on the choice of the action including the number of flavors, the
lattice spacing (and therefore on β) and lastly on the bare mass parameter κ or m0. In
practice HMC simulations require additional parameters to set the length of a trajectory,
separate the integration of low modes from high modes, tune the acceptance rate and
ultimately influence the autocorrelation time.

3.3. Measurement of correlation functions

One of the most important quantities lattice QCD provides are hadronic correlators.
They are measured by constructing hadronic creation and annihilation operators such
as the local mesons interpolators

Oa(x) = ψ
f1
(x) Γa ψ

f2(x) , Ob(y) = ψ
f2
(y) Γb ψ

f1(y) (3.21)
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which are then combined into a suitable trace upon which the necessary wick contractions

〈
Oa(x)Ob(y)

〉
=
〈
d(x)Γau(x)u(y)Γbd(y)

〉
=
〈
Md(x← y)ΓaMu(x← y)Γb

〉
=
〈
γ5Md(y ← x)†γ5ΓaMu(x← y)Γb

〉
(3.22)

are preformed. These correlators must be averaged over all color indices to become gauge
invariant. Note that if the quark types are identical - as for a hypothetic qq̄ meson - it is
furthermore necessary to contract the quarks locally. The hadronic two point function
then contains an additional disconnected contribution〈

Oa(x)Ob(y)
〉
disc.
∝
〈
γ5Mq(y ← y)†γ5ΓaMq(x← x)Γb

〉
. (3.23)

3.3.1. Quark sources and propagators

The full propagatorM is a complex matrix of size (Nc×Ns×V )2 which does not fit into
the memory of current computer architectures at quark masses and volumes required to
take the physical limit. Instead of inverting the full matrix, one uses the translational
invariance (in the ensemble average) of the problem and inverts only a few suitably
chosen columns

Dψ = η → ψ = D−1η (3.24)

which will be referred to as quark sources η, where the Dirac operator D is a large
sparse matrix, the source η is known and ψ is the desired solution. This is a common
problem in linear algebra which can be solved by Krylov subspace based algorithms like
CG [8585], BiCGStab [8686] or GMRES [8787]. All of these show critical slowing down when the
lattices become larger and the light quark masses approach physical values. Recently
(algebraic) multigrid methods have been developed that overcome this problem [8888, 8989].
They require a (costly) setup that can be reused for arbitrarily many fast solves on the
same configuration.

One-end trick

The signal to noise ratio of hadronic correlators can be improved by stochastic wall
sources, most notably for momentum zero. The requirement to compute NsNc = 12
sources can be circumvented for mesons by also seeding the color and spin indices. The
combined method for a single specific spin contraction was first introduced in [9090].
Consider a generic meson two-point function CΓ(τ = t′− t,p) after Wick contraction.

Instead of inverting only one column of the matrix - like for a local source - a stochastic
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identity

1

Nk

Nk∑
k=1

ηkηk∗ = 1 +O
(
N

1/2
k

)
(3.25)

with complex Z2 noise vectors

ηkα,c =
1√
2
(r1,k ± ir2,k) (3.26)

seeded on the source time slice t, is inserted between the desired propagators:

CΓ(τ,p) =
∑
x,y

e−ip(y−x) × tr
[
ΓM1(y, t

′ ← x, t)ΓM2(x, t← y, t′)
]

(3.27)

=
1

Nk

∑
k,y

e−ip(y−x) × tr
[
ΓM1(y, t

′ ← x, t)ηkηk∗ΓM2(x, t← y, t′)
]
.

The sum over x is replaced by an stochastic average, and after identifying

χk1,0 =M1(y, t
′ ← x, t)ηk

χk,Γ2,p =M2(y, t
′ ← x, t)Γeipxηk, (3.28)

the contraction becomes a simple scalar product

CΓ(τ,p) =
〈
χk,Γ2,p

∣∣∣Γχk1,0〉 . (3.29)

Note that one can use different operatorsM1 6=M2, insert smearing at source, sink or
both, or use other noise (as long as eq. (3.253.25) is fulfilled). A generalization to compute
all spin combinations by using an explicit spin is presented in [9191]. This is also known
as spin dilution.

3.3.2. Quark wave functions

Hadrons are extended objects and an improved overlap with physical quark wave func-
tions demands extended quark sources. Approximately Gaussian wave functions can be
constructed by iterating the following update procedure

ψn+1(x) =
1

1 + 2(Nd − 1)κ

[
ψn(x) + κ

∑
i

Uiψn(x+ ı̂) + Uiψn(x− ı̂)

]
(3.30)

where the number of iterations N and the parameter κ control the width. This is
commonly called Wuppertal smearing [9292]. Other methods include a superposition of
different number of smearings [9393], specialized smearing for momentum source [9494], using
low eigenmodes of the 3D Laplacian [9595], and Jacobi smearing [9696]. Jacobi smearing
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provides wave functions with a sharper peak and longer tails than Wuppertal smearing.

3.3.3. Gauge Smearing

High frequency fluctuations of the gauge fields make the quark smearing techniques
erratic and significantly distort the resulting source [9797]. Using a smeared gauge field
for quark smearing will damp these fluctuations which the wave function should anyway
be insensitive to. There are several (iterative) methods most of which rely on the sum
of alternate paths such as the staple

U sµ(m) =
∑
±ν 6=µ

Uν(m)Uµ(m+ ν̂)U−ν(m+ µ̂+ ν̂) (3.31)

which is no longer ∈ SU(3). Gauge smearing is slightly more complicated then quark
smearing because the smeared gauge link Ũµ must still remain in the group SU(3). An
APE link smearing iteration [9898] just averages the original link and the attached staple

U (n)
µ (m)→ U (n+1)

µ (m) = PSU(3)

(
αAPEU (n)

µ (m) + U s,(n)µ (m)
)

(3.32)

with intermediate non-analytical back projection

PSU(3)V = X ∈ SU(3) for maxRe tr
[
XV †

]
(3.33)

Another method called HYP smearing sums all paths within the hypercubes attached
to the original link [9999].
An alternative to the above are multiplicative smearing procedures whose fat links

remain in the same group as the thin links. They require no projection, allow thin link
derivatives (and forces) and can therefore be used to modify the dynamic fermions in the
HMC. The simplest example Stout smearing [100100] has the following iteration prescription

U (n+1)
µ (m) = eiQµ(m) U (n)

µ (m) (3.34)

with Qµ(m) =
i

2

(
Ω(m)− Ω(m)† − 1

3
tr
[
Ω(m)− Ω(m)†

])
and Ω(m) =

∑
±µ 6=ν

ρµνU
s,(n)
µν (m)U (n)

µ (m)†

and uses the same staples as above. The coefficients ρµν are real. A nested combination
of Stout and HYP smearing that combines their advantages is called HEX smearing [7979].
Note that the number of smearing iterations N and the other parameters depend on

the application. Link smearing for the hopping term of quark smearing (eq. (3.303.30))
usually has many iterations and is only done in the spatial volume within the same time
slice. Smearing of dynamic fermions includes all directions and uses comparatively little
iterations N because many iterations require complicated and costly force terms.
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q = p′ − p

p p′

Figure 3.3.: Lattice three point function

3.3.4. Matrix Elements

Apart from masses LQCD can also provide matrix elements. Two point functions give in-
formation about hadronic decay constants [101101] and moments of the hadron distribution
amplitudes [102102]. Suitable operators can be inserted between hadronic states, yielding
insight about semileptonic decay, form factors (see for example [103103]) and generalized
parton distributions. Recently a second operator has been inserted testing factoriza-
tion properties of various currents [104104]. All such matrix elements have to be properly
normalized, can be improved and should be renormalized for continuum extrapolation.

Decay constants

Decay constants give information about the coupling between hadron and the vacuum.
The pseudoscalar decay constant can be extracted from the zero momentum relation

mπfπ = 〈0|A4|π〉 (3.35)

where the local axial current A4 is assumed to be renormalized and improved. The
unrenormalized A4 current appears in the large t limit of the correlator

CLSA4P (t) =
〈
ū(t)γ4γ5d(t)d̄(0)γ5u(0)

〉
t→∞
= 〈0|A4(t)|π〉〈π|P (0)|0〉 e−mπt = ALSA4P e−mπt (3.36)

where the superscripts L and S identify local and smeared interpolators. Using the
source and sink smeared pseudoscalar correlator

CSSPP (t)
t→∞
= |〈0|P (t)|π〉|2 e−mπt = ASSPP e−mπt (3.37)

and the lattice normalization〈
πp|πp′

〉
= (2π)3 2p0δ(p− p′) (3.38)

yields the unrenormalized and unimproved decay constant in form of

mπf
(0)
π =

√
2mπA

LS
A4P√

ASSPP

. (3.39)
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Following [105105] the renormalized and improved current is

Aµ = (1 + bAamq)ZA (Aµ + cAa∂µP ) (3.40)

where cA is the improvement coefficient of the current and bA describes the quark mass
dependence (to first order in am) of the renormalization constant ZA. There are pertur-
bative [106106, 107107] and non-perturbative methods [108108] for setting these coefficients. The
improvement term can be evaluated with

af (1)π = f (0)π sinh (amπ)
ALSPP
ALSA4P

(3.41)

fπ = (1 + bAam)ZA

(
f (0)π + cAaf

(1)
π

)
. (3.42)

3.3.5. Analysis

On the lattice we (mostly) measure correlation functions. Extracting the physic quan-
tities of interest in the continuum requires complicated analysis, which can roughly be
split into two parts. The analysis of a single ensemble depending on the bare parameters
β,mq and the following extrapolation of multiple ensembles towards the physical point.
There a several analysis methods generally used, which will be mentioned here or be
detailed in appendix AA.
Ground state masses and matrix elements of hadrons must be extracted from the large

t behavior of correlators. Theses correlators are fitted to test functions in an appropriate
t interval. A suitable choice can be found by examining so the called effective mass
(illustrated in fig. 3.43.4) given by

meff,exp (t+ 1/2) = ln
C(t)

C(t+ 1)
(3.43)

for states that decay sufficiently fast or by inverting

C(t)

C(t+ 1)
=

cosh(meff,cosh(t−Nt/2))

cosh(meff,cosh(t+ 1−Nt/2))
(3.44)

for (back propagating) mesons.

3.4. The physical limit

The physical limit consist in extrapolations of lattice spacing a→ 0 to the continuum, the
quark masses mq to their respective physical values and the volume V to infinity. Matrix
elements and quark masses require renormalization and can be improved. Hadronic
masses are on shell quantities which are automatically improved when the action is
improved (see section 3.1.43.1.4). Before the extrapolation we need to relate the bare lattice
parameters β, {mq} to values in physical units. The quark masses are usually related to
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Figure 3.4.: Effective mass meff,cosh of various light and strange pseudoscalar mesons on
the ensemble L0 (see table 5.15.1). The bands are masses mi from cosh fits to
corresponding correlators. The slopes on the left side are due to exited state
contamination.

the masses of hadrons: The light quarks mass mud is set by the mass of the pion mπ and
the strange quark can for example be tuned with the kaon mass mK . Most of the time
one does not calculate the quark masses but rather extrapolates in the aforementioned
meson masses.

3.4.1. Scale setting

Dimensionless lattice QCD observables, such as masses am, must be converted to phys-
ical units with the lattice spacing a. There are several methods for determining the
lattice spacing all of which depend upon extrapolation to physical or zero quark masses.

• The natural way is to use a hadron mass m̃x = amx in the physical (or chiral) mass

limit. The lattice mass ratio rx(mq) =
amx(mq)
amπ(mq)

is extrapolated to the physical value

rexp. = rx(m
∗
q), where mx(m

∗
q) can be identified as the experimental mass. The

lattice spacing is then given by a = m̃x(m
∗
q)/m

exp.
x . Suitable choices include the

nucleon, and Ξ- or Ω−baryon masses [109109] which require a simultaneous strange
mass extrapolation.

• One can evaluate the static (infinitely heavy) quark-antiquark potential V (r) on
the lattice and fix the dimensionless product r2i ∂rV (r)|r=ri = ci at a reference scale
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ri to values ci known from phenomenology. The two reference points commonly
used are c0 = 1.65 at r0 ≈ 0.5fm [110110] and c1 = 1 at r1 ≈ 0.36fm [111111]. Note that
these reference points are model dependent or can be set with lattice simulations
that relate them to experimentally accessible observables in the continuum limit.

• Another secondary method uses the Wilson flow [112112, 113113]. The gauge fields are
evolved in an extra flow time t until the action density E(t) fulfills a dimensionless
condition such as t20 〈E(t0)〉 = 0.3 or t∂t{t2 〈E(t)〉}|t=w2

0
= 0.3. The experimental

scales
√
t0, w0 must be determined by an initial continuum (and mass) extrapola-

tion, which uses lattice spacings determined with for example hadron masses. The
experimental values can then be used for future simulations.

3.4.2. Finite volume effects

Mass (and other) observables on the lattice suffer from finite size effects because the
particle itself and other force mitigating particles may propagate around the periodic
lattice [114114]. Gluons are screened at large distances and their finite volume contribution
can be neglected. The contribution of massive particles is exponentially suppressed with
exp(−mL) making the leading finite size effects explicitly dependent on the lightest
particles: the pion(s). Another possible effect is that large wave functions, e.g. exited
states, might be squeezed, which results in power law finite size effects [115115].
Finite volume effects can be integrated into the chiral extrapolations described below

by replacing χPT continuum loop integrals with the sums over all discrete momenta.
One assumes that LQCD finite size effects on a lot of observables can be neglected
for mπL ≥ 4 [2424]. In these cases it is sufficient to assert that the results are volume
independent.

3.4.3. Operator improvement

Lattice interpolators O(g0) can be O(a) improved in the same way as lattice actions
(see section 3.1.43.1.4). One identifies all terms with the same quantum numbers at a fixed
(the next) dimension. Then lattice EOM are used to remove redundant terms. The
remaining terms can simply be combined with the naive term to obtain the improved
interpolator

OI
x = O(0)

x (g0) +
∑
i=1

c(i)x O(i)
x (3.45)

The improvement coefficients c
(i)
x depend on the action S and on the coupling g20. They

are usually known to LO in lattice perturbation theory (LPT), where they are independent
of the fermions [116116]. Nonperturbative determination for specific cases show significant
deviations from the LO results indicating that LPT is poorly convergent [108108]. The
improvement coefficient cA for the axial current (eq. (3.423.42)) can be obtained by imposing
the PCAC relation which will be covered in section 4.24.2.
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3.4.4. Renormalization

A lattice simulation is a particular regulator that depends on the choice of fermion and
gauge action. The resulting operators - such as quark bilinears q̄1Γq2 - must be converted
to a suitable continuum scheme for comparison. The matching can formally be given by[

Ocont
Γ (gR,mR, µ)

]
R
= lim

a→0

[
ZOΓ

(g0, aµ)O
lat
Γ (g0,m)

]
(3.46)

Perturbative determination of renormalization constants ZO is in principle possible,
but because lattice PT is unreliable the methods of choice are non-perturbative [117117].
The most common of those is called RI/MOM (regularization independent momentum
subtraction) [118118]. It computes amputated lattice Green functions ΛO(q2) in a fixed
gauge which are then - by virtue of the renormalization condition - matched with ZRI

O

to their tree level value at the renormalization scale µ2 = q2. These results are then
extrapolated to the chiral limit to become mass independent. Finally the ratio RO(µ) of
renormalization constants in continuum momentum subtraction regularization and the
desired continuum regulator can be calculated in perturbation theory at the order of
choice. The renormalization scale µ is bounded by the so-called renormalization window

ΛQCD � µ� a−1 (3.47)

which assures that perturbative matching calculations are possible and that the non-
perturbative Green function is not affected by the lattice cutoff a−1.

Mass independent renormalization requires us to scale the renormalization constants
with the ’average’ composite quark mass

amq =
1

2
(amq1 + amq2) =

1

4

(
1

κ1
+

1

κ2
− 2

κcrit

)
(3.48)

The final O(am) renormalization prescription for composite operators in the MS scheme
becomes

OMS
R (µ) = RO(µ)ZRI

O (g0, aµ) · (1 + bmamq + b̄mam̄)O(g0) (3.49)

where bm (b̄m) encodes the valence (sea) quark mass dependence. The sea quark mass ef-
fect for dynamical QCD ensembles is unknown and usually neglected. The valence quark
contribution bm is of O(1) causing substantial corrections for large (e.g. charm) quark
masses. Note that the renormalization constants ZS,P,T (g

2
0, aµ) are renormalization scale

dependent whereas ZV,A(g
2
0) and the ratio Zs/Zp(g

2
0) are not.

Alternative determination or restriction of renormalization constants ZO and mass
dependence bm include the use of ward identities [117117] or the Schrödinger functional
(SF) [2222].
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3. Lattice QCD

3.4.5. Chiral and continuum extrapolation

After renormalization and determination of lattice quark masses and spacing a the re-
maining task is the extrapolation to physical mass values in the continuum. The mass
extrapolation by virtue of χPT (see section 2.4.22.4.2) is formulated in the continuum and
requires to extrapolate lattice observables to the continuum before it is performed. Al-
ternatively combined extrapolations can be constructed which require integration of
discretization effects into χPT. This can be done by constructing a continuum EFT of
the lattice theory for p � a−1. The terms in the Lagrangian of the so-called Symanzik
theory [7575] can be separated into the desired continuum contributions and discretiza-
tion effects proportional to powers of a. The theory is truncated at the required order
and then used to construct a modified χPT that includes explicit dependence on the
lattice spacing a. The combined approach has the advantage that it simultaneously
describes different discretization effects of multiple observables and that the polynomial
extrapolation a→ 0 is extended by non-analytic cutoff dependent terms [6060].
Although partially quenched QCD is unphysical and non-unitary most of the LECs of

partially quenched χPT (PQχPT) are identical to normal χPT. Partially quenched lat-
tice simulations therefore provide additional input to disentangle sea quark from valence
quark effects. Furthermore unphysical observables can be used to determine specific
LECs.
An alternative to χPT is a Taylor expansion in the quark masses mq around the flavor

symmetric pointmu,d,s = m̄ which can be determined by using singlet mass combinations
such as X2

π = (m2
π + 2m2

K)/3. Keeping the light quarks degenerate and the sum of the
quark masses fixed results in highly constrained extrapolations [119119].
In practice often multiple approaches are used to estimate the systematic error of the

extrapolation as for example done in [120120]. The different approaches might vary extrap-
olation ordering, try different formulations of χPT (SU(2) or SU(3) and NLO or NNLO)
or some alternative, fix parameters to values known or estimated from other sources and
include cuts on the lattice spacing, pion masses or volumes. The mentioned possibilities
are by no means complete. The individual results can additionally be weighted according
to their likeliness.
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4. QCD+QED

The following chapter intends to outline the methods required for QCD+QED simula-
tions on the lattice. The current status of QED field generation and the main difficulties
compared to pure QCD calculations will be covered: This includes gauge choices, differ-
ent QED formulations, finite-size effects and the quark mass definition.

Wilson’s initial lattice gauge theory paper [1212] discusses compact lattice QED for
the investigation of confinement. Subsequently, the first simulations studied its phase
structure [121121, 122122] and the static potential [123123]. It took more than 20 years to show
that the confinement phase transition at β ≈ 1 is of order one [124124]. Amongst many other
applications lattice QED can also be used to examine the triviality of QED [125125, 126126].

The simulations of QCD+QED on the lattice started in 1996, with fully quenched
simulations performed by Duncan et al. [127127, 128128] yielding the first results on elec-
tromagnetic charge splittings of light hadrons. Their results also allowed to estimate
the non-degenerate up- and down quark masses, which cannot be measured directly
in experiments. This was further refined by [129129, 130130] with dynamic QCD fields, a
first investigation of finite-size effects and chiral extrapolations. The first fully dynami-
cal simulation used reweighting [131131]. Systematic errors of quenching and finite-volume
were discussed in [132132]. The effects of electromagnetic charge on charmed mesons, which
belong to the so-called gold plated observables, have not been investigated.

Recently all efforts have accumulated into a fully unquenched QCD+QED simulation,
yielding post- as well as predictions of baryon octet splittings with controlled systematics
from first principle [120120].

The quark mass scale in QCD+QED simulation is determined by connected charge
neutral pseudoscalars. Instead of dynamical QED fields, the effect of a large magnetic
background is an alternate area of interest [133133]: Corresponding physical systems can
either be found in heavy ion collisions or are assumed in the big bang/neutron stars.
Many of the required methods are the same and improvement as well as a better quark
mass definition become desirable.

Until recently all QCD+QED simulations have only calculated masses and neglected
matrix elements as well as the probably largely suppressed disconnected contributions.
A current paper [134134] outlines extended requirements and methods for the calculation
of hadronic processes at O(αem) in the background of QCD+QED.

4.1. Simulation

QCD+QED simulations on the lattice utilize a lot of techniques from pure QCD sim-
ulations, which have to be extended to meet the requirements of the modified theory
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4. QCD+QED

[120120, 127127, 129129]. Commonly an additional non-perturbative11 QED field Bµ(n) is incorpo-
rated into the calculation of hadron lattice correlators. An alternative are calculations
that explicitly evaluate QED correction diagrams in the background of (isometric) QCD
at fixed order O(αem) [135135]. The next section covers the most used partially quenched
QED setup [136136], which neglects the charge of the sea quarks. Unquenching of QED
is either achieved in a full simulation [120120], or via reweighting [131131]. Regardless of the
charge of the sea quark all previously mentioned options require to fix the QED gauge,
either implicitly or explicitly. Gauge invariant lattice QED is possible with modified
boundary conditions [137137]. A further complication are severe finite-volume effects of the
long ranged QED, which have power law dependencies in contrast to the exponential
behavior of QCD [135135, 138138, 139139].
The continuum QCD+QED fermion action (of a single quark flavor f) can be written

as

SF =

∫
d4xψ

(f)
(x)
[
iγµ

(
∂µ + iAµ(x) + ie(f)Bµ(x)

)
−m(f)

]
ψ(f)(x) (4.1)

with fractional electric quark charge e(f) and the positron charge absorbed into Bµ.
Following analogous compactification and discretization as for QCD

U em,(f)µ (n) = exp
(
ie(f)Bµ(n)

)
(4.2)

the QED field can be incorporated into the Symanzik improved fermion operator for a
flavor f as

DQCD+QEDψ(f)(n) =

(
m

(f)
0 +

4

a

)
ψ(f)(n)

− ia

4

[
cswσµνFµν(n) + cemσµνG

(f)
µν (n)

]
ψ(f)(n)

− 1

2a

∑
±µ

(1− γµ) U (f)
µ (n)ψ(f)(n+ µ̂) (4.3)

with

U (f)
µ = UQCDµ × U em,(f)µ , (4.4)

and either compact or non-compact QED field strength tensor G
(f)
µν . The same choice

applies to the lattice gauge action. The coefficient cem has the same the tree-level value
1 as its QCD equivalent csw.

1We hereby mean that QED is evaluated to all orders. Lattice QED itself is - unless it is compact and
in the confined phase - still perturbative.
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4.1. Simulation

4.1.1. Partially quenched

The majority of QCD+QED simulations up to the present are partially quenched,
meaning they employ dynamic sea quarks without charge [127127–130130, 140140]. According
to [136136, 141141] the effects of QED quenching on O(α) corrections are at leading order
proportional to tr[Q̂M]. For Nf = 2 + 1 the charge matrix Q̂ is traceless and M is
the block diagonal QCD quark propagator that contains all three quarks. Quenching
errors are therefore flavor breaking effects and comparison with flavor breaking observ-
ables amounts to quenching errors on the QED splittings which are maximally 10% in
the physical mass limit. Another estimate relies on PQχPT: Pseudoscalar masses and
pion mass splittings might have negligible errors, whereas kaon mass splitting errors
are estimated to be 5% [132132]. PQχPT predicts that Dashen term like differences have
suppressed dependence on the charge of the sea quarks [142142].

Ignoring the systematics of quenching and the possible complications of the un-
quenched HMC we believe that partially quenched calculation offer some systematic
advantages:

• The QED coupling can be set to the exact physical value.

• The QED background does not break the ±Bµ symmetry, which can be averaged
over for a largely improved signal [129129].

• More generally there a no singled out, ’correct’ quark charges, making the use of
unphysical charge combinations straight forward.

• For actions with explicitly broken chiral symmetry the quark masses can be easily
tuned to known values from the QCD calculations.

Compact QED

The QED vector gauge potential can be discretized analogously to QCD: Instead of
simulating the fields links become the degrees of freedom and one can apply the same
methods for their generation and gauge fermion interaction as for the QCD links. The
slightly modified methods are discussed in appendix C.2C.2. The whole simulation is simply
extended by a complex phase of the gauge links, for the individual quark families. The
compact gauge action

SQEDG =
βQED
4

∑
n

∑
µ,ν

Re [1− Pµν(n)] (4.5)

is given in terms of the corresponding U(1) plaquette Pµν(n).
In the authors opinion, there are certain disadvantages of the compact formulation:

• The coupling requires multiplicative renormalization because of implicit self-interaction
in the action. The corresponding renormalization constant is close to 1 for physical
electromagnetic coupling.
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4. QCD+QED

• Gauge fixing is not implicit in the configuration generation.

• Measurements are bound to integer charges eq after the initial, free choice of the
coupling.

• The generation by update schemes implies an additional autocorrelation time τint.
Furthermore a Monte Carlo trajectory can be stuck in configuration space.

Non-compact QED

In contrast to the non-abelian QCD, it is straightforward for QED to discretize also the
abelian vector gauge potential Bµ. The action of the fields Bµ is local and decouples in
momentum space. The non-compact generation requires a specific gauge choice, but con-
figurations can be transformed to other gauges after generation. Technical notes on the
generation of quenched, non-compact QED gauge fields can be found in appendix C.1.1C.1.1.

4.1.2. Full QCD+QED

Fully dynamic QCD+QED calculations are technically challenging and expensive. Some
of the additional complications are

• It is necessary to renormalize αem because of the effects of the sea quarks.

• Additional extrapolations due to two non-degenerate, light quark masses are re-
quired. Fermion actions that explicitly break chiral symmetry at finite lattice
spacing require better tuning due to the unknown critical hopping parameter κc
for the different charges eu,d(,s,c).

• Broken vBµ symmetry (with v ∈ R), making it impossible to cancel O(e) noise by
averaging over ±Bµ.

• The Dirac operator for non-degenerate light quark masses is no longer protected
from negative determinants and the applicability of RHMC must be validated after
the simulation [120120].

Nevertheless some simulations have already been carried out [131131, 143143, 144144].
Recently an impressive effort culminated in the calculation of baryon splittings with

fully controlled systematics [120120]. Their simulations were performed at unphysically
large electromagnetic coupling such that physical terms quadratic in the charge Q dom-
inate over linear noise terms. The coupling was renormalized with the Wilson flow.
Results were then extrapolated to physical coupling. Analytic higher order finite vol-
ume corrections were used.
Dynamic lepton loops that screen the QED vacuum can be safely neglected because

the running of the QED coupling above µ = 2me+ is a (weak) O(α2
em) effect that would

modify αem by only approximately 1%.
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4.1. Simulation

4.1.3. Simulations at fixed O(αem)

Given that O(α2
em) corrections are decreased by approximately another factor 100, lead-

ing order QED corrections are currently sufficient to control QED systematics. Expand-
ing the full QCD+QED path integral in (e2,∆mud) around isometric (e2 = 0,mu = md)
QCD configurations and evaluating all contributing diagrams yields equally viable re-
sults for leading isospin breaking effects [135135]. This setup can also be used to evaluate
diagrams that do not factorize into hadronic and leptonic currents [134134].

4.1.4. Gauge dependence

QED correlators and matrix elements of charged hadrons in a periodic box are not gauge
invariant [120120]. Their calculation therefore requires gauge fixing: Landau and Coulomb
gauge conditions are easy to implement in compact QED, Feynman gauge is practical in
non-compact QED. Note that all of these gauge choice have global gauge ambiguities.
Furthermore Gauss’ law

∇ ·E(x) = ρ(x) (4.6)

is violated for a single charged particle on the torus [145145, 146146]: After volume integration
of both sides the left side vanishes whereas the right side gives the charge.

This can be fixed by a uniform background charge density which cancels the charge
and thereby removes the zero modes of the gauge field in momentum space

B̃µ(k = 0, k0) = 0. (4.7)

Momentum volume integration no longer includes k = 0 and therefore no degrees of
freedom B̃µ(0, k0) ∝

∑
xBµ(x, k0). This condition is commonly referred to as QEDL.

QEDC

An alternative to periodic boundary conditions and quenching of zero modes is inves-
tigated in [137137]: QEDC implements C∗ boundary conditions [147147, 148148] in one or more
spatial directions. The gauge zero modes do not exist due to anti-periodicity of the
gauge fields in spatial directions Bµ(x + L̂µ) = −Bµ(x). These boundary conditions
break flavor symmetry, which is sufficiently suppressed by a factor e−µL, where µ is a
function of hadron masses participating in the polluting mixing. The charge q is no
longer a conserved quantum number, but it becomes quantized in units of an elemen-
tary charge qel and (−1)q/qel is still conserved, i.e. charge conservation is only violated
in units of 2qel. The resulting theory is local, renormalizable, gauge invariant and has
smaller finite volume effects then, e.g. QEDL. Modified quark field interpolators allow
the computation of most particles of interest. The formalism is applicable in compact
and non-compact formulation.

49



4. QCD+QED

4.1.5. Finite size effects

When QED is simulated in a finite size box Ld−1×T with periodic boundary conditions
charge dependent observables suffer from power law corrections L−n because QED is a
long range interaction. This makes explicit treatment by calculations on large volumes
and extrapolations towards infinite-volume mandatory. Finite size effects of charged
hadrons are gauge dependent [146146] and the leading order is 1/L [135135]. Further work
calculated higher orders and revealed that LO and NLO coefficients are universal [138138,
139139]

m(T, L) ∼
T,L→+∞

m

{
1− q2αem

κ

2mL

[
1 +

2

mL

]
+O

(
q2αem

(mL)3

)}
(4.8)

with the analytic parameter κ = 2.83729.... Higher orders depend on the gauge and
the structure of the hadron. The analysis in [120120] established the necessity of NNLO
corrections for the large coupling αem = 1.
Finite volume effects of fixed order calculations as discussed in section 4.1.34.1.3 might

be significantly improved by the considerations in [149149]: They propose to couple finite-
volume QCD configurations to infinite volume valence quarks and photons, which is
achieved by averaging (stochastically) over twisted boundary conditions θµ.

Massive photons

Simulations with massive photons which screen the long range interaction and extrap-
olation towards zero photon mass can resolve the finite volume issues [150150]. Hadron
correlators have an additional t2 dependence in the exponent due to the zero mode of
the temporal gauge field.

4.1.6. Continuum limit of lattice QED

QED and electroweak U(1) are UV trivial because the renormalized charge becomes
zero if the cutoff Λ is removed. This is also expressed in the running coupling constant
which has a so-called Landau Pole at some large scale ΛL. This has been investigated on
the lattice [125125] where forbidden regions of renormalized fermion mass and charge were
found.
Quenched, non-compact lattice QED has no running coupling and can therefore safely

be extrapolated to the continuum. Dynamic QCD+QED is not protected from this. The
limit a→ 0 can then be understood as an extrapolation to a scale Λ where discretization
effects are negligible and low energy QCD observables are insensitive to. Furthermore
this scale is ‘safely’ below ΛL or the Planck scale such that one can always choose the
renormalized coupling to be α̂ = 1

137 . This procedure simply acknowledges that QED
is just an effective theory and will need to be modified below ΛL, e.g. unified at the
Planck scale MP .
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4.2. Ward identities and PCAC masses

4.2. Ward identities and PCAC masses

We repeat the GMOR relation (eq. (2.322.32)) of isometric QCD

(mu +md)〈ψψ〉 = F 2
πm

2
π, (4.9)

where the quark masses are assumed to be degenerate and renormalized. When the
degeneracy is broken (either through QED charges or with different masses) this equation
can no longer be used to calculate the individual quark masses mu,d, not even in the
chiral limitm2

π → 0. Individual masses can be calculated with the use of Ward-Takahashi
identities. The formula for the QCD+QED case with domain wall fermions were first
given in [129129].

For vector and axial vector flavor variations

δψ(x) = i[αjV (x)
τ j

2
]ψ(x), δψ̄(x) = −iψ̄(x)[αjV (x)

τ j

2
] (4.10)

δψ(x) = i[αjA(x)
τ j

2
γ5]ψ(x), δψ̄(x) = −iψ̄(x)[αjA(x)

τ j

2
γ5] (4.11)

Ward-Takahashi identities [151151] assume that the expectation values of all suitable observ-
ables 〈O〉 remain invariant under the transformations above. The invariance is expressed
in terms of the identity

δ

δαjZ(x)
〈O〉 =

〈
δO

δαjz(x)

〉
−

〈
O

δSF

δαjz(x)

〉
= 0 (4.12)

which can be used to deduce relations between operators from which one can obtain
renormalization constants and fundamental parameters of the theory. Choosing local
operators 〈O(x1, . . . , xi)〉 that are well separated from the δajz(x) variation reduces the
condition to 〈

O
δSF

δαjz(x)

〉
= 0. (4.13)

This is the axial (or vector) Ward-Takahashi identity for αjz(x) from eq. (4.114.11) (or
eq. (4.104.10)). The variation of the QCD+QED lattice action SF (eq. (4.34.3)) was worked
out for meson spectroscopy in external magnetic field B [133133]. Initial results showed
inconsistencies of B field dependent meson masses between different fermion discretiza-
tions. This could be attributed to the charge and B field dependent critical mass of
Wilson fermions and resolved by tuning of the bare quark mass with the external, elec-
tromagnetic field.

For the flavor base ψ = (u, d)T the QED links can be written as a flavor space matrix
U em
µ = diag(Uuµ , U

d
µ) which do not commute with the flavor space rotation τ j of the
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transformations. The corresponding commutators evaluate to[
U em
µ , τ j

]
= iε3jk [exp(ieuaBµ)− exp(iedaBµ)] τ

k = iε3jkδU
emτk (4.14)[

U em,†
µ , τ j

]
= iε3jk [exp(−ieuaBµ)− exp(−iedaBµ)] τk = iε3jkδU

em,†τk (4.15)

and appear in interpolators with non-degenerate charges. The flavor dependent plaque-
ttes

U em,u/d
µ,ν (x) = exp

(
ieu/d a (Bµ(x) +Bν(x+ µ̂)−Bµ(x+ ν̂)−Bν(x)

)
(4.16)

in the clover term give rise to a similar difference for the vector Ward identity

δGµν =
1

8a2
[
δU em

µ,ν + δU em
ν,−µ + δU em

−µ,−ν + δU em
−ν,µ − h.c.

]
with δU em

µ,ν(x) =U
em,u
µ,ν (x)− U em,d

µ,ν (x). (4.17)

For axial transformations the anti-commutator the terms are summed to

ΣGµν =
1

8a2
[
ΣU em

µ,ν +ΣU em
ν,−µ +ΣU em

−µ,−ν +ΣU em
−ν,µ − h.c.

]
with ΣU em

µ,ν(x) =U
em,u
µ,ν (x) + U em,d

µ,ν (x). (4.18)

With these expression the final π+ vector Ward identity becomes

−a4
∑
µ

∇µxṼ +
µ (x) = a4(mu −md)d̄(x)u(x)

− a3

2

∑
µ

[
d̄(x)Uglµ (x)δU em(x)u(x+ µ̂)

+d̄(x)Ugl,†µ (x− µ̂)δU em,†µ (x− µ̂)u(x− µ̂)
]

− a3

2

∑
µ

[
−d̄(x)γµUglµ (x)δU em(x)u(x+ µ̂)

+d̄(x)γµU
gl,†
µ (x− µ̂)δU em,†µ (x− µ̂)u(x− µ̂)

]
+

i

2
cema

5d̄(x)σµνδGµν(x)u(x), (4.19)
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the axial Ward identity is

a4
∑
µ

∇µxÃ+
µ (x) = a4(mu +md)d̄(x)γ5u(x) + a4X+(x) + icswa

5d̄(x)σµνFµν(x)γ5u(x)

− a3

2

∑
µ

[
d̄(x)Uglµ (x)δU em(x)γ5u(x+ µ̂)

+ d̄(x)Ugl,†µ (x− µ̂)δU em,†µ (x− µ̂)γ5u(x− µ̂)
]

− a3

2

∑
µ

[
−d̄(x)γ5γµUglµ (x)δU em(x)u(x+ µ̂)

+ d̄(x)γ5γµU
gl,†
µ (x− µ̂)δU em,†µ (x− µ̂)u(x− µ̂)

]
− icema

5d̄(x)σµνΣGµν(x)γ5u(x), (4.20)

where the structure of the first line of both equations is identical to the pure QCD
(or flavor symmetric result) with (partially) conserved QCD point split currents on the
left hand side and the contribution of the Wilson term X+ for axial transformations.
Note that here the QCD currents contain the electromagnetic links of the conjugate
quark. The lines after the first contain the contribution terms of the coupling to the
electromagnetic field.

The axial (vector) identities of unimproved Wilson fermions were calculate with O =
P (S) for (static) external magnetic field B and dynamic αem = 1 QEDL configurations.
Up and down quark masses could be tuned with the approximate PCAC relation of
electromagnetically neutral correlators

mPCAC
f =

∂0

〈(
Ã+,ff

)
0
(x0)P

ff (0)
〉

〈
P ff (x0)P ff (0)

〉 . (4.21)

which neglects disconnected diagrams, and QCD and QED anomaly terms. Nevertheless
this approximate tuning was found to be equivalent to tuning with the mass of connected
neutral pseudoscalars. All individual, unimproved correlators of eqs. (4.194.19) and (4.204.20)
were evaluated. Charged correlators can be averaged over ±Bµ for the dynamic QED
background. The charged vector Ward-Takahashi identity was to noisy due to the corre-
sponding scalar operator O = S. The axial identity did not yield well behaved plateau
that could be fitted. A publication including the contribution of improvement terms is
in preparation [152152].
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5. QED splittings of pseudoscalar quantities

This chapter will describe the simulation of QCD + quenched QED, on Nf = 2 + 1
SLiNC configurations at physical electromagnetic coupling. Compact and non-compact
lattice QED actions are investigated. The subsequent analysis of charge splittings of
pseudoscalar masses and decay constants provides results of the isospin breaking effects,
and discusses the challenges of matrix element lattice calculations of charged hadrons.

5.1. Simulation

The goal of our simulation was to calculate electromagnetic corrections to pseudoscalar
decay constants. The simulations were started with a compact QED action, which is
described in the following section and appendix CC. Analysis yielded results inconsistent
with the expected charge dependent splittings δf(Q2,∆2). Mass dependence and anal-
ysis of finite volume effects led to the suspicion that the generated QED ensembles were
not thermalized, or that the chosen gauge was exhibiting large finite volume effects, or
both. The simulation therefore continued with the non-compact QED action, that was
used in [120120]. We will first describe the dynamical QCD ensembles, before turning to
the compact and non-compact QED specifics.

5.1.1. QCD ensembles

The QCD ensembles used in this study employed a Nf = 2 + 1 SLiNC (Stout Link
Non-perturbative Clover) fermion action and a Symanzik improved gauge action SG.
The Sheikoleslami-Wohlert coefficient csw = 2.65 was determined non-perturbatively in
[153153]. Stout smeared gauge links in the fermion action are supposed to remedy the
increase of exceptional configurations due to a large clover contribution [8080]. The quark
masses of the corresponding ensembles were chosen in a way that the sum of their
bare masses remained fixed to the value at the flavor symmetric point defined by a
dimensionless singlet quantity such as(

aXπ

aXN

)2

=
X2
π

X2
N

∣∣∣∣∗ = (M2
π + 2M2

K)/3

(MN +MΣ +MΞ)2/9

∣∣∣∣∗ , (5.1)

which is in contrast to the usual strategy of fixing the strange quark mass to its approxi-
mate physical value and varying the light quark masses for the chiral extrapolation. The
modified strategy has the advantage that the strange mass is always smaller than the
physical strange mass and extrapolation can be constrained to fewer (flavor breaking)
parameters [119119]. The lattice spacing used for tuning the symmetric hopping parameter
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5. QED splittings of pseudoscalar quantities

label β κl κs L× T mπ(MeV) Lmπ Ncfg

S0 5.50 0.12090 0.12090 16× 32 (689) 4.2 366
M0 0.12090 0.12090 24× 48 476 4.3 567
M1 0.12100 0.12070 24× 48 405 3.6 667
M2 0.12104 0.12062 24× 48 370 3.3 716
L0 0.12090 0.12090 32× 64 460 5.6 684
L1 0.12104 0.12062 32× 64 352 4.3 549
L2 0.121145 0.120413 32× 64 237 3.0 549

Table 5.1.: The ensembles used for our analysis. Details about their generation and
action are described in [119119]. Note that β = 10/g20 because the im-
provement coefficient c0 = 5/3 is included into the definition. We used
a = 0.075 fm = (2.631GeV)−1. The ensemble S0 was only used to inves-
tigate FV effects and does not enter into final results because its pion mass
was found to be inconsistently large. The number Ncfg refers to the num-
ber of configurations that entered into our analysis. Most of the ensembles
contain more configurations than were used here.

κsym. = 0.12090 of the ensembles listed in table 5.15.1, was too large [154154], yielding heav-
ier than physical singlet masses, and an unphysically large strange quark mass at the
physical pion mass [155155].

5.1.2. Compact QED configurations

The electrically charged fermion action included a smeared QED field multiplied by a
charge factor into the hopping term. The coupling was rescaled such that the quark
charges have integer values, because taking the third root of the compact field for rescal-
ing is ambiguous.

βQED =
1

g2QED
=
αQED
4π

=
137

4π

q′=3q−−−→ βQED ' 99 (5.2)

The QED contribution to the clover term was neglected because cem for QED is different
than for QCD and there was no planned continuum extrapolation. It would have been
viable to set cem to the tree level value 1 since higher orders are assumed to be small. In
compact formulation of the electromagnetic gauge action the degrees of freedom suffer
from a (small) self-interacting contribution. This requires multiplicative renormaliza-
tion of the electromagnetic coupling constant, which can be applied at the end of the
analysis. This renormalization factor Ze can be determined by measuring U(1) Wilson
loops W (r, t) ∼ exp (−V (r)t) to obtain the Coulomb potential V (r) in a box which can
be fitted to perturbative lattice QED predictions [138138, 156156] with the coupling and an
irrelevant self-energy as only free parameters.
The generation of a compact U(1) is described in appendix C.2C.2. Using a scheme
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5.1. Simulation

proposed in [157157] we fixed the QED field to Landau gauge without global zero modes∑
mBµ(m) = 0 because charged correlators are not gauge invariant. The resulting

U(1) field facilitated our first observation of pseudoscalar decay constant splitting [158158]
on a relatively heavy QCD ensemble (b5p29kp13550-24x48 mentioned in [159159]). A
more detailed analysis, with lots of unphysical charge combinations on the SLiNC QCD
ensembles listed in table 5.15.1, did not show a Q2 dependent scaling of the splitting. The
QED gauge initially proposed in [146146] and employed in [120120] was therefore used in the
following measurements on a non-compact QED background.

5.1.3. Non-compact QED

The following results were obtained by simulation with QEDL background configura-
tions at physical coupling e =

√
4πα. Details of the QED gauge field generation in

momentum space can be found in appendix C.1.1C.1.1. It shall be noted that successive
QED configurations are uncorrelated.

5.1.4. Quark mass tuning

Equivalently to the QCD background, the QED field exhibits an axial anomaly (eq. (2.292.29)).
Wilson fermions violate chiral symmetry and therefore suffer from charge dependent, ad-
ditive quark mass renormalization. This effect can be damped by smearing [120120].

The hopping parameters κ(e2q) for charged propagators were tuned in such a way
that all connected, symmetric and charge neutral pseudoscalars have the same mass
as the pure QCD meson. The measurements included charged valence quarks matched
to the masses of all sea quarks. Furthermore, (charged) valence quarks with masses
corresponding to physical strange and charm values were added. Their masses were
tuned by matching lattice quantities to

(amss̄)
2 =

(
m2
K+ +m2

K0 −m2
π+

)
exp.

(5.3)

amηc + 3 amJ/ψ =
(
mηc + 3mJ/ψ

)
exp.

(5.4)

with a lattice spacing a = 0.075 fm = (2.631GeV)−1 as determined in [160160]. The result-
ing uncharged κ values are listed in table 5.25.2.

In the non-compact production measurements the charged strange and charm masses
were set by applying the same mass shift as for the light quarks, because additional
corrections at larger masses turned out to be small. The simulation was performed with
three slightly detuned kappas which allows to adjust for the remaining mistuning in the
analysis.

5.1.5. Details of the Measurements

As mentioned previously, we calculated light and optional strange propagators with
the same pseudoscalar mass as the QCD sea quarks and valence strange and charm
propagators with approximate physical masses. For each of these 4 or 3 mass classes, we
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5. QED splittings of pseudoscalar quantities

Ensemble κS κC

M0 0.12048 0.111553
M1 0.12048 0.111553
M2 0.12048 0.111553
L0 0.12048 0.111553
L1 0.120466 0.111540
L2 0.120466 0.111540

Table 5.2.: Hopping parameters κ for the partially quenched valence quarks at physical
strange and charm quark mass. We denote them with uppercase subscripts

S,C . Note that for the lightest ensemble L2 the kappa of the strange sea
quark κs = 0.120413 is smaller than the one of the physical κS indicating
that extrapolating from that symmetric point does not hit the physical point
[155155].

performed inversions at 2 additional κ values, with a fixed detuning of δκ = ±0.00002
which allowed precise quark mass matching in the final analysis. We did inversions for
the charge q ∈ e/3 × [0,±1,±2] and performed (almost11) all available, non-redundant
contractions. The required meson correlators were calculated with zero momentum
spin explicit one-end sources. We used one source on a randomly chosen timeslice per
configuration. Smeared and point interpolators were contracted at source and sink. This
amounted to up to 120 one-end propagators and approximately 7000 contractions per
configuration and source. The final statistics for all ensemble can be found in table 5.15.1.
The used configurations were distributed evenly in Monte Carlo time.

5.2. Analysis

The following chapter will provide an analysis of pseudoscalar mass and decay constant
splittings. The mass splitting analysis reproduces previous results and validates our
approach for the following decay constant analysis. Note that we excluded up to five
exceptional configurations on ensembles M2 and L2 which were identified by the extreme
deviation of the uncharged QCD pion correlator at their respective light quark masses.
We attribute their existence to the low Lmπ of the ensembles.
At first the extraction and analysis of decay constant observables on single ensembles

is described. Then the chiral and finite volume analysis yield results at our single lattice
spacing a. A discussion of neglected systematics will conclude this section.

1We did not contract mass detuned propagators with the same absolute charge value within the same
meson mass class.
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Figure 5.1.: Effective mass of light pseudoscalars on ensemble M0 and their difference.
The top line are (overlapping) effective masses of various detunings and
mass combinations. The lines below are their difference to the uncharged
sea quark effective mass. Note the log scale on these plots indicating that
we can resolve differences 3 orders of magnitude below the absolute value.

5.2.1. Masses

Initial pseudoscalar masses

mf1f̄2
(q1, q2, δκ1, δκ2) (5.5)

were extracted by correlated cosh fits to smeared-point or smeared-smeared correlators.
The variables qi and δκi are the charge and the hopping parameter detuning. The
charge of the anti-quark f̄2 is taken to be −q2 such that the meson charge is given by
Q = q1 − q2. Quark types fi only refer to the approximate quark mass of a specific
flavor and specifically not to the charge. All correlators of the same meson type f1f̄2
(e.g. light-light or strange-charm) had the same fit range to propagate their correlation
for the necessary subtractions and correlated fits. Suitable fit ranges were identified by
the criteria described in appendix A.3A.3. The χ2/dof values of these fits typically varied
between 0.7 and 1.5 and are stable for different charge combinations on the same fit
range. The fit ranges were also inspected by effective mass difference plots (see fig. 5.15.1)
as used in [150150].

Instead of including the mass of all detuned data into global fits, which proved to be
highly unstable, we match all data within the same meson type (f1, f2) at the quark
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5. QED splittings of pseudoscalar quantities

mass parameters

{xi} =
(
m2
f1f̄1

, m2
f2f̄2

)
(5.6)

of the uncharged and not detuned quark types f1,2. This comes at the expense of ignoring
quark mass slope information and ignores the violation of the GMOR relation (eq. (2.322.32))
at large quark masses. The matching at the same quark masses was performed according
to appendix B.2B.2. In principle the following options were considered:

• Using a linear modelM2({x̃i}) to describe the charged mass in the vicinity of {xi}.
The resulting ordinary least squares problem can be solved without reweighting
due to errors. Note that the error is propagated nonetheless since this procedure
is performed on all (resampled) samples.

• Diagonal or correlated fits that described the linear dependence of the data in the
vicinity of {xi}. This requires a somewhat complicated inclusion of the error on
the predictors.

The first and simpler choice yielded reasonable results giving us no reason to investigate
the second possibility. The resulting set of pseudoscalar masses

M2
PS (q1, q2, {xi}, {κsea}, L× T ) (5.7)

can then either be used directly or be subtracted (due to the matched {xi}) for further
analysis. The meson type is implicit in the quark mass parameters {xi}.

Finite volume corrections

As discussed in section 4.1.54.1.5 masses of charged particles have leading order 1/L depen-
dence on the volume. Given that this analysis only uses 2 volumes we choose to explicitly
correct masses of charged mesons up to NLO which is universal [120120, 138138]. Note that
the correction on the mass is small but that effects on splittings like ∆M2 might be as
large as 100%. Remaining corrections

m(T,L) ∼
T,L→+∞

m

{
1 +O

(
q2αem

(mL)3

)}
(5.8)

are incorporated into the chiral extrapolation equations of the splitting

∆m2(q2, L) =m2(q2, L)−m2
0 = m2(q2,∞)−m2

0 +O
(

q2αem

m(q2,∞)L3

)
'∆m2

∞(q2,∞) +O
(

q2αem

m(q2, L)L3

)
, (5.9)

where m0 is the mass of the corresponding QCD meson. The replacement m(q2,∞)→
m(q2, L), in the last transformation, is justified because the total correction is small and
correct at O(αem/L

3).
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5.2. Analysis

PQχPT

Partially quenched χPT has been used to calculate the following SU(3)+QED formulae
(extracted from [142142]) where the pseudoscalar mass dependence is parametrized as

M2
phys = χe,ij +

δ(4)vs

F 2
0

+O(p6, e2p4) (5.10)

with v and s being the number of mass degenerate valence and sea quarks. The splittings

δ(4)13 = [48Lr6 − 24Lr4]χ1χ̄1 + [16Lr8 − 8Lr5]χ
2
1

− 48e2ZEF
2
0L

r
4q

2
12χ̄1 − 16e2ZEF

2
0L

r
5q

2
12χ1

− 12e2F 2
0

[
KEr

1 +KEr
2 −KEr

7 −KEr
8

]
Q2χ1

− 4e2F 2
0

[
KEr

5 +KEr
6 −KEr

9 −KEr
10

]
q2pχ1

+ 12e2F 2
0K

Er
8 q212χ̄1

+ 8e2F 2
0

[
KEr

10 +KEr
11

]
q212χ1 − e2F 2

0

[
8KEr

18 + 4KEr
19

]
q1q2χ1

− 1/3Ā(χm)R
m
n11χ1 − 1/3Ā(χ1)R

c
1χ1

+ e2F 2
0

[
Ā(χ1) + 2ZEĀ(χ1s)

]
q212

− 1/3B̄(χ1, χ1, 0)R
d
1χ1

+ 4e2F 2
0

[
B̄(χγ , χ1, χ1)− B̄1(χγ , χ1, χ1)

]
q212χ1 (5.11)

and

δ(4)23 = [48Lr6 − 24Lr4] χ̄1χ13 + [16Lr8 − 8Lr5]χ
2
13

− 48e2ZEF
2
0L

r
4q

2
13χ̄1 − 16e2ZEF

2
0L

r
5q

2
13χ13

− 12e2F 2
0

[
KEr

1 +KEr
2 −KEr

7 −KEr
8

]
Q2χ13

− 4e2F 2
0

[
KEr

5 +KEr
6

]
q2pχ13 + 4e2F 2

0

[
KEr

9 +KEr
10

]
q2pχp

+ 12e2F 2
0K

Er
8 q213χ̄1

+ 8e2F 2
0

[
KEr

10 +KEr
11

]
q213χ13 − e2F 2

0

[
8KEr

18 + 4KEr
19

]
q1q3χ13

− 1/3Ā(χm)R
m
n13χ13 − 1/3Ā(χp)R

p
qπηχ13

+ e2F 2
0 Ā(χ13)q

2
13 + 2e2ZEF

2
0 Ā(χ1s)q1sq13 − 2e2ZEF

2
0 Ā(χ3s)q3sq13

+ 4e2F 2
0

[
B̄(χγ , χ1, χ1)− B̄1(χγ , χ1, χ1)

]
q213χ13 (5.12)

provide a large number of QCD and QED low energy constants (Lri and K
Er
j ) that must

be determined. The parameters χi = 2B0mqi parametrize the quark mass dependency,
and qi the fractional quark charges. The indices i = 1, 2, 3 refer to valence and i = 4, 5, 6
to sea quarks. The quantity qij = qi − qj is the meson charge. An index p implies
summation over all valence quarks (of the meson). The bared variables Q2 and χ̄1

indicate summation over all sea quarks, and are therefore Q2 = 0 and χ̄1 ≈ const. ≈
χ̄1,phys. on our dynamic, SLiNC QCD ensembles. Furthermore A and B are loop integrals
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5. QED splittings of pseudoscalar quantities

containing chiral logs, R are mass ratios and a photon mass χγ regulates IR divergences.
We refer the reader to the original paper [142142] for the exact definitions.
Global fits including all of the LECs above are unstable and possibly contain a large

number of irrelevant parameters. They furthermore do not include FV corrections. A
parametrization with a reduced set of parameters which includes FV corrections may
provide more intuitive insight.
SU(3) χPT might be poorly convergent and fits to a trM = const quark mass

trajectory are insufficiently constrained. Alternative extrapolation formalisms include
SU(2)+kaon+QED χ-PT [130130], and simple polynomial fits in m2

π,m
2
K [132132] which could

be customized to fit the (strange) mass extrapolation scheme of our ensembles.

Light quark masses and pion mass splitting

A low energy description of pseudoscalar meson masses depending on (renormalized)
quark masses mq and the meson charge Q2 can be used to calculate the light quark mass
splitting at a convenient scale µ. Quark masses are renormalized and O(a) improved by

mMS
q (µ) = Zm(g

2, aµ)(1 + bm(g
2
0)amq)mq (5.13)

bm = b(0)m + b(1)m × CF g20 +O(g40) ' −0.6387 (5.14)

with a non-perturbative Z−1
m = ZMS

s = 0.6822(061)(176) from [161161] at µ = 2GeV,

b
(0)
m = −1/2 inferred from the relation bs = −2bm [162162] and the LO coefficient b

(1)
m =

−0.05722 from [116116]. The dependence on the average sea quark mass parametrized by
b̄m is ignored.
For the estimation of the individual light quark masses, quark and meson masses

are transformed to physical units and eq. (5.135.13) is applied to the quark masses. The
improved and renormalized data is fitted to (χPT) extrapolation formulae yielding a set
of parameters. These parameters will in the following be referred to as LECs although
they do not belong to a specific and complete χPT formulation. An example of an
extrapolation formula is

M2 =
[
A0Q

2 +
(
B0 +B1Q

2
)
(mq +mq̄)

]
. (5.15)

These expressions are then matched to experimental meson mass values - we use the
masses mπ+ ,mK0 and mK+ - yielding renormalized quark masses in the MS scheme.
To (partially) account for the systematic error, the following considerations and vari-

ations entered into the analysis:

• The different fit range criteria mentioned above often gave the same fit range
which we was only counted once. The fit ranges were complemented by a fit range
t/a ∈ [T/2− 7, T/2− 1].

• To investigate QCD and remaining QED FV effects we used an optional cut on
Lmπ which excludes the ensembles M2 and L2.
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Figure 5.2.: Light pseudoscalar mass splitting for various charge combinations. Shown
are all ensembles and multiple fit ranges. Note the fit range dependence at
the lightest pion mass which hints at problems due to the low Lmπ. The
finite volume contributions of the charged masses are removed up to NLO.
The ensembles are (left to right) L2, L1, M2, M1, L0 and M0. The steps
between L = 24 and L = 32 lattices are due to higher order finite volume
contributions. The black star is the physical point.

• We use the lattice spacing a = 0.075 fm, which was given without quoting an error
[160160]. An error value (0.002 fm) was estimated by comparison to the determination
in [163163]. To account for lattice spacing effects the three values a = 0.073, 0.075
and 0.077 fm were used.

• The parameter bm describing the quark mass dependence of the renormalization
constant Zm might be subject to large non-perturbative contributions. To ac-
count for this the analysis was performed with the LO value bm = −0.5832 and
approximately twice that value: bm = −1.

• We choose to neglect the kaon mass data on the individual ensembles and assume
that our fit formulae are valid up to the strange mass. This assumption is motivated
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Figure 5.3.: Histogram of light and strange quark mass results. The median is marked
by the red, the systematic error by the grey and linearly added statistical
and systematic error by the grey dashed line. Most of the width in the ms

histogram is due to the lattice spacing variation.

by the impressive success of early quenched QCD+QED simulations with large
quark masses [127127, 128128]. A fully controlled analysis would need to include the
kaon and rigorously address this.

• To determine the coefficients A0, B0, B1 and optionally C0 (for the m2
q term) we fit

the squared splittings ∆M2(Q2,mq,sea, L× T ) and the sea pseudoscalar M2(Q2 =
0,mq,sea, L×T ) individually. Therefore eq. (5.155.15) is split and the sea pseudoscalar
fit is complemented by an additional term ∝ m2

q .

• As previously discussed the mistuning of the lattice spacing a lead to singlet quan-
tities (eq. (5.15.1)) that are heavier than their physical values. In light of the fact that
we do not include kaon data into our chiral fits, the effect causes the extrapolation
to a strange sea quark that is approximately 25% too heavy [160160]. Strange and
(degenerate) light quark masses from Nf = 2 + 1 measurements are roughly 10%

lighter than on Nf = 2 [1414]. Assuming a 1
ms

interpolation for ms ∈ [mphys
s ,∞]

yields a 2% deviation. We therefore add 2.5% in quadrature to account for higher
order terms in the inverse mass expansion. The effect on the previously deter-
mined LECs is highly correlated with the quark masses and approximately cancels
in the products B0,1mq. The Dashen terms and the pion mass difference only con-
tain such products and should therefore be unaffected. We conservatively add the
same 2.5% as for the quark masses. An extended analysis including kaon masses
could be corrected along the lines of [160160].

• To account for electromagnetic quenching errors we use the conservative estimate
discussed in section 4.1.14.1.1: Quenching is assumed to maximally cause 10% correc-
tions to the O(α) splittings which is incorporated by adding uncorrelated noise to
the resampled splittings. The error is thereby propagated to our final results: The
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Figure 5.4.: Histogram of light pion mass (splitting) results. The vertical lines have the
same meaning as in fig. 5.35.3.

quark masses are only mildly affected, whereas pion mass splitting and Dashen
terms show a large dependence.

Our estimates at µ = 2GeV in the MS scheme become

mu =(2.69± 0.06stat. ± 0.15sys.)MeV,

md =(5.56± 0.09stat. ± 0.25sys.)MeV,

ms =(105± 1stat. ± 4sys.)MeV (5.16)

The center value is the median of the results shown in the histograms of fig. 5.35.3 and the
statistical error is conservatively taken as the median of the corresponding statistical
errors. The error propagation utilized Jackknife and Bootstrap, which agree within
statistical errors. The systematic error is determined from the appropriate 1-σ quantiles
and the additional contributions discussed above. It does however not account for the
necessary continuum extrapolation or possible QCD autocorrelations. Nevertheless these
results and the PDG averages [2323] agree within their respective errors. The PDG values
are mostly based on other lattice calculations such as [130130, 135135] and [164164].

Following the analysis of [127127] the determined quark mass values can be used to
approximate the neutral pion mass

mπ0 =
muū +mdd̄

2
(5.17)

which yields the pion mass splitting

mπ± −mπ0 = (5.9± 0.5stat. ± 1.1sys.)MeV. (5.18)

Center and error values were determined as above. The result is within its error slightly
too large compared to the (experimental) PDG value 4.5936(5)MeV [2323] which can
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Figure 5.5.: Histogram of absolute and relative Dashen term results. The vertical lines
have the same meaning as in fig. 5.35.3.

probably be attributed to our chiral approximations.

Dashen term

The Dashen term is another benchmark observable for partially quenched simulations
proposed in [142142]. Its quenching errors should be suppressed because most of the sea
quark charge contributions in eq. (5.105.10) cancel. The term which is the absolute correction
to Dashen’s theorem [165165] is defined as the difference of the electromagnetic kaon and
the pion mass splitting

∆M2
D =

(
m2
K+ −m2

K0

)
−
(
m2
π+ −m2

π0

)
(5.19)

at symmetric light quark masses mu = md = mud and interesting because of higher
order electromagnetic isospin breaking. This can be generalized to arbitrary mass scales
χ1,3

∆M2 =M2(χ1, χ3, q1, q3)−M2(χ1, χ3, q3, q3)

−M2(χ1, χ1, q1, q3) +M2(χ1, χ1, q3, q3). (5.20)

A widely used alternative is to give the correction to Dashen’s theorem in its relative
form given by

εD =
m2
K+ −m2

K0

m2
π+ −m2

π0

− 1 (5.21)

These numbers can be evaluated with the LECs determined above yielding

∆M2
D =(0.00148± 0.00012stat.(

+0.00028
−0.00026)sys.)GeV2,

εD =(1.43± 0.29stat.(
+0.97
−0.96)sys.) (5.22)
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where center and error values were determined following the same procedure as in the
quark mass analysis. These results are large in comparison to current lattice averages
[1414, 2424] which indicate the lack of predictive power of our extrapolation formula eq. (5.155.15)
and variations of it. This also shows that the values of mud/ms or B1 are problematic
or additional terms are necessary. More sophisticated formulae require more data which
is currently not available to us.

Another possibility of calculating these quantities on our data set would be the direct
measurement of the splitting with equal up and down masses. This splitting is then
naively extrapolated to the physical point defined by the pion and kaon masses, where
the singlet and therefore strange quark mistuning has to be taken into account. The
pion mass splitting requires the neutral pion mass which can be approximated in terms
of the connected uū and dd̄ correlators at symmetric light quark mass:

Cπ0(t) =
1

2

(
Cuū(t) + Cdd̄(t)

)
∝ e−mπ0 t (5.23)

This method should yield comparable numbers within errors. Similar and extended
analysis of QED effects on the Dashen terms, pseudoscalar and quark masses can be
found in [135135, 141141].

5.2.2. Pseudoscalar decay constants

Lattice decay constants can be extracted from two point functions following the pro-
cedure described in section 3.3.43.3.4. They belong to the so-called gold plated observables
which can be measured with percent precision where QED effects become relevant. De-
cay constants are necessary for the determination of CKM matrix elements and checks
of the unitary triangles. Recently a method was outlined in [134134] for the calculation of
O(αem) corrections to hadronic matrix elements. The π0 decay constant fπ0 appears in
effective formulae for the dominant decay rate Γ(π0 → γγ) and may provide insight into
(isospin violating) π0, η, η′ mixing.

We therefore measure smeared-point pion-axial current CLSA4P
(t) and pion-pion CLSPP (t)

as well as smeared-smeared pion-pion CSSPP (t) correlators and perform combined fits with
the same mass parameter and identical fit ranges. A second analysis uses point sources.
We use the matrix element convention in which fπ+ is approximately 130MeV. After
renormalization and improvement charged decay constants are matched at the same
quark masses {mfi} (parametrized by the symmetric uncharged pseudoscalar masses
M2(Q2 = 0,m1 = m2 = mfi)) within their respective meson (mass) types f1f̄2. We
subtract the corresponding uncharged QCD decay constants and analyzed their mass
and finite volume dependence across multiple ensembles.

Renormalization and improvement

The decay constant is calculated according to eq. (3.403.40). For this we use a renormaliza-
tion constant ZA determined using the RI-SMOM scheme [161161] and bA and cA determined
in one loop PT [107107]. At this order these are independent of the fermion action. The
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5. QED splittings of pseudoscalar quantities

(a) vertex correction (b) propagator cor-
rection

Figure 5.6.: QED contributions at O(αem) to QCD+QED renormalization constants.
The sign of fig. 5.6a5.6a depends on the relative sign of the quark charges. The
total LO QED corrections to charge neutral vertices can be obtained with
an appropriately scaled coupling from the analogous QCD formula. General
charge combinations do not obey the same symmetries and would require
to disentangle the QED contributions.

used values are

ZA = 0.8728(006)(027) (5.24)

bA = b
(0)
A + b

(1)
A g20 +O(g40) ' 1.21358 (5.25)

with b
(0)
A = 1, b

(1)
A = 0.0881(13)× CF , CF =

N2
c − 1

2Nc

and

cPTA = c
(1)
A g20 +O(g40) ' −0.01097 (5.26)

with c
(1)
A = −0.004525(25)× CF

Note, however, that perturbative and non-perturbative values of cA for a similar action
(Clover + LW) differ by 300− 400% [108108]. Similarly the higher order corrections to bA
are commonly also large [166166]. For this reason we also performed the analysis with the
large values cA = −0.05 and bA = 2 to estimate possible NP corrections. A comparison
is illustrated in fig. B.3B.3.
Since all of these values are in principle subject to QED modifications we furthermore

perform the complete analysis with bA = cA = 0 and ZA = 1 to assert that variations
of these parameters do not influence the splitting signal significantly. All of these values
depend in principle on the fractional charges e1,2. The effects on the renormalization con-
stant ZA are especially troubling which can be seen by considering the LO contributions
(as shown in fig. 5.65.6) in LPT

ZQED,LO
A (e1, e2) = e1e2Z̃

(2)
A,vertex +

(
e21 + e22

)
Z̃

(2)
A,propagator (5.27)

which clearly distinguish attraction and repulsion and do not allow for a simple rescaling
of the normal QCD results if the meson is charged. The vertex contribution is of the
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5.2. Analysis

same order O(αem) as the leading contribution to the signal, it is not suppressed by any
other small factors and might therefore cancel the observed signal.

The charge dependence of the improvement coefficient cA has the same form

cQED,LO
A (e1, e2) = e1e2c̃

(2)
A,vertex +

(
e21 + e22

)
c̃
(2)
A,propagator (5.28)

which can determined from the analogous determination for QCD in LO LPT [167167, 168168].
The remaining parameter bA does not contain a e1e2 term such that we can model the
charge dependence of the improvement coefficient bA by the replacement

bAam→ bAam+ b̃
(2)
A,QED

(
e21am1 + e22am2

)
. (5.29)

Instead of determining these coefficients we can test the stability of our signal by varying

the unknown parameters b̃
(2)
A and c̃

(2)
A in a suitable range (see eq. (5.375.37)). Note that

QCD+QED renormalization constants for QEDL might be volume dependent as pointed
out by [137137].

Parameterization of QED effects on decay constants

A χPT prediction for the decay constant splitting truncated at O(p6, e2p4) can be found
in [142142]

Fphys = F0

[
1 +

f (4)vs

F 2
0

+O(p6, e2p4)

]
, (5.30)

where (4) is the order we are working at and v and s are the number of non-degenerate
valence and sea quark masses. The higher order terms are given by

f (4)13 = 12Lr4χ̄1 + 4Lr5χ1 + 1/4Ā(χe,ps)

+ 6e2F 2
0

[
KEr

1 +KEr
2

]
Q2 + 2e2F 2

0

[
KEr

5 +KEr
6

]
q2p

+ 2e2F 2
0K

Er
12 q

2
12 + e2F 2

0

[
4KEr

18 + 2KEr
19

]
q1q2

+ 2e2F 2
0

[
B̄′(χγ , χ1, χ1)− B̄′

1(χγ , χ1, χ1)
]
q212χ1

− e2F 2
0 B̄1(χγ , χ1, χ1)q

2
12 (5.31)

and

f (4)23 = 12Lr4χ̄1 + 4Lr5χ13 + 1/4Ā(χe,ps)

− 1/12Ā(χm)R
v
mn13 + Ā(χp)

[
1/6Rpqπη − 1/12Rcp

]
+ 6e2F 2

0

[
KEr

1 +KEr
2

]
Q2 + 2e2F 2

0

[
KEr

5 +KEr
6

]
q2p

+ 2e2F 2
0K

Er
12 q

2
13 + e2F 2

0

[
4KEr

18 + 2KEr
19

]
q1q3

+ 2e2F 2
0

[
B̄′(χγ , χ13, χ13)− B̄′

1(χγ , χ13, χ13)
]
q213χ13

− e2F 2
0 B̄1(χγ , χ13, χ13)q

2
13 − 1/12B̄(χp, χp, 0)R

d
p, (5.32)
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Figure 5.7.: Light and strange pseudoscalar decay constant splitting on the ensemble
L0. The data in the individual charge channel columns corresponds left to
right to doubly light, light-strange (, strange-light) and doubly strange mass
combinations. The crosses are the original splittings. The bands are the fit
results with errors. The fit function is δfr = (B0 + B1χij)Q

2 + D0∆
2
q +

S0Q∆qχij . The large χ2
dof is due to the unaccounted finite size effects and

large correlations between all data points. Fits with a diagonal covariance
matrix yield χ2

dof values of approximately 1.

where the parameter definitions are the same as for eqs. (5.115.11) and (5.125.12).
Given the number of free parameters and that these formulae do not include finite size

effects we will not try to fit them directly but rather identify individual dependencies
and combine them with various finite volume parametrizations. For this we compare the
absolute difference

δf(q1, q2) = f(q1, q2)− f(0, 0) (5.33)

of charged and pure QCD decay constants f(0, 0) at matched quark masses. The dif-
ference cancels all terms of eqs. (5.315.31) and (5.325.32) which do not depend on the valence
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5.2. Analysis

quark charges. This motivated the following parametrization for global fits of the abso-
lute splitting

δf(q1, q2) =
(
B0 +B1M

2(q1, q2)
)
q212

+
(
P0 + P1M

2(q1, q2)
)
q2p, (5.34)

which neglects the logarithmic dependencies and can be extended by FV terms. The
qiqj terms of eqs. (5.315.31) and (5.325.32) are dropped from the fits because they are a linear
combination of q2ij and q2p. The term is furthermore undesirable because its finite vol-
ume effects are rather unintuitive since the term can be nonzero for both charged and
uncharged decay constants.

We also performed extrapolations of the relative splitting

δfr(q1, q2) = δf(q1, q2)/f(0, 0), (5.35)

which introduces an additional quark mass dependence in the denominator, leading for
example to a q2p/χ1 term which complicates the necessary extrapolations. For these we
chose a natural and intuitive parametrization within a meson (mass) type: On a single
ensemble the splittings depend on the meson charge22 q12 = Q = q1−q2 and quark charge
difference ∆q = q1 + q2, and can be parametrized by

δf (i)r
(
Q2,∆2

q

)
= B(i)Q2 + C(i)∆2

q , (5.36)

which can easily be observed in the light-light channel (i) on the ensemble L0 of fig. 5.75.7.
Note that the meson charge dependence is quite noisy in comparison to the splittings
of neutral channels. The inclusion of strange channels hints at the fact that B(i) might
be quark mass dependent as also indicated by q2ijχij terms in eq. (5.315.31) and eq. (5.325.32)

or that large finite volume effects are present. Mass dependencies of C(i) could not be
observed, neither by eye nor by the inclusion of corresponding terms and fitting with a
nonzero coefficient.

The effect of charge dependent renormalization and improvement parameters ZA, bA
and cA was investigated by varying the O(αem) contributions of eqs. (5.275.27) to (5.295.29) in
a 5% range of a corresponding QCD parameter:

b̃
(2)
A,QED =± 0.05(bA − 1) ≈ ±0.0107

c̃
(2)
A,x =± 0.05 cA ≈ ±5.49× 10−4

Z̃
(2)
A,x =± 0.05(1− ZA) ≈ ±0.00636 (5.37)

where x indicates either the vertex or propagator contribution and the values for bA, cA
and ZA from eqs. (5.245.24) to (5.265.26) were used. The effect is shown in figs. 5.85.8 and 5.145.14.
These ranges can be understood as a worst case since we would naturally assume that
such QED effects are approximately 1%. It shall also be noted that the signs of the in-

2Again −q2 is the charge of the anti-quark f̄2.
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Q0
∆4/3

Q1
∆1/3

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
δf

[M
eV

]
orig

bA
cA,v

cA,p

ZA,v

ZA,p

Figure 5.8.: Effects of a hypothetical charge dependence of renormalization and improve-
ment parameters bA, cA and ZA on the extracted splittings on ensemble L0.
The effects were modeled by varying the O(αem) coefficients of eqs. (5.275.27)
to (5.295.29) in a 5% range of an equivalent QCD parameter. Vertex and prop-
agator components may cancel. The cross is the doubly light, the circle
the light-strange and the diamond the doubly strange channel. Full (open)
symbols indicate physical (unphysical) charge combinations. There is also
a zoomed plot without the ZA variations (fig. 5.145.14).

dividual components are unknown and that vertex and propagator contributions might
partially cancel (or sum up). Given that the 5% variation is probably largely overes-

timating the individual contributions, we expect the effects of b
(2)
A,QED and c

(2)
A,x to be

roughly of the same size as our statistical error and ignore them in the following for light
observables. The substantial effects on ZA motivated us to examine ratios of charged
renormalization constants where the renormalization constant drops out. For this pur-
pose we calculated

RM,rel =
fM (Q2 = 1)

fπ+

(
fπ
fM

)
QCD

− 1 (5.38)
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5.2. Analysis

which is shown in fig. 5.95.9. The result indicates permille QED corrections to the kaon-
pion decay constant ratio before the physical limit. The D meson ratios are too noisy for
any conclusions. They are furthermore also substantially affected by remaining bA-QED
artifacts due to the charm mass which can be seen in the splitting in fig. 5.145.14.
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Figure 5.9.: Decay constant ratios which are independent of QCD+QED renormaliza-
tion. Shown are (left to right) ratios of the ensembles L1, M2, M1, L0 and M0.
Multiple data points with the same color and symbol correspond to different
fit ranges, bin sizes and covariance matrix estimations. The D meson ratios
are slightly shifted for better visibility.

Although not predicted at the order of eq. (5.305.30) it is interesting to compare channels
where the light quark charge ql is larger than the heavy quark charge qh to the case
where the order is reversed: ∆f|ql|>|qh| 6= ∆f|ql|<|qh|. Parameterizing this effect could be
done by a new term that is antisymmetric under quark exchange like

Q∆q ·∆km = (q21 − q22) · (mk
1 −mk

2). (5.39)

This effect is not directly observable because appropriate quarks are missing in nature.
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Finite size effects
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Figure 5.10.: Comparison of the doubly light and doubly strange decay constant split-
tings with (full symbols) and without (open symbols) removal of LO and
NLO mass finite volume contributions. Note that the improvement is
only partial. The solid (dashed) lines are f(L) = f0 + f̃1,p/L

p fits to
FV improved (unimproved) data of both charge combinations with powers
p ∈ [1/2, 1, 3/2, 2, 3]. Additional meson mass m dependence of the splitting
is ignored. The data from the smallest ensemble is rather unstable. Plotted
is data from the ensembles M0, L0, and S0.

Given the definition 〈0|A4|π〉 = mπfπ, the severe QED finite volume effects of mπ(Q
2)

and that fπ has sizable QCD finite volume effects [103103] it is very likely that δf(Q2 6= 0)
(or δfr) and the matrix element suffer from comparable effects.
To better understand the origin of the finite volume effects we compare two cases which

should yield the same infinite volume value after appropriate extrapolation: The first
does not correct mπ(Q

2) and all FV dependence is therefore absorbed into δfr(Q
2,∆2

q).
The second corrects mπ(Q

2) up to NLO using eq. (4.84.8). Hypothetically an independent
mass analysis could be used to subtract even higher terms or the corrections could only be
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performed to LO yielding even more cases to compare. The QCD effects should generally
cancel in the ratio in eq. (5.355.35). The effect of the subtraction is illustrated in fig. 5.105.10 and
fig. 5.185.18: A substantial amplification of the splitting signal is observed. Additionally the
remaining volume correction of the charged signal seems to change its sign in accordance
to the relative sign of NLO and NNLO corrections to the mass [138138]. We perform
somewhat arbitrary polynomial two parameter fits to purely repulsive systems to show
the compliance of the data with various extrapolation formulae and that they might
extrapolate towards the same value in infinite volume. Both charge combinations are
fitted simultaneously. A systematic analysis would most likely reveal that a sum of
analogous terms has to be used33, but we have far too few data points or theoretical
input to try more sophisticated fits. Furthermore ignoring the possible quark mass
dependence both 1/L and 1/mL are tested as predictors yielding no clear preference.
For appropriately large volumes and heavy masses the negative QED contribution of the
charged decay constant becomes almost as large as the contribution to the corresponding
attractive system. This agrees with the naive expectation that the effect of attraction
and repulsion should approximately have the same absolute value. Although the slope
of the current data suggests otherwise, remaining FV effects might account for the (now
decreased) difference.

Above we have shown PQχPT parametrizations. These are rather involved. A generic
fit formula that incorporates finite volume corrections for the splitting should have the
general structure

δfr(Q
2,∆2

q ,m
2
PS, L) = Q2

(
δf (0,Q)
r + δf (1,Q)

r m2
PS + . . .

)
·
(
1 +

∑
i=1

ci
(mL)i

)
+∆2

q

(
δf (0,∆)
r + δf (1,∆)

r m2
PS + . . .

)
·
(
1 +

∑
j=1

dj
(mL)j

)
. (5.40)

We choose to ignore the strange sea quark contribution given that the sea quarks are
not sensitive to the QED field anyway and that the flavor breaking effects are probably
small at our heavier ensembles. Given the low number of data points this can be further
reduced by ignoring the volume dependence of the attraction term (dj = 0) and termi-
nating the ci sum at the first order i = 1. Similarly, the absolute splitting eq. (5.335.33) can
be extended and becomes

δf(q1, q2) =
(
B0 +B1M

2(q1, q2)
)
q212 ·

(
1 +

∑
i=1

L
(i)
b

(mL)i

)
+
(
P0 + P1M

2(q1, q2)
)
q2p ·

(
1 +

∑
j=1

L
(j)
p

(mL)j

)
. (5.41)

We also replaced the 1/mL predictor by 1/L in both parametrizations.
For the extrapolation of uncharged combinations we can neglect finite volume effects.

3The FV extrapolation of the charged kaon mass at coupling αem = 1 in [120120] required O(1/L3) terms.
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5. QED splittings of pseudoscalar quantities

Physical charged quark combinations are more complicated. The QED corrections in the
parametrization above splits into two parts, one which is highly sensitive to FV effects
and one that is not. Resolving the increased number of parameters either requires
additional information in form of unphysical charge combinations or using a different
parametrization such as

δfr(Q
2 = 1,m2

PS, L) = (δf (0)r + δf (1)r m2
PS + . . . ) ·

(
1 +

∑
k=1

ck
mkLk

)
(5.42)

that combines both terms. Suitable unphysical charge combination for the first option
are purely repulsive q1 = q2 (or attractive) channels. Fits to two volumes do not have
enough information to distinguish or weight different ansatz’ but will rather just match
the input data. To account for this ambiguity we always compare fits with and without
finite volume improved meson mass. The two options are not independent and should
not be combined in fits.
We tried to determine the lowest order of finite volume effects and their magnitude

in a non-relativistic (NR) setup where the decay rate of quarkonium (cγic̄ ≡ J/ψ) given
by eq. 3.18 of [169169],

Γ =
16π~3α2

eme
2
Q|Ψ(0)|2

m2
J/ψ

, (5.43)

is proportional to the norm of the quarkonium wave function Ψ at its origin. NRQED
is feasible because the electromagnetic effects are small compared to the mass of the
meson. The Schrödinger equation with perturbing QED becomes

0 =

[
− ∇

2

2mπ
+ VS(r) + Vem(r)− E

]
Ψ(r) (5.44)

where we assume that Vem � VS . Following textbook perturbation theory (in for ex-
ample [170170]) for quantum mechanics the LO correction to the unperturbed ground state

|ψ(0)
1 〉 is given by

|ψ(1)
1 〉 =

∑
k 6=1

〈ψ(0)
k |Vem|ψ

(0)
1 〉

E
(0)
1 − E

(0)
k

|ψ(0)
k 〉 (5.45)

which clearly depends on the unknown, unperturbed set of states {|ψ(0)
k 〉} for k > 1. The

dominant FV contribution therefore probably comes from the electromagnetic potential
in finite volume in the matrix elements

〈ψ(0)
k |Vem|ψ

(0)
1 〉 (5.46)

of energetically low states |ψ(0)
k 〉 with support at r = 0. The periodic potential could be

expressed as a function of L according to [138138] but approximating the FV asymptotics
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of all relevant, unperturbed states for (r → 0) is difficult because many states such as
ππ states or low radial excitations could significantly contribute. The lack of suitable
choices led us to abandon this approach.

Light and strange observables
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Figure 5.11.: Global fits to decay constant splitting on multiple ensembles. The symbols
are the original splittings of doubly light and light-strange pseudoscalars.
The predictions of the converged fits with a L−1 FV term are shown as
bars to the right of the original data. Most combinations of fit parameters
did not converge. The original data is specific to a fit range choice, bin
size, renormalization choices etc. The parameter Lb corresponds to the
amplitude of the finite volume term c1 in the text. The multiple data points
of one charge channel within a single ensemble are left to right: Doubly
light, (light-strangesea,) and light-strangephys. If the quarks carry different
absolute charges the light-strange channels are doubled by switching the
charges.

Observables with physical charge combinations include the light pions π0,π+ and the
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Figure 5.12.: Histogram of the extrapolations of pion decay constant splitting for Q2 =
1. Fits with less free parameter converge more often and the histogram
therefore shows a natural bias towards them. The median is marked by
the red, the systematic error by the grey and the total linearly added error
by the dashed vertical line.

kaons K0 and K+. Instead of direct extrapolation of appropriate charge combinations
our mass and FV extrapolations utilized fits to eq. (5.345.34) which were optionally extended
by independent L−1 (or (mL)−1) finite volume corrections on all different charge terms.
In the absence of more volumes this should give slightly more data to match finite volume
terms. In most cases only fits with no FV term or only FV effects in the charge term
q212 converged. Due to the size of the input and the slightly too large χ2/dof of fully
correlated fits, the covariance matrix was always estimated to be diagonal.
Given the quality and quantity of our data the up to 8 parameters of the ansatz above

were impossible to resolve by nonlinear minimization techniques. Instead we always
keep the parameters B0 and P0 free and loop over all other (non-redundant) possible
combinations of free parameters. All converged fits contribute to the final result. Certain
combinations of free fit parameters shift and widen the distribution of extrapolated
splittings but still overlap with all narrower distributions. Note that fits with less free
parameters converged more often and the results include a bias towards them.
Two datasets were used for the global fits of charged pseudoscalar decay constants:

The first consisted only of doubly light and light-strange pseudoscalars whereas the
second additionally included doubly strange pseudoscalars. Here ”strange” refers to the
two quark masses tuned to the approximate physical strange quark mass and to the
strange sea quark mass of the particular ensemble. Exemplary fit results for the first
dataset are shown in fig. 5.115.11.
In addition to the cuts on the dataset and the loop over sets of free fit parameters we

used variations of our input to estimate the systematic error. The initial correlator fit
ranges were chosen according to the same criteria as for the mass analysis. Furthermore
point and shell sources were employed to exclude excited state contamination. The
correlator fits were performed with naive covariance matrix estimation, the shrinking
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Figure 5.13.: Histogram of π0 decay constant splitting results. The results were obtained
from the same fits as for the charged extrapolation in fig. 5.125.12 and com-
plemented by fits to data sets restricted to Q2 = 0 data. The vertical lines
have the same meaning as in fig. 5.125.12.

method described in appendix A.2.2A.2.2 and diagonal fits. We found no significant differ-
ences and used the first two methods for our final results. Finally we employed multiple
bin sizes to exclude autocorrelation. All different extrapolations are summarized/visu-
alized in fig. 5.125.12. Theoretically these results could be reweighted by goodness of fit
or comparable measures which was omitted due to our lack of control over the FV ef-
fects and possible other systematic errors. The final result is taken to be the median
of the distribution. For the statistical error we take the median of statistical errors of
the individual extrapolations. The systematic error is the standard 1σ quantile of the
bootstrap error to which we add in quadrature 10% to account for the electromagnetic
quenching and 2.5% for the mistuning of the strange sea quark. The error due to the
missing continuum extrapolation is unknown and omitted.

Results for QED effects on the decay constant of the charged π+, K+ pseudoscalars
can be straight forwardly obtained by inserting fit parameters, physical mass and charges
into the fit function. The final numbers become

δfπ+ =(−0.199 (+0.034
−0.031)stat. (

+0.092
−0.048)sys.)MeV,

δfK+ =(−0.188 (+0.031
−0.037)stat. (

+0.073
−0.053)sys.)MeV (5.47)

The QED contribution to the neutral pion π0 decay constant can be approximated by

δfπ0 =
δfuū + δfdd̄

2
(5.48)

for equal up and down quark masses which is again motivated by the overall weak
quark mass dependence. The extrapolation of the ”uncharged” decay constant used two
additional data sets, which were obtained by restricting the data sets used for the charged
results to Q2 = 0 data. For those the fit parameters describing the Q2 dependence were
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5. QED splittings of pseudoscalar quantities

set to zero. Extrapolating the connected uū,dd̄ pseudoscalars as above yields

δfπ0 =(0.452 (+0.015
−0.010)stat. (

+0.074
−0.067)sys.)MeV. (5.49)

Charm meson decay constants
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Figure 5.14.: Effects of a hypothetical charge dependence of improvement parameters bA
& cA on the extracted splittings on ensemble L0. The effects were modeled
by varying the O(αem) coefficients of eqs. (5.285.28) and (5.295.29) in a 5% range
of an equivalent QCD parameter. Vertex and propagator components may
cancel. The cross is the doubly light, the circle the light-strange and the
pentagon the light-charm channel. Full (open) symbols indicate physical
(unphysical) charge combinations.

The calculation of QED corrections to the charmed pseudoscalars D+, Ds and D0

were mostly performed with the same methods as the extrapolation of light and strange
pseudoscalars above. One difference being that we only require fits to one global data
set consisting of light-charm and strange44-charm pseudoscalars. The extrapolation of

4With the strange quark mass tuned to both its physical value and to the sea quark value.
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Figure 5.15.: Histogram of extrapolated charged D meson decay constant splittings. The
results were obtained following the same considerations as for the charged
pion and kaon extrapolations (see fig. 5.125.12) except that the dataset solely
consisted of light-charm and strange-charm pseudoscalars. The vertical
lines have the same meaning as in fig. 5.125.12.

the uncharged D0 splitting also used a data set that was restricted to Q2 = 0 data. The
charm quark mass was individually tuned for all ensembles and given that the quark mass
dependence of the splitting is generally observed to be weak, we assume the charm mass
to be sufficiently matched across all our ensembles. This - although not in accordance
with χPT - allows a naive extrapolation to use m2

cc + m2
xx as the only mass scale for

extrapolations to physical light and strange quark masses.
Discretization artifacts are an enhanced source of systematic error for charmed mesons.

We omit the extraction of the ηc decay constant due to the possibly large artifacts for
mesons with m � a−1. Furthermore for singly charmed pseudoscalars we investigated
the effects of a charge dependent bA due to the large bAam contribution at the charm
quark mass. The same variation as described by eq. (5.375.37) yielded fig. 5.145.14, which
clearly shows that bA charge effects have to be taken into account. It also showed that
the improvement coefficient cA becomes more important at larger quark masses. We
hope to include O(αem) contributions in future work and neglect these variations in the
following estimation of our systematic error.

As for the light and strange extrapolations we ignore the quark sea content and there-
fore neglect the missing charm quark, the absence of electromagnetic charge and the
mistuning of the strange quark mass. We add the same factors in quadrature to the
systematic error as before yielding the final results

δfD+ =(−0.42 (±0.08)stat. (±0.10)sys.)MeV,

δfDs =(−0.461 (±0.075)stat. (+0.089
−0.078)sys.)MeV. (5.50)

These results are also illustrated in fig. 5.155.15.
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5. QED splittings of pseudoscalar quantities

5.3. Summary & discussion

The decay constant splittings were extracted from combined fits to pion-pion correlators
and pion-axial current correlators. The variation of the fit range and a second analysis
with point sources suggest that excited states are sufficiently suppressed. The matching
procedure at ensemble level described in appendix BB solves the quark mass matching
problem, takes correlations into account and provides measurable splittings. These decay
constant splittings on a single ensembles show the phenomenologically expected behavior.
The infinite volume and therefore also the mass extrapolation of charged decay con-

stant splittings where found to be problematic because finite size effects are far from
under control: More ensembles with different and larger volumes, especially at small
quark masses are required. An additional obstacle proved to be the lack of theoretical
prediction of the functional form and coefficients of the finite volume effects. Neverthe-
less explicit subtraction of mass finite volume effects seem to improve the signal to noise
ratio of the splitting and suggest to verify results by individual extrapolation of im-
proved and unimproved splittings that approach the same value in infinite volume. This
led us to believe that an extended study, possibly using twisted boundary conditions, as
proposed in [149149] should enable a controlled extrapolation of the splitting.
Decay constants of uncharged pseudoscalar are not measurable due to the fact that

there are no flavor changing neutral currents. The exception due to the axial anomaly
being the decay constants of π0, η and η′. The decay constant fπ0 appears in formulae
for the pion decay width and the approximate Goldberger-Treiman relation (eqs. (2.302.30)
and (2.312.31)). It is affected by the electromagnetic attraction of the quarks and not
subject to LO infrared divergences. QED finite size effects on the uncharged pseudoscalar
mass vanish up to NNLO [138138] and therefore cannot be improved. The decay constant
itself does not show a finite volume dependence comparable to the charged case. The
extrapolation nevertheless included FV terms to demonstrate that they are irrelevant.
The π0 result used the approximation fπ0 = 1

2(fūu + fd̄d) and neglected disconnected
contributions. We did not insert physical non-degenerate up and down quark masses
into our extrapolations but used the approximation mud = (mu +md)/2 instead, which
is again motivated/justified by the small observed mass dependence.

Outlook

Meaningful predictions with full control of all systematic errors obviously require multiple
lattice spacings and more ensembles at different volumes and quark masses. Further
analysis should first focus on a controlled infinite volume limit and investigate the QED
dependence of renormalization constant and improvement coefficients which is discussed
below. Then charges can be added to sea quarks requiring a sound definition of the mass
of a charged quark which might be provided by the PCAC considerations in section 4.24.2.
Lastly, disconnected terms for the π0 should be included which is also discussed below.
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5.3. Summary & discussion

5.3.1. Missing systematics

In the following we will shortly address disconnected contributions to the π0 correlator
and QED effects on renormalization constants and improvement coefficients. Before that
the reader shall be reminded that our results ignore effects due to QED quenching, light
quark mass degeneracy and the continuum limit. The systematic error only accounts for
the QED quenching and ignores the latter effects.

Renormalization and improvement

As mentioned previously QCD+QED renormalization constants depend on the indi-
vidual quark charges and might be volume and/or gauge dependent. Theoretically
QCD+LO QED renormalization constants for charge zero vertices could be obtained
from lattice (QCD) perturbation theory results by rescaling the coupling. This was not
possible due to the combination of actions55 used in this work. The dominant LO QED
contribution to charged QCD+QED renormalization constants is of the same order as
the splitting itself. The QED vertex term has opposite sign than the QCD (color sin-
glet) term. Additional QED renormalization might therefore reduce the observed QED
splittings or even invert them.

The QED renormalization constant is possibly volume dependent due to the QEDL

removal of the zero modes. This gauge transformation is non-local which violates the
locality condition of renormalizability [137137].

QED effects on the improvement coefficients are further suppressed and hence less
troublesome: The mass dependent improvement parameter bA of the renormalization
constant depends on the quark charge qi and is at least for light quark masses suppressed
by the quark mass and therefore another order of magnitude. Future D meson studies
require the calculation of the modifications either by rescaling LPT results or non-
perturbatively as described in [166166]. Similarly we can assume that the contribution from
the improvement term eq. (3.413.41), consisting of QED corrections to a higher dimensional
operator, is small for light quarks and can be neglected. The effects for the charm quark
could be evaluated with LPT.

Disconnected contributions

uū dd̄

Figure 5.16.: The leading order π0 disconnected diagram on the lattice with two electro-
magnetic vertices

5SLiNC fermions in combination with the QED Wilson gauge action.
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5. QED splittings of pseudoscalar quantities

The disconnected contribution (fig. 5.165.16) to the π0 correlator is at leading order
O(αemmud) and therefore largely suppressed for physical quark masses. Such discon-
nected contributions are difficult and expensive to calculate, generally have large errors
and were therefore neglected in all studies up to the present. Recently, noise reduction
techniques proposed in [171171] have been extended to fermionic correlators [172172], which
might make them at least computationally feasible.

Decay rates

Figure 5.17.: The decay rate Γps→l+νl at O(αem) has contributions that break the fac-
torization into currents [134134, 135135, 173173]. The here calculated QCD+QED
decay constant does not account for those.

Decay rates Γ of charged pseudoscalars can be used for the determination of CKM
matrix elements. The calculation of QED corrections at fixed order of αem is complicated
by the fact that the process no longer factorizes into leptonic and hadronic currents.
Already leading order processes like the one shown in fig. 5.175.17 contribute and diminish
the predictive power of the matrix element fπ± . Our fps± results therefore only partially
account for O(αem) corrections to Γps± .
A further complication is that the illustrated process is infrared divergent. This di-

vergence cancels when the rates of π+ → l+ + νl and radiative π+ → l+ + νl + γ are
combined [2828, 134134]. A method to calculate O(αem) corrections to the π+ decay rate
Γ(π+ → l++ νl+(γ)) is proposed in [134134] and preliminary results are shown in [174174]. It
utilizes electroweak effective theory with four fermion interaction in combination with
lattice QCD without a QED background. Instead, an explicit photon propagator is
inserted into all relevant diagrams and correlation functions.
QCD+QED background calculations of hadronic matrix elements as ours cannot be

complemented with explicit insertion of photon propagators into radiating and factoriza-
tion breaking diagrams [174174]. This is due to the cancellation requirement at all orders: If
we inserted a single photon propagator the O(αem) divergences cancel, but higher order
divergences remain because we are missing diagrams with two (or more) real photons
and two (or more) photons between lepton and the quarks.
Neutral pions dominantly decay into two photons. The associated partial decay rate

Γ(π0 → γγ) requires the axial anomaly. Its approximate prediction eq. (2.302.30) does not
suffer from infrared divergent photons and contains the decay constant fπ0 . Effective
theories provide an improved prediction by including π0, η, η′ mixing [175175–177177]. The
splitting determined in this work could provide QED corrections to a fπ ' fπ0 determi-
nation from lattice and experimental data [178178, 179179] that would be independent of Vud
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Figure 5.18.: Comparison of the doubly strange decay constant splittings with (full sym-
bols) and without (open symbols) removal of LO and NLO mass finite
volume contributions. The solid (dashed) lines are f(L) = f0 + f̃1,p/L

p

fits to FV improved (unimproved) data of both charge combinations with
powers p ∈ [1/2, 1, 3/2, 2, 3]. Possible meson mass m dependence of the
splitting ignored. Plotted is data from all ensembles except for M2 and L2.

[177177]. This can resolve differences between fπ+ and fπ0 which could be attributed to
new physics, e.g. right handed currents [180180].

Matrix elements described by other uncharged, non-anomalous, pseudoscalar decay
constants do not appear in predictions of any physical processes. Their calculation in
this work therefore only provides input to disentangle the FV effects and to stabilize the
(chiral) fits.
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The Standard model is enormously successful in describing the vast majority of particle
physics. Various observations have established that it is nonetheless just an effective
low energy description and will eventually need to be extended or replaced. Neither the
observed baryon number, nor dark matter, which is only observable by its gravitational
effects, can currently be explained by the SM. Additionally the SM does not include
gravity, a theory that has gained prominence due to the recent terrestrial detection
of gravitational waves. The investigation of the underlying theory is difficult because
experimental energies are limited and may never reach the magnitude to directly observe
new interactions and particles. The indirect detection by observing tiny modifications to
low energy quantities requires extremely accurate standard model predictions. The QCD
coupling constant is increasing with decreasing energy causing perturbation theory to
fail at low energies: Hadron masses and matrix elements can only be computed by non-
perturbative methods such as Lattice QCD (see chapter 33). High precision predictions
are required to account for all sources of isospin breaking. QED corrections to hadron
masses have recently yielded impressive results [120120], and the determination of light and
strange quark masses is dominated by lattice QCD+QED calculations [1414, 2323]. Other
high precision observables from lattice QCD include pseudoscalar decay constants which
can be used for unitary test of the CKM matrix.

After reviewing the current state of QCD+QED calculations on the lattice in chapter 44
we described the setup and analysis of a benchmark calculation for QED corrections to
pseudoscalar decay constants on the lattice in chapter 55. The validity of the QCD+QED
formulation has been confirmed by reproducing light quark masses and corrections to
Dashen’s theorem. We confirm the naive expectation of an increased (decreased) decay
constant for QED attractive (repulsive) systems. Positive permille corrections of the un-
charged π0 decay constant to pure QCD quantities were calculated. Charged particles
on the lattice are more problematic. They require special gauge choices and suffer from
large finite volume corrections. The lattice sizes employed in this work were not suffi-
cient for a fully controlled infinite volume limit. It also turned out that it is beneficial to
improve matrix elements and meson mass independently. A further unresolved source
of systematic errors are charge dependent QED modifications to renormalization con-
stants and improvement coefficients. It also must be proven that QED renormalization
constants are volume independent if a global gauge freedom is broken as in QEDL.

Outlook

The QCD+QED calculations of pseudoscalar decay constants presented in this thesis
can be extended by focusing on improved (chiral) extrapolations, finite volume effects,
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and explicit calculation of QCD+QED renormalization constants and improvement coef-
ficients. Improved extrapolations may include input from other - possibly experimental
- sources and constrain fits by phenomenological considerations. These extrapolations
could address mass isospin violation and specific QCD+QED LECs. D meson extrap-
olation can be extended by heavy quark effective theory (HQET). It is obvious that
all extrapolation would benefit from more data and statistics. Finite volume effects
can be controlled by various techniques proposed in the literature: Combining large or
infinite volume valence quarks and a smaller lattice volume [149149], using massive pho-
tons [150150], or using a formulation (like QEDC) that is naturally less affected by FV
effects [137137]. Analytical calculations of leading and higher order contributions in non-
relativistic QCD (NRQCD) or χPT will be useful. QED corrections to renormalization
constants and improvement coefficients can be calculated non-perturbatively or in PT,
since O(αem) corrections would be sufficient for desirable error budgets. The mass im-
provement coefficients bx can be easily obtained using spatial correlators as outline in
[166166]. The coefficients cx of the higher dimensional improvement term can be determined
in LPT. Calculations for the modified renormalization constant could be performed non-
perturbatively in RI-SMOM. Renormalization constants also need to be proven to be
volume independent unless a purely local QED formulation, such as QEDC , is used.
QCD+QED decay constant calculations beyond the framework of this thesis are crit-

ical to address further systematics. Disconnected contributions to π0 (η, η′) observables
could be calculated (more) economically with the methods presented in [172172]. Most
importantly fixed O(αem) calculations, that include IR divergent diagrams which vio-
late QCD+QED factorization, are required to obtain full LO QED corrections [134134].
The IR divergences cancel if diagrams containing real and virtual photons are com-
bined. Unquenched calculations have been performed and could be extended to matrix
element computations. Unquenched fixed O(αem) results require multiple disconnected
diagrams. These are expensive because they do not benefit from the method mentioned
above. Other hadronic matrix elements have larger errors and are therefore less affected
by systematic QED corrections. Nevertheless their calculation is possible and the next
natural step would be the measurement of corrections to vector meson decay constants.
Lastly, precise experimental data for π0 → γγ should become available within the

next few years [178178, 179179] and allow for a fπ determination that is independent of Vud
[177177].
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A. Analysis

The following appendix intends to give a short summary on general definitions and
methods used in the analysis of lattice data. Some methods are not strictly necessary or
can be replaced by alternative procedures in which cases it is beneficial to confirm that
the analysis yields consistent results for all possible cases.

Measurements were performed on the computer clusters iDataCool [181181], qpace2 [182182]
and athene in Regensburg [183183] as well as on the tier-0 computers fermi and superMUC.

The measurement code was a modified version of chroma [184184], with data files partly
utilizing hdf5 [185185, 186186]. Depending on the computer architecture either the domain de-
composed + deflated solver by [8888] or the adaptive algebraic MG [8989, 187187] and BiCGStab

implemented in chroma was used.
The analysis was performed with the analysis library Woiperdinger developed in

Regensburg, which utilizes armadillo and Minuit2 [188188–190190]. The data plots were
produced with the python library matplotlib [191191] and Feynman diagrams with the
latex package feynmp [192192].

A.1. Definitions and notation

Throughout this thesis I am using natural units in which the following constants are set
to unity

c = ~ = 1. (A.1)

Energies and lengths can be related using

~c = 197.3MeV fm = 1. (A.2)

Repeated occurrence of indices indicate summation according to the Einstein summing
convention. Lattice units are indicated by the lattice spacing a. Some acronyms that
are repeatedly used throughout this document are listed in table A.1A.1.

A.2. Error estimation

The analysis of lattice QCD often requires iterative methods such as fitting to non-linear
functions. This makes defining differentiable transformations and therefore analytical
error propagation either impossible or vastly expansive for a large raw dataset and a
complicated analysis chain. The error of the raw data is therefore propagated with
resampling methods to the final quantity of interest.
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Acronyms

EOM equation(s) of motion
FV finite volume
HMC hybrid Monte Carlo
IR infrared
UV ultra-violet
LO leading order
NLO next-to LO
NNLO next-to-next-to LO
QCD quantum chromodynamics
NRQCD non-relativistic QCD
QED quantum electrodynamics
QFT quantum field theory
SM standard model
PT perturbation theory
LPT lattice perturbation theory
χPT chiral perturbation theory

Table A.1.: Acronyms used throughout the thesis.

The situation is further complicated by the fact that measurements on an HMC tra-
jectory are correlated. Methods to quantify the effects of the so-called autocorrelation
are described in appendix A.2.1A.2.1.

Jackknife

One commonly used resampling method is called Jackknife [193193, 194194]. It replaces mea-
surement samples by jackknife samples that are defined by

x̃(n) =
1

N − 1

N∑
m6=n

x(m) (A.3)

The mean x̄ = 〈x̃〉 is the trivial average of all jackknife samples x̃(n). Transformations
of the data f(x) are simply applied to all jackknife samples. Then the error of the mean
of primary and all derived results fx̄ can be calculated by a simple rescaling of ordinary
statistical analysis:

σ̃fx̄ =

√√√√N − 1

N

N∑
n

(
fx̃(n) − fx̄

)2
(A.4)

Covariance estimation is treated analogously. Jackknife is known to be extremely stable
and to overestimate the error.
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Bootstrap

A generalized method is called Bootstrap and uses stochastic resampling [195195]. Given N
initial measurements we construct M samples

x̃(m) =
1

N ′

N ′∑
x(r) (A.5)

where r ∈ [1, N ] is a random index and N ′ should ideally be equal or larger then N 11.
The error of the mean is also given by an adjustment of the ordinary formula:

σ̃(〈x̃〉) =

√√√√ 1

M

M∑
m

(
x(m) − 〈x̃〉

)2
(A.6)

One can alternatively use the common 1σ quantiles to obtain even better and asymmet-
rical errors.

Bootstrap is possibly slightly more unstable than Jackknife but it has the advantage of
more realistic errors. It can handle large number of measurements N by using M < N .
or alternatively it may provide a more stable estimation of the inverse covariance matrix
if M is sufficiently large.

A.2.1. Autocorrelation

As described earlier in section 3.23.2 successive measurement on a Monte Carlo trajectory
are correlated. This can be quantified by the so-called integrated autocorrelation time
τint, which is 1/2 if the measurements are uncorrelated. Once the autocorrelation time
is determined the errors of the naive results must be rescaled by

σx̄ =
√
2τintσx̄,naive. (A.7)

Naively one can check that autocorrelations are negligible by performing the analysis for
various different bin sizes Nb and asserting that the resulting error is independent. If
this is not the case then the variance σ2x,Nb

grows as a function of Nb and saturates for
large enough values. The saturation value of the variance can be used to estimate τint.
An advanced method to calculated τint is described in [8484].

Note that τx,int is different but approximately of the same order of magnitude for every
observable x. Conservatively one can use the largest auto correlation time the value x
can depend on. An example in LQCD is the topological charge.

A.2.2. Covariance estimation

The analysis described in chapter 55 is highly dependent on correlations within the mea-
sured data. Fitting requires the inversion of the square covariance matrix covij of Nvar

1Or at least be of the same order
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data points. Limited statistics destabilizes the inversion (for large matrices) because
naive covariance estimators have unreliable, small eigenvalues. The inversion of the
covariance matrix was shown to be unsafe [196196] unless

Nmeas > max
(
N2
var, 10(Nvar + 1)

)
. (A.8)

The problem is known within the lattice community and various solutions such as dis-
cussed in [197197] have been used. A particularly cheap solution to this problem is proposed
in [198198]. It consists of rescaling the off-diagonal elements of the covariance matrix with
a single coefficient cshrink ∈ [0, 1]. This coefficient depends on the size of our statistics
Nmeas, the size of the matrix N2

var and the fluctuation of the data. In our analysis this
factor was usually cshrink > 0.95. The resulting fits are more stable and give parameters
between fully covariant cshrink = 1 and diagonal fits cshrink = 0.
The coefficient can be calculated out of the correlation matrix, which makes the ap-

plication to resampled datasets straight forward. Note that an ambiguity arises for
bootstrap resampling when the size of the dataset is changed. Naively larger resam-
pled sets result in less shrinking. We assert that the resampled set is always larger and
choose to rescale the procedure such that the resulting coefficient remains approximately
constant.

A.3. Fitting

Data points yi with covariance matrix covij can be described by a model function fi(p)
with parameters p. The best parameters p are found my minimizing the functional

χ2 =
∑
i,j

(yi − fi(p)) cov−1
ij (yj − fj(p)) . (A.9)

Most non-linear functions fi(p) require the use of iterative minimization algorithms
which converge to local minima. A good starting guess p0 for the location of the global
minimum or testing of multiple starting positions in the space of p become imperative.
Fitting correlators to exponential decay requires a careful choice of the fit range.

Ground states can be extracted in the large t limit of lattice QCD correlators where
all heavier states are insignificant. The required large t limit might be in contradiction
to the limited time extent T of the lattice or the (increasing) signal to noise ratio. A
possible numerical criteria to compare fit ranges k is given in [199199]

Q
(a)
k =

(
1− cdf(χ2

k, dofk)
) dofk
dofmax

pi
σpi

(A.10)

=
(
1− cdf(χ2

k, dofk)
) dofk
dofmax

√
pT cov−1 p (generalized)

A larger Qk signifies a better fit quality. Note that this is only a combination of assum-
ably good characteristics and not mathematically rigorous. Its is therefore also possible
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to neglect individual components or weight them differently. For our analysis we tested
two additional variations of the criteria above:

Q
(b)
k =

(
1− cdf(χ2

k, dofk)
) dofk
dofmax

(A.11)

Q
(c)
k = cdf(χ2

k, dofk)
(
1− cdf(χ2

k, dofk)
) dofk
dofmax

(A.12)

Criteria (b) ignores the relative error of the fit parameters and criteria (c) prevents over
fitting by also cutting the χ2 that are to small.

Chiral fits provide a large number of possible fit parameters. Dimensional analysis
may be provide additional models and extensions. The relative significance of a model
j with nj parameters can be described with the Akaike Information Criteria [120120]

AICj = χ2
j + 2nj . (A.13)

This value can be used to weight individual models j with exp(−(AICmin −AICj)/2).
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B.1. Meson channels

Apart from spin structure mesons are mainly characterized by their quark masses mi,
respectively hopping parameters κi and charges qi. All possible combinations are given
by the product of ci = (κi, qi) and cj(κj , qj). We are ignoring different discrete repre-
sentations, exited states and smearing choices and think of mesons solely as the ground
state of a correlator.

Interchange of propagators in the meson contraction just yields the complex conjugate
correlator. As in [130130] correlators can be averaged over ±Bµ or ±(qi, qj) respectively.

ci × cj →
1

2
(ci × cj + c̃i × c̃j) =

1

2
((κi, qi)× (κj , qj) + (κi,−qi)× (κj ,−qj)) (B.1)

What we indeed do want and can distinguish is whether a specific charge is on the lighter
or on the heavier quark.

B.2. Quark mass matching

In the analysis of lattice QCD+QED data using Wilson discretization for fermions a
quark mass matching problem for different quark charges emerges. The mis-tuning can
be corrected by measuring all channels at n slightly detuned masses and matching in the
analysis. This requires to separate all observables into different groups characterized by
the approximate quark mass type (e.g. light, charm, ...) and the absolute quark charge
of both individual quarks.

For matching, 4 different ”meson” types can be distinguished:

• Groups with both quark charges q1,2 equal to zero.

• In groups where exactly one quark charge qi is zero, we only need to extrapolate
the mass parameter of the charged quark and have exactly n points.

• Groups where the quark mass type of both quarks and the absolute quark charge
|q1| = |q2| are the same only require one extrapolation parameter since the mass
parameters of quark and anti-quark are the same. Although there are n(n −
1)/2 independent combinations of the mass parameter, we only use the n mass
symmetric points and avoid higher order artifacts due to unequal masses.

• All other cases, where we have to extrapolate in two quark mass parameters and
n2 points available.
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To match the n2 ≥ 4 points of a ”meson” type we assume that the mass dependence
of their decay constant can be parametrized locally by

fPS = A+B1mPS
2
sym(κ1, q1) +B2mPS

2
sym(κ2, q2) (B.2)

= Ax0ê0 +B1x1ê1 +B2x2ê2 = X ·P (B.3)

Note that this ansatz can be modified for charm quarks, where a better extrapolation
parameter might be the unsquared symmetric meson mass. The interpolating parameters
P = (A,B1, B2)

T can be determined when we have 3 or more different equations, by
minimizing the norm

‖XP− fPS‖2 =
∑
i

(Xi ·P− fPSi)
2 (B.4)

This is a ordinary least squares (OLS) [200200] problem, which is is solved by the equation

XTXP = XT fPS. (B.5)

Using all n2 equations yields an overdetermined system which is solved by singular value
decomposition (SVD). We neglect all errors since they are highly correlated and of the
same order in fPS and mPS

2 anyway. Finally the decay constant of the charged meson
are matched at

X̄ =
(
1,mPS

2
sym(κ

′
1, 0),mPS

2
sym(κ

′
2, 0)

)
(B.6)

where κ′i is the kappa of the corresponding uncharged meson.
A conservative estimate for the error introduced by this extrapolation can be obtained

by comparing the normalized value of eq. (B.4B.4)

‖XP− fPS‖2
n2

(B.7)

to the desired splitting δf (eq. (5.335.33)). This values were spot checked and found to be at
most 5% of δf for physically interesting parameter choices like improved meson masses,
reasonable fit range choices and naive improvement parameters. The value becomes
large in comparison to δf for (unphysical11) channels with small splittings (< 0.1MeV).
The error should be propagated correctly since the extrapolation is performed on all
resampled datasets individually. One could nevertheless exclude such channels from the
global fits. The largest deviations were found for mesons containing light and charm
quarks, which might be resolved by using the unsquared meson mass as X parameter for
the charm quarks. We furthermore remark that for critical channels the extrapolated
values Xi ·P in the summands of eq. (B.4B.4) deviated at most by 0.05% from the measured
value fPSi.

1e.g. Q2 = ∆2
q
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B.2. Quark mass matching

B.2.1. Additional plots
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Figure B.1.: Doubly light, light-strange and light-charm data on ensemble L0. Shown are
results for bootstrap(bs) and jackknife(jk) resampling and three covariance
estimation methods for the correlator fits. It is noteworthy that shrink-
ing (shr) covariance estimation is more consistent across both resampling
methods whereas the naive (cov) covariance estimation is less so.
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B. U(3) Analysis
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Figure B.2.: Extracted splittings for point and shell sources on ensemble L0. Shown are
splittings of all quark mass combinations. The fit ranges where adjusted
individually. There is no significant difference.
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B.2. Quark mass matching
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Figure B.3.: Effect of hypothetical higher order corrections to the coefficients bA and cA
on ensemble L0. The normal data was obtained with our default values
whereas the none data used bA = cA = 0 and ZA = 1. Corrections on
cA consistently only affect uncharged splittings δf whereas corrections to
bA are only relevant for charged splittings of charmed mesons. The cross
is the doubly light, the circle the light-strange and the pentagon the light-
charm channel. Full (open) symbols indicate physical (unphysical) charge
combinations.
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C. Discretized QED generation

The following appendix only covers the quenched methods used in this work. Methods
for the generation of fully dynamical QED(+QCD) were not used and are therefore only
briefly referred to in section 4.1.24.1.2.

C.1. Non-compact

The non-compact QED (ncQED) gauge action is given by

SncQED
G =

1

4

∑
n

∑
µ,ν

(
∂̂µBν(n)− ∂̂νBµ(n)

)2
(C.1)

with the forward derivative

∂̂µf(n) = a−1
(
f(n+ µ̂)− f(n)

)
. (C.2)

and real vector fields Bµ(n). Upon transformation to momentum space the new degrees
of freedom B̃µ(k) decouple. This reduces the generation of a QED configuration to
drawing appropriately reweighted, uncorrelated Gaussian random numbers and a Fourier
transform to obtain the position space fields. Assuming a perfect parallel random number
generator, non-compact gauge fields with different seeds are completely uncorrelated.

C.1.1. Generation

The generation itself is most practical in Feynman gauge [120120, 201201] in which the action
can be written as

SncQED
G (k) =

1

2

∑
µ

∣∣k̂∣∣2∣∣Bµ(k)∣∣2 (C.3)

with k̂µ =
exp(iakµ)− 1

a
and kµ ∈ [0, L− 1]

2π

L
.

The fields B̃µ(k) therefore simply are complex Gaussian random numbers divided by |k̂|.
The division by zero and free choice of B̃µ at |k̂| = 0 is prevented by our ’global’ gauge
choice, which requires B̃µ(|k| = 0, k0) = 0 (eq. (4.74.7)). Note that the action above differs
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C. Discretized QED generation

by an irrelevant gauge dependent term from the gauge independent formulation

SncQED
G (k) =

1

4

∑
µ,ν

∣∣∣k̂µB̃ν − k̂νB̃µ∣∣∣2 (C.4)

which can be used throughout the generation to assert the correctness of all transforma-
tions and in fact does yield the same value as the position space action.
Performing a naive discrete Fourier transform

Bµ(n) =
1√
V

∑
k

eikxB̃µ(k) (C.5)

gives complex instead of real position space fields. This can be remedied by explicitly
setting the imaginary part to zero [202202], which is equivalent to the involved treatment
described in [129129].
The reduced fields are transformed back to momentum space where the (non-iterative)

operator

PC,µν = δµν −
1

k̂2
(0, k̂)†µkν (C.6)

is used to obtain the fields in Coulomb gauge. After the final Fourier transform to
position space the fields Bµ(x) can be used to multiply the SU(3) links with the complex
phase U(1)µQED = exp(ieqeQEDBµ), where eq is the fractional quark charge and eQED

the electromagnetic coupling.
Finally the coupling can be checked by comparing the plaquette for eq = eQED = 1 to

its asymptotic value in infinite volume P∞ = exp(−1/4) [203203].

C.2. Compact lattice QED

The compact QED action is given eq. (4.54.5). Its effective degrees of freedom are four
angles θµ.

C.2.1. Generation

In the absence of charged sea quarks U(1) configurations can be generated by heatbath
updates. A single update draws a replacement angle θµ ∈ [0, 2π) from the probability
distribution

p(θµ) ∝ exp (w cos(θµ − θstaple)) (C.7)

where w and θstaple depend on the attached staple and on the coupling βQED. This angle
can therefore be drawn simultaneously for one direction on all odd (respectively even)
sites of the lattice.
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C.3. Smearing

The distribution itself cannot be mapped analytically by a coordinate transformation
to the uniform or normal (Gaussian) distribution. The most efficient way of generating
appropriate random numbers is therefore to find a distribution that is very similar and
to stochastically correct for the difference. The scheme proposed in [204204] was used for
our compact U(1) generation. We furthermore employed over relaxation [205205]. Further
details about the generation can be found in [158158]. The updated configuration is in a
random gauge and needs to be gauge fixed for the study of charged hadrons.

C.2.2. Properties

Compact lattice QED requires a small multiplicative renormalization due to the implicit
self-interaction of the QED fields. The required renormalization constant can be deter-
mined by measuring U(1) Wilson loops, which yield the periodic potential V (an) that
in turn can be fitted to lattice (QED) perturbation theory results. The fit yields the
renormalized charge er and an irrelevant self energy.

The reader shall be reminded that compact QED restricts the quark charges to integer
values. This is due to the fact that upon exponentiation the links Uµ are effectively
restricted to local phase information. The extraction of the fields Bµ and the rescaling
of the original links are therefore ambiguous.

C.3. Smearing

Both compact QED links as well as non-compact QED fields can be smeared. The
non-compact smearing is given by

Bsmr
µ (n) = αnc ·Bµ(n) +

1− αnc

2Nd − 2

±Nd∑
ν 6=µ

Bν(n) +Bµ(n+ ν̂)−Bν(n+ ν̂), (C.8)

where it is important that all weights sum up to one. We employed αnc = 0.9 in contrast
to the simulation described in [120120], which effectively uses αnc = 0.9/1.5 = 0.6. This
non-compact prescription is approximately equivalent (up to non-linear terms) to APE
smearing of the U(1) links

U smrµ (n) =
(
αU(1)-APEUµ(n) + U sµ(n)

)
, (C.9)

where U sµ is the U(1) analogue to the QCD staple (eq. (3.313.31)) and the trivial backprojec-

tion to U(1) is implied. The APE smearing parameter αU(1)-APE is not equivalent to the
corresponding non-compact coefficient. Either procedure can be performed iteratively.
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[125] M. Göckeler, R. Horsley, V. Linke, P. E. L. Rakow, G. Schierholz, and H. Stuben,
“Is there a Landau pole problem in QED?”,
Phys. Rev. Lett. 80 (1998) 4119–4122Phys. Rev. Lett. 80 (1998) 4119–4122, arXiv:hep-th/9712244arXiv:hep-th/9712244.

[126] J. B. Kogut and C. G. Strouthos, “The Logarithmic triviality of compact QED
coupled to a four Fermi interaction”, Phys. Rev. D71 (2005) 094012Phys. Rev. D71 (2005) 094012,
arXiv:hep-lat/0501003arXiv:hep-lat/0501003.

[127] A. Duncan, E. Eichten, and H. Thacker, “Electromagnetic splittings and light
quark masses in lattice QCD”, Phys. Rev. Lett. 76 (1996) 3894–3897Phys. Rev. Lett. 76 (1996) 3894–3897,
arXiv:hep-lat/9602005arXiv:hep-lat/9602005.

[128] A. Duncan, E. Eichten, and H. Thacker, “Electromagnetic structure of light
baryons in lattice QCD”, Phys. Lett. B409 (1997) 387–392Phys. Lett. B409 (1997) 387–392,
arXiv:hep-lat/9607032arXiv:hep-lat/9607032.

[129] T. Blum, T. Doi, M. Hayakawa, T. Izubuchi, and N. Yamada, “Determination of
light quark masses from the electromagnetic splitting of pseudoscalar meson
masses computed with two flavors of domain wall fermions”,
Phys. Rev. D76 (2007) 114508Phys. Rev. D76 (2007) 114508, arXiv:0708.0484 [hep-lat]arXiv:0708.0484 [hep-lat].

[130] T. Blum, R. Zhou, T. Doi, M. Hayakawa, T. Izubuchi, et al., “Electromagnetic
mass splittings of the low lying hadrons and quark masses from 2+1 flavor lattice
QCD+QED”, Phys. Rev. D82 (2010) 094508Phys. Rev. D82 (2010) 094508, arXiv:1006.1311 [hep-lat]arXiv:1006.1311 [hep-lat].

[131] S. Aoki, K. Ishikawa, N. Ishizuka, K. Kanaya, Y. Kuramashi, et al., “1+1+1
flavor QCD + QED simulation at the physical point”,
Phys. Rev. D86 (2012) 034507Phys. Rev. D86 (2012) 034507, arXiv:1205.2961 [hep-lat]arXiv:1205.2961 [hep-lat].

[132] A. Portelli, S. Durr, Z. Fodor, J. Frison, C. Hoelbling, et al., “Systematic errors
in partially-quenched QCD plus QED lattice simulations”, PoS LATTICE2011
(2011) 136, arXiv:1201.2787 [hep-lat]arXiv:1201.2787 [hep-lat].
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[153] N. Cundy, M. Göckeler, R. Horsley, T. Kaltenbrunner, A. D. Kennedy,
Y. Nakamura, H. Perlt, D. Pleiter, P. E. L. Rakow, A. Schäfer, G. Schierholz,
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