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In this thesis, we study two problems: (1) the dimension problem on splines, and (2) Goren-

stein Calabi-Yau varieties with regularity 4 and codimension 4. They come from approxi-

mation theory and physics, respectively, but can be studied with commutative algebra.

Splines play an important role in approximation theory, geometric modeling, and nu-

merical analysis. One key problem in spline theory is to determine the dimension of spline

spaces. The Schenck-Stiller “2r+1” conjecture is a conjecture on this problem. We present a

counter-example to this conjecture and prove it with the spline complex. We also conjecture

a new bound for the first homology of the spline complex.

Calabi-Yau varieties, especially Calabi-Yau threefolds, play a central role in string theory.

A first example of a Calabi-Yau threefold is a quintic hypersurface in P7. Generalizing this

construction, we may consider complete intersection Calabi-Yaus (CICY), or more generally

Gorenstein Calabi-Yaus (GoCY). In 2016, Coughlan, Go lebiowski, Kapustka and Kapustka

found 11 families of Gorenstein Calabi-Yau threefolds in P7 and they ask if it is a complete

list. We consider the Artinian reduction and find there are 8 Betti diagrams for these GoCYs.

There are another 8 Betti diagrams corresponding to Artinian Gorenstein rings of regularity

4 and codimension 4. We prove they cannot be Betti diagrams of Gorenstein threefolds in

P7. Our result can be viewed as a step towards answering the CGKK question.

These two topics may seem to be unrelated at first sight. However, Macaulay’s inverse

systems provide a unifying theme. We discuss some of these topics as future directions of

research.
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CHAPTER 1

INTRODUCTION

1.1 Problems

In this thesis, we study two problems: (1) the dimension problem on spline spaces, and (2)

finding Gorenstein Calabi-Yau varieties. They come from approximation theory and physics,

respectively, but can be studied with commutative algebra.

1.1.1 The dimension problem on spline spaces

To approximate a function over a region in Rn, we may consider a subdivision of the region

and then approximate the function by a piecewise polynomial. A Cr-differentiable piecewise

polynomial function over a subdivision ∆ of a region in Rn is called a spline.

Splines are fundamental objects in numerical analysis and approximation theory, where

they are used in the finite element method to solve PDE, as well as in shape modeling of

complicated objects.

Figure 1.1: The Morgan-Scott configuration
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In practice, there can be many different types of subdivisions for a given region. However,

in this thesis, we only consider the cases when the subdivision is a triangulation. For example,

the Morgan-Scott configuration in Figure 1.1, which is reproduced from [31, Example 6.2],

is a triangulation of a planar region. Therefore, ∆ has a natural structure of a simplicial

complex. Assume ∆ is a simplicial complex with pure dimension n. The set of i-faces of ∆

is denoted by ∆i.

Definition. Cr(∆) is the set of functions f : ∆→ R satisfying the following two properties:

• f is differentiable of order r, and

• if σ is a facet of ∆, then f |σ is a polynomial.

Once we have this definition, there are some immediate conclusions:

1. Cr(∆) is an R-vector space.

2. Cr(∆) has an R-algebra structure by taking multiplication of two elements pointwisely.

3. C∞(∆) can be identified with R[x1, . . . , xn].

4. With C∞(∆) ' R[x1, . . . , xn], Cr(∆) can be viewed as an R[x1, . . . , xn]-module.

There are interesting questions and results on each of these structures. For example, in [6]

Billera shows that the R-algebra structure of C0(∆) can be identified with a Stanley-Reisner

ring.

In this thesis, we focus on the dimension problem. For each non-negative integer d, we

define

Cr
d(∆) = {f ∈ Cr(∆) : deg(f |σ) ≤ d, for all σ ∈ ∆n}. (1.1)

This is a finite dimensional R-vector space. One of the key problems in spline theory is the

determination of the dimensions of Cr
d(∆) for all d. However, even for planar regions, it is

2



still an open problem to find an explicit formula that works for all ∆, r and d. On the other

hand, the planar cases were studied a lot and there is a formula that gives a lower bound for

dimCr
d(∆), thanks to Schumaker[34].

L(∆, r, d) =

(
d+ 2

2

)
+

(
d− r + 1

2

)
f ◦1 − (

(
d+ 2

2

)
−
(
r + 2

2

)
)f ◦0 +

∑
σi, (1.2)

where f ◦1 is the number of interior edges and f ◦0 is that of interior vertices in ∆, and

σi =
∞∑
j=0

max{(r + 1 + j)(1− n(vi)), 0} (1.3)

with n(vi) the number of distinct slopes at an interior vertex vi. In other words, for any

triangulation ∆, smoothness r and degree d, we always have the inequality

dimCr
d(∆) ≥ L(∆, r, d). (1.4)

Hence, it is natural to ask when does equality in (1.4) hold. First of all, it is known that

formula L(∆, r, d) does not always give the correct value of dimCr
d(∆). For example, it fails

for the Morgan-Scott configuration in Figure 1.1 when (r, d) = (1, 2).

v1

v2v3

v0

v4

Figure 1.2: ∆ is a star of v0

Assume the support of ∆ has genus 0. If there is only one interior vertex v in ∆, then

we say ∆ is a star of v. In [34], Schumaker also proves that L(∆, r, d) = dimCr
d(∆) for all

(r, d) if ∆ is a star of some vertex v.

It is also known by [1] that formula L(∆, r, d) gives dimCr
d(∆) for any triangulation ∆

when d ≥ 4r + 1:

3



Theorem 1.1 (Alfeld-Schumaker,1987). If d ≥ 4r + 1, then

dimCr
d(∆) = L(∆, r, d). (1.5)

They also proved that the equality holds for generic triangulations when r ≥ 3r + 1 in a

later paper[2]. In [13], Dong proves that (1.5) holds for all triangulation when d ≥ 3r + 2.

Schenck and Stiller conjectured in [29]:

Conjecture 1 (Schenck-Stiller, 2002). The equality (1.5) holds for all triangulations when

d ≥ 2r + 1.

They call it the “2r + 1” conjecture.

Figure 1.3: An example that (1.5) fails for d = 2r

Work of Tohǎneanu[36] shows Conjecture 1 is optimal by showing a configuration in

Figure 1.3, reproduced from [29, Example 2.4], such that equality (1.5) fails for d = 2r.

There is also a conjecture by Alfeld and Manni that the equality (1.5) holds for all ∆

when (r, d) = (1, 3). This conjecture appears earlier than the Schenck-Stiller conjecture.

Throughout this thesis, we are going to use the following notations:

• ∆◦ denotes the set of interior faces ∆.

• ∆◦i denotes the set of i-dimensional interior faces.

• ∆∂
i denotes the set of i-dimensional boundary faces.

4



• fi(∆), f ◦i (∆) and f∂i (∆) denote the cardinality of ∆◦, ∆◦i and ∆∂
i , respectively. Some-

times, ∆ will be omitted if it is clear which ∆ we are referring to by the context.

1.1.2 Finding Gorenstein Calabi-Yau varieties

No. degree h1,1 h1,2 Description
1 14 2 86 (2, 4) divisor in P1 × P1

2 15 1 76 G(2, 5) ∩X3 ∩ P7

3 16 1 65 c.i. (2, 2, 2, 2)
4 17 1 55 bilinked on c.i. (2, 2, 2) to P3

5 17 2 58 2× 2 minors of a 3× 3 matrix
6 17 2 54 codim 2 in cubic roll
7 18 1 46 bilinked on c.i. (2, 2, 3) to F1

8 18 1 45 bilinked on c.i. (2, 2, 3) to F2

9 19 2 37 bilinked on special Pf13 to F1

10 19 2 36 bilinked on special Pf13 to F2

11 20 2 34 3× 3 minors of 4× 4 matrix with linear forms

Table 1.1: The CGKK list of families of GoCY threefolds in P7

Let X ⊆ PN be a nonsingular projective variety of dimension n. Let Ωp(X) denote the

sheaf of regular p-forms over X.

Definition. The Hodge number hp,q(X) is defined as

hp,q(X) = dimHq(X,Ωp(X)). (1.6)

A nonsingular projective variety X is Calabi-Yau if Ωn(X) ' OX and for all i > 0,

h0,i(X) = 0. (1.7)

Remark 1. There are several equivalent definitions of Calabi-Yau. Because all compact

Calabi-Yau manifolds satisfy the criterion of Kodaira embedding Theorem, they can be

viewed as subvarieties of PN .

In their 1985 paper [10], Candelas-Horowitz-Strominger-Witten showed that Calabi-Yau

threefolds play a central role in string theory. According to [39], “hidden dimension” of our
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universe is a Calabi-Yau threefold. Therefore, finding and studying Calabi-Yau varieties,

especially Calabi-Yau threefolds, are of great interest to both physicists and mathematicians.

A first example of a Calabi-Yau threefold is a quintic hypersurface in P4. Generalizing

the hypersurface case, when X is a complete intersection (CI) of type {d1, . . . , dn−3} ⊆ Pn

we have

Ωn(X) ' OX(−n− 1 +
∑

di). (1.8)

So a complete intersection Calabi-Yau (CICY) threefold in Pn must have {d1, . . . , dn−3}

satisfying

{5} in P4

{2, 4} in P5

{3, 3} in P5

{2, 2, 3} in P6

{2, 2, 2, 2} in P7

Green-Hübsch-Lütken characterize complete intersection Calabi-Yau threefoldsX ⊂
∏m

i=1 Pni

in [19]. A complete intersection is the first avatar of a Gorenstein ring; a Gorenstein ideal of

height two is a complete intersection, and Buchsbaum-Eisenbud[9] show that a height three

Gorenstein ideal is generated by the Pfaffians of a skew-symmetric matrix. From the Calabi-

Yau perspective, this is investigated in [26], [37] and subsequent papers. The codimension

four case was first studied systematically by Bertin in [4]; in [11], Coughlan-Golebiowski-

Kapustka-Kapustka list 11 arithmetically Gorenstein Calabi-Yau (GoCY) threefolds in P7

as in Table 1.1, where Pf13 ⊆ P7 is a codimension 3 manifold defined by Pfaffians and Fi’s

are some del Pezzo threefolds. See [11] for a detailed description of these manifolds.

Conjecture 2 (Coughlan-Go lebiowski-Kapustka-Kapustka, 2016). The CGKK list (Table

1.1) is a complete classification of families of Gorenstein Calabi-Yau threefolds in P7.

We also call this conjecture the CGKK conjecture.
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1.2 The organization of this thesis

The organization of this chapter is as follows: in Section 1.3, we recall some basic knowledge

of commutative algebra that we use. They can be found in [25], [15] and [8]. We also fix

notations which we use throughout the thesis. In Section 1.4, we introduce a duality between

two polynomial rings, which relates the two problems introduced in Section 1.1 to each other,

and also to many other topics.

In Chapter 2, we study the dimension problem on spline spaces using the spline complex

S•/J•, which was invented by Schenck and Stillman in [30]. In particular, we present a

configuration ∆Y which makes a counter-example to Conjecture 1. We prove it is a counter-

example by performing some explicit computation on H1(S•/J•) of ∆Y . Then we prove that

the regularity of H1(S•/J•) of ∆Y is greater than 2.2r. That means if we would like to make

a new conjecture, it cannot be of the form “2r + c” for any constant c. The coefficient of r

has to be no less than 2.2.

In Chapter 3, we study Artinian Gorenstein rings. We are particularly interested in those

with regularity 4 and codimension 4, because they are related to Conjecture 2. The main

results are Table 3.1 and 3.2. They are all possible Betti diagrams for Artinian Gorenstein

rings with regularity 4 and codimension 4. Those in Table 3.2 cannot be Betti diagrams of

Gorenstein Calabi-Yau threefolds. We prove these results using a case-by-case argument.

We close this thesis with a discussion on directions of future research in Chapter 4.

1.3 Some notions and definitions in commutative algebra

Throughout the thesis, we assume S = k[x0, . . . , xn] is a standard graded polynomial ring

with char(k) = 0. The ideal m = 〈x0, . . . , xn〉 is called the irrelevant ideal.

7



1.3.1 On dimensions

If J ⊆ S is a homogeneous ideal and R = S/J , dimR refers to the Krull dimension of R,

that is, the supreme of lengths of chains of prime ideals of R. Here the length of the chain

P0 ( · · · ( Pr−1 ( Pr is taken to be r. We only talk about codimension of R when R is

a quotient ring S/J , and in this case codim R = dimS − dimR. The height of J is the

supreme of lengths of chains of primes descending from J .

We write ann(M) for the annihilator of M , that is,

ann(M) = {f ∈ S | fM = 0}. (1.9)

The dimension of M is defined to be the dimension of S/ann(M) and codimension of M is

defined to be the height of ann(M).

A sequence f = f1, . . . , fn of elements of S is said to be a regular sequence (or S-sequence)

if, for each i, the fi is neither a zero divisor nor a unit to S/〈f1, . . . , fi−1〉. Similarly, f is a

regular sequence (or M -sequence) if 〈f1, . . . , fn〉M 6= M , and, for each i, the fi is not a zero

divisor to M/〈f1, . . . , fi−1〉M . If J is generated by a regular sequence, then we call V (J) a

complete intersection.

If J ⊆ S is an ideal such that JM 6= M , then the common length of the maximal M -

sequences in J is called the grade of J on M , denoted by grade(J,M). The grade of J is

defined to be grade(J, S). The depth of M is defined to be grade(m,M) and is denoted by

depth M . In general, depth M ≤ dimM and grade(J) ≤ ht(J), see [8, Proposition 1.2.12.].

Definition. Let S = k[x0, . . . , xn] be the standard graded polynomial ring. A finite gener-

ated graded S-module M is arithmetically Cohen-Macaulay if depth M = dimM .

Remark 2. If J ⊆ S is a homogeneous ideal, then grade J = ht J . See [8, Corollary 2.1.4]
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1.3.2 On chain complexes

If M is a finitely generated graded S-module, the Hilbert function of M is

HF(M,d) = dimMd. (1.10)

Sometimes, we also use hd(M) = HF(M,d) and call

h(M) = (h0(M), . . . , hd(M), . . . ) (1.11)

the h-vector of M .

For p ∈ Z denoted by M(−p) the graded S-module such that M(−p)d = M−p+d. We say

M(−p) is the module M shifted p degrees, and call p the shift. It is clear from the definition

that

HomS(S(p), S(q)) ' S(q − p). (1.12)

Definition. A chain complex F• over S is a sequence of homomorphisms of S-modules

F• : · · · → Fi
di−→ Fi−1 → F1

d1−→ F0 → . . . (1.13)

such that di−1di = 0 for i ∈ Z. The collection of maps d• = {di} is called the differential of

F•. Sometimes the chain complex is denoted (F•, d•). The i-th homology of a chain complex

F• is defined by

Hi(F•) = ker(di)/Im(di+1). (1.14)

The chain complex is exact at Fi (or at step i) if Hi(F•) = 0. The chain complex is exact if

Hi(F•) = 0 for all i.

Definition. A free resolution of a finitely generated S-module M is a sequence of homo-

morphisms of S-modules

F• : · · · → Fi
di−→ Fi−1 → F1

d1−→ F0 (1.15)

such that
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(1) F• is a chain complex of finitely generated free S-modules Fi,

(2) F• is exact except at F0, and

(3) M is isomorphic to cokernel of d1.

A resolution is graded if M is graded, F• is a graded complex and M ' coker d1 is of

degree 0. ker di−1 is called the i-th syzygy of M . A graded free resolution is minimal if

di+1(Fi+1) ⊆ mFi for all i ≥ 0. (1.16)

Definition. For a graded S-module M , assume F• is a minimal free resolution of M . The

total Betti numbers are

bi = rank Fi. (1.17)

The graded Betti numbers are

bij = dimk Tori(M,k)j. (1.18)

A Betti diagram has the form

b0 b1 b2 . . .
0 b0,0 b1,1 b2,2 . . .
1 b0,1 b1,2 b2,3 . . .
2 b0,2 b1,3 b2,4 . . .
3 b0,3 b1,4 b2,5 . . .
...

...
...

...
...

The projective dimension of M is defined by

proj.dim(M) = sup{i | bi 6= 0}. (1.19)

The Castelnuovo-Mumford regularity of M is defined by

reg (M) = sup{j | bi,i+j 6= 0}. (1.20)
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Assume α : F → G is a homomorphism where F ' Sf and G ' Sg are two free modules,

with rank F ≥ rank G. By choosing basis (us)1≤s≤g for G and (vt)1≤t≤f for F , α may be

written as

α =
∑
s,t

αs,tus ⊗ v∗t , (1.21)

where αs,t ∈ S. The Eagon-Northcott complex of α is a complex

EN(α) : 0→ (Symf−g G)∗ ⊗ ∧fF
df−g+1−−−−→ (Symf−g−1G)∗ ⊗ ∧f−1F

df−g−−−→

. . .
d4−→ (Sym2G)∗ ⊗ ∧g+2F

d3−→ G∗ ⊗ ∧g+1F
d2−→ ∧gF ∧gα−−→ ∧gG,

where

dk : (Symk−1G)∗ ⊗ ∧g+k−1F → (Symk−2G)∗ ⊗ ∧g+k−2F,

is defined by

dk((uj1 · · · · · ujk−1
)∗ ⊗ vi1 ∧ · · · ∧ vig+k−1

)

=
∑
s,t

αs,t(uj1 . . . ûjs . . . ujk−1
)∗ ⊗ (−1)tvi1 ∧ . . . v̂it · · · ∧ vig+k−1

.

The Buchsbaum-Rim complex of of α is a complex

BR(α) : 0→ (Symf−g−1G)∗ ⊗ ∧fF
df−g+1−−−−→ (Symf−g−2G)∗ ⊗ ∧f−1F

df−g−−−→

. . .
d4−→ G∗ ⊗ ∧g+2F

d3−→ ∧g+1F
ε−→ F

α−→ G,

where

dk : (Symk−2G)∗ ⊗ ∧g+k−1F → (Symk−3G)∗ ⊗ ∧g+k−2F,

is defined by

dk((uj1 · · · · · ujk−2
)∗ ⊗ vi1 ∧ · · · ∧ vig+k−1

)

=
∑
s,t

αs,t(uj1 . . . ûjs . . . ujk−2
)∗ ⊗ (−1)tvi1 ∧ . . . v̂it · · · ∧ vig+k−1

.
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The map ε : ∧g+1F → F in Buchsbaum-Rim complex is defined by

ε(∧Iv) =
∑

J⊂I,|J |=g

sgn(J ⊂ I)(detαJ) ∧I−J v∗, (1.22)

where αJ is the g × g submatrix of α with columns corresponding to the basis elements

indexed by J , sgn(J ⊂ I) is the sign of permutation of I that puts the elements of J into

first g positions.

1.3.3 Miscellaneous

Throughout the thesis, we use Gr(k, V ) to denote the Grassmannian, that is, the set of all

k-dimensional subspace of a vector space V .

1.4 Macaulay’s inverse system and Apolarity

Assume char(k) = 0. Let T = k[y0, . . . , yn] and S = k[x0, . . . , xn]. Define the action of T on

S by

T × S → S,

(g, f) 7→ g(
∂

∂x0

, . . . ,
∂

∂xn
) · f.

This map is bilinear, hence factors through T ⊗ S → S. This makes S a graded T -module.

Remark 3. The grading of S as a ring is opposite to that as an T -module.

This map can be restricted to a perfect pairing

Td × Sd → k.

Therefore, it defines a duality between finite dimensional vector spaces Td and Sd for d ∈ N.

This duality connects several notions together.
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First of all, in particular, it defines a duality between T1 and S1,

ϕ : Gr(n, T1)→ Gr(1, S1),

V 7→ V ⊥.

Note that Gr(n, T1) is equivalent to the set of closed points in Proj(T ) and Gr(1, S1) is just

P(S1). If P ∈ Pn = Proj(T ) is a closed point and [LP ] = ϕ(P ) for some LP ∈ S1, then LP is

determined by P up to a scalar. Hence we call LP the corresponding linear form of P . So

this duality sets a connection between closed points in one space and linear forms over the

dual space. Next, we define for an ideal I ⊂ T Macaulay’s inverse system of I to be

I−1 = {f ∈ S | g(f) = 0 for all g ∈ I}. (1.23)

I−1 is a T -module, but not an S-module in general. In fact, by [17, Proposition 2.5], we have

(I−1)d = I⊥d . (1.24)

This correspondence relates powers of linear forms to fat points. See Section 4.2 for a

discussion on this topic.

Remark 4. There are some equivalent definitions for Macaulay’s inverse system. See [15,

Section A2.4] and [21, Appendix A].

Definition. The canonical module ωT of T is defined to be ωT = T (−n−1). If I is a homoge-

neous ideal in T such that U = T/I is arithmetically Cohen-Macaulay and dimT−dimU = t,

then the canonical module ωU is defined to be ωU = ExttT (U, ωT ). U is arithmetically Goren-

stein if ωU can be generated by one element as an U -module.

We also define Macaulay’s inverse system of an ideal J ⊆ S to be

J−1 = {g ∈ T | g(f) = 0 for all f ∈ J}. (1.25)

J−1 is an ideal in T . If J = 〈f〉 is a principal ideal generated by f ∈ Sd, then J−1 is

also denoted as If and elements in If are also called polynomials apolar to f . Moreover,
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it is an Artinian Gorenstein ideal, which we study in Chapter 3. Conversely, any Artinian

Gorenstein ideal I ⊂ T can be obtained as Macaulay’s inverse system of a principal ideal

〈f〉 ∈ S [15, Theorem 21.6].

Theorem 1.2 (Macaulay, 1916). The map f 7→ Af is a bijection between degree d forms

f ∈ S and graded Artinian Gorenstein quotient rings Af = T/I of T with regularity d.
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CHAPTER 2

ON THE DIMENSION CONJECTURES OF SPLINE SPACES

We study the dimension problem of spline spaces in this chapter. In Section 2.1, we introduce

the spline complex S•/J•, which is the main tool we use to study Cr(∆). In particular,

we will see Cr(∆̂) can be identified with the top homology of S•/J•. Section 2.2 reviews

results obtained by the local data of ∆. In Section 2.3, we focus on the planar cases. We

review Schenck and Stillman’s results on how homologies of S•/J• affect dimCr
d(∆) when

∆ is planar. With their results, we can translate the conjecture on dimCr
d(∆) to one on

regularity of the first homology of S•/J•. We state our main results, a counter-example to

Conjecture 2 and a new bound for H1(S•/J•), in 2.4-2.7.1

2.1 Homological methods for studying spline problems

Since we know that Cr(∆) is an R[x1, . . . , xn]-module, we want to use commutative algebra

tools to study it. In order to use these notions, it is helpful to introduce the concept of

homogenized spline modules. Let ∆̂ be the cone of ∆ in Rn+1. To be precise, suppose ∆

is in Rn with coordinates x1, . . . , xn. Then ∆̂ corresponds to embedding ∆ in hyperplane

x0 = 1, and forming a new simplicial complex ∆̂ by joining each simplex in ∆ to the origin in

Rn+1. We call Cr(∆̂) the homogenized spline module of ∆. Assume that S = R[x0, . . . , xn].

Then Cr(∆̂) is a graded S-module. Recall that HF(M,d) denotes the Hilbert function of a

graded S-module M . Hence,

dimRC
r
d(∆) = dimRC

r(∆̂)d = HF(Cr(∆̂), d). (2.1)

1Portions of this chapter are reprinted from [35] and [33].
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The Hilbert function is additive, meaning that if there is an short exact sequence of graded

S-modules

0→ U → V → W → 0, (2.2)

then

HF(U, d) + HF(W,d) = HF(V, d). (2.3)

As a graded S-module, Cr(∆̂) can be identified with the kernel of a homomorphism φ :

Sfn ⊕ Sf◦n−1(−r − 1) → Sf
◦
n−1 which will be defined later. Before we give the definition, we

want to illustrate what φ is by a concrete example.

Example 1 (“A star of a vertex”). Figure 1.2 is a planar ∆ which is the star of a single

interior vertex v0 at the origin. Let l0i be a linear form vanishing on the edge [v0vi] for

i = 1, 2, 3, 4. In this case, (h1, h2, h3, h4) is an element of Cr(∆̂) if and only if

h1 − h2 = a1l
r+1
01

h2 − h3 = a2l
r+1
02

h3 − h4 = a3l
r+1
03

h4 − h1 = a4l
r+1
04 .

And the homomorphism φ : Sf2 ⊕ Sf◦1 (−r − 1)→ Sf
◦
1 is given by

φ =



1 −1 0 0 lr+1
01

0 1 −1 0 lr+1
02

0 0 1 −1 lr+1
03

−1 0 0 1 lr+1
04


Note that this matrix has two blocks. The left one is

1 −1 0 0

0 1 −1 0

0 0 1 −1

−1 0 0 1


,
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which can be identified with the boundary map ∂2 of the relative simplicial complex C•(∆, ∂∆)

with coefficients in S. The right block is a diagonal matrix diag(lr+1
01 , . . . , lr+1

04 ).

Therefore, φ : Sfn ⊕ Sf
◦
n−1(−r − 1) → Sf

◦
n−1 is defined by a matrix with two blocks[

∂n diag(lr+1
τ )

]
. One block ∂n is the top boundary map of C•(∆, ∂∆) with coefficients in

S. The other block diag(lr+1
τ ) is a diagonal matrix with entries lr+1

τ , where τ runs over all

(n − 1)-faces of ∆ and lτ is a linear form vanishing on τ . Billera and Rose proved that

Cr(∆̂) ' ker(φ) in [7].

Billera introduced the use of homological algebra in spline theory in [5]. Following this

path, Schenck and Stillman[31] defined a chain complex J• to deal with the problem of

freeness of Cr(∆). This is the main tool we use to study the splines.

Let S• be the relative simplicial complex C•(∆, ∂∆) with coefficients in S. Let lτ be a

linear form which is obtained by homogenizing a degree one polynomial that vanishes on

τ ∈ ∆n−1. The authors of [31] define the ideal complex J• to be

J• : 0→
⊕
σ∈∆◦

n

J(σ)
∂−→ . . .

∂−→
⊕
v∈∆◦

0

J(v)→ 0, (2.4)

where

J(σ) = 0, for σ ∈ ∆n

J(τ) = 〈lr+1
τ 〉, for τ ∈ ∆n−1

J(ζ) =
∑
ζ∈τ

J(τ), for ζ ∈ ∆n−2

...

J(v) =
∑
v∈τ

J(τ), for v ∈ ∆0

are ideals of S, and ∂ is induced by the boundary map in S•. Hence J• is a subcomplex of

S•, and we may consider the quotient complex S•/J•. We call S•/J• the spline complex. It

encodes the different types of data of ∆ in different levels:
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• the combinatorial (or topological) data is encoded by C•(∆, ∂∆), and hence by S•.

• the local geometric data around a vertex v ∈ ∆◦0 is captured by J(v), as discussed in

Section 2.2.

• the global geometric data is determined by both the combinatorial data and the actual

positions of vertices v ∈ ∆0 in Rn. Some properties of Cr(∆̂) affected by this type of

data can be analyzed using homologies of S•/J•. We introduce Schenck and Stillman’s

analysis in Section 2.3.

Recall the Schumaker formula L(∆, d, r) defined in (1.2) is a lower bound of dimCr
d(∆). In

fact, L(∆, d, r) uses only the combinatorial and local geometric data of ∆. On the other

hand, the actual value of dimCr
d(∆) also depends on the global geometry. This is why there

is a discrepancy dimCr
d(∆)− L(∆, d, r).

The top homology of the spline complex can be identified with Cr(∆̂).

Theorem 2.1 (Billera, 1988). The spline module Cr(∆) is isomorphic to the top homology

of the spline complex Hn(S•/J•).

Remark 5. This theorem is equivalent to Theorem 3.2 in [5]. The original statement is that

Cr(∆) ' Hn(S•/I•) for another chain complex S•/I•. However, the top two terms of S•/I•

are the same with those of S•/J•. Hence Hn(S•/J•) = Hn(S•/I•) and these two statements

are equivalent.

2.2 The ideal J(v), local geometric data of ∆

Fix an interior vertex v ∈ ∆◦0. Recall from Section 2.1 that

J(v) = 〈lr+1
τ | τ ∈ ∆n−1, v ∈ τ〉 (2.5)
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where lτ is the homogenization of a degree one polynomial vanishing on τ . If we choose

a coordinate (x1, . . . , xn) of Rn such that v is the origin, then lτ only involves variables

x1, . . . , xn. Because lτ is determined by τ up to a scalar, we may consider the set Γ = {[lτ ] |

τ ∈ ∆n−1, v ∈ τ} as a finite subset of Gr(1,Rn). We call Γ the local geometric data of ∆ at

v.

If n = 1, then Γ is trivial, because Gr(1,R1) has only one point.

If n = 2, then J(v) is an ideal in 2 variables, and since each vertex we have at least two

edges with different slopes, so S/J(v) has projective dimension 2. In [34], Schumaker gives

a free resolution of S/J(v).

Theorem 2.2 (Schumaker, 1979). A free resolution of S/J(v) is given by

S(−r−1−α(v))a1⊕S(−r−2−α(v))a2
Syz1(v)−−−−→ S(−r−1)k(v) Syz0(v)−−−−→ S → S/J(v)→ 0, (2.6)

where α(v) = b(r+1)/(k(v)−1)c, a1 = (k(v)−1)α(v)+k(v)−r−2 and a2 = k(v)−1−a1 =

r + 1− (k(v)− 1)α(v).

Remark 6. Using this theorem, we may compute the Hilbert function of S/J(v).

For n ≥ 3, we do not have a formula computing Hilbert function of S/J(v) that works in

general. This is one reason that computing dimCr
d(∆) for n ≥ 3 is much more difficult than

in the planar case. There are formulas working for some special cases. For example, in [28],

Schenck proves that the Foucart-Sorokina formula holds for Alfeld split of a simplex ∆n.

Computing the Hilbert function of S/J(v) is also related to the dimension problem on

fat points spaces, which is discussed in Section 4.2.
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2.3 The planar case

In this section, we briefly review Schenck and Stillman’s analysis of homologies of S•/J• for

n = 2 as in [30] and [31]. Throughout this section, we assume the ∆ is on the z = 1 plane

in R3 with coordinates (x, y, z) and fix the polynomial ring S = R[x, y, z].

The ideal complex J• has only two non-zero terms:

J• : 0→
⊕
τ∈∆◦

1

J(τ)
∂−→
⊕
v∈∆◦

0

J(v)→ 0, (2.7)

where

J(σ) = 0, for σ ∈ ∆2

J(τ) = 〈lτ 〉r+1, for τ ∈ ∆1

J(v) =
∑
v∈τ

J(τ), for v ∈ ∆0

Recall in Section 2.1, we defined a homomorphism φ : Sfn ⊕ Sf◦n−1(−r − 1)→ Sf
◦
n−1 and

by [7] Cr(∆) can be identified with kerφ. In particular, for n = 2, we have the following

theorem:

Theorem 2.3 (Billera-Rose, 1991). Let ∂2 be the second boundary map in S•. There is an

exact sequence of graded S-modules

0→ Cr(∆̂)→ Sf2 ⊕ Sf◦1 (−r − 1)
φ−→ ⊕Sf◦1 →M → 0, (2.8)

where

φ =

∂2

lr+1
ε1

. . .

lr+1
εf◦1

 (2.9)

By Theorem 2.1, Cr(∆̂) ' H2(S•/J•). The short exact sequence of chain complexes

0→ J• → S• → S•/J• → 0, (2.10)
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induces the long exact sequence of their homologies:

0→ H2(J•)→ H2(S•)→ H2(S•/J•)

→ H1(J•)→ H1(S•)→ H1(S•/J•)

→ H0(J•)→ H0(S•)→ H0(S•/J•)→ 0.

Among these homologies,

H2(J•) = H0(S•) = H0(S•/J•) = 0

and

H2(S•) ' S.

If the genus of ∆ is 0, then H1(S•) = 0. Therefore, the long exact sequence breaks into two

short exact sequences:

0→ H2(S•)→ H2(S•/J•)→ H1(J•)→ 0 (2.11)

and

0→ H1(S•/J•)→ H0(J•)→ 0. (2.12)

Therefore,

H1(S•/J•) ' H0(J•). (2.13)

From (2.11) and the exact sequence

0→ H1(J•)→
⊕
τ∈∆◦

1

J(τ)
∂−→
⊕
v∈∆◦

0

J(v)→ H0(J•)→ 0, (2.14)

it follows that

dimCr
d(∆) = HF(S, d) + dimH1(J•)d

= HF(S, d) + dim
⊕
τ∈∆◦

1

J(τ)d − dim
⊕
v∈∆◦

0

J(v)d + dimH0(J•)d.
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Theorem 2.4 (Schenck-Stillman, 1997). The Schumaker formula

L(∆, r, d) = HF(S, d) + dim
⊕
τ∈∆◦

1

J(τ)d − dim
⊕
v∈∆◦

0

J(v)d (2.15)

Hence,

dimCr
d(∆) = L(∆, r, d) + dimH0(J•)d. (2.16)

Remark 7. From (2.15), we can see L(∆, r, d) only uses combinatorial and local geometric

data of ∆.

Therefore, the discrepancy dimCr
d(∆) − L(∆, r, d) is just dimH0(J•)d. Schenck and

Stillman’s analysis on H0(J•) shows that dimH0(J•)d = 0 for d >> 0:

Theorem 2.5 (Schenck-Stillman, 1997). The S-module H0(J•) has finite length.

If N is an S-module of finite length, then

reg N = max{d ≥ 0 | Nd 6= 0}. (2.17)

By Theorem 2.4, dimCr
d(∆) = L(∆, r, d) if and only if d > reg H0(J•). Therefore, Conjec-

ture 1 can be translated into a conjecture that reg H0(J•) ≤ 2r.

Recall from [15, Section A3.12] and [25, Section 27] that if β : (F•, ϕ•) → (G•, ψ•) is a

map of complexes, then the Mapping cone P• of β is the complex such that Pi = Fi−1 ⊕Gi,

with differential

Fi ⊕Gi+1


−ϕi 0

βi ψi+1


−−−−−−−−−→ Fi−1 ⊕Gi. (2.18)

Clearly, G• is a subcomplex of P•. The quotient P•/G• is isomorphic to F•[−1]. In other

words, there is a short exact sequence of complexes

0→ G• → P• → F•[−1]→ 0, (2.19)
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inducing a long exact sequence of homologies

· · · → Hi(G•)→ Hi(P•)→ Hi−1(F•)→ Hi−1(G•)→ . . .

In particular, if Hi(F•) = Hi(G•) = 0 for i > 0, then there is an exact sequence

0→ H1(P•)→ H0(F•)→ H0(G•)→ H0(P•)→ 0, (2.20)

and

Hi(P•) = 0, for i ≥ 2. (2.21)

With the notion of mapping cone, we prove the following lemma on H0(J•).

Lemma 2.6. Let (F•, ϕ•) and (G•, ψ•) be free resolutions of
⊕

τ∈∆◦
1
J(τ) and

⊕
v∈∆◦

0
J(v),

respectively. Assume

β : F• → G•. (2.22)

is the lift of ∂ :
⊕

J(τ) →
⊕

J(v). Then H0(J•) is isomorphic to the cokernel of the

homomorphism

F0 ⊕G1

[
β1 ψ1

]
−−−−−−→ G0. (2.23)

Proof. Note that we have the identifications

H0(F•) =
⊕
τ∈∆◦

1

J(τ) and H0(G•) =
⊕
v∈∆◦

0

J(v) (2.24)

and the map H0(F•)→ H0(G•) in (2.20) is just ∂. Hence the mapping cone P• of β has

H0(P•) = H0(J•). (2.25)

The differential P1 → P0 is

F0 ⊕G1

[
β1 ψ1

]
−−−−−−→ G0, (2.26)

Hence H0(J•) is the cokernel of this map.

Remark 8. This lemma can also be viewed as a corollary of [31, Lemma 3.8].
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2.4 A counter-example to the “2r + 1” conjecture

In this section, we present a counter-example to Conjecture 1. Let ∆Y be the configuration

as shown in Figure 2.1.

v3=(−4, 2) v7=(4, 2)v8=(0, 2)

v4=(−4,−2) v5=(0,−2) v6=(4,−2)

v0=(0,−1)

v1=(−2, 0) v2=(2, 0)

Figure 2.1: ∆Y , a counter-example to the “2r + 1” conjecture

Note that the genus of ∆Y is 0, hence by the analysis in Section 2.3, we only need to

show reg H0(J•) > 2r for some r. In fact, reg H0(J•) > 4 for r = 2:

Theorem 2.7. Let r = 2 and ∆ be as in Figure 2.1. Then

(H0(J•))d=5 6= 0.

This means that reg H0(J•) ≥ 5. So Conjecture 1 fails in this case.

In order to prove it, first, we find a presentation of H0(J•), that is, we write H0(J•) as a

cokernel of a map between free modules. Then we specify to case r = 2 and compute that

H0(J•)d=5 6= 0, so it makes a counter-example to Conjecture 1.

2.5 A presentation of H0(J•)

We use Lemma 2.6 to obtain a presentation of H0(J•).
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ε13 ε15 ε14 ε18 ε01 ε05 ε08 ε02 ε25 ε27 ε26 ε28

e1,13 1 1 0 0 0 0 0 0 0 0 0 0
e1,14 0 0 1 1 0 0 0 0 0 0 0 0
e1,01 0 0 0 0 −1 0 0 0 0 0 0 0
e0,01 0 0 0 0 1 0 0 0 0 0 0 0
e0,05 0 0 0 0 0 1 1 0 0 0 0 0
e0,02 0 0 0 0 0 0 0 1 0 0 0 0
e2,02 0 0 0 0 0 0 0 −1 0 0 0 0
e2,25 0 0 0 0 0 0 0 0 1 1 0 0
e2,26 0 0 0 0 0 0 0 0 0 0 1 1

Table 2.1: Matrix β1

Note that in ∆Y , there are 3 interior vertices v0, v1 and v2. Using Theorem 2.2, we obtain

free resolutions of J(vi) for i = 0, 1, 2:

G(vi)• : G1(vi)
Syz1(vi)−−−−→ G0(vi)

Syz0(vi)−−−−→ J(vi). (2.27)

and for
⊕

ε∈∆◦
1
J(ε):

F• : F0 →
⊕
ε∈∆◦

1

J(ε) (2.28)

Because each of vi has 3 incident edges εi,j with distinct slopes, so rank G0(vi) = 3 and

rank G1(vi) = 2. According to analysis in Section 2.2, we may choose a basis {ei,[lε] | ε ∈

∆◦1, vi ∈ ε} for G0(vi) and {ε | ε ∈ ∆◦1} for F0. Now if we fix bases

{e1,13, e1,14, e1,01} for G0(v1),

{e0,01, e0,05, e0,02} for G0(v0),

{e2,02, e2,25, e2,26} for G0(v2),

and

{ε13, ε15, ε14, ε18, ε01, ε05, ε08, ε02, ε25, ε27, ε26, ε28} for F0.

With these bases, the map β1 : F0 → G0 induced by the boundary map in (2.4) can be

written in a 9× 12 matrix given by Table 2.1.
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η1,1 η1,2 η0,1 η0,2 η2,1 η2,2

e1,13 A1,1 A1,2 0 0 0 0
e1,14 B1,1 B1,2 0 0 0 0
e1,01 C1,1 C1,2 0 0 0 0
e0,01 0 0 A0,1 A0,2 0 0
e0,05 0 0 B0,1 B0,2 0 0
e0,02 0 0 C0,1 C0,2 0 0
e2,02 0 0 0 0 A2,1 A2,2

e2,25 0 0 0 0 B2,1 B2,2

e2,26 0 0 0 0 C2,1 C2,2

Table 2.2: Matrix ψ1

In addition, if we fix some bases {ηi,1, ηi,2} of G1(vi) for i = 0, 1, 2, then by Theorem 2.2,

Syz1(vi) in (2.27) can be written in the form of

Syz1(vi) =


Ai,1 Ai,2

Bi,1 Bi,2

Ci,1 Ci,2

 . (2.29)

If r is even, then 
degAi,1 = degBi,1 = degCi,1 = r

2
,

degAi,2 = degBi,2 = degCi,2 = r
2

+ 1.

If r is odd, then

degAi,1 = degBi,1 = degCi,1 = degAi,2 = degBi,2 = degCi,2 =
r + 1

2
.

With these notations and fixed bases, ψ1 can be written as a 9 × 6 matrix given by Table

2.2.

Now consider the matrix

[
β1 ψ1

]
. Note that if entries of j-th column are in R and the

(i, j)-entry is the only non-zero entry in this column, then by deleting the i-th row and j-th

column, we still have the same cokernel. Therefore, the cokernel of

[
β1 ψ1

]
is isomorphic
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to the cokernel of 

−1 0 C1,1 C1,2 0 0 0 0

1 0 0 0 A0,1 A0,2 0 0

0 1 0 0 C0,1 C0,2 0 0

0 −1 0 0 0 0 A2,1 A2,2


(2.30)

Let

η′1,1 = η1,1 + C1,1ε0,1,

η′1,2 = η1,2 + C1,2ε0,1,

η′2,1 = η2,1 + A2,1ε0,1,

η′2,2 = η2,2 + A2,2ε0,1,

η′0,1 = η0,1, and η′0,2 = η0,2.

Using the basis {η′i,j} for G1, the map corresponding to (2.30) can with written as

−1 0 0 0 0 0 0 0

1 0 C1,1 C1,2 A0,1 A0,2 0 0

0 1 0 0 C0,1 C0,2 A2,1 A2,2

0 −1 0 0 0 0 0 0


(2.31)

which has the same cokernel asC1,1 C1,2 A0,1 A0,2 0 0

0 0 C0,1 C0,2 A2,1 A2,2

 . (2.32)

Assume I and J are ideals of S.

Definition. The colon ideal (or ideal quotient) is defined as

I : J = {f ∈ S | f · g ∈ I for all g ∈ J}.

There is a nice connection of colon ideals to syzygies: if I = 〈f1, . . . , fk〉 and

k∑
i=1

aifi = 0, (2.33)
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is a syzygy on I, then ak ∈ 〈f1, . . . , fk−1〉 : 〈fk〉. Therefore, if lij is a linear form vanishing

on the edge εij, then

〈C1,1, C1,2〉 = 〈lr+1
13 , lr+1

14 〉 : 〈lr+1
01 〉 (2.34)

and

〈A2,1, A2,2〉 = 〈lr+1
25 , lr+1

26 〉 : 〈lr+1
02 〉 (2.35)

With the above analysis, we have proved the following lemma:

Lemma 2.8. Let ∆ be as in figure 2.1. Then H0(J•) is isomorphic to the cokernel of

S(−r − 1− r

2
)3 ⊕ S(−r − 2− r

2
)3 Syz1−−→ S(−r − 1)2, if r is even,

and

S(−r − 1− r + 1

2
)6 Syz1−−→ S(−r − 1)2, if r is odd,

where Syz1 is a matrix of the formC1,1 C1,2 A0,1 A0,2 0 0

0 0 C0,1 C0,2 A2,1 A2,2

 .
The non-zero entries of Syz1 can be obtained from the first differential in G•.
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2.6 Case r = 2

Using Lemma 2.8, we can compute H0(J•) explicitly with the coordinates in figure 2.1 for

r = 2. Let lij be a linear form vanishing on the edge εij. Then

l01 = x+ 2y + 2z

l02 = −x+ 2y + 2z

l13 = l15 = x+ y + 2z

l14 = l18 = x− y + 2z

l26 = l28 = −x− y + 2z

l25 = l27 = −x+ y + 2z

l05 = l08 = x

For G(v0)•,

Syz0(v0) =

[
l301 l305 l302

]
, (2.36)

and

Syz1(v0) =


3x− 2y − 2z −9x2 + 6xy − 2y2 + 6xz − 4yz − 2z2

−32y − 32z 9x2 + 48xy + 76y2 + 48xz + 152yz + 76z2

3x+ 2y + 2z 2y2 + 4yz + 2z2

 , (2.37)

In particular,A0,1 A0,2

C0,1 C0,2

 =

3x− 2y − 2z −9x2 + 6xy − 2y2 + 6xz − 4yz − 2z2

3x+ 2y + 2z 2y2 + 4yz + 2z2

 . (2.38)

By (2.34) and (2.35),

〈C1,1, C1,2〉 = 〈2x+ y + 4z, y2〉 (2.39)

and

〈A2,1, A2,2〉 = 〈−2x+ y + 4z, y2〉 (2.40)
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By Lemma 2.8, H0(J•) is isomorphic to the cokernel of⊕
0≤i≤2

S(−4)ηi,1 ⊕ S(−5)ηi,2
Syz1−−→ S(−3)e1 ⊕ S(−3)e2 (2.41)

where deg e1 = deg e2 = 3, deg ηi,1 = 4, deg ηi,2 = 5 and Syz1 can be written as a matrix2x+ y + 4z y2 3x− 2y − 2z −3(3x− 2y − 2z)x− 2(y + z)2 0 0

0 0 3x+ 2y + 2z 2(y + z)2 −2x+ y + 4z y2


In other words, the image of Syz1 is generated by

f1 = (2x+ y + 4z)e1

f2 = y2e1

f3 = (3x− 2y − 2z)e1 + (3x+ 2y + 2z)e2

f4 = −3(3x− 2y − 2z)x− 2(y + z)2e1 + 2(y + z)2e2

f5 = (−2x+ y + 4z)e2

f6 = y2e2

(2.42)

Recall that a monomial order on S is a total order � on monomials on S such that for

any monomials xα, xβ, xγ ∈ S and any scalar k,

• xα � k if m0 is not a scalar, and

• xα � xβ implies xαxγ � xβxγ if xγ 6= 0.

Since S is a graded polynomial ring, we may define the homogeneous lexicographic order

�hlex on S: xα �hlex x
β if deg xα > deg xβ, or if deg xα = deg xβ and αi > βi for the first

index i such that αi 6= βi.

Assume N is a free S-module with basis {e1, . . . , es}. A monomial order on N is a total

order � on elements of the form xαei for monomials xα ∈ S. Fix a monomial order � on S.

The position-over-term (POT) order �POT on N induced by � is defined as xαei �POT x
βej
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• if i > j, or

• if i = j and xα � xβ.

Fix a monomial order � on a free S-module N . Then for any f ∈ N , we deine the initial

term of f , written In�(f), to be the greatest term of f with respect to the order �. If

M is a submodule of N , we define In�(M) to be the monomial submodule generated by

the elements In�(f) for all f ∈ M . The following lemma can be viewed as a corollary of

Macaulay’s Theorem [15, Theorem 15.3]:

Lemma 2.9. M and In�(M) have the same Hilbert function.

In particular, since H0(J•) has finite length, we may conclude that

reg H0(J•) = reg In�(H0(J•)). (2.43)

Recall that a Gröbner basis of M is a basis {g1, . . . , gt} of M such that {In�(g1), . . . , In�(gt)}

generates In�(M). Starting with a generating set {f1, . . . , fs} of M , we may use Buchberger’s

Algorithm to compute a Gröbner basis of M . See Appendix A.1 for the detail. After the

computation, we get a Gröbner basis of the image of Syz1

g1 = (2x+ y + 4z)e1

g2 = −(7y + 16z)e1 + (7y + 16z)e2

g3 = z2e1 − z2e2

g4 = (−2x+ y + 4z)e2

g5 = y2e2

g6 = (11yz + 16z2)e2

g7 = z3e2

(2.44)

Therefore, z2e2 6= 0 is in the cokernel of Syz1, and deg z2e2 = 2 + (2 + 1) = 5. Hence,

H0(J•)d=5 6= 0,
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which means reg H0(J•) > 4. Thus, Conjecture 1 fails for ∆Y when (r, d) = (2, 5).

2.7 A new bound for smooth spline spaces

In Section 2.6, we proved that the configuration ∆Y has the property dimCr
d(∆Y ) > L(∆Y , r, d)

for (r, d) = (2, 5). This proof does not eliminate the possibility that dimCr
d(∆) = L(∆, r, d)

for every triangulation if d ≥ 2r+2. In this section, we want to show that this is impossible:

Theorem 2.10. There is no constant c so that dimCr
d(∆Y ) > L(∆Y , r, d) for all ∆ and all

d ≥ 2r + c. In particular, there exists a planar simplicial complex ∆ for which

dimH0(J•)d 6= 0 for all d ≤ 22r + 7

10
. (2.45)

This shows there exists a simplicial complex ∆ such that dimCr
d(∆) > L(∆, r, d) for all

d ≤ 22r+7
10

. For L(∆, r, d) to be equal to dimCr
d(∆) for every triangulation ∆, we must have

d >
22r + 7

10
> 2.2r. (2.46)

To prove it, we have to use some properties of complete intersection ideals. If I is a

complete intersection, then the Koszul complex K(f1, . . . , fk) gives a minimal free resolution

of S/I. In particular, the projective dimension equals k, the minimal number of generators

of I. If the projective dimension of S/I is (k − 1), then I is said to an almost complete

intersection.

Define

I1 = 〈C1,1, C1,2〉, I2 = 〈A2,1, A2,2〉 (2.47)

and

φ =

A0,1 A0,2

C0,1 C0,2

 (2.48)
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where Ai,j’s and Ci,j’s are the entries in (2.32). By Theorem 2.2, degAi,1 = degCi,1 = b r+1
2
c

and degAi,2 = degCi,2 = d r+1
2
e for i = 0, 1, 2.

Lemma 2.11. The ideals I1 and I2 are complete intersections.

Proof. An ideal with two generators f, g is a complete intersection when f and g are relatively

prime, or equivalently when the unique minimal syzygy on f, g is given by

f · g − g · f = 0.

By (2.34) and (2.35), both I1 and I2 can be written as colon ideals of the form 〈lr+1
1 , lr+1

2 〉 :

〈lr+1
3 〉 for some linear forms l1, l2, l3 in two variables. The ideal 〈lr+1

1 , lr+1
2 , lr+1

3 〉 is an almost

complete intersection, which means that two generators, say {lr+1
1 , lr+1

2 } are a complete

intersection. Proposition 5.2 in [9] proves that an almost complete intersection is directly

linked to a Gorenstein ideal. In this case the linked ideal is

〈lr+1
1 , lr+1

2 〉 : 〈lr+1
3 〉 = 〈s11, s12〉. (2.49)

A homogeneous Gorenstein ideal in two variables is a complete intersection, so the result

follows.

For simplicity, we denote b r+1
2
c by κ1 and d r+1

2
e by κ2, respectively. With the same

coordinates as in Section 2.5, H0(J•) may be presented as the cokernel of

S(−r − 1− κ1)⊕ S(−r − 1− κ2)
φ−→ S(−r − 1)/I1 ⊕ S(−r − 1)/I2 (2.50)

Hence,

HF(H0(J•), d) ≥
∑
i=1,2

HF(S/Ii, d− r − 1)− HF(S, d− r − 1− κ1) (2.51)

−HF(S, d− r − 1− κ2)
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Since I1 and I2 are complete intersections, we may obtain their free resolutions by Koszul

complexes. Hence, there are exact sequences:

0→ S(−κ1 − κ2)→ S(−κ1)⊕ S(−κ2)→ S → S/Ii → 0. (2.52)

Therefore,

HF(S/Ii, d− r − 1) = HF(S, d− r − 1) + HF(S, d− r − 1− κ1 − κ2) (2.53)

−HF(S, d− r − 1− κ1)− HF(S, d− r − 1− κ2)

Putting (2.51) and (2.53) together,

HF(H0(J•), d) ≥ 2 HF(S, d− r − 1) + 2 HF(S, d− r − 1− κ1 − κ2) (2.54)

− 3 HF(S, d− r − 1− κ1)− 3 HF(S, d− r − 1− κ2)

If d < r + 1, then the right hand side of (2.54) is 0, so we assume d ≥ r + 1 and let

d′ = d− r − 1. Then the right hand side of (2.54) equals

2 HF(S, d′) + 2 HF(S, d′ − κ1 − κ2)− 3(HF(S, d′ − κ1) + HF(S, d′ − κ2)) (2.55)

Assume d′ ≥ κ1 + κ2 = r + 1. Then (2.55) equals

2

(
d′ + 2

2

)
+ 2

(
d′ − κ1 − κ2 + 2

2

)
− 3

(
d′ − κ1 + 2

2

)
− 3

(
d′ − κ2 + 2

2

)
. (2.56)

If r + 1 is even, then κ1 = κ2 = r+1
2

and (2.56) equals

−d′2 + (2κ1 − 3)d′ + κ2
1 + 3κ1 − 2, (2.57)

which has two real roots, the larger at

d′ =
2κ1 − 3 +

√
8κ2

1 + 1

2
> (1 +

√
2)κ1 −

3

2
> 1.2r − 1.5, (2.58)

and the smaller root is negative. This means HF(H0(J•), d) > 0 for 2r+ 2 ≤ d ≤ 2.2r+ 0.7.

If r + 1 is odd, then κ1 = r
2

and κ2 = r
2

+ 1 and (2.56) equals

−d′2 + (2κ1 − 2)d′ + κ2
1 + 4κ1 − 1, (2.59)
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which has two real roots, the larger at

d′ = κ1 − 1 +
√

2κ2
1 + κ1 > 1.2r − 1 (2.60)

and the smaller root is negative. This means HF(H0(J•), d) > 0 for 2r + 2 ≤ d ≤ 2.2r + 1.

Therefore, we have proved Theorem 2.10 with the assumption that [2r + 2, 2.2r + 0.7] is

non-empty. For r ≥ 7, this assumption holds. For r ∈ {2, . . . , 6}, a direct computation

verifies that coker(φ) is non-zero at degree d = b2.2r + 0.7c.
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CHAPTER 3

ON GORENSTEIN RINGS OF CODIMENSION 4 AND REGULARITY 4

3.1 Preliminaries

Assume T̃ = C[y0, . . . , y7]. Let P7 = Proj(T̃ ). Assume IX ⊆ T̃ is a reduced irreducible ideal

such that U = T̃ /IX is a arithmetically Cohen-Macaulay ring, X = Proj(U) is nonsingular

and dimX = 3.

Recall from §1.1.2 that X is a Calabi-Yau threefold if Ω3(X) ' OX and h0,i(X) = 0 for

all i > 0. Also recall from §1.4 that ωU = Ext4
T̃

(U, T̃ (−8)), and that U is arithmetically

Gorenstein if ωU ' U(a) for some a ∈ Z.

Definition. A Gorenstein Calabi-Yau variety (GoCY) is a Calabi-Yau variety whose homo-

geneous coordinate ring is arithmetically Gorenstein.

Remark 9. If X is arithmetically Cohen-Macaulay, then ΩdimX(X) ' OX implies ωU ' U

by [20, III Corollary 7.12]. Hence, for Calabi-Yau threefolds, arithmetically Cohen-Macaulay

and arithmetically Gorenstein are equivalent conditions.

In general, when U is Gorenstein, we have

ωU ' U(−8 + reg (U) + codim (U)). (3.1)

In particular, if X = Proj(U) is GoCY threefold, then U is Gorenstein and ωU ' U .

Therefore,

ωU ' U ⇐⇒ −4 + reg (U) = 0 ⇐⇒ reg (U) = 4. (3.2)

For U Gorenstein, we may quotient by a regular sequence of linear forms, reducing to

an Artinian Gorenstein ring A with the same homological behavior. We call A an Artinian
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reduction of U . Since we are interested in the homological behavior of U in this chap-

ter, we focus on its Artinian reduction and study Artinian Gorenstein rings. By choosing

coordinates, we may assume A ' T/I for T = C[y0, . . . , y3].

CGKK 1 1 9 16 9 1 CGKK 5,6 1 9 16 9 1

0: 1 . . . . 0: 1 . . . .

1: . 6 8 3 . 1: . 3 2 . .

2: . . . . . 2: . 6 12 6 .

3: . 3 8 6 . 3: . . 2 3 .

4: . . . . 1 4: . . . . 1

CGKK 2 1 6 10 6 1 CGKK 7,8 1 10 18 10 1

0: 1 . . . . 0: 1 . . . .

1: . 5 5 . . 1: . 2 . . .

2: . 1 . 1 . 2: . 8 18 8 .

3: . . 5 5 . 3: . . . 2 .

4: . . . . 1 4: . . . . 1

CGKK 3 1 4 6 4 1 CGKK 9,10 1 13 24 13 1

0: 1 . . . . 0: 1 . . . .

1: . 4 . . . 1: . 1 . . .

2: . . 6 . . 2: . 12 24 12 .

3: . . . 4 . 3: . . . 1 .

4: . . . . 1 4: . . . . 1

CGKK 4 1 7 12 7 1 CGKK 11 1 16 30 16 1

0: 1 . . . . 0: 1 . . . .

1: . 3 . . . 1: . . . . .

2: . 4 12 4 . 2: . 16 30 16 .

3: . . . 3 . 3: . . . . .

4: . . . . 1 4: . . . . 1

Table 3.1: Betti diagrams for GoCY’s in Table 1.1

Our main results in this chapter are

Theorem 3.1. An Artinian Gorenstein ring A = T/I with reg (A) = 4 = codim (A)

and I nondegenerate has one of the 16 Betti diagrams as in Table 3.1 and 3.2. Table 3.1

corresponds to the 11 classes of GoCY in Table 1.1, and Table 3.2 to the remaining classes.
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Type 2.1 1 11 20 11 1 Type 2.5 1 11 20 11 1

0: 1 . . . . 0: 1 . . . .

1: . 2 1 . . 1: . 3 3 1 .

2: . 9 18 9 . 2: . 7 14 7 .

3: . . 1 2 . 3: . 1 3 3 .

4: . . . . 1 4: . . . . 1

Type 2.2 1 8 14 8 1 Type 2.6 1 9 16 9 1

0: 1 . . . . 0: 1 . . . .

1: . 3 1 . . 1: . 4 4 1 .

2: . 5 12 5 . 2: . 4 8 4 .

3: . . 1 3 . 3: . 1 4 4 .

4: . . . . 1 4: . . . . 1

Type 2.3 1 7 12 7 1 Type 2.7 1 7 12 7 1

0: 1 . . . . 0: 1 . . . .

1: . 4 3 . . 1: . 5 5 1 .

2: . 3 6 3 . 2: . 1 2 1 .

3: . . 3 4 . 3: . 1 5 5 .

4: . . . . 1 4: . . . . 1

Type 2.4 1 6 10 6 1 Type 2.8 1 9 16 9 1

0: 1 . . . . 0: 1 . . . .

1: . 4 2 . . 1: . 5 6 2 .

2: . 2 6 2 . 2: . 2 4 2 .

3: . . 2 4 . 3: . 2 6 5 .

4: . . . . 1 4: . . . . 1

Table 3.2: Betti diagrams for the remaining 8 Artinian Gorenstein rings.

and

Theorem 3.2. There does not exist a smooth irreducible GoCY X ⊆ P7 such that the Betti

diagram of T̃ /IX is one in Table 3.2.

38



3.2 Organization of the chapter

To prove Theorem 3.1, we have to exclude all impossible cases and find an example for each

case we claim existing. We prove it in §3.3: Note that in Theorem 3.1, we consider the

Artinian reduction A = T/I of U = T̃ /IX , with T = C[y0, . . . , y3]. First, we decide the

range for Hilbert function of A by the range of deg(X). Second, for a fixed Hilbert function,

the graded Betti number bij(A) is bounded up by those of the monomial ideals. Therefore,

there are only finite number of possible Betti diagrams. We analyze them case-by-case.

Theorem 3.2 is proved in §3.4. We apply Schenck-Stillman’s Theorem (Theorem 3.6) to

prove that a smooth irreducible 3-fold X does not have Betti diagram of either Type 2.1-2.3,

or Type 2.5-2.7. To exclude Type 2.8, we have to use Buchsbaum-Rim resolution, which

is introduced in §1.3.2. In §3.4.5 we apply results of [38] to prove a structure theorem for

any irreducible nondegenerate threefold in P7 with Betti diagram of Type 2.4, and show the

resulting variety cannot be smooth.

In Appendix B, we present explicit examples for each of the 16 Betti diagrams.

3.3 Proof of Theorem 3.1

For T/I Artinian Gorenstein of regularity 4, the h-vector of T/I is

h(T/I) =
(

1, 4, h2, 4, 1
)
, with h2 ≤ 10. (3.3)

By [11, Lemma 2.1], a GoCY X ⊆ P7 has 14 ≤ deg(X) ≤ 20. If A = T/I is the Artinian

reduction of U = T̃ /IX , then

deg(X) =
∑
d

hd(T/I) = 10 + h2. (3.4)

Hence 4 ≤ h2 ≤ 10.
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For the proof of Theorem 3.1, we will need the theorems of Macaulay and Gotzmann

[27]: For a graded algebra T/I with Hilbert function hi, write

hi =

(
ai
i

)
+

(
ai−1

i− 1

)
+ · · · (3.5)

and

h
〈i〉
i =

(
ai + 1

i+ 1

)
+

(
ai−1 + 1

i

)
+ · · · , with ai > ai−1 > · · · (3.6)

Theorem 3.3 (Macaulay’s Theorem).

hi+1 ≤ h
〈i〉
i . (3.7)

Theorem 3.4 (Gotzmann’s Persistence Theorem). If I is generated in a single degree t and

equality holds in Macaulay’s formula in the first degree t, then

ht+j =

(
at + j

t+ j

)
+

(
at−1 + j − 1

t+ j − 1

)
+ · · · (3.8)

We also need the following lemma to preclude some Betti diagrams.

Lemma 3.5. Let I2 be the subideal of I generated by the quadrics in I, and let v = (b23, b24),

where bi,j = bi,j(T/I) are graded Betti numbers of T/I. Then

(a) b45(T/I2) = b46(T/I2) = 0.

(b) v 6= (2, 1).

(c) if a = b12 ≥ 4, then v 6= (3, 1).

Proof. We prove (a) first: Because bi,i+1(T/I2) = bi,i+1(T/I) for all i ≥ 1, so b45(T/I2) = 0.

To prove b46(T/I2) = 0, note that b46(T/I) = 0 and that adding additional generators to I2

cannot force cancellation: for a cubic F , we have the short exact sequence

0 −→ T (−3)/I2 : F −→ T/I2 −→ T/I2 + F −→ 0 (3.9)
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and the associated long exact sequence gives exact sequence of vector spaces

0→ Tor4(T (−3)/I2 : F,C)6 → Tor4(T/I2,C)6 → Tor4(T/I2 + F,C)6. (3.10)

Note that

Tor4(T (−3)/I2 : F,C)6 = Tor4(T/I2 : F,C)3 = 0. (3.11)

Hence Tor4(T/I2,C)6 6= 0 implies Tor4(T/I2+F,C)6 6= 0. Therefore, we conclude b46(T/I2) =

0.

Next we prove (b): To see that v = (2, 1) cannot occur, observe that if it did then there

would be a unique relation L1 · V1 + L2 · V2 = 0 where L1, L2 are linear forms, and Vi are

vectors of linear first syzygies. Changing variables so L1 = y1 and L2 = y2, we have that

y1 · Vi1 + y2 · Vi2 = 0 for all i, implying V1 is y2 · C and V2 is −y1 · C, with C a vector of

constants, a contradiction. So v = (2, 1) is impossible.

To prove part (c), the key point is that v = (3, 1) implies that I2 contains {Ly1, Ly2, Ly3}

with L a linear form. If v = (3, 1) then the unique linear second syzygy S must have rank

3, otherwise the argument showing that v = (2, 1) is impossible applies. After change of

variables, we may write S as below, with ai, bi, ci linear forms:

a1 b1 c1

a2 b2 c2

a3 b3 c3

a4 b4 c4


·


y1

y2

y3

 = 0 (3.12)

So the rows of the matrix of linear first syzygies on I2 are Koszul syzygies on [y1, y2, y3]t,

that is to say 

a1 b1 c1

a2 b2 c2

a3 b3 c3

a4 b4 c4


= C


y2 −y1 0

−y3 0 y1

0 y3 −y2

 (3.13)

where C is a full rank 4× 3 scalar matrix. This forces I2 to contain {Ly1, Ly2, Ly3}.

When a ≥ 4 the mapping cone construction implies I2 is inconsistent with the Gorenstein
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hypothesis (IGH). If a ≥ 4, I2 must contain a quadric Q which is a nonzero divisor on

{Ly1, Ly2, Ly3}. To see this, note that if Q ∈ 〈L〉 then ht(I2) = 1. After a change of

variables I2 consists of a linear form times a subset of the variables, so that I2 has a Koszul

resolution, hence b45(T/I2) 6= 0 which is IGH by (a); if Q ∈ 〈y1, y2, y3〉 then there is at least

one additional linear first syzygy, so b ≥ 4. Now we know Q must be a non-zero divisor on

{Ly1, Ly2, Ly3}. This implies that if v = (3, 1), then I2 has mapping cone Betti diagram


1 0 0 0 0

0 4 3 1 0

0 0 3 3 1

 .

This is IGH by (a), because b46(T/I2) 6= 0. Therefore we conclude v = (3, 1) is IGH.

Remark 10. When a = 3, v = (3, 1) occurs.

We use the Hilbert function to establish the possible shape of the Betti diagram, combined

with an analysis of the structure of the subideal I2 generated by the quadrics in I and subideal

C3 generated by the quadrics and cubics in I. Let a = b12(T/I) be the number of quadratic

generators of I ⊆ T = C[y0, . . . , y3], and let v = (b23(T/I), b34(T/I)) = (b, c). Note that

b45(T/I2) 6= 0 cannot occur by Lemma 3.5.

For an Artinian Gorenstein ideal I with ht(I) = 4 = reg (T/I), its Hilbert series is

determined by b12, and (b12, b23, b34) = (a, b, c) determines the entire Betti diagram. When

a ∈ {0, 1, 2} the analysis is straightforward, so we begin with a = 3.

3.3.1 Case a = 3

When a = 3, the Hilbert function is (1, 4, 7, 4, 1) and a computation shows the Betti diagram

must be (dropping the 1 in upper left and lower right corners)
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
3 b c

b+ 4 2c+ 12 b+ 4

c b 3

 .

By Macaulay’s theorem

h2(T/I2) = 7 =

(
4

2

)
+

(
1

1

)
, so h

〈2〉
2 (T/I2) = 11 ≥ h3(T/I2) = 20− 3 · 4 + b, so b ≤ 3.

A direct computation shows that for an ideal generated by three quadratic monomials in T ,

v ∈ {(0, 0), (1, 0), (2, 0), (3, 1)}, all of which occur in Tables 3.1 and 3.2. By uppersemiconti-

nuity, I2 must have v = (b, c) ≤ (b′, c′) for (b′, c′) in the list above, so we need only show that

v ∈ {(3, 0), (2, 1)} do not occur. If b = 3 then we are in the situation where Gotzmann’s

theorem applies, that is, h
〈2〉
2 = h3 implies h

〈3〉
3 = h4, and we compute

h
〈3〉
3 (T/I2) = 16 (3.14)

and

h4(T/I2) = 35− 3 · 10 + 3 · 4− c+ b24(T/I2). (3.15)

In particular, c = 1 + b24(T/I2) ≥ 1, so c ≥ 1 and v = (3, 0) does not occur. By Lemma

3.5, v = (2, 1) is impossible.

When a ≥ 4, the set of Betti diagrams possible for quadratic monomial ideals has an

element that is so large that a similar analysis via the initial ideal becomes cumbersome.

3.3.2 Case a = 4

When a = 4, the Hilbert function is (1, 4, 6, 4, 1) and the Betti diagram is:
4 b c

b 2c+ 6 b

c b 4

 .
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Values for v which actually occur are v ∈ {(0, 0), (2, 0), (3, 0), (4, 1)}. Applying Macaulay’s

theorem to the ideal I2 generated by the quadrics in I shows b ≤ 6. Now let C3 denote the

ideal generated by the quadrics and cubics in I.

h3(T/C3) = h3(T/I) = 4 =

(
4

3

)
(3.16)

so

h
〈3〉
3 (T/C3) = 5 ≥ h4(T/C3) = c+ 1. (3.17)

Hence c ≤ 4.

The case b = 6 is extremal, and applying Gotzmann’s theorem we find

h4(T/I2) = 35− 4 · 10 + 6 · 4 + b24(T/I2)− c = 15, (3.18)

so

c = 4 + b24(T/I2). (3.19)

Combined with our work above, this shows b = 6 =⇒ c = 4. As h4(T/C3) = h4(T/I) + c =

5, we have

h
〈4〉
4 (T/C3) = 6 ≥ h5(T/C3) = 56− 80 + 40 + b25(T/C3)− 6, (3.20)

we conclude b25(T/C3) ≤ −4, which is impossible. Thus, b ∈ {0, . . . , 5}.

If b ∈ {0, 1} then c = 0; clearly v = (0, 0) yields a complete intersection, which occurs,

while v = (1, 0) leads to an almost complete intersection (ACI), and by [22] there are no

Gorenstein ACI’s. Henceforth we assume b ∈ {2, 3, 4, 5}. We saw above that c ≤ 4; we now

show that c ∈ {2, 3, 4} is IGH.

h5(T/C3) = 56− 80 + 4(c+ 6) + b25(T/C3)− b. (3.21)

So

c = 2 =⇒ h4(T/C3) = 3 =⇒ h
〈4〉
4 (T/C3) = 3 ≥ h5(T/C3) = 8 + b25(T/C3)− b

c = 3 =⇒ h4(T/C3) = 4 =⇒ h
〈4〉
4 (T/C3) = 4 ≥ h5(T/C3) = 12 + b25(T/C3)− b

c = 4 =⇒ h4(T/C3) = 5 =⇒ h
〈4〉
4 (T/C3) = 6 ≥ h5(T/C3) = 16 + b25(T/C3)− b
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As b ≤ 5, only the case b = 5, c = 2, b25(T/C3) = 0 is possible; this has Betti diagram
4 5 2

5 10 5

2 5 4

 .

Computing, we find that in this situation h5(T/C3) = 3, so

h
〈5〉
5 (T/C3) = 3 ≥ h6(T/C3) = 4 + b26(T/C3)− b36(T/C3). (3.22)

In particular, b36(T/C3) ≥ 1 + b26(T/C3) ≥ 1, which means the 5 × 4 submatrix M of d3

representing the “bottom right corner” of Betti diagram for T/I, one of the four columns of

M is zero. By symmetry of the free resolution this means that one of the four rows of the

matrix M t of linear first syzygies on I2 is zero. Hence the five linear first syzygies on I2 only

involve a subideal Q ⊆ I2 generated by 3 quadrics, which is impossible.

It remains to deal with c ∈ {0, 1}. When c = 0, we know v ∈ {(0, 0), (2, 0), (3, 0)}

occur, and we have already shown that v = (1, 0) is IGH. As b ≤ 5, we need to show

v ∈ {(4, 0), (5, 0)} are IGH. To do this, we use the ideal I2 of four quadrics; h3(T/I2) =

20− 16 + b = 4 + b, so we have

• For b = 4, h3(T/I2) = 8. Hence

h
〈3〉
3 (T/I2) = 10 ≥ h4(T/I2) = 35− 40 + 16 + b24(T/I2) = 11 + b24(T/I2). (3.23)

• For b = 5, h3(T/I2) = 9. Hence

h
〈3〉
3 (T/I2) = 12 ≥ h4(T/I2) = 35− 40 + 20 + b24(T/I2) = 15 + b24(T/I2), (3.24)

Both force b24(I2) ≤ −1, which is impossible. When c = 1, the only change to the second

equation above is to subtract one (because c = 1) from the right hand side, so h4(I2) =

14 + b24(I2), forcing b24 ≤ −2, which is impossible.
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3.3.3 Case a = 5

When a = 5, the Hilbert function is (1, 4, 5, 4, 1), so the Betti diagram is


5 b c

b− 4 2c b− 4

c b 5

 .

Note that h3(T/I2) = 20− 5 · 4 + b = b. By Macaulay’s theorem

h2(T/I2) = 5 =

(
3

2

)
+

(
2

1

)
, so h

〈2〉
2 (T/I2) = 7 ≥ h3(T/I2) = b, so 7 ≥ b.

1. Case 1: Suppose b = 4. This means there are no cubics in the ideal, and

h3(T/I2) = 4 =

(
4

3

)
. (3.25)

Theorem 3.3 shows

h
〈3〉
3 (T/I2) = 5 ≥ h4(T/I2) = 35− 5 · 10 + 4 · 4 + c. (3.26)

We conclude c ≤ 4. We can immediately rule out c = 0, as then I would be an

ACI, which is IGH. The possibilities c ∈ {2, 3, 4} are also ruled out by Macaulay; we

illustrate for c = 2:

h4(T/I2) = 35− 5 · 10 + 4 · 4 + 2 = 3, (3.27)

so

h
〈4〉
4 (T/I2) = 3 ≥ h5(T/I2) = 4 + b25(T/I2), (3.28)

which would force b25(T/I2) ≤ −1.

Finally, suppose c = 1, so I = I2 +g for a single quartic g. Since I2 +g has height four,

the height of I2 must be three or four, and if ht(I2) = 4 then I2 is an almost complete

intersection, containing a complete intersection C. We claim this is impossible: write
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I2 = C + f with f ∈ I2 \ C. Since b23(T/C) = 0 the fact that b23(T/I2) = 4 means

that C : f = 〈y0, y1, y2, y3〉, whose mapping cone is inconsistent with the Betti diagram

for I2. Hence ht(I2) = 3, and g is a nonzero divisor on the height three associated

primes of I2. Since h4(T/I2) = 2, Macaulay’s theorem implies the degree of I2 is one

or two. Observe that the rank of the linear second syzygy Syz2 cannot be 4; if it was

then Syz2 = [y0, y1, y2, y3]t. By the symmetry of the differentials in the free resolution,

this means that I2 : g = 〈y0, . . . , y3〉. By additivity of the Hilbert polynomials on the

short exact sequence

0 −→ T (−4)/(I2 : q) −→ T/I2 −→ T/I −→ 0,

this is impossible. Hence rank (Syz2) = 3, and as in the proof that v = (3, 1) is

impossible for a = 4, I2 is generated by, after a change of variables, {L · y1, L · y2, L ·

y3, q4, q5} for a linear form L and two quadrics q4 and q5. Since ht(I2) = 3, this forces

(L, q4, q5) to be a regular sequence. In particular, deg(I2) = 4, a contradiction.

2. Case 2: Suppose b = 5. The cases v ∈ {(5, 0), (5, 1)} do occur.

h3(T/I2) = 5 =

(
4

3

)
+

(
2

2

)
,

Macaulay’s theorem shows

h
〈3〉
3 (T/I2) = 6 ≥ h4(T/I2) = 35− 5 · 10 + 4 · 5 + b24(T/I2)− c. (3.29)

So c + 1 ≥ b24(T/I2). Let C3 denote the subideal of I generated in degrees two and

three.

h3(T/C3) = 4, (3.30)

so

h
〈3〉
3 (T/C3) = 5, (3.31)

thus

5 ≥ h4(T/C3) = 35− 50 + 16 + c, (3.32)
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implying c ≤ 4. Since c ∈ {0, 1} does occur, we need to rule out c ∈ {2, 3, 4}.

Computing values for h4(T/C3), we find

c = 2 implies h4(T/C3) = 3 hence h5(T/C3) ≤ 3

c = 3 implies h4(T/C3) = 4 hence h5(T/C3) ≤ 4

c = 4 implies h4(T/C3) = 5 hence h5(T/C3) ≤ 6

Since h5(T/C3) = 56− 100 + 40 + 4c− 1 + b25(T/C3), combining this with the above

shows

c = 2 implies h5 = 3 + b25(T/C3) ≤ 3

c = 3 implies h5 = 7 + b25(T/C3) ≤ 3

c = 4 implies h5 = 11 + b25(T/C3) ≤ 6

This rules out c ∈ {3, 4}, and shows if c = 2 then b25(T/C3) = 0. So in this case

h5(T/C3) = 3, and

h
〈5〉
5 (T/C3) = 3 ≥ h6(T/C3) = 5 + b26(T/C3)− b36(T/C3). (3.33)

Hence b36(T/C3) ≥ 2, so the Betti diagram for T/C3 is at least
5 5 2

1 4 1

0 0 2

 .

Hence in the 5 × 5 submatrix M of d3 representing the “bottom right corner” of the

table for I, two of the five columns of M are zero, which by symmetry of the Betti

diagram means that two of the five rows of the matrix M t of linear first syzygies on

I2 are zero. Hence the five linear first syzygies on I2 only involve a subideal J ⊆ I2

generated by 3 quadrics, which is impossible.

3. Case 3: Suppose b = 6; the only case that actually occurs is v = (6, 2).

h3(T/I2) = 6 =

(
4

3

)
+

(
2

2

)
+

(
1

1

)
,
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Macaulay’s theorem shows

h
〈3〉
3 (T/I2) = 7 ≥ h4(T/I2) = 35− 5 · 10 + 4 · 6 + b24(T/I2)− c. (3.34)

So c ≥ b24(T/I2) + 2. Let C3 denote the subideal of I generated in degrees two and

three.

h3(T/C3) = 4 =

(
4

3

)
(3.35)

so

5 ≥ h4 = 35− 50 + 16 + c (3.36)

Thus, c ≤ 4. To show that c ∈ {3, 4} do not occur, we compute

If c = 4, then h4(T/C3) = 5 and h5(T/C3) ≤ 6

If c = 3, then h4(T/C3) = 4 and h5(T/C3) ≤ 4

Since h5(T/C3) = 56− 100 + 40 + 4c+ b25(T/C3)− 2, we see that

If c = 4 then h5(T/C3) = 10 + b25(T/C3) ≤ 6, so b25(T/C3) ≤ −4

If c = 3 then h5(T/C3) = 6 + b25(T/C3) ≤ 4, so b25(T/C3) ≤ −2

We have shown that when b = 6, the only value possible for v is (6, 2).

4. If b = 7, applying Gotzmann’s theorem gives c = b24(T/I2) + 4. Let C3 denote the

subideal of I generated in degrees two and three; applying Macaulay’s theorem to

h3(T/C3) = 4 yields

5 ≥ h4(T/C3) = 35− 5 · 10 + 4 · 4 + c, (3.37)

so c ≤ 4; combined with c = b24(T/I2) + 4 this forces c = 4. Since h
〈4〉
4 (T/C3) = 6, we

find

6 ≥ h5(T/C3) = 9 + b25(T/C3). (3.38)

This shows b25(T/C3) ≤ −3, hence b = 7 is IGH.
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3.3.4 Case a = 6

When a = 6, the Hilbert function is (1, 4, 4, 4, 1) so the Betti diagram is
6 b c

b− 8 2c− 6 b− 8

c b 6

 .

As

h2(T/I2) = 4 =

(
3

2

)
+

(
1

1

)
. (3.39)

Theorem 3.3 shows

h
〈2〉
2 (T/I2) = 5 ≥ h3(T/I2) = 20− 6 · 4 + b. (3.40)

So b ≤ 9. If b = 9 there is a unique cubic F ∈ I; since b = 9 is extremal we may apply

Gotzmann’s Persistence Theorem to conclude that h4(T/I2) = 6, so

(b24(T/I2)− c) +

(
3 + 1

1

)
· 9−

(
3 + 2

2

)
· 6 +

(
3 + 4

4

)
= 6, (3.41)

which implies b24(T/I2) = c − 5. Since (2c − 6) − (c − 5) = c − 1 and c ≥ 5, this means

there are always at least four independent syzygies which are linear on F and quadratic on

elements of I2. Hence I2 : F = 〈y0, . . . y3〉 and the mapping cone arising from short exact

sequence

0 −→ T (−3)/I2 : F −→ T/I2 −→ T/I2 + F −→ 0, (3.42)

gives a resolution of T/I. The top row of the mapping cone is simply the Koszul complex

on the variables, and a check of the degrees shows the second syzygies involve a summand

T 6(−5) which cannot cancel. This would imply b35(T/I) = b − 8 ≥ 6, which is impossible

since b = 9.

Finally, we need to show that when b = 8 we must have c = 3. From the Hilbert function

constraint on the Betti diagram, c ≥ 3. When b = 8, there are no cubics in I; this means

b24(T/I2)− c = c− 6. (3.43)
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We compute

h3(T/I2) = 4 =

(
4

3

)
, (3.44)

Theorem 3.3 shows

h
〈3〉
3 (T/I2) = 5 ≥ h4(T/I2) = 35− 6 · 10 + 8 · 4 + c− 6, (3.45)

hence c ≤ 4. Finally, if c = 4, then h4(T/I2) = 5 and h
〈4〉
4 (T/I2) = 6. So

6 ≥ h5(T/I2) = 56− 6 · 20 + 8 · 10− 2 · 4 + b25(T/I2).

This would force b25(T/I2) ≤ −2. We have shown that the only Betti diagram possible for

a = 6 is


6 8 3

0 0 0

3 8 6

 .

Hence there are 16 Betti diagrams for an Artinian Gorenstein algebra A with reg (A) =

4 = codim (A). All diagrams in Table 3.1 and Table 3.2 do occur, which can be checked via

a Macaulay2 search. See Appendix B.

3.4 Proof of Theorem 3.2

In this section, we consider T̃ = C[y0, . . . , y7]. We would like to show if U = T̃ /IX has one

of the Betti diagram in Table 3.2, then X = Proj(U) must be either reducible or singular.

In order to do this, we need to introduce Schenck-Stillman’s Theorem.

A matrix of linear forms is 1-generic if no entry can be reduced to zero by (scalar) row

or column operations; a linear n-th syzygy is an element f of TorT̃n+1(U,C)n+2. The rank of

f is the dimension of smallest vector space V such that the diagram below commutes:
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TorT̃n (U,C)n+1 ⊗ T̃ (−n− 1) TorT̃n+1(U,C)n+2 ⊗ T̃ (−n− 2)

V ⊗ T̃ (−n− 1) f ⊗ T̃ (−n− 2)

Theorem 1.7 of [32] shows:

Theorem 3.6 (Schenck-Stillman, 2012). For a nondegenerate prime ideal P ,

(1) P cannot have a linear nth syzygy of rank ≤ n+ 1, or P is not prime.

(2) If P has a linear nth syzygy of rank n+2, then P contains the 2×2 minors of a 1-generic

2× (n+ 2) matrix.

(3) If P has a linear nth syzygy of rank n + 3, then P contains the 4 × 4 Pfaffians of a

skew-symmetric 1-generic (n+ 4)× (n+ 4) matrix.

3.4.1 Type 2.1 and 2.2

Type 2.1 1 11 20 11 1 Type 2.2 1 8 14 8 1

0: 1 . . . . 0: 1 . . . .

1: . 2 1 . . 1: . 3 1 . .

2: . 9 18 9 . 2: . 5 12 5 .

3: . . 1 2 . 3: . . 1 3 .

4: . . . . 1 4: . . . . 1

By Theorem 3.6, a Betti diagram of Type 2.1 is ruled out by (1), and a Betti diagram of

Type 2.2 is ruled out by (2), since the 2× 2 minors of a 2× 3 matrix have two independent

linear syzygies.
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Type 2.5: Type 2.6: Type 2.7:

1 11 20 11 1 1 9 16 9 1 1 7 12 7 1

0: 1 . . . . 0: 1 . . . . 0: 1 . . . .

1: . 3 3 1 . 1: . 4 4 1 . 1: . 5 5 1 .

2: . 7 14 7 . 2: . 4 8 4 . 2: . 1 2 1 .

3: . 1 3 3 . 3: . 1 4 4 . 3: . 1 5 5 .

4: . . . . 1 4: . . . . 1 4: . . . . 1

3.4.2 Type 2.5-2.7

For the three Betti diagrams having top row of the form (a, a, 1), we argue as follows.

When a = 3 (Type 2.5), the linear second syzygy can have rank at most 3, since it involves

the 3 first syzygies. Hence by (1), the ideal cannot be prime.

When a = 4 (Type 2.6), the linear second syzygy can have rank at most 4, and in this case

by (2) it contains the 2× 2 minors of a 1-generic 2× 4 matrix, which would yield a top row

of the Betti diagram with entries (6, 8, 3).

When a = 5 (Type 2.7), (3) implies that P contains the Pfaffians, and since there are only

five quadrics, the quadratic part of the idea is exactly the Pfaffians, which do not have a

linear second syzygy.

3.4.3 Type 2.3

Type 2.3 1 7 12 7 1

0: 1 . . . .

1: . 4 3 . .

2: . 3 6 3 .

3: . . 3 4 .

4: . . . . 1

For Type 2.3, we will show that a prime non-degenerate ideal P cannot have top row of

the Betti diagram equal to (4, 3, 0). Let I2 be the subideal of P generated by quadrics in

P . By (1) and (3) the first syzygies all have rank three; take a subideal Q ⊆ I2 consisting
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of three elements, which by (2) is generated by the 2× 2 minors of a 2× 3 matrix and has

Betti diagram

1 − −

− 3 2
. (3.46)

In particular, Q is Cohen-Macaulay, htQ = 2 and degQ = 3. Let F denote the remaining

quadric, so I2 = Q + 〈F 〉. Consider the mapping cone resolution of T̃ /I2 from the short

exact sequence

0 −→ T̃ (−2)/Q : F −→ T̃ /Q −→ T̃ /I2 −→ 0. (3.47)

It follows that Q : F must have a linear generator L, so LF ∈ Q. If Q is prime, then either

L ∈ Q or F ∈ Q, a contradiction.

So suppose Q is not prime, and take a primary decomposition

Q = ∩mi=1Qi, with
√
Qi = Pi all height two. (3.48)

Since Q is height two and Cohen-Macaulay and deg(Q) = 3, we must have m ≤ 3.

1. Case 1: m = 3. Then Qi = Pi and Q = ∩3
i=1Pi with Pi generated by two linear forms.

2. Case 2: m = 2. Then deg(Q1) = 1, deg(Q2) = 2, so Q1 = P1 is generated by two linear

forms.

3. Case 3: m = 1. Then
√
Q1 = P1, with deg(P1) ∈ {1, 2, 3}. If deg(P1) = 3, then Q = P1

is prime, and if deg(P1) = 1 or 2, P1 contains a linear form.

In particular, we see that P is degenerate.

3.4.4 Type 2.8

For Type 2.8, there are two second linear syzygies. If either of them have rank less than 6,

the we would be in one the cases (1), (2), (3) of Schenck-Stillman’s Theorem, all of which

54



Type 2.8 1 9 16 9 1

0: 1 . . . .

1: . 5 6 2 .

2: . 2 4 2 .

3: . 2 6 5 .

4: . . . . 1

are inconsistent with a Betti diagram having top row (5, 6, 2).

Hence, both second syzygies must have rank 6. Let Syz2 denote the corresponding 6 × 2

matrix of linear second syzygies; Syz2 is 1-generic: if not, there is a second syzygy of rank≤ 5,

a contradiction. By [14], since Syz2 is 1-generic, the 2× 2 minors are Cohen-Macaulay with

an Eagon-Northcott resolution; in particular grade(I2(Syz2)) = 5. By [15, Theorem A2.10],

the Buchsbaum-Rim complex is a resolution for coker (Syzt2), because the ideal generated

by 2× 2 minors of Syz2 has grade 6− 2 + 1 = 5. This means

∧3T̃ (−3)6 ε−→ T̃ (−1)6 Syzt2−−→ T̃ 2 (3.49)

is exact, where ε is defined by equation (1.22). In particular, Syzt2 has no linear first syzygies.

We conclude that there are no linear second syzygies on coker (Syzt2), hence no linear first

syzygies on IX , a contradiction.

3.4.5 Type 2.4

Type 2.4 1 6 10 6 1

0: 1 . . . .

1: . 4 2 . .

2: . 2 6 2 .

3: . . 2 4 .

4: . . . . 1

We now show that the Betti diagram of Type 2.4 corresponds to a mapping cone, and

that any nondegenerate irreducible GoCY in P7 with Betti diagram of Type 2.4 must be

singular.
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A key tool in our analysis is a result of Vasconcelos-Villereal [38, Theorem 1.2], which

shows that if T is a Gorenstein local ring and 2 ∈ T is a unit, then if I is a Gorenstein ideal of

height 4 and deviation two, such that I is a generic complete intersection (the localization at

all minimal primes is a complete intersection), then I is a hypersurface section of a Gorenstein

ideal of height 3.

Theorem 3.7 (Vasconcelos-Villereal, 1986). Let T be a Gorenstein local ring in which 2 is a

unit. Let I be a Gorenstein ideal of height four and deviation two. If I is a generic complete

intersection, then I is a hypersurface section of a Gorenstein ideal of height three. That is ,

I = (I ′, f), where I ′ is the ideal generated by 4× 4 Pfaffians of an alternating 5× 5 matrix

and f is a regular element on T/I ′.

We start with several preparatory lemmas. Note that a Betti diagram of Type 2.4 cannot

arise as the mapping cone of a cubic, so will arise from quotienting the Pfaffians by a quadric.

Lemma 3.8. There is a prime subideal Q ⊆ I2 generated by three quadrics, such that Q

consists of the 2× 2 minors of a 1-generic 2× 3 matrix Syz1(Q), and the quadric q4 ∈ I2 \Q

is a nonzero divisor on T/Q.

Proof. By Theorem 3.6, a linear first syzygy on I2 of rank four would imply that I2 contains

the Pfaffians of a 5 × 5 skew matrix of linear forms, while if there was a linear first syzygy

on I2 of rank two, I would not be prime. So Theorem 3.6 implies that I2 contains a subideal

Q of 2× 2 minors of a 1-generic 2× 3 matrix of linear forms. The ideal Q must be prime, for

if not, it would have a primary decomposition into components of degrees one or two, which

would force I to be degenerate. Finally, q4 is regular on Q, for if not, then ht(I2) = 2 and

degree one or two; the two cubics in I must be nonzero divisors on the height two primary

component, because ht(I) = 4. But this would imply that deg(I) is 9 or 18, contradicting

the fact that deg(I) = 16.
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In what follows, we use the notation of Lemma 3.8, so Q is the ideal of 2× 2 minors of the

one-generic matrix Syz1(Q). The entries of Syz1(Q) are linear forms, because Q is prime the

linear forms span a space of dimension {4, 5, 6}. This means V (Q) is a cone, with singular

locus of dimension (respectively) {3, 2, 1}. Let C be the ideal generated by q4 and the two

cubic generators of I; intersecting V (Q) with V (C) drops the dimension by two, so if the

linear forms of Syz1(Q) span a space of dimension four or five, V (I) is singular. It remains

to deal with the case that the span of the linear forms has dimension six; after a change of

variables we may assume

Syz1(Q) =

y1 y2 y3

y4 y5 y6

 (3.50)

Lemma 3.9. Let I be a height four Gorenstein prime ideal with Betti diagram Type 2.4. If

I2 contains an ideal Q consisting of the 2× 2 minors of Syz1(Q) as above, then I = I ′+ 〈F 〉,

with codim (I ′) = 3 and I ′ Gorenstein, and F a nonzero divisor on T/I ′. Hence T/I has a

mapping cone resolution.

Proof. Because the two linear first syzygies on I2 are of the form [y1, y2, y3]t and [y4, y5, y6]t

and I is nondegenerate, I contains no linear form, so {y1, . . . , y6} are all units when T/I

is localized at I. Thus, in the localization, two of the generators for Q are redundant,

and therefore I is a generic complete intersection, of deviation two, so the result of [38]

applies.

Lemma 3.10. Assume Y is an arithmetically Gorenstein variety of codimension 3 and X

is a nondegenerate hypersurface section of Y with Betti diagram of Type 2.4. Then Y must

have Betti diagram:

1 5 5 1

0: 1 . . .

1: . 3 2 .

2: . 2 3 .

3: . . . 1
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Proof. The Hilbert series of X is

ht(X) =
1

(1− t)n
(1− t2)4. (3.51)

Assume ht(Y ) = 1
(1−t)nf(t). Then

f(t)(1− td) = (1− t2)4. (3.52)

So d ∈ {1, 2}. But X does not lie in any hyperplane. Therefore d must be 2 and Y has the

desired Betti diagram.

Proposition 3.11. Let V (IX) be GoCY in P7 with Betti diagram of Type 2.4. If the linear

forms of the matrix Syz1(Q) span a space of dimension six, then up to a change of basis, IX

is generated by the Pfaffians of a 5× 5 skew symmetric matrix Syz1(I ′) as below, along with

a quadric q4 which is a nonzero divisor on T̃ /IX . Denote Pf(Syz1(I ′)) by I ′. The ideal I ′ is

singular along a P1, and so V (IX) has at least two singular points.

Syz1(I ′) =



0 y1 y2 y3 0

−y1 0 q1 q2 y4

−y2 −q1 0 q3 y5

−y3 −q2 −q3 0 y6

0 −y4 −y5 −y6 0


(3.53)

where the qj’s are quadrics.

Proof. Combining Lemmas 3.8, 3.9, and 3.10 and the results of [38] shows that IX is of the

form above. To see that the singular locus is as claimed, we compute that

I ′ = Q+ 〈y3q1 − y2q2 + y1q3, y6q1 − y5q2 + y4q3〉, (3.54)

where Q is the ideal of the minors of the matrix Syz1(Q) above. In particular,

V (y1, . . . y6) ' P1 ⊆ V (I ′), (3.55)
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and V (I ′) is singular along this P1, because the Jacobian matrix of I ′ is

Jac(I ′) =



y5 y6 0 ∗ ∗

−y4 0 y6 ∗ ∗

0 −y4 −y5 ∗ ∗

−y2 −y3 0 ∗ ∗

y1 0 −y3 ∗ ∗

0 y1 y2 ∗ ∗

0 0 0 ∗ ∗

0 0 0 ∗ ∗



(3.56)

where ∗ are quadrics. Hence when {y1, . . . , y6} vanish, Jac(I ′) has rank ≤ 2, so is singular

along the P1. Intersecting V (I ′) with the hypersurface V (q4), we find that V (IX) must be

singular (at least) at a degree two zero scheme.

59



CHAPTER 4

SUMMARY AND FUTURE RESEARCH

In this thesis, we studied the dimension problem on spline spaces and the Betti diagrams of

Artinian Gorenstein rings.

For the dimension problem on spline spaces, we proved there is a counter-example to the

2r + 1 conjecture by analyzing that example with Billera’s spline complex. We also found a

new bound for reg H1(S•/J•).

For Artinian Gorenstein rings, we find all possible Betti diagrams corresponded to Ar-

tinian Gorenstein rings with regularity 4 and codimension 4. We proved what we found is

a complete list of such Betti diagrams and those in Table 3.2 cannot be Betti diagrams of

Gorenstein Calabi-Yau threefolds in P7. A case-by-case analysis of 2-linear strand for each

Betti diagram is crucial to our proof.

The study on both problems does not end with this thesis. In fact, there are several

topics interest us. We discuss these directions for future research in Section 4.1-4.5.

4.1 On dimension conjectures of spline spaces

Before Schenck and Stiller made the “2r+1” conjecture, Alfeld and Manni have conjectured

for case (r, d) = (1, 3):

Conjecture 3 (Alfeld-Manni). The equality (1.5) holds for all triangulation when (r, d) =

(1, 3).

Note that ∆Y in Chapter 2 does not make a counter-example for Alfeld-Manni conjecture,

because H0(J•)d=3 = 0 for r = 1.
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If we fix the combinatorial data of ∆, then global geometric data of ∆ is determined by

the actual positions of all v ∈ ∆0. The space of positions of vertices is a Zariski open subset

U of Rn × · · · ×Rn. We have already seen that reg H0(J•) depends on the global geometric

data. In fact, reg H0(J•) remains constant over a Zariski open subset of U. We say ∆ is

generic if it falls into this open dense subset. Intuitively, this means that jiggling the position

of any vertex of ∆ does not change reg H0(J•). In particular, our counter-example is not

generic.

v3 v7

v8

v1

v4

v5

v6

v2v0

Figure 4.1: A generic ∆ having the same combinatorial data as the counter-
example

Example 2. Figure 4.1 is an example of generic ∆ with the same combinatorial data as in

the counter-example.

Alfeld and Schumaker proved in [2] that the “3r + 1” conjecture holds for generic ∆.

Conjecture 4. For generic ∆, the “2r + 1” Conjecture holds.

From the computation results of Macaulay 2, we also notice that in our case, for r from

1 to 20, reg H0(J•) = b9r+2
4
c.

Conjecture 5 (Schenck-Yuan). For ∆Y , there exists constants c1, c2, such that

9r

4
+ c1 ≤ reg H0(J•) ≤

9r

4
+ c2.
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We also propose the following open problem:

Open Problem. For a given ∆, find both upper and lower bounds for reg H0(J•).

4.2 Powers of linear forms, the inverse system and fat points

In this section, we start with a dimension problem on fat points ideals, and show it is related

to the dimension problem of spline spaces.

Definition. Assume Pi ∈ Pn for i = 1, . . . , s. Let pi = I(Pi) ⊆ T be the ideal defining Pi.

A fat points ideal is an ideal of the form I = ∩mi=1p
ki
i for ki ≥ 1.

Problem. If P1, . . . , Ps are sufficiently general points of Pn with corresponding prime ideals

p1, . . . , ps. Let I = ∩mi=1p
ki
i for ki ≥ 1 be a fat points ideal. What is the Hilbert function of

T/I?

Note that (I)d is the space of d-forms that has zero at Pi with multiplicity at least

ki. We denote this space by Ld(−
∑s

i=1 kiPi). If s = 1, there is a single point and there is(
k1+n−1

n

)
linearly independent conditions posed on d-forms, so dimTd−dim(I)d =

(
k1+n−1

n

)
. A

naive guess is that s points with given multiplicities would pose min{
∑s

i=1

(
ki+n−1

n

)
,
(
d+n−1
n

)
}

linearly independent conditions. However, this fails for (n, s, d) = (2, 5, 4) and k1 = · · · =

k5 = 2. See Miranda’s paper[24] for more examples on which the expected dimension fails. In

the same paper, there is also a conjecture made by Segre-Harbourne-Gimigliano-Hirschowitz

saying the fat points ideals have the expected Hilbert function under some conditions. This

conjecture is unsolved yet. Therefore, the form of Hilbert function for fat points is still

unknown.

Recall in Section 1.4, we define the corresponded linear form LP ∈ S1 for a reduced point

P ∈ Proj(T ). In [16], Ensalem and Iarrobino have the following theorem for fat points ideals.
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Theorem 4.1 (Ensalem-Iarrobino, 1995). Assume that I = pk1+1
1 ∩ · · · ∩ pks+1

s , then

(I−1)d =


Sd, for d ≤ max{ki},

Sk1 · Ld−k1P1
+ · · ·+ Sks · Ld−ksPs

, for d > max{ki},
(4.1)

where LPi
is the corresponded linear form of Pi, and

HF(I−1, d) = HF(T/I, d). (4.2)

Note that the ideal J(v) defined in Section 2.2 is generated by powers of linear forms. In

fact, if J = 〈Lr+1
P1

, . . . , Lr+1
Ps
〉, then for d ≥ r + 1,

(J)d = Lr+1
P1
· Sd−r−1 + · · ·+ Lr+1

Ps
· Sd−r−1. (4.3)

Then by Theorem 4.1, (J)d = (I−1)d where

I = pd−r1 ∩ · · · ∩ pd−rs . (4.4)

Therefore, questions about Hilbert function of fat points on Pn can be translated into ques-

tions about ideals generated by powers of linear forms in (n + 1) variables. In [18], the

authors use this correspondence to compute dimension of spline spaces with mixed smooth-

ness. Since the form of Hilbert function of fat points on P2 is unknown, there is also no

known form of the Hilbert function for the local data J(v) when ∆ is 3-dimensional.

4.3 On quaternary quartic forms

Let S = C[x0, . . . , xn] and T = C[y0, . . . , yn] = C[ ∂
∂x0
, . . . , ∂

∂xn
] be the ring of differential oper-

ators on S. We say a homogeneous polynomial f ∈ S has a length s power sum decomposition

if

f = ld1 + · · ·+ lds . (4.5)
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Definition. The Waring rank of a homogeneous polynomial f ∈ S is the least number r

such that f has a length r power sum decomposition. We denote the Waring rank of f by

rank (f).

Question (Waring’s problem). What is rank (f) for a given f?

For a generic form of degree d in n+ 1 variables, we have the following theorem:

Theorem 4.2 (Alexander-Hirschowitz). A generic form f of degree d in n+ 1 variables in

a sum of d 1
n+1

(
n+d
n

)
e powers of linear forms, unless

• d = 2, where s = n+ 1 instead of dn+2
2
e, or

• d = 4 and n = 2, 3, 4, where s = 6, 10, 15 instead of 5, 9, 14 respectively, or

• d = 3 and n = 4, where s = 8 instead of 7.

However, finding out rank (f) for every f is still an open problem.

By Theorem 1.2, any Artinian Gorenstein ideal with regularity 4 in T is Macaulay’s

inverse system If of a principal ideal 〈f〉 ⊂ S with deg f = 4. By our results in Chapter 3,

if n = 3, then the Betti diagram of Af = T/If must be one of the 16 tables in Table 3.1 and

3.2. With the Apolarity Lemma described below, we would like to classify the forms f in

terms of power sum decomposition according to the Betti diagram of Af = T/If . We call a

subscheme Γ ⊂ Proj(T ) apolar to f , if I(Γ) ⊂ If ⊂ T .

Lemma 4.3 (Apolarity Lemma). Let Γ ⊂ {P1, . . . , Ps} be a set of points in Proj(T ). Then

f = Ld1 + · · ·+ Lds if and only if Γ is apolar to f .

We are also interested in giving a complete description of the relation between the Betti

diagram of Af and the geometry of Γ.

64



4.4 Extension of Artinian Gorenstein to higher dimension

In Chapter 3, we studied Artinian Gorenstein rings, especially those with regularity 4 and

codimension 4. Those with Betti diagram in Table 3.1 can be viewed as Artinian reduction

of GoCY threefolds in Table 1.1. The authors of [11] ask if Table 1.1 is a complete list of

families of GoCY threefolds in P7. Since we already have a complete list of Artinian reduction

for all codimension 4 GoCYs, we would like to lift them to higher dimension. In particular,

if we are able to obtain all possible extensions of Artinian GoCYs to threefolds, then we may

answer their question. On the other hand, we have proved that GoCY’s with Betti diagram

in Table 3.2 cannot be threefolds, but their possible extensions to higher dimension are still

interesting to us.

Let FB be the set of forms f for which the apolar Artinian Gorenstein ring Af has Betti

diagram B. The parameter space of all quaternary quartic forms is isomorphic to P34. In

fact, every family FB with B in Table 3.1 and 3.2 is a quasi-projective algebraic set in P34.

If FB is irreducible, then it makes sense to talk about a general element fB ∈ FB. We may

try to obtain all possible extensions of AB corresponding to fB. If FB is not irreducible,

then we can study their irreducible components and look for extensions corresponding to the

general element for each of these components.

4.5 Calabi-Yau varieties in toric spaces

One generalization of complete intersection Calabi-Yau varieties in projective spaces is

GoCY. Another way is to consider Calabi-Yau varieties embedded in toric varieties, be-

cause projective space is the simplest complete toric variety. In [3], Batyrev shows how

to obtain Calabi-Yau varieties as hypersurfaces in toric varieties corresponding to reflexive

polytopes. Using Batyrev’s construction, one gets a pair of Calabi-Yau varieties (X,X ′) such
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that h1,1(X) = h1,2(X ′), so they are potentially mirror symmetric pairs, as introduced in

[12]. What’s more, their Hodge numbers can be obtained from the toric varieties they lie in.

To study such Calabi-Yau varieties, we are not only interested in their Hodge numbers,

but also in all cohomologies Hq(X,Ωp(d)). Assume Calabi-Yau variety X is obtained as a

degree k hypersurface of a toric variety V . In [23], Maclagan and Smith introduce a method

to compute Hq(V,OV (d)) for all q and d. Since the short exact sequence of sheaves

0→ OV (−k + d)→ OV (d)→ OX(d)→ 0 (4.6)

induces the long exact sequence of cohomologies

· · · → Hq(V,OV (−k + d))→ Hq(V,OV (d))→ Hq(X,OX(d))→ . . . , (4.7)

we may obtain information about Hq(X,OX(d)) from it. This is a topic we would like to

investigate further.
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APPENDIX A

COMPUTATION ON SPLINE PROBLEMS

A.1 Buchberger’s Algorithm and computation of Gröbner basis

The introduction to Buchberger’s Algorithm can be found in [25, section 39] and [15, Chapter

15]. We briefly recall the algorithm here. Fix a monomial order � on a free S-module F

with basis e1, . . . , et. For f, g ∈ F , set

τf,g =
In(g)

gcd(In(f), In(g))
f − In(f)

gcd(In(f), In(g))
g (A.1)

Assume M is a submodule of F generated by {g1, . . . , gs}. For each pair (gi, gj), there is an

expression

τij =
∑

akgk + hij (A.2)

such that either hij = 0 or In(hij) � In(gk) for all k. We call hij the remainders/

Theorem A.1 (Buchberger’s Criterion). The elements g1, . . . , gs form a Gröbner basis if

and only if hij = 0 for all i and j.

Buchberger’s Algorithm: In the situation of Theorem A.1, suppose that M is a submodule

of F , and let g1, . . . , gs be a set of generators of M . Compute the remainders hij. If all the

hij = 0, then {g1, . . . , gs} forms a Gröbner basis for M . If some hij 6= 0, then replace

g1, . . . , gs with g1, . . . , gs, hij, and repeat the process. This process must terminate, see [15].

Next, we use Buchberger’s Algorithm to compute a Gröbner basis of the image of Syz1
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with respect to the P.O.T. order, where e1 ≺ e2. Starting with

f1 = (2x+ y + 4z)e1

f2 = y2e1

f3 = (3x− 2y − 2z)e1 + (3x+ 2y + 2z)e2

f4 = −3(3x− 2y − 2z)x− 2(y + z)2e1 + 2(y + z)2e2

f5 = (−2x+ y + 4z)e2

f6 = y2e2

,

we may compute the remainder h12 = 0 and h13 = −(7y + 16z)e1 + (7y + 16z)e2. Replace

f3 with h13. 

f
(1)
1 = (2x+ y + 4z)e1

f
(1)
2 = y2e1

f
(1)
3 = −(7y + 16z)e1 + (7y + 16z)e2

f
(1)
4 = −3(3x− 2y − 2z)x− 2(y + z)2e1 + 2(y + z)2e2

f
(1)
5 = (−2x+ y + 4z)e2

f
(1)
6 = y2e2

is still a basis of Im(Syz1). Now h12 = h13 = 0, h23 = −z2e1 + z2e1. Replace f
(1)
2 with h23

and re-index the generators with respect to �.

f
(2)
1 = (2x+ y + 4z)e1

f
(2)
2 = −(7y + 16z)e1 + (7y + 16z)e2

f
(2)
3 = −z2e1 + z2e1

f
(2)
4 = −3(3x− 2y − 2z)x− 2(y + z)2e1 + 2(y + z)2e2

f
(2)
5 = (−2x+ y + 4z)e2

f
(2)
6 = y2e2
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Now hij = 0 for 1 ≤ i < j ≤ 3 and h14 = (11yz+16z2)e2. Replace f
(2)
4 with h14 and re-index

the generators with respect to �.

f
(3)
1 = (2x+ y + 4z)e1

f
(3)
2 = −(7y + 16z)e1 + (7y + 16z)e2

f
(3)
3 = −z2e1 + z2e1

f
(3)
4 = (−2x+ y + 4z)e2

f
(3)
5 = y2e2

f
(3)
6 = (11yz + 16z2)e2

Now hij = 0 for 1 ≤ i < j ≤ 5 and hi6 = 0 for 1 ≤ i ≤ 4. h56 = z3e2. Add h56 to the

generating set. 

f
(4)
1 = (2x+ y + 4z)e1

f
(4)
2 = −(7y + 16z)e1 + (7y + 16z)e2

f
(4)
3 = −z2e1 + z2e1

f
(4)
4 = (−2x+ y + 4z)e2

f
(4)
5 = y2e2

f
(4)
6 = (11yz + 16z2)e2

f
(4)
7 = z3e2

Now hij = 0 for 1 ≤ i < j ≤ 7, so it is a Gröbner basis of Im(Syz1).

A.2 Compute reg H0(J•) for r ≤ 20 using Macaulay2

We write Macaulay2 codes to investigate the counter-example in Chapter 2. The command

standardGraph records ∆Y . It expects no input and the output is (V,E), where V is the list

of coordinates of vertices of ∆Y and E is a list of interior edges.
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The command H0matrix expects three parameters (r, V, E), where r is the smoothness,

V is the list of coordinates of vertices of ∆ and E is a list of interior edges. The V and E

has some restrictions: the first 3 vertices in V are the interior ones, in a line, and the rest

are the vertices which provide exactly 3 edges from each of these vertices. If not, H0matrix

will give an error. The output is the matrix (2.32).

The command computeCounterexample expects three parameters (r, V, E), where r is the

smoothness, V is the list of coordinates of vertices of ∆Y and E is a list of interior edges. The

output includes the expected regularity of H0(J•) and the actual regularity. For example,

For r = 2, the top degree of HH_0(J) should = 5

In degree 5: (#rows,#cols,rank)=(12, 12, 11)

In degree 6: (#rows,#cols,rank)=(20, 27, 20)

means for r = 2, the expected regularity of H0(J•) is b9r+2
4
c = 5. In degree 5, #rows is 12

and rank is 11, so they are not equal. In degree 6, #rows is 20 and rank is 20, so they are

equal. Therefore, the actual regularity is 5.

With these commands, we compute the actual regularity of H0(J•) for r ≤ 20. The

computation result shows that the actual regularity is the same as the expected regularity

9r+2
4

.

i2 : R=QQ[x,y,z]

o2 = R

o2 : PolynomialRing

i3 : (V,E) = standardGraph()
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o3 = ({{-2, 1}, {0, 0}, {2, 1}, {0, -1}, {0, 3}, {0, 3}, {0, 3}, {0, -1}}, {{0,

--------------------------------------------------------------------------

1}, {1, 2}, {0, 3}, {0, 4}, {1, 5}, {2, 6}, {2, 7}})

o3 : Sequence

i4 : for r from 1 to 20 do computeCounterexample(r,V,E)

For r = 1, the top degree of HH_0(J) should = 2

In degree 2: (#rows,#cols,rank)=(2, 0, 0)

In degree 3: (#rows,#cols,rank)=(6, 6, 6)

For r = 2, the top degree of HH_0(J) should = 5

In degree 5: (#rows,#cols,rank)=(12, 12, 11)

In degree 6: (#rows,#cols,rank)=(20, 27, 20)

For r = 3, the top degree of HH_0(J) should = 7

In degree 7: (#rows,#cols,rank)=(20, 18, 18)

In degree 8: (#rows,#cols,rank)=(30, 36, 30)

For r = 4, the top degree of HH_0(J) should = 9

In degree 9: (#rows,#cols,rank)=(30, 27, 27)

In degree 10: (#rows,#cols,rank)=(42, 48, 42)

For r = 5, the top degree of HH_0(J) should = 11

In degree 11: (#rows,#cols,rank)=(42, 36, 36)

In degree 12: (#rows,#cols,rank)=(56, 60, 56)

For r = 6, the top degree of HH_0(J) should = 14

In degree 14: (#rows,#cols,rank)=(72, 75, 70)

In degree 15: (#rows,#cols,rank)=(90, 108, 90)

For r = 7, the top degree of HH_0(J) should = 16
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In degree 16: (#rows,#cols,rank)=(90, 90, 88)

In degree 17: (#rows,#cols,rank)=(110, 126, 110)

For r = 8, the top degree of HH_0(J) should = 18

In degree 18: (#rows,#cols,rank)=(110, 108, 105)

In degree 19: (#rows,#cols,rank)=(132, 147, 132)

For r = 9, the top degree of HH_0(J) should = 20

In degree 20: (#rows,#cols,rank)=(132, 126, 124)

In degree 21: (#rows,#cols,rank)=(156, 168, 156)

For r = 10, the top degree of HH_0(J) should = 23

In degree 23: (#rows,#cols,rank)=(182, 192, 180)

In degree 24: (#rows,#cols,rank)=(210, 243, 210)

For r = 11, the top degree of HH_0(J) should = 25

In degree 25: (#rows,#cols,rank)=(210, 216, 208)

In degree 26: (#rows,#cols,rank)=(240, 270, 240)

For r = 12, the top degree of HH_0(J) should = 27

In degree 27: (#rows,#cols,rank)=(240, 243, 234)

In degree 28: (#rows,#cols,rank)=(272, 300, 272)

For r = 13, the top degree of HH_0(J) should = 29

In degree 29: (#rows,#cols,rank)=(272, 270, 264)

In degree 30: (#rows,#cols,rank)=(306, 330, 306)

For r = 14, the top degree of HH_0(J) should = 32

In degree 32: (#rows,#cols,rank)=(342, 363, 340)

In degree 33: (#rows,#cols,rank)=(380, 432, 380)

For r = 15, the top degree of HH_0(J) should = 34

In degree 34: (#rows,#cols,rank)=(380, 396, 378)

In degree 35: (#rows,#cols,rank)=(420, 468, 420)

For r = 16, the top degree of HH_0(J) should = 36
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In degree 36: (#rows,#cols,rank)=(420, 432, 414)

In degree 37: (#rows,#cols,rank)=(462, 507, 462)

For r = 17, the top degree of HH_0(J) should = 38

In degree 38: (#rows,#cols,rank)=(462, 468, 454)

In degree 39: (#rows,#cols,rank)=(506, 546, 506)

For r = 18, the top degree of HH_0(J) should = 41

In degree 41: (#rows,#cols,rank)=(552, 588, 550)

In degree 42: (#rows,#cols,rank)=(600, 675, 600)

For r = 19, the top degree of HH_0(J) should = 43

In degree 43: (#rows,#cols,rank)=(600, 630, 598)

In degree 44: (#rows,#cols,rank)=(650, 720, 650)

For r = 20, the top degree of HH_0(J) should = 45

In degree 45: (#rows,#cols,rank)=(650, 675, 644)

In degree 46: (#rows,#cols,rank)=(702, 768, 702)

The codes for those commands are listed below:

standardGraph = () -> (

-- return a (V, E) pair

V := {

{-2,1}, {0,0}, {2,1}, -- interior vertices, in line order

{0,-1}, {0,3}, -- connect to 0th vertex

{0,3}, -- connect to vertex #1

{0,3}, {0,-1} -- connect to vertex #2

};

E := {{0,1}, {1,2}, -- interior edges

{0,3}, {0,4}, -- connect to vertex #0

{1,5}, -- connect to vertex #1
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{2,6}, {2,7} -- connect to vertex #2

};

(V,E)

)

containsVertex = method()

-- given an index ’v’ into the list of vertices V, find the edges in E incident

to v.

containsVertex(ZZ, List) := (v, E) -> positions(E, e -> member(v, e))

linearForm = method(Options => {Ring => QQ[getSymbol "x", getSymbol "y",

getSymbol "z"]})

linearForm(List, List) := opts -> (e, V) -> (

-- e is a list of 2 indices into V, generally an element of E

-- returns a linear form in the ring opts.Ring

R := opts#Ring;

x := R_0;

y := R_1;

z := R_2;

f := det matrix{{x,y,z},append(V_(e_0), 1), append(V_(e_1), 1)};

(trim ideal f)_0

)

H0matrix = method(Options => options linearForm)

H0matrix(ZZ, List, List) := opts -> (r,V,E) -> (

-- assumptions:

-- (1) the first 3 vertices of V are the interior ones, in a line
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-- (2) each of these vertices is connected to precisely 3 others.

S := opts#Ring;

e0 := containsVertex(0, E);

e1 := containsVertex(1, E);

e2 := containsVertex(2, E);

if #e0 =!= 3 or #e1 =!= 3 or #e2 =!= 3 then error "expected 3 edges from

the first three vertices";

linforms := for e in E list linearForm(e, V, opts);

Z0 := syz matrix{(linforms_e0)/(f -> f^(r+1))};

Z1 := syz matrix{(linforms_e1)/(f -> f^(r+1))};

Z2 := syz matrix{(linforms_e2)/(f -> f^(r+1))};

M := (submatrix(Z0, {0}, ) || matrix{{0,0}})

| submatrix(Z1, {0,1}, )

| (matrix{{0,0}} || submatrix(Z2, {0}, ));

map(S^{2: -r-1},,M)

)

computeCounterexample = method()

computeCounterexample (ZZ,List,List) := (r,V,E) -> (

deg1 := floor((9*r+2)/4);

<< "For r = " << r << ", the top degree of HH_0(J) should = " << deg1 <<

endl;

--(V,E) := standardGraph();

f := H0matrix(r, V, E);

Rp := ZZ/32003[gens ring f];

fp := sub(f, Rp);

d1 := degreePart(deg1,fp);
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<< " In degree " << deg1 << ": (#rows,#cols,rank)=" << (numrows d1, numcols

d1, rank d1) << endl;

d2 := degreePart(deg1+1,fp);

<< " In degree " << deg1+1 << ": (#rows,#cols,rank)=" << (numrows d2,

numcols d2, rank d2) << endl;

)
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APPENDIX B

EXPLICIT EXAMPLES OF ARTINIAN GORENSTEIN RINGS WITH

GIVEN BETTI DIAGRAM

In this section, we would like to find an explicit example for each Betti diagram in Table 3.1

and 3.2.

Recall that a subscheme Γ ⊂ Pn apolar to F , if the homogeneous ideal IΓ ⊂ F⊥ ⊂ T . The

following lemma is well-known and can be found in [21, Lemma 1.15].

Lemma B.1 (Apolarity Lemma). Let Γ = {V (l1), . . . , V (ls)} ⊂ P(S1) = Pn be a collection

of s distinct points. Then

F = λ1l
d
1 + · · ·+ λsl

d
s (B.1)

if and only if

IΓ ⊂ F⊥ ⊂ T.

With Lemma B.1, we find explicit examples of Artinian Gorenstein rings with given Betti

diagram B = (βi,j) by the following steps:

• Step 1: Find a point set Γ ⊆ P3 such that the defining ideal T/IΓ has the same top

row Betti numbers with B.

• Step 2: If Γ = {V (l1), . . . , V (ls)} ⊂ P(S1) = Pn, we take

f = ld1 + · · ·+ lds

to be the dual socle generator of Af .

• Step 3: Verify that Af has the given Betti diagram B.

We perform these steps by Macaulay2.
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i1 : kk=QQ

o1 = QQ

o1 : Ring

i2 : T = kk[x,y,z,w]

o2 = T

o2 : PolynomialRing

i3 : linearForm = pt -> sum for i from 0 to 3 list pt#i * T_i

o3 = linearForm

o3 : FunctionClosure

i4 : quartic = (pts) -> sum for p in pts list (linearForm p)^4

o4 = quartic

o4 : FunctionClosure

i5 : randomPoint = nvars -> for i from 1 to nvars list random kk

o5 = randomPoint

o5 : FunctionClosure

i6 : randomPoints = (d, nvars) -> for i from 1 to d list randomPoint nvars

o6 = randomPoints

o6 : FunctionClosure

The command quartic expects one parameter pts, which is a list of coordinates of points

in P3. The output is a quartic form as in equation (B.1).

The command randomPoints expects two parameter (s, n), where s and n are positive integers.

The output is a list of coordinates of random s points in Pn−1.

Using these commands, we obtain a quartic form f such that Af has given Betti diagram in
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each of the following case, where Γ denotes an apolar point set to f as in Lemma B.1.

B.1 CGKK1

For CGKK1, the apolar point set Γ contains four points in general position.

i7 : --CGKK1

F = quartic {{1,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}};

i8 : I = inverseSystem F;

o8 : Ideal of T

i9 : betti res I

0 1 2 3 4

o9 = total: 1 9 16 9 1

0: 1 . . . .

1: . 6 8 3 .

2: . . . . .

3: . 3 8 6 .

4: . . . . 1

o9 : BettiTally
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B.2 CGKK2

For CGKK2, the apolar point set Γ contains five points in general position.

i10 : F = quartic {{1,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1},{1,1,1,1}};

i11 : I = inverseSystem F;

o11 : Ideal of T

i12 : betti res I

0 1 2 3 4

o12 = total: 1 6 10 6 1

0: 1 . . . .

1: . 5 5 . .

2: . 1 . 1 .

3: . . 5 5 .

4: . . . . 1

o12 : BettiTally
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B.3 CGKK3

CGKK3 is a complete intersection of four quadrics.

i13 : I = ideal(x^2,y^2,z^2,w^2)

2 2 2 2

o13 = ideal (x , y , z , w )

o13 : Ideal of T

i14 : betti res I

0 1 2 3 4

o14 = total: 1 4 6 4 1

0: 1 . . . .

1: . 4 . . .

2: . . 6 . .

3: . . . 4 .

4: . . . . 1

o14 : BettiTally
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B.4 CGKK4

For CGKK4, the apolar point set Γ contains 7 points in general position.

i15 : F = quartic randomPoints(7,4);

i16 : I = inverseSystem F;

o16 : Ideal of T

i17 : betti res I

0 1 2 3 4

o17 = total: 1 7 12 7 1

0: 1 . . . .

1: . 3 . . .

2: . 4 12 4 .

3: . . . 3 .

4: . . . . 1

o17 : BettiTally
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B.5 CGKK5,6

For CGKK5,6, the apolar point set Γ contains 7 points on a twisted cubic curve.

i18 : --CGKK5,6

pts = for i from 0 to 6 list for j from 0 to 3 list i^j;

i19 : F = quartic pts;

i20 : I = inverseSystem F;

o20 : Ideal of T

i21 : betti res I

0 1 2 3 4

o21 = total: 1 9 16 9 1

0: 1 . . . .

1: . 3 2 . .

2: . 6 12 6 .

3: . . 2 3 .

4: . . . . 1

o21 : BettiTally
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B.6 CGKK7,8

For CGKK7,8, the apolar point set Γ contains 8 points in general position.

i22 : --CGKK7,8

F = quartic randomPoints(8,4);

i23 : I = inverseSystem F;

o23 : Ideal of T

i24 : betti res I

0 1 2 3 4

o24 = total: 1 10 18 10 1

0: 1 . . . .

1: . 2 . . .

2: . 8 18 8 .

3: . . . 2 .

4: . . . . 1

o24 : BettiTally
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B.7 CGKK9,10

For CGKK9,10, the apolar point set Γ contains 9 points in general position.

i25 : F = quartic randomPoints(9,4);

i26 : I = inverseSystem F;

o26 : Ideal of T

i27 : betti res I

0 1 2 3 4

o27 = total: 1 13 24 13 1

0: 1 . . . .

1: . 1 . . .

2: . 12 24 12 .

3: . . . 1 .

4: . . . . 1

o27 : BettiTally
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B.8 CGKK11

For CGKK11, the apolar point set Γ contains 10 points in general position.

i28 : F = quartic randomPoints(10,4);

i29 : I = inverseSystem F;

o29 : Ideal of T

i30 : betti res I

0 1 2 3 4

o30 = total: 1 16 30 16 1

0: 1 . . . .

1: . . . . .

2: . 16 30 16 .

3: . . . . .

4: . . . . 1

o30 : BettiTally
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B.9 Type 2.1

For Type 2.1, the apolar point set Γ contains 8 points such that 6 of them lie on a P2.

i31 : --Type 2.1

F = quartic {{1,0,0,0}, {0,1,0,0}, {0,0,1,0}, {1,1,1,0},

{2,3,7,0}, {17,2,31,0}, {-2,7,4,10}, {4,8,20,50}};

i32 : I = inverseSystem F;

o32 : Ideal of T

i33 : betti res I

0 1 2 3 4

o33 = total: 1 11 20 11 1

0: 1 . . . .

1: . 2 1 . .

2: . 9 18 9 .

3: . . 1 2 .

4: . . . . 1

o33 : BettiTally

87



B.10 Type 2.2

For Type 2.2, the apolar point set Γ contains 7 points such that 5 of them lie on a P2.

i34 : F = quartic {{1,0,0,0}, {0,1,0,0}, {0,0,1,0}, {1,1,1,0},

{2,3,7,0}, {-2,7,4,10}, {13,-2,17,30}};

i35 : I = inverseSystem F;

o35 : Ideal of T

i36 : betti res I

0 1 2 3 4

o36 = total: 1 8 14 8 1

0: 1 . . . .

1: . 3 1 . .

2: . 5 12 5 .

3: . . 1 3 .

4: . . . . 1

o36 : BettiTally
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B.11 Type 2.3

For Type 2.3, the apolar point set Γ contains 6 points such that 3 of them lie on a P1.

i37 : F = quartic {{1,0,0,0}, {0,1,0,0}, {1,1,0,0}, {1,0,1,0},

{0,0,0,1}, {0,0,1,1}};

i38 : I = inverseSystem F;

o38 : Ideal of T

i39 : betti res I

0 1 2 3 4

o39 = total: 1 7 12 7 1

0: 1 . . . .

1: . 4 3 . .

2: . 3 6 3 .

3: . . 3 4 .

4: . . . . 1

o39 : BettiTally
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B.12 Type 2.4

For Type 2.4, the apolar point set Γ contains 6 points in general position.

i40 : F = quartic randomPoints(6, 4);

i41 : I = inverseSystem F;

o41 : Ideal of T

i42 : betti res I

0 1 2 3 4

o42 = total: 1 6 10 6 1

0: 1 . . . .

1: . 4 2 . .

2: . 2 6 2 .

3: . . 2 4 .

4: . . . . 1

o42 : BettiTally
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B.13 Type 2.5

For Type 2.5, the apolar point set Γ contains 7 points such that 6 of them lie on a P2.

i43 : F = quartic {{1,0,0,0}, {0,1,0,0}, {0,0,1,0}, {1,1,1,0},

{2,3,7,0}, {17,2,31,0},{-2,7,4,10}};

i44 : I = inverseSystem F;

o44 : Ideal of T

i45 : betti res I

0 1 2 3 4

o45 = total: 1 11 20 11 1

0: 1 . . . .

1: . 3 3 1 .

2: . 7 14 7 .

3: . 1 3 3 .

4: . . . . 1

o45 : BettiTally
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B.14 Type 2.6

For Type 2.6, we may choose the apolar point set Γ to be a set of 6 points such that they

lie on two skew lines.

i46 : F = quartic {{1,0,0,0}, {0,1,0,0}, {1,1,0,0}, {0,0,1,0},

{0,0,0,1}, {0,0,1,1}};

i47 : I = inverseSystem F;

o47 : Ideal of T

i48 : betti res I

0 1 2 3 4

o48 = total: 1 9 16 9 1

0: 1 . . . .

1: . 4 4 1 .

2: . 4 8 4 .

3: . 1 4 4 .

4: . . . . 1

o48 : BettiTally

Another way to obtain this Betti diagram is to choose Γ to be a set of 6 points such that

5 of them are on a P2.
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B.15 Type 2.7

For Type 2.7, the apolar point set Γ contains 5 points such that 4 of them lie on a P2.

i49 : --Type 2.7

F = quartic {{1,0,0,0},{0,1,0,0},{0,0,1,0},{1,1,1,0},{0,0,0,1}};

i50 : I = inverseSystem F;

o50 : Ideal of T

i51 : betti res I

0 1 2 3 4

o51 = total: 1 7 12 7 1

0: 1 . . . .

1: . 5 5 1 .

2: . 1 2 1 .

3: . 1 5 5 .

4: . . . . 1

o51 : BettiTally
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B.16 Type 2.8

For Type 2.8, the apolar point set Γ contains 5 points such that 3 of them lie on a P1.

i52 : F = quartic {{1,0,0,0},{0,1,0,0},{1,1,0,0},{0,0,1,0},{0,0,0,1}};

i53 : I = inverseSystem F;

o53 : Ideal of T

i54 : betti res I

0 1 2 3 4

o54 = total: 1 9 16 9 1

0: 1 . . . .

1: . 5 6 2 .

2: . 2 4 2 .

3: . 2 6 5 .

4: . . . . 1

o54 : BettiTally
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