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In this thesis, we study two problems: (1) the dimension problem on splines, and (2) Goren-
stein Calabi-Yau varieties with regularity 4 and codimension 4. They come from approxi-
mation theory and physics, respectively, but can be studied with commutative algebra.

Splines play an important role in approximation theory, geometric modeling, and nu-
merical analysis. One key problem in spline theory is to determine the dimension of spline
spaces. The Schenck-Stiller “2r+1" conjecture is a conjecture on this problem. We present a
counter-example to this conjecture and prove it with the spline complex. We also conjecture
a new bound for the first homology of the spline complex.

Calabi-Yau varieties, especially Calabi-Yau threefolds, play a central role in string theory.
A first example of a Calabi-Yau threefold is a quintic hypersurface in P”. Generalizing this
construction, we may consider complete intersection Calabi-Yaus (CICY), or more generally
Gorenstein Calabi-Yaus (GoCY). In 2016, Coughlan, Gotebiowski, Kapustka and Kapustka
found 11 families of Gorenstein Calabi-Yau threefolds in P7 and they ask if it is a complete
list. We consider the Artinian reduction and find there are 8 Betti diagrams for these GoCYs.
There are another 8 Betti diagrams corresponding to Artinian Gorenstein rings of regularity
4 and codimension 4. We prove they cannot be Betti diagrams of Gorenstein threefolds in
P7. Our result can be viewed as a step towards answering the CGKK question.

These two topics may seem to be unrelated at first sight. However, Macaulay’s inverse
systems provide a unifying theme. We discuss some of these topics as future directions of

research.
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CHAPTER 1
INTRODUCTION

1.1 Problems

In this thesis, we study two problems: (1) the dimension problem on spline spaces, and (2)
finding Gorenstein Calabi-Yau varieties. They come from approximation theory and physics,

respectively, but can be studied with commutative algebra.

1.1.1 The dimension problem on spline spaces

To approximate a function over a region in R™, we may consider a subdivision of the region
and then approximate the function by a piecewise polynomial. A C"-differentiable piecewise

polynomial function over a subdivision A of a region in R" is called a spline.

Splines are fundamental objects in numerical analysis and approximation theory, where
they are used in the finite element method to solve PDE, as well as in shape modeling of

complicated objects.

\/

Figure 1.1: The Morgan-Scott configuration



In practice, there can be many different types of subdivisions for a given region. However,
in this thesis, we only consider the cases when the subdivision is a triangulation. For example,
the Morgan-Scott configuration in Figure 1.1, which is reproduced from [31, Example 6.2],
is a triangulation of a planar region. Therefore, A has a natural structure of a simplicial
complex. Assume A is a simplicial complex with pure dimension n. The set of i-faces of A

is denoted by A;.

Definition. C"(A) is the set of functions f : A — R satisfying the following two properties:

e f is differentiable of order r, and

e if o is a facet of A, then f|, is a polynomial.

Once we have this definition, there are some immediate conclusions:

1. C"(A) is an R-vector space.
2. C"(A) has an R-algebra structure by taking multiplication of two elements pointwisely.
3. C*(A) can be identified with R[z1, ..., z,].

4. With C*(A) ~ Rxy,...,x,], C"(A) can be viewed as an R[zy, ..., z,]-module.

There are interesting questions and results on each of these structures. For example, in [6]
Billera shows that the R-algebra structure of C°(A) can be identified with a Stanley-Reisner

ring.

In this thesis, we focus on the dimension problem. For each non-negative integer d, we

define
Ch(A) ={f € C"(A):deg(fl|,) <d, for all 0 € A, }. (1.1)

This is a finite dimensional R-vector space. One of the key problems in spline theory is the

determination of the dimensions of C(A) for all d. However, even for planar regions, it is



still an open problem to find an explicit formula that works for all A,  and d. On the other
hand, the planar cases were studied a lot and there is a formula that gives a lower bound for

dim C(A), thanks to Schumaker|34].

L(A, 7, d) :(d;2> + (d_;+1)ff— (<d—;2) - (T—;_Q))fg-i-zai, (1.2)

where f7 is the number of interior edges and f; is that of interior vertices in A, and
o =Y max{(r+1+j)(1 - n(v;)),0} (1.3)
=0
with n(v;) the number of distinct slopes at an interior vertex v;. In other words, for any

triangulation A, smoothness r and degree d, we always have the inequality
dim Cj(A) > L(A,r,d). (1.4)

Hence, it is natural to ask when does equality in (1.4) hold. First of all, it is known that
formula L(A,r,d) does not always give the correct value of dim C7(A). For example, it fails

for the Morgan-Scott configuration in Figure 1.1 when (r,d) = (1,2).

U3 (%)
Q
l1
Uy

Figure 1.2: A is a star of v

Assume the support of A has genus 0. If there is only one interior vertex v in A, then
we say A is a star of v. In [34], Schumaker also proves that L(A,r,d) = dim C}(A) for all

(r,d) if A is a star of some vertex v.

It is also known by [1] that formula L(A,r,d) gives dim C}(A) for any triangulation A

when d > 4r + 1:



Theorem 1.1 (Alfeld-Schumaker,1987). If d > 4r 4+ 1, then

dim C(A) = L(A, r, d). (1.5)

They also proved that the equality holds for generic triangulations when » > 3r +1 in a

later paper[2]. In [13], Dong proves that (1.5) holds for all triangulation when d > 3r + 2.

Schenck and Stiller conjectured in [29]:

Conjecture 1 (Schenck-Stiller, 2002). The equality (1.5) holds for all triangulations when

d>2r+1.

They call it the “2r + 1”7 conjecture.

0,2) (2,2) (4,2)

(1,1) (3.1)
(0,0) (2,0) (4,0)

Figure 1.3: An example that (1.5) fails for d = 2r
Work of Tohaneanu[36] shows Conjecture 1 is optimal by showing a configuration in
Figure 1.3, reproduced from [29, Example 2.4], such that equality (1.5) fails for d = 2r.

There is also a conjecture by Alfeld and Manni that the equality (1.5) holds for all A

when (r,d) = (1,3). This conjecture appears earlier than the Schenck-Stiller conjecture.
Throughout this thesis, we are going to use the following notations:
e A° denotes the set of interior faces A.

e A? denotes the set of i-dimensional interior faces.

e A? denotes the set of i-dimensional boundary faces.



e fi(A), f2(A) and f2(A) denote the cardinality of A°, A2 and A?, respectively. Some-

times, A will be omitted if it is clear which A we are referring to by the context.

1.1.2 Finding Gorenstein Calabi-Yau varieties

No. degree A%t h!2 Description
1 14 2 86 (2,4) divisor in Pt x P!
2 15 1 76 G(2,5) N X3 NPT
3 16 1 65 ci (2,2,2,2)
4 17 1 55 bilinked on c.i. (2,2,2) to P3
5 17 2 58 2 x 2 minors of a 3 x 3 matrix
6 17 2 54 codim 2 in cubic roll
7 18 1 46 bilinked on c.i. (2,2,3) to F}
8 18 1 45 bilinked on c.i. (2,2,3) to I
9 19 2 37 bilinked on special Pf;3 to F}
10 19 2 36 bilinked on special Pfi3 to F5
11 20 2 34 3 x 3 minors of 4 x 4 matrix with linear forms

Table 1.1: The CGKK list of families of GoCY threefolds in P’

Let X C PY be a nonsingular projective variety of dimension n. Let QF(X) denote the

sheaf of regular p-forms over X.

Definition. The Hodge number h?9(X) is defined as
P X) = dim HY(X, QP(X)). (1.6)
A nonsingular projective variety X is Calabi- Yau if Q"(X) ~ Ox and for all i > 0,
hY(X) = 0. (1.7)

Remark 1. There are several equivalent definitions of Calabi-Yau. Because all compact
Calabi-Yau manifolds satisfy the criterion of Kodaira embedding Theorem, they can be

viewed as subvarieties of PV .

In their 1985 paper [10], Candelas-Horowitz-Strominger-Witten showed that Calabi-Yau

threefolds play a central role in string theory. According to [39], “hidden dimension” of our



universe is a Calabi-Yau threefold. Therefore, finding and studying Calabi-Yau varieties,

especially Calabi-Yau threefolds, are of great interest to both physicists and mathematicians.

A first example of a Calabi-Yau threefold is a quintic hypersurface in P*. Generalizing
the hypersurface case, when X is a complete intersection (CI) of type {di,...,d,_3} C P"

we have

ON(X) ~ Ox(—n— 1+ dy). (1.8)

So a complete intersection Calabi-Yau (CICY) threefold in P™ must have {di,...,d,_3}

satisfying
{5} in P4

{2,44 in P?

{3,3} in P°

{2,2,3} in PS

{2,2,2,2} in P7
Green-Hiibsch-Liitken characterize complete intersection Calabi-Yau threefolds X C ], P™
in [19]. A complete intersection is the first avatar of a Gorenstein ring; a Gorenstein ideal of
height two is a complete intersection, and Buchsbaum-Eisenbud[9] show that a height three
Gorenstein ideal is generated by the Pfaffians of a skew-symmetric matrix. From the Calabi-
Yau perspective, this is investigated in [26], [37] and subsequent papers. The codimension
four case was first studied systematically by Bertin in [4]; in [11], Coughlan-Golebiowski-
Kapustka-Kapustka list 11 arithmetically Gorenstein Calabi-Yau (GoCY) threefolds in P’
as in Table 1.1, where Pfj3 C P7 is a codimension 3 manifold defined by Pfaffians and F}’s

are some del Pezzo threefolds. See [11] for a detailed description of these manifolds.

Conjecture 2 (Coughlan-Gotebiowski-Kapustka-Kapustka, 2016). The CGKK list (Table

1.1) is a complete classification of families of Gorenstein Calabi-Yau threefolds in P7.

We also call this conjecture the CGKK conjecture.



1.2 The organization of this thesis

The organization of this chapter is as follows: in Section 1.3, we recall some basic knowledge
of commutative algebra that we use. They can be found in [25], [15] and [8]. We also fix
notations which we use throughout the thesis. In Section 1.4, we introduce a duality between
two polynomial rings, which relates the two problems introduced in Section 1.1 to each other,

and also to many other topics.

In Chapter 2, we study the dimension problem on spline spaces using the spline complex
Se/Js, which was invented by Schenck and Stillman in [30]. In particular, we present a
configuration Ay which makes a counter-example to Conjecture 1. We prove it is a counter-
example by performing some explicit computation on Hq(Se/J,) of Ay. Then we prove that
the regularity of H1(S./J.) of Ay is greater than 2.2r. That means if we would like to make
a new conjecture, it cannot be of the form “2r + ¢” for any constant c. The coefficient of r

has to be no less than 2.2.

In Chapter 3, we study Artinian Gorenstein rings. We are particularly interested in those
with regularity 4 and codimension 4, because they are related to Conjecture 2. The main
results are Table 3.1 and 3.2. They are all possible Betti diagrams for Artinian Gorenstein
rings with regularity 4 and codimension 4. Those in Table 3.2 cannot be Betti diagrams of

Gorenstein Calabi-Yau threefolds. We prove these results using a case-by-case argument.

We close this thesis with a discussion on directions of future research in Chapter 4.

1.3 Some notions and definitions in commutative algebra

Throughout the thesis, we assume S = k[zo, ..., z,] is a standard graded polynomial ring

with char(k) = 0. The ideal m = (xy,...,z,) is called the irrelevant ideal.



1.3.1 On dimensions

If J C S is a homogeneous ideal and R = S/.J, dim R refers to the Krull dimension of R,
that is, the supreme of lengths of chains of prime ideals of R. Here the length of the chain
Py C - C Py C P, is taken to be r. We only talk about codimension of R when R is
a quotient ring S/J, and in this case codim R = dim S — dim R. The height of J is the

supreme of lengths of chains of primes descending from J.
We write ann(M) for the annihilator of M, that is,
ann(M)={fe S| fM=0}. (1.9)

The dimension of M is defined to be the dimension of S/ann(M) and codimension of M is

defined to be the height of ann(M).

A sequence f = fi,..., f, of elements of S is said to be a regular sequence (or S-sequence)
if, for each i, the f; is neither a zero divisor nor a unit to S/(f1,..., fi_1). Similarly, f is a
regular sequence (or M-sequence) if (f1,..., fn)M # M, and, for each i, the f; is not a zero
divisor to M/(f1,..., fi_1)M. If J is generated by a regular sequence, then we call V(.J) a

complete intersection.

If J C S is an ideal such that JM # M, then the common length of the maximal M-
sequences in J is called the grade of J on M, denoted by grade(J, M). The grade of J is
defined to be grade(J,S). The depth of M is defined to be grade(m, M) and is denoted by

depth M. In general, depth M < dim M and grade(.J) < ht(J), see [8, Proposition 1.2.12.].

Definition. Let S = k[zo, ..., z,] be the standard graded polynomial ring. A finite gener-

ated graded S-module M is arithmetically Cohen-Macaulay if depth M = dim M.

Remark 2. If J C S is a homogeneous ideal, then grade J = ht J. See [8, Corollary 2.1.4]



1.3.2 On chain complexes

If M is a finitely generated graded S-module, the Hilbert function of M is
HF(M,d) = dim M,. (1.10)
Sometimes, we also use hq(M) = HF (M, d) and call
h(M) = (ho(M), ..., he(M),...) (1.11)
the h-vector of M.

For p € Z denoted by M(—p) the graded S-module such that M(—p), = M_, 4. We say
M (—p) is the module M shifted p degrees, and call p the shift. It is clear from the definition

that

Homy(S(p), S(q)) = S(q — p). (1.12)
Definition. A chain complex F, over S is a sequence of homomorphisms of S-modules
J RIS A SN SN AN RO (1.13)

such that d;_1d; = 0 for i € Z. The collection of maps d, = {d;} is called the differential of
F,. Sometimes the chain complex is denoted (F,, d,). The i-th homology of a chain complex
F, is defined by

Hi(F,) = ker(d;) /Im(dit1). (1.14)

The chain complex is ezact at F; (or at step i) if H;(F,) = 0. The chain complex is ezact if
H;(F,) =0 for all 1.

Definition. A free resolution of a finitely generated S-module M is a sequence of homo-

morphisms of S-modules
Foi s E% R, 515 F, (1.15)

such that



(1) F, is a chain complex of finitely generated free S-modules Fj,
(2) F, is exact except at Fj, and

(3) M is isomorphic to cokernel of d;.

A resolution is graded if M is graded, F, is a graded complex and M ~ coker d; is of
degree 0. kerd;_; is called the i-th syzygy of M. A graded free resolution is minimal if

di+1(ﬂ+1) - mF, for all ¢ > 0. (]_].6)

Definition. For a graded S-module M, assume F, is a minimal free resolution of M. The

total Betti numbers are

b; = rank F;. (1.17)
The graded Betti numbers are
A Betti diagram has the form
bp b1 bo
0] boo b1 bap
L] bog bia ba3
21 bo2 biz baa
3| bos bia bys

The projective dimension of M is defined by
proj.dim(M) = sup{i | b; # 0}. (1.19)
The Castelnuovo-Mumford reqularity of M is defined by

reg (M) = sup{;j | bii+; # 0}. (1.20)

10



Assume o« : F — G is a homomorphism where F' ~ S¥ and G ~ S9 are two free modules,
with rank F' > rank G. By choosing basis (us)1<s<4 for G and (v;)1<i<f for F', o may be

written as
o= Z Qs s @ Vf (1.21)
s,t

where a,; € S. The Eagon-Northcott complex of « is a complex

EN(a): 0— (Sym;_,G)* @ N F CatiaN (Sym;_, 1 G)*@ANT'F N

8 (Sym, G) @ AIPEF By G @ AU R 2 pop 2 he
where
di, : (Sym,_; G)* @ N9 F — (Sym,,_, G)* @ ATTF2E,
is defined by

di((ug, - g ) @iy Ao A )

= Z Oé&t(u]'l e ’[Ljs e Ujkil)* ® (—1)tUil A .. -ﬁit e A Uig+k71.
s,t
The Buchsbaum-Rim complex of of a is a complex

BR(a): 0— (Sym,_,_, G)" @ ATF =% (Sym,_, , G)* @ A7 F 2=

CO Gr o NITRR By AP S S G
where
di, : (Symy_» G)* @ AYTFUE — (Sym,,_5 G)* @ ATF2E,
is defined by

dk’((uh T ujk—Q)* Qv A A Uig-v—k—l)

== Z Oésﬂg(u]’l ce ﬁjs e ujk—2)* X <—l)t1}i1 N.. ./IA}it SORIVAN ’Uig+k71'
s,t

11



The map € : A9 F — F in Buchsbaum-Rim complex is defined by

e(Av) = Z sgn(J C I)(det ay) AT=7 v*, (1.22)
JCLJ|=g

where a; is the g x g submatrix of o with columns corresponding to the basis elements
indexed by J, sgn(J C I) is the sign of permutation of I that puts the elements of J into

first g positions.

1.3.3 Miscellaneous

Throughout the thesis, we use Gr(k, V) to denote the Grassmannian, that is, the set of all

k-dimensional subspace of a vector space V.

1.4 Macaulay’s inverse system and Apolarity

Assume char(k) = 0. Let T = Kk[yo, . . ., yn] and S = k[xy, ..., z,]. Define the action of 7" on
S by

Tx§8—S9,

0 0

(guf)Hg(a_Ioa”"aT)'f'

This map is bilinear, hence factors through 7T"® S — S. This makes S a graded T-module.
Remark 3. The grading of S as a ring is opposite to that as an T-module.
This map can be restricted to a perfect pairing
Ty % Sd — k.

Therefore, it defines a duality between finite dimensional vector spaces T; and S, for d € N.

This duality connects several notions together.

12



First of all, in particular, it defines a duality between 77 and Sy,

¢ : Gr(n,T1) = Gr(1, 51),
VsV
Note that Gr(n,7T}) is equivalent to the set of closed points in Proj(7") and Gr(1,.S;) is just
P(Sy). If P € P" = Proj(T) is a closed point and [Lp] = ¢(P) for some Lp € Sy, then Lp is
determined by P up to a scalar. Hence we call Lp the corresponding linear form of P. So

this duality sets a connection between closed points in one space and linear forms over the

dual space. Next, we define for an ideal I C T Macaulay’s inverse system of I to be
I'"={feS|g(f)=0forall g €I} (1.23)
I71is a T-module, but not an S-module in general. In fact, by [17, Proposition 2.5], we have
(I™Yg=1I7. (1.24)

This correspondence relates powers of linear forms to fat points. See Section 4.2 for a
discussion on this topic.
Remark 4. There are some equivalent definitions for Macaulay’s inverse system. See [15,

Section A2.4] and [21, Appendix A].

Definition. The canonical module wy of T is defined to be wyr = T'(—n—1). If I is a homoge-
neous ideal in 7" such that U = T'/[ is arithmetically Cohen-Macaulay and dim T'—dim U = ¢,
then the canonical module wy is defined to be wy = Ext’ (U, wr). U is arithmetically Goren-

stein if wy can be generated by one element as an U-module.

We also define Macaulay’s inverse system of an ideal J C S to be
J1'={ge€T|g(f)=0forall feJ}. (1.25)

J~1is an ideal in T. If J = (f) is a principal ideal generated by f € Sy, then J~! is

also denoted as Iy and elements in I; are also called polynomials apolar to f. Moreover,
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it is an Artinian Gorenstein ideal, which we study in Chapter 3. Conversely, any Artinian
Gorenstein ideal I C T can be obtained as Macaulay’s inverse system of a principal ideal

(f) € S [15, Theorem 21.6].

Theorem 1.2 (Macaulay, 1916). The map f — Ay is a bijection between degree d forms

f €S and graded Artinian Gorenstein quotient rings Ay =T /I of T with regqularity d.
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CHAPTER 2
ON THE DIMENSION CONJECTURES OF SPLINE SPACES

We study the dimension problem of spline spaces in this chapter. In Section 2.1, we introduce
the spline complex S,/.J,, which is the main tool we use to study C"(A). In particular,
we will see C"(A) can be identified with the top homology of S,/J,. Section 2.2 reviews
results obtained by the local data of A. In Section 2.3, we focus on the planar cases. We
review Schenck and Stillman’s results on how homologies of S,/J, affect dim Cj(A) when
A is planar. With their results, we can translate the conjecture on dim C}(A) to one on

regularity of the first homology of S,/J,. We state our main results, a counter-example to

Conjecture 2 and a new bound for H;(S,/J,), in 2.4-2.7.}

2.1 Homological methods for studying spline problems

Since we know that C"(A) is an Rz, ..., z,]-module, we want to use commutative algebra
tools to study it. In order to use these notions, it is helpful to introduce the concept of
homogenized spline modules. Let A Dbe the cone of A in R™!. To be precise, suppose A
is in R™ with coordinates xq,...,z,. Then A corresponds to embedding A in hyperplane
xo = 1, and forming a new simplicial complex A by joining each simplex in A to the origin in
R We call C"(A) the homogenized spline module of A. Assume that S = Rz, . . ., z,).

Then C"(A) is a graded S-module. Recall that HF (M, d) denotes the Hilbert function of a
graded S-module M. Hence,

dimg C5(A) = dimg C"(A)y = HF(C"(A), d). (2.1)

!Portions of this chapter are reprinted from [35] and [33].
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The Hilbert function is additive, meaning that if there is an short exact sequence of graded
S-modules

0—->U—=V->W—=0, (2.2)

then

HF(U, d) + HE(W, d) = HF(V, d). (2.3)

~

As a graded S-module, C"(A) can be identified with the kernel of a homomorphism ¢ :
S @ STa-1(—r — 1) — S%2-1 which will be defined later. Before we give the definition, we

want to illustrate what ¢ is by a concrete example.

Example 1 (“A star of a vertex”). Figure 1.2 is a planar A which is the star of a single
interior vertex vy at the origin. Let lp; be a linear form vanishing on the edge [vgv;] for

i =1,2,3,4. In this case, (hy, ho, h3, hy) is an element of C’T(A) if and only if

o r—+1
hl — hg = all(]l

_ r+1
hg — hg = a2102

_ r+1
h3 - h4 = a3l03

— +1
h4 — hl = a4l64 .

And the homomorphism ¢ : $/2 @ ST (—r — 1) — S77 is given by

1 -1 0 0 It
0 1 -1 0 ot
o=
0o 0 1 -1 It
-1 0 0 1 i
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which can be identified with the boundary map 9 of the relative simplicial complex Co (A, 0A)

with coefficients in S. The right block is a diagonal matrix diag(ly/*, ..., I(1").

Therefore, ¢ : S @ SPn-1(—r — 1) — S%2-1 is defined by a matrix with two blocks
{@L djag(lfrl)} One block 0, is the top boundary map of Ce(A,JA) with coefficients in
S. The other block diag(l*') is a diagonal matrix with entries I7*! where 7 runs over all

(n — 1)-faces of A and [, is a linear form vanishing on 7. Billera and Rose proved that

C7(A) ~ ker(¢) in [7].

Billera introduced the use of homological algebra in spline theory in [5]. Following this
path, Schenck and Stillman[31] defined a chain complex J, to deal with the problem of

freeness of C"(A). This is the main tool we use to study the splines.

Let S, be the relative simplicial complex Co(A, 0A) with coefficients in S. Let [, be a
linear form which is obtained by homogenizing a degree one polynomial that vanishes on
7 € A,_1. The authors of [31] define the ideal complex J, to be

Jo:0= P o). 5@ Iw) —o, (2.4)
oEAY vEAS

where

J(o) =0, for o € A,
J(r) = ('t for T € A,y

J(() = Z J(1), for ¢ € A,

Cer

J(v) =Y J(7), for v € Ag

veET

are ideals of S, and 0 is induced by the boundary map in S,. Hence J, is a subcomplex of
S,, and we may consider the quotient complex S,/.J,. We call S,/J, the spline complex. It

encodes the different types of data of A in different levels:

17



e the combinatorial (or topological) data is encoded by Co(A,0A), and hence by S,.

e the local geometric data around a vertex v € A is captured by J(v), as discussed in

Section 2.2.

e the global geometric data is determined by both the combinatorial data and the actual
positions of vertices v € Ay in R™. Some properties of C”(A) affected by this type of
data can be analyzed using homologies of S,/.J,. We introduce Schenck and Stillman’s

analysis in Section 2.3.

Recall the Schumaker formula L(A,d,r) defined in (1.2) is a lower bound of dim C(A). In
fact, L(A,d,r) uses only the combinatorial and local geometric data of A. On the other

hand, the actual value of dim Cj(A) also depends on the global geometry. This is why there
is a discrepancy dim C}(A) — L(A,d, ).

The top homology of the spline complex can be identified with CT(A).

Theorem 2.1 (Billera, 1988). The spline module C"(A) is isomorphic to the top homology
of the spline complex H,,(Se/Js).

Remark 5. This theorem is equivalent to Theorem 3.2 in [5]. The original statement is that
C"(A) ~ H,(S./1,) for another chain complex S,/I,. However, the top two terms of S,/I,
are the same with those of S,/ J,. Hence H,(Ss/Jo) = H,(S./1,) and these two statements

are equivalent.

2.2 The ideal J(v), local geometric data of A

Fix an interior vertex v € Aj. Recall from Section 2.1 that

J) = (" | 7€ Ay, vET) (2.5)
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where [, is the homogenization of a degree one polynomial vanishing on 7. If we choose
a coordinate (x1,...,x,) of R™ such that v is the origin, then [, only involves variables
Z1,...,T,. Because [, is determined by 7 up to a scalar, we may consider the set I' = {[l,] |
T € A,_1, v € T} as a finite subset of Gr(1,R"). We call I the local geometric data of A at

.
If n =1, then T is trivial, because Gr(1,R') has only one point.

If n = 2, then J(v) is an ideal in 2 variables, and since each vertex we have at least two
edges with different slopes, so S/J(v) has projective dimension 2. In [34], Schumaker gives

a free resolution of S/J(v).

Theorem 2.2 (Schumaker, 1979). A free resolution of S/J(v) is given by

Syz1(v)

S(—r—1—a@)"®S(—r—2—a(v))*® S(—r—1)k®) RICIGNY N S/J(v) — 0, (2.6)

where a(v) = |(r+1)/(k(v)=1)], a1 = (k(v) —1)a(v)+k(v)—r—2 and ay = k(v)—1—ay =
r+1—(k(v) —1a(v).

Remark 6. Using this theorem, we may compute the Hilbert function of S/.J(v).

For n > 3, we do not have a formula computing Hilbert function of S/.J(v) that works in
general. This is one reason that computing dim C(A) for n > 3 is much more difficult than
in the planar case. There are formulas working for some special cases. For example, in [28],

Schenck proves that the Foucart-Sorokina formula holds for Alfeld split of a simplex A,,.

Computing the Hilbert function of S/J(v) is also related to the dimension problem on

fat points spaces, which is discussed in Section 4.2.
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2.3 The planar case

In this section, we briefly review Schenck and Stillman’s analysis of homologies of S,/J, for

n = 2 as in [30] and [31]. Throughout this section, we assume the A is on the z = 1 plane

in R? with coordinates (z,y, z) and fix the polynomial ring S = Rz, y, z|.

The ideal complex J, has only two non-zero terms:

Jo:0—= P IS P JIw) —o,

TEAS vEAS
where
J(o) =0, for 0 € Ay
J(1) = (I.)", for 7 € A,

J(v) =Y J(7), for v € Ag

VET

Recall in Section 2.1, we defined a homomorphism ¢ : $/» @ S%n-1(—r — 1) — S%2-1 and

by [7] C"(A) can be identified with ker ¢. In particular, for n = 2, we have the following

theorem:

Theorem 2.3 (Billera-Rose, 1991). Let 0y be the second boundary map in S,. There is an

exact sequence of graded S-modules

0= C"(A) 5 S2 @S (—r—1) S @8 — M — 0,

where
r+1
I

r+1
I

(2.8)

By Theorem 2.1, C"(A) ~ Hy(S,/J,). The short exact sequence of chain complexes

0— Jo — Se — Se/Js — 0,

20
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induces the long exact sequence of their homologies:

0 — Hy(Js) — Ha(Ss) — H2(Se/Js)
— Hi(J,) — Hi(Ss) = H1(Se/Js)

— Ho(Js) — Ho(Ss) = Ho(Se/Js) — 0
Among these homologies,
Hy(Jo) = Ho(S.) = Ho(Se/Js) =
and
Hy(S,) ~ S.

If the genus of A is 0, then H;(S,) = 0. Therefore, the long exact sequence breaks into two

short exact sequences:

0 — Hy(Ss) = Hs(Se/Js) — Hi(Js) — 0 (2.11)
and
0 — Hi(Ss/Js) = Ho(Js) — 0. (2.12)
Therefore,
Hi(Se/Js) == Ho(Js). (2.13)

From (2.11) and the exact sequence

0— H(J) = B J(r) @J ) = Ho(Js) = 0, (2.14)

TEAS VEA]

it follows that

dim C5(A) = HF(S, d) + dim Hy (] )4

= HF(S,d) + dim @ J(7)a — dim € J(v)q + dim Hy(J, ).

TEAS VEAS
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Theorem 2.4 (Schenck-Stillman, 1997). The Schumaker formula

L(A,r,d) = HF(S, d) + dim @ ()4 — dim @ J(v)a (2.15)
TEA? 'UEAS
Hence,
dim Cj(A) = L(A, r,d) + dim Hy(J4)a. (2.16)

Remark 7. From (2.15), we can see L(A,r,d) only uses combinatorial and local geometric

data of A.
Therefore, the discrepancy dim Cj(A) — L(A,r,d) is just dim Hy(Je)q. Schenck and
Stillman’s analysis on Hy(.J,) shows that dim H(Je)q = 0 for d >> 0:

Theorem 2.5 (Schenck-Stillman, 1997). The S-module Hy(Jo) has finite length.

If N is an S-module of finite length, then
reg N =max{d > 0| Ny # 0}. (2.17)

By Theorem 2.4, dim C}(A) = L(A, r,d) if and only if d > reg Hy(Jo). Therefore, Conjec-

ture 1 can be translated into a conjecture that reg Hy(J,) < 2r.

Recall from [15, Section A3.12] and [25, Section 27] that if 5 : (Fe, @e) — (Ge, ) is a
map of complexes, then the Mapping cone P, of (8 is the complex such that P, = F; | & G;,
with differential

—pi 0

Bi Vit
FFeGiy —— Fi1 0 G, (2.18)

Clearly, G, is a subcomplex of P,. The quotient P,/G, is isomorphic to F,[—1]. In other

words, there is a short exact sequence of complexes

0— Ge = Py — F,|—1] — 0, (2.19)
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inducing a long exact sequence of homologies
- — Hi(Gs) = Hi(P,) = Hi1(F,) = Hi—1(Go) — ...
In particular, if H;(F,) = H;(Gs) = 0 for i > 0, then there is an exact sequence
0 — Hy(P,) — Ho(F,) — Ho(Gs) — Ho(P,) — 0, (2.20)
and
Hi(P,) =0, fori > 2. (2.21)
With the notion of mapping cone, we prove the following lemma on Hy(J,).

Lemma 2.6. Let (F,, p,) and (G, 1,) be free resolutions of @reAg J(1) and @veAg J(v),
respectively. Assume

G Fe — G (2.22)

is the lift of 0 : @ J(r) — @ J(v). Then Ho(J,) is isomorphic to the cokernel of the
homomorphism

B ]
FoG — G, (2.23)

Proof. Note that we have the identifications

Hy(F.) = @ J(r) and Hy(G.) = P J(v) (2.24)

TEAY vEA]

and the map Hy(F,) — Hy(G.) in (2.20) is just 0. Hence the mapping cone P, of § has

Hy(P,) = Hy(J,). (2.25)
The differential P, — B, is
B ]
F[) D G1 —_— GQ, (226)
Hence Hy(J,) is the cokernel of this map. O

Remark 8. This lemma can also be viewed as a corollary of [31, Lemma 3.8].
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2.4 A counter-example to the “2r + 1”7 conjecture

In this section, we present a counter-example to Conjecture 1. Let Ay be the configuration

as shown in Figure 2.1.

v3=(—4,2) vg=(0,2) vr=(4,2)

x

&

1)4:(—4, —2> 1}5:(0, —2> Uﬁz(i, —2)

Figure 2.1: Ay, a counter-example to the “2r 4+ 1”7 conjecture

Note that the genus of Ay is 0, hence by the analysis in Section 2.3, we only need to

show reg Hy(Jo) > 2r for some r. In fact, reg Hy(Jo) > 4 for r = 2:

Theorem 2.7. Let r =2 and A be as in Figure 2.1. Then

(Ho(Je))a=s # 0.

This means that reg Ho(Js) > 5. So Conjecture 1 fails in this case.

In order to prove it, first, we find a presentation of Hy(J,), that is, we write Ho(J,) as a
cokernel of a map between free modules. Then we specify to case r = 2 and compute that

Ho(Js)a=5 # 0, so it makes a counter-example to Conjecture 1.

2.5 A presentation of Hy(J,)

We use Lemma 2.6 to obtain a presentation of Hy(J,).
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Q)
o
I3

Q)
=)
[}

)
v}
ot

)
[N}
N

)
[N}
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€18 €01 €o5

€1,13
€1,14
€1,01
€0,01
€0,05
€0,02
€202
€225
€226

OOOOOOOOHE‘T
Q)
OOOOOOOOH;
Q)
OOOOOOOHOE
) _ oo O O OO
M
HOOOOOOOOg

0 0
1 0
0 0
0 0
0 1
0 0
0 0
0 0
0 0

[l el oNaoll o N o Na)
O—R OO oo o oo
O—R OO oo o oo
_ o O O O oo oo

Table 2.1: Matrix [

Note that in Ay, there are 3 interior vertices vy, v; and v9. Using Theorem 2.2, we obtain

free resolutions of J(v;) for i =0,1,2:

Gvr)e s Gi(v) 229 G 229 1(0,). (2.27)
and for .. J(€):
Fo:Fy— @5 J(e) (2.28)
66A‘1’

Because each of v; has 3 incident edges ¢;; with distinct slopes, so rank Go(v;) = 3 and
rank G4(v;) = 2. According to analysis in Section 2.2, we may choose a basis {e;.] | € €

AY, v; € e} for Go(v;) and {e | e € A} for Fy. Now if we fix bases

{6’1,13, €1,14, 61,01} for Go(Ul),
{60,01, €0,05, 60702} for GD(UO)a

{62,02, €2,25, 62,26} for GO(U2)>
and
{513751575147518,5017505750875027525752775267528} for Fp.

With these bases, the map (3; : Fy — Gy induced by the boundary map in (2.4) can be

written in a 9 X 12 matrix given by Table 2.1.
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i T2 To1  To2 T2
€1,13 A1,1 A1,2 0 0 0
€1,14 31,1 31,2 0 0 0
eior | Cip Ciz O 0 0
0
0

€0,01 0 0 AO,l AU,Q

€0,05 0 0 Bo1 Bop

€0,02 0 0 0071 C() 2 0 0
€2,02 0 0 0 0 A271 AQ 2
€225 0 0 0 0 3271 BQ 2
€226 0 0 0 0 0271 02 2

Table 2.2: Matrix 14

In addition, if we fix some bases {n; 1,72} of G1(v;) for ¢ = 0,1, 2, then by Theorem 2.2,

Syz;(v;) in (2.27) can be written in the form of

Air Ao
SYZ1 (Uz) = Bi,l Bi’Q . (229)
Cii Cio

If r is even, then
deg A;y = deg Biy = deg C;y = &,
deg A;p = deg B = degCjp = 5 + 1.
If r is odd, then

1
deg Ai,l = deg B@l = deg O@l = deg Ai’Q = deg Bi,2 = deg CZ"Q = ! _|2_ .

With these notations and fixed bases, 11 can be written as a 9 x 6 matrix given by Table

2.2.

Now consider the matrix [51 ¢1] . Note that if entries of j-th column are in R and the
(1, 7)-entry is the only non-zero entry in this column, then by deleting the i-th row and j-th

column, we still have the same cokernel. Therefore, the cokernel of [51 wl] is isomorphic
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to the cokernel of

1 0 0 0 Ay Ags 0 0

(2.30)
00 1 0 0 Cyi Cos 0 0
0 -1 0 0 0 0 Axr Agp
Let
771,1 =1+ Ciig01,
771,2 =M+ Ci2c01,
né,l =121+ A21€01,
775,2 = 12 + Az2€0,1,
Moy = Mo, and 1)y = 1o2-
Using the basis {n; ;} for G, the map corresponding to (2.30) can with written as
-1 0 0 0 0 0 0 0
1 0 C171 0172 AO,l A072 0 0
(2.31)
0 1 0 0 Co1 Coo Azr Agp
0 -1 0 0 0 0 0 0
which has the same cokernel as
Cii Cip Aox Aoz O 0
(2.32)

0 O 0071 00,2 A2,1 A2,2

Assume I and J are ideals of S.

Definition. The colon ideal (or ideal quotient) is defined as

I:J={feS|f-gelforalgeJ}.

There is a nice connection of colon ideals to syzygies: if I = (fi,..., fx) and

k
> aifi=0, (2.33)
i=1
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is a syzygy on I, then a, € (f1,..., fe—1) : (fx). Therefore, if [;; is a linear form vanishing
on the edge ¢;;, then

(Cr,Cra) = (35 01 = (Igf™) (2.34)

and

<A2,17 A2,2>

(I3, 15g ") = (log™) (2.35)
With the above analysis, we have proved the following lemma:

Lemma 2.8. Let A be as in figure 2.1. Then Hy(J,) is isomorphic to the cokernel of

S(—r—1-— g)?’ ®S(—r—2— g)?’ RN S(—r —1)2, if r is even,

and
r+1

S(—r—1-— )6 RN S(—r —1)2, if r is odd,

where Syz, is a matrix of the form

Cl,l C1,2 AO,l A0,2 0 0
0 O CO,l 00,2 A2,1 A2,2

The non-zero entries of Syz, can be obtained from the first differential in G,.
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2.6 Caser =2

Using Lemma 2.8, we can compute Hy(J,) explicitly with the coordinates in figure 2.1 for

r = 2. Let [;; be a linear form vanishing on the edge ¢;;. Then

lon =2+ 2y + 22

loo =—2+2y+ 22
hs=lis=2x+y+2z
lhy=lg=v—y+2z
log = log = —x —y + 22
los = ly7 = —x +y + 22

los =los =2
\

For G(vp),,
Syzy(vo) = {lgl ls- ng} ; (2.36)
and
3r—2y — 2z  —922 + 6ay — 2y% + 6x2 — dyz — 222
Syz,(vo) = | =32y — 32z 92 4 48xy + T6y> + 48z= + 152yz + 7622 | , (2.37)
3+ 2y + 22 292 + dyz + 222
In particular,
Aor Ao _ 3r —2y — 2z —922 + 6zy — 2y* + 622 — dyz — 222 ‘ (2.38)
Co1 Coa 3x + 2y + 22 292 + dyz + 222
By (2.34) and (2.35),
(C11,Cr0) = 2z +y + 42, ¥*) (2.39)
and
(Agq, Ago) = (=22 +y + 42, 3*) (2.40)
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By Lemma 2.8, Hy(J,) is isomorphic to the cokernel of

B S(—4)mi1 ® S(=5)m2 2 S(~3)er ® S(—3)es (2.41)

0<i<2
where dege; = degey = 3, degn;1 = 4, degn; 2 = 5 and Syz; can be written as a matrix
2v +y+4z y? 3x—2y—2z —3(3x—2y—22)x—2(y+ 2)* 0 0
0 0 3z+42y+22 2(y + 2)? 2z +y+4z y?

In other words, the image of Syz, is generated by

p

fi=QR2x+y+4z)e;
fa =y’
fs= 3z — 2y — 22)e; + (3x + 2y + 22)es
(2.42)
f1=-303x —2y — 22)x — 2(y + 2)%e1 + 2(y + 2)%ey

fs = (=2r+y+4z)e;

fe = 9282

Recall that a monomial order on S is a total order > on monomials on S such that for

any monomials 2%, 2%, 27 € S and any scalar k,

o 1% > k if mg is not a scalar, and

e 2% = 2 implies x°2Y = 227 if 27 # 0.

Since S is a graded polynomial ring, we may define the homogeneous lexicographic order
hiex 0N St 2% piex 27 if degz® > deg2?®, or if degz® = deg2® and a; > f; for the first

index ¢ such that «; # ;.

Assume N is a free S-module with basis {ey,...,es}. A monomial order on N is a total
order > on elements of the form x%e; for monomials % € S. Fix a monomial order = on S.

The position-over-term (POT) order >=por on N induced by > is defined as z%e; >=por $5ej
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e ifi > 7 or

o if i = j and 2 = 2°.

Fix a monomial order > on a free S-module N. Then for any f € N, we deine the initial
term of f, written In, (f), to be the greatest term of f with respect to the order >. If
M is a submodule of N, we define In. (M) to be the monomial submodule generated by
the elements In. (f) for all f € M. The following lemma can be viewed as a corollary of

Macaulay’s Theorem [15, Theorem 15.3]:

Lemma 2.9. M and In. (M) have the same Hilbert function.

In particular, since Hy(J,) has finite length, we may conclude that
reg Ho(Jo) =reg In. (Hy(J)). (2.43)

Recall that a Grébner basis of M is a basis {g1, ..., ¢:} of M such that {In, (¢1),...,In(g:)}
generates In, (M). Starting with a generating set {fi, ..., fs} of M, we may use Buchberger’s
Algorithm to compute a Grobner basis of M. See Appendix A.1 for the detail. After the

computation, we get a Grébner basis of the image of Syz,

(
g1 = 2z +y+42)e

g2 = —(Ty + 162)e; + (Ty + 162)e,

g3 = 2%e; — ey

g1 = (—2x 4y +4z2)ey (2.44)
g5 = y’ey

g6 = (11yz + 162%)ey

_ .3
k97—292

Therefore, 2%e; # 0 is in the cokernel of Syz,, and deg z%e; = 2+ (2 + 1) = 5. Hence,
Ho(Je)a=s # 0,
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which means reg Hy(J,) > 4. Thus, Conjecture 1 fails for Ay when (r,d) = (2,5).

2.7 A new bound for smooth spline spaces

In Section 2.6, we proved that the configuration Ay has the property dim C}(Ay) > L(Ay,r,d)
for (r,d) = (2,5). This proof does not eliminate the possibility that dim C}(A) = L(A,r, d)

for every triangulation if d > 2r + 2. In this section, we want to show that this is impossible:

Theorem 2.10. There is no constant ¢ so that dim Cj(Ay) > L(Ay,r,d) for all A and all

d > 2r + c. In particular, there exists a planar simplicial complex A for which

2
dim Ho(JJ)a 2 0 for all d < q; T (2.45)

This shows there exists a simplicial complex A such that dim C(A) > L(A,r,d) for all

d < 2L For L(A,r,d) to be equal to dim Cj(A) for every triangulation A, we must have

22r + 7

2.2r. 2.4
TR (2.46)

d>

To prove it, we have to use some properties of complete intersection ideals. If I is a
complete intersection, then the Koszul complex K(f1, ..., fr) gives a minimal free resolution
of S/I. In particular, the projective dimension equals k, the minimal number of generators

of I. If the projective dimension of S/I is (k — 1), then [ is said to an almost complete

intersection.
Define
I = {(C11,Ch2), I = (Ag1, Aso) (2.47)
and
¢ = Aor Aoz (2.48)
Coa Cop
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where A; ;’s and C; ;’s are the entries in (2.32). By Theorem 2.2, deg A; ; = deg C;1 = L”glj

and deg A;» = deg Cjp = [F52] for i = 0,1, 2.

Lemma 2.11. The ideals Iy and I are complete intersections.

Proof. An ideal with two generators f, g is a complete intersection when f and g are relatively

prime, or equivalently when the unique minimal syzygy on f, g is given by
fr9—9-f=0.

By (2.34) and (2.35), both I; and I, can be written as colon ideals of the form (/5™ 15t1)

r+1 gr4+1 jgr41

(I5*1) for some linear forms Iy, Iy, l3 in two variables. The ideal ( ) is an almost

complete intersection, which means that two generators, say {lﬁl,lg“} are a complete
intersection. Proposition 5.2 in [9] proves that an almost complete intersection is directly

linked to a Gorenstein ideal. In this case the linked ideal is
LT () = (511, 51). (2.49)

A homogeneous Gorenstein ideal in two variables is a complete intersection, so the result

follows. O

r+1

t1] by w1 and [Z] by ko, respectively. With the same

For simplicity, we denote |

coordinates as in Section 2.5, Hy(J,) may be presented as the cokernel of

S(—=r —1— k1) ®S(—r — 1 — ka) 2 S(—r — 1)/I, ® S(—r — 1)/ I (2.50)
Hence,
HF(Ho(J.),d) > Y HF(S/I;,d—r—1) —HF(S,d —r — 1 — k1) (2.51)

—HF(S,d—1r—1— ko)
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Since I; and I, are complete intersections, we may obtain their free resolutions by Koszul

complexes. Hence, there are exact sequences:
0 — S(—k1 — ko) = S(—k1) @& S(—ke) = S — S/I; = 0. (2.52)
Therefore,

HF(S/l;,d —r —1) =HF(S,d —r — 1)+ HF(S,d —r — 1 — k1 — Ka) (2.53)

—HF(S,d—r—1—rk1) —HF(S,d—7r —1— k2)
Putting (2.51) and (2.53) together,

HF(Hy(J,),d) > 2HF(S,d —r — 1) + 2HF(S,d —r — 1 — k1 — Kka2) (2.54)

—3HF(S,d—r —1—rk1) —3HF(S,d —r — 1 — k»)

If d < r+ 1, then the right hand side of (2.54) is 0, so we assume d > r + 1 and let

d = d —r — 1. Then the right hand side of (2.54) equals
2HF(S, d,) + 2HF(S, d, — K1 — I€2> - S(HF(S, d, - Iil) + HF(S, d, - RQ)) (255)
Assume d' > k1 + k2 = r+ 1. Then (2.55) equals

d 42 & — k1 — iy 42 d— 142 & — k42
2< ; >+2( “12’”+ )—3( ;1+ )—3( ’;ﬁ ) (2.56)

If r + 1 is even, then k; = ky = * and (2.56) equals

—d?* + (261 — 3)d' + KT + 3K1 — 2, (2.57)

which has two real roots, the larger at

g 2= +2V S+l (1+V2)k; — g > 1.27 — L5, (2.58)

and the smaller root is negative. This means HF(Hy(J,),d) > 0 for 2r +2 < d < 2.2r +0.7.
If r 4 1is odd, then x; = § and k3 = § + 1 and (2.56) equals

—d? + 2k — 2)d + K2 + 4K, — 1, (2.59)
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which has two real roots, the larger at

d=r—1+1/23+K >12r -1 (2.60)

and the smaller root is negative. This means HF(Hy(J,),d) > 0 for 2r +2 < d < 2.2r 4+ 1.
Therefore, we have proved Theorem 2.10 with the assumption that [2r + 2, 2.2r 4+ 0.7] is
non-empty. For r > 7, this assumption holds. For r € {2,...,6}, a direct computation

verifies that coker(¢) is non-zero at degree d = [2.2r + 0.7].
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CHAPTER 3
ON GORENSTEIN RINGS OF CODIMENSION 4 AND REGULARITY 4

3.1 Preliminaries

Assume T = Clyo, . . ., y7]. Let P7 = Proj(T). Assume Ix C T is a reduced irreducible ideal
such that U = T/Ix is a arithmetically Cohen-Macaulay ring, X = Proj(U) is nonsingular
and dim X = 3.

Recall from §1.1.2 that X is a Calabi-Yau threefold if Q3(X) ~ Ox and h%(X) = 0 for
all @ > 0. Also recall from §1.4 that wy = Ext%(U,T(—éS)), and that U is arithmetically

Gorenstein if wy ~ U(a) for some a € Z.

Definition. A Gorenstein Calabi- Yau variety (GoCY) is a Calabi-Yau variety whose homo-

geneous coordinate ring is arithmetically Gorenstein.

Remark 9. If X is arithmetically Cohen-Macaulay, then Q4™X(X) ~ Oy implies wy ~ U
by [20, IIT Corollary 7.12]. Hence, for Calabi-Yau threefolds, arithmetically Cohen-Macaulay

and arithmetically Gorenstein are equivalent conditions.

In general, when U is Gorenstein, we have
wy ~ U(=8 +reg (U) + codim (U)). (3.1)

In particular, if X = Proj(U) is GoCY threefold, then U is Gorenstein and wy ~ U.
Therefore,

wy U <= —4d+reg (U)=0 < reg (U) =4. (3.2)

For U Gorenstein, we may quotient by a regular sequence of linear forms, reducing to

an Artinian Gorenstein ring A with the same homological behavior. We call A an Artinian
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reduction of U. Since we are interested in the homological behavior of U in this chap-

ter, we focus on its Artinian reduction and study Artinian Gorenstein rings. By choosing

coordinates, we may assume A ~ T'/I for T' = Clyo, . .., ys].
CGKK 1 1916 91 CGKK 5,6 1916 91
o: 1. . .. 0: 1.
1: . 6 83 . 1: .32 . .
2: . . L L. 2: . 612 6 .
3: .3 86 . 3: 2 3.
4: 1 4: 1
CGKK 2 161061 CGKK 7,8 110 18 10 1
0: 1 R 0: 1 .
1 5 . . 1 2 . ..
2 1 .1. 2 8 18 8 .
3 55 . 3 2 .
4 .1 4 1
CGKK 3 14641 CGKK 9,10 113 24 13 1
0: 1. .. 0: 1 .
1: . 4 . . 1 1 . ..
2 .6 .. 2 12 24 12 .
3 ..o 4. 3 1.
4 S | 4 1
CGKK 4 171271 CGKK 11 116 30 16 1
0: 1. .. 0: 1
1: .3 . . 1 Ce
2 4 12 4 . 2 16 30 16 .
3 .3 . 3 .
4 o1 4 1

Table 3.1: Betti diagrams for GoCY’s in Table 1.1

Our main results in this chapter are

Theorem 3.1. An Artinian Gorenstein ring A = T/I with reg (A) = 4 = codim (A)
and I nondegenerate has one of the 16 Betti diagrams as in Table 3.1 and 3.2. Table 3.1

corresponds to the 11 classes of GoCY in Table 1.1, and Table 3.2 to the remaining classes.
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Type 2.1 111 20 11 1 Type 2.5 111 20 11 1
0: 1 . 0: 1 .
1: 21 . 1: 3 3 1
2: 9 18 9 2: 14 7
3: 1 2 . 3: 1 3 3 .
4: 1 4: 1
Type 2.2 1814 81 Type 2.6 1916 91
o: 1. . . 0: 1. .
1: . 31 . 1: . 44 1
2 512 5 . 2: . 48
3 1 3. 3: .14 4 .
4 | 4 1
Type 2.3 171271 Type 2.7 171271
0: 1. 0: 1 .
1: . 43 . . 1: 51
2: 36 3. 2: 1 21
3: 34 . 3: 1 55.
4: 1 4: 1
Type 2.4 16106 1 Type 2.8 1916 91
o: 1 . . 0: 1 .
1: . 42 . . 1: 56 2
2: .26 2. 2: 24 2
3: 2 4 . 3: 26 5.
4: 1 4: 1

Table 3.2: Betti diagrams for the remaining 8 Artinian Gorenstein rings.

and

Theorem 3.2. There does not exist a smooth irreducible GoCY X C P7 such that the Betti

diagram of T/Ix is one in Table 3.2.
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3.2 Organization of the chapter

To prove Theorem 3.1, we have to exclude all impossible cases and find an example for each
case we claim existing. We prove it in §3.3: Note that in Theorem 3.1, we consider the
Artinian reduction A = T/I of U = T/Ix, with T = Cly,...,ys]. First, we decide the
range for Hilbert function of A by the range of deg(X). Second, for a fixed Hilbert function,
the graded Betti number b;;(A) is bounded up by those of the monomial ideals. Therefore,

there are only finite number of possible Betti diagrams. We analyze them case-by-case.

Theorem 3.2 is proved in §3.4. We apply Schenck-Stillman’s Theorem (Theorem 3.6) to
prove that a smooth irreducible 3-fold X does not have Betti diagram of either Type 2.1-2.3,
or Type 2.5-2.7. To exclude Type 2.8, we have to use Buchsbaum-Rim resolution, which
is introduced in §1.3.2. In §3.4.5 we apply results of [38] to prove a structure theorem for
any irreducible nondegenerate threefold in P” with Betti diagram of Type 2.4, and show the

resulting variety cannot be smooth.

In Appendix B, we present explicit examples for each of the 16 Betti diagrams.

3.3 Proof of Theorem 3.1

For T'/I Artinian Gorenstein of regularity 4, the h-vector of T'/I is
h(T/I) = (1,4, ho, 4, 1), with hy < 10. (3.3)

By [11, Lemma 2.1], a GoCY X C P7 has 14 < deg(X) < 20. If A = T/I is the Artinian

reduction of U = T/ Iy, then

deg(X) =Y hg(T/I) =10+ hy. (3.4)

Hence 4 < hy < 10.
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For the proof of Theorem 3.1, we will need the theorems of Macaulay and Gotzmann

[27]: For a graded algebra T'/I with Hilbert function h;, write
a; ai—1
hi= (. _ . 3.5

| C+1 i1+ 1 .

and
‘ i+ 1 i
Theorem 3.3 (Macaulay’s Theorem).

hiv < WY, (3.7)

Theorem 3.4 (Gotzmann’s Persistence Theorem). If I is generated in a single degree t and

equality holds in Macaulay’s formula in the first degree t, then
ai+J a1 +7j—1
hiy; = e 3.8
o (15) () 6

We also need the following lemma to preclude some Betti diagrams.

Lemma 3.5. Let Iy be the subideal of I generated by the quadrics in I, and let v = (bag, bay),
where b; ; = b, ;(T'/I) are graded Betti numbers of T/1. Then

((L) b45(T/12) = b46(T/]2) = 0.
(b) v#(2,1).

(c) if a = by >4, then v # (3,1).

Proof. We prove (a) first: Because b;;+1(T/12) = b;;41(T/1) for all i > 1, so bys(T'/13) = 0.
To prove by(1T'/1) = 0, note that byg(7/I) = 0 and that adding additional generators to I

cannot force cancellation: for a cubic F', we have the short exact sequence

0—T(=3)/I: F — T/l — T/l + F — 0 (3.9)
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and the associated long exact sequence gives exact sequence of vector spaces
0— TOI'4(T(—3)/[2 : F, C)ﬁ — T‘OI'4<17/I27 (C)(; — TOI'4(T/[2 + F, (C)(g (310)

Note that

TOI'4(T<—3)/IQ . F, (C)6 = T01"4(T/]2 . F, C)g = 0. (311)

Hence Tory(T'/15,C)g # 0 implies Tory(T/Io+F,C)g # 0. Therefore, we conclude byg(T'/15) =
0.

Next we prove (b): To see that v = (2,1) cannot occur, observe that if it did then there
would be a unique relation L - Vi + Lg - Vo = 0 where Ly, Ly are linear forms, and V; are
vectors of linear first syzygies. Changing variables so Ly = y; and Ly = 1, we have that
y1 - Vi1 + 42 - Via = 0 for all 4, implying V; is yo - C' and V5 is —y; - C, with C a vector of
constants, a contradiction. So v = (2,1) is impossible.

To prove part (c), the key point is that v = (3,1) implies that I, contains {Ly, Lys, Lys}
with L a linear form. If v = (3,1) then the unique linear second syzygy S must have rank
3, otherwise the argument showing that v = (2,1) is impossible applies. After change of

variables, we may write S as below, with a;, b;, ¢; linear forms:

aq b1 C1
Y1
az by c
yo| =0 (3.12)
as bg C3
Y3
ay b4 Cy

So the rows of the matrix of linear first syzygies on I, are Koszul syzygies on [y, y2, y3]",

that is to say

a; b
; y2 —y1 0

Gz 02 Co

as b3 C3
0 Ys  —Y2

Qy b4 Cyq

where C'is a full rank 4 x 3 scalar matrix. This forces I5 to contain { Ly, Lys, Lys}.

When a > 4 the mapping cone construction implies Iy is inconsistent with the Gorenstein

41



hypothesis (IGH). If a > 4, I, must contain a quadric () which is a nonzero divisor on
{Ly1, Lys, Lys}. To see this, note that if @ € (L) then ht(ly) = 1. After a change of
variables I, consists of a linear form times a subset of the variables, so that I, has a Koszul
resolution, hence by;(7'/I2) # 0 which is IGH by (a); if @ € (y1,y2, y3) then there is at least
one additional linear first syzygy, so b > 4. Now we know () must be a non-zero divisor on

{Ly1, Lys, Lys}. This implies that if v = (3, 1), then [, has mapping cone Betti diagram

10000
04310
00331

This is IGH by (a), because bys(T'/I5) # 0. Therefore we conclude v = (3, 1) is IGH. O

Remark 10. When a = 3, v = (3,1) occurs.

We use the Hilbert function to establish the possible shape of the Betti diagram, combined
with an analysis of the structure of the subideal I5 generated by the quadrics in I and subideal
('3 generated by the quadrics and cubics in I. Let a = by5(7'/I) be the number of quadratic
generators of I C T = Clyg,...,ys], and let v = (bog(T/I),b34(T/I)) = (b,c). Note that
bys(T'/13) # 0 cannot occur by Lemma 3.5.

For an Artinian Gorenstein ideal I with ht(/) = 4 = reg (T'/I), its Hilbert series is
determined by b2, and (by2, bes, b3s) = (a, b, ¢) determines the entire Betti diagram. When

a € {0,1,2} the analysis is straightforward, so we begin with a = 3.

3.3.1 Case a=3

When a = 3, the Hilbert function is (1,4,7,4,1) and a computation shows the Betti diagram

must be (dropping the 1 in upper left and lower right corners)
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3 b c
b+4 2¢c+12 b+ 4

c b 3

By Macaulay’s theorem

ho(T/L) =7 = (4

1

A direct computation shows that for an ideal generated by three quadratic monomials in 7T,
v € {(0,0),(1,0),(2,0),(3,1)}, all of which occur in Tables 3.1 and 3.2. By uppersemiconti-
nuity, Io must have v = (b, ¢) < (¥, ) for (¥, ') in the list above, so we need only show that
v € {(3,0),(2,1)} do not occur. If b = 3 then we are in the situation where Gotzmann’s

theorem applies, that is, h§2> = hs implies h§3> = hy4, and we compute

hNT /L) = 16 (3.14)
and
ha(T /1) =35 —3-1043 -4 — ¢ + by (T/I). (3.15)

In particular, ¢ = 1+ by (T'/15) > 1, s0 ¢ > 1 and v = (3,0) does not occur. By Lemma

3.5, v = (2,1) is impossible.

When a > 4, the set of Betti diagrams possible for quadratic monomial ideals has an

element that is so large that a similar analysis via the initial ideal becomes cumbersome.

3.3.2 Casea=14

When a = 4, the Hilbert function is (1,4,6,4,1) and the Betti diagram is:

4 b c
b 2¢+6 b
c b 4
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Values for v which actually occur are v € {(0,0),(2,0),(3,0),(4,1)}. Applying Macaulay’s
theorem to the ideal I, generated by the quadrics in I shows b < 6. Now let ('3 denote the

ideal generated by the quadrics and cubics in [.

4

a(T/C) = ha(/D) =1 = () (3.16)

SO
WNT)Cy) =5 > ha(T/Cs) = ¢+ 1. (3.17)

Hence ¢ < 4.
The case b = 6 is extremal, and applying Gotzmann’s theorem we find

ha(T/I3) =35 —4-1046 -4 + byy(T/15) — ¢ = 15, (3.18)

SO
c =4+ byu(T/I). (3.19)

Combined with our work above, this shows b =6 = c¢=4. As hy(T/C3) = hy(T/I) +c =
5, we have

WNT/C3) = 6 > hs(T/C3) = 56 — 80 + 40 + bos (T//C3) — 6, (3.20)

we conclude bos(T'/C5) < —4, which is impossible. Thus, b € {0,...,5}.

If b € {0,1} then ¢ = 0; clearly v = (0,0) yields a complete intersection, which occurs,
while v = (1,0) leads to an almost complete intersection (ACI), and by [22] there are no
Gorenstein ACT’s. Henceforth we assume b € {2,3,4,5}. We saw above that ¢ < 4; we now

show that ¢ € {2,3,4} is IGH.

So
c=2 = hy(T/C3) =3 = BN(T/C5) =3 > hs(T/Cs) =8+ bas(T/C5) — b
c=3 = h(T/C3) =4 = B{N(T/C5) =4 > hs(T/Cs) =12+ bos(T/C5) — b

c=4 = hy(T/C3) =5 = WNT/C;) =6 > hs(T/C3) =16 + bos(T/C5) — b
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As b < 5, only the case b = 5,c = 2,by5(T/C3) = 0 is possible; this has Betti diagram

4 5 2
5 10 5
2 5 4

Computing, we find that in this situation hs(7T/C3) = 3, so
W (T/C5) =3 > hg(T/Cs) = 4+ by(T/C5) — bss(T/C5). (3.22)

In particular, bsg(T/C5) > 1+ beg(T/C3) > 1, which means the 5 x 4 submatrix M of ds
representing the “bottom right corner” of Betti diagram for 7'/, one of the four columns of
M is zero. By symmetry of the free resolution this means that one of the four rows of the
matrix M® of linear first syzygies on I, is zero. Hence the five linear first syzygies on I, only

involve a subideal () C I, generated by 3 quadrics, which is impossible.

It remains to deal with ¢ € {0,1}. When ¢ = 0, we know v € {(0,0),(2,0),(3,0)}
occur, and we have already shown that v = (1,0) is IGH. As b < 5, we need to show
v € {(4,0),(5,0)} are IGH. To do this, we use the ideal I of four quadrics; h3(T/I3) =

20—16+b =4+, so we have
e For b =4, h3(T/I,) = 8. Hence
WNT /L) =10 > hy(T/ L) = 35 — 40 + 16 + byy(T /1) = 11 + boy(T/L).  (3.23)
e For b =5, hy(T/I;) = 9. Hence

WNT /L) =12 > hy(T/ L) = 35 — 40 + 20 + boy(T/L5) = 15+ boy(T/ L), (3.24)

Both force byy(l) < —1, which is impossible. When ¢ = 1, the only change to the second
equation above is to subtract one (because ¢ = 1) from the right hand side, so hy(l3) =

14 + boy(I3), forcing bey < —2, which is impossible.
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3.3.3 Casea=5

When a = 5, the Hilbert function is (1,4, 5,4, 1), so the Betti diagram is

5 b c
b—4 2¢ b—4
c b 5

Note that h3(T/I3) =20 —5-4 4+ b =b. By Macaulay’s theorem

3

ho(T/ L) = 5 = (2

2
> + <1> so W (T/L) =17 > hs(T/L) = b, so 7> b.

1. Case 1: Suppose b = 4. This means there are no cubics in the ideal, and

ha(T/1,) = 4 = (;) (3.25)

Theorem 3.3 shows
WNT /L) =5 > hy(T/L) =35—-5-10+4-4 +c. (3.26)

We conclude ¢ < 4. We can immediately rule out ¢ = 0, as then I would be an
ACI, which is IGH. The possibilities ¢ € {2,3,4} are also ruled out by Macaulay; we
illustrate for ¢ = 2:

ha(T/I) =35 —5-10+4-442 =3, (3.27)

SO

WNT /L) =3 > hs(T/ L) = 4 + bys(T/ L), (3.28)
which would force bos(T/15) < —1.

Finally, suppose ¢ = 1, so I = I, + g for a single quartic g. Since I5+ g has height four,
the height of I5 must be three or four, and if ht(/5) = 4 then I, is an almost complete

intersection, containing a complete intersection C'. We claim this is impossible: write
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I, =C+ fwith f € I, \ C. Since by3(T/C) = 0 the fact that by3(7/I2) = 4 means
that C': f = (yo, Y1, Y2, y3), whose mapping cone is inconsistent with the Betti diagram
for I,. Hence ht(l3) = 3, and ¢ is a nonzero divisor on the height three associated
primes of I5. Since hy(T/Iy) = 2, Macaulay’s theorem implies the degree of I is one
or two. Observe that the rank of the linear second syzygy Syz, cannot be 4; if it was
then Syz, = [0, Y1, y2, y3]". By the symmetry of the differentials in the free resolution,
this means that Iy : g = (yo, ..., ys). By additivity of the Hilbert polynomials on the

short exact sequence
0—T(-4)/(Iz:q) —T/I, —T/I — 0,

this is impossible. Hence rank (Syz,) = 3, and as in the proof that v = (3,1) is
impossible for a = 4, I, is generated by, after a change of variables, {L - y1, L - yo, L -
Y3, q4, ¢5} for a linear form L and two quadrics g4 and ¢s. Since ht(ly) = 3, this forces

(L, q4,q5) to be a regular sequence. In particular, deg(/s) = 4, a contradiction.

. Case 2: Suppose b = 5. The cases v € {(5,0), (5,1)} do occur.

hs(T/I) =5 = (§> + <§)

Macaulay’s theorem shows
W (T/1y) = 6 > hy(T/Iy) = 35 — 5-10 + 4 -5+ by (T/ L) — c. (3.29)

So ¢+ 1 > boy(T/I5). Let Cs denote the subideal of I generated in degrees two and

three.
h3(T/Cs) = 4, (3.30)
SO
W1/ Cs) =5, (3.31)
thus
5> hy(T/C3) =35 —50+ 16 + ¢, (3.32)
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implying ¢ < 4. Since ¢ € {0,1} does occur, we need to rule out ¢ € {2,3,4}.

Computing values for hy(T/C3), we find

c¢=2implies hy(T/C3) =3 hence hs(T/C3) <3

c¢=31implies hy(T/Cs5) =4 hence hs(T'/C5) < 4

IN

c=4implies hy(T/C3) =5 hence hs(T/C3) <6

Since h5(T/C3) = 56 — 100 4+ 40 + 4¢ — 1 + by5(T'/C3), combining this with the above

shows
c=2 implies h5 =3+ b25(T/C3) S 3

c=3implies hs =T+ 0bys(T/C5) <3

c=41implies hs =11+ by5(T/C3) <6
This rules out ¢ € {3,4}, and shows if ¢ = 2 then by5(7/C3) = 0. So in this case
hs(T/C3) = 3, and

hé5><T/CS) =32 he(T/C3) =5+ bae(T/C3) — bse(T/C3). (3.33)
Hence bs(T/C3) > 2, so the Betti diagram for T7'/Cj is at least

5 5 2
1 41
00 2

Hence in the 5 x 5 submatrix M of ds representing the “bottom right corner” of the
table for I, two of the five columns of M are zero, which by symmetry of the Betti
diagram means that two of the five rows of the matrix M? of linear first syzygies on
15 are zero. Hence the five linear first syzygies on I only involve a subideal J C I

generated by 3 quadrics, which is impossible.

3. Case 3: Suppose b = 6; the only case that actually occurs is v = (6, 2).

oo () ()
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Macaulay’s theorem shows
WNT/L) =72 hy(T/L) =35—5-10 + 46 + byu(T/ L) — c. (3.34)

So ¢ > byy(T/15) + 2. Let C3 denote the subideal of I generated in degrees two and

three.
4
hs(T/C3) =4 = (3) (3.35)
SO
5>hys=35—-50+16+c (3.36)

Thus, ¢ < 4. To show that ¢ € {3,4} do not occur, we compute
If c=4, then hy(T/C5)=5and hs(T/C5) <6
If c = 3, then h4(T/03) =4 and h5(T/Cg) < 4
Since h5(T/C3) = 56 — 100 + 40 + 4c + bz (T/C3) — 2, we see that
Ifc=4 then h5(T/03) =10+ b25(T/Cg) S 6, SO b25(T/03) S —4
Ifc=3 then h5(T/03) =6+ b25(T/Cg) < 4, SO b25(T/Cg) < -2
We have shown that when b = 6, the only value possible for v is (6, 2).

. If b = 7, applying Gotzmann’s theorem gives ¢ = boy(7T'/I2) + 4. Let C3 denote the
subideal of I generated in degrees two and three; applying Macaulay’s theorem to

hg (T/Cg) =4 ylelds
5> hy(T/C3) =35—5-10+4-4+c, (3.37)

so ¢ < 4; combined with ¢ = byy(T'/15) + 4 this forces ¢ = 4. Since hfl4>(T/03) =6, we
find
6 > hs(T/C3) = 9+ bas(T'/C3). (3.38)

This shows bys(7'/C3) < —3, hence b = 7 is IGH.
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3.3.4 Case a=06

When a = 6, the Hilbert function is (1,4,4,4,1) so the Betti diagram is

6 b c
b—8 2¢—6 b—38

c b 6
As
3 1
ho(T/1) =4 = (2> + (1) (3.39)
Theorem 3.3 shows
W (T/1) =5 > hy(T/I)) =20 — 6 - 4+ b. (3.40)

Sob < 9. If b =9 there is a unique cubic F' € [; since b = 9 is extremal we may apply

Gotzmann’s Persistence Theorem to conclude that hy(T'/15) = 6, so

(boa (T D) — ¢) + (3 | 1) 9— (3 s 2> 6+ (3 j 4) _s, (3.41)

which implies boy(7'/I3) = ¢ — 5. Since (2¢ — 6) — (¢ —5) = ¢ — 1 and ¢ > 5, this means
there are always at least four independent syzygies which are linear on F' and quadratic on
elements of I,. Hence Iy : F' = (y,...ys) and the mapping cone arising from short exact
sequence

0—T(=3)/Ir: F — T/l — T/l + F — 0, (3.42)

gives a resolution of 7'/I. The top row of the mapping cone is simply the Koszul complex
on the variables, and a check of the degrees shows the second syzygies involve a summand
T%(—5) which cannot cancel. This would imply bs5(7/I) = b — 8 > 6, which is impossible

since b = 9.

Finally, we need to show that when b = 8 we must have ¢ = 3. From the Hilbert function

constraint on the Betti diagram, ¢ > 3. When b = 8, there are no cubics in [; this means

b24(T/IQ) —c=c—06. (343)
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We compute
h3(T/1y) =4 = <4>, (3.44)
Theorem 3.3 shows
WNT/L) =5> hy(T/L) =35—6-10+8-4+c—6, (3.45)
hence ¢ < 4. Finally, if ¢ = 4, then hy(7'/13) = 5 and hffl) (T'/I3) =6. So
6 > hs(T/Iy) =56 —6-20+ 8- 10 — 2 - 4 + bys(T/I5).
This would force bos(T'/15) < —2. We have shown that the only Betti diagram possible for

a=61s

6 8 3
000
3 8 6

Hence there are 16 Betti diagrams for an Artinian Gorenstein algebra A with reg (A) =
4 = codim (A). All diagrams in Table 3.1 and Table 3.2 do occur, which can be checked via

a Macaulay?2 search. See Appendix B.

3.4 Proof of Theorem 3.2

In this section, we consider T = C[y, . .., y7]. We would like to show if U = T'/Ix has one
of the Betti diagram in Table 3.2, then X = Proj(U) must be either reducible or singular.

In order to do this, we need to introduce Schenck-Stillman’s Theorem.

A matrix of linear forms is 1-generic if no entry can be reduced to zero by (scalar) row
or column operations; a linear n-th syzygy is an element f of Torf +1(U,C)py2. The rank of

f is the dimension of smallest vector space V' such that the diagram below commutes:
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TorZ(U, Clpp1 @T(—n — 1) +—— TorZH(U, Clpp2 @ T(—n — 2)

I [

VeT(—n—1) < feT(—n—2)

Theorem 1.7 of [32] shows:

Theorem 3.6 (Schenck-Stillman, 2012). For a nondegenerate prime ideal P,

(1) P cannot have a linear n'™ syzygy of rank < n+ 1, or P is not prime.

(2) If P has a linear n'* syzygy of rank n+2, then P contains the 2 x 2 minors of a 1-generic

2 X (n+ 2) matriz.

(3) If P has a linear n'* syzygy of rank n + 3, then P contains the 4 x 4 Pfaffians of a

skew-symmetric 1-generic (n+4) x (n + 4) matriz.

3.4.1 Type 2.1 and 2.2

Type 2.1 111 20 11 1 Type 2.2 1814 8 1
0: 1 . 0: 1. .
1: 21 . 1: .31 . .
2: 9 18 9 2: . 512 5 .
3: 1 2 . 3: 1 3.
4: 1 4: 1

By Theorem 3.6, a Betti diagram of Type 2.1 is ruled out by (1), and a Betti diagram of
Type 2.2 is ruled out by (2), since the 2 x 2 minors of a 2 x 3 matrix have two independent

linear syzygies.
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Type 2.5: Type 2.6: Type 2.7:

111 20 11 1 1916 91 171271
o: 1. . 0: 1. . 0: 1.
1: 3 3 1 1 4 4 1 1: .5 51
2: 7T 147 2 48 4 2: 1 21
3: 1 3 3 . 3 14 4 . 3: .1 55 .
4: 1 4 .1 4: 1

3.4.2 Type 2.5-2.7

For the three Betti diagrams having top row of the form (a,a, 1), we argue as follows.
When a = 3 (Type 2.5), the linear second syzygy can have rank at most 3, since it involves
the 3 first syzygies. Hence by (1), the ideal cannot be prime.

When a = 4 (Type 2.6), the linear second syzygy can have rank at most 4, and in this case
by (2) it contains the 2 x 2 minors of a 1-generic 2 x 4 matrix, which would yield a top row
of the Betti diagram with entries (6, 8, 3).

When a =5 (Type 2.7), (3) implies that P contains the Pfaffians, and since there are only
five quadrics, the quadratic part of the idea is exactly the Pfaffians, which do not have a

linear second syzygy.

3.4.3 Type 2.3

Type 2.3 17127 1
1.
. 4
3

w o w -

S W e o
> W -

For Type 2.3, we will show that a prime non-degenerate ideal P cannot have top row of
the Betti diagram equal to (4,3,0). Let Iy be the subideal of P generated by quadrics in

P. By (1) and (3) the first syzygies all have rank three; take a subideal @) C I, consisting
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of three elements, which by (2) is generated by the 2 x 2 minors of a 2 x 3 matrix and has

Betti diagram

1 — —
(3.46)

- 3 2
In particular, () is Cohen-Macaulay, ht ) = 2 and deg ) = 3. Let F' denote the remaining
quadric, so I, = Q + (F). Consider the mapping cone resolution of T'/I, from the short

exact sequence

0—T(-2)/Q:F —T/Q—T/I, — 0. (3.47)

It follows that @) : F' must have a linear generator L, so LF € Q). If () is prime, then either

LeQor F €@, acontradiction.

So suppose () is not prime, and take a primary decomposition
Q = N2, Q;, with \/Q; = P; all height two. (3.48)

Since @ is height two and Cohen-Macaulay and deg(Q)) = 3, we must have m < 3.

1. Case 1: m = 3. Then Q; = P; and Q = N?_, P; with P, generated by two linear forms.

2. Case 2: m = 2. Then deg(Q;) = 1, deg(Q2) = 2, so Q1 = P, is generated by two linear

forms.

3. Case 3: m = 1. Then \/Q; = P, with deg(P1) € {1,2,3}. If deg(P,) = 3, then Q = P,

is prime, and if deg(P;) = 1 or 2, P; contains a linear form.

In particular, we see that P is degenerate.

3.4.4 Type 2.8

For Type 2.8, there are two second linear syzygies. If either of them have rank less than 6,

the we would be in one the cases (1), (2), (3) of Schenck-Stillman’s Theorem, all of which
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Type 2.8 191691

o:. 1. . ..
1: .56 2.
2: .24 2

3: .26 5.
4: .1

are inconsistent with a Betti diagram having top row (5,6, 2).

Hence, both second syzygies must have rank 6. Let Syz, denote the corresponding 6 x 2
matrix of linear second syzygies; Syz, is 1-generic: if not, there is a second syzygy of rank < 5,
a contradiction. By [14], since Syz, is 1-generic, the 2 x 2 minors are Cohen-Macaulay with
an Eagon-Northcott resolution; in particular grade(/3(Syz,)) = 5. By [15, Theorem A2.10],
the Buchsbaum-Rim complex is a resolution for coker (Syz}), because the ideal generated

by 2 x 2 minors of Syz, has grade 6 — 2+ 1 = 5. This means

NBT(—3)8 5 T(—1)8 22 72 (3.49)

is exact, where ¢ is defined by equation (1.22). In particular, Syz), has no linear first syzygies.
We conclude that there are no linear second syzygies on coker (Syz), hence no linear first

syzygies on [y, a contradiction.

3.4.5 Type 2.4

Type 2.4 161061
o: 1. .
1: .4 2 . .
2: 2 6 2.
3: 2 4 .
4: 1

We now show that the Betti diagram of Type 2.4 corresponds to a mapping cone, and
that any nondegenerate irreducible GoCY in P7 with Betti diagram of Type 2.4 must be

singular.
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A key tool in our analysis is a result of Vasconcelos-Villereal [38, Theorem 1.2], which
shows that if T" is a Gorenstein local ring and 2 € T is a unit, then if I is a Gorenstein ideal of
height 4 and deviation two, such that [ is a generic complete intersection (the localization at
all minimal primes is a complete intersection), then I is a hypersurface section of a Gorenstein

ideal of height 3.

Theorem 3.7 (Vasconcelos-Villereal, 1986). Let T' be a Gorenstein local ring in which 2 is a
unit. Let I be a Gorenstein ideal of height four and deviation two. If I is a generic complete
intersection, then I is a hypersurface section of a Gorenstein ideal of height three. That is ,
I = (I, f), where I' is the ideal generated by 4 x 4 Pfaffians of an alternating 5 x 5 matriz

and f is a reqular element on T/I'.

We start with several preparatory lemmas. Note that a Betti diagram of Type 2.4 cannot

arise as the mapping cone of a cubic, so will arise from quotienting the Pfaffians by a quadric.

Lemma 3.8. There is a prime subideal () C Iy generated by three quadrics, such that Q)
consists of the 2 x 2 minors of a 1-generic 2 X 3 matriz Syz,(Q), and the quadric q4 € I\ Q

is a nonzero dwisor on T/Q).

Proof. By Theorem 3.6, a linear first syzygy on I of rank four would imply that I contains
the Pfaffians of a 5 x 5 skew matrix of linear forms, while if there was a linear first syzygy
on [y of rank two, I would not be prime. So Theorem 3.6 implies that [ contains a subideal
@ of 2 x 2 minors of a 1-generic 2 x 3 matrix of linear forms. The ideal () must be prime, for
if not, it would have a primary decomposition into components of degrees one or two, which
would force I to be degenerate. Finally, g4 is regular on @), for if not, then ht(/y) = 2 and
degree one or two; the two cubics in I must be nonzero divisors on the height two primary
component, because ht(/) = 4. But this would imply that deg([) is 9 or 18, contradicting
the fact that deg(I) = 16. O
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In what follows, we use the notation of Lemma 3.8, so ) is the ideal of 2 x 2 minors of the
one-generic matrix Syz, (). The entries of Syz,(Q) are linear forms, because () is prime the
linear forms span a space of dimension {4,5,6}. This means V(Q) is a cone, with singular
locus of dimension (respectively) {3,2,1}. Let C' be the ideal generated by ¢4 and the two
cubic generators of I; intersecting V(@) with V(C') drops the dimension by two, so if the
linear forms of Syz,(Q) span a space of dimension four or five, V' (I) is singular. It remains
to deal with the case that the span of the linear forms has dimension six; after a change of
variables we may assume

sym@ =" " (3.50)

Yo Ys Yo

Lemma 3.9. Let I be a height four Gorenstein prime ideal with Betti diagram Type 2.4. If
I contains an ideal Q) consisting of the 2 x 2 minors of Syz,(Q) as above, then I = I' + (F),

with codim (I') = 3 and I Gorenstein, and F a nonzero divisor on T/I'. Hence T'/I has a

mapping cone resolution.

Proof. Because the two linear first syzygies on Iy are of the form [y, y2, y3]* and [ys, ys, ys]*
and I is nondegenerate, I contains no linear form, so {yi,...,ys} are all units when T'/1
is localized at I. Thus, in the localization, two of the generators for () are redundant,
and therefore I is a generic complete intersection, of deviation two, so the result of [3§]

applies. O

Lemma 3.10. Assume Y is an arithmetically Gorenstein variety of codimension 3 and X
1s a nondegenerate hypersurface section of Y with Betti diagram of Type 2.4. Then Y must

have Betti diagram:

N W -

w N = O
w N -
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Proof. The Hilbert series of X is

he(X) = (1—t3H)* (3.51)
Assume hy(Y) = ﬁf(t). Then
fOA =t = (1)L (3.52)

So d € {1,2}. But X does not lie in any hyperplane. Therefore d must be 2 and Y has the

desired Betti diagram. O

Proposition 3.11. Let V(Ix) be GoCY in PT with Betti diagram of Type 2.4. If the linear
forms of the matriz Syz,(Q) span a space of dimension six, then up to a change of basis, Ix
is generated by the Pfaffians of a 5 x 5 skew symmetric matriz Syz,(I") as below, along with
a quadric qq which is a nonzero divisor on T /Ix. Denote Pf(Syz,(I')) by I'. The ideal I' is

singular along a P, and so V(Ix) has at least two singular points.

O vy ys 0
-y 0 0 a2 Ya
Syei(I)= |-y —n 0 @ s (3.53)
—ys —q¢ —q3 0 ys

0 —Ys —Ys —Ys O

where the q;’s are quadrics.

Proof. Combining Lemmas 3.8, 3.9, and 3.10 and the results of [38] shows that Ix is of the

form above. To see that the singular locus is as claimed, we compute that

I'=Q+ (Ysq1 — Y202 + Y13, Y6q1 — YsGo + Yaqs), (3.54)

where @ is the ideal of the minors of the matrix Syz,(Q) above. In particular,

V(... .ys) ~ P C V(I), (3.55)
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and V(I') is singular along this P!, because the Jacobian matrix of I’ is

Ys Ye 0 x %
—ys 0 Yo * Ok
0 —ys —ys * =x
ety = | 20 (3.56)
Y1 0 —ys * x
0 Y1 Y2 x k
0 0 0 x =

0o 0 0 = x

where * are quadrics. Hence when {y1,...,ys} vanish, Jac(I’) has rank < 2, so is singular
along the P!. Intersecting V(I') with the hypersurface V' (g4), we find that V(Iyx) must be

singular (at least) at a degree two zero scheme. ]

29



CHAPTER 4
SUMMARY AND FUTURE RESEARCH

In this thesis, we studied the dimension problem on spline spaces and the Betti diagrams of

Artinian Gorenstein rings.

For the dimension problem on spline spaces, we proved there is a counter-example to the
2r + 1 conjecture by analyzing that example with Billera’s spline complex. We also found a

new bound for reg Hi(Se/Je).

For Artinian Gorenstein rings, we find all possible Betti diagrams corresponded to Ar-
tinian Gorenstein rings with regularity 4 and codimension 4. We proved what we found is
a complete list of such Betti diagrams and those in Table 3.2 cannot be Betti diagrams of
Gorenstein Calabi-Yau threefolds in P7. A case-by-case analysis of 2-linear strand for each

Betti diagram is crucial to our proof.

The study on both problems does not end with this thesis. In fact, there are several

topics interest us. We discuss these directions for future research in Section 4.1-4.5.

4.1 On dimension conjectures of spline spaces

Before Schenck and Stiller made the “2r+1” conjecture, Alfeld and Manni have conjectured

for case (r,d) = (1, 3):
Conjecture 3 (Alfeld-Manni). The equality (1.5) holds for all triangulation when (r,d) =
(1,3).

Note that Ay in Chapter 2 does not make a counter-example for Alfeld-Manni conjecture,

because Hy(Js)4=3 = 0 for r = 1.
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If we fix the combinatorial data of A, then global geometric data of A is determined by
the actual positions of all v € Ag. The space of positions of vertices is a Zariski open subset
$Lof R™ x --- x R™. We have already seen that reg Hy(Jo) depends on the global geometric
data. In fact, reg Hoy(J,) remains constant over a Zariski open subset of . We say A is
generic if it falls into this open dense subset. Intuitively, this means that jiggling the position

of any vertex of A does not change reg Hy(J,). In particular, our counter-example is not

generic.
U3 U7
£
Us
0.
0 %
Vs

O

V4 Vg

Figure 4.1: A generic A having the same combinatorial data as the counter-
example

Example 2. Figure 4.1 is an example of generic A with the same combinatorial data as in
the counter-example.

Alfeld and Schumaker proved in [2] that the “3r + 17 conjecture holds for generic A.
Conjecture 4. For generic A, the “2r + 17 Conjecture holds.

From the computation results of Macaulay 2, we also notice that in our case, for r from
1 to 20, reg Ho(J,) = [Z£2].
Conjecture 5 (Schenck-Yuan). For Ay, there exists constants c1,ca, such that

9 9
Zr +c1 <reg Ho(J,) < ZT + ca.
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We also propose the following open problem:

Open Problem. For a given A, find both upper and lower bounds for reg Hy(J,).

4.2 Powers of linear forms, the inverse system and fat points

In this section, we start with a dimension problem on fat points ideals, and show it is related

to the dimension problem of spline spaces.

Definition. Assume P, € P" for i = 1,...,s. Let p; = I(P;) C T be the ideal defining P;.

A fat points ideal is an ideal of the form I = N p¥ for k; > 1.

Problem. If P, ..., P, are sufficiently general points of P" with corresponding prime ideals
p1,. .., ps. Let T =7 p% for k; > 1 be a fat points ideal. What is the Hilbert function of
T/17

Note that (I)g is the space of d-forms that has zero at P, with multiplicity at least
ki. We denote this space by L4(—> 7 k;P;). If s = 1, there is a single point and there is
(k1+n—1>

linearly independent conditions posed on d-forms, so dim T;—dim(/)4 = (k”:*l). A

naive guess is that s points with given multiplicities would pose min{}._, (ki+g_1), (d+2_1)}
linearly independent conditions. However, this fails for (n,s,d) = (2,5,4) and k; = -+ =
ks = 2. See Miranda’s paper|[24] for more examples on which the expected dimension fails. In
the same paper, there is also a conjecture made by Segre-Harbourne-Gimigliano-Hirschowitz
saying the fat points ideals have the expected Hilbert function under some conditions. This

conjecture is unsolved yet. Therefore, the form of Hilbert function for fat points is still

unknown.

Recall in Section 1.4, we define the corresponded linear form Lp € S} for a reduced point

P € Proj(T). In [16], Ensalem and Iarrobino have the following theorem for fat points ideals.
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Theorem 4.1 (Ensalem-Tarrobino, 1995). Assume that I = p® ... A pktl then

- S, for d < max{k;},
(1), = (4.1)
Sk L™ 4o+ S, - Ly, for d > max{ki},

where Lp, is the corresponded linear form of P;, and

HF (17", d) = HF(T/1,d). (4.2)

Note that the ideal J(v) defined in Section 2.2 is generated by powers of linear forms. In

fact, if J = <L7]"}1L1, ce L’;g:ﬂ), then for d > r 41,
(J)a=Lp" - Sacpor 4+ L Sy (4.3)
Then by Theorem 4.1, (J)4 = (I7')4 where
I=pf - npd. (4.4)

Therefore, questions about Hilbert function of fat points on P" can be translated into ques-
tions about ideals generated by powers of linear forms in (n + 1) variables. In [18], the
authors use this correspondence to compute dimension of spline spaces with mixed smooth-
ness. Since the form of Hilbert function of fat points on P? is unknown, there is also no

known form of the Hilbert function for the local data J(v) when A is 3-dimensional.

4.3 On quaternary quartic forms

Let S = Clxo, ..., 2,) and T = Clyo, . . ., yn] = C[z2, ..., %] be the ring of differential oper-

Do
ators on S. We say a homogeneous polynomial f € S has a length s power sum decomposition
if

f=04+ 414 (4.5)
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Definition. The Waring rank of a homogeneous polynomial f € S is the least number r
such that f has a length r power sum decomposition. We denote the Waring rank of f by
rank (f).

Question (Waring’s problem). What is rank (f) for a given f?

For a generic form of degree d in n + 1 variables, we have the following theorem:

Theorem 4.2 (Alexander-Hirschowitz). A generic form f of degree d in n + 1 variables in

a sum of fﬁﬂ ("Zdﬂ powers of linear forms, unless

o d=2, where s =n+1 instead of [*F2], or
e d=4 andn = 2,3,4, where s = 6,10, 15 instead of 5,9, 14 respectively, or

e d=3 and n =4, where s = 8 instead of 7.

However, finding out rank (f) for every f is still an open problem.

By Theorem 1.2, any Artinian Gorenstein ideal with regularity 4 in T is Macaulay’s
inverse system [y of a principal ideal (f) C S with deg f = 4. By our results in Chapter 3,
if n = 3, then the Betti diagram of Ay = T'/I; must be one of the 16 tables in Table 3.1 and
3.2. With the Apolarity Lemma described below, we would like to classify the forms f in
terms of power sum decomposition according to the Betti diagram of Ay =T/I;. We call a

subscheme I' C Proj(T") apolar to f,if I(I') C Iy C T.

Lemma 4.3 (Apolarity Lemma). Let I' C {Py,..., P} be a set of points in Proj(T). Then

f=Li+ -+ L% if and only if T is apolar to f.

We are also interested in giving a complete description of the relation between the Betti

diagram of A; and the geometry of I'.
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4.4 Extension of Artinian Gorenstein to higher dimension

In Chapter 3, we studied Artinian Gorenstein rings, especially those with regularity 4 and
codimension 4. Those with Betti diagram in Table 3.1 can be viewed as Artinian reduction
of GoCY threefolds in Table 1.1. The authors of [11] ask if Table 1.1 is a complete list of
families of GoCY threefolds in P7. Since we already have a complete list of Artinian reduction
for all codimension 4 GoCYs, we would like to lift them to higher dimension. In particular,
if we are able to obtain all possible extensions of Artinian GoCY's to threefolds, then we may
answer their question. On the other hand, we have proved that GoCY’s with Betti diagram
in Table 3.2 cannot be threefolds, but their possible extensions to higher dimension are still

interesting to us.

Let Fp be the set of forms f for which the apolar Artinian Gorenstein ring A; has Betti
diagram B. The parameter space of all quaternary quartic forms is isomorphic to P34. In
fact, every family Fp with B in Table 3.1 and 3.2 is a quasi-projective algebraic set in P34,
If Fp is irreducible, then it makes sense to talk about a general element fg € Fg. We may
try to obtain all possible extensions of Ap corresponding to fg. If Fp is not irreducible,
then we can study their irreducible components and look for extensions corresponding to the

general element for each of these components.

4.5 Calabi-Yau varieties in toric spaces

One generalization of complete intersection Calabi-Yau varieties in projective spaces is
GoCY. Another way is to consider Calabi-Yau varieties embedded in toric varieties, be-
cause projective space is the simplest complete toric variety. In [3], Batyrev shows how
to obtain Calabi-Yau varieties as hypersurfaces in toric varieties corresponding to reflexive

polytopes. Using Batyrev’s construction, one gets a pair of Calabi-Yau varieties (X, X’) such
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that h'1(X) = h123(X’), so they are potentially mirror symmetric pairs, as introduced in

[12]. What’s more, their Hodge numbers can be obtained from the toric varieties they lie in.

To study such Calabi-Yau varieties, we are not only interested in their Hodge numbers,
but also in all cohomologies H7(X,QP(d)). Assume Calabi-Yau variety X is obtained as a
degree k hypersurface of a toric variety V. In [23], Maclagan and Smith introduce a method

to compute H4(V, Oy (d)) for all ¢ and d. Since the short exact sequence of sheaves
0— Ov(—k+d) = Oy(d) - Ox(d) =0 (4.6)
induces the long exact sequence of cohomologies
o= H(V,Oy(=k+d)) = H(V,0y(d)) - H(X,Ox(d)) = ..., (4.7)

we may obtain information about H?(X, Ox(d)) from it. This is a topic we would like to

investigate further.
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APPENDIX A
COMPUTATION ON SPLINE PROBLEMS

A.1 Buchberger’s Algorithm and computation of Grobner basis

The introduction to Buchberger’s Algorithm can be found in [25, section 39] and [15, Chapter
15]. We briefly recall the algorithm here. Fix a monomial order > on a free S-module F

with basis e1,...,e;. For f,g € F, set

In(g)

) In(f)
79 ged(mu(f). n(g))’ (A1

" ged(In(f), In(g))”

Assume M is a submodule of F' generated by {g1,...,gs}. For each pair (g;, g;), there is an

expression

Tij = Z argr + hij (A.2)
such that either h;; = 0 or In(h;;) > In(gx) for all k. We call h;; the remainders/
Theorem A.1 (Buchberger’s Criterion). The elements ¢i,...,gs form a Grébner basis if

and only if hij =0 for all i and j.

Buchberger’s Algorithm: In the situation of Theorem A.1, suppose that M is a submodule
of ', and let g1,..., g, be a set of generators of M. Compute the remainders h;;. If all the
h;j = 0, then {g,...,g,} forms a Grobner basis for M. If some h;; # 0, then replace

g1,-.-,9s With g1,...,gs, hyj, and repeat the process. This process must terminate, see [15].

Next, we use Buchberger’s Algorithm to compute a Grébner basis of the image of Syz,

67



with respect to the P.O.T. order, where e; < e;. Starting with

.

fi=Q2x+y+42)e

fa=y’e

f3 = (3z — 2y — 22)e; + (3z + 2y + 22)e,

fo= =33z -2y —22)x — 2(y + 2)’e1 + 2(y + 2)%ey
fs=(2r+y+4z)e,

fe = 9262

\
we may compute the remainder hjs = 0 and hyz3 = —(7y + 162)e; + (7Ty + 162)es. Replace
f3 with h13.

FY = 2z +y + 42)e

S = —(Ty + 162)es + (Ty + 162)e,

£ = 330 — 2y — 22)a — 2(y + 2)%e1 + 2(y + 2)%es
m _

fs/=(—2x+y+4z)ey

fél) = y’e;

\

is still a basis of Im(Syz;). Now hiy = hiz = 0, hog = —2%e; + z%e;. Replace fz(l) with has

and re-index the generators with respect to >.

;

& = 204y +42)e

£ = 23(3z — 2y — 22)a — 2(y + 2)%1 + 2(y + 2)%eq
(2)
[ =(—2x+y+4z2)ey

f6(2) =y’ey
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Now h;; =0 for 1 <i < j <3and hyy = (11yz+162%)es. Replace ff) with hy4 and re-index

the generators with respect to .

A = Qo +y+42)e
I = —(Ty +162)es + (Ty + 162)e,

£ =~z + 22e

I8 = (11yz + 162%)ey

\

Nowhlj:()for1§2<j§5andh16:Ofor1§z§4 h5622382. Addh56tothe

generating set.

fY = Qe+ y +42)e
f2(4) = —(Ty + 16z)e; + (Ty + 162)e,y

f§4) = —2%e; + 2%,

9 = (11yz + 162%)ey

f7(4) = 2%ey

\

Now h;; =0 for 1 <i < j <7, soitisa Grébner basis of Im(Syz,).

A.2 Compute reg Hy(J,) for r < 20 using Macaulay?2

We write Macaulay?2 codes to investigate the counter-example in Chapter 2. The command

standardGraph records Ay. It expects no input and the output is (V, E), where V' is the list

of coordinates of vertices of Ay and F is a list of interior edges.
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The command HOmatrix expects three parameters (r,V, E), where r is the smoothness,
V' is the list of coordinates of vertices of A and FE is a list of interior edges. The V and E
has some restrictions: the first 3 vertices in V' are the interior ones, in a line, and the rest
are the vertices which provide exactly 3 edges from each of these vertices. If not, HOmatrix

will give an error. The output is the matrix (2.32).

The command computeCounterexample expects three parameters (r, V) E'), where r is the
smoothness, V' is the list of coordinates of vertices of Ay and F is a list of interior edges. The

output includes the expected regularity of Hy(J,) and the actual regularity. For example,

For r = 2, the top degree of HH_0(J) should = 5
In degree 5: (#rows,#cols,rank)=(12, 12, 11)

In degree 6: (#rows,#cols,rank)=(20, 27, 20)

means for 7 = 2, the expected regularity of Hy(J,) is |252] = 5. In degree 5, #rows is 12
and rank is 11, so they are not equal. In degree 6, #rows is 20 and rank is 20, so they are

equal. Therefore, the actual regularity is 5.

With these commands, we compute the actual regularity of Hy(J,) for » < 20. The

computation result shows that the actual regularity is the same as the expected regularity

9r+42
- -

i2 : R=QQ[x,y,z]

02 =R

02 : PolynomialRing

i3 : (V,E) = standardGraph()
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o3 = ({{-2, 1}, {o, o}, {2, 1}, {0, -1}, {0, 8}, {0, 3}, {0, 3}, {0, -1}}, {{o,
1}, {1, 23, {o, 3}, {0, 4}, {1, 5}, {2, 6}, {2, 7}})

03 : Sequence

i4 : for r from 1 to 20 do computeCounterexample(r,V,E)

For r = 1, the top degree of HH_0(J) should = 2
In degree 2: (#rows,#cols,rank)=(2, 0, 0)
In degree 3: (#rows,#cols,rank)=(6, 6, 6)

For r = 2, the top degree of HH_0(J) should = 5

In degree 5: (#rows,#cols,rank)=(12, 12, 11)
In degree 6: (#rows,#cols,rank)=(20, 27, 20)
For r = 3, the top degree of HH_0(J) should = 7
In degree 7: (#rows,#cols,rank)=(20, 18, 18)
In degree 8: (#rows,#cols,rank)=(30, 36, 30)
For r = 4, the top degree of HH_0(J) should = 9
In degree 9: (#rows,#cols,rank)=(30, 27, 27)
In degree 10: (#rows,#cols,rank)=(42, 48, 42)
For r = 5, the top degree of HH_0(J) should = 11
In degree 11: (#rows,#cols,rank)=(42, 36, 36)
In degree 12: (#rows,#cols,rank)=(56, 60, 56)
For r = 6, the top degree of HH_0(J) should = 14
In degree 14: (#rows,#cols,rank)=(72, 75, 70)

In degree 15: (#rows,#cols,rank)=(90, 108, 90)

For r = 7, the top degree of HH_0(J) should = 16
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In degree

In degree

16:

17:

For r = 8, the

In degree

In degree

18:

19:

For r = 9, the

In degree
In degree
For r = 10,
In degree
In degree
For r = 11,
In degree
In degree
For r = 12,
In degree
In degree
For r = 13,
In degree
In degree
For r = 14,
In degree
In degree
For r = 15,
In degree
In degree

For r = 16,

20:

21:

the

23:

24 :

the

25:

26:

the

27

28:

the

29:

30:

the

32:

33:

the

34:

35:

the

(#rows,#cols,rank)=(90, 90, 88)
(#rows,#cols,rank)=(110, 126, 110)
top degree of HH_0(J) should = 18
(#rows,#cols,rank)=(110, 108, 105)
(#rows,#cols,rank)=(132, 147, 132)
top degree of HH_0(J) should = 20
(#rows,#cols,rank)=(132, 126, 124)

(#rows,#cols,rank)=(156, 168, 156)

top degree of HH_0(J) should = 23
(#rows,#cols,rank)=(182, 192, 180)
(#rows,#cols,rank)=(210, 243, 210)

top degree of HH_0(J) should

25
(#rows,#cols,rank)=(210, 216, 208)

(#rows,#cols,rank)=(240, 270, 240)

top degree of HH_0(J) should = 27
(#rows,#cols,rank)=(240, 243, 234)
(#rows,#cols,rank)=(272, 300, 272)

29

top degree of HH_0(J) should
(#rows,#cols,rank)=(272, 270, 264)
(#rows,#cols,rank)=(306, 330, 306)

top degree of HH_0(J) should = 32

(#rows,#cols,rank)=(342, 363, 340)

(#rows,#cols,rank)=(380, 432, 380)

top degree of HH_0(J) should = 34
(#rows,#cols,rank)=(380, 396, 378)
(#rows,#cols,rank)=(420, 468, 420)

top degree of HH_0(J) should = 36
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In degree
In degree
For r = 17,
In degree
In degree
For r = 18,
In degree
In degree
For r = 19,
In degree
In degree
For r = 20,
In degree

In degree

36:

37:

the

38:

39:

the

41:

42

the

43:

44 .

the

45:

46:

(#rows,#cols,rank)=(420, 432,
(#rows,#cols,rank)=(462, 507,
top degree of HH_0(J) should
(#rows,#cols,rank)=(462, 468,
(#rows,#cols,rank)=(506, 546,
top degree of HH_0(J) should
(#rows,#cols,rank)=(552, 588,
(#rows,#cols,rank)=(600, 675,
top degree of HH_0(J) should
(#rows,#cols,rank)=(600, 630,
(#rows,#cols,rank)=(650, 720,
top degree of HH_0(J) should
(#rows,#cols,rank)=(650, 675,

(#rows,#cols,rank)=(702, 768,

The codes for those commands are listed below:

standardGraph = () -> (

-- return a (V, E) pair

V :={

{-2,1}, {0,0}, {2,1},

414)

462)

38
454)

506)

41
550)

600)

43
598)

650)

45
644)

702)

—-- interior vertices,

{0,-1}, {0,3}, -- connect to Oth vertex

{0,3}, -- connect to vertex #1

{0,3}, {0,-1} —-- connect to vertex #2

+;

E := {{0,1}, {1,2}, -- interior edges
{0,3}, {0,4}, -- connect to vertex #0
{1,5}, -- connect to vertex #1
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{2,6}, {2,7} -- connect to vertex #2
+;

(V,E)

)

containsVertex = method()
-— given an index ’v’ into the list of vertices V, find the edges in E incident
to v.
containsVertex(ZZ, List) := (v, E) -> positions(E, e -> member(v, e))
linearForm = method(Options => {Ring => QQ[getSymbol "x", getSymbol "y",
getSymbol "z"1})
linearForm(List, List) := opts -> (e, V) > (

-- e is a list of 2 indices into V, generally an element of E

-- returns a linear form in the ring opts.Ring

R := opts#Ring;

x := R_0;

y := R_1;

z := R_2;

f := det matrix{{x,y,z},append(V_(e_0), 1), append(V_(e_1), 1)};

(trim ideal f)_0

)

HOmatrix = method(Options => options linearForm)
HOmatrix(ZZ, List, List) := opts -> (r,V,E) -> (
-- assumptions:

-- (1) the first 3 vertices of V are the interior ones, in a line
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-—= (2) each of these vertices is connected to precisely 3 others.

S := opts#Ring;

e0 := containsVertex(0, E);
el := containsVertex(1l, E);
e2 := containsVertex(2, E);
if #e0 =!= 3 or #el =!= 3 or #e2 =!= 3 then error "expected 3 edges from

the first three vertices";

linforms := for e in E list linearForm(e, V, opts);
Z0 := syz matrix{(linforms_e0)/(f -> £~ (r+1))};
Z1 := syz matrix{(linforms_el)/(f -> £~ (r+1))};
Z2 := syz matrix{(linforms_e2)/(f -> £~ (r+1))};

M := (submatrix(Z0, {0}, ) || matrix{{0,0}})

| submatrix(Z1, {0,1}, )

| (matrix{{0,0}} || submatrix(Z2, {0}, ));
map(S~{2: -r-1},,M)
)

computeCounterexample = method()
computeCounterexample (ZZ,List,List) := (r,V,E) -> (
degl := floor((9*r+2)/4);
<< "For r = " << r << ", the top degree of HH_0(J) should = " << degl <<
endl;
--(V,E) := standardGraph();

f := HOmatrix(r, V, E);

Rp := ZZ/32003[gens ring f];
fp := sub(f, Rp);
dl := degreePart(degl,fp);
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<< " In degree " << degl << ": (#rows,#cols,rank)=" << (numrows dl, numcols
dl, rank d1) << endl;

d2 := degreePart(degl+l,fp);

<< " In degree " << degl+l << ": (#rows,#cols,rank)=" << (numrows d2,
numcols d2, rank d2) << endl;

)
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APPENDIX B
EXPLICIT EXAMPLES OF ARTINIAN GORENSTEIN RINGS WITH
GIVEN BETTI DIAGRAM

In this section, we would like to find an explicit example for each Betti diagram in Table 3.1
and 3.2.
Recall that a subscheme I' C P" apolar to F, if the homogeneous ideal Iy C F* C T. The

following lemma is well-known and can be found in [21, Lemma 1.15].

Lemma B.1 (Apolarity Lemma). Let I' = {V (l1),...,V(ls)} C P(S1) = P" be a collection
of s distinct points. Then
F=ME+ 4+ 00 (B.1)

if and only if

Irc FtcT.

With Lemma B.1, we find explicit examples of Artinian Gorenstein rings with given Betti

diagram B = (3, ;) by the following steps:

e Step 1: Find a point set I' C P such that the defining ideal T'/Ir has the same top

row Betti numbers with B.

e Step 2: If I' = {V(ly),...,V(ls)} C P(Sy) =P", we take
f=0++1
to be the dual socle generator of Ay.

e Step 3: Verify that A; has the given Betti diagram B.

We perform these steps by Macaulay?.
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il

ol

ol

i2

02

02

i3

03

03

i4

o4

od :

ib5

o5

05

i6

o6

o6

: kk=QQ

QQ

: Ring

: T = kk[x,y,z,w]

T

: PolynomialRing

: linearForm = pt -> sum for i from O to 3 list pt#i * T_1i

linearForm

: FunctionClosure

quartic = (pts) -> sum for p in pts list (linearForm p)~4
quartic

FunctionClosure

: randomPoint = nvars -> for i from 1 to nvars list random kk

randomPoint

: FunctionClosure

: randomPoints = (d, nvars) -> for i from 1 to d list randomPoint nvars

randomPoints

: FunctionClosure

The command quartic expects one parameter pts, which is a list of coordinates of points

in P2, The output is a quartic form as in equation (B.1).

The command randomPoints expects two parameter (s, n), where s and n are positive integers.

The output is a list of coordinates of random s points in P*~!.

Using these commands, we obtain a quartic form f such that Ay has given Betti diagram in
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each of the following case, where I' denotes an apolar point set to f as in Lemma B.1.

B.1 CGKK1

For CGKK1, the apolar point set I' contains four points in general position.

i7 : --CGKK1
F = quartiC {{170;050},{0,130,0},{03011’0}7{070’031}};

i8 : I = inverseSystem F;
08 : Ideal of T

19 : betti res I

01 234
09 = total: 1 916 9 1
o: 1. .
1: 6 83
2: .o
3: 3 86 .
4: 1

09 : BettiTally
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B.2 CGKK2

For CGKK2, the apolar point set I' contains five points in general position.

i10 : F

quartic {{1,0,0,0},{0,1,O,O},{O,O,130}’{0’0;0,1}:{1:1,1’1}};

i1l I

inverseSystem F;
ol1l : Ideal of T

i12 : betti res I

01 234
0l2 = total: 1 6 10 6 1
0: 1.
1: 5 b
2: 1 1
3: 55 .
4: 1

012 : BettiTally
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B.3 CGKK3

CGKK3 is a complete intersection of four quadrics.

i13 @ I = ideal(x"2,y"2,z"2,w"2)

2 2 2 2

013 ideal (x , vy, z , w)

013 : Ideal of T

i14 : betti res I

01234
0l4 = total: 146 4 1
0: 1.
1: 4
2: 6 . .
3: .4 .
4: 1

0l4 : BettiTally
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B.4 CGKK4

For CGKK4, the apolar point set I' contains 7 points in general position.

i15 : F

quartic randomPoints(7,4);

il6 :

—
Il

inverseSystem F;
0l6 : Ideal of T

117 : betti res I

01 234
017 = total: 17 12 7 1
0: 1.

1: 3

2: 4 12 4
3: . 3.
4: 1

0l7 : BettiTally
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B.5 CGKKS5,6

For CGKK?5,6, the apolar point set I' contains 7 points on a twisted cubic curve.

i18 : --CGKK5,6
pts = for i from O to 6 list for j from O to 3 list i7j;

i19 : F

quartic pts;

i20 ¢ I

inverseSystem F;
020 : Ideal of T

i21 : betti res I

01 234
021 = total: 1 9 16 9 1
o: 1. .
1: 3 2.
2: 6 12 6 .
3: 2 3.
4: 1

021 : BettiTally
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B.6 CGKK7,8

For CGKKY7,8, the apolar point set I" contains 8 points in general position.

i22 : --CGKK7,8
F = quartic randomPoints(8,4);

i23 : I

inverseSystem F;
023 : Ideal of T
i24 : betti res I
0 1 2 34

024 = total: 1 10 18 10 1
1

D W N~ O
(0]
[N
oo
oo

024 : BettiTally
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B.7 CGKKY9,10

For CGKK9,10, the apolar point set I' contains 9 points in general position.

i25 : F

quartic randomPoints(9,4);

i26 :

—
Il

inverseSystem F;
026 : Ideal of T

i27 : betti res I

0 1 2 34

027 = total: 1 13 24 13 1
0: 1 .

1: 1 . ..

2: 12 24 12 .

3: 1.

4: 1

027 : BettiTally
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B.8 CGKKI11

For CGKK11, the apolar point set I" contains 10 points in general position.

i28 : F

quartic randomPoints(10,4);

i29 : I

inverseSystem F;
029 : Ideal of T
i30 : betti res I
1 2 34

0
030 = total: 1 16 30 16 1
1

16 30 16 .

D W N - O

030 : BettiTally
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B.9 Type 2.1

For Type 2.1, the apolar point set I' contains 8 points such that 6 of them lie on a P2,
i31 : ——Type 2.1
F = quartic {{1,0,0,0}, {0,1,0,0}, {0,0,1,0}, {1,1,1,0},
{2,3,7,0}, {17,2,31,0}, {-2,7,4,10}, {4,8,20,50}};
i32 : I = inverseSystem F;
032 : Ideal of T
i33 : betti res I
0 1 2 34

033 = total: 1 11 20 11 1
1

O N -
[E
o

D W N - O
'_\
N © -

033 : BettiTally
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B.10 Type 2.2

For Type 2.2, the apolar point set I' contains 7 points such that 5 of them lie on a P2,

i34 : F = quartic {{1,0,0,0}, {0,1,0,0}, {0,0,1,0}, {1,1,1,0%},
{2,3,7,0}, {-2,7,4,10}, {13,-2,17,30}};

i35 : I = inverseSystem F;
035 : Ideal of T

i36 : betti res I

01 234
036 = total: 1 8 14 8 1
o: 1. .
1: 3 1.
2: 512 5 .
3: 13.
4: 1

036 : BettiTally
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B.11 Type 2.3

For Type 2.3, the apolar point set I' contains 6 points such that 3 of them lie on a P!.

i37 : F = quartic {{1,0,0,0}, {0,1,0,0}, {1,1,0,0}, {1,0,1,0%,
{0,0,0,1}, {0,0,1,1}};

i38 : I = inverseSystem F;
038 : Ideal of T

139 : betti res I

01 234
039 = total: 17 12 7 1
o: 1. .
1: 4 3 .
2: 3 63.
3: 34 .
4: 1

039 : BettiTally
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B.12 Type 2.4

For Type 2.4, the apolar point set I' contains 6 points in general position.

i40 : F = quartic randomPoints(6, 4);

i41

—
Il

inverseSystem F;
041 : Ideal of T

i42 : betti res I

01 234
042 = total: 1 6 10 6 1
o: 1. .
1: 4 2 .
2: 2 6 2.
3: 24 .
4: 1

042 : BettiTally
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B.13 Type 2.5

For Type 2.5, the apolar point set I' contains 7 points such that 6 of them lie on a P2,

i43 : F = quartic {{1,0,0,0}, {0,1,0,0}, {0,0,1,0}, {1,1,1,0%},
{2,3,7,0}, {17,2,31,0},{-2,7,4,10}};

i44 : I = inverseSystem F;
044 : Ideal of T
i45 : betti res I

0 1 2 34

045 = total: 1 11 20 11 1
1

= N W
—_
S ow o
w N =

D W N - O
w

045 : BettiTally
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B.14 Type 2.6

For Type 2.6, we may choose the apolar point set I' to be a set of 6 points such that they

lie on two skew lines.

i46 : F = quartic {{1,0,0,0}, {0,1,0,0}, {1,1,0,0}, {0,0,1,0%},
{0,0,0,1}, {0,0,1,1}};

i47 : I = inverseSystem F;
047 : Ideal of T

148 : betti res I

01 234
048 = total: 1 9 16 9 1
0: 1 .
1: 4 41
2: 4 8 4
3: 1 4 4 .
4: 1

048 : BettiTally

Another way to obtain this Betti diagram is to choose I' to be a set of 6 points such that

5 of them are on a P2
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B.15 Type 2.7

For Type 2.7, the apolar point set I' contains 5 points such that 4 of them lie on a P2,

149 : —-Type 2.7
F = quartic {{1,0,0,0},{0,1,0,0},{0,0,1,0},{1,1,1,0},{0,0,0,1}};

i50 : I = inverseSystem F;
050 : Ideal of T

i51 : betti res I

01 234
ob1 = total: 17 12 7 1
0: 1.
1 5 51
2 1 21
3: .1 55 .
4 . 1

051 : BettiTally
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B.16 Type 2.8

For Type 2.8, the apolar point set I' contains 5 points such that 3 of them lie on a P!.

i52 : F

quartic {{1,0,0,0},{0,1,O,O},{l,1,030}’{0’0;1,O}:{O:O,Oyl}};

ib3 : I

inverseSystem F;
053 : Ideal of T

i54 : betti res I

01 234
054 = total: 1 9 16 9 1
o: 1. .
1 5 6 2
2 2 42
3: .2 65.
4 . 1

054 : BettiTally
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