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Abstract
We discuss the status of gravitational radiation in Newtonian theories. In order to do so, 
we (i) consider various options for interpreting the Poisson equation as encoding propa-
gating solutions, (ii) reflect on the extent to which limit considerations from general 
relativity can shed light on the Poisson equation’s conceptual status, and (iii) discuss 
various senses in which the Poisson equation counts as a (non-)dynamical equation.

1  Introduction

In recent years, there has been a heightening of interest in Newton-Cartan theory 
(NCT): a geometrised version of Newtonian gravity, in which gravitational effects, 
as in general relativity (GR), are understood to be a manifestation of spacetime cur-
vature. This interpretation of NCT is evident from the form of the field equation of 
the theory, the geometrised Poisson equation,

Here, Rab is the Ricci tensor associated with a derivative operator which is compat-
ible with a spatial ‘metric’ hab of signature (0, 1, 1, 1) and a temporal ‘metric’ tab of 
signature (1, 0, 0, 0), and � = Tabtab is a matter density scalar field ( Tab is the stress-
energy tensor). The coupling of geometry to matter in (1) is manifest, as it is for 
Einstein’s equation of GR.1

It is increasingly well-appreciated that the parallels between NCT and GR run 
deep: in both theories is it possible to prove geodesic theorems [34], singularity 

(1)Rab = 4�tab�.
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theorems [35], and recovery theorems [31]; moreover, in both theories is it possible 
to define conformal structures [8], and in both theories is the notion of gravitational 
energy problematic [9, 11]. With these parallels in mind, in this article we direct our 
attention towards the following question: to what extent do gravitational waves exist 
in NCT? Here there is a puzzle, for opinions in the extant literature diverge radically. 
On the one hand, Hansen et al. write that

... the equations of motion of [NCT, (1)] do not admit gravitational wave solu-
tions: they are true relativistic phenomena. [19, p. 6]

On the other hand, Dewar and Weatherall, after having constructed a non-trivial 
Newtonian analogue of the Weyl tensor, conclude that

This suggests that we should take homogeneous solutions to the Poisson equa-
tion (1) to include, among other things, the Newtonian analog of gravitational 
waves [9, p. 574]

Who is correct here? The purpose of the present article is to resolve this issue. 
While not all of the aforementioned parallels between GR and NCT are necessarily 
surprising given that GR reduces to NCT,2 the existence of gravitational waves in 
NCT—so far always considered a characteristic trait of the full general relativistic 
regime—would indeed come as a revelation. Central to settling this interpretational 
issue is the following question: to what extent is the matter-free geometrised Pois-
son equation of NCT (or, for our purposes of similarly high interest, the homogene-
ous Newton-Poisson equation3) in fact a dynamical equation? Alternatively: to what 
extent are the solutions of this equation to be interpreted as propagating solutions? It 
is these questions which we seek to answer in this article; we proceed as follows. In 
Sect. 2, we consider options for interpreting elliptic equations (such as the Poisson 
equation (1)) as encoding propagating solutions. In Sect. 3, we consider the extent 
to which considering (1) as arising from a non-relativistic limit of GR can shed light 
on its conceptual and dynamical status. Section 4 discusses various senses in which 
the Poisson equation may or may not count as a dynamical equation—arguably with 
repercussions for whether its solution can genuinely count as propagating waves 
after all. Section 5 concludes.

2  A rigorous formulation of this formal reduction is due to [13], but it was only very recently that it was 
given a compelling physical interpretation by [15]. Recent reconsiderations of the Newtonian limit of 
GR in the physics literature have been presented by [19–21]; these investigations have allowed authors 
to write down for the first time an action principle for an extended version of NCT (albeit not for NCT in 
the traditional presentation of e.g. [23, ch. 4]).
3  In light of the Trautman geometrisation and recovery theorems [23, ch. 4], every solution to the homo-
geneous geometrised Poisson equation has a corresponding solution to the homogeneous Newton-Pois-
son equation, and vice versa (at least assuming the canonical additional curvature conditions—see [23, 
ch. 4]). For convenience we will in fact often work with the Newton-Poisson equation in the ensuing—
although our points will apply to both equations.
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2 � The Poisson Equation

Dewar and Weatherall recognise that (1) is elliptic, and thus cannot straightfor-
wardly represent propagating solutions in the same sense as do hyperbolic equa-
tions.4 Nevertheless, they claim that elliptic equations can still represent propagating 
solutions, in two (weaker) senses. The first is that the solutions of elliptic equations 
may nevertheless be ‘wavelike’; the second is that solutions of elliptic equations can 
be considered to be propagating waves insofar as they are obtained via the Newto-
nian limit of GR wave solutions. In the following two subsections, we consider these 
arguments in turn.

2.1 � Wavelike Solutions to Elliptic Equations

Dewar and Weatherall’s first argument that there can be gravitational wave solutions 
of the geometrised Poisson equation (1) (and also, given Trautman geometrisation 
and recovery, to the Newton-Poisson equation) begins with the claim that the solu-
tions of an elliptic equation

may [nevertheless] be “wavy”, in the sense of exhibiting some periodicity: 
e.g., � = exey sin

�√
2z
�
 is a homogeneous solution to Poisson’s equation that 

is sinusoidal in the z direction [9, p. 574].

Dewar and Weatherall take the alleged ‘waviness’ of such solutions as indicating a 
sense in which these solutions should still count as propagating. In our view, there 
are several issues with this. First, it is not clear why a solution should count as wave-
like just because it features oscillatory functions, such as (in the above case) a sine 
function of one (local) spatial coordinate. Generally, accepted forms of waves are 
after all functions of the form f (z ± v(x, y, z, t)t) when expressed in an appropriately 
adapted coordinate system,5 together with some constraints on the form of f and v.

Secondly, even if the (spatial) solutions to the Poisson equation are stacked onto 
each other over time with the appropriate boundary conditions imposed, they seem 
at first sight only to be associated with standing waves: the time component seems 
to only (if at all) oscillate independently of the spatial component—giving rise to 
standing wave solutions such as

Ψ(x, y, z, t) = sin(�t)exey sin
�√

2z
�
.

4  This sentiment strikes us as the orthodox view. Just very recently, for example, James writes that
 � If we wish to be informed about dynamics, an elliptic system will not do. Given that the study of 
dynamics just is the study of processes evolving in time, it is to be expected that the mathematical tools 
designed for this purpose distinguish timelike directions, as hyperbolic PDEs do [22, p. 27].

  Later in this article, we will evaluate critically some of James’ claims in this regard.
5  We do not necessarily want to hereby say that this is the most general form of an admissible wave 
function. One might, for instance, maintain that an argument of the form f

(
z3 ± v(x, y, z, t)t3

)
 just as well 

gives rise to wavelike phenomena. We omit in this paper a discussion of these more general functions.
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More generally, an evolution of solutions to the vacuum gravitational Poisson equa-
tion over time can be given by a continuous piecewise function, each piece of which 
is a product of a temporal factor and a solution to the homogeneous Poisson equa-
tion (cf. [9, p. 574] and [33]), that is

where fa(t) and �a are time-dependent functions and oscillatory solutions to the 
Poisson equation, respectively.6

Thus considered, there is, in fact, a straightforward—albeit unorthodox—way of 
making spatial oscillatory functions ‘move’ over time: consider two spatial solutions 
oscillatory in the z-direction, with approximately the same (spatial) periodicity and 
amplitude, but one solution shifted by a small distance in z direction with respect to 
the other. A moving ‘wave’ can then be obtained by letting time functions appro-
priately weigh ‘neighbouring’ spatially oscillatory solutions such that neighbouring 
oscillatory solutions subsequently blend into one another. If this ad hoc construction 
of a moving wave is after all convincing, we have indeed found a sense in which 
NCT allows for propagating waves. That is, we can arbitrarily approximate travel-
ling waves

through the superposition of standing wave solutions

where A(a,  t) is an appropriately-chosen modulating amplitude (essentially allow-
ing for the blending of the oscillatory function sin(z − z�

0
(a)) into sin(z − z�

0
(a�)) over 

time), and a is a variable marking individual oscillatory functions, in particular their 
characteristic shift z�

0
(a) and their aforementioned time-varying amplitudes A(a, t)).

It is important to stress that these wavelike potentials are not gauge artefacts, but 
empirically relevant insofar as the force field associated to the potential inherits its 
propagating nature; for instance, for the potential Ψ(x, y, z, t) above, the correspond-
ing force field amounts to

Ψ(x, y, z, t) =
∑
a

fa(t)�a,

Ψ�(x, y, z, t) = sin(z − z0(t))

Ψ(x, y, z, t) = ∫ daA(a, t) sin(z − z�
0
(a)),

F⃗(x, y, z, t) ∶= −∇⃗Ψ(x, y, z, t) = ∫ daA(a, t)

⎛
⎜⎜⎝

sin(z − z�
0
(a))

sin(z − z�
0
(a))

− cos(z − z�
0
(a))

⎞
⎟⎟⎠
.

6  The superposition principle we are exploiting here for the vacuum Newton Poisson equation holds 
also for its NCT analogue: as [23, p. 269] shows, Rbc = tbtc∇a∇

a� , where Rbc is the Ricci tensor of the 
geometrised NCT connection, and ∇ is a flat connection of standard Newtonian gravity. This implies lin-
earity of the NCT Ricci tensor R�

ab
 relative to the corresponding Newtonian potential � (as linked to one 

another via the recovery theorem): R�+�

bc
= tbtc∇a∇

a(� + �) = tbtc(∇a∇
a� + ∇a∇

a�) = R
�

bc
+ R

�

bc
 . Our 

thanks to Neil Dewar for discussion on this point.
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This force field can be directly measured through point particle probes. Transition-
ing back to the geometric picture of Newton-Cartan gravity via the Trautman recov-
ery theorem, such propagating changes in the potential/Newtonian force field cor-
respond to moving ‘ripples’ of spacetime (which are just as well measurable through 
point particle probes).7

Nevertheless, a straightforward reification of these individual standing waves 
making up the propagating wave, à la a naïve realist, seems to first of all speak 
against such a construction: there is no single wave moving here, but rather a con-
spiratorial evolution of individual standing waves. However, progress can be made 
by asking the following question: independently of the mathematical means of rep-
resentation of a certain state of affairs, what is effectively expressed by the math-
ematical expressions under consideration? And here it seems without doubt that the 
right temporal modulation of spatially oscillatory functions can codify a moving 
pattern—even though, within our mathematical description, this looks like a con-
spiratorial set-up of standing-waves.8 So, as long as we think of the mathematical 
language at play as first of all a toolkit, without premature attempts at direct reifica-
tion, a set of appropriately modulated ‘standing’ waves can just as well be used to 
describe signal transport as an ordinary plane wave package.9

Still, a propagating solution that is in any physically meaningful sense asso-
ciable with information/signal transfer must, one might think, be linked to energy 
transfer. But standing waves are exactly those kind of waves that do not allow for 
energy transfer—why should some concerted movement of several standing waves 
be linked to energy transfer, then? Now, in response to this, one might (1) attack the 
view that information/signal transfer is necessarily associated with energy transfer as 
such, or one might (2) associate some notion of energy to the piecewise constructed 
propagating solution at an emergent level. In support of (1), one could say that it is 
only under the presupposition of a possibly-problematic energy-transfer account of 
causality that we arrive at this view; and that a physical notion of wave propagation 
is possible without such an energy-transfer account. In fact, Dewar and Weatherall 
express in the very same paper their concern about the status of gravitational energy 
in NCT. Thus, they should indeed, it seems, regard it as being problematic to attrib-
ute energy transfer to gravitational waves in NCT; they might then seek to extend 
this separation of the notions of information/signal transfer and energy transfer to all 
Newtonian contexts. One potential resource to which Dewar and Weatherall could 
appeal here is the work of Dürr on gravitational waves in GR: they exist, and can 
propagate to mediate information transfer, but they do not carry energy (cf. [10]).

7  It is worth flagging that, in the geometrised framework, these ‘ripples’ are not spatial, given that NCT 
is spatially flat [23, ch. 4].
8  See [9, fn. 48] for some related metaphysical discussion.
9  By analogy with the Goodman paradox [17], one might regard the piecewise functions at play in our 
example as trading exclusively in terms of non-projectable predicates, each defined at one time only 
(cf. [28])—while still allowing for talk of the matters at hand in terms of different, projectable predicates: 
the diachronic description of the wave. Less linguistically, and more ontologically speaking, one might 
simply say that ‘being a propagating effect’ or a ‘propagating wave’ are functional concepts which find 
physical realisation in many ways.
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What about option (2), given that a functionalist stance on signal propagation is 
arguably a natural inspiration for taking the relevant notion of energy at play to be 
a higher level functionalist concept as well?10 We accepted a long time ago that a 
notion of energy at one level of description does not require a notion of energy at 
a lower level of description. This is because notions of energy are associated with 
notions of time-translation invariance which itself is a symmetry which can be real-
ised at one level of description even if it is not realised at more or less fundamental 
levels of description. While we do not see ourselves in a position to calculate such a 
putative higher-level notion of energy explicitly in the current case, there is no clear 
sense in which this option is ruled out either; the objection can at least not be that 
there is no way to associate the piecewise-constructed wave functions to a sensible 
notion of energy transfer at a coarse-grained level.

Furthermore, it is worth pointing out that the current proposal for information-
carrying solutions to the (purely spatial) Poisson equation(s) and an additional(!) 
temporal direction need not clash with any claim to the effect that elliptic equations 
are not informative in a preferred direction (cf. [22]). The temporal direction is not 
part of the elliptic geometric Poisson equation to begin with; rather, the information-
propagating aspect is simply gained by suitable ‘stacking’ of solutions to the Pois-
son equation at each instant.

2.2 � Newtonian Limits of Relativistic Waves

The second sense in which elliptic equations such as the Newton-Poisson equation 
can still, for Dewar and Weatherall, represent propagating solutions is articulated by 
considering the Newtonian limit of GR. In particular, they write that

we may think of Newtonian Weyl curvature as characterizing relativistic 
Weyl curvature–including gravitational waves–in the limit where the metric 
light cones flatten–and thus, the propagation velocity diverges. [Footnote sup-
pressed.] In this limit, one would expect gravitational degrees of freedom to 
propagate instantaneously, in precisely the way described by an eliptic [sic] 
equation. [9, p. 575]

There are two possible interpretations of the solutions to the Poisson equation 
(1)11—as representing either (i) no propagation, or (ii) instantaneous propaga-
tion—and, indeed, authors often vacillate between them.12 Dewar and Weatherall, 

12  For example, at one point in their response to Dewar and Weatherall, Dürr and Read write of NCT 
that

�Its defining partial differential equations are elliptic. Hence, information about variations in a region 
propagates instantaneously. [11, p. 1002, fn. 28]
Later, however, they write that
�NCT’s Poisson Equation is elliptic. Hence its solutions can’t propagate. In that sense, there is of 
course no gravitational radiation [11, p. 1003].

10  Cf. the functionalist take on gravitational stress-energy in GR presented in [27].
11  The geometric Poisson equation (1) encodes information in 3-dimensional spacelike hypersurfaces; 
the question is to what extent such equations can (at least indirectly—see below) model evolution in the 
additional (temporal) direction.
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however, seek to break the symmetry in the Newtonian case with respect to gravi-
tational radiation in that theory by considering the Newtonian limit of GR. To this, 
however, we would reply in the spirit of [11] as follows: the only way in which 
Dewar and Weatherall justify an interpretation of the Poisson equation as giving rise 
to gravitational waves is by reference to GR: but they thus do not establish that New-
tonian gravity or NCT, considered on their own terms, in any clear and comprehen-
sible manner features anything earning the name of a gravitational wave.

To make this point clear, note that the three-dimensional Newton-Poisson equa-
tion can be obtained from all sorts of differential equations, not just from hyperbolic 
partial differential equations, and in particular not just from the four-dimensional 
wave equations. For instance, it might just as well be obtained from a four-dimen-
sional diffusion/heat equation: one simply need take the � → 0 limit of

Without specific theory-relative information undergirding Dewar and Weatherall’s 
interpretation of the Poisson equation (1), there is no reason then why certain solu-
tions should be read as idealised propagation processes akin to those described by a 
wave equation. Even if one upholds the posit that instantaneously-propagated physi-
cal effects are ultimately idealised descriptions of a finite propagation speed, noth-
ing in NCT itself reveals whether the solutions to homogeneous equations describe 
propagation to begin with!

So, there are issues with using inter-theory relations to justify the existence of 
instantaneously-propagating gravitational waves in NCT. To bring these problems 
out further, consider the following reasoning, which would go through by analogy 
with Dewar and Weatherall’s own: is it the case that a point charge in NCT is (at 
times) a classical black hole—just because the former can be obtained from the lat-
ter in the course of the reduction of Schwarzschild spacetime to an NCT spacetime? 
Or: is the Newtonian mass a relativistic mass just because it comes out of the limit 
of a relativistic mass?13

How might one respond on behalf of Dewar and Weatherall here? The following 
seems to us a reasonable line to take: although it is true that theories do, at least in 
part, ‘wear their interpretations on their sleeves’ (in, e.g., fixing their own senses of 
what is observable: see [30]), it is nevertheless the case that there are certain aspects 
of the interpretation of a theory which are determined only by pragmatic and con-
textual considerations regarding the application of that theory currently being made. 
For example, a simple harmonic oscillator equation might represent a block on a 
Hookean spring in one context, and an LC-circuit in another [16, §3.1]. Likewise, 
when we are discussing the Poisson equation as above, this may represent gravita-
tional degrees of freedom in one context (in particular: when one is considering it 
qua limit of the field equations of GR), but not in another context (e.g.: when one 
is considering it qua limit of the diffusion equation). Thus, Dewar and Weatherall’s 

(2)�
��

�t
= ∇2� .

13  For a rigorous discussion of mass in the Newtonian limit of GR, see [5].
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claims here are more defensible, if one backs away from a specific central conceit of 
the ‘semantic approach’ to scientific theories (cf. [32] for some classic discussion)—
that models of a given theory may be interpreted ab initio as representing possible 
worlds, without further input contextual considerations—and moves towards a more 
‘pragmatic’ approach to theory interpretation.14 If one does so, then one is able to 
say that, since Dewar and Weatherall’s discussion is situated entirely in the con-
text of considerations of gravitational physics, it is indeed appropriate to interpret 
terms in (1) in a way which is informed by limiting relations from other gravitational 
theories.

To summarise this section, then: Dewar and Weatherall maintain that solutions to 
the homogeneous Poisson equation in NCT can represent propagating gravitational 
degrees of freedom, and provide two arguments for this. First: it is possible to under-
stand solutions to an elliptic equation as representing propagation. We have seen 
that Dewar and Weatherall’s own argument for this (in terms of oscillatory func-
tions) is too fast—but that there does remain room to defend this claim, by appealing 
to piecewise-composed standing waves, together with a functionalist interpretation 
of these objects. (In addition, we have argued that concerns regarding the capacity 
of such objects to mediate energy transfer can be overcome.) Second: Dewar and 
Weatherall argue that one can interpret solutions of the homogeneous Poisson equa-
tion, when extended by an additional time direction, as mediating energy transfer 
by considering the Newtonian limit of GR—to which we respond that one has to be 
very careful with this style of reasoning, for it has the capacity to over-generate (as 
we will also see again in the next section); in our view, in making these claims, one 
has to be explicit about the theoretical context currently under consideration.

3 � Limit Considerations on the Poisson Equation

In this section, we demonstrate that the central dynamical equation of NCT, the 
Poisson equation (1), is obtained by taking the Newtonian limit of the Hamiltonian 
constraint of 3+1 GR, at least when restriction is made to asymptotically flat such 
spacetimes. Insofar as constraints (one might argue) cannot encode dynamics, one 
might conclude that Dewar and Weatherall’s argumentation given in the previous 
section, to the effect that the NCT Poisson equation should be interpreted by consid-
ering the Newtonian limit of GR, fails on its own terms as a means of establishing 

14  In this regard, we agree with many of the morals laid out in [7]. For more background on a ‘prag-
matic’ approach to theory interpretation, see [36]. Note that our concerns about ab initio interpretation 
here are different from those expressed by the so-called ‘motivationalist’ about symmetries (see [24, 25, 
29, 30]), for whom symmetry-related models of a given theory may not be taken from the outset to rep-
resent the same physical state of affairs, but rather for whom such interpretation is only legitimate after a 
‘metaphysically perspicuous characterisation’ of the ontology of those models has been secured. In par-
ticular, our cause for hesitance here raises its head at an earlier stage: it is not legitimate to interpret mod-
els of a given theory as representing particular worlds at all, absent appreciation for the wider context in 
which that theory is currently being used.
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a dynamics of propagating gravitational waves in NCT. The general question for the 
dynamical status of the Poisson equation will be addressed in the next section.

To begin, recall that, in the 3+1 decomposition of the Einstein equation, the 
Hamiltonian constraint—part of the elliptic content of the Einstein equation—reads 
[18, p. 60]

Here, RΣ is the Ricci scalar associated with the intrinsic curvature of the hypersur-
face Σ , Kij is the extrinsic curvature of Σ , and K ∶= � ijKij , where � ij is the induced 
Euclidean 3-metric on Σ . Now, using the scalar Gauss relation [18, p. 35], we can 
rewrite the left-hand side of (3) in terms of the curvature of the Lorentzian 4-metric 
gab , to obtain

where na is a unit vector normal to Σ . We are now in a position to consider the New-
tonian limit of this equation; we do so using Ehlers’ ‘frame theory’ (see [13]). In the 
frame theory limit,15 one finds that

Moreover, the derivative operator compatible with gab maps to a (not necessarily 
unique) derivative operator compatible with both hab and tab . Replacing the geomet-
rical objects in (4) with their frame theory limits (see [23, p. 258]), one then finds

From hereon, we assume temporal orientability, in the sense that tab = tatb [23, 
p.  251]: this assumption is innocuous, in light of the fact that we are consider-
ing the Newtonian limits of general relativistic spacetimes which admit of a 3+1 
decomposition. In the frame theory limit, na becomes a timelike vector, in the sense 
that nata = 1 [5, p. 104]. Now, (i) assuming that one is dealing with asymptotically 
flat 3+1 solutions of general relativity, we recover Rab

cd = 0 [12, p. A121], which 
implies spatial flatness, and so habRab = 0,16 (ii) that E

!
= � = Tabtatb , and (iii) that 

Tab = �nanb + pab where pab is a smooth, symmetric field that is spacelike in both 
indices ( tapab = 0 ) [23, p. 266], we have

(3)RΣ + K2 − KijK
ij = 16�E.

(4)R + 2Rabn
anb = 16�E,

(5)gab → tab,

(6)gab → hab.

(7)habRab + 2Rabn
anb = 16�E.

(8)nanbRab = 8��nanbtatb,

15  There are delicate issues regarding both the existence and uniqueness of frame theory limits: see [5, 
ch. 6] for discussion.
16  This follows straightforwardly: habRab = habRc

abc = Rcb
bc = 0 , where the last step follows from 

Rab
cd = 0 . As an alternative (but more restricted) approach here, one could use the results for static spa-

cetimes presented at [5, p. 104].
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from which it follows, after absorbing a factor of two into the energy density, that

where Ξab is a term such that nanbΞab = 0 . Contracting (9) with hab , we find that 
habΞab = 0 ; moreover, contracting (9) with a term of the form �a�b , where �a is a 
spacelike vector and �b is a timelike vector, we also find that �a�bΞab = 0 (cf. [23, 
p.  279]; the result deployed here assumes only Rab

cd = 0 , which follows already 
from the fact that we are considering the Newtonian limits of asymptotically flat 
3+1 GR spacetimes); thus, Ξab vanishes when projected onto spacelike, timelike, 
and mixed directions: and, so, it must vanish identically. In turn, then, we obtain

which is the geometrised Newton-Cartan Poisson equation. Thus, the central dynam-
ical equation of NCT is obtained by taking the Newtonian limit of the Hamiltonian 
constraint in 3+1 GR, at least when one restricts to asymptotically flat spacetimes.

What is the philosophical upshot of this result? Insofar as one thinks that con-
straints cannot be dynamical, and that significant aspects of the interpretation of 
one’s physics (including whether a given object is to be regarded as being a con-
straint or not) are preserved across limiting relations between theories (a view which 
we have already seen that Dewar and Weatherall endorse), this would seem to imply 
that, for Dewar and Weatherall, (1) cannot be regarded as being dynamical after all. 
We explore this line of reasoning in detail in the following section.

4 � The Dynamical Status of the Poisson Equation

Another take on the question of whether the Poisson equation (1) gives rise to gravi-
tational wave solutions proceeds via reflection on the ‘dynamical’ status of that 
equation. In GR, gravitational waves are solutions to the field equations. If the Pois-
son equation turned out, in some sense to be specified, to be less ‘dynamical’ than 
the field equations of GR, then there would again be reason to think that the putative 
gravitational waves in NCT are unsatisfactory, as compared with relativistic gravita-
tional waves.

To make progress in exploring this line of reasoning, we must first cash out sali-
ent senses of ‘dynamical’. One standard such sense derives from the kinematics/
dynamics distinction, which as such is a widely familiar element of physical theoris-
ing (see [6] for some recent discussion). In turn, this distinction can be disambigu-
ated in at least three ways:17

(9)Rab = 4��tatb + Ξab,

(10)Rab = 4��tatb,

17  All three of these understandings are at least implicit in how [6] presents the kinematics/dynamics dis-
tinction. Arguably, Curiel’s own view is closest to the second of the three options presented here.
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Modal reading	� Kinematical structure is comprised of concrete relations18 
between physical quantities that are by stipulation invariant 
across all possible solutions of a physical theory; dynamical 
structure is specified by the dynamical equations of the theory 
under consideration, and need not be invariant across all pos-
sible solutions of the theory.

Semantic reading	� Kinematical structure is comprised of those relations between 
physical quantities in a given physical theory which hold in 
virtue of meaning.

Essentialist reading	� Kinematical structure is comprised of those relations between 
physical quantities which hold in a given physical theory by 
virtue of the very essence of those quantities.

 Arguably, the modal and essentialist readings of the kinematics/dynamics distinc-
tion are closely related: on the modern post-Finean view, essentialist claims are 
automatically metaphysically necessary, but not vice versa (see [14]). It is also worth 
stressing that the kinematics/dynamics distinction applies across the entire spectrum 
of physical theories.19 For what follows in this article, it is not necessary to pick one 
reading over another.

The kinematics/dynamics distinction comes apart from two other distinctions 
related to a notion of ‘dynamics’: diachronic/synchronic (does the equation express 
evolution in time?), and that regarding hyperbolic/elliptic equations.20 On the first: 

18  As opposed to placeholder relations that feature quantities still in need of further specification: In the 
context of Newtonian mechanics, ẋ = v is a concrete relation, whereas F = mẍ is a placeholder relation 
(as the concrete form of F still needs to be fixed further in terms of the basic dynamical variables x, v and 
certain constants, as for instance done through choosing F ∶=

Gm1m2

x2
 in certain scenarios—cf. [6, p. 5]).

19  Although this point can only be sketched here, let us quickly stress that even two theories at first sight 
not well-linked to a kinematics/dynamics distinction in fact turn out to be so: 

1.	� According to [2], the kinematics/dynamics distinction gets blurred in general relativity: inertial 
structure—normally associated to kinematical structure—now becomes a matter of dynamics as 
well. However, note that the field equations together with the matter field equations of motion are 
part of the dynamical structure, and it is now only the underlying manifold structure together with 
once-and-for-all restrictions on which fields are permitted (for instance, just tensor/spinor fields, 
as arguably the case in GR) that forms the kinematical structure. Brown’s point should thus rather 
be taken as illustrating that what is kinematical, and what is dynamical, is a theory-relative matter 
(inertial structure is kinematical in Newtonian gravity but dynamical in GR).

2.	� Thermodynamics only makes explicit statements about equilibrium states and transitions between 
equilibrium states; it thus at most seems only to feature trivially the kinematics/dynamics distinc-
tion (there is simply no dynamical structure, one might claim). However: the kinematics/dynamics 
distinction is not one of time-invariant versus time-evolving quantities (see below), but rather one 
which distinguishes what is invariant about a system/picks out a system/essentially characterises 
a system from the viewpoint of that theory (see above), and what is said about these systems over 
and above. In fact, the so-called ‘minus first law’ of thermodynamics, according to which “An 
isolated system in an arbitrary initial state within a finite fixed volume will spontaneously attain a 
unique state of equilibrium” [3, p. 528], is exactly what picks out a thermodynamic system in the 
first place. The first law of thermodynamics, by contrast, is a condition a thermodynamic system 
could or could not fulfil: it is therefore dynamical.

20  For simplicity, we set aside parabolic differential equations in this article.
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a kinematical constraint need not be synchronic: consider, for example, the second 
homogenous Maxwell equation presented in Table 1, which is obviously diachronic. 
At the same time, the homogeneous Maxwell equations are best understood as being 
kinematical constraints, as they are constitutive of the electric and magnetic fields in 
the first place—in particular, these equations have the same concrete form indepen-
dently of the specific scenario of interest [6, p. 5]. Moreover, a dynamical constraint 
need not be diachronic: consider, for example, the first inhomogeneous Maxwell 
equation in Table  1, which is obviously synchronic. At the same time, the inho-
mogeneous Maxwell equations are dynamical equations: these involve placehold-
ers which depend on the specific scenario of interest—they do not have the same 
concrete form in all scenarios; more precisely, in the case of the inhomogeneous 
Maxwell equations, the density � and current � need to be determined externally,21 
and their concrete forms differs from scenario to scenario [6, p. 5]. Hence, the kin-
ematics/dynamics distinction is orthogonal to the diachronic/synchronic distinction.

On the second: note that elliptic equations (sometimes loosely described as ‘non-
dynamical’, as they do not model evolution, in the sense that, unlike hyperbolic 
equations, they do not have characteristics—see [4, 22] for some recent philosophi-
cal discussion) can be regarded as being both dynamical constraints (as in the case 
of the first inhomogeneous Maxwell equation in Table 1), and as kinematical con-
straints (as in the case of the first homogeneous Maxwell equation in Table 1). In 
addition, the diachronic/synchronic distinction can be teased apart from the hyper-
bolic/elliptic distinction, in several different ways (thus all three distinctions are 
indeed independent). First: elliptic equations may still be used to model temporally 
evolving systems, if judicious use of boundary conditions is made: this is one of the 
lessons drawn in Sect. 2 of the present paper. Second: elliptic equations have Cauchy 
problems, if not well-posed Cauchy problems: in this sense, they can be used to 
model temporal evolution (cf. [26]). Third: although, as [22, p. 19] notes,

no particular set of directions is privileged by elliptic PDEs. We therefore have 
no reason to regard the informative directions of an elliptic PDE as temporal.

it is nonetheless the case that, as James also registers, elliptic equations satisfy well-
posedness conditions when supplemented with Dirichlet or Neumann boundary 
conditions [22, p. 25]. In this sense, although nothing in the structure of an elliptic 
equation privileges any particular direction as temporal, it is still the case that such 
equations can be used (at least locally) to model temporal evolution. On the other 
hand, hyperbolic differential equations may or may not be used to model tempo-
ral evolution, insofar as one or more of the variables therein is interpreted as being 
temporal.

The upshot of the foregoing is this: we have three different distinctions which 
could be used to cash out a relevant sense of ‘dynamical’: kinematics/dynamics, 
diachronic/synchronic, and hyperbolic/elliptic; moreover, the first can be disambigu-
ated in (at least) three further ways. How, then, do the Poisson equation and the field 

21  There is a sense in which one can think of � and � as boundary conditions.
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equations fare relative to these three senses of ‘dynamics’? There are (at least) two 
senses in which the Poisson equation is less dynamical than the field equations:

•	 The Poisson equation is elliptic; the field equations are mixed hyperbolic-elliptic.
•	 The Poisson equation is synchronic, in the sense that none of the variables 

therein are typically interpreted as being related to temporal evolution; the field 
equations are diachronic, i.e., demonstrably have temporal components.22

There is one sense in which the Poisson question is as dynamical as the field 
equations:

•	 The Poisson equation and the field equations are both dynamical in the sense of 
the kinematics/dynamics distinction (both equations are placeholder relations as 
they leave open the energy-matter content for further specification). That is, in 
Newtonian theories the actual physical system of interest is constrained/semanti-
cally identified/essentially characterised independently of this equation.

There is a fair amount of subtlety regarding this final point. Suppose that one does 
indeed interpret the Hamiltonian constraint of 3+1 GR, as its name suggests, as a 
kinematical constraint—as per e.g. [18, p. 64].23 In relation to our work in Sect. 3, 
the question then arises as to whether an object counting as a constraint can keep 
this status across limiting relations. If so, then, since the Poisson equation (1) can 
be derived as the limit of the Hamiltonian constraint in asymptotically flat 3+1 GR, 
one might think that it, too, should be regarded as being a kinematical constraint: 
thereby rendering the solutions of the Poisson equation less dynamical than the 
solutions of the (full) field equations of GR. Although this line of reasoning is cer-
tainly worthy of mention, we are, ultimately, not convinced by it, for several reasons: 
(i) whether an object should be regarded as (e.g.) a gravitational degree of freedom 
(as in e.g. the case of the Newtonian Weyl tensor) is a matter of physical interpreta-
tion—but it is not obvious that whether or not an object/equation should be regarded 
as being a constraint is a matter of physical interpretation in the same way (at the 
very least, more needs to be said on why these cases are analogous); (ii) this limit-
ing relation was established only for a subsector of GR—so any interpretation of the 
Poisson equation procured via consideration of limiting relations from that subsec-
tor should, indeed, be relativised to that subsector (cf. the contextual considerations 
raised in Sect. 2). But most importantly (iii): in spite of its name, the Hamiltonian 
constraint is not a kinematical constraint in the sense upon which we have focused 
in this section, for it does not express a concrete relation: the energy E differs from 
dynamical solution to dynamical solution. Since it is not a kinematical constraint in 
this sense, one need not worry about whether the Poisson equation of Newtonian 

22  Of course, however, as we have already discussed both in Sect. 2 and above, there are more sophisti-
cated senses in which the Poisson equation may be understood to be related to temporal evolution.
23  Note, indeed, that Gourgoulhon diverges from Curiel on which of the Maxwell equations are to be 
classified as kinematical constraints: this difference tracks the distinction discussed in this paragraph.
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theories is a kinematical constraint or not on the grounds of limit considerations: for 
even if one does take it that this status is preserved on taking the Newtonian limit 
of GR, the status of the object of which it is a limit—the Hamiltonian constraint—
is dynamical rather than kinematical anyway. If these points are correct, then it is 
reasonable to continue to place the Newtonian Poisson equation on the dynamics 
side of the kinematics/dynamics divide, and our third point above—that there is par-
ity between the Poisson equation of Newtonian theories and the field equartions of 
GR—stands.

Our above investigations have had the fruitful upshot of clarifying different possi-
ble senses of ‘dynamical’; using this, we see that there are clear senses in which the 
Poisson equation is dynamical, as well as other senses in which it is non-dynamical. 
Of course, whether one takes this to mean that the solutions of the Poisson equation 
cannot be dynamical, and therefore that there can be no gravitational wave propaga-
tion in Newtonian theories, will depend upon how one weighs these factors: one 
who places no store by the first of the above two points would be entitled to argue 
that there can still be dynamical gravitational wave solutions in Newtonian theories; 
one who places some store by them might demur. Our purpose in this paper is not so 
much to argue conclusively one way or the other on this matter, but rather to empha-
sise that anyone making a firm claim in this regard—including Dewar and Weather-
all—must negotiate explicitly the above-articulated distinctions.24

5 � Conclusions

Our goal in this paper has been to assess the status of gravitational radiation in 
theories such as NCT. In Sect. 2, we saw that there are ways of understanding the 
(elliptic) Poisson equation (1) as representing propagating solutions. In Sect. 3, we 
saw that this equation can be obtained via the Newtonian limit of asymptotically flat 
3+1 GR; insofar as one thinks that whether an object counts as a constraint (and 
therefore, in one sense, non-dynamical) is preserved across mathematical limits, 
one might worry that, in fact, the Poisson equation cannot represent dynamical solu-
tions of propagating gravitational waves—although we went on to argue in Sect. 4 

Table 1   Maxwell’s equations in 
their 3-vector formulation

Homogeneous equations Inhomogeneous equations

∇⃗ ⋅ B⃗ = 0 ∇⃗ ⋅ E⃗ = 𝜌

∇⃗ ⋅ E⃗ +
𝜕B⃗

𝜕t
= 0 ∇⃗ × B⃗ −

𝜕E⃗

𝜕t
= J⃗

24  It bears mentioning that there is also a sense in which the Hamiltonian formulation of GR is less 
dynamical than e.g. NCT: for the Hamiltonian of GR—the generator of time translations—is a full con-
straint equation, including the Hamiltonian constraint (it is this conundrum of a vanishing Hamiltonian 
which has by now become (in)famous as the ‘problem of time’). According to [1, p. 14], this issue cannot 
arise in NCT due to its formulation in terms of a preferred foliation. So, if it were possible to formulate 
the theory in Hamiltonian form, the Hamiltonian would not simply end up as a mere sum of constraints.
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that this argument is not convincing, for a number of reasons. In Sect. 4, we also 
disambiguated more systematically three senses in which an equation might count 
as dynamical, related to three distinctions: dynamics/kinematics, diachronic/syn-
chronic, and elliptic/hyperbolic. On the third: one might ask why we should place an 
ab initio embargo on using elliptic equations as a decisive part in modelling dynami-
cal situations: while admittedly non-standard, we have seen that there does not seem 
to be any reason in principle why elliptic equations cannot be used to this end. That, 
then, leaves only the diachronic/synchronic distinction: but, again, we have wit-
nessed certain senses in which elliptic equations can form a natural part of modeling 
dynamical evolution.

The upshot, then, is this: when considered qua limit of the field equations of GR, 
the Poisson equation of e.g. NCT inherits a gravitational interpretation; in this con-
text, solutions of this equation can be used to model gravitational waves, gravitation 
radiation, and pure gravitational degrees of freedom when stacked upon one another 
over time and made subject to appropriate boundary conditions. This vindicates, 
in substantially more detail than hitherto achieved, the claims made by Dewar and 
Weatherall to this effect.
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