
Practical and Efficient Quantum
Error Correction

Oscar Higgott

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Physics and Astronomy

University College London

Thesis submission date: October 1, 2023



2

I, Oscar Higgott, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has been

indicated in the work.



Abstract

Building a scalable quantum computer requires the use of quantum error correction,

which protects components and quantum operations from noise and imperfections

that would otherwise corrupt the computation. However, quantum error correcting

codes add significant redundancy, with a large number of physical qubits used to

encode each logical qubit. Furthermore, the control software used to operate a

quantum error correcting code, called the decoder, must be fast enough to keep up

with the hardware and accurate enough to identify which errors occurred with high

probability.

In Part I of this thesis, we focus on methods for decoding topological quan-

tum codes including the surface code, which currently forms the basis of many

experimental efforts to build a quantum computer. We also introduce optimal local

unitary circuits for encoding unknown states in surface codes. We present sparse

blossom, a decoder which can process data fast enough to keep up with supercon-

ducting quantum computers in a regime of practical interest. We also introduce

belief-matching, a computationally efficient decoder which has improved accuracy,

and schedule-induced gauge fixing, a technique for decoding subsystem surface

codes more effectively by improving the circuits used for their implementation.

In Part II we construct quantum error correcting codes derived from tilings of

negatively curved surfaces. These constructions exploit properties of hyperbolic

geometry to improve the encoding efficiency. By reducing the size of operators that

must be measured, we find efficient parallelised quantum circuits implementing our

constructions, which we show outperform the surface code for practical physical

error rates.
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Quantum computers exploit the laws of quantum mechanics to solve some com-

putational problems much faster than is known to be possible using conventional

computers. Solving these problems could help design new batteries, photovoltaics

and pharmaceuticals, and will impact public key cryptosystems. Quantum computers

are extremely fragile, and for most applications they will require the use of quantum

error correction to protect them from noise that would otherwise destroy the compu-

tation. However, quantum error correction adds a large amount of redundancy: recent

estimates suggest that millions of qubits will be needed to solve useful problems on

a quantum computer, with the vast majority of these resources attributable to the

cost of quantum error correction. Furthermore, the control software used to operate

a quantum error correction scheme, called the decoder, must accurately process

measurement data from the device at a very high rate.

In Part I of this thesis, we present faster and more accurate decoders for a family

of quantum error correcting codes that includes the surface code, which is the code

most widely considered for experimental realisation. It is important that decoders

are fast enough to keep up with practical experimental realisations of quantum com-

puters, to prevent a backlog of measurement data that grows exponentially in the

size of the computation. A more accurate decoder enables a quantum computer with

some target logical performance to be built using fewer physical components, or

using components that are noisier and therefore easier to build. The belief-matching

decoder we present has already been use in an experiment to demonstrate the sup-

pression of quantum errors using the surface code [5]. The decoders we introduce

have been made publicly available as open-source software packages, and have been
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used by many research groups in academia and industry to carry out experimental

and theoretical quantum error correction research. UCL Business has filed a patent

application for our schedule-induced gauge fixing (SIGF) technique [109], which

enables a broad family of error correcting codes (subsystem codes) to tolerate higher

component error rates.

The quantum error correcting codes and circuits we present in Part II demon-

strate that the resource overhead of quantum error correction can be greatly reduced

using architectures where quantum operations are not geometrically local on a 2D

Euclidean chip. The quantum error correction protocols we construct can be imple-

mented using a qubit connectivity graph that has low degree (each qubit interacts

with at most three or four neighbours) and are amenable to fast decoding algorithms.

For experimental implementations that can connect small modules of qubits with

long-range couplers, such as trapped-ion systems, our quantum error correcting

codes could enable more logical qubits to be protected with a given system size.
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Chapter 1

Introduction

Quantum computers harness the laws of quantum mechanics to solve some prob-

lems much faster than is thought possible using conventional computers. Some

problems, such as integer factorisation [172] and the simulation of quantum sys-

tems [142], admit an exponential speedup over the most efficient known classical

algorithms. Solving these problems could help design new batteries, photovoltaics

and pharmaceuticals, and will impact public key cryptosystems.

However, the realization of scalable quantum computing depends on our ability

to correct errors which arise due to inevitable interactions between the device and the

environment. Useful quantum algorithms typically require billions, or even trillions,

of quantum operations, yet physical operations in state-of-the-art quantum devices

have error rates of around 0.1% to 1%. Reducing error rates in operations from

around 0.1% to the required ≈ 10−12, requires the use of quantum error correction.

Quantum error correcting codes correct errors by introducing redundancy, encoding

k logical qubits into a larger number n≥ k of physical qubits.

The most widely studied quantum error correcting code, both theoretically and

experimentally, is the surface code [64], which has a high tolerance for realistic noise

and uses four-qubit measurements that are geometrically local in two dimensions.

The surface code is therefore especially amenable to implementation in a quantum

computer chip (e.g. a solid state device), and the suppression of errors has already

been demonstrated for small system sizes using superconducting devices [5].

However, many challenges remain for building a large-scale quantum computer
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using surface codes. The chapters in this first part of the thesis focus on the classical

control software used to operate surface codes, called a decoder. We also introduce

optimal local unitary circuits for encoding an unknown state in surface codes in

Section 1.3. A decoder determines where errors have occurred using measurement

data from the device. It is important that a decoder is fast enough to keep up with

the clock speed of the quantum hardware to prevent a backlog of measurement

data that grows exponentially in the T -gate depth of the computation [186]. For

superconducting quantum computers, each round of syndrome extraction has a

duration of around one microsecond [145, 133, 5]. The decoder should also be

accurate enough to allow logical errors to be corrected with high probability. In

Chapter 2 we introduce an algorithm for the minimum-weight perfect matching

decoder that can process data as fast as it would be generated by a superconducting

quantum computer for reasonable system sizes (distance-17) using a single CPU

core. In Chapter 3 we introduce an efficient decoder, belief-matching, which is more

accurate than state-of-the-art efficient surface code decoders and therefore allows

higher rates to be tolerated, easing hardware requirements. Finally, we conclude Part I

in Chapter 4 by introducing schedule-induced gauge-fixing (SIGF), a technique for

improving the circuits used to implement a class of quantum error correcting codes

called subsystem codes. We show how SIGF can be used to improve the accuracy of

decoding for the subsystem surface code, a slight variant of the traditional surface

code that has improved (lower degree) qubit connectivity than is required for standard

surface code circuits.

1.1 Quantum error correction

In this section we will introduce some definitions and background that will be used

throughout the thesis. We will describe the state of a quantum computer as a system of

n qubits, where each qubit is a two-level quantum system in a state |ψ⟩=α |0⟩+β |1⟩
in two-dimensional Hilbert space, where α,β ∈ C and |α|2 + |β |2 = 1. The state

space of an n-qubit system is the n-fold tensor product of single-qubit state spaces.
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We define the Hermitian and unitary 2×2 matrices

I =

1 0

0 1

 X =

0 1

1 0

 Y =

0 −i

i 0

 Z =

1 0

0 1

 . (1.1)

where here X , Y and Z are together known as the Pauli matrices. These four matrices

form a basis for 2× 2 complex matrices. An n-qubit Pauli operator P = αPn is

an n-fold tensor product Pn ∈ {I,X ,Y,Z}⊗n with the coefficient α ∈ {±1,±i}. We

sometimes omit ⊗ signs when describing Pauli operators, e.g. we may denote the

operator X ⊗ I⊗X ⊗Z⊗Y simply by XIXZY . We also sometimes omit identity

operators and give the indices of non-trivial tensor factors, e.g. the operator IIIZIY I

could be denoted Z4Y6 (Z acting on qubit 4 and Y acting on qubit 6).

The set of all n-qubit Pauli operators forms the n-qubit Pauli group Pn, and the

elements of Pn form a basis for 2n×2n matrices. We say that the weight wt(P) of a

Pauli operator P ∈ Pn is the number of qubits on which it acts non-trivially as X , Y

or Z. Note that any two Pauli operators commute if an even number of their tensor

factors commute, and anti-commute otherwise.

If the state of n qubits is not fully known, it can be represented using a density

operator ρ = ∑i pi |ψi⟩⟨ψi|, which defines the state to be |ψi⟩ ∈ C2n
with probability

pi. Noise acting on a quantum system can be represented using the quantum channel

formalism as E(ρ) = ∑k EkρE†
k [154]. Here the Ek are known as Kraus operators

which together satisfy the completeness relation ∑k E†
k Ek = I if the operation E is

trace-preserving. A common noise model is the single-qubit depolarising channel,

which is defined as

E(ρ) = (1− p)ρ +
p
3
(XρX +Y ρY +ZρZ) (1.2)

and which can be interpreted as leaving the state unchanged with probability 1− p

and applying the operators X , Y and Z each with probability p/3. The two-qubit
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depolarising channel is defined as

E(ρ) = (1− p)ρ +
p

15

 ∑
E∈{I,X ,Y,Z}⊗2\I⊗I

EρE

 (1.3)

and can be interpreted as leaving the state invariant with probability 1− p and

otherwise applying one of the 15 non-trivial two-qubit Pauli operators, chosen

uniformly at random.

Before we consider concrete examples of quantum error correction, let us first

define a quantum error correcting code to be a subspace C of some larger Hilbert

space, and further define a quantum error correcting procedure abstractly by a trace

preserving quantum operationR. For some noise channel E and state ρ , our quantum

error correction procedure is successful if (R◦E)(ρ) ∝ ρ .

We now briefly review the quantum error correction conditions [16, 129], which

give necessary and sufficient conditions for a quantum error correction procedure

to be successful. Let P be a projector onto the code C and further suppose that E
is a noisy quantum channel represented using Kraus operators {Ei}. A necessary

and sufficient condition for the existence of a recovery operationR that successfully

corrects the error channel E on C is that

PE†
i E jP = αi jP (1.4)

holds for all i and j and where αi j are elements of a Hermitian matrix α (see

Refs. [129, 154] for a proof). If F is a noisy quantum channel with Kraus operators

{Fj}, where each Kraus operator Fj is a linear combination of the operators {Ei},
i.e. Fj = ∑i m jiEi where m ji ∈ C, then it can be shown that R also successfully

corrects the noisy channel F acting on C (see Theorem 10.2 in Ref. [154]). Since

n-qubit Pauli operators form a basis for linear operators acting on n qubits, this

shows that if an error correction procedure is capable of correcting all n-qubit Pauli

operators acting on n qubits, it is also capable of correcting any arbitrary quantum

channel acting on the same n qubits. Throughout the rest of this thesis we will restrict
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our attention to errors that are Pauli operators (Pauli errors), however the quantum

error correction conditions show that this is sufficient for a quantum error correcting

code to correct more general errors.

1.1.1 Stabiliser codes

A broad class of quantum error correcting codes are stabiliser codes [98]. Stabiliser

codes are defined in terms of a stabiliser group S, which is an abelian subgroup

of Pn that does not contain the element −I. Elements of a stabiliser group are

called stabilisers. Since every stabiliser group is abelian and Pauli operators have

the eigenvalues ±1, there is a joint +1-eigenspace of every stabiliser group, which

defines the stabiliser code,

C = {|ψ⟩ : s |ψ⟩= |ψ⟩ ∀s ∈ S}. (1.5)

We can define a stabiliser code using a set of generators of its stabiliser group

S = ⟨g1,g2, . . . ,gr⟩. A stabilizer code is called a Calderbank-Shor-Steane (CSS)

code if its stabilizer group admits a set of generators g1,g2, . . . ,gr such that each

generator is either X-type or Z-type, gi ∈ {I,X}⊗n∪{I,Z}⊗n [47, 176]. If a stabiliser

group has r independent generators, then the corresponding stabiliser code on n

physical qubits encodes k = n− r logical qubits.

The generators of S all measure +1 if the state is uncorrupted, however any

generator gi that anticommutes with an error E will measure -1 (since giE |ψ⟩ =
−Egi |ψ⟩ = −E |ψ⟩). If we measure each stabiliser generator after an error E ∈
Pn occurs we obtain a list of the measured eigenvalues of the generators of S,

known as the syndrome σ(E). The centraliser C(S) of S in Pn is the set of Pauli

operators which commute with every stabiliser. If an error E ∈C(S) occurs, it will

be undetectable. If E ∈ S , then it acts trivially on the codespace, and no correction is

required. However if E ∈C(S)\S , then an undetectable logical error has occurred.

The distance d of a stabiliser code is the smallest weight of any nontrivial logical

operator,

d = min
E∈C(S)\S

wt(E). (1.6)
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We sometimes use the notation [[n,k,d]] to denote the parameters of a code, where n

is the number of physical qubits, k is the number of encoded logical qubits and d is

its distance.

Given the syndrome and a known noise model, a decoder makes a prediction

C ∈ Pn of which error occurred. The decoder should choose a correction C with a

syndrome consistent with the error, σ(C) = σ(E), such that applying the correction

leaves a trivial (all +1) syndrome σ(EC). If EC ∈ S then the decoder has succeeded

in correcting the error, whereas if EC ∈C(S)\S then a logical error has occurred.

We will review the decoding problem in more detail in Section 1.4.

Ignoring the phase α ∈ {±1,±i}, we can use a map r : Pn→ F2n
2 to represent

an n-qubit Pauli operator with a binary vector in F2n
2 :

α

n⊗
i=1

XxiZzi → (x1, . . . ,xn|z1, . . . ,zn). (1.7)

Using this correspondence, we can conveniently represent the generators of a sta-

biliser group S = ⟨g1, . . . ,gr⟩ using a binary check matrix H with r rows and 2n

columns, where the ith row of H is r(gi). The check matrix is of the form

H = (HX | HZ) (1.8)

where the ith row and jth column of HX is 1 if generator i of S acts non-trivially

with X or Y on qubit j and is 0 otherwise. Similarly, the ith row and jth column of

HZ is 1 if generator i acts non-trivially with Z or Y on qubit j and is 0 otherwise.

Since by definition −I /∈ S each generator has a phase α ∈ {±1} which we could

represent by an additional sign bit (adding an extra column to H). Indeed this is

additional column for the sign bit is used for determining measurement outcomes

in stabiliser circuit simulations [98]. However, the phase does not impact the error

correcting properties of a stabiliser code since it has no effect on whether a generator

gi commutes or anti-commutes with a given error E, and so it can usually be safely

ignored.

Throughout this thesis, arithmetic involving binary vectors is always assumed
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to be done modulo 2 (i.e. in F2n
2 ). Adding rows of H is equivalent to multiplying the

corresponding Pauli operators, i.e. r(gi)+ r(g j) = r(gig j). Two generators gi and g j

anti-commute if and only if r(gi)Λr(g j)
T = 1, where Λ is the 2n×2n block matrix

Λ :=

0 I

I 0

 (1.9)

and where each block has dimensions n× n. The requirement that S is abelian

corresponds to the constraint HΛHT = 0, i.e. HX HT
Z +HZHT

X = 0. Furthermore, gi

and g j are independent if and only if r(gi) and r(g j) are linearly independent. Hence

we can find the number of independent generators of S from the rank of its check

matrix H, i.e. k = n− rk(H).

As an example, consider the five-qubit code, which has stabiliser generators

S = ⟨XZZXI, IXZZX ,XIXZZ,ZXIXZ⟩ and can be represented by the check matrix

H =


1 0 0 1 0 0 1 1 0 0

0 1 0 0 1 0 0 1 1 0

1 0 1 0 0 0 0 0 1 1

0 1 0 1 0 1 0 0 0 1

 . (1.10)

Since the check matrix has rank r = rk(H) = 4 we see that the five qubit code

encodes k = n− r = 1 logical qubit. It can also be verified that the code has distance

3, i.e. it is a [[5,1,3]] code.

For any stabiliser code with n physical qubits encoding k logical qubits, we can

always find a basis of logical operators of the form X̄1, Z̄1, X̄2, Z̄2, . . . , X̄k, Z̄k ∈ Pn.

Here X̄i and Z̄i act as logical X and Z operators on logical qubit i, respectively.

These logical operators satisfy the expected commutativity conditions, namely X̄i

anti-commutes with Z̄i but commutes with all other Z̄ j (for i ̸= j). The logical

operators are in C(S)\S. For example, a valid choice of logical operators for the

five-qubit code is X̄1 = XXXXX and Z̄1 = ZZZZZ. One way to see why a basis of

this form can be constructed for any stabiliser code is by using row operations and

qubit permutations to put the check matrix into standard form (see Section 10.5.7 of
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Ref. [154]), which can be written as the following block matrix:

H =

 I A B C 0 D

0 0 0 E I F

 . (1.11)

where here both the left and right sides of the check matrix have their columns

partitioned into three blocks of widths s, n− k− s and k columns from left to right,

respectively. The top sub-matrices (including A, B, C and D) have s rows, and the

bottom sub-matrices (including E and F) have n− k− s rows. Using this standard

form, we can construct a check matrix GX representing the X̄i operators and check

matrix GZ representing the Z̄i operators as:

GX =
(

0 FT I DT 0 0
)

(1.12)

GZ =
(

0 0 0 BT 0 I
)
. (1.13)

We see that these logical operators have the required commutativity from GX ΛGT
Z =

I and it is also straightforward to verify that they commute with the stabiliser

generators, i.e. GX ΛHT = 0 and GZΛHT = 0.

The check matrix for any CSS code can be written in the form

H =

HX 0

0 HZ

 (1.14)

where HX and HZ are now redefined to be n× n matrices defining the X-type sta-

biliser generators and Z-type stabiliser generators, respectively. The commutativ-

ity condition is now given by the constraint HX HT
Z = 0. A CSS code encodes

k = n− rk(HX)− rk(HZ) logical qubits.

1.1.2 Stabiliser circuits

The stabiliser formalism can be used to analyse and efficiently simulate an important

class of quantum circuits called stabiliser circuits. Stabiliser circuits consist of

preparation and measurement of qubits in the Z basis, the Hadamard gate H, the
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phase gate S and the controlled-NOT gate CNOT . The H, S and CNOT gates together

generate the Clifford group of unitary operators and have matrix representations

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 , H =
1√
2

1 1

1 −1

 , S =

1 0

0 i

 . (1.15)

Elements of the Clifford group map Pauli operators to Pauli operators, i.e. a unitary U

is a Clifford operator if UPU† ∈Pn ∀P∈Pn. The CNOT gate, acting by conjugation,

maps Pauli X and Z operators as follows:

XI→ XX , IX → IX , ZI→ ZI, IZ→ ZZ, (1.16)

the H gate maps X → Z and Z→ X under conjugation and the S gate maps X → Y

and Z→ Z under conjugation.

Applying a unitary U to an eigenstate |ψ⟩ of an operator S (with eigenvalue

s) gives US |ψ⟩= sU |ψ⟩=USU†U |ψ⟩: an eigenstate of S becomes an eigenstate

of USU†. Therefore, if we start in a state on n qubits stabilised by n independent

stabiliser generators (a stabiliser state such as the |0⟩⊗n state) and apply a Clifford

circuit, we can compute the stabiliser group of the final stabiliser state by tracking

how each gate maps the stabiliser generators under conjugation.

Furthermore, measuring a Pauli operator on a stabiliser state with stabiliser

group S can also be done efficiently. If we measure a Pauli operator P that commutes

with all elements of S then either P ∈ S or −P ∈ S; the measurement outcome

is deterministic and is +1 if P ∈ S and is −1 if −P ∈ S. The state is unchanged

after measurement. If instead we measure a Pauli operator P that anti-commutes

with any element of S then the measurement outcome is uniformly random and the

post-measurement state is stabilised by ⟨S0,±P⟩, where S0 is the subgroup of S
that commutes with P and the sign of P is determined by the measurement outcome.

Using these principles, it is possible to simulate any stabiliser circuit efficiently
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(in polynomial time) and this result is known as the Gottesman-Knill theorem, see

Refs. [98, 154] for more details. See Ref. [1] for a more efficient algorithm for

simulating stabiliser circuits that can be used to simulate each CNOT , H or S gate

in O(n) time and each measurement in O(n2) time, where n is the number of qubits.

A further improvement can be obtained using the simulation method in Stim [91],

which instead takes O(n) time for deterministic measurements. A standard choice of

universal gate set is the “Clifford + T ” gate set, which consists of CNOT , H and S

gates, along with the non-Clifford

T =
√

S =

1 0

0 eiπ/4


gate, as well as state preparation and measurement in the computational (Z) basis.

Stabiliser circuits are important in quantum error correction; indeed, all the

quantum error correction circuits we consider in this thesis are stabiliser circuits, and

the Gottesman-Knill theorem is therefore useful both for understanding these circuits

and for simulating them efficiently. A common example of a stabiliser circuit used

in quantum error correction (QEC) is a circuit for measuring a Pauli operator. For

example, the following two circuits use an ancilla qubit to measure a XXX operator

(left) and an ZZZ operator (right):

|0⟩ H • • • H |0⟩

•
•
•

Using knowledge of the way CNOT and H gates map Paulis under conjugations,

we see that the measurement of ZIII on the four qubits using the ancilla at the

end of each circuit is equivalent to measuring ZXXX at the start of the left circuit

or ZZZZ at the start of the right circuit. Since the ancilla is initially stabilised

by Z, these are equivalent to measuring XXX or ZZZ on the bottom three qubits,

respectively. Circuits similar to these can be used to measure check operators (such
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as stabiliser generators) in QEC circuits. As we will discuss later in this chapter, it is

important that errors that can occur in the measurement circuits themselves can also

be corrected. This can achieved by repeating the measurement circuit, however we

note that measuring larger Pauli operators can require deeper measurement circuits,

which can lead to more error locations and therefore a lower tolerance to errors.

1.1.3 Subsystem codes

Subsystem codes are a slight generalisation of stabiliser codes, which we will also

consider in this thesis. Subsystem codes are stabiliser codes where only a subset of

the available encoded degrees of freedom are used [163]. They can simplify quantum

error correction circuits by reducing the weight of the Pauli operators measured when

producing the syndrome [6]. Subsystem codes also allow for a procedure called

gauge fixing which is useful to manipulate the encoded quantum information. Gauge

fixing effectively allows us to change the code mid-computation, and in Ref. [155]

the authors exploit this to switch between codes which have complementary sets

of logical operations. These advantages have motivated experimentalists to pursue

subsystem codes for implementing fault-tolerant quantum computation. This in-

cludes IBM, who proposed implementing the heavy-hexagon subsystem code [48] to

reduce frequency collisions in their superconducting quantum processors [124]. The

Bacon-Shor subsystem code has been implemented experimentally in a trapped-ion

architecture [75], where the fidelity of the encoded logical operations exceeded that

of the entangling physical operations used to implement them.

A subsystem code is a stabiliser code in which a subset of logical operators

are chosen not to store information [163]. In a subsystem code, the overall Hilbert

spaceH can be decomposed as

H= (HL⊗HG)⊕C⊥ (1.17)

where onlyHL stores information and any operations applied only onHG are ignored.

The Pauli operators that act trivially onHL form the gauge group G of the code. The

stabiliser group S is the center of G up to phase factors, ⟨iI,S⟩= Z(G) :=C(G)∩G.
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Hence, up to phase factors, operators from G are either stabilisers (acting trivially on

HL⊗HG), or act non-trivially onHG only. Logical operators that act non-trivially

only onHL are called bare logical operators Lbare, and are given by C(G)\G. The

dressed logical operators Ldressed =C(S)\G act non-trivially on bothHL andHG .

A dressed logical operator is a bare logical operator multiplied by a gauge operator

in G \S. The distance d of a subsystem code is the weight of the minimum-weight

dressed logical operator, d = minP∈C(S)\G |P|. The number of physical qubits n,

logical qubits k, independent stabiliser generators r and gauge qubits g are related as

n− k = r+g. (1.18)

One advantage of introducing gauge qubits is that they can enable simpler

stabiliser measurements if the generators of the gauge group G (the gauge generators)

have a lower weight than the generators of the stabiliser group S. Since S ⊆ G the

outcomes of the gauge generator measurements can be used to infer the eigenvalues

of the stabilisers, provided the gauge generators are measured in the appropriate order

(since G is generally not abelian) [181, 186]. We will sometimes refer to standard

stabiliser codes, where all logical qubits are used to store quantum information, as

subspace codes, to distinguish them from subsystem codes.

The technique called gauge fixing, applied to a subsystem code, consists of

adding an element g ∈ G into the stabiliser group S, as well as removing every

element h ∈ G that anticommutes with g. Gauge fixing was introduced by Paetznick

and Reichardt and can be useful for performing logical operations [155, 28, 209],

including for code deformation and lattice surgery [200]. Gauge fixing can also be

used for constructing codes: both the surface code and the heavy-hexagon code [48]

are gauge fixings of the Bacon-Shor subsystem code [9], all belonging to the larger

family of 2D compass codes [138]. These constructions are static, as the fixed gauge

stays the same over time. In Chapter 4, we will show how a dynamical approach to

gauge fixing can be used to improve the quantum error correcting performance of

subsystem codes.
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Figure 1.1: The check operators for (a) the toric code and (b) the planar code. Opposite
edges in (a) are identified and each edge corresponds to a qubit.

1.2 Surface codes

1.2.1 The toric and planar surface code

The surface code is a CSS code introduced by Kitaev [127, 64], which has stabiliser

generators defined on a square lattice embedded in a two-dimensional surface. We

associate a qubit with each edge of the lattice. Each site or vertex check operator

is a Pauli operator in {I,X}n which only acts non-trivially on the edges adjacent to

a vertex of the lattice. Each plaquette check operator is a Pauli operator in {I,Z}n

which only acts non-trivially on the edges adjacent to a face of the lattice. In the

toric code, the square lattice is embedded in a torus, whereas in the planar code the

lattice is embedded in a plane, without periodic boundary conditions (see Figure 1.1).

These site and plaquette operators together generate the stabiliser group of the code.

While the toric code encodes two logical qubits and has parameters [[2d2,2,d]], the

surface code encodes a single logical qubit and has parameters [[d2 +(d−1)2,1,d]].

1.2.2 The rotated surface code

The rotated surface code is a slight variant of the original (or “unrotated”) surface

code which we just reviewed in Section 1.2.1, and is essentially obtained by cutting

a diamond-shaped section out of the unrotated planar code [24]. The rotated surface

code is more efficient than the planar code introduced in the previous section, since

the diamond-shaped cut does not reduce the distance but reduces the number of
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StabilisersQubits

Data Ancilla

Figure 1.2: The stabiliser generators, data qubits and ancilla qubits of the rotated surface
code. Data qubits are placed on the vertices of a square lattice. Stabiliser
generators are weight-four operators defined on faces in the bulk of the lattice,
and boundary stabilisers are weight-two.

physical qubits by almost a factor of 2. The rotated surface code is usually depicted

by placing data qubits on the vertices of a d×d square lattice coloured in a red and

blue chequerboard pattern, see Figure 1.2. The X stabiliser generators are defined on

red faces and the Z stabiliser generators on blue faces. The rotated surface code uses

around 2× fewer qubits to achieve the same distance as the unrotated surface code

and has parameters [[d2,1,d]]. In addition to the d2 data qubits, an additional d2−1

ancilla qubits are used to measure the stabiliser generators. A logical Z̄ operator can

be defined as a Z⊗d operator acting non-trivially on any row of data qubits. Similarly,

a logical X̄ operator can be defined as an X⊗d operator acting non-trivially on any

column of data qubits.

The most common circuit used for measuring the stabilisers of the rotated

surface code is shown in Figure 1.3. As we will explain in Section 1.4, this cycle of

stabiliser measurements is repeated in order to handle errors that can occur in the

measurement circuit. For a noise model in which two-qubit depolarising noise occurs

after each CNOT with probability p, qubits suffer single-qubit depolarising noise

with strength p when idling, and qubits are initialised or measured in orthogonal

states with probability p, the circuit of Figure 1.3 as a threshold of around ≈ 0.7%.

Below a noise strength of ≈ 0.7%, increasing the code size suppresses the logical
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Figure 1.3: The main cycle of a syndrome extraction circuit for the rotated surface code.
The gates labelled RX and RZ are state preparation in the X and Z basis, respec-
tively. The gates labelled MX and MZ are measurement in the X and Z basis,
respectively.

error rate exponentially in d.

1.2.3 The subsystem surface code

The subsystem surface code, introduced in Ref. [36], is a subsystem code with gauge

operators and stabiliser generators that are geometrically local on a 2D surface. It is

closely related to the surface code, and a constant-depth unitary mapping the surface

code to the subsystem surface code is also given in Ref. [36]. The threshold of the

subsystem surface code for circuit-level noise is around 0.6%, which is similar to

(but slightly below) that of the surface code. When the subsystem surface code is

defined on a surface with periodic boundary conditions we refer to it as the subsystem

toric code.

The stabilisers and gauge operators of the subsystem toric code are shown

in Figure 1.4. We place a qubit on the middle of each edge and on each vertex

of a square tiling. Each gauge operator is represented by a triangle, with a qubit

associated with each of its vertices. Borrowing terminology from Ref. [36], each

gauge generator is referred to as a triangle operator, and consists of a Pauli operator
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Figure 1.4: The subsystem toric code of Ref. [36]. Data qubits (yellow filled circles) are
placed in the middle of each edge and on each vertex of a square lattice of
the toric code. Opposite sides are identified. The gauge group is generated by
three-qubit triangle operators. The two Z triangle operators in the top left face
are outlined with a blue border, and their product forms a 6-qubit Z stabiliser.
Similarly, in the bottom right face, two X triangle operators are outlined with a
red border, and their product is a 6-qubit X stabiliser.

acting nontrivially on its three qubits. There are four types of triangle operator in

each face of the square lattice: two Z-type triangle operators defined in the north-

west and south-east corners, and two X-type operators defined in the north-east

and south-west corners. These four types of triangle operators are highlighted in

Figure 1.4 for the d = 2 subsystem toric code. Within each face, the product of each

pair of Z-type triangle operators forms a 6-qubit Z stabiliser, and the product of each

pair of X-type triangle operators forms a 6-qubit X-type stabiliser. The subsystem

toric code has 3d2 data qubits (there are d2 vertices and 2d2 edges of the square

lattice) and 2(d2−1) independent stabiliser generators, forming a stabiliser code

with d2 + 2 logical qubits, d2 of which are gauge qubits, with the remaining two

logical qubits encoding quantum information. It can be verified that all triangle

operators commute with the stabilisers and are therefore logical operators for the

stabiliser code (since they are not stabilisers). The logical Z̄ and X̄ operators for each

gauge qubit are chosen to be the north-west and north-east triangle operators of each

face respectively. The remaining two pairs of logical operators are the same as for

the toric code, each acting non-trivially only on data qubits lying on a (horizontal or

vertical) homologically nontrivial loop of the torus. In [36] it was shown that the

subsystem toric code has parameters [[3d2,2,d]].
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In [36] a planar subsystem surface code was also introduced (with two qubit

stabilisers on the boundary), which has code parameters [[3d2− 2d,1,d]], and in

Ref. [46] a planar rotated subsystem code was introduced (with three-qubit stabilisers

on the boundary) which (for odd d) has parameters [[3
2d2−d + 1

2 ,1,d]].

Syndrome extraction can be done by measuring only the three-qubit triangle

operators, by placing an ancilla qubit in the middle of each triangle operator. As a

result, the ancilla qubits only require degree-three connectivity (they interact with

three neighbouring qubits), whereas all the qubits in the standard surface code circuit

require degree-four connectivity. Lower qubit connectivity can help reduce crosstalk

that arises from frequency collisions in some architectures [48].

1.3 Preparing a state in the codespace

Several methods can be used to prepare a state in the codespace of a stabiliser

code. One method is to use a unitary encoding circuit that maps a product state

|φ0⟩⊗ . . .⊗|φk−1⟩⊗ |0⟩⊗(n−k) of k physical qubits in unknown states (along with

ancillas) to the state of k logical qubits encoded in a stabiliser code with n physical

qubits. Labelling the ancillas in the initial state k,k+1, . . . ,n−1, the initial product

state is a +1-eigenstate of the stabiliser generators Zk,Zk+1, . . . ,Zn−1. A unitary

encoding circuit maps the stabilisers Zk,Zk+1, . . . ,Zn−1 of the product state to a

generating set for the stabiliser group S of the code. The circuit also maps the

logical operators Z0,Z1, . . . ,Zk−1 and X0,X1, . . . ,Xk−1 of the physical qubits to the

corresponding logical operators Z̄0, Z̄1, . . . , Z̄k−1 and X̄0, X̄1, . . . , X̄k−1 of the encoded

qubits (up to stabilisers). For any stabiliser code, it is efficient to construct a unitary

encoding circuit that uses at most O(n(n− k)) CNOT , H or S gates, see Refs. [52,

98].

For specific families of stabiliser codes, more efficient circuits can be found.

For the toric code, Aguado and Vidal [3] introduced a Renormalisation Group

(RG) unitary encoding circuit for preparing an unknown state that has O(logd)

circuit depth to encode a distance d code. The RG encoder uses gates that are not

geometrically local on the torus, and has an inductive step that doubles the code



1.3. Preparing a state in the codespace 36

distance using a constant number of layers of CNOT gates. Dennis et al. [64] gave an

encoding circuit for encoding a distance d planar surface code that uses O(n)=O(d2)

gates, where every gate is geometrically local on the surface. In terms of circuit

depth (time steps), the inductive step in their method requires Ω(d) time steps and

encodes a distance d+1 planar code from a distance d code by turning smooth edges

into rough edges and vice versa. As a result encoding a distance d planar code from

an unencoded qubit requires Ω(d2) time steps. This is quadratically slower than the

Ω(d) circuit depth lower bound given by Bravyi et al. [31]. In Section 1.3.1, we

present local unitary encoding circuits for the surface code and toric code that match

Bravyi et al.’s lower bound and are therefore asymptotically optimal. The original

work presented in this section was previously published in Ref. [116].

Encoding circuits can be useful for preparing states in the codespace without the

need for ancilla-assisted stabiliser measurements and feedback. Without the need for

ancillas, a larger distance code can be prepared using the same number of physical

qubits. This can be useful for preparing states in stabiliser based fermion-to-qubit

mappings [171], an important component of quantum simulation algorithms, since

some mappings introduce stabilisers in order to enforce locality in the transformed

fermionic operators [37, 197, 179, 105], or to mitigate errors [123]. For example,

the compact mapping of Ref. [65] is closely related to the surface code, so an

encoding circuit for the surface code can be used to prepare a state in the compact

mapping [116]. In this context of simulation algorithms, the gates in the circuit can

usually be assumed to already be reliable or error corrected.

1.3.1 Optimal local unitary encoding circuits for the surface

code

Our local unitary encoding circuit for the planar code that requires only 2d time

steps to encode a distance d planar code. The inductive step in our method, shown in

Figure 1.5 for d = 4, encodes a distance d +2 planar code from a distance d planar

code using 4 time steps, and does not rotate the code. This inductive step can then be

used recursively to encode an unencoded qubit into a distance d planar code using 2d

time steps. As a base case we can use a distance 3 or 4 planar code, encoding circuits
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Figure 1.5: Circuit to encode a distance 6 planar code from a distance 4 planar code. Each
edge corresponds to a qubit. Each arrow denotes a CNOT gate, pointing from
control to target. Filled black circles (centred on edges) denote Hadamard gates,
which are applied at the beginning of the circuit. The colour of each CNOT
gate (arrow) denotes the time step in which it is applied. The first, second,
third and fourth time steps correspond to the blue, green, red and black CNOT
gates respectively. Solid edges correspond to qubits originally encoded in the
d = 4 planar code, whereas dotted edges correspond to additional qubits that
are encoded in the d = 6 planar code.

for which are given in Appendix A.1. Our encoding circuit therefore matches the

Ω(d) lower bound provided by Bravyi et al. [31].

We can verify its correctness by checking that stabiliser generators and logicals

of the distance d surface code are mapped to stabiliser generators and logicals of the

distance d +2 surface code. We show how each type of site and plaquette stabiliser

generator is mapped by the inductive step of the encoding circuit in Figure 1.6. Note

that the site stabiliser generator labelled c (red) is mapped to a weight 7 stabiliser

in the d = 6 planar code: this is still a valid generator of stabiliser group, and the

standard weight four generator can be obtained by multiplication with a site of type

b. Similarly, the plaquette stabiliser generator labelled c becomes weight 7, but

a weight four generator is recovered from multiplication by a plaquette of type a.

Therefore, the stabiliser group of the d = 4 planar code is mapped correctly to that

of the d = 6 planar code, even though minimum-weight generators are not mapped

explicitly to minimum-weight generators. It is straightforward to verify that the X

and Z logical operators of the d = 4 planar code are also mapped to the X and Z
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Figure 1.6: The transformation of the stabiliser generators of the d = 4 planar surface code
when the circuit in Figure 1.5 is applied. Top: the four main types of site
stabilisers acted on nontrivially by the encoding circuit (labelled a-d) are shown
in red before (left) and after (right) the encoding circuit is applied. On the left
we assume that the ancillas have already been initialised in the |+⟩ state (H
applied). Bottom: the four main types of plaquette stabilisers (also labelled a-d)
are shown in blue before (left) and after (right) the encoding circuit is applied.
Plaquette c has two connected components after the circuit is applied (right),
and is enclosed by a green dashed line for clarity.

logicals of the L = 6 planar code by the inductive step.

We can also encode rectangular planar codes and rotated surface codes using

similar methods, and encoding circuits for these are given in Appendix A.1 and

Appendix A.2.

1.3.2 Encoding a toric code from a planar code

While the method in section 1.3.1 is only suitable for encoding planar codes, we will

now show how we can encode a distance d toric code from a distance d planar code

using only local unitary operations. Starting with a distance d planar code, 2(d−1)

ancillas each in a |0⟩ state, and an additional unencoded logical qubit, the circuit in

Figure 1.7 encodes a distance d toric code using d+2 time steps. The correctness of

this step can be verified by seeing how the stabiliser generators are mapped: each

ancilla initialised as |0⟩ (stabilised by Z) is mapped to a plaquette present in the toric

code but not the planar code. Likewise, each ancilla initialised in |+⟩ using an H

gate (stabilised by X) is mapped to a site generator in the toric code but not the planar
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Figure 1.7: Circuit to encode a distance 5 toric code from a distance 5 planar code. Solid
edges correspond to qubits in the original planar code and dotted edges corre-
spond to qubits added for the toric code. Opposite edges are identified. Arrows
denote CNOT gates, and filled black circles denote Hadamard gates applied at
the beginning of the circuit. Blue and green CNOT gates correspond to those
applied in the first and second time step respectively. Red CNOTs are applied
in the time step that they are numbered with. The hollow circles denote the
unencoded qubit that is to be encoded into the toric code.

code. The weight-three site and plaquette stabilisers on the boundary of the planar

code are also mapped to weight four stabilisers in the toric code. Finally, we see

that X and Z operators for the unencoded qubit (the hollow circle in Figure 1.7) are

mapped to the second pair of X and Z logicals in the toric code by the circuit, leaving

the other pair of X and Z logicals already present from the planar code unaffected.

Therefore, encoding two unencoded qubits in a toric code can be achieved using

3d +2 time steps using the circuits given in this section and in Section 1.3.1.

1.3.3 Encoding a 3D Surface Code

Similar techniques can also be used to encode a distance d 3D surface code using

O(d) time steps. We first encode a distance d planar code using the method given

in section 1.3.1. This planar code now forms a single layer in the xy-plane of a 3D

surface code (where the y-axis is defined to be aligned with a Z-logical in the original

planar code). Using the circuit given in Figure 1.8(a), we encode each column of

qubits corresponding to a Z logical in the planar code into a layer of the 3D surface

code in the yz-plane (which has the same stabiliser structure as a planar code if the

rest of the x-axis is excluded). Since each layer in the yz-plane can be encoded in

parallel, this stage can also be done in O(d) time steps. If we encode each layer in
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(a) (b)

Figure 1.8: (a) Circuit to encode a 4× 2 planar code from a four qubit repetition code
(where adjacent qubits in the repetition code are stabilised by XX). Applied to a
column of qubits corresponding to a surface code Z̄, this encodes a layer in the
yz-plane of a 3D surface code. (b) Circuit to encode the xz-plane of a 3D surface
code once the yz-plane layers and a layer in the xy-plane have been encoded.
Arrows denote CNOT gates pointing from control to target, and blue, green, red
and black CNOT gates correspond to the first, second, third and fourth time
steps respectively. Solid and dotted edges correspond to qubits that are initially
entangled and in a product state respectively.

the yz-plane such that the original planar code intersects the middle of each layer in

the yz-plane, then each layer in the xz-plane now has the stabiliser structure shown in

Figure 1.8(b). Using the circuit in Figure 1.8(b) repeatedly, all layers in the xz-plane

can be encoded in parallel in O(d) time steps. Therefore, a single unknown qubit

can be encoded into a distance d 3D surface code in O(d) time steps.

1.3.4 Fault-tolerant initialisation

While unitary encoding circuits can be convenient in some contexts, they are in

general not fault-tolerant: an error occurring during the circuit can propagate to a

high-weight error at the end of the circuit. In QEC, a state in the codespace of a

stabiliser code is typically prepared by measuring the stabiliser generators of the

code instead. For example, to prepare a logical |0̄⟩⊗k state of a stabiliser code, we

first prepare the product state |0⟩⊗n and then measure the stabiliser generators. If we

choose the basis for Z̄ logicals given in Equation (1.13), then our Z̄ logical operators

are all Z-type Pauli operators. Hence, our initial product state is already in a +1-

eigenstate of the Z̄ logicals. Each of our stabiliser generator measurements will either
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be deterministically +1 if the generator commutes with Z⊗n, or uniformly random

otherwise. However, if a stabiliser generator gi measures −1 we can simply redefine

gi := −gi in software, since the phase of the generator does not impact the error

correcting performance of the code. Note that we remain in the +1-eigenstate of the

Z̄ logicals after measuring the stabiliser generators, since the stabiliser generators

must commute with the Z̄ logicals.

In some cases, we may wish to encode an unknown state in a code fault-

tolerantly, for performing fault-tolerant logic using state injection [32]. For the

surface code, this can be done using the method of Ref. [139]. More efficient

protocols for the surface code have since been found, including the method of

Ref. [89], which can prepare logical states in the XY or Y Z plane of the Bloch sphere

(rather than general unknown states as done in Ref. [139]).

1.4 Decoding

Decoders are algorithms running on a classical computer that use measurement

results from a quantum error correction circuit, as well as a model of the noise, to

determine where errors occurred. In Part I of this thesis, we focus on decoding

algorithms for surface codes, as well as variants including subsystem surface codes.

Two important characteristics of a decoder are its accuracy and its speed. The

accuracy of a decoder quantifies how good it is at correctly determining where errors

occurred. A more accurate decoder can increase the value of the threshold for a

quantum error correcting (QEC) code, as well as reducing the number of physical

qubits required to achieve a desired logical error rate below threshold. Improving the

accuracy of decoders can therefore lead to less demanding hardware requirements.

The value of the threshold depends both on the QEC code used and the decoder, with

more accurate decoders leading to a higher threshold, and therefore less demanding

hardware requirements.

However, the speed of a decoder is also important. A surface code supercon-

ducting quantum computer with a million physical qubits will generate measurement

data at a rate of around 1 terabit per second. A decoder must process this data at least
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as fast as it is generated, to prevent a backlog of data that grows exponentially in the

T -gate depth of the computation [186]. In order to achieve these speeds at scale, a

decoding algorithm should ideally have an expected running time that scales linearly

or almost-linearly with the size of the problem. Furthermore, constant factors are

also important, and details of the decoder implementation, possibly in hardware

(e.g. an FPGA [141] or ASIC [13]), will also be important to achieve the required

speeds.

Fast decoders are important not only for operating a quantum computer, but also

as a software tool for researching quantum error correction protocols. Estimating

the resource requirements of a quantum error correction protocol can require the use

of direct Monte Carlo sampling to estimate the probability of extremely rare events.

These analyses can be prohibitively expensive without access to a fast decoder,

capable of processing millions of shots from circuits containing ≈ 105 gates in a

reasonable time-frame.

1.4.1 Decoding with perfect syndrome measurements

In Section 1.1.1 we briefly introduced the decoding problem for the context where

stabiliser measurements are assumed to be perfect. We defined the syndrome σ(E)

of some error E ∈ Pn as a list of measurement outcomes of the stabiliser genera-

tors gi of the stabiliser group S = ⟨g1, . . . ,gr⟩. Recall that, with perfect syndrome

measurements, a generator gi measures +1 if it commutes with E, giE = Egi and

measures −1 otherwise. A decoder in this context chooses some correction C ∈ Pn

and succeeds if EC ∈ S.

Let us now use the check matrix representation of the Pauli operators to define

the decoding problem. We represent an error E ∈Pn as a binary vector e :=Λr(E)T ∈
F2n

2 . Note that the X and Z components of the binary representation of e are swapped

relative to the check matrix (the first half of e represents the Z component, the second

half represents the X component). The syndrome s ∈ Fr
2 is then represented as the

binary vector

s := He (1.19)



1.4. Decoding 43

where H is the check matrix of Equation (1.11). Here s[i] is 0 if the error E commutes

with stabiliser generator gi and is 1 if E anti-commutes with gi. The decoder takes

as input the syndrome s as well as a model of the noise, which assigns some

probability P(e) ∈ [0,1] to each possible error e ∈ F2n
2 , and outputs some correction

c ∈ F2n
2 satisfying Hc = s. We define a logicals matrix L, using GX and GZ from

Equation (1.12) and Equation (1.13), as

L :=

GX

GZ

 . (1.20)

Applying the correction will remove the syndrome, H(c + e) = 0, and will be

successful if L(c+ e) = 0 (i.e. if the error and correction are in the stabiliser group),

whereas we have a logical failure if Lc ̸= Le.

Before introducing algorithms that solve this decoding problem, we will first

generalise the decoding problem to the case where stabiliser measurement circuits

themselves are noisy. As we will see, we can do so by generalising our definitions of

the check matrix, logicals matrix and binary error vector, and by defining detectors

and logical observables. This definition of the decoding problem for circuit-level

noise using detectors and logical observables follows the approach taken by Gidney

in Stim [91]. Furthermore, the detector check matrix and logical observables matrix

we will define are matrix representations of the detector error model data structure in

Stim.

1.4.2 Detectors and logical observables

A detector can be understood as a generalisation of a stabiliser measurement that

is useful for defining and constructing the decoding problem for quantum error

correction circuits, in which the quantum gates themselves can be noisy. A detector

is defined to be a parity of measurement outcome bits in a quantum error correction

circuit that is deterministic in the absence of errors. The outcome of a detector

measurement is 1 if the observed parity differs from the expected parity for a

noiseless circuit, and is 0 otherwise. We say that a Pauli error P flips detector D

if including P in the circuit changes the outcome of D, and a detection event is a
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detector with outcome 1.

We define a logical observable to be a linear combination of measurement bits,

whose outcome instead corresponds to the measurement of a logical Pauli operator.

A logical observable measurement is in general not deterministic in the absence of

noise. In all cases we consider however, such as in a memory experiment, logical

observables are deterministic, since the logical qubit is prepared in a known logical

basis state so that a quantum error correction protocol can be benchmarked. However,

unlike a detector measurement, a logical observable measurement outcome is not

given to a decoder, since it corresponds to a measurement of a logical qubit that

should be protected by the quantum error correction procedure, and in general the

outcome is apriori unknown.

1.4.3 Detector check matrix and logical observable matrix

With detectors and observables now defined, we can represent this more general noise

model and decoding problem using two binary parity check matrices: a detector

check matrix H ∈ Fnd×m
2 and a logical observable matrix L ∈ Fnl×m

2 , where here nd

is the number of detectors and nl is the number of logical observables. Each column

of these matrices corresponds to an error mechanism, and therefore m denotes the

number of these error mechanisms. We set H[i, j] = 1 if detector i is flipped by

error mechanism j, and H[i, j] = 0 otherwise. Likewise, we set L[i, j] = 1 if logical

observable i is flipped by error mechanism j, and L[i, j] = 0 otherwise. By describing

the error model this way, each error mechanism is defined by which detectors and

observables it flips, rather than by its Pauli type and location in the circuit. We can

then represent an error (a set of error mechanisms) by a vector e∈ Fm
2 . The syndrome

of e is the outcome of detector measurements, given by s = He. We define the set of

detection events to be the subset of detectors corresponding to the non-zero elements

of s. An undetectable logical error is an error in B := {e ∈ Fm
2 | e ∈ kerH,e ̸∈ kerL}.

We now discuss the possible error mechanisms (columns of H and L in more

detail). A model of the noise assigns some probability P(e) ∈ [0,1] to each error

e ∈ Fm
2 . In this thesis we only consider independent noise models, where each error

mechanism occurs (flips bit e[i]) independently with probability p[i], flippping some
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set of detectors and observables. Here p ∈ Rm is a vector of priors, defining the

independent noise model. Each column in H or L will always correspond to an

independent error mechanism. For an independent noise model, the prior probability

P(e) of an error e is

P(e) = ∏
i
(1−p[i])(1−e[i])p[i]e[i] = ∏

i
(1−p[i])∏

i

(
p[i]

1−p[i]

)e[i]
. (1.21)

The distance of the circuit for an independent noise model is d = mine∈B |e|, where

|e| is the Hamming weight of e.

An independent error model can be used to represent circuit-level depolarising

noise exactly, and is a good approximation of many commonly considered error

models, including general stochastic Pauli noise models [49, 90]. From a stabilizer

circuit and Pauli noise model, we can construct H and L efficiently by propagating

Pauli errors through the circuit to see which detectors and observables they flip.

Each prior p[i] is then computed by summing over the probabilities of all the Pauli

errors that flip the same set of detectors or observables (or more precisely, these

equivalent error mechanisms are independent, and we compute the probability that

an odd number occurred). This is essentially what the error analysis tools do in the

Stim software package, where a “detector error model” (automatically constructed

from a Stim circuit) captures the information contained in H, L and p [92].

In Section 1.4.6, we show how the detectors, observables and the matrices H

and L are defined for a small example of a distance 2 repetition code circuit.

Note that, from the perspective of the decoder, these matrices H and L are

treated the same as the matrices with the same names defined in Section 1.4.1, and

for any stabiliser code we can construct a circuit with independent X and Z errors

such that the detector check matrices and logical observable matrices coincide with

those of Section 1.4.1.

1.4.4 Tanner graphs

A Tanner graph is a bipartite graph that can be used to represent any check matrix H.

The check matrix H is the biadjacency matrix of the corresponding Tanner graph
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Figure 1.9: Representations of (a) detectors, (b) logical observables and (c) error mech-
anisms for the circuit corresponding to a [[2,1,2]] repetition code memory
experiment with two rounds of syndrome extraction. (d) The detector check
matrix H and logical observables matrix L. (e) The Tanner graph representation
of H (and L in green). (f) The matching graph representation of H (which can be
used when H has column weight at most 2). Each edge is annotated with the set
of logical observables it flips (with {} denoting the empty set). The grey regions
here represent the boundary. Note that here there are two parallel half-edges
adjacent to each node; this is a symptom of the fact that the code has distance 2,
and therefore has distinct error mechanisms that flip the same set of detectors
but different sets of logical observables.
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T (H).

We define a Tanner graph describing a stabiliser circuit and stochastic Pauli

noise model T (H) = (V,C,E), where V is a set of variable nodes, C is a set of check

nodes and E is the edge set. Recall that since T is bipartite, for each edge (v j,ci)∈ E

we have v j ∈V and ci ∈C. Each check node ci ∈C corresponds to a detector (a row

of H) and each variable node v j ∈V corresponds to an independent error mechanism

(Pauli error) that can occur in the circuit. There is an edge (v j,ci) ∈ E if and only

if the error mechanism corresponding to v j ∈V flips the detector corresponding to

ci ∈C (i.e. if and only if H[i, j] = 1). The Tanner graph representation of the check

matrix is used to define the belief propagation decoder, a message-passing algorithm

used in Chapter 3, in which messages are sent along the edges of the Tanner graph.

1.4.5 Matching graphs

When the check matrix H has column-weight at most two we can represent it

graphically using a different type of graph called a matching graph, which can be

used to construct efficient decoding algorithms, including for the minimum-weight

decoding problem we will review later in this chapter, and which is the subject of

Chapter 2. Matching graphs are also called matching graphs or decoding graphs

in the literature. We sometimes refer to this type of error model, where each error

mechanism flips at most two detectors, as a graphlike error model. Graphlike error

models can be used to approximate common noise models for many important classes

of quantum error correction codes including surface codes [64], for which X-type

and Z-type Pauli errors are both graphlike, as we will explain.

In a matching graph G = (V,E), each node v ∈ V corresponds to a detector (a

detector node, a row of H). Each edge e ∈ E is a set of detector nodes of cardinality

one or two representing an error mechanism that flips this set of detectors (a column

of H). We can decompose the edge set as E = E1∪E2 where ∀e ∈ E1 : |e|= 1 and

∀e ∈ E2 : |e|= 2. A regular edge (u,v) ∈ E2 flips a pair of detectors u,v ∈ V , whereas

a half-edge (u,) ∈ E1 flips a single detector u ∈ V . For a half-edge (u,) ∈ E1 we

sometimes say that u is connected to the boundary and use the notation (u,vb),

where vb is a virtual boundary node (which does not correspond to any detector).
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Therefore, when we refer to an edge (u,v) ∈ E it is assumed that u is a node

and v is either a node or the boundary node vb. Each edge ei ∈ E is assigned

a weight w(ei) = log((1−p[i])/p[i]), and recall that p[i] is the probability that

error mechanism i occurs. We also define an edge weights vector w ∈ R|E | for

which w[i] = w(ei). We also label each edge ei = (u,v) ∈ E with the set of logical

observables that are flipped by the error mechanism, which we denote either by

l(ei) or l(u,v). We use x⊕ y to denote the symmetric difference of sets x and y.

For example, l(e1)⊕ l(e2) is the set of logical observables flipped when the error

mechanisms 1 and 2 are both flipped. We define the distance D(u,v) between two

nodes u and v in the matching graph to be the length of the shortest path between

them. We give an example of a matching graph G for a repetition code circuit in

Section 1.4.6.

1.4.6 Example of detectors and observables for a repetition code

In Figure 1.9 we show the detectors, observables, matrices H and L, the Tanner graph

and the matching graph G for the circuit corresponding to a memory experiment using

a [[2,1,2]] bit-flip repetition code with two rounds of syndrome extraction. We use a

bit-flip code (with stabilizer group ⟨ZZ⟩) and implement transversal initialisation and

measurement in the Z basis. The circuit has three detectors (Figure 1.9(a)). The blue

highlighted regions are the corresponding Z-type detecting regions [147] (an error

within this region which anti-commutes with its type will cause the corresponding

detector to flip). Figure 1.9(b) shows the logical Z observable. Here, the blue

highlighted region is the Z-type sensitivity region corresponding to the logical Z

observable - errors that anti-commute with Z in this region will flip the outcome of

the corresponding logical measurement L1. Given a stochastic Pauli noise model

in the circuit, we can characterise errors based on the set of detectors and logical

observables they flip (Figure 1.9(c)). For a standard circuit-level depolarising noise

model, there are eight different classes of error mechanism in this circuit, when

classified this way. For each error mechanism, we highlight in red a region of the

circuit where a single-qubit X error would flip the same detectors and observables.

Note that these single-qubit X errors are just examples of Pauli errors contributing
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to the error mechanisms; for example, another Pauli error contributing to E1 would

be a two-qubit Y X error after the first CNOT. Figure 1.9 also shows representations

of this noise model as a detector check matrix H, observable matrix L, as a Tanner

graph and as a matching graph.

Note that for a surface code memory experiment, the circuit and matching graph

are instead three-dimensional. In this case, the sensitivity region corresponding to a

logical Z observable measurement forms a 2D sheet in spacetime. We denote this

logical observable measurement LZ . This observable LZ is included in the set l(e) of

an edge e ∈ E in the matching graph if the error mechanism associated with e flips

LZ . For this to happen, the edge e must pierce the 2D sheet (sensitivity region) and

have Z-type detectors (detectors that are parities of Z measurements) at its endpoints.

1.4.7 Maximum likelihood decoding

Given the detector check matrix H, the logical observables matrix L, the syndrome

s = He of some unknown error e ∈ Fm
2 and a probability distribution modelling the

noise P : Fm
2 → R, a maximum likelihood (ML) decoder returns a correction c ∈ Fm

2

that is most likely to successfully correct the error e, such that Lc = Le.

A maximum likelihood decoder therefore predicts the most probable logical

error (which logical measurements were most likely to have been flipped), which

corresponds to the following maximisation problem:

max
r∈im(L)

[
∑

x∈Fm
2 : Lx=r,Hx=s

P(x)

]
. (1.22)

This predicted logical correction r is by definition the most likely to correct the

actual logical error Le. It is usually sufficient to correct the logical measurement

with r directly, but if a physical correction is required, an ML decoder can return any

c ∈ Fm
2 satisfying Lc = r and Hc = s. In general, the ML decoding problem is not

efficient to solve. Intuitively this is not surprising since the sum in Equation (1.22)

contains a number of terms exponential in the number of error mechanisms m, and

furthermore we are maximising over a number of possible logical errors r ∈ im(L)

that is exponential in the number of logical observables nl . Indeed, the general



1.4. Decoding 50

quantum ML decoding problem for stabiliser codes was shown to be #P-hard in

Ref. [122]. Since the problem of decoding stabiliser codes is a special case of

decoding quantum circuits with general stochastic Pauli noise, the problem as we

have formulated it in this section is also #P-hard. However, for some specific codes

and noise models, ML decoding can be implemented efficiently [34], and tensor

network methods, although still computationally expensive, can be used to achieve a

good approximation of ML decoding for some noise models and codes using modest

system sizes [34, 114, 5].

1.4.8 Minimum-weight decoding

A minimum-weight decoder instead predicts the most probable physical error, rather

than the most probable logical error. This corresponds to finding a correction c ∈ Fm
2

that maximises

max
c∈Fm

2 : Hc=s
P(c). (1.23)

A minimum-weight decoder does not use the logical observables matrix L.

If we have an independent noise model defined by a vector p, as given in

Equation (1.21), then minimum-weight decoding can be equivalently defined as

maximising log(P(c))=C−∑i w[i]c[i], where here C :=∑i log(1−p[i]) is a constant

and w[i] := log((1−p[i])/p[i]) is a log-likelihood ratio (or “weight”) associated

with error mechanism i. In other words the minimum-weight decoder solves the

minimisation problem:

min
c∈Fm

2 : Hc=s

[
∑

i
w[i]c[i]

]
. (1.24)

If we further have a uniform prior, p[i] = p ∀i ∈ [1,m], and if p satisfies p < 0.5,

then minimum weight decoding finds an error c consistent with the syndrome Hc = s

that minimises the Hamming weight |c|. The minimum-weight decoding problem

for stabiliser codes was shown to be NP-hard in Refs. [118, 134], via a reduction to

the analogous problem for classical linear codes, for which the associated decision

problem was shown to be NP-complete in Ref. [18]. As we will see in Section 1.4.10,

however, the minimum-weight decoding problem can be solved in polynomial time

in some cases, specifically when the column weight of H is at most 2.
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1.4.9 Connection to the decoding problem for binary linear

codes

The circuit decoding problem can be seen as a slight generalisation of the syndrome

decoding problem for classical binary linear codes [143]. A binary linear code is a

k-dimensional subspace Fk
2 of an n-dimensional binary vector space Fn

2 defined as the

kernel of a binary parity check matrix H with n columns and rank n−k. Given some

error e applied to a binary vector encoded in the linear code, the syndrome decoding

problem corresponds to using a syndrome vector s = He to infer a correction c

satisfying Hc = s. Here the decoder succeeds only if e = c. For any linear code

we can always construct an equivalent circuit-level decoding problem by using the

check matrix of the linear code to define Z stabilisers, which are measured perfectly

after independent X errors are applied to the data qubits.

The quantum circuit decoding problem is slightly more general since we only

seek to protect certain parities of measurement bits (logical observables) defined by

the logicals matrix L. Hence the difference lies in the definition of success for the

decoding problem: for the quantum circuit decoding problem we succeed if Le = Lc,

whereas for decoding a linear code we do not have a concept of a logical observables

matrix, and so decoding a linear code is equivalent to the quantum circuit decoding

problem where L is the identity matrix.

This connection to linear codes can also be understood from the fact that the set

of possible measurement outcome bits of a noiseless Clifford circuit defines a linear

code provided (without loss of generality) that the sign of Pauli operators measured

are chosen appropriately. See Corollary 2 of Ref. [61] for a proof, where this linear

code is referred to as the outcome code. The detectors correspond to parity checks

of this linear code, constraining allowed measurement outcomes. If the logical

observables are deterministic, they also correspond to parity checks of this linear

code. It is important to stress that here we are referring to parities of measurement

outcomes. In contrast each column of our detector check matrix H (and logicals

matrix L) used for decoding corresponds to an independent error mechanism that in

general flips a set of measurement outcomes.
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1.4.10 The minimum-weight perfect matching decoder

When an independent error model (H,L,p) is graphlike and can be represented by a

matching graph, the minimum-weight decoding problem can be solved efficiently

using the minimum-weight perfect matching (MWPM) decoder [64, 80]. In this

section, we will assume that we have such an independent graphlike error model

with detector check matrix H, logical observables matrix L, priors vector p, as well

as the corresponding matching graph G with edge weights vector w. Given some

error e ∈ Fm
2 sampled from the graphlike error model, with syndrome s = He, the

MWPM decoder solves the minimisation problem defined in Equation (1.24).

We now restate the MWPM decoding problem in terms of the matching graph.

Given a matching graph G = (V,E) with vertex set V , the syndrome s defines a set

of detection events (highlighted nodes) D ⊆ V . Specifically, a detector node vi ∈ V
is included in D if and only if s[i] = 1. A MWPM decoder finds a set of edges

ME ⊆ E of minimum weight ∑e∈ME w(e) such that every node in D is incident to an

odd number of edges in ME , and every node in V \D is incident to an even number

of edges in ME . For a normal graph that does not contain half-edges, this problem

is known as the minimum-weight T -join problem in the field of combinatorial

optimisation (for T ≡D) [74, 132]. In this thesis we will refer to this graph theory

problem as the minimum-weight embedded matching (MWEM) problem.

1.4.10.1 Example: Code capacity surface code decoding

An example of a MWPM decoding problem is that of decoding depolarising noise

in the surface code in the “code capacity” setting, where syndrome measurements

are assumed to be perfect. Here, we assume that we are already in the code space

and measure each stabiliser generator once, defining an X detector as the (noiseless)

measurement of each X stabiliser generator measurement and similarly define a Z

detector for each Z stabiliser generator measurement.

We see that each single qubit X error flips two Z detectors (detectors for Z

stabiliser generators), and similarly each Z error flips two X detectors. The matching

graph therefore has two connected components: an X matching graph and a Z

matching graph, see Figure 1.10. For a noise model in which X and Z errors occur



1.4. Decoding 53

data qubit
ancilla  qubit

and 
graph node

Stabilisers

boundary
graph node

detection
event

Vertices
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Figure 1.10: The MWPM decoding problem for a distance 5 surface code. Left: the X
error matching graph, where we associate a node with each stabiliser and an
edge (u,v) with each X error, where u and v are the stabilisers that the error
anti-commutes with. If an X error anti-commutes with a single stabiliser u we
represent it with an edge (u,vb) between u and a boundary node (each a square
node in the diagram). Middle: the Z error matching graph is defined similarly,
but with an edge for each Z error. Right: A Y error anti-commutes with four
stabilizers, so would need to be represented by a hyperedge, and therefore not
included in the matching graphs. The Y error induces correlations between the
X and Z matching graphs which are ignored by a MWPM decoder.

independently, the matching graph accurately models the noise. For depolarising

noise, however, Y errors can also occur with probability O(p) and each single qubit

Y error flips four detectors in the bulk, which would correspond to a hyperedge if

it were to be included in the matching graph. The detector check matrix for this

problem has the following form:

H =

HX 0 HX

0 HZ HZ

 (1.25)

where the left, middle and right blocks of columns correspond to single qubit Z

errors, X errors and Y errors, respectively. The HX and HZ matrices which define

the X stabilisers and Z stabilisers, respectively, both have column weight at most

2, but the right hand block of columns in H has column weights of up to 4. Since

each Y error can be decomposed into an X and a Z error on the same qubit, it is not

necessary to handle Y errors separately; instead it is sufficient to decode the X and



1.4. Decoding 54

tim
e

tim
e

Figure 1.11: Left: Three rounds of a surface code memory experiment. The edges and
detection events corresponding to a Z error before the first round and an
X stabiliser measurement error during the second round are drawn. Right:
The full X matching graph for a distance-5, 10-round surface code memory
experiment is shown (with the logical qubit prepared and measured in the X
basis). The graph (and diagram) is generated using Stim for the circuit of
Figure 1.3 with circuit-level depolarising noise. The boundary edges drawn in
red are errors that flip the outcome of the logical X observable measurement.

Z matching graphs as separate connected components. Indeed, for any CSS code,

provided a decoder can correct at least t X errors and at least t Z errors, it can also

correct at least t Y errors.

Although a MWPM decoder can correct up to the full code distance for this

problem and has good performance, it is incorrectly modelling Y errors as occur-

ring with probability O(p2) for depolarising noise, when in fact they occur with

probability O(p). This is detrimental to the accuracy of the MWPM decoder, and in

Chapter 3 we show how all the information in the Tanner graph can be exploited by

combining the MWPM decoder with the belief propagation decoder, leading to even

higher accuracy.

1.4.10.2 Example: Surface code memory experiment

A common MWPM decoding problem, which we will use throughout this thesis

to benchmark quantum error correcting codes and decoders, is that of decoding a

memory experiment. A memory experiment benchmarks how well a quantum error



1.4. Decoding 55

Matching graph 
with error and detection events

Path graph

Dijkstra Blossom

MWPM in path graph Minimum-weight
correction

Dijkstra

Figure 1.12: Solving the MWPM decoding problem via a reduction to the MWPM graph
theory problem.

correcting code can preserve a logical observable through time. A memory experi-

ment of a quantum code in the basis P̄ ∈ {X̄ , Z̄} consists of transversal initialisation

of the logical qubit(s) in the P̄ basis, repeating r rounds of syndrome measurement

and then transversal measurement of the logical qubit(s) in the P̄ basis.

We summarise the MWPM decoding problem for an X̄ basis surface code

memory experiment in Figure 1.11, which uses the circuit in Figure 1.3 for syndrome

extraction. The data qubits are initialised in the X basis at the beginning of the circuit

and measured in the X basis at the end. In the bulk of the circuit, each detector is

the parity of two consecutive measurements of a stabiliser generator. As a result, a

single-qubit Z error will only flip the outcome of a pair of X detectors in a single

round, since it only causes the X stabiliser measurements to change in a single round.

A measurement error now corresponds to a timelike edge: it flips a detector in two

consecutive rounds, see Figure 1.11 (left). At the beginning and end of the circuit,

the detectors are defined slightly differently. The X detectors in the first round

each correspond to a single X stabiliser measurement, since initialisation in the X

basis ensures we are already in the +1 eigenstate of the X stabilisers. The final X

detectors, for each X stabiliser generator gi, are the parity of the X measurements of

the data qubits in the support of gi, as well as the final X stabiliser generator ancilla

measurement. The parity of the X data qubit measurements in the support of gi are

essentially a noiseless measurement of gi which can be compared against.
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1.4.11 Polynomial-time algorithm for solving the MWPM

decoding problem

The reason for the MWPM decoder’s name is that the MWEM problem can be solved

via a reduction to the MWPM problem [74]. We now define the MWPM problem for

a graph G = (V,E). Here G is a weighted graph, where each edge (u,v) ∈ E is a pair

of nodes u,v ∈V and, unlike matching graphs, there are no half-edges. Each edge is

assigned a weight w(e) ∈ R. A perfect matching M ⊆ E is a subset of edges such

that each node u ∈V is incident to exactly one edge (u,v) ∈M. For each (u,v) ∈M

we say that u is matched to v, and vice versa. A MWPM is a perfect matching that

has minimum weight ∑e∈M w(e). Clearly, not every graph has a perfect matching

(a simple necessary condition is that |V | must be even; a necessary and sufficient

condition is provided by Tutte’s theorem [195]), and a graph may have more than

one perfect matching of minimum weight.

By using a polynomial-time algorithm for solving the MWPM problem (e.g. the

blossom algorithm [73]), we can obtain a polynomial-time algorithm for solving the

MWEM problem via a reduction. We will now describe this reduction for the case

that the matching graph G has no boundary, in which case the MWEM problem is

equivalent to the minimum-weight T -join problem (see [74, 132]). This reduction

was used by Edmonds and Johnson for their polynomial-time algorithm for solving

the Chinese postman problem [74]. The boundary can also be handled with a small

modification (e.g. see [80]).

Given a matching graph G = (V,E) with non-negative edge weights (and which,

for now, we assume has no boundary, i.e. E = E2), and given a set of detection events

D ⊆ V , we define the path graph Ḡ[D] = (D, Ē) to be the complete graph on the

vertices D for which each edge (u,v) ∈ Ē is assigned a weight equal to the distance

D(u,v) between u and v in G. Here the distance D(u,v) is the length of the shortest

path between u and v in G. In other words, the path graph Ḡ[D] is the subgraph of

the metric closure of G induced by the vertices D. A MWEM M of D in G can be

found efficiently using the following three steps:

1. Construct the path graph Ḡ[D] using Dijkstra’s algorithm.
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2. Find the minimum-weight perfect matching M̄ ⊆ Ē in Ḡ[D] using the blossom

algorithm.

3. Use M̄ and Dijkstra’s algorithm to construct the MWEM: M :=
⊕

u,v∈M̄ Pmin
u,v .

where here Pmin
u,v ⊆ E is a minimum-length path between u and v in G. See Theorem

12.10 of [132] for a proof of this reduction, where their minimum-weight T -join is

our MWEM, and their set T corresponds to our D. See also [12, 19] for alternative

reductions and [30] for a recent review. We give an example of this reduction for the

surface code in Figure 1.12.

Unfortunately, solving these three steps sequentially is quite computationally

expensive; for example, just the cost of enumerating the edges in Ḡ[D] scales

quadratically in the number of detection events |D|, whereas we would ideally

like a decoder with an expected running time that scales linearly in |D|. This

sequential approach has nevertheless been widely used by QEC researchers, despite

its performance being very far from optimal.

A significant improvement was introduced by Fowler [80]. A key observation

made by Fowler was that, for QEC problems, typically only low-weight edges in

Ḡ[D] are actually used by blossom. Fowler’s approach exploited this fact by setting

an initial exploration radius in the matching graph, within which separate searches

were used to construct some of the edges in Ḡ[D]. This exploration radius was

then adaptively increased as required by the blossom algorithm. In Chapter 2 we

introduce an algorithm for solving the MWPM decoding problem, sparse blossom,

that is inspired by Fowler’s work, but is different in many of the details.

Before continuing, we will point out two additional details regarding the MWPM

decoding problem. Firstly, note that the decoder does not need to output the set of

edges directly, but rather can output Lc, a prediction of which logical observable

measurements were flipped. Recall that the decoder has succeeded if it correctly

predicts which observables were flipped, i.e. if Lc = Le. In other words, we can

apply a correction at the logical level rather than at the physical level, which is

equivalent since L(c⊕ e) = Lc⊕Le. This output is generally much more sparse:

for example, for a surface code syndrome extraction circuit such as a memory
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experiment, this prediction is simply a single bit, predicting whether or not the

logical X (or Z) observable measurement outcome was flipped by the error. As we

will see in Chapter 2, predicting logical observables Lc rather than the full physical

error c leads to some useful optimizations.

Secondly, observe that the edge weight w[i] = log((1−p[i])/p[i]) is negative

when p[i] > 0.5. Fortunately, it is straightforward to decode a syndrome s for a

matching graph G containing negative edge weights by using efficient pre- and post-

processing to instead decode a modified syndrome s′ using a set of adjusted edge

weights v containing only non-negative edge weights. This procedure is explained in

Appendix B.5.



Chapter 2

Sparse blossom

The source code for our implementation of the sparse blossom algorithm presented

in this chapter, released in PyMatching version 2, can be found on GitHub at https:

// github. com/ oscarhiggott/ PyMatching . PyMatching is also available as a

Python 3 pypi package installed via “pip install pymatching".

2.1 Introduction
The minimum-weight perfect matching decoder, which we reviewed in Sec-

tion 1.4.10, is the oldest and most popular surface code decoder [64]. The MWPM

decoder maps the decoding problem onto a graphical problem by decomposing

the error model into X-type and Z-type Pauli errors [64]. This graphical problem

can then be solved with the help of Edmonds’ blossom algorithm for finding a

minimum-weight perfect matching in a graph [73, 72]. A naive implementation of

the MWPM decoder has a worst-case complexity in the number of nodes N in the

graph of O(N3 log(N)), with the expected running time for typical instances found

empirically to be roughly O(N2) [107]. Approximations and optimisations of the

MWPM decoder have led to significantly improved expected running times [83, 80,

107]. In particular, Fowler proposed a MWPM decoder with average O(1) parallel

running time [80]. However, previously published implementations of MWPM

decoders have not demonstrated speeds fast enough for real-time decoding at scale.

There have been several alternatives to the MWPM decoder proposed in

the literature. The Union-Find decoder has an almost-linear worst-case running

https://github.com/oscarhiggott/PyMatching
https://github.com/oscarhiggott/PyMatching
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time [60, 119], and fast hardware implementations have been proposed [55] and

implemented [141]. The Union-Find decoder is slightly less accurate than, and can

be seen as an approximation of, the MWPM decoder [206]. Maximum-likelihood

decoders can achieve a higher accuracy than the MWPM decoder [34, 114, 183]

but have high computational complexity, rendering them impractical for real-time

decoding. Other decoders, such as correlated MWPM [81], belief-matching [114]

and neural network [187, 148] decoders can achieve higher accuracy than MWPM

with a much more modest increase in running time. While there has been progress in

the development of open-source software packages for decoding surface codes [107,

194], these tools are much slower than stabilizer circuit simulators [92], and have

therefore been a bottleneck in surface code simulations. This is perhaps one of

the reasons why numerical studies of error correcting codes have often focused on

estimating thresholds (which require decoding fewer shots), instead of resource

overheads (which are more practically useful for making comparisons).

In this chapter, we introduce a new algorithm that solves the MWPM decoding

problem, and provide an open-source implementation. The algorithm we introduce,

sparse blossom, is a variant of the blossom algorithm which is conceptually similar to

the approach taken in Refs. [83, 80], in that it solves the MWPM decoding problem

directly on the matching graph, rather than naively breaking up the problem into

multiple sequential steps and solving the traditional MWPM graph theory problem

as a separate subroutine. This avoids the all-to-all Dijkstra searches often used

in implementations of the MWPM decoder. Our implementation, which has been

released in version 2 of the PyMatching Python package, is orders of magnitude

faster than alternative available tools, and can decode both X and Z bases of a

distance-17 surface code circuit (for 0.1% circuit-noise) in under one microsecond

per round on a single core, matching the rate at which syndrome data is generated on

a superconducting quantum processor. At distance 29 with the same noise model

(more than sufficient to achieve 10−12 logical error rates), PyMatching takes 3.5

microseconds per round to decode on a single core. These results suggest that

our sparse blossom algorithm is fast enough for real-time decoding of large-scale
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superconducting quantum computers, which will generate syndrome data at a rate

of around one microsecond per round [145, 133, 5]. A real-time implementation is

likely achievable through parallelisation across multiple cores, and by adding support

for decoding a stream, rather than a batch, of syndrome data. Our implementation of

sparse blossom has been released in version 2 of the PyMatching Python package,

and can be combined with Stim [92] to run simulations in minutes on a laptop that

previously would have taken hours on a high-performance computing cluster. See

Ref. [113] for the preprint describing the original research contained in this chapter.

We would also like to point the reader to impressive independent work by Yue

Wu, who also recently developed a new implementation of the blossom algorithm

called fusion blossom [207], available at [205]. The conceptual similarity with our

approach is that fusion blossom also solves the MWPM decoding problem directly

on the matching graph. However, there are many differences in the details of our

respective implementations; for example, fusion blossom explores the graph in a

similar way to how clusters are grown in union-find, whereas our approach grows

exploratory regions uniformly, managed by a global priority queue. While our ap-

proach has faster single-core performance, fusion blossom also supports parallel

execution of the algorithm itself, which can be used to achieve faster processing

speeds for individual decoding instances. When used for error correction simu-

lations, we note that sparse blossom is already trivially parallelisable by splitting

the simulation into batches of shots, and processing each batch on a separate core.

However, parallelisation of the decoder itself is important for real-time decoding,

to prevent an exponentially increasing backlog of data building up within a single

computation [186], or to avoid the polynomial slowdown imposed by relying on

parallel window decoding instead [175, 184]. Therefore, future work could explore

combining sparse blossom with the techniques for parallelisation introduced in fusion

blossom.

The chapter is structured as follows. In Section 2.2 we explain our algorithm,

sparse blossom, before describing the data structures we use for our implementation

in Section 2.3. In Section 2.4 we analyse the running time of sparse blossom, and in
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Section 2.5 we benchmark its decoding time, before concluding in Section 2.6.

2.2 Sparse Blossom

The blossom algorithm, introduced by Edmonds [73, 72], is an efficient algorithm for

solving the minimum-weight perfect matching problem in general graphs. We review

the original blossom algorithm in Appendix B.1 for completeness, and explain the

connection between concepts in blossom and sparse blossom in Appendix B.2. How-

ever this background on the blossom algorithm is not a prerequisite to understanding

our approach, since we reintroduce the relevant concepts in this chapter as required.

The variant of the blossom algorithm we introduce, which we call sparse

blossom, directly solves the minimum-weight embedded matching problem relevant

to quantum error correction. Sparse blossom does not have a separate Dijkstra step

for constructing edges in the path graph Ḡ[D]. Instead, shortest path information is

recovered as part of the blossom algorithm itself. Put another way, we only discover

and store an edge e ∈ Ē in Ḡ[D] exactly if and when it is needed by the blossom

algorithm; the edges that we track at any point in the algorithm correspond exactly

to the subset of edges in Ē being used to represent the core data structures of the

blossom algorithm (tight edges, each belonging to an alternating tree, a blossom or

a match, which we will define). This leads to very large speedups relative to the

sequential approach, where all edges in Ē are found using Dijkstra searches, despite

the vast majority never becoming tight edges in the blossom algorithm. We name

the algorithm sparse blossom, since it exploits the fact that only a small fraction of

the detector nodes correspond to detection events for typical QEC problems (and

detection events can be paired up locally), and for these problems our approach only

ever inspects a small subset of the nodes and edges in the matching graph.

Before explaining sparse blossom and our implementation, we will first intro-

duce and define some concepts.
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2.2.1 Key concepts

2.2.1.1 Graph fill regions

A graph fill region R of radius yR is an exploratory region of the matching graph.

A graph fill region R contains the nodes and edges (or fractions of edges) in the

matching graph which are within distance yR of its source. The source of a graph

fill region is either a single detection event, or the surface of other graph fill regions

forming a blossom. We will define blossoms later on, however for the case that the

graph fill region R has a single detection event u as its source, every node or fraction

of an edge that is within distance yR of u is contained in R. Note that a graph fill

region in sparse blossom is analogous to a node or blossom in the standard blossom

algorithm, and the graph fill region’s radius is analogous to a node or blossom’s

dual variable in standard blossom. The sparse blossom algorithm proceeds along a

timeline (see Section 2.2.1.7), and the radius of each graph fill region can have one

of three growth rates: +1 (growing), -1 (shrinking) or 0 (frozen). Therefore, at any

time t we can represent the radius of a region using an equation yR = mt + c, where

m ∈ {−1,0,1}. We will at times refer to a graph fill region just as a region when it

is clear from context.

We denote by D(R) the set of detection events in a region R. When a region

contains only a single detection event, |D(R)|= 1, we refer to it as a trivial region. A

region can contain multiple detection events if it has a blossom as its source. As well

as its radius equation, each graph fill region may also have blossom children and a

blossom parent (both defined in Section 2.2.1.6). It also has a shell area, stored as a

stack. The shell area of a region is the set of detector nodes it contains, excluding the

detector nodes contained in its blossom children. We say that a graph fill region is

active if it does not have a blossom parent. We will letR denote the set of all graph

fill regions.

2.2.1.2 Compressed edges

A compressed edge represents a path through the matching graph between two

detection events, or between a detection event and the boundary. Given a path
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Figure 2.1: Key concepts in sparse blossom

Pu,v ⊆ E between u and v, where u is a detection event and v is either a detection

event or denotes the boundary, the compressed edge β (Pu,v) associated with Pu,v is the

pair of nodes (u,v) at the endpoints of Pu,v, as well as the set of logical observables

l(Pu,v) :=
⊕

e∈Pu,v
l(e) flipped by flipping all edges in Pu,v. The compressed edge

β (Pu,v) is therefore a compressed representation of the path Pu,v containing all the

information relevant for error correction and, for a given matching graph, can be

stored using a constant amount of data (independent of the path length). When the

choice of path Pu,v ⊆ E for some given pair of detection events (u,v) is clear from

context, we may denote the compressed edge β (Pu,v) instead by (u,v), and may also

denote the set of logical observables l(Pu,v) by l(u,v). We define the length of a

compressed edge to be the distance D(u,v) between its endpoints u and v.

Every compressed edge β (Pu,v) in sparse blossom corresponds to a shortest

path Pu,v between u and v. However, we can use a compressed edge to represent any

path between u and v, and when used in union-find (see Appendix B.3) the path Pu,v

need not be minimum weight. Compressed edges are used in the representation of

several data structures in sparse blossom (alternating trees, matches and blossoms).

In particular, each compressed edge (u,v) corresponds to an edge in the path graph

Ḡ[D], but unlike in the standard serial approach to implementing the MWPM decoder,

we only every discover and construct the small subset of the edges in Ḡ[D] needed

by sparse blossom.

We will let Γ be the set of all possible compressed edges (e.g. the set Γ contains
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a compressed edge (u,v) for each edge in Ḡ[D]). For a region R, we denote by

δβ (R)⊆ Γ the boundary-compressed-edges of R, defined as

δβ (R) := {(u,v) ∈ Γ | u ∈ D(R),v /∈ D(R)}. (2.1)

2.2.1.3 Region edges

A region edge describes a relationship between two graph fill regions, or between a

region and the boundary. We use (A,B) to denote a region edge, where here A and B

are both regions. Whenever we describe an edge between two regions, or between a

region and the boundary, it is implied that it is a region edge. A region edge (A,B)

comprises its endpoints A and B as well as a compressed edge β (Pu,v) representing

the shortest path between any detection event in A and any detection event in B.

We sometimes use the notation (Au,Bv) for a region edge to explicitly specify the

two regions A and B along with the endpoints (u,v) of the compressed edge β (Pu,v)

associated with it. More concretely, the compressed edge β (Pu,v) associated with a

region edge (Au,Bv) has endpoints (u,v) defined by

(u,v) = argmin
x,y∈D(A)×D(B)

D(x,y) (2.2)

where here X×Y := {(x,y) | x ∈ X ,y ∈ Y} denotes the Cartesian products of sets X

and Y .

For any region edge that arises in sparse blossom, the following invariants

always hold:

1. If A and B are both regions, then either A and B are both active regions (with

no blossom-parent), or both have the same blossom-parent.

2. The compressed edge (u,v) associated with a region edge (Au,Bv) is always

tight (it would correspond to a tight edge in Ḡ[D] in blossom). More precisely,

a compressed edge (u,v) is tight if it satisfies

D(u,v) = ∑
R∈R : (u,v)∈δβ (R)

yR. (2.3)
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In other words, if there is a region edge (A,B), then regions A and B must be

touching.

2.2.1.4 Matches

We call a pair of regions A and B that are matched to each other a match. The matched

regions A and B must be touching, assigned a growth rate of zero (they are frozen),

and must be joined by a region edge (A,B) which we refer to as a match-edge. An

example of a match is shown in the middle of Figure 2.1. Initially, all regions are

unmatched, and once the algorithm terminates, every region (either a trivial region

or a blossom) is matched either to another region or to the boundary.

2.2.1.5 Alternating trees

An alternating tree is a tree where each node corresponds to an active graph fill

region and each edge corresponds to a region edge. We refer to each region edge

in the alternating tree as a tree-edge. Two regions connected by a tree-edge must

always be touching (since every tree-edge is a region edge).

An alternating tree contains at least one growing region and can also contain

shrinking regions, and always contains exactly one more growing region than shrink-

ing region. Each growing region can have any number of children (each a tree-child),

all of which must be shrinking regions, and can have a single parent (a tree-parent),

also a shrinking region. Each shrinking region has a single child, a growing region,

as well as a single parent, also a growing region. The leaves of an alternating tree

are therefore always growing regions. An example of an alternating tree is shown in

Figure 2.1.

2.2.1.6 Blossoms

When two growing regions from within the same alternating tree hit each other they

form a blossom, which is a region containing an odd-length cycle of regions called

a blossom cycle. More concretely, we will denote a blossom cycle as an ordered

tuple of regions (R0,R1, . . . ,Rk−1) for some odd k and each region Ri in the blossom

cycle is connected to each of its two neighbours by a region edge. In other words,

the blossom cycle has region edges {(Ri,R(i+1) mod k)|i ∈ {0,1, . . . ,k−1}} for all
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1≤ i≤ k. An example of a blossom is shown on the right side of Figure 2.1.

The regions in the blossom cycle are called the blossom’s blossom-children. If

a blossom B has region b as one of its blossom-children, then we say that B is the

blossom-parent of b. Neighbouring regions in a blossom cycle must be touching (as

required by the fact that they are connected by a region edge). Blossoms can also be

nested; each blossom-child can itself be a blossom, with its own blossom-children.

For example, the top-left blossom-child of the blossom in Figure 2.1 is itself a

blossom, with three blossom-children. A blossom descendant of a blossom B is

a region that is either a blossom child of B or is recursively a descendant of any

blossom child of B. Similarly, a blossom ancestor of B is a region that is either the

blossom parent of B or (recursively) an ancestor of the blossom parent of B. The

radius yB of a blossom B is the distance it has grown since it formed (the minimum

distance between a point on its surface and any point on its source). This is visualised

as the distance across the shell of the blossom in Figure 2.1.

We say that a detector node u is contained in a region R if u is in the shell area

of R. A detector node can only be contained in at most one region (shell areas are

disjoint). If a detector node is not contained in a region we say that the node is empty,

and otherwise it is occupied. We say that a detector node u is owned by a region R

either if u is contained in R, or if u is contained in a blossom descendant of R. The

distance DS(R,u) between a detector node and the surface of a region R is

DS(R,u) = min
x∈D(R)

(
D(u,x)− ∑

A∈R:x∈D(A),A≤R
yA

)
(2.4)

where here A≤ R denotes that A is either a descendant of R or A = R. If DS(R,u)< 0

then detector node u is owned by region R, if DS(R,u)> 0 then detector node u is

not owned by R, whereas if DS(R,u) = 0 then u may or may not be owned by R (it is

on the surface of R).

2.2.1.7 The timeline

The algorithm proceeds along a timeline with the time t increasing monotonically

as different events occur and are processed. Examples of events include a region
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arriving at a node, or colliding with another region. The time that each event occurs

is determined based on the radius equations of the regions involved, as well as the

structure of the graph. The algorithm terminates when there are no more events

left to be processed, which happens when all regions have been matched, and have

therefore become frozen.

2.2.2 Architecture

Sparse blossom is split into different components: a matcher, a flooder and a

tracker. Each component has different responsibilities. The matcher is responsible

for managing the structure of the alternating trees and blossoms, without knowledge

of the underlying structure of the matching graph. The flooder handles how graph

fill regions grow and shrink in the matching graph, as well as noticing when a region

collides with another region or the boundary. When the flooder notices a collision

involving a region, or when a region reaches zero radius, the flooder notifies the

matcher, which is then responsible for modifying the structure of the alternating trees

or blossoms. The tracker is responsible for handling when the different events occur,

and ensures that the flooder handles events in the correct order. The tracker uses a

single priority queue, and informs the flooder when every event should be handled.

2.2.3 The matcher

At the initialisation stage of the algorithm, every detection event is initialised as the

source of a growing region, a trivial alternating tree. As these regions grow and

explore the graph, they can hit other (growing or frozen) regions, as well as the

boundary, until eventually all regions are matched and the algorithm terminates. A

growing region cannot hit a shrinking region, since shrinking regions recede exactly

as quickly as growing regions expand.

When the flooder notices that a growing region R has hit another (growing

or frozen) region R′ or the boundary, it finds the collision edge and gives it to the

matcher. The collision edge is a region edge between R and R′ (or, if R hit the

boundary, then between R and the boundary). The collision edge can be constructed

by the flooder from local information at the point of collision, as will be explained in
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Section 2.2.4, and it is used by the matcher when handling events that change the

structure of the alternating tree (which we refer to as alternating tree events). The

matcher is responsible for handling alternating tree events, as well as for recovering

the pairs of matched detection events once all regions have been matched.

2.2.3.1 Alternating tree events

There are seven different types of events that can change the structure of an alternating

tree, and which are handled by the matcher, shown in Figure 2.2:

(a) A growing region R in an alternating tree T can hit a region M1 that is matched

to another region M2. In this case, M1 becomes a tree-child of R in T (and

starts shrinking), and M2 becomes a tree-child of M1 in T (and starts growing).

The collision edge (R,M1) and match-edge (M1,M2) both become tree-edges

(R is the tree-parent of M1, and M1 is the tree-parent of M2).

(b) A growing region R in an alternating tree T hits a growing region R′ in a

different alternating tree T ′. When this happens, R is matched to R′ and the

remaining regions in T and T ′ also become matched. The collision edge

(R,R′) becomes a match-edge, and a subset of the tree-edges also become

match-edges. All the regions in T and T ′ become frozen.

(c) A growing region R in an alternating tree T can hit another growing region R′ in

the same alternating tree T . This leads to an odd-length cycle of regions which

form the blossom cycle C of a new blossom B. The region edges (blossom

edges) in the blossom cycle are formed from the collision edge (R,R′), as

well as the tree-edges along the paths from R and R′ to their most recent

common ancestor A in T . The newly formed blossom becomes a growing

node in T . When forming the cycle C, we define the orphans O to be the

set of shrinking regions in T but not C that were each a child of a growing

region in C. The orphans become tree-children of B in T . The compressed

edge associated with the new tree-edge (B,T ) (connecting the new blossom

region to its tree-parent T ) is just the compressed edge that was associated

with the old tree-edge (A,T ). Similarly, the compressed edges connecting the
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each orphan to its alternating tree parent remains unchanged (even though its

parent region becomes B). In other words, if an orphan Oi had been connected

to its tree-parent Ri by the tree-edge (Oi
u,R

i
v) before the blossom formed, the

new tree-edge connecting it to its new tree-parent B will be (Oi
u,B

i
v) once the

blossom B forms and the region Ri becomes part of the blossom cycle C.

(d) When a blossom B in an alternating tree T shrinks to a radius of zero, instead

of the radius becoming negative the blossom must shatter. When the blossom

shatters, the odd-length path through its blossom cycle from the tree-child of

B to the tree-parent of B is added to T as growing and shrinking regions. The

even length path becomes matches. The blossom-edges in the odd length path

become tree-edges, and some of the blossom-edges in the even length path

become match-edges (the remaining blossom-edges are forgotten). Note that

the endpoints of the compressed edges associated with the tree-edges joining

B to its tree-parent and tree-child are used to determine where and how the

blossom cycle is cut into two paths.

(e) When a trivial region R shrinks to a radius of zero, instead of the radius

becoming negative a blossom forms. If R has a child C and parent P in the

alternating tree T , when R has zero radius it must be that C is touching P (it is

as if C has collided with P). The newly formed blossom has the blossom cycle

(P,R,C). The old tree-edges (Pu,Rv) and (Rv,Cw) become blossom edges in

the blossom cycle. The blossom edge connecting C with P in the blossom

cycle is computed from edges (Pu,Rv) and (Rv,Cw) and is (Cw,Pu). In other

words, its compressed edge has endpoints (w,u) with logical observables

l(u,v)⊕ l(v,w).

(f) When a growing region R in an alternating tree T hits the boundary, R matches

to the boundary and the collision edge becomes the match-edge. The remaining

regions in T also become matches.

(g) When a growing region R in an alternating tree T hits a region M that is

matched to the boundary, then M instead becomes matched to R (and the
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collision edge becomes the match-edge), and the remaining edges in T also

become matches.

Some of these events involve changing the growth rate of regions (for example,

two growing regions both become frozen regions when they match to each other).

Therefore, when handling each alternating tree event, the matcher informs the flooder

of any required changes to region growth.

2.2.3.2 Matched detection events from matched regions

Provided there is a valid solution, eventually all regions become matched to other

regions, or to the boundary. However, some of these matched regions may be

blossoms, not trivial regions. To extract the compressed edge representing the match

for each detection event instead, it is necessary to shatter each remaining blossom,

and match its blossom children, as shown in in Figure 2.3. Suppose a blossom

B, with blossom cycle C, is matched to some other region R with the match-edge

(Bu,Rv), where we recall that u is a detection event in B and v is a detection event in

R. We find the blossom child c ∈C of B which contains the detection event u. We

shatter B and match c to R with the compressed edge (u,v). The remaining regions

in the blossom cycle C are then split into neighbouring pairs, which become matches.

This process is repeated recursively until all matched regions are trivial regions.

2.2.4 The flooder

The flooder is responsible for managing how graph fill regions grow, shrink or collide

in the matching graph, and is not concerned with the structure of the alternating

trees and blossoms, which is instead handled by the matcher. We refer to the events

handled by the flooder as flooder events.

Broadly speaking, we can categorise flooder events into four different types:

1. ARRIVE: A growing region R can grow into an empty detector node u.

2. LEAVE: A shrinking region R can leave a detector node u.

3. COLLIDE: A growing region can hit another region, or the boundary.

4. IMPLODE: A shrinking region can reach a radius of zero.
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Figure 2.2: The main events that change the structure of alternating trees. For clarity, the
background matching graph has been omitted. Each node corresponds to a
detection event, and each edge corresponds to a compressed edge.
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(a) (b) (c)

Figure 2.3: Shattering a matched blossom. Solid lines within a blossom are edges in the
topmost blossom cycle. Dashed lines are edges in the blossom cycle of the
blossom-child of the topmost blossom.

Let us first consider what happens for ARRIVE and LEAVE events. Neither of

these types of events can change the structure of the alternating trees or blossoms, so

the matcher does not need to be notified. Instead, it is the flooder’s responsibility to

ensure that any new flooder events get scheduled (inserted into the tracker’s priority

queue) after the events have been processed. When a region grows into a node u, the

flooder reschedules the node u, by notifying the tracker of the next flooder event that

can occur along an edge adjacent to u (either an ARRIVE or COLLIDE event, see

Section 2.2.4.1). When a shrinking region leaves a node, the flooder immediately

checks the top of the shell area stack and schedules the next LEAVE or IMPLODE

event (see Section 2.2.4.2).

The flooder only needs to notify the matcher of a COLLIDE or IMPLODE

event, and when a collision occurs the flooder passes the collision edge to the matcher

as well. When either of these types of events occur, the matcher may change the

growth rate of some regions when updating the structure of alternating trees or

blossoms. The matcher then notifies the flooder of any change of growth rate, which

may require the flooder to reschedule some flooder events. For example, if a region

R was shrinking, but then becomes frozen or starts growing, the flooder reschedules

all nodes contained in R (including blossom children, and their children etc.), to

check for new ARRIVE or COLLIDE events. When a region starts shrinking, then
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Figure 2.4: Two regions R1 and R2 colliding along an edge (u,v). Node u is contained in
region R1, which is an active region (no blossom parent). Node v is contained
in region R4, and is owned by R4 as well as its blossom ancestors R2 and R3.
Region R4 also has R5 as one of its blossom children. We have labelled the
local radius ru

L(t) of node u and the local radius rv
L(t) of node v, as well as the

wrapped radius rv
w of v and the radius of arrival for v. The edge weight w of the

edge (u,v) is also shown.

the flooder informs the tracker of the next LEAVE or IMPLODE event by checking

the top of the shell area stack.

The correct ordering of these flooder events is ensured by the tracker, and we

create a growing region for each detection event simultaneously at time t = 0. Our

implementation therefore uses an alternating tree growth strategy that is analogous

to what’s described as a “multiple tree approach with fixed δ” in [131].

2.2.4.1 Rescheduling a node

When the flooder reschedules a node, it looks for an ARRIVE or COLLIDE event

along each neighboring edge. There will be an ARRIVE event along an edge if

one node is occupied by a growing region and the other is empty. There will be a

COLLIDE event if both nodes are owned by active regions (R1,R2) with growth

rates (1,1), (0,1) or (1,0), or if one region is growing towards a boundary, for a

half-edge.

In order to calculate when an ARRIVE or COLLIDE event will occur along an

edge, we use the local radius of each node. The local radius rv
L(t) of an node v is

the amount that regions owning v have grown beyond v (see Figure 2.4). To define

the local radius more precisely, we will need some more definitions. The radius of

arrival rv
a for an occupied node v contained in a region R is the radius that R had
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when it arrived at v. We denote the radius of a region A by yA(t) and we let O(v) be

the set of regions that own a detector node v (the region that v is contained in, as well

as its blossom ancestors). The local radius is then defined as

rv
L(t) =−rv

a + ∑
A∈O(v)

yA(t). (2.5)

Both the local radius and radius of arrival of a node v are defined to be zero if v

is empty. Therefore, for an edge (u,v) with weight w, the time of an ARRIVE

or COLLIDE event can be found by solving ru
L(t) + rv

L(t) = w for t. The only

situation in which this involves division is when the local radius of both nodes are

growing (have gradient one), in which case the collision occurs at time tcollide =

(w−ru
L(0)−rv

L(0))/2. However, provided all edges are assigned even integer weights

all flooder events, including these collisions between growing regions, occur at

integer times.

2.2.4.2 Rescheduling a shrinking region

When a region is shrinking, we find the time of the next LEAVE or IMPLODE event

by inspecting the shell area stack of the region. If the stack is empty, or if the region

has no blossom children and only a single node remains on the stack (the region’s

source detection event), then the next event is an IMPLODE event, the time of which

can be found from the x-intercept of the region’s radius equation. Otherwise, the

next event is a LEAVE event, with the node u at the top of the stack leaving the

region. We find the time of this next LEAVE event using the local radius of u, by

solving ru
L(t) = 0 for t. Using this approach, shrinking a region is much cheaper than

growing a region, as it doesn’t require enumerating edges in the matching graph.

2.2.4.3 An example

We give a small example of how the timeline of the flooder progresses in Figure 2.5.

Since regions r1, r2 and r3 are all initialised at t = 0, their radius equations are all

equal to t. Regions r1 and r2 are separated by a single edge with weight 8 and

therefore collide at time t = 4 (and recall that edge weights are always even integers

to ensure collisions occur at integer times). When the matcher is informed of the
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Figure 2.5: An example of some flooder events in a matching graph with three growing
regions.

(b)
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logical observable edge stores logical
observables crossed

between detection events

(a)
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each detector node
stores the detection event

it was reached from
edge endpoints

determined from local
information at collision

Figure 2.6: (a) As a region expands, each detector node it contains stores the detection event
it was reached from (visualised by the Voronoi-style colouring of the blossom on
the left). When a collision occurs, this allows the endpoints of the corresponding
compressed edge (collision edge) to be determined from local information at
the point of collision. (b) Each detector node also stores (as a 64-bit bitmask)
the observables that were crossed to reach it from the detection event it was
reached from. This allows the observables bitmask of the compressed edge to
be recovered efficiently, also from local information at the point of collision.

collision, r1 and r2 are matched and become frozen regions. Region r3 reaches empty

node n1 and the boundary at the same time (t = 6), and so there are two equally valid

sequences of events. Either region r3 matches to the boundary, and never reaches

n1, or r3 reaches n1 and then matches to the boundary. Clearly the final state of

the algorithm is not unique, however there is a unique solution weight, and in this

instance, both outcomes lead to the same set of compressed edges in the solution.
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2.2.4.4 Compressed tracking

Whenever a collision occurs between two regions A and B, the flooder constructs

a region edge (A,B), which we recall includes a compressed edge corresponding

to the shortest path between a detection event in A and a detection event in B. By

storing relevant information on nodes as regions grow, the compressed edge can be

constructed efficiently using local information at the point of collision (e.g. using

only information stored on the edge (u,v) that the collision occurs on, and on the

nodes u and v).

This is explained in Figure 2.6. As a region R reaches an empty node v by

growing along a edge (u,v) from a predecessor node u, we store on v a pointer to the

detection event S(v) it was reached from (which can simply be copied from u). In

other words, we set S(v) := S(u) once v is reached from u. Initially, when a search

is started from a detection event w (i.e. a trivial growing region is created containing

w), then we set S(w) := w. We refer to S(v) as the source detection event of v.

We also store on v the set of observables l(v) crossed during the region growth

(e.g. the observables crossed along a shortest path from S(v) to v). This set of crossed

observables l(v) can be efficiently computed when v is reached from u along edge

(u,v) from l(v) := l(u)⊕ l(u,v), where we implement⊕ as a bitwise XOR since l(u)

and l(u,v) are stored as bitmasks. Initially, when a trivial growing region is created

at a detection event w we set l(w) to the empty set.

Therefore, when a collision occurs between regions R and R′ along an edge

(p,q), the endpoints (x,y) of the compressed edge associated with the collision edge

(Rx,R′y) can then be determined locally as x = S(p) and y = S(q). The observables

l(x,y) associated with the collision edge can be computed locally as l(x,y) := l(p)⊕
l(q)⊕ l(p,q). Note that compressed tracking can also be used to remove the peeling

step of the union-find decoder [60], as we explain in Appendix B.3. We note that it

would also be interesting to explore how compressed tracking could be generalised

to improve decoding for other families of codes that are not decodable with matching

(for which the corresponding error models are not graphlike).

In PyMatching, we only rely on compressed tracking when there are 64 logical
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observables or fewer. When there are more than 64 logical observables, we use

sparse blossom to find which detection events are matched to each other. Then after

sparse blossom has completed, for each matched pair (u,v) we use a bi-directional

Dijkstra search (implemented by adapting the flooder and tracker as required) to find

the shortest path between u and v. If C ⊆ E is the set of all edges along the shortest

paths found this way by the Dijkstra search post-processing, then the solution output

by PyMatching is
⊕

ei∈C l(ei). Note that since we are only post-processing with

Dijkstra rather than constructing the full path graph, this only adds a small relative

overhead (typically less than 50%) to the runtime.

2.2.5 Tracker

The tracker is responsible for ensuring flooder events occur in the correct order. A

simple approach one could take to implement the tracker would just be to place every

flooder event in a priority queue. However, many of the potential flooder events are

chaff. For example, when a region R is growing, a flooder event would be added to

the queue for each of its neighboring edges. We say an edge (u,v) is a neighbor of a

region R if u is in R and v is not (or vice versa). Along each neighboring edge, there

will be an event either corresponding to the region growing into an empty node, or

colliding with another region or boundary. However, if the region becomes frozen or

shrinking, then all of these remaining events will be invalidated.

To reduce this chaff, rather than adding every flooder event to a priority queue,

the tracker instead adds look-at-node and look-at-region events to a priority queue.

The flooder just finds the time of the next event at a node or region, and asks the

tracker for a reminder to look back at that time. As a result, at each node, we only

need to add the next event to the priority queue. The remaining potential flooder

events along neighboring edges will not be added if they have become invalidated.

When the flooder reschedules a node, it finds the time of the next ARRIVE or

COLLIDE event along a neighboring edge, and asks the tracker for a reminder to

look back at that time (a look-at-node event). The flooder finds the time of the next

LEAVE or IMPLODE event for a shrinking region by checking the top of the shell

area stack, and asks the tracker for a reminder to look back at the region at that time
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(a look-at-region event). To further reduce chaff, the tracker only adds a look-at-node

or look-at-region event to the priority queue if it will occur at an earlier time than an

event already in the queue for the same node or region. Once the tracker reminds the

flooder to look back at a node or region, the flooder checks if it is still a valid event

by recomputing the next event for the node or region, processing it if so.

2.3 Data structures

In this section, we outline the data structures we use in sparse blossom. Each detector

node u stores its neighbouring edges in the matching graph as an adjacency list. For

each neighbouring edge (u,v), we store its weight w((u,v)) as a 32-bit integer, the

observables l(u,v) it flips as a 64-bit bitmask, as well as its neighbouring node v

as a pointer (or as nullptr for the boundary). Edge weights are discretised as even

integers, which ensures that all events (including two growing regions colliding)

occur at integer times.

Each occupied detector node v stores a pointer to the source detection event

it was reached from S(v), a bitmask of the observables crosssed l(v) along the

path from its source detection event and a pointer to the graph fill region C(v) it is

contained in (the region that arrived at the node). There are some properties that we

cache on each occupied node whenever the blossom structure changes, in order to

speed up the process of finding the next COLLIDE or ARRIVE event along an edge.

This includes storing a pointer to the active region the occupied detector node v is

owned by (the topmost blossom ancestor of the region it is contained in) as well as

its radius of arrival rv
a, which is the radius that the node’s containing region C(v) had

when it arrived at v (see Section 2.2.4.1). Additionally, we cache the wrapped radius

rv
w of each detector node v whenever its owning regions’ blossom structure changes

(if a blossom is formed or shattered). The wrapped radius of an occupied node

v is the local radius of the node, excluding the (potentially growing or shrinking)

radius of the active region it is owned by. If we let yA(t) be the radius of the active

region that owns v, we can recover the local radius from the wrapped radius with

rv
L(t) = rv

w + yA(t).
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Each graph fill region R has a pointer to its blossom parent and its topmost

blossom ancestor. Its blossom cycle is stored as an array L of cycle edges, where

the cycle edge L[i] stores a pointer to the ith blossom child of R, along with the

compressed edge associated with the region edge joining child i to child i + 1

mod nc, where nc is the number of blossom children of R. Its shell area stack is an

array of pointers to the detector nodes it contains (in the order they were added).

For its radius yR(t) = mt + c we use 62 bits to store the y-intercept c and with 2

bits used to store the gradient c ∈ {−1,0,1}. Each region also stores its match as

a pointer to the region it is matched to, along with the compressed edge associated

with the match-edge. Finally, each growing or shrinking region has a pointer to an

AltTreeNode.

An AltTreeNode is used to represent the structure of an alternating tree. Each

AltTreeNode corresponds to a growing region in the tree, as well as its shrinking

parent region (if it has one). Each AltTreeNode has a pointer to its growing graph

fill region and its shrinking graph fill region (if it has one). It also has a pointer to its

parent AltTreeNode in the alternating tree (as a pointer and a compressed edge), as

well as to its children (as an array of pointers and compressed edges). We also store

the compressed edge corresponding to the shortest path between the growing and

shrinking region in the AltTreeNode.

Each detector node and graph fill region also has a tracker field, which stores the

desired time the node or region should next be looked at, as well as the time (if any)

it is already scheduled to be looked at as a result of a look-at-node or look-at-region

event already in the priority queue (called the queued time). The tracker therefore

only needs to add a new look-at-node or look-at-region event to the priority queue if

its desired time is set to be earlier than its current queued time.

A property of the algorithm is that each event dequeued from the priority queue

must have a time that is greater than or equal to all previous events dequeued. This

allows us to use a radix heap [4], which is an efficient monotone priority queue with

good caching performance. Since the next flooder event can never be more than one

edge length away from the current time, we use a cyclic time window for the priority,
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Figure 2.7: Distribution of alternating tree and blossom sizes observed in sparse blossom
when decoding 1000 shots of distance-11 surface code circuits with p = 0.3%
circuit-level noise. (a) A histogram of the size of alternating trees observed in
events where a tree hits another tree, in terms of both the number of detection
events and detector nodes contained in each tree. (b) A histogram of the size of
blossoms formed, in terms of both the length of each blossom’s blossom cycle,
as well as its recursive depth. A blossom depth or cycle of size one is a trivial
blossom (a graph fill region without blossom children).

rather than the total time. We use 24, 32 and 64 bits of integer precision for the edge

weights, flooder event priorities and total time, respectively.

2.4 Expected running time
Empirically, we observe an almost-linear running time of our algorithm for surface

codes below threshold (see Figure 2.8). We would expect the running time to be

linear at low physical error rates, since in this regime a typical error configuration

will consist of small isolated clusters of errors. Provided the clusters are sufficiently

well separated from one another, each cluster is essentially handled as an independent

matching problem by sparse blossom. Furthermore, using results from percolation

theory [149], we would expect the number of clusters of a given size to decay

exponentially in this size [80]. Since the number of operations required to match a

cluster is polynomial in its size, this leads to a constant cost per cluster, and therefore

an expected running time that is linear in the size of the graph.

In more detail, suppose we highlight every edge in the matching graph G ever

touched by sparse blossom when decoding a particular syndrome. Now consider the

subgraph F of G induced by these highlighted edges. This graph will generally have
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many connected components, and we will refer to each connected component as a

cluster region. Clearly, running sparse blossom on each cluster region separately will

give an identical solution to running the algorithm on G as a whole. Let us assume

that the probability that a detector node in G is within a cluster region of nc detector

nodes is at most Ae−bnc for some b > 0. Since the worst-case running time of sparse

blossom is polynomial in the number of nodes n (at most O(n4), see Appendix B.4),

the expected running time to decode a cluster region (if any) at a given node is at

most ∑
∞
nc=1 Ae−bncn4

c = O(1), i.e. constant. Therefore, the running time is linear in

the number of nodes. Here we have assumed that the probability of observing a

cluster region at a node decays exponentially in its size. However, in [80] it was

shown that this is indeed the case at very low error rates. Furthermore, we provide

empirical evidence for this exponential decay for error rates of practical interest

in Figure 2.7, where we plot the distribution of the sizes of alternating trees and

blossoms observed when using sparse blossom to decode surface codes with 0.3%

circuit-level noise. Our benchmarks in Figure 2.8 and Figure 2.9 are also consistent

with a running time that is roughly linear in the number of nodes, and even above

threshold (Figure 2.10) the observed complexity of O(n1.32) is only slightly worse

than linear.

Note that here we have ignored the fact that our radix heap priority queue is

shared shared by all clusters. This does not impact the overall theoretical complexity,

since the insert and extract-min operations of the radix heap have an amortized time

complexity that is independent of the number of items in the queue. In particular,

inserting an element takes O(1) time, and extract-min takes amortized O(B) time,

where B is the number of bits used to store the priority (for us B = 32).

Nevertheless, our use of the timeline concept and a multiple tree approach

(relying on the priority queue) does result in more cache misses for very large

problem instances, empirically resulting in an increase in the processing time per

detection event. This is because events that are local in time (and therefore processed

soon after one another) are in general not local in memory, since they can require

inspecting regions or edges that are very far from one another in the matching graph.
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In contrast we would expect a single tree approach to have better memory locality for

very large problem instances. However, an advantage of the multiple tree approach

we have taken is that it “touches” less of the matching graph. For example, consider

a simple problem of two isolated detection events in a uniform matching graph,

separated by distance d. In sparse blossom, since we use a multiple tree approach,

these two regions will grow at the same rate and will have explored a region of

radius d/2 when they collide. In a 3D graph, let’s assume that a region of radius

r touches ≈ kr3 edges for some constant k. In contrast, in a single tree approach,

one region will grow to radius d and collide with the region of the other detection

event, which will still have radius 0. Therefore, the multiple tree approach has

touched ≈ 2k(d/2)3 edges, ≈ 4× fewer than the kd3 edges touched by the single

tree approach. This is essentially the same advantage that a bidirectional Dijkstra

search has over a regular Dijkstra search.

2.5 Computational results

We benchmarked the running time of our implementation of sparse blossom (Py-

Matching 2) for decoding surface code memory experiments (see Figure 2.8, Fig-

ure 2.9 and Figure 2.10). For 0.1% circuit-level depolarising noise, sparse blossom

processes both X and Z bases of distance-17 surface code circuits in less than one

microsecond per round of syndrome extraction on a single core, which matches the

rate at which syndrome data is generated by superconducting quantum computers.

At low physical error rates (e.g. Figure 2.8), the roughly linear scaling of

PyMatching v2 is a quadratic improvement over the empirical scaling of an imple-

mentation that constructs the path graph explicitly and solves the traditional MWPM

problem as a separate subroutine. For 0.1%-1% physical error rates and distance 29

and larger, PyMatching v2 is > 100,000× faster than a pure Python implementation

that uses the exact reduction to MWPM. Compared to the local matching approxima-

tion of the MWPM decoder used in [107], PyMatching v2 has a similar empirical

scaling but is around 100× faster near threshold (error rates of 0.5% to 1%) and

almost 1000× faster below threshold (p = 0.1%).
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Figure 2.8: Decoding time per round for PyMatching v2 (our implementation of sparse
blossom), compared to PyMatching v0.7 and a NetworkX implementation. For
distance d, we find the time to decode d rounds of a distance d surface code
circuit and divide this time by d to obtain the time per round. We use a circuit-
level depolarising noise model where the probability p = 0.1% sets the strength
of two-qubit depolarising noise after each CNOT gate, the probability that each
reset or measurement fails, as well as the strength of single-qubit depolarising
noise applied before each round. The threshold for this noise model is around
0.71%. PyMatching v0.7 uses a C++ implementation of the local matching
algorithm described in [107]. The pure Python NetworkX implementation first
constructs a complete graph on the detection events, where each edge (u,v)
represents a shortest path between u and v, and then uses the standard blossom
algorithm on this graph to decode. All three decoders use a single core of an M1
Max processor.

We analysed the distribution of the running time per shot of PyMatching v2

for simulated surface code data, see Figure 2.11 and Figure 2.12. For example, for

distance-17 surface code circuits with p = 0.1% circuit-level noise, we observe a

mean running time of 0.62 microseconds per round and find that 97.4% of the million

shots were decoded with a running time below 1 microsecond per round. We also

plot the relative standard deviation σ/µ of the running time per shot in Figure 2.12

and find that σ/µ decreases as either the distance or error rate is increased.

We also compared the speed of PyMatching v0.7 with that of PyMatching v2 on

experimental data, by running both decoders on the full dataset of Google’s recent

experiment demonstrating the suppression of quantum errors by scaling a surface

code logical qubit from distance 3 to distance 5 [5, 185]. On an M2 chip, PyMatching



2.5. Computational results 85

10 20 30 40 50
Distance

10 5

10 3

10 1

101

Ti
m

e 
pe

r r
ou

nd
 (s

ec
on

ds
)

190x faster

9000x faster

p=0.5%, d × d × d surface code circuits
NetworkX, T N2.77

PyMatching (v0.7), T N1.21

PyMatching (v2), T N1.20

Figure 2.9: Decoding time per round for PyMatching v2 (our implementation of sparse
blossom), compared to PyMatching v0.7 and a NetworkX implementation. The
only difference with Figure 2.8 is that here we set p = 0.5%.
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Figure 2.10: Decoding time per round for PyMatching v2 (our implementation of sparse
blossom), compared to PyMatching v0.7 and a NetworkX implementation.
The only difference with Figure 2.8 is that here we set p = 1%.
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Figure 2.11: Histograms showing the distribution of running times of sparse blossom using
17-round, distance-17 surface code circuits and a standard circuit-level depo-
larising noise model. In (a) we use p = 0.1% and a histogram bin width of
0.01 microseconds. 97.4% of the shots have a running time per round below 1
microsecond. In (a) we instead use p = 1% and a histogram bin width of 0.2
microseconds.
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Figure 2.12: Relative standard deviation σ/µ of the time per shot for distance-d surface
code circuits (with d rounds) and standard circuit-level depolarising noise.
Here σ and µ are the standard deviation and mean, respectively, of the time
per shot, sampling 1 million shots for each data point.



2.6. Conclusion 87

v0.7 took 3 hours and 43 minutes to decode all 7 million shots in the dataset, whereas

PyMatching v2 took 71 seconds.

2.6 Conclusion

In this chapter, we have introduced a variant of the blossom algorithm, which we call

sparse blossom, that directly solves the minimum-weight perfect matching decod-

ing problem relevant to error correction. Our approach avoids the computationally

expensive all-to-all Dijkstra searches often used in implementations of the MWPM

decoder, where a reduction to the traditional blossom algorithm is used. Our imple-

mentation, available in version 2 of the open-source PyMatching Python package,

can process around a million errors per second on a single core. For a distance-17

surface code, it can decode both X and Z bases in under one microsecond per round

of error correction, which matches the rate at which syndrome data is generated on a

superconducting quantum computer.

Some of the techniques we have introduced can be directly applied to improve

the performance of other decoders. For example, we introduced compressed tracking,

which exploits the fact that the decoder only need to predict which logical observ-

ables were flipped, rather than the physical errors themselves. This allowed us to use

a sparse representation of paths in the matching graph, storing only the endpoints

of a path, along with the logical observables it flips (as a bitmask). We showed that

compressed tracking can be used to significantly simplify the union-find decoder

(see Appendix B.3), leading to a compressed representation of the disjoint-set data

structure and eliminating the need to construct a spanning tree in the peeling step of

the algorithm.

When used for error correction simulations, our implementation can be trivially

parallelised across batches of shots. However, achieving the throughput necessary

for real-time decoding at scale motivates the development of a parallelised implemen-

tation of sparse blossom. For example, for the practically relevant task of decoding

a distance-30 surface code at 0.1% circuit-level noise, the throughput of sparse

blossom is around 3.5× slower than the one microsecond per round throughput
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desired for a superconducting quantum computer. It would therefore be interesting to

investigate whether a multi-core CPU or FPGA-based implementation could achieve

the throughput necessary for real-time decoding at scale by adapting techniques

in [207] for sparse blossom. A shortcoming of MWPM decoders such as sparse

blossom is that they do not exploit hyperedge errors (error mechanisms that flip more

than two detectors) that arise in realistic noise models. However, in the next chapter

we present an efficient decoder, belief-matching, that improves on the accuracy of

MWPM decoders by taking advantage of these hyperedge error mechanisms, but

still using a MWPM decoder as a subroutine.



Chapter 3

Belief-matching

The source code for an implementation of the belief-matching decoder presented in

this chapter can be found on GitHub at https: // github. com/ oscarhiggott/

BeliefMatching . Belief-matching is also available as a Python 3 pypi package

installed via “pip install beliefmatching".

3.1 Introduction
Decoders for the surface code are usually either highly accurate [34, 10, 21] or

efficient [64, 80, 60, 119, 113, 207, 141] but not both. Fast decoders for the surface

code, including the minimum-weight perfect matching (MWPM) decoder [64, 80,

113, 207], presented in the previous section, and union-find (UF) [60, 119], ignore

important error mechanisms that are common in experiments. For example, both

MWPM and UF ignore the possibility of Y errors, which cause four detection events

in the bulk of the lattice, and therefore cannot be represented by a single edge in a

matching graph (they would need to be represented as a hyperedge). For this reason,

the matching graph is only an approximation of the full error model; if an X , Y or Z

error each occur with probability p at some location in the circuit, a matching graph

approximation of the noise model is forced to model the Y error as occurring with

probability O(p2) (an X and a Z error). As a result of this approximation, MWPM

and UF are not as accurate as some other decoders [34, 10, 21]. The decoders we

introduce in this chapter exploit Y errors (or, more generally, hyperedge errors)

more effectively than prior work, including for circuit-level noise, while remaining

https://github.com/oscarhiggott/BeliefMatching
https://github.com/oscarhiggott/BeliefMatching
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computationally efficient.

Several different approaches have been previously proposed for handling hy-

peredge error mechanisms more effectively than MWPM or UF [81, 34, 183, 62,

54, 11, 187, 148, 193, 15]. In Ref. [34], a tensor network decoder was introduced

that approximates maximum-likelihood decoding for surface codes. However, this

approach has high computational complexity and assumes error-free syndrome ex-

traction circuits. In Ref. [193] a decoder was introduced for the surface code tailored

to the case where hyperedge error mechanisms dominate over graphlike error mech-

anisms, finding improved thresholds relative to the MWPM decoder in this noise

regime [193]. However, while the performance of the decoder is promising, it is

not clear how well suited it is to other noise models, such as depolarising noise or

general circuit-level errors in syndrome extraction circuits. In Ref. [54] BP was used,

along with multi-path summation, to choose edge weights for a MWPM decoder,

finding a threshold of 17.76% for the surface code with depolarising noise and perfect

syndrome measurements. However, Ref. [54] did not consider how to generalise the

method to handle noisy gates in the syndrome extraction circuit.

The decoders we introduce in this chapter use the belief propagation (BP)

algorithm as a subroutine, which updates prior beliefs of the probability of error

mechanisms in the circuit using an easily parallelisable message passing algorithm.

Our use of BP enables us to exploit all the information present in circuit-level

noise models more effectively, handling correlations between the X and Z decoding

problems, and thereby achieving higher accuracy than MWPM or UF. While BP is

effective at exploiting the full noise information, by itself BP often fails to converge

to a valid solution. We show that by combining BP with MWPM or weighted UF

we ensure convergence and make full use of all information about the noise model,

boosting accuracy.

More precisely, whenever BP fails to converge, we use the updated beliefs

output by BP to determine the edge weights in a matching graph. We then decode

this re-weighted matching graph either: using MWPM, in which case we refer to the

overall decoder as belief-matching; or instead using weighted union-find, in which
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case we name the decoder belief-find. Belief-matching has conceptual similarities to

the decoder proposed by Criger and Ashraf [54], which considered a toy noise model

with perfect measurement results. A key difference of our approach is applicability

to real experimental data and circuit-level noise simulations of experiments. We

show that belief-matching and belief-find are the most accurate of all known compu-

tationally efficient decoders, and belief-find even has an almost-linear (worst-case)

running time. Our numerical simulations show that the high accuracy of our decoders

leads to an increase in the surface code threshold with circuit-level noise from 0.82%

(for MWPM) to 0.94% (for belief-matching and belief-find). Our belief-matching

decoder has also recently been shown to be highly accurate in real devices. In

their recent QEC experiment demonstrating the suppression of quantum errors by

scaling a surface code logical qubit [5], the Google Quantum AI team found that our

belief-matching decoder was the only efficient decoder accurate enough to reduce

the logical error rate as the system size was increased from distance 3 to 5.

The structure of this chapter is as follows. In Section 3.2 we review the belief

propagation decoder and show how it can be used to decode circuit-level noise. In

Section 3.3 we explain how hyperedge error mechanisms can be decomposed into

graphlike error mechanisms (edges), before introducing our belief-matching and

belief-find decoders in Section 3.4. Section 3.5 analyses the running time of our

decoder. We present numerical simulations demonstrating the performance of our

decoders in Section 3.6, before concluding in Section 3.7, where we also discuss

possible future research directions. We also refer the reader to Ref. [114], where

most of the original research described in this chapter was previously presented.

3.2 Belief propagation decoding of circuit-level noise

The improved accuracy of our decoder relies on the Tanner graph representation

of the circuit-level noise model, which we defined in Section 1.4.4. Recall that the

Tanner graph T (H)= (V,C,E) of a circuit is a bipartite graph, the biadjacency matrix

of which is the detector check matrix H. Each variable node v ∈V corresponds to an

error mechanism and each check node c ∈C corresponds to a detector. There is an
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edge (v,c) ∈ E if and only if the error mechanism corresponding to v flips detector c.

Here each error mechanism corresponds to some Pauli error that could occur at any

location in the circuit (for example an XY error occurring after a CNOT gate, one of

the 15 error mechanisms in a two-qubit depolarising noise channel).

The Tanner graph representation of the classical binary linear codes is used by

the belief propagation (BP) decoder, which has been hugely successful for decoding

classical LDPC codes [144]. In this chapter we apply BP to the Tanner graph repre-

sentation of circuit-level noise, which allows us to exploit knowledge of hyperedge

error mechanisms that are ignored by MWPM.

BP is a message-passing algorithm, in which messages are passed along the

edges of the Tanner graph. It takes as input the syndrome as well as a prior distribu-

tion, which associates a log-likelihood ratio (or prior probability) to each variable

node, giving the probability that the associated error mechanism would be expected

to flip. BP then estimates the marginal probability that each error mechanism has

been flipped given the syndrome. The algorithm proceeds in iterations and in each

iteration there is a “check-to-variable” step and a “variable-to-check” step. In the

“check-to-variable” node step, each check node sends a message to its neighbouring

variable nodes in the Tanner graph, whereas in the “variable-to-check” step each vari-

able node sends a message to its neighbouring check nodes. After each iteration, the

most recent messages can be used to estimate a marginal probability for each error

mechanism. See Appendix C for more details on the belief propagation algorithm

and its implementation.

If the Tanner graph is a tree, BP is guaranteed to converge to finding the correct

marginal probabilities after a certain number of iterations. Unfortunately, Tanner

graphs of both classical and quantum LDPC codes contain cycles, which degrade

BP’s performance. However, for classical LDPC codes, provided the girth of the

Tanner graph is not too small (usually a girth of six is sufficient), the marginals

output by BP are good enough to achieve good decoding performance.

Applying BP to Tanner graphs of quantum codes or circuits is more challenging

for two main reasons [164, 8]. Firstly, due to the requirement that stabilisers must
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commute, some noise models inevitably lead to ubiquitous 4-cycles in the Tanner

graph. As an example, consider an X stabiliser SX and a Z stabiliser SZ with non-

trivial support on some qubit qi. Since SX and SZ commute, we know that they must

also share support on at least one other qubit q j. Now if we represent Y errors as error

mechanisms in the Tanner graph, we end up with a 4-cycle (SX ,Yqi,SZ,Yq j ,SX). We

can sometimes avoid this problem by decoding X and Z errors separately, ignoring Y

errors. However, in this chapter we are specifically using BP to exploit the presence

of Y errors, so ignoring them would not be fruitful.

The second problem is that of degeneracy. There are usually many low-weight

error mechanisms that neither flip any detectors nor flip any logical observables. By

definition these are in the kernel of H and L, usually corresponding to stabilisers

(an example of such an error which is not a stabiliser is an X error immediately

prior to a transversal X̄ measurement in a surface code memory experiment). This

does not arise in classical codes, for which we have L = I. Consider one such error

b ∈ ker(H)∩ ker(L), and note that b can have low weight much smaller than the

distance, since it is in ker(L). If two possible errors c and c+b are both (equally)

highly probable, satisfying Hc = H(c+b) = s, then BP can become split between

the two potential solutions and unable to recover either of them. This is because

BP is solving a marginalisation problem, and so if the posterior distribution is not

peaked on a single solution with high probability but instead split between multiple

solutions, the marginals may not provide enough information to pick any of the

(equally valid) individual solutions.

As a result of these issues, we cannot hope to recover a threshold for the surface

code with full circuit-level depolarising noise using BP alone. However, we will

show that combining BP with the MWPM decoder leads to a very accurate decoder,

which improves on both BP and MWPM individually.

3.3 Hyperedge error decomposition

An important concept we will use in belief-matching is hyperedge decomposition.

For surface codes, we can always decompose each hyperedge error mechanism
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Priors:
BP((1, 1, 1, 1)):

0.001 0.001 0.001

0.034 0.0340.999

Figure 3.1: An example of a hyperedge E2 = {D1,D2,D3,D4} that can be decomposed
into edges E1 = {D1,D2} and E3 = {D3,D4}. Here, the green arrows denote
this decomposition E2 = E1 ∧E3. This Tanner graph could be considered a
subgraph of a much larger Tanner graph decribing a noisy stabiliser circuit (see
Section 1.4.4 and Figure 1.9), where each error mechanism Ei corresponds to
a Pauli error (or set of indistinguishable Pauli errors) at some location in the
circuit. Each prior p[i] is the probability of error mechanism Ei given only the
noise model. The row BP((1,1,1,1)) gives the marginal probabilities output by
BP given the noise model and the syndrome (1,1,1,1).

(Dt ,Du,Dv,Dw) into existing edges (Dt ,Du) and (Dv,Dw) in the matching graph

(here Dt , Du, Dv and Dw are detectors). This is because Y components of errors can

be decomposed into X and Z terms, which are always graphlike. For example, at

some location in the circuit we may have a Y error that decomposes into an X error

and a Z error, or we could have an XY error which decomposes into XX and IZ. For

the standard CSS surface code (or other CSS variants of the surface code such as

subsystem surface codes or hyperbolic surface codes), we could use the Pauli-type

to decompose Y components into X and Z as just described. These decompositions

provide a means by which information about hyperedge error mechanisms can be

incorporated into edges in the matching graph, and therefore used by decoders such

as MWPM or UF.

The concept of hyperedge error decomposition generalises to non-CSS codes,

such as the XY [191] and XZZX [29] surface codes and Floquet codes [102], amongst

others. We denote by D(Ei) the set of detectors flipped by error mechanism Ei and de-

note by L(Ei) the set of logical operators flipped by Ei. We say that error mechanism

Eh can be decomposed into graphlike error mechanisms {E1
h ,E

2
h , . . . ,E

c
h} provided
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that D(Eh) =
⊕c

i=1 D(E i
h) and L(Eh) =

⊕c
i=1 L(E i

h), where here ⊕ denotes the sym-

metric distance of sets. We can write this decomposition as Eh = E1
h ∧E2

h ∧·· ·∧Ec
h.

In general there is not always a unique decomposition of each hyperedge into edges

and different choices can affect decoder performance. However, several heuristic

methods for error decomposition have been developed by Gidney and incorporated

into Stim, and these perform well in practice [91]. For our implementation of belief-

matching, we use the hyperedge decomposition provided by Stim when constructing

a detector error model using error decomposition. A slight technicality is that we

merge repeated error mechanisms in the detector error model in Stim, and choos-

ing one of the given decompositions for the merged error mechanism (since the

decompositions provided by Stim may not be unique for the same repeated error

mechanism). We give an example of a hyperedge decomposition in a Tanner graph

in Figure 3.1.

3.4 Belief-matching and belief-find

Our belief-matching and belief-find decoders are given a prior distribution of the

error model (an assignment of an independent error probability to each of the

edge or hyperedge error mechanisms), as well as the observed syndrome from the

implemented error correction circuit. Both decoders consist of two stages, illustrated

in Figure 3.2 for the more simple case where syndrome measurements are perfect.

In the first stage, we use BP to estimate a posterior distribution of the error

model, given the observed syndrome. More specifically, BP is run on the Tanner

graph of the circuit, and estimates the marginal probability that each possible error

mechanism in the noisy syndrome extraction circuit has occurred. Unlike a conven-

tional MWPM or UF decoder, this stage uses knowledge of the full error model,

including the hyperedge error mechanisms. However, as discussed in the previous

section, BP is only able to approximate the posterior distribution and does not have a

threshold if used on its own.

In the second stage, if BP fails to converge on its own, we use the posterior

marginal probabilities estimated by BP to set the edge weights in a matching graph.
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Figure 3.2: Illustration of belief-matching and belief-find. Given an observed syndrome and
an error model, belief propagation is used to estimate the marginal probability
that each error mechanism occurred. These updated error probabilities are used
to set edge weights (here, thicker edges correspond to higher edge weights)
in the X and Z matching graphs, which are then decoded with MWPM (for
belief-matching) or weighted UF (for belief-find). In this figure we consider
the decoding problem for perfect syndrome measurements for simplicity (as
considered in Ref. [54]), however belief-matching and belief-find can also handle
more complicated error models arising from measurements in the syndrome
extraction circuit.

This contrasts to a standard MWPM or UF decoder, where the prior distribution is

used to set edge weights instead. We set the edge weights from the BP posteriors

using a decomposition of each hyperedge into edges. We add the posterior marginal

probability of each hyperedge to the marginal probabilities of the edges in its decom-

position when setting edge weights. After updating the edge weights, we decode the

matching graph using MWPM [64] (for belief-matching) or weighted UF [60, 119]

(for belief-find).

We now elaborate more on how we use the BP marginals to set the edge weights.

Let pBP(Ei) be the marginal posterior probability output by BP for error mechanism

Ei (an edge or hyperedge). For each graphlike error mechanism Ei, let γ(Ei) be the set
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of all error mechanisms (generally hyperedges) which have Ei in their decomposition.

For each edge, we define an adjusted probability1

padj(Ei) := min

[(
pBP(Ei)+ ∑

Eh∈γ(Ei)

pBP(Eh)

)
,1

]
(3.1)

and assign the weight

w(Ei) :=− log
(

pad j(Ei)
)

(3.2)

to each edge in the matching graph2. Note that we always ensure that each hyperedge

has a unique decomposition into edges (if there exists more than one valid decompo-

sition, then we pick one arbitrarily). We give pseudocode for belief-matching and

belief-find in Algorithm 1.

Algorithm 1 Belief-matching/ belief-find

Require: The circuit-level Tanner graph T (H), the priors pprior and the syndrome
σ

Ensure: A correction operator, given as a set of error mechanisms corresponding to
variable nodes in T (H) (columns of the detector check matrix H)

1: Compute the marginal posterior probability pBP(Ei) for each error mechanism
Ei by running BP, which takes T , pprior and σ as input.

2: Find a tentative correction c′, which is the set of error mechanisms Ei for which
pBP(Ei)> 0.5. We say that BP has converged if c′ also has syndrome σ .

3: if BP has converged then
4: return The set of variable nodes c′
5: else
6: Distribute the posterior pBP(Eh) of each error mechanism with a decom-

position (generally a hyperedge) Eh to the edges in its decomposition using
Equation (3.1) and compute the edge weights in the matching graph G using
Equation (3.2).

7: Decode G with syndrome σ using MWPM (for belief-matching) or weighted
UF (for belief-find), to find a set of graphlike error mechanisms c

8: return The error mechanisms c, which correspond to variable nodes in T

1Another natural choice of edge weight would be to use w(Ei) := log
(
(1− pad j(Ei))/pad j(Ei)

)
and then handle the negative weights with MWPM or weighted UF using the method in Appendix B.5.
However, we find that our choice w(Ei) :=− log

(
pad j(Ei)

)
instead leads to slightly improved decod-

ing performance for both belief-matching and belief-find. This could be due to BP giving overly
confident marginals as a result of short loops in the Tanner graph.

2Alternatively we could treat pBP as probabilities of independent events (even though they are not),
and take pad j(Ei) to be the probability that an odd number of faults in the set {Eh}∪ γ(Ei) occurred
under this assumption. This alternative approach would be consistent with how edges and hyperedges
are usually merged in matching graphs.
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3.5 Running time

We now consider the running time of belief-matching and belief-find. The worst-case

running time of belief-find is almost-linear in the number of error mechanisms,

since the weighted UF decoder has almost-linear worst-case running time [60, 119],

and BP has linear running time. Furthermore, both weighted UF and the min-

sum approximation of BP are comparatively simple decoding algorithms, which

are amenable to implementation in hardware [55, 196]. For belief-matching, the

worst-case running time is instead dominated by the MWPM step, which has worst-

case running time O(N3 log(N)), where N is the number of nodes in the matching

graph [106]. However, the expected running time of MWPM has been shown to scale

approximately linearly with the number of detection events when below threshold [80,

113, 207], and we have confirmed empirically that the expected running time of

belief-matching is approximately linear in the number of error mechanisms in this

regime when using sparse blossom for the MWPM subroutine [113]. Furthermore,

our numerical results demonstrate that the decoding performance of belief-find is

almost identical to that of belief-matching, despite having improved worst-case

running time. The BP step, although linear time, can still be quite computationally

intensive, since the number of edges in the circuit-level Tanner graph is a constant

factor larger than the number of edges in the corresponding matching graph, and

running time does not depend strongly on the weight of the syndrome (it is not

necessarily faster at low p, unlike MWPM or weighted UF, since BP touches the

whole Tanner graph). However, we expect these challenges to be overcome since BP

is highly parallelisable, and very fast implementations are already widely used for

decoding classical LDPC codes.

Since the advantage that belief-matching and belief-find offer over MWPM or

weighted UF alone derives from their use of hyperedges present in the circuit-level

Tanner graph, we expect them to outperform MWPM for most experimentally-

relevant circuit-level noise models, for which the characterisation of hyperedge

failure mechanisms is crucial to obtain good decoding performance [50].
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3.6 Numerical simulations
We compared the performance of belief-matching and belief-find to MWPM and

union-find decoders through numerical simulations for the rotated surface code,

using a standard circuit-level depolarising noise model.

3.6.1 Methods

Our noise model is parameterised by a noise strength and is defined as follows:

• Each CNOT gate is followed by a two-qubit depolarising channel of strenth p

(Equation (1.3))

• The outcome of each measurement is flipped with probability 2p/3

• Initialisation in |0⟩ is followed by an X error with probability 2p/3

• Initialisation in |+⟩ is followed by a Z error with probability 2p/3

• A single-qubit depolarising noise channel of strength p is applied to data qubits

during measurement and reset of ancillas (Equation (1.2))

We used Stim to construct the detector error models, decompose hyperedges into

edges and sample from the syndrome extraction circuits [91]. We used PyMatching

to decode with MWPM. Our implementation of weighted UF is very similar to the

version used in Ref. [161]. As in Ref. [161], we grow clusters on a split-edge graph,

obtained from G by adding a node in the middle of each edge. We find that this

modification significantly improves decoding performance. Additionally, in each

round of growth, we grow smaller odd clusters before larger ones and fuse clusters at

the endpoints of an edge (and update their parity) as soon as the edge becomes fully

grown. This means we do not grow a cluster if its parity has already changed from

odd to even earlier in the same round of growth (unlike in Algorithm 2 of Ref. [60]).

Finally, we construct a spanning tree, not a minimum-weight spanning tree, in the

peeling decoder stage of weighted UF (here we are consistent with Ref. [60] but not

Ref. [119]). None of these modifications affect the asymptotic running time of the

algorithm.



3.6. Numerical simulations 100

0.0070 0.0075 0.0080 0.0085 0.0090 0.0095 0.0100 0.0105
Physical error rate

10 1

2 × 10 2

3 × 10 2

4 × 10 2

6 × 10 2

Lo
gi

ca
l e

rro
r r

at
e

 0.940%  0.817% 

MWPM

Belief-Matching

5
9
13
17

(a)

0.0070 0.0075 0.0080 0.0085 0.0090 0.0095 0.0100 0.0105
Physical error rate

10 2

10 1

Lo
gi

ca
l e

rro
r r

at
e

 0.795%  0.937% 

Weighted
Union-Find

Belief-Find

MWPM
(0.817%)

11
15
19
23

(b)

Figure 3.3: Thresholds of our decoders for the rotated surface code using circuit-level depo-
larising noise. In each plot, the legend gives the code distance. (a) For MWPM
and belief-matching we observe thresholds of 0.817(5)% and 0.940(3)%, re-
spectively. (b) For weighted union-find and belief-find we find thresholds of
0.795(1)% and 0.937(2)%, respectively.

We estimate thresholds using the critical exponent method of Ref. [201], with

1σ uncertainties in the last digit (estimated using jackknife sampling over lattice

sizes) given in parentheses.

3.6.2 Thresholds

In Figure 3.3a we show the performance of belief-matching for the rotated surface

code for circuit-level depolarising noise, and compare its performance to that of

a MWPM decoder. The MWPM decoder has previously had the highest reported

circuit-level threshold for the surface code, which we find to be 0.817(5)% for our

noise model. We find that belief-matching increases the threshold to 0.940(3)%, a

1.15× improvement. This 1.15× improvement can be attributed to belief-find taking

advantage of correlations between the X and Z matching graphs due to Y errors.

Figure 3.3b shows thresholds for circuit-level depolarising noise using the

weighted UF decoder, as well as belief-find. We find that belief-find also outperforms

MWPM, achieving a threshold of 0.937(2)% despite having a worst-case running

time almost-linear in N. We observe very little difference in decoding performance

between weighted UF and MWPM alone, with weighted UF obtaining a threshold

of 0.795(1)%, compared to a threshold of 0.817% for MWPM. Furthermore, there

is no statistically significant difference between the 0.940(3)% threshold of belief-
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Figure 3.4: Logical error rate per round vs. code distance for MWPM and belief-matching,
using circuit-level depolarising noise with a noise strength of p = 0.2%. Error
bars (95% Clopper-Pearson confidence intervals) are plotted but smaller than
the marker size. The dashed lines are least-squares linear fits to the data (taking
the logarithm of the logical error rate), extrapolated down to a logical error rate
of 10−12.

matching (see Figure 3.3a) and the 0.937(2)% threshold of belief-find.

3.6.3 Qubit overhead below threshold

We also estimate the resources required to achieve a logical error rate of 10−12 below

threshold using belief-matching and MWPM. In Figure 3.4 we plot the logical error

rate per round vs. the code distance for MWPM and belief-matching, using p = 0.2%

circuit-level depolarising noise. For a distance d surface code, the logical error rate

per round is estimated using a memory experiment with 2d rounds, and then dividing

by the number of rounds. Using a least-squares fit to the data, we extrapolate down to

10−12 logical error rates, and estimate that a distance 29 rotated surface code (1,681

physical qubits) is required to survive a trillion rounds using MWPM, whereas only

distance 25 (1,249 physical qubits) is needed for belief-matching. Therefore, in

a practical regime where we might want to use the surface code for computation,

belief-matching reduces the number of physical qubits required by around 25%,

compared to the same setup using a MWPM decoder.

3.7 Conclusion
In this chapter we introduced new efficient decoders for the surface code, belief-

matching and belief-find, which we showed have improved accuracy for decoding
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circuit-level noise. Our decoders use knowledge of the full circuit-level noise

model, i.e. they consider all possible error mechanisms in the circuit along with

their associated error probabilities. By contrast, standard MWPM only considers

error mechanisms that are “graphlike” (errors that flip one or two detectors). We

therefore expect that belief-matching and belief-find will have good performance

for a wide range experimentally-relevant noise models and can use noise models

calibrated from experimental data [50]. Indeed, after the pre-print of the work in

this chapter was released, our belief-matching decoder was used to experimentally

demonstrate the suppression of quantum errors by scaling a surface code logical

qubit from distance 3 to 5 [5]. In this surface code experiment, it was shown that

belief-matching outperformed both MWPM [64, 80] and the correlated MWPM

decoder of [81] for experimental noise [5]. The improved accuracy relative to the

correlated MWPM decoder of Ref. [81] can be understood from the fact that belief-

matching considers the full circuit-level noise model, whereas correlated MWPM

considers each pair of correlated edges in isolation and only updates edge weights

in close proximity to an initial (uncorrelated) MWPM solution. Our belief-find

decoder has an almost-linear worst-case runtime while having very similar accuracy

to belief-matching. This worst-case runtime is an improvement on the worst-case

runtimes of MWPM and belief-matching, although these matching decoders can

still have a linear expected runtime in practice at low error rates. Future work could

explore implementations of belief-matching and belief-find in hardware [55, 196].

Belief-matching and belief-find can be applied to any code for which MWPM can

be used, which includes 2D surface codes [64, 192, 29, 44, 67], subsystem surface

codes [36, 112] and Floquet codes [102], amongst others [9, 138, 48]. Previous work

developing decoders that handle hyperedge error mechanisms in the surface code

have mostly assumed perfect syndrome measurements or a phenomenological error

model [70, 69, 71, 204, 120, 26, 26, 54]. More generally, we have demonstrated how

high performance decoders for classical LDPC codes (such as BP) can be applied

directly to infer probable error locations in realistic circuit-level noise models, and

expect that the techniques presented in this chapter will inspire the application of
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similar techniques to other quantum error correction codes and protocols.



Chapter 4

Schedule-induced gauge fixing

In this chapter, we introduce new circuits and decoding methods for subsystem codes.

Subsystem codes have usually had lower thresholds, an issue which can be attributed

to their higher weight stabilisers. We introduce a technique for constructing syndrome

measurement circuits and decoders that we show can lead to subsystem codes

achieving high thresholds for realistic circuit-level noise models. The technique

we introduce, called schedule-induced gauge fixing, improves the error correcting

performance of a wide class of subsystem codes, especially under biased noise

models. By changing the order in which check operators are measured, valuable

additional information can be gained, and we introduce a new method for decoding

which uses this information to improve performance. Static gauge-fixing has been

used to improve decoding performance before in Ref. [138], where the Bacon-Shor

code was used as a template to construct elongated compass codes, which can be

tailored to biased noise models. However, this method requires changing interactions

at the hardware level, as well as measuring high weight stabilisers directly, since

elongated compass codes are not subsystem codes themselves. In contrast, our

technique can be implemented entirely in software, and only requires measuring the

low-weight gauge operators of the code. In essence, schedule-induced gauge fixing

allows us to switch repeatedly between different codes such that more information

can be inferred about potential errors.

In Section 4.1 we introduce schedule-induced gauge fixing (SIGF), our tech-

nique for improving the quantum error correcting performance of subsystem codes.
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We then show how SIGF changes the structure of the matching graph in Section 4.2.

We present numerical results in Section 4.3, where we apply SIGF to the subsystem

toric code for depolarising and biased circuit-level noise, before concluding in Sec-

tion 4.4. Most of the original research in this chapter has been previously published

in Ref. [112].

4.1 Gauge-fixing schedules and circuits

We will now introduce some general techniques that improve the quantum error

correcting performance of a wide class of subsystem codes. We will alter the

stabiliser measurement procedure in software, in such a way that the individual

gauge operator measurements themselves yield useful information. This use of

individual gauge operator measurements is in contrast to prior work on decoding

subsystem codes in the literature, where individual gauge operator measurements

themselves are never treated as syndrome bits, and only their products (the stabilisers)

are used for decoding.

While we will analyse these techniques numerically using the subsystem surface

code (and for the subsystem hyperbolic codes introduced in Chapter 6), the key ideas

can be applied to the vast majority of subsystem codes considered in the literature,

for which stabiliser eigenvalues can be inferred by measuring gauge operators. In

fact, these techniques address one of the main drawbacks of subsystem codes, which

is that they typically have lower thresholds. Low thresholds arise partly because

stabiliser eigenvalues are determined by combining the outcomes of many gauge

operator measurements, each of which may be faulty, making their measurement less

reliable. Additionally, these high weight stabilisers provide less information about

which qubit has suffered an error, further reducing the threshold. The most dramatic

example of this effect is the Bacon-Shor code [9] which, although it has weight-2

check operators, has no threshold without concatenation, as the stabilizer operators

grow with system size (although it was recently shown that a threshold can be

recovered using concatenation with geometrically local gates [93]). The techniques

we introduce can also be used when applying logical operations with subspace codes,
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as we explain in Appendix D.2.2, since lattice surgery and code deformation for

surface codes can be interpreted as gauge fixing of a larger subsystem code [200].

We call the general method schedule-induced gauge fixing, since we will be

altering the schedule of the stabiliser measurement circuits in such a way that gauge

fixing can be used to significantly improve the error correcting performance when

decoding. We will refer to it simply as gauge fixing when the meaning is clear from

context.

Schedule-induced gauge fixing can be applied to a large class of subsystem

codes, for which there are stabilisers s that are the product of gauge operators,

s = g0g1 . . .gm−1, gi ∈ G \S . We call these gauge operators gauge factors Gs of s,

Gs := {g0, . . . ,gm−1|gi ∈ G \S,s = g0g1 . . .gm−1}, (4.1)

and stabilisers which admit such a decomposition will be referred to as composite

stabilisers. In general there can be more than one such decomposition for a given

stabiliser, though we are typically most interested in the minimum-weight decompo-

sition, where the average weight of gauge factors gi ∈ G \S is minimised. For the

codes we construct in this work there is a unique minimum-weight decomposition

for each stabiliser, though in general there can be more than one [45]. For CSS

subsystem stabiliser codes the gauge factors of each stabiliser mutually commute,

and can be measured in any relative order. For more general subsystem codes, the

order of measurements of gauge factors g0g1 . . .gm−1 of each stabiliser s ∈ S must

be chosen such that each gauge factor measurement gi commutes with the product

g0g1 . . .gi−1 of gauge factor measurements before it. In Ref. [181], this condition

was shown to be both necessary and sufficient to guarantee that the stabiliser can

indeed be recovered from the product of individual measurements. Schedule-induced

gauge fixing will typically be most useful for subsystem codes which have at least

one composite stabiliser, and for which the weight of each composite stabiliser is

greater than the weight of each of its gauge factors. In the case of the subsystem

codes studied in this work, the gauge factors of each Z stabiliser associated with a

face are the Z triangle operators belonging to that face (and similarly for X stabilisers
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and X triangle operators).

When decoding subsystem codes with existing methods, the syndrome used

consists of eigenvalues of stabilisers. In other words, where a stabiliser is composite,

measured by taking the product of the measurements of its m gauge factors gi ∈ Gs,

it is the product that is used for decoding, not the result of each gauge factor

measurement individually. Therefore, for each stabiliser, we are measuring m

bits of information, and only using a single bit (their parity) for decoding. Or

more generally, when repeating syndrome measurements and comparing consecutive

rounds, each detector is formed as the parity of 2m bits. For the most simple stabiliser

measurement schedules typically used, this is indeed all the useful information that

can be used for decoding. This is because G is not abelian and, by definition, each

gauge factor gi ∈ Gs must anti-commute with at least one other gauge operator

h ∈ G. Once h is measured, either h or −h becomes a stabiliser, and a subsequent

measurement of gi will result in either 1 or −1 at random with P(1) = P(−1) =

0.5. Consider a schedule W of measurements of check operators K0K1 . . .KN−1,

chronological order from left to right, where each check operator Ki is either a

gauge factor or a stabiliser that is not composite, and where each Ki is measured

once. If this measurement schedule W is simply repeated periodically, then every

consecutive pair of measurements of any check operator Ki will be separated by one

measurement of every other check operator. As a result, if the check operators in W

generate S as required, every measurement of a gauge factor will give a random

outcome and will not be useful for decoding, since its eigenvalue will not have been

preserved between consecutive measurements. In fact, the eigenvalue of any product

of check operators that is not in S will also not be preserved between consecutive

measurements, following similar reasoning.

However, we can instead choose a measurement schedule W , again repeated

periodically, where some gauge factors gi are measured multiple times within W , with

no anti-commuting check operators measured between consecutive measurements

of gi within W . In this case, the first measurement of gi in W will have a uniformly

random outcome c ∈ {±1}, but will project the state into an eigenstate of the
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generator cgi (the measurement outcome determines the phase of the generator).

Borrowing terminology from Ref. [102], cgi becomes part of the instantaneous

stabiliser group (ISG), i.e. a part of the stabiliser group of the state at that instant in

the circuit, even though it is not in the stabiliser group of the subsystem code itself.

The subsequent repeated measurements of gi will be deterministic, since gi is now in

the ISG (it stabilises the state) and, provided no error has occurred, the measurement

outcome will remain c.

4.1.1 Gauge-fixing for CSS codes

We will now restrict our attention to CSS subsystem codes, for which the gauge

group G can be decomposed into a set of operators each in {I,X}n, which we denote

GX , and a set of operators each in {I,Z}n, which we denote GZ , with G = GX ∪GZ .

The stabiliser group can similarly be decomposed into either X-type or Z-type Pauli

operators. For CSS subsystem codes, the most common measurement schedule

consists of alternating between measuring all X-type and all Z-type check operator

measurements in a repeating sequence. In other words, the sequence of measurements

for measuring the X or Z stabilisers is of the form (ZX)r, where 2r is the number

of rounds of stabiliser measurements, and the chronological order is from left to

right. We call such a sequence of measurements a homogeneous schedule, since

all stabilisers of the same Pauli-type are given identical measurement schedules.

Equivalently, for the subsystem codes we construct, a homogeneous schedule assigns

the same schedule to each face of the lattice from which it is derived. We will

sometimes denote a schedule just by its longest repeating subsequence if the number

of repetitions is not relevant (i.e. denoting the above schedule by ZX rather than

(ZX)r).

For the ZX schedule, each X gauge operator measurement comes directly after

the measurement of a Z gauge operator that it anti-commutes with (and vice versa),

and so the outcome of each individual gauge operator measurement is random. How-

ever, by repeating X or Z check operator measurements we can temporarily fix some

gauge operators as stabilisers. As an example, consider a homogeneous schedule of

the form (Z2X2)r and some X-type gauge operator g j. The first measurement of g j



4.1. Gauge-fixing schedules and circuits 109

in each consecutive pair of X gauge operator measurements will be random, but will

project the state into an eigenstate of g j or −g j. The second measurement will be

deterministic and have the same measurement outcome as the first. Clearly the same

is true for the first and second Z gauge operator measurement outcomes.

4.1.2 Homogeneous stabiliser measurement circuits

In order to measure the triangle operators (and therefore stabilisers) of the subsystem

surface code, we require a circuit to measure each triangle operator using an ancilla

qubit. We will now show how these circuits can be constructed for homogeneous

schedules, where the same schedule is applied to each face in the lattice. In each

face of the subsystem toric code Each triangle operator consists of three data qubits

and at least one ancilla, and can be measured using three CNOT gates, along with

state preparation and measurement of an ancilla. A time step is defined as the time

taken for a CNOT gate, and we assume that state preparation and measurement

combined take a single time step. This assumption is similar to the assumption

of non-demolition measurements in Refs. [202, 83], except we will assume both

state preparation and measurement errors, rather than just the latter. In Ref. [36] the

authors instead assume that state preparation and measurement each take a time step,

and use an additional ancilla to parallelise state preparation and measurement into

a single time step. The parity check measurement circuit therefore takes four time

steps.

The measurement schedules we use are shown in Figure 4.1. The schedule

shown on the left of Figure 4.1 is for alternating measurement of the Pauli-Z and

Pauli-X operators (ZX schedule), and is the same as that used in Ref. [36]. The right

hand diagram in Figure 4.1 shows the schedule for measuring ZZ (blue labels) as

well as the schedule for measuring XX (red labels). All three of these schedules

have period 4, and so the time steps which each gate is labelled with are given

modulo 4. Note that the first half of the ZZ schedule matches the Z component of

the ZX schedule, and the first half of the XX schedule matches the X component of

the ZX schedule. Therefore, the schedule for any homogeneous sequence can be

implemented by concatenating these three schedules (or subsets of them). For the
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Figure 4.1: Parity check measurement schedule for the subsystem surface code using a
homogeneous (ZX)r sequence (left) [36], a homogeneous Zr sequence (right,
blue text) and a homogeneous X r sequence (right, red text). CNOT gates are
labelled with the time step(s) they are applied in, which are given modulo 4,
since all schedules have period 4.

standard ZX schedule, we need only a single ancilla qubit for each triangle operator.

For schedules which contain ZZ, we use two ancillas per Z triangle operator to

parallelise consecutive triangle operator measurements, and similarly we use two

ancillas per X triangle operator for parallelised schedules containing XX .

Each individual fault in the measurement circuit results in at most a single data

qubit error, a property that is made possible by the weight-three gauge operators (see

Ref. [36]). As a result of this bare-ancilla fault tolerance of the measurement circuits,

we can correct up to the full code distance for all the codes we have constructed.

4.2 Matching graph using gauge-fixing
We now show how this additional gauge operator information can be used when

decoding a CSS subsystem code using the MWPM decoder, which introduces the

additional requirement that the code must have no more than two stabilisers of a

given Pauli type acting non-trivially on each qubit. Subsystem codes which satisfy

these properties include the subsystem surface code [36], the Bacon-Shor code [9,

6], and some 2D compass codes [138], including heavy-hexagon codes [48].

As an example, let us first consider the 2D matching graphs of the subsystem

toric code, assuming perfect stabiliser measurements. Each node in the X-type

(or Z-type) matching graph corresponds to an X (or Z) stabiliser, and each edge

corresponds to a Z (or X) error on a qubit. For the stabiliser group of the subsystem

toric code with no gauge operators fixed, both the X-type and Z-type matching
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Figure 4.2: Matching graphs (X-type) for the subsystem toric code with no triangle operators
fixed as stabilisers (left) and all triangle operators fixed as stabilisers (right).

graphs are triangular lattices, as shown in Figure 4.2 (left) for the X-type matching

graph. This triangular lattice matching graph has a MWPM threshold of 6.5% with

perfect measurements [86]. However, once we have measured all the X-type gauge

operators, they become gauge-fixed as stabilisers (up to signs that can be accounted

for in software), and the stabiliser group we obtain is that of the hexagonal toric

code [86]. The new associated X-type matching graph instead has an improved

MWPM threshold with perfect measurements of 15.6% [86], exceeding that of the

toric code on a square lattice of 10.3% [64]. If we measure all the Z-type gauge

operators, we instead obtain the dual of the hexagonal toric code, and now the Z-type

matching graph is a hexagonal lattice.

When using the standard ZX schedule for the subsystem toric code, the sta-

biliser group is indeed constantly switching (up to signs) between the hexagonal

toric code and its dual, both abelian subgroups of the gauge group G. However, each

gauge operator is only ever fixed immediately after it is measured, and is randomised

by the time the same gauge operator is next measured, since an anti-commuting

gauge operator of the opposite Pauli-type is measured in between these consecutive

measurements of the same gauge operator. However, by making more than one

consecutive measurement of gauge operators of a given Pauli type, we will now show

that we can gauge fix into the hexagonal toric code (and its dual) for longer dura-

tions, thereby making more valuable use of the individual gauge operator outcomes

themselves.

The matching graph for these circuits are three-dimensional, as for the surface
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time

Figure 4.3: The 3D X-type matching graph for the subsystem toric code. Left: We show
three time steps of the 3D matching graph for a single X stabiliser (highlighted
in red), with black lines denoting edges. Right: We also use this more simple,
abstract notation to depict the same 3D matching graph in our work, restricted
to a single face of the lattice. Here, each pale red rounded rectangle corresponds
to an X stabiliser in one of three consecutive time steps in the matching graph.
Red dots denote X triangle operator measurements (two of which within a face
form a stabiliser), and red lines denote edges in the 3D matching graph.

code. Each node in the matching graph corresponds to a detector, and each edge

(u,v) corresponds to an error mechanism that can occur, creating a detection event at

nodes u and v. In order to handle measurement errors, each stabiliser measurement

is repeated T ≥ L times [64], and in the bulk each detector is the parity of two

consecutive measurements of a stabiliser. Measurement errors correspond to time-

like edges, and memory (data qubit) errors correspond to space-like edges. There are

also single circuit faults that can induce diagonal edges, which have nodes that differ

in both space and time. We can label each detector (and its node in the matching

graph) with a coordinate (s, t), where t is the time step and s = g0 . . .gm−1 denotes

the stabiliser using its gauge factors gi ∈ Gs. If we denote by M(gi, t) ∈ {0,1} the

measurement bit corresponding to the measurement of gi in time step t, then the

detector D(s, t) with coordinate (s, t) is the parity of measurement bits

D(s, t) :=
⊕

gi∈Gs, t ′∈{t,tprev}
M(gi, t ′) (4.2)

where here tprev is the time step of the most recent previous measurement of s (here

we assume for simplicity that all gauge factors of a stabiliser are measured together

in the same time step). We depict the 3D matching graph for the subsystem toric

code in Figure 4.3.

For the ZX schedule used in the previous literature, gauge operators are never
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time

Figure 4.4: Matching graph for a single face of the subsystem toric code using a homoge-
neous (ZX)6 schedule (left) and a homogeneous (Z3X3)2 schedule (right). The
vertical axis corresponds to time, with the direction of time being from bottom
to top. Small blue and red filled circles correspond to Z and X gauge operator
measurements respectively, with each vertical column of small filled circles
corresponding to a single gauge operator. Large light blue and light red filled
rounded rectangles (or rounded squares) correspond to stabilisers, being the
product of the gauge operators they enclose. Diagonal edges (between stabilisers
that differ in space and time) have been omitted for clarity. Blue and red lines
correspond to edges in the Z and X matching graphs, respectively.

fixed and stabilisers are always the product of gauge operators, whereas for many

of the schedules we use, we can fix a subset of the gauge operator measurements,

and obtain (temporarily) stabilisers consisting of single gauge operators. A gauge

operator g is fixed as a stabiliser if no gauge operator h which anti-commutes

with g has been measured since the last measurement of g. The matching graphs

for the schedules (ZX)6 and (Z3X3)2 are shown in Figure 4.4. For the (ZX)6

schedule, gauge operators can never be fixed as stabilisers, whereas for the (Z3X3)2

schedule, two-thirds of the gauge operator measurements can be fixed as stabiliser

measurements, and so the parity of two consecutive individual gauge operator

measurements can be used to form a detector. Since each gauge operator has weight

3, by fixing some gauge operators as stabilisers, we are temporarily reducing the

weight of some stabiliser measurements from 6 down to 3.

4.2.1 Vertex splitting and merging

Since the stabilisers can change between consecutive time steps when using gauge

fixing, we must generalise our definitions of the detectors usually used for the

subsystem surface code. We still form a detector as the parity of two consecutive
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measurements of a stabiliser, but these stabilisers can change over time as gauge

operators become gauge-fixed (temporarily belong to the stabiliser group). With

our generalised definition of the detectors, a detector corresponding to stabiliser s is

flipped in time step t if the eigenvalue of s differs from that of the same product of

gauge operators in time step t−1. There is a vertical edge in the matching graph

between a detector measurement st in time step t and measurement st−1 in time step

t− 1 if st and st−1 have at least one gauge factor in common. This vertical edge

corresponds to a measurement error on one of the gauge factors that st and st−1 have

in common.

As an example we will now consider the case where a stabiliser has two gauge

factors, as is the case for the subsystem toric code. Suppose we have two gauge

operators g0 and g1 that factorise some stabiliser of the subsystem code. Furthermore,

suppose we have some other gauge operator g2 that anti-commutes with g0 and g1

individually, but by definition commutes with their product g0g1 (since g0g1 is

a stabiliser of the subsystem code). For example, g0 and g1 could be X triangle

operators and g2 a Z triangle operator, all in the same face. Consider the sequence of

measurements: M(g0, t− 3), M(g1, t− 3), M(g2, t− 2), M(g0, t− 1), M(g1, t− 1),

M(g0, t), M(g1, t). Just before the measurements of time step t−1, we know that g0g1

is in the ISG, but g0 and g1 are not in the ISG individually. Following Equation (4.2)

we can therefore define a detector D(g0g1, t− 1) := M(g0, t− 1)⊕M(g1, t− 1)⊕
M(g0, t − 3)⊕M(g1, t − 3) (as usually done for the subsystem toric code with a

normal schedule). However, just before time step t, we know that g0 and g1 are

individually in the ISG. We can therefore define detectors D(g0, t) := M(g0, t)⊕
M(g0, t − 1) and D(g1, t) := M(g1, t)⊕M(g1, t − 1). In the absence of errors, all

three detectors we have defined will be deterministic, as required.

We now consider the matching graph with these three detectors as nodes, and

with spacelike and timelike edges corresponding to data qubit errors and measure-

ment errors respectively. The stabiliser node is split into two nodes in time step t,

with the matching graph locally looking like (with time propagating upwards):
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and a measurement error in time step t−1 for g0 will flip detectors D(g0g1, t−1)

and D(g0, t), which corresponds to flipping the vertical edge ((g0g1, t−1),(g0, t))

in this diagram. The same argument holds for a measurement error on g1 in time

step t−1 corresponding to flipping the other vertical edge ((g0g1, t−1),(g1, t)).

Similarly, we can instead have the sequence: M(g0, t − 3), M(g1, t − 3),

M(g0, t − 2), M(g1, t − 2), M(g2, t − 1), M(g0, t), M(g1, t). Here the gauge oper-

ators which were fixed at time t−2 are no longer fixed after g2 is measured at time

t−1. Defining detectors D(g0, t−2) := M(g0, t−3)⊕M(g0, t−2), D(g1, t−2) :=

M(g1, t−3)⊕M(g1, t−2) and D(g0g1, t) := M(g0g1, t)⊕M(g0g1, t−2) leads to a

matching graph which instead locally looks like:

and we find that a measurement error that occurs during the measurement of M(g0, t−
2) flips detector D(g0, t−2) and detector D(g0g1, t) corresponding to flipping the

vertical edge ((g0, t − 2),(g0g1, t)). While, in this example, we have considered

stabilisers which have only two gauge factors (which is the case for subsystem toric

codes), the definition of the detectors generalises straightforwardly to stabilisers with

any number m of gauge factor. For example, we have m = 4 for the {8,4} subsystem

hyperbolic codes considered in Chapter 6, since these have four triangle operators

(gauge factors) in each face of the lattice.

In a measurement round in which all gauge operators are fixed (matching graph

nodes are split), there are two distinct advantages which gauge fixing can offer.

Firstly, vertical time-like edges have a lower error probability, since they can only

by flipped by a single gauge operator being measured incorrectly, rather than any of

the gauge factors in a stabiliser being measured incorrectly, as would otherwise be

the case. Secondly, the change in the structure of the matching graph leads to the

average degree of the nodes being reduced.

The advantage that this can offer becomes clear when we again consider the

(space-like) matching graph of the subsystem surface code when all gauge operators

are fixed, compared to the matching graph when they are not fixed. We have found

that the hexagonal lattice matching graph when gauge operators are fixed (Figure 4.2,
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right) has a threshold of around 4.1% under a phenomenological noise model. On

the other hand, for the triangular lattice matching graph when no gauge operators

are fixed (Figure 4.2, left) we find a threshold of 2.0% with a phenomenological

noise model (see Figure D.9). Furthermore, the outcomes of the weight-three checks

are more reliable, since their measurement circuits are shorter. However, a potential

disadvantage of gauge fixing is that by repeating X checks, more errors accumulate

for the next measurement of Z checks, for which Z gauge operators cannot be fixed.

We will show in Section 4.3.1 how this trade-off leads to an optimal homogeneous

schedule for the threshold under a circuit-level depolarising noise model.

4.3 Numerical simulations
For all of the numerical results in this section, we used a local variant of the minimum-

weight perfect matching (MWPM) decoder, a pre-release of the first version of

PyMatching [107] which used the Blossom V implementation of the Blossom algo-

rithm [73, 131]. Note that this variant of the MWPM decoder has been superceded by

Sparse Blossom, described in Chapter 2, which was released in PyMatching Version

2 [113]. We describe some of the methods we used to perform the simulations, such

as the details of the noise model and the construction of the matching graph, in

Appendix D.1.

4.3.1 Gauge-fixing for depolarising noise

We will now show how gauge-fixing can be used to improve the quantum error

correcting performance of the subsystem toric code under a depolarising noise model.

For this unbiased noise, we have used balanced schedules, which we define to

be of the form ZaXa for some a ∈ Z+. We find that schedules that allow gauge-

fixing increase the threshold from 0.666(1)% for the standard (ZX)r schedule used

in Ref. [36] to 0.811(2)% for the (Z4X4)r schedule, where gauge operators are

fixed for three in every four rounds of measurements. In Figure 4.5, we show the

thresholds for the ZX , Z2X2 and Z3X3 schedules. We see that both the Z2X2 and

Z3X3 schedules are higher than the standard ZX schedule, but the crossing is at a

higher logical error rate. For these balanced schedules (ZaXa)r under depolarising
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Figure 4.5: Threshold plots for subsystem toric codes using a (ZX)92 schedule (left),
(Z2X2)46 schedule (middle) and (Z3X3)31 schedule (right) using a depolar-
ising noise model.

noise, we find that a = 4 is optimal (see Table D.4). Therefore, schedule-induced

gauge fixing makes the threshold of the subsystem toric code under depolarising

noise much more competitive with the rotated surface code, which we find has

a threshold of around 0.97% under the same noise model and assumptions (state

preparation and measurement each take half the time of a CNOT, and the logical error

rate per time step is used). However, in Section 4.3.2 we show that schedule-induced

gauge fixing with the subsystem toric code can be used to outperform the rotated

surface code for small finite bias η > 2.3.

By using gauge fixing (setting a > 1) we reduce the average stabiliser weight

in the 3D matching graph, since the stabilisers introduced from gauge fixing have

weight 3. The mean stabiliser weight in the 3D (X check) matching graph for a

{2c,4} subsystem surface or hyperbolic code using a (ZqXa)r schedule (for any

q ≥ 1 or r ≥ 1) is given by 3ca/(c(a− 1)+ 1). So for the subsystem toric code

(c=2), the mean stabiliser weights for the (ZX)r, (Z2X2)r and (Z3X3)r schedules

are 6, 4 and 3.6 respectively. We also reduce the average degree of nodes in the

matching graph. For a = 1 the mean node degree is 14, whereas for a > 1, the mean

node degree is 8ca/(c(a−1)+1), and so the (ZX)r, (Z2X2)r and (Z3X3)r schedules

have mean node degrees of 14, 32/3 and 9.6 respectively for the subsystem toric
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Schedule ¯|s| |s|max |s|min d̄ ∆ δ

ZqX 6 6 6 14 14 14
ZqX2 4 6 3 10.67 16 8
ZqX3 3.6 6 3 9.6 16 8
ZqX5 3.33 6 3 8.89 16 8
ZqX10 3.16 6 3 8.42 16 8

Table 4.1: The mean ¯|s|, maximum |s|max and minimum |s|min stabiliser weight and mean
d̄, maximum ∆, and minimum δ degree of the X-check 3D matching graphs for
various homogeneous schedules with the subsystem toric code.

code. More properties of matching graphs for some homogeneous schedules with

the subsystem toric code are given in Table 4.1.

While we expect that reducing the average stabiliser weight and node degree

in the matching graph should improve the threshold, increasing a in balanced ZaXa

schedules also alters the edge fault probabilities. In time steps where gauge operators

are fixed, rZ = 0 in Table D.1, reducing the edge weights for some edges of type

0, 1 and 2. However, in the time steps where gauge operators are not fixed, rZ = a,

and so increasing a also increases the edge-fault probability for these edges of

type 0, 1 and 2. Therefore, increasing a increases the proportion of time steps

where a space-like slice of the matching graph is a degree-3 hexagonal lattice with

small edge fault probabilites, but also increases the edge fault probabilities for the

remaining time steps where the matching graph is not fixed, and is instead a degree-6

triangular lattice. There is therefore a trade-off between increasing the edge weights,

and decreasing the stabiliser weights and node degrees, and the a = 4 schedule

is the optimal compromise for schedules of the form (ZaXa)r for a circuit-level

depolarising noise model.

Since changing the schedule alters both the matching graph via gauge fixing, as

well as the edge fault probabilities, we can better understand how these two factors

contribute to performance by studying them separately. In Figure 4.6 we plot the

threshold as a function of a for balanced schedules ZaXa both with and without using

gauge fixing. The thresholds that do not use gauge fixing are decoded by always

merging gauge factors of a stabiliser into a single node in the matching graph, even

in time steps where they could be split (gauge factors fixed) using the techniques
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Figure 4.6: Left: Circuit level depolarising threshold as a function a for schedules of the
form ZaXa, with and without gauge fixing. Right: Z thresholds as a function
of b for schedules of the form ZXb, both with (orange) and without (blue)
gauge fixing, using a circuit-level independent noise model. The orange and
blue dashed lines are the threshold achievable under infinite bias (using an X
schedule) with and without gauge fixing respectively. Error bars are smaller
than the marker size and have been omitted for clarity.

we have introduced. We see that for schedules that do not use gauge fixing, there

is almost no improvement for a > 1, with performance degrading for a > 4. This

demonstrates that almost all the improvement in threshold for depolarising noise is

due to the use of gauge fixing, rather than the change in the noise model induced by

the different schedule alone.

4.3.2 Tailoring the 3D matching graph to biased noise using

gauge fixing

By using unbalanced schedules, where X check operators are measured more fre-

quently than Z check operators (or vice versa), we can use gauge fixing to improve

performance under biased noise models. Since we correct X errors and Z errors

independently, we can define the Z threshold pth
Z and X threshold pth

X as the threshold

for only Z-type or only X-type errors respectively. In Figure 4.7 we plot the Z

threshold for the unbalanced ZX , ZX2, ZX10 and X schedules, under the independent

circuit-level noise model. Increasing the ratio of X checks to Z checks significantly

increases the Z threshold from 0.52% for the ZX schedule up to 2.22% for the X

schedule, which sets an upper bound.
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Figure 4.7: Z thresholds for unbalanced schedules of the form ZXb, as well as an X schedule,
which gives an upper bound on the Z threshold achievable using unbalanced
schedules.

By measuring X checks more frequently, we also reduce the noise on data qubits

caused by the CNOT gates used to measure Z checks. To determine how much of

the improvement in threshold comes from this reduced noise in the measurement

schedule compared to the use of gauge fixing in the matching graph, we determine

the thresholds both with and without using gauge fixing in Figure 4.6. We see

that even without using gauge fixing, increasing the ratio of X checks to Z checks

increases the Z threshold, as expected. However, gauge fixing significantly boosts

the Z threshold further, and even a ZX5 schedule using gauge fixing outperforms the

best achievable Z threshold without gauge fixing (using the X schedule).

However, by increasing the ratio of X to Z checks, we also reduce the X

threshold of the code, which we must take into account when determining the total

threshold under biased noise models. We now ask what the threshold is under the

biased independent circuit-level noise model described in Section D.1.2, with bias

parameter η . Specifically, for a given η , we wish to find the total physical error

rate pth
total below which the total logical error probability plog

total of both logical X̄ or

Z̄ errors vanishes as the distance L of the code increases to infinity. A sufficient

and necessary condition for a total error probability p′total to be below the accuracy
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threshold for a decoder that decodes Z and X errors independently is that the proba-

bility of a Z-type error p′Z be below pth
Z and the probability of an X-type error p′X be

below pth
X .

The total error probability pZth
total when pZ = pth

Z is

pZth
total = pth

Z + pth
Z (1− pth

Z )
1
η

(4.3)

and the total error probability pXth
total when pX = pth

X is

pXth
total = pth

X + pth
X (1− pth

X )η . (4.4)

The total threshold pth
total is therefore given by

pth
total = min(pZth

total, pXth
total). (4.5)
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Figure 4.8: Threshold pth
total (see Eq. 4.5) as a function of bias for different homogeneous

schedules and under a circuit-level independent noise model. Dashed lines use
the same schedule as the corresponding solid line of the same colour, except
gauge fixing is not used, for the purpose of comparison.

In Figure 4.8 we plot pth
total as a function of the bias parameter η for the

subsystem toric code, and for a few different choices of homogeneous schedule.

For the ZX schedule, used in Ref. [36], and the Z3X3 schedule with gauge fixing,

the optimal bias is η = pZ/pX = 1. This is as expected, since the X threshold is

identical to the Z threshold for these symmetric schedules. From Eqs. 4.3, 4.4 and
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4.5 we see that at η = 0 and η = ∞ the total threshold is simply the X threshold and

Z threshold, respectively.

For each of the schedules for which pth
total is plotted in Figure 4.8, there are two

regimes: to the left and to the right of the peak. To the left of the peak, the threshold

is limited by the X threshold, and is therefore given by Equation (4.4), which is

linear in η . To the right of the peak, the threshold is limited by the Z threshold, and

is therefore given by Equation (4.3), which is linear in 1/η . The optimal η for a

given schedule can be found by setting pZth
total = pXth

total .

Even for small finite bias, using unbalanced schedules and gauge fixing signifi-

cantly improves the total threshold compared to the traditional ZX schedule, with a

2.8× increase in threshold at η = 9. With infinite bias the threshold rises to 2.22%

which is 4.3× higher than the threshold of 0.52% using standard ZX schedule. Each

dashed line in Figure 4.8 uses the same schedule as the corresponding solid line of

the same colour, but without using gauge fixing to decode. For high bias, we see that

approximately half of the improvement over the ZX schedule can be attributed to the

effect the new schedule has on the noise model, with the remainder attributed to the

extra information used by gauge fixing when decoding.

For the rotated surface code, using the same schedule as in Ref. [46], we find

a threshold under circuit-level independent noise of 0.741(2)%. Therefore, the

subsystem toric code (with a ZX3 schedule and using gauge fixing) outperforms the

rotated surface code for biases η > 2.3.

Note that, for all the thresholds we have reported so far, we have used fully

parallelised schedules. Whereas the ZX schedule is fully parallelised with only

na = 1 ancilla qubits per triangle operator, the unbalanced ZXb schedules require

two ancilla qubits per X check operator (na = 1.5), and the balanced ZaXa schedules

require two ancilla qubits per X check operator and per Z check operator (na = 2).

Since there are 4na/3 ancilla qubits per data qubit, this leads to a larger qubit

overhead when using gauge fixing with parallelised schedules. We can choose not

to parallelise the schedules, and instead simply omit gates in the ZX schedule to

construct our other schedules (e.g. an unparallelised ZX2 schedule can be constructed
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Figure 4.9: Logical Z̄ error rate of the [[2028,2,26]] subsystem toric code using a (ZX)36

schedule, as well as a (ZX3)12 schedule (using only a single ancilla by introduc-
ing idle time steps) with and without using gauge fixing in the matching graph.
All schedules use 144 time steps, and the independent circuit-level noise model
was used. The dashed black line is the probability that either of two physical
qubits will suffer a Z error during 144 time steps without using error correction.

by omitting every other Z measurement in the ZX schedule). These schedules incur

no qubit overhead, but instead introduce idle errors. The threshold with infinite bias

using an unparallelised X schedule is 1.25%, compared to 2.22% using a parallelised

X schedule, both an improvement over the 0.52% threshold using the ZX schedule.

Near the threshold, using additional ancillas is clearly worthwhile, whereas far below

threshold it may be beneficial to use an unparallelised schedule, using the additional

qubits to instead construct a code with a larger distance.

To analyse the performance below threshold, we compare a ZX schedule to

an unparallelised ZX3 schedule (na = 1) using the L = 26 subsystem toric code,

both with and without using gauge fixing to decode. When using gauge fixing, the

logical Z error rate is reduced by around four orders of magnitude compared to the

ZX schedule (see Figure 4.9). Without using gauge fixing, the logical error rate

with the unparallelised ZX3 schedule is slightly worse than with the ZX schedule,

since idle qubit errors are worse than qubit errors in the standard depolarising noise

model [177].
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4.4 Conclusion

In this chapter we introduced a technique, which we call schedule-induced gauge

fixing, that improves the performance of a wide class of codes, especially under

biased noise models. Schedule-induced gauge fixing changes the order in which

check operators are measured in subsystem codes. While the check operators of

subsystem codes do not all mutually commute, we find that grouping blocks of

mutually commuting check operators together allows us to obtain more useful infor-

mation without increasing the total number of measurements. By making consecutive

measurements of the same gauge operators they can be treated temporarily as sta-

bilisers, and we introduce a method for decoding, based on minimum-weight perfect

matching (MWPM), that takes advantage of this additional information. When

applied to the subsystem surface code with three-qubit check operators, we can

switch repeatedly between the hexagonal surface code and its dual, both of which

are abelian subgroups of the gauge group of the code. We find that the threshold

under circuit-level depolarising noise can be increased from 0.67% to 0.81% by

making four consecutive measurements of each gauge operator in the measurement

schedule. The improvement is even more significant under biased noise models.

With an independent Z-biased circuit-level noise model, X check operators can be

repeated (and fixed) more frequently, leading to an even higher threshold under small

finite bias, up to 2.22% under infinite bias. Below threshold, gauge fixing reduces

the logical error rate by several orders of magnitude for biased noise models.

Schedule-induced gauge fixing can be applied in software, with no changes to

the underlying hardware interactions necessary. This allows both the code and the

decoder to be tailored to the noise model even if it cannot be fully characterised

prior to device fabrication. The same techniques can also be directly applied to a

broad class of subsystem codes beyond the subsystem surface code, including the

Bacon-Shor code [9], the heavy hexagon code [48], and some compass codes [138],

and future work could investigate the performance improvements achievable using

schedule-induced gauge fixing with these codes. It would also be interesting to

generalise the decoding method to other subsystem codes where detection events
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do not come in pairs, such as the gauge colour code [28], amongst others [23, 181].

We also note that schedule-induced gauge fixing has recently been applied to the

problem of handling fabrication defects in surface codes [180, 173].
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Chapter 5

Introduction

As we saw in Part I, the surface code has many advantages that make it particularly

amenable to experimental implementation [64]. It has a high threshold approaching

1% for a circuit-based noise model, with operations that are geometrically local in

2D [85]. Furthermore, it is well known how to implement universal logic gates in

surface codes fault-tolerantly [32, 85, 117, 140, 82], and surface code circuits can be

decoded efficiently and accurately using the matching-based decoders described in

Part I.

Unfortunately, the surface code requires a very high resource overhead to

achieve the low logical error rates needed to perform useful fault-tolerant quantum

computations. For example, to achieve a logical failure rate of one in a trillion (the

“teraquop” regime [97]) requires using around 1000 physical qubits per logical qubit.

This is a consequence of the fact that the surface code only encodes a single logical

qubit per code block (it has a vanishing rate k/n), and its distance scales as the

square root of the number of physical qubits, d =
√

n. In fact, it has been proven

that, more generally, the parameters of stabiliser codes with stabiliser generators

that are geometrically local in 2D are constrained by the trade-off kd2 = O(n) [33].

This suggests that more efficient quantum error correcting codes will require some

long-range connections between qubits.

If we relax the constraint of geometric locality, we can consider the broader

class of stabiliser codes called quantum low-density parity check (LDPC) codes [43].

A quantum LDPC code is a stabiliser code admitting a set of stabiliser generators
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such that each stabiliser generator acts non-trivially on a constant number of qubits,

and each qubit is in the support of a constant number of stabiliser generators. In

other words, the Tanner graph of the code has bounded degree.

There have been recent breakthroughs in the development of quantum LDPC

codes that have led to significant improvements in the asymptotic parameters of

quantum codes [43, 103, 159, 42, 157, 135]. In fact, it has now been proven [157]

that some families of lifted product [159] and balanced product [42] quantum LDPC

codes have optimal asymptotic parameters k = θ(n) and d = θ(n).

However, demonstrating a significant advantage over the surface code for realis-

tic noise models and reasonable system sizes is challenging. For example, Ref. [189]

demonstrated a significant 14× saving in resources relative to the surface code using

hypergraph product codes for circuit-level noise, however this improvement was

shown for very low physical error rates of around 0.01% and for very large system

sizes (around 13 million qubits). This is in large part due to the high-weight stabiliser

generators common in many families of quantum LDPC codes, resulting in deep and

complex syndrome extraction circuits, which can introduce many additional error

mechanisms and lower their noise thresholds [53, 137, 189, 160]. The recent results

of Refs. [35, 208] developed efficient syndrome extraction circuits for some families

of quantum LDPC codes (hypergraph product, lifted product and quasi-cyclic codes)

and showed good logical error rate performance under circuit-level noise. Some

drawbacks of these approaches, however, are that they require high qubit connectivity

(at least degree 6), and the BP-OSD decoder used has high computational complexity

O(m3), where m is the number of error mechanisms.

In this second part of the thesis, we show how a family of quantum LDPC

codes called hyperbolic surface codes can be adapted such that they have good

performance for circuit-level noise. As we will explain, we achieve this using

generalisations of subsystem surface codes and Floquet codes to hyperbolic surfaces,

thereby reducing the weight of check operators that must be measured, simplifying

syndrome extraction circuits. We will show that our constructions are more efficient

than the surface code even at high physical error rates, and the qubit connectivity in
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our constructions is always 2, 3 or 4 (less than or equal to that of the surface code).

Furthermore, all of our constructions can be decoded efficiently with matching-based

decoders such as MWPM or Union-Find.

5.1 Chain complexes and F2-homology

As explained in Section 1.1.1, the stabiliser generators of CSS codes can be repre-

sented using a check matrix of the form

H =

HX 0

0 HZ

 (5.1)

where HX ∈ Frx×n
2 and HZ ∈ FrZ×n

2 are binary matrices defining the X-type and Z-

type stabiliser generators, respectively. Recall that the commutativity requirement is

then given by the condition

HX HT
Z = 0. (5.2)

This condition leads to a useful connection between CSS codes and chain complexes

in F2-homology, which we will now review. For a more comprehensive introduction

to chain complexes, and their use in constructions of quantum LDPC codes, we refer

the reader to Refs. [104, 43].

In F2-homology, a chain complex C with length l +1 is a collection of vector

spaces Ci := Fni
2

{0} ∂l+1−→Cl
∂l−→Cl−1 · · ·

∂1−→C0
∂0−→ {0}

and boundary maps ∂i : Ci→Ci−1, where the boundary maps satisfy the constraint

∂i∂i+1 = 0 (5.3)

for all i ∈ {0 . . . l}. We refer to each element of Ci as an i-cell, and call elements

of im∂i+1 and ker∂i boundaries and cycles, respectively. From Equation (5.3) we

know that im∂i+1 ⊆ ker∂i (every boundary is a cycle). However, each cycle is not
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necessarily a boundary, and the ith homology group of C is the quotient

Hi = ker∂i/ im∂i+1. (5.4)

Associated with C is another chain complex called a cochain complex with

coboundary operators δ i : Ci→Ci+1 defined as δ i := ∂ T
i+1:

{0} δ−1
−→C0

δ 0
−→C1 · · · δ l−1

−→Cl
δ l
−→ {0}.

Elements of kerδ i and imδ i−1 are cocycles and coboundaries respectively, and the

ith cohomology group is Hi = kerδ i/ imδ i−1.

We see that the commutativity condition for CSS codes, Equation (5.1), is

equivalent to the defining property of chain complexes in F2-homology, given in

Equation (5.3). A consequence of this is that we can use a chain complex with

length at least two to define a CSS code. We associate each qubit with an i-cell,

where 0 < i < l. We then use the ith boundary operator as the X check matrix

HX = ∂i and use the ith coboundary operator as the Z check matrix HZ = δ i =

∂ T
i+1. The commutativity condition HX HT

Z = 0 is then guaranteed to be satisfied by

Equation (5.3). The Z logicals are associated with elements of the ith homology

group Hi, and the X logicals are associated with elements of the ith cohomology

group Hi. The number of logical qubits is therefore given by dimHi = dimHi.

Many different approaches have been taken to construct chain complexes defin-

ing families of quantum LDPC codes with improved parameters (see Ref. [43] for

a review). In this thesis we focus on constructions derived from tilings of two-

dimensional surfaces that generalise beyond the toric code.

As a concrete example, let us revisit the toric code and consider it from the

perspective of homology. Recall that the toric code is defined on a square tiling

of a torus. This square tiling defines a length-three chain complex, where each

0-cell corresponds to a vertex, each 1-cell corresponds to an edge and each 2-cell

corresponds to a face. The boundary operator ∂1 maps each edge to the vertices at its

boundary (endpoints), and similarly ∂2 maps each face to the edges on its boundary.
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We associate a qubit with each edge of the lattice, i.e. a 1-cell. Each X stabiliser

generator is the set of edges adjacent to a vertex (the co-boundary of the vertex)

and hence we have HX := δ 0 = ∂1. Each Z stabiliser generator is the set of edges

at the boundary of a face (the edges at its boundary), and hence HZ := ∂2. Each

Z logical operator is an element of the 1st homology group H1 = ker∂1/ im∂2 =

kerHX/ imHT
Z . In other words, each Z logical is a cycle of edges (and hence has no

boundary), which is not a boundary of a set of faces (i.e. it is not a Z stabiliser). These

correspond to non-contractible loops, or homologically nontrivial loops, around the

handle of the torus. Similarly, each X logical operator is an element of the 1st

co-homology group, and is hence a homologically nontrivial co-cycle around the

handle of the torus.

More generally, for any tiling of an orientable surface with w handles (genus

w), it holds that dimH1 = 2− χ = 2w, where here dimH1 is the first homology

group of the corresponding length-three chain complex, as explained above. Here

χ := |V |− |E|+ |F | is the Euler characteristic of the tiling (with |V | vertices, |E|
edges and |F | faces). Hence, the number of logical qubits encoded by a surface code

derived from a more general tiling of a surface is determined purely by its topology.

5.2 Tilings of hyperbolic surfaces
We will see in the next sections that quantum codes derived from tilings of surfaces

with negative Gaussian curvature (hyperbolic surfaces) have favourable parameters

relative to the surface code. This is a consequence of the the fact (due to the Gauss-

Bonnet theorem) that closed surfaces with negative Gaussian curvature have an Euler

characteristic that grows with their area, unlike Euclidean surfaces. In this section,

we will review tilings of hyperbolic surfaces and their properties.

5.2.1 Wythoff’s kaleidoscopic construction

We can obtain tilings of the hyperbolic plane using Wythoff’s kaleidoscopic construc-

tion. We choose a fundamental triangle with internal angles π/p, π/q and π/t. We

can generate an infinite tiling through reflections in the sides of the triangle (we refer

to each side of the triangle as a mirror). The group generated by these reflections (a
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Figure 5.1: Two hyperbolic tilings generated by the hyperbolic triangle group ∆(2,4,5)
using Wythoff’s kaleidoscopic construction. Both tilings are generated through
reflections across the sides of a fundamental triangle with internal angles π/2,
π/4 and π/5. We show a white cut along each reflection line. Below each
tiling we show the corresponding fundamental triangle and Coxeter diagram.
A generator point is placed in the fundamental triangle and from each mirror a
perpendicular line is drawn to the generator point. The only difference between
the two tilings is the choice of generator point. Left: A uniform tiling with
vertex configuration 4.8.10, which uses a generator point in the interior of the
fundamental triangle. Right: A regular tiling with Schläfli symbol {5,4} (vertex
configuration 5.5.5.5 = 54), which uses a generator point in the corner of the
triangle with angle π/4 (the edges of the tiling are given in red).

symmetry group of the tiling) is the triangle group ∆(p,q, t), an example of a Coxeter

group. We place a vertex, called a generator point, within the fundamental triangle,

and from each mirror we draw a perpendicular line to the generator point. These

lines are mapped by the reflections to edges in the tiling, and the generator point is

similarly mapped to vertices of the tiling. For a given triangle group ∆(p,q, t) we

can generate different tilings depending on the choice of generator point, and two

such examples are shown in Figure 5.1 for ∆(2,4,5).

If we denote a reflection in each of the three sides by a, b and c, where the

angles between the pairs of mirrors (a,b), (b,c) and (c,a) are π/t, π/q and π/p

respectively, then the triangle group ∆(p,q, t) has presentation

∆(p,q, t) = ⟨a,b,c | a2 = b2 = c2 = (ab)t = (bc)q = (ca)p = e⟩ (5.5)
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where e is the identity element. The relations for (ab)t , (bc)q and (ca)p can be

understood from the fact that ab, bc and ca are rotations by 2π/t, 2π/q and 2π/p,

respectively.

5.2.1.1 Regular hyperbolic tilings

A regular tiling, in which each face in the tiling is an r-gon and s faces meet at each

vertex, can be denoted by its Schläfli symbol {r,s}. Regular tilings of hyperbolic

surfaces satisfy 1/r + 1/s < 1/2. We will consider regular tilings in Chapter 6.

We can construct such a regular {r,s} tiling using Wythoff’s construction with the

triangle group ∆(2,s,r) by placing the generator point on the corner with internal

angle π/s, as shown in Figure 5.1 (right) for a {5,4} tiling. Fixing some triangle

as the fundamental domain of ∆(2,s,r) (labelled as e in Figure 5.1) we can label

every triangle in the tiling uniquely with a group element. Each face of the {r,s}
tiling is then labelled by an element of ∆(2,s,r) up to reflections a and b. More

precisely, if we define the subgroup ⟨a,b⟩ of ∆(2,s,r) generated by a and b then

each face is labelled by a left coset g⟨a,b⟩ for some g ∈ ∆(2,s,r). Similarly, each

vertex or edge of the tiling is labelled by a left coset g⟨b,c⟩ or g⟨c,a⟩, respectively.

The boundary operators of faces and edges can therefore be constructed from the

relevant intersection of these different cosets.

5.2.1.2 Uniform degree-three hyperbolic tilings

In Chapter 7 we will consider degree-three uniform hyperbolic tilings constructed

using a generator point in the interior of the fundamental triangle. Uniform tilings

can be described by their vertex configuration, a sequence of numbers giving the

number of sides of the faces around a vertex. For example, each vertex of a degree-

three uniform tiling with vertex configuration r.g.b has three faces around it, with r,

g and b sides. When the tiling is constructed using the triangle group ∆(p,q, t), we

have that r = 2p, g = 2q and b = 2t. Uniform tilings of hyperbolic surfaces satisfy

1/r + 1/g+ 1/b < 1/2, whereas a Euclidean tiling (e.g. 6.6.6 or 4.8.8) satisfies

1/r+1/g+1/b = 1/2. Let us assign a colour to each face such that red, green and

blue faces have r, g and b sides, respectively (see Figure 5.1). Again fixing some

triangle as the fundamental domain, we see that each vertex of the r.g.b tiling is
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uniquely identified by an element of ∆(2r,2g,2b). The red, green and blue faces can

each be identified using left cosets g⟨a,c⟩, g⟨b,c⟩ or g⟨a,b⟩, respectively. Similarly,

each edge is associated with a left coset g⟨a⟩, g⟨b⟩ or g⟨c⟩. The boundary of each

face can thus be determined from which edge cosets g⟨a⟩, g⟨b⟩ or g⟨c⟩ are subgroups

of the face’s coset, and similarly the endpoints of an edge are simply the vertices

corresponding to the elements contained in its coset.

5.2.2 Compactification

So far we have described infinite tilings, however we would like to construct quantum

codes from finite tilings. We construct finite tilings using a compactification proce-

dure [44, 40]. This can be achieved by finding a normal subgroup Γ of ∆(p,q, t) that

has no fixed points and gives a finite quotient group ∆(p,q, t)/Γ, see [44, 40]. The

quotient group G+
p,q,t := ∆(p,q, t)/Γ can then be used to define regular and uniform

tilings using the Wythoff construction, and has presentation

G+
p,q,t = ⟨a,b,c | a2 = b2 = c2 = (ab)t = (bc)q = (ca)p = r1 = · · ·= rv = e⟩ (5.6)

where here the additional relations r1, . . . ,rv are the generators of Γ.

5.2.3 Properties of hyperbolic surface codes

For an {r,s} regular tiling, we have that r|F |= s|V |= 2|E| and hence the dimension

of the first homology group is given by

dimH1 = 2−χ = |E|(1− 2
r
− 2

s
)+2. (5.7)

Therefore, defining a surface code from such a tiling with n = |E| physical qubits

and k = dimH1 logical qubits we have a finite encoding rate k/n > (1−2/r−2/s),

provided the tiling is hyperbolic (1/r+ r/s < 1/2).

Considering now a degree-three uniform r.g.b tiling, let us denote the set of

faces with r, g and b sides as Fr, Fg and Fb, respectively. We also denote the edge

set by E and the vertex set by V . The tiling has |E| = 3|V |/2 edges, and since

r|Fr|= g|Fg|= b|Fb|= |V |, we have that |F |= |V |(1/r+1/g+1/b). Therefore, the
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dimension of the first homology group is

dimH1 = 2−|V |+ |E|− |F |= |V |
(

1
2
− 1

r
− 1

g
− 1

b

)
+2. (5.8)

The distance of a hyperbolic surface code is determined by the minimum

length of a non-contractible loop (combinatorial systole) of the tiling or its dual.

For hyperbolic tilings it is known that the combinatorial systole grows at most

logarithmically in the number of edges, and hence hyperbolic surface codes have

distance scaling as d ∈ O(logn) [174, 78, 59, 44]. This leads to the parameters of

hyperbolic surface codes satisfying kd2/n = O(log2(n)), which is an asymptotic

improvement over the parameters of Euclidean surface codes, for which kd2/n =

O(1).

The larger stabiliser weight of hyperbolic surface codes leads to deeper syn-

drome extraction circuits, which can reduce the effective distance of the code and

lower noise thresholds [53]. Furthermore, the high check weight increases the re-

quired qubit connectivity, which can lead to crosstalk in some architectures [48]. In

the remainder of this thesis we describe constructions that are closely related (by a

constant-depth unitary) to hyperbolic surface codes, but which have reduced check

weight. In Chapter 6 we describe subsystem hyperbolic codes, which generalise the

subsystem surface code to closed hyperbolic tilings [110]. In Chapter 7 we construct

and analyse the performance of Floquet codes [102, 198] derived from colour code

tilings of closed hyperbolic surfaces [111]. For a more comprehensive background

on hyperbolic surface codes and their properties, as well as generalisations to higher

dimensions, we refer the reader to Ref. [40].



Chapter 6

Subsystem hyperbolic and

semi-hyperbolic codes

Most research demonstrating the potential advantages of quantum LDPC codes has

assumed simplistic noise models that do not account for noise in the quantum circuit

used to implement them. Once circuit-level noise is taken into account, the potential

reduction in qubit overhead can be lost [53]. However, in this chapter, we show

how we can reduce the qubit overhead for quantum error correction even with more

realistic circuit level noise, using a construction for subsystem codes that encode a

number of logical qubits k proportional to the number of physical qubits n, while

using only three-qubit check operators. These codes are derived from hyperbolic

tilings, and we use the symmetry group of the tiling to derive quantum circuits for

measuring the check operators that use only four time steps, which is optimal. From

simulating their performance with circuit-level depolarising noise, we find that these

finite-rate subsystem codes have a qubit overhead that is 4.3× lower than the most

efficient version of the surface code for error rates as high as 0.2%, which is a noise

regime often considered for practical surface code quantum computing [94].

This chapter is organised as follows. In Section 6.1 we introduce our construc-

tion of subsystem hyperbolic codes, before discussing their properties in Section 6.2.

We then show how efficient syndrome measurement circuits can be constructed in

Section 6.3 and introduce subsystem semi-hyperbolic codes in Section 6.4. We then

numerically assess their performance in Section 6.5 before concluding in Section 6.6.
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Figure 6.1: The {8,4} subsystem hyperbolic code. A qubit (each represented by a black
filled circle) is placed in the center of each edge and on each vertex of an {8,4}
tiling of a closed hyperbolic surface. A three qubit triangle operator is placed in
each corner of each face. Each X stabiliser is the product of the four X triangle
operators within a face (top right). Similarly, each Z stabiliser is the product of
the four Z triangle operators within a face (bottom right).

The original research in this section has perviously been published in Ref. [112].

6.1 Subsystem hyperbolic codes
Our construction generalises the subsystem toric code of Ref. [36] (which we re-

viewed in Section 1.2.3) to more general tilings, including tilings of closed hyperbolic

surfaces. One of the challenges of implementing circuits for hyperbolic surface codes

is that their stabiliser weight is larger than for the toric code, making syndrome extrac-

tion more challenging. A key benefit of the subsystem hyperbolic code construction

we now present is that syndrome extraction can be done with only weight-3 check

operators. Hyperbolic codes are a promising candidate for experimental realisation

in systems that allow variable length connectivity between qubits [130], such as

modular architectures [153, 125], and reduced check-weight simplifies stabiliser

readout, as well as reducing crosstalk [48].

For our construction we start with a tiling of a surface, where each face has

an even number of sides, and four faces meet at each vertex. As was done for the

subsystem toric code, we place a qubit in each corner of the lattice and in the middle

of each edge. We then place a triangle operator in each corner of each face of the

tiling, alternating between X (red) and Z (blue) triangle operators around each face

and around each vertex. Each triangle operator is a gauge operator of the subsystem

code. The X triangle operators are three-qubit XXX Pauli operators (acting non-
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trivially on the qubits in their support), and similarly each Z triangle operator is a

three-qubit ZZZ Pauli operator. An example using a regular {8,4} tiling is shown

in Figure 6.1. Each Z stabiliser is the product of all Z triangle operators within

a face of the {8,4} tiling, and similarly for X stabilisers and X triangle operators.

Note that for a square lattice on a torus we recover the subsystem toric code, but our

construction generalises to hyperbolic tilings.

By definition we have required that adjacent triangle operators related by a

single rotation about a face or a vertex must be of opposite Pauli types. We will say

that a tiling that allows such an assignment of triangle operators is colourable. This

colourability requires that each face must have an even number of sides, and an even

number of faces must meet at each vertex (so for regular {r,s} tilings, both r and

s must be even). We required exactly four faces to meet at each vertex to ensure

that the stabilisers commute. In Appendix D.4 we show that a regular tiling of a

closed surface is colourable if a particular function f (which we define) extends to a

homomorphism from the symmetry group of the tiling to the cyclic group Z2. As a

result, the colourability property places a constraint on which compactifications of a

hyperbolic tiling can be used to define subsystem codes (each relation in the quotient

of the triangle group defining the tiling must contain an even number of reflections a

or c across the sides of the fundamental triangle).

6.2 Properties of subsystem hyperbolic codes

We will now consider some more properties of subsystem hyperbolic codes, each

derived from a {2c,4} tiling with edges E, vertices V and faces F . Since we place

a qubit on each vertex, and in the centre of each edge of this tiling, our subsystem

hyperbolic code will have |E|+ |V | data qubits. Each vertex in the tiling has degree 4,

and so 2|V |= |E|. Furthermore, we also place na ancilla qubits within each triangle

operator. While we can always use na = 1 ancillas per triangle operator by using

schedules with some idle qubit locations (if necessary), we have parallelised many of

our schedules which in some cases requires na = 2. Each vertex is adjacent to four

triangle operators and each triangle operator is adjacent to a single vertex. Therefore,
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in total there are n = 3
2 |E| data qubits and 2na|E| ancilla qubits in our subsystem

hyperbolic codes. For the subsystem toric code, where |E|= 2L2, there are 3L2 data

qubits and 4naL2 ancilla qubits.

The number of faces in the {r,s} tiling satisfies r|F |= 2|E|. Since the product

of all X-type (or Z-type) stabilisers is the identity, and since there are no other

relations that the stabilisers satisfy, the number of independent stabilisers is 4|E|/r−
2. Therefore, the total number of logical qubits (including gauge qubits) is (3/2−
4/r)|E|+2.

Aside from the triangle operators introduced within each face, the number of

remaining bare logical operators (those in C(G)\G) is determined from the topology

of the tiling from which it is derived. Therefore, excluding gauge qubits, the number

of logical qubits k that a subsystem hyperbolic code derived from a {r,4} tiling

encodes is given by [44]

k =
|E|
2
− 2|E|

r
+2. (6.1)

This leaves (1−2/r)|E| gauge qubits, or r/2−1 gauge qubits per face. The triangle

operators act nontrivially on these gauge qubits. The encoding rate of the subsystem

hyperbolic code is therefore
k
n
=

1
3
− 4

3r
+

2
n
. (6.2)

There are 4na/3 ancilla qubits per data qubit, leading to (4na/3+1)n qubits in total.

Note that this expression does not depend on r: the number of ancilla qubits is

proportional to the number of data qubits, and the constant of proportionality is the

same regardless of which {2c,4} tiling we use.

In Appendix D.7, we show that the distance d of a subsystem hyperbolic or

semi-hyperbolic code is bounded by dX/2≤ d ≤ dX , where dX is the X distance of

the subspace hyperbolic or semi-hyperbolic code derived from the same tiling. The

X distance of the subspace code is always less than or equal to its Z distance for the

codes we consider, and so the distance of the subsystem code is at least half, and at

most the same as, the distance of the subspace code. We analyse the distances of the

codes we construct in Appendix D.7, and find codes with distances that span this full
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Figure 6.2: (a) An L = 2 subsystem surface code. The four types of triangle operators are
labelled as 0, 1, 2 and 3. (b) Labelling of the four types of triangle operators
on an {8,4}-tiling of the hyperbolic plane. The neighbourhood of each triangle
operator (the types and relative locations of triangle operators it overlaps with)
is the same as in the toric code.

range.

6.3 Efficient circuits for syndrome measurement
Recall that in order to determine the syndrome used for decoding, we require a

stabiliser measurement schedule, the sequence of gates applied to data and ancilla

qubits in order to measure the eigenvalues of the stabilisers. We will now show

that any valid stabiliser measurement schedule defined within a single face of the

subsystem toric code and chosen to be periodic in space (i.e. identical for every

vertex or face) can be generalised for a subset of {4c,4} subsystem hyperbolic codes,

for c ∈ Z+. The measurement schedule used by Bravyi et al. [36] is an example of

such a periodic schedule.

We first assign an element of the cyclic group Z/4Z to each of the four types

of triangle operators within a face, and will call such an assignment a labelling.

We choose to label the north-west, north-east, south-east and south-west triangle

operators with the elements 0, 1, 2 and 3 of Z/4Z, respectively (see Figure 6.2(a)).

Note that, for a translationally invariant schedule, each triangle operator with a

given label in the subsystem toric code is assigned an identical schedule. Triangle

operators with different labels have different measurement schedules. In order

to apply this measurement schedule to the subsystem hyperbolic code, we label
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every triangle operator as one of these four types in such a way that the schedule

always looks locally the same as for the subsystem toric code to ensure that it remains

correct. More precisely, for each triangle operator with a given label in the subsystem

hyperbolic code, its neighbourhood of triangle operators it shares qubits with (and

their labels) must be the same as for a triangle operator with the same label in the

subsystem toric code. We will call a labelling that has this property a valid labelling,

and a schedulable code is one that admits a valid labelling. In Appendix D.5, we

show that a regular tiling of a closed hyperbolic surface admits a valid labelling

if a particular function h (which we define) extends to a homomorphism from the

proper symmetry group of the tiling to the cyclic group Z/4Z. We show that a subset

of {4c,4} regular tilings of closed hyperbolic surfaces satisfy this property. An

example of a valid scheduling of the {8,4} tiling of the hyperbolic plane is shown in

Figure 6.2(b).

6.4 Subsystem semi-hyperbolic codes

The {8,4} subsystem hyperbolic code has stabilisers of weight 12, which is double

that of the subsystem toric code. Despite the check operators still being weight 3, we

find that the large stabiliser weight results in a lower threshold of 0.31(1)% compared

to 0.666(1)% for the subsystem toric code. The intuition behind this is the following:

if a stabiliser has higher weight, it provides less information about the location of an

error and requires more gates to be used when measured, making it harder to measure

precisely. Furthermore, the distance of these codes scales only logarithmically in n,

which means that logical errors cannot be suppressed exponentially in system size.

To address these issues, we can construct subsystem codes derived from semi-

hyperbolic tilings, introduced in Ref. [38]. The idea is to fine-grain the tiling leading

to lower-weight stabilizers. A semi-hyperbolic tiling is derived from a {4,q} regular

tiling of a closed hyperbolic manifold for q > 4,q ∈ Z+. Each (square) face of

the {4,q} tiling is tiled with an l× l square lattice. By doing so, the curvature

of the surface is weakened. The subspace quantum code derived from the semi-

hyperbolic tiling (a semi-hyperbolic code) has larger distance and reduced check
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weight compared to a code derived from the original {4,q} tiling. This comes at the

cost of requiring l2 times more qubits and, since the number of logical operators is

unchanged, the encoding rate is reduced by a factor of l2. An important advantage

of semi-hyperbolic codes is that, by increasing l, we obtain a family of codes with

distance scaling like
√

n (as for the toric code), while expecting to retain a reduced

qubit overhead relative to the toric code [38]. The same advantages apply for the

subsystem semi-hyperbolic codes we construct in this work.

Recall that the tilings that we derive subsystem hyperbolic codes from must

have vertices of degree four, and each face must have 4c sides (where c ∈ Z+). On

the other hand, a {4,q} semi-hyperbolic tiling instead has faces with four sides,

while vertices have degree four or q. We can therefore derive a subsystem code from

the dual lattice of {4,4c} semi-hyperbolic tiling. In Appendix D.5 we show that

if an {8,4} tiling is schedulable, then so is the semi-hyperbolic tiling derived from

it. Therefore, each schedulable closed {8,4} tiling defines a family of subsystem

semi-hyperbolic codes (each code in the family having a different lattice parameter

l), and where each code in the family is schedulable.

We say that an l, {4c,4} subsystem semi-hyperbolic code is the code derived

by placing a triangle operator in each corner of each face of the dual lattice of a semi-

hyperbolic lattice, where that semi-hyperbolic lattice was constructed by tessellating

each face of the {4,4c} tiling with an l× l square lattice. The subsystem semi-

hyperbolic codes we construct and analyse in this work are l = 2, {8,4} subsystem

semi-hyperbolic codes. The irregular tilings these codes are derived from therefore

contain both square and octagonal faces, with four faces meeting at each vertex.

6.5 Numerical simulations

We have simulated the performance of l = 2 {8,4} subsystem semi-hyperbolic codes

under the circuit-level depolarising noise model. We are interested in finding the

threshold value below which the logical error rate per logical qubit tends to zero as

the code distance tends to infinity. Since the number of logical qubits k increases

with distance for this family of finite-rate codes, we fix the number of logical qubits
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Figure 6.3: Performance of the extremal l = 2 {8,4} subsystem semi-hyperbolic codes
under a circuit-level depolarising noise model. Here, we fix the number of
logical qubits to at least 338 for all codes, by using multiple copies of the
smaller codes. A homogeneous (ZX)20 schedule is used for all codes, and the y
axis is the probability that at least one logical Z error occurs. The dashed black
line is the probability of a Z error occurring on at least one of 338 physical
qubits without error correction under the same error model for the same duration
(80 time steps). For each code that encodes k < 338 logical qubits, we use
m = ⌊k/338⌋ copies and plot the failure rate as p∗log = 1− (1− plog)

m.

by using multiple independent copies of the smaller codes. In Figure 6.3 we plot the

probability that at least one of 338 logical qubits suffers a Z failure as a function of

the depolarising error rate p. The [[8064,338,10]] code has the lowest logical error

rate per logical qubit for physical error rates below 0.42%, from which we conclude

that the threshold is at least 0.42%. We have not been able to obtain an upper bound

on the threshold, since all codes have an error rate (per 338 logical qubits) of one for

physical error rates above 0.42%, within the precision provided by our numerical

experiments.

We now analyse the performance of the [[8064,338,10]] l = 2 {8,4} subsystem

semi-hyperbolic code, which has the best ratio n/(kd2) = 0.24 of the codes we

have constructed. In Figure 6.4 we compare its performance with that of the L =

4,6,8,9 and 10 subsystem toric codes. We use 169 independent copies of the

subsystem toric codes, in order to keep the number of logical qubits (338) constant,
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Figure 6.4: Comparison of the [[8064,338,10]] l=2 {8,4} subsystem semi-hyperbolic code
(red), which has 8,064 data qubits and 10,752 ancillas, with L = 4,6,8,9 and
10 subsystem toric codes (shades of blue), using a (ZX)20 schedule (no gauge
fixing) and a circuit-level depolarising noise model. We fix the number of logical
qubits by plotting the probability that at least one of 169 independent copies of
the subsystem toric codes suffers a logical Z failure (i.e. we plot 1−(1− plog)

169

for the subsystem toric codes where plog is the probability that a single copy of
the code suffers a logical Z error). The total number of physical qubits (including
ancillas) is given in the legend. The black dashed line is the probability that at
least one of 338 physical qubits would suffer a Z failure without error correction
over the same duration.

and the total number of physical qubits used (including ancillas) is given in the

legend. We find that the [[8064,338,10]] subsystem semi-hyperbolic code (which

uses 18,816 physical qubits), outperforms the L = 4 subsystem toric code (which

uses 18,928 physical qubits to encode 338 logical qubits) by around three orders of

magnitude at p = 0.15%. At a physical error rate of 0.2% the performance of the

[[8064,338,10]] subsystem semi-hyperbolic code is similar to the L = 9 subsystem

toric code, which uses 95,823 physical qubits to achieve the same logical error rate.

This demonstrates that the [[8064,338,10]] subsystem semi-hyperbolic code requires

5.1× fewer resources to achieve the same level of protection that the subsystem toric

code would provide at a physical error rate of 0.2%.

We also compare the [[8064,338,10]] subsystem semi-hyperbolic code with

the rotated surface code, which is the leading candidate for realising fault-tolerant

quantum computation, and has the optimal ratio n/d2 = 1 for surface codes [24].
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Figure 6.5: Comparison of the [[8064,338,10]] l=2 {8,4} subsystem semi-hyperbolic code
(red), with L = 5,7,9 and 11 rotated surface codes (shades of green), using a
(ZX)20 schedule (no gauge fixing) for the subsystem semi-hyperbolic code and
a (ZX)16 schedule for the rotated surface codes (both schedules require 80 time
steps). We use a circuit-level depolarising noise model. We fix the number of
logical qubits by plotting the probability that at least one of 338 independent
copies of the rotated surface code suffers a logical Z failure. The legend gives
the total number of qubits (ancilla and data qubits) used. The black dashed line
is the probability that at least one of 338 physical qubits would suffer a Z failure
without error correction over the same duration.

This comparison is shown in Figure 6.5, where we again keep the number of logical

qubits fixed by using 338 independent copies of the rotated surface codes. At a

circuit-level depolarising error rate of 0.15%, the subsystem semi-hyperbolic code,

using 18,816 physical qubits, has a similar performance to L = 11 rotated surface

codes using 81,458 physical qubits, a 4.3× reduction in qubit overhead. We also

compare the performance of the [[8064,338,10]] subsystem semi-hyperbolic code

with a distance 6 rotated surface code, which has a slightly lower encoding rate

(including ancillas), and find that the subsystem semi-hyperbolic code has a lower

logical error rate below 0.43%.

Furthermore, we can use schedule-induced gauge fixing for the subsystem

hyperbolic and semi-hyperbolic codes just as we did for the subsystem toric code.

In Figure 6.6 we plot the threshold of the l = 2, {8,4} subsystem semi-hyperbolic

codes under the independent circuit-level noise model using an X schedule, and find

a threshold of at least 2.4%, exceeding that of the subsystem toric code (2.22%).
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Figure 6.6: Performance of the extremal subsystem {8,4} l = 2 semi-hyperbolic codes
under a circuit-level independent noise model and using an X schedule.

This threshold sets an upper bound on the thresholds that can be achieved using

gauge fixing under biased noise models, and we expect that large gains can still be

found even for small finite bias, as we found for the subsystem toric codes.

6.6 Conclusion
In this chapter, we introduced new constructions of quantum error correcting codes

that improve upon the resource overhead of the widely-studied surface code. While

the surface code requires four-qubit measurements and encodes a single logical qubit,

we introduce families of quantum error correcting codes that use only three-qubit

measurements and encode a number of logical qubits k proportional to the number

of physical qubits n.

A drawback of subsystem codes is that they typically have a smaller encoding

rate k/n compared to their subspace counterparts. To address this issue, we gener-

alised the subsystem surface code to surfaces with negative curvature, constructing

families of quantum LDPC subsystem codes with a finite encoding rate and only

three-qubit check operators. We call these codes subsystem hyperbolic and subsys-

tem semi-hyperbolic codes, and show how the symmetry group of the tiling can be

used to construct check operator measurement circuits which require only four time
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steps to implement. Thanks to the weight-three check operators, these measurement

circuits allow us to correct up to the full code distance fault-tolerantly.

By simulating the performance of subsystem semi-hyperbolic codes under

circuit-level depolarising noise, we find that they can require 4.3× fewer physical

qubits than the rotated surface code and 5.1× fewer physical qubits than the sub-

system toric code to achieve the same physical error rate at around 0.15% to 0.2%.

Furthermore, these subsystem semi-hyperbolic codes belong to a family of codes

that achieve distance scaling as
√

n, and that we expect to maintain a reduced qubit

overhead relative to the surface code even at higher distances. These codes are also

locally Euclidean, which is encouraging for the prospect of physical implementations

in modular architectures [153, 125, 130].

We have also found a threshold of 0.42% for the subsystem semi-hyperbolic

codes under a circuit-level depolarising noise. All of the techniques for schedule

induced gauge-fixing that applied to the subsystem toric code can also be applied

to subsystem semi-hyperbolic codes, and we find a threshold of 2.4% under infinite

bias, exceeding that of the subsystem toric code.

Our work in this chapter has focussed on reducing the qubit overhead of quantum

error correction, however reducing the time overhead of implementing logical gates

is also an important problem. In Ref. [38] it was shown how lattice surgery and

Dehn twists can be used to implement logical gates in hyperbolic codes. While these

techniques should generalise straightforwardly to the subsystem hyperbolic codes we

have introduced, in the future it would be interesting to compare the time overhead of

these methods with those used for surface codes, as well as to investigate alternative

methods for implementing fault-tolerant logical operations.

A key advantage of weight-three gauge operators is that they can be helpful

for handling leakage errors [46], and direct three-qubit parity check measurements

have been proposed in Ref. [66]. Since the average degree of the interaction graph

is lower than the surface code, we also expect these codes to suffer from fewer

frequency collisions and less crosstalk than the surface code in superconducting

qubit architectures [48]. On the other hand, if high-weight stabiliser measurements
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are available in hardware, then it may be possible to reduce the qubit overhead of

our subsystem codes even further (likely at the cost of a lower threshold) by using

a single ancilla qubit per stabiliser rather than per gauge operator, and measuring

along the gauge operators to retain bare-ancilla fault-tolerance [136].



Chapter 7

Hyperbolic Floquet codes

In this chapter, we construct families of finite-rate codes derived from hyperbolic

tilings that have weight-two check operators, a further reduction in check weight

relative to the weight-three check operators of the subsystem hyperbolic codes

introduced in the previous chapter. Our constructions are from the broader family

of Floquet codes [102], which can be seen as a generalisation of subsystem codes,

see e.g. Ref. [188] for a discussion. Similar to subsystem codes, Floquet codes

involve the measurement of low-weight anti-commuting check operators. Unlike

subsystem codes, however, Floquet codes do not require that the logical operators of

the code remain static over time. Indeed, Floquet codes do not admit a static set of

generators for all their logical Pauli operators, and the form of these logical operators

instead evolves periodically during the syndrome extraction circuit. This additional

flexibility leads to codes with weight-two check operators and good performance [97],

especially in platforms that support direct two-qubit Pauli measurements, such as

Majorana-based qubits [156]. Notably, the planar honeycomb code [100, 156, 95]

is a specific Floquet code derived from a hexagonal lattice with open boundary

conditions, and is therefore amenable to experimental realisation on a quantum

computer chip (e.g. a solid state device such as a superconducting qubit architecture).

In Ref. [198], Vuillot showed how Floquet codes can be derived from any tiling

suitable to define a colour code [25], and furthermore observed that Floquet codes

derived from colour code tilings of closed hyperbolic surfaces, which we refer to

as hyperbolic Floquet codes, would have a constant encoding rate and logarithmic
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Plaquette stabilisersChecks

Toric honeycomb code Hyperbolic Floquet code

Figure 7.1: Two of the families of Floquet codes studied in this chapter. A data qubit is
associated with each vertex of a lattice, a two-qubit check operator is associated
with each edge and a plaquette stabiliser generator is associated with each
face. Left: A toric honeycomb code, which is defined on a hexagonal lattice
with periodic boundary conditions and three-colourable faces [102]. Here we
consider a patch with 4 columns of data qubits and 6 rows (dimensions 4×6).
Opposite sides of the lattice are identified. Right: A Floquet code derived from a
tiling of a hyperbolic surface with three octogans meeting at each vertex (vertex
configuration 8.8.8) and three-colourable faces. Here we draw a region of the
tiled hyperbolic plane defining the code family, however each Floquet code in
the family is derived from a tiling of a closed surface.

distance. However, there has not been prior work constructing explicit examples of

hyperbolic Floquet codes or analysing their performance.

In this chapter, we construct explicit families of hyperbolic Floquet codes (see

Figure 7.1) and analyse their performance numerically, comparing them to planar

honeycomb codes and surface codes. We also construct Floquet codes derived from

semi-hyperbolic lattices, which fine-grain hyperbolic tilings, leading to an improved

distance scaling that enables exponential suppression of errors while retaining an

advantage over honeycomb and surface codes. Furthermore, the thresholds of

families of semi-hyperbolic Floquet codes are essentially the same as the threshold

of the honeycomb code. All of our constructions have weight-two check operators

and can be decoded efficiently using surface code decoders, such as minimum-weight

perfect matching [64, 80, 113, 207].
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For platforms that support direct two-qubit measurements, we find that semi-

hyperbolic Floquet codes can require 48× fewer physical qubits than honeycomb

codes even for high physical error rates of 0.3% to 1% (for the ‘EM3’ noise model)

and for a system size of 21,504 physical qubits. These results imply that our

constructions are over 100× more efficient than alternative compilations of the

surface code to two-qubit measurements [49, 88], which have been shown to be

less efficient than honeycomb codes for the same noise model [156, 88]. We also

show that semi-hyperbolic Floquet codes can require as few as 32 physical qubits

per logical qubit to achieve logical failure rates below 10−12 per logical qubit at a

physical error rate of 0.1%, whereas honeycomb codes instead require 600 [97] to

2000 [156] physical qubits per logical qubit in the same regime.

We also consider a standard circuit-level depolarising noise model (“SD6”), for

which two-qubit measurements are implemented using an ancilla, CNOT gates and

single-qubit rotations. For this noise model, our semi-hyperbolic Floquet codes are

30× more efficient than planar honeycomb codes and over 5.6× more efficient than

conventional surface codes for physical error rates of around 0.1% and below.

Finally, we construct small examples of hyperbolic Floquet codes that are

amenable to near-term experiments. This includes codes derived from the Bolza

surface, using as few as 16 physical qubits, and which we show are 3× to 6× more

efficient than their Euclidean counterparts.

Although these (semi-)hyperbolic Floquet codes cannot be implemented using

geometrically local connections in a planar Euclidean architecture, we show how they

can instead be implemented using a bilayer or modular architecture. A bilayer archi-

tecture uses two layers of qubits, where connections within each layer do not cross,

but may be long-range. A modular architecture consists of many small modules,

where each module only requires local 2D planar Euclidean connectivity and con-

nections between modules may be long-range. The long-range connections between

modules could be mediated via photonic links in a trapped-ion architecture [150],

for example.

This chapter is organised as follows. We start by reviewing Euclidean, hyper-
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bolic and semi-hyperbolic colour code tilings in Section 7.1. In Section 7.2 we

review Floquet codes, including how we construct Floquet code circuits from the

colour code tilings of Section 7.1, as well as how these circuits can be decoded.

Section 7.2 also describes the EM3 and SD6 noise models we use in our simulations.

In Section 7.3 we present an analysis of the (semi-)hyperbolic Floquet codes we have

constructed, including a study of their parameters (Section 7.3.1) and simulations

comparing them to honeycomb and surface codes (Section 7.3.2). We then conclude

in Section 7.4 with a summary of our results and a discussion of future work. See

Ref. [111] for the preprint where most of the original research presented in this

chapter has previously been published.

7.1 Colour code tilings
Floquet codes [102] can be defined on any tiling of a surface that is also suitable to

define a 2D colour code [25]; namely, it is sufficient that the faces are 3-colourable

and the vertices are 3-valent [198]. We will refer to such a tiling as a colour code

tiling. In this section we will review colour code tilings and describe the tilings used

to construct Floquet codes in this chapter.

We denote by T = (V,E,F) a colour code tiling with vertices V , edges E ⊂V 2

and faces F ⊂ 2V . Each face f ∈ F is assigned a colour C( f ) ∈ {R,G,B} which

can be red, green or blue (R, G or B), such that two faces that share an edge have

different colours:

f1∩ f2 ∈ E =⇒ C( f1) ̸=C( f2), ∀( f1, f2) ∈ F2. (7.1)

We will also assign a colour C(e) ∈ {R,G,B} to each edge e, given by the colour of

the faces that it links. Equivalently, the colour of an edge is the complement of the

colours of the two faces it borders. See Figure 7.1 for two examples of colour code

tilings.

We now introduce some definitions which are applicable to any tiling T =

(V,E,F) of a closed surface, including tilings that are not colour code tilings. The

dual of T , which we denote T ∗ = (V ∗,E∗,F∗), has a vertex for each face of T and
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Figure 7.2: Construction of colour code tilings via the Wythoff construction. Left: Fun-
damental triangle with internal angles π/p, π/q and π/t belonging to the
hyperbolic triangle group ∆(p,q, t). A single vertex is placed in the middle
which is connected to the mid-point of the sides via half-edges. Right: The
fundamental domain of the group ΓB defining the Bolza surface H2/ΓB. In
the figure opposite sides are identified, so that dimH1(H2/ΓB) = 4. The Bolza
surface supports the three-colourable 8.8.8 tiling. Neighbouring fundamental
triangles of the tiling are related by a reflection along the triangle’s side. The
vertices in the middle of each fundamental triangle swap between black and
white with each reflection.

two vertices in T ∗ are connected by an edge if the corresponding faces in T share an

edge. A cycle in T is a set of edges (a subset of E) that forms a collection of closed

paths in T (it has no boundary). A co-cycle in T is a set of edges (also a subset of

E) that corresponds to a cycle in T ∗.

7.1.1 Hyperbolic colour code tilings

Suitable hyperbolic colour code tilings can be obtained directly using the Wythoff

construction, as described in Section 5.2.1.2. This approach was used in introduced

in Ref. [199] to define hyperbolic colour codes and pin codes. We obtain the

desired colour code tiling from a triangle group ∆(p,q, t) by placing the generator

point in the interior of the fundamental triangle, as described in Section 5.2.1.2. If

1/p+ 1/q+ 1/t < 1 then we obtain a colour code tiling of the hyperbolic plane.

Furthermore, we consider finite (compactified) tilings by finding an appropriate

normal subgroup Γ⊂ ∆(p,q, t) and constructing the quotient group ∆(p,q, t)/Γ (see

Section 5.2.2). Note that when Γ⊂ ∆(p,q, t) only contains elements consisting of

an even number of reflections, the resulting surface is orientable and the graph of

the tiling is bipartite. This is because every vertex is labelled by an element of the
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Figure 7.3: Obtaining a semi-hyperbolic colour code tiling by fine-graining a 38 tiling and
then taking its dual. We fine-grain by tiling each face of the 38 tiling with
a triangular lattice, such that each side of each face in the 38 tiling becomes
subdivided into l edges (shown for a subset of the faces here, with l = 3). We
take the dual of this lattice (blue dashed lines) to obtain a semi-hyperbolic colour
code tiling of hexagons and octagons.

reflection group h ∈ ∆(p,q, t)/Γ and, assuming that Γ contains only even parity

elements, the assignment of a parity to each h is well-defined. See Figure 7.2, where

the parity of reflections of vertices are given by the colour black and white.

7.1.2 Properties of uniform tilings

Since we only consider colour code tilings, we can equivalently define r, g and b

to be the number of sides that red, green and blue faces have in the uniform tiling,

respectively. We construct Floquet codes from 6.6.6, 8.8.8, 4.8.10 and 4.10.10

hyperbolic tilings in this chapter; see Figure 7.1 for an illustration of 6.6.6 and 8.8.8

tilings.

The derived Floquet code will encode k = dimH1 logical qubits into n = |V |
physical qubits. Hence, Equation (5.8) implies that this family of codes has finite

rate and that the proportionality depends on the plaquette stabiliser weights r, g, b.

7.1.3 Semi-hyperbolic colour code tilings

We also construct semi-hyperbolic colour code tilings, which interpolate between hy-

perbolic and Euclidean tilings, using a fine-graining procedure. Our semi-hyperbolic

colour code tilings are inspired by the semi-hyperbolic tilings introduced in Ref. [39],
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which used a slightly different method of fine-graining applied to 4.4.4.4.4 tilings

(instead of colour code tilings) to improve the distance-scaling of standard hyper-

bolic surface codes. We used a similar method in Chapter 6 to construct subsystem

semi-hyperbolic codes [112]. As we will show in Section 7.3, these tilings can be

used to obtain Floquet codes with improved distance scaling relative to those derived

from purely hyperbolic tilings, while retaining an advantage over honeycomb codes.

A semi-hyperbolic colour code tiling Tl = (Vl,El,Fl) is defined from a seed

colour code tiling T = (V,E,F) as well as a parameter l, which determines the

amount of fine-graining. To construct Tl we first take the dual of the seed tiling T ,

which we recall we denote by T ∗ = (V ∗,E∗,F∗). Since T is a colour code tiling

and therefore 3-valent, all the faces of T ∗ are triangles, and we have that |V ∗|= |F |,
|E∗|= |E| and |F∗|= |V |. If T is an 8.8.8 (also denoted 83) tiling then T ∗ is a 38

uniform tiling, i.e. with 8 triangles meeting at each vertex. We construct a new tiling

T ∗l which fine-grains T ∗ by tiling each face of T ∗ with a triangular lattice, such that

each edge in T ∗ is subdivided into l edges in T ∗l . Finally, we take the dual of T ∗l to

obtain our semi-hyperbolic colour code tiling Tl . In Figure 7.3 we give an example

of this procedure starting from T ∗ (here a 38 tiling) using l = 3 to obtain a colour

code tiling of hexagons and octagons.

Given an r.g.b uniform colour code tiling T , the semi-hyperbolic colour code

tiling Tl derived from it using this procedure has a number of vertices, edges and

faces given by:

|Vl|= l2|V |, (7.2)

|El|=
3l2|V |

2
, (7.3)

|Fl|=
(

l2

2
− 1

2
+

1
r
+

1
g
+

1
b

)
|V |. (7.4)

Since we have not modified the topology of the surface, the dimension of the first

homology group dimH1 = 2−|Vl|+ |El|− |Fl| is independent of l and still given by

Equation (5.8).
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7.2 Floquet codes
Floquet codes, introduced by Hastings and Haah [102], are quantum error correcting

codes that are implemented by measuring two-qubit Pauli operators (they have

weight-two checks). In Ref. [102] the authors introduced and studied the honeycomb

code, which is a Floquet code defined from a hexagonal tiling of a torus, inspired by

Kitaev’s honeycomb model [128]. Shortly after, Vuillot showed that Floquet codes

can be defined from any colour code tiling, and observed that the use of hyperbolic

colour code tilings would lead to Floquet codes with a finite encoding rate and

logarithmic distance [198].

We will focus our attention on Floquet codes derived from colour code tilings

of closed surfaces. It is also possible to construct planar Floquet codes; however,

introducing boundaries requires a modification to the measurement schedule and

observables, see Refs. [100, 156, 95]. The definition of Floquet codes we use is

consistent with Refs. [198, 97], which is related to the original definition of Ref. [102]

by a local Clifford unitary.

7.2.1 Checks and stabilisers

We use the colour code tiling T to define a Floquet code, which we will denote by

F(T ). Each vertex in T represents a qubit in F(T ) and each edge in T represents

a two-qubit check operator. There are three types of check operators: X-checks

(red edges), Y -checks (green edges) and Z-checks (blue edges). Specifically, the

check operator for an edge e = (v1,v2) is defined to be Pe := PC(e)
v1 PC(e)

v2 , where here

Pc
q denotes a Pauli operator acting on qubit q labelled by the colour c ∈ {R,G,B}

which determines the Pauli type. i.e. PB
q , PG

q and PR
q denote Pauli operators Xq, Yq

and Zq, respectively. For the Floquet codes we consider here, the Pauli type of an

edge is fixed and is determined by its colour, and we will sometimes refer to checks

of a given colour as c-checks, for c ∈ {R,G,B}. However, we note that alternative

variants of Floquet codes have been introduced for which the Pauli type of an edge

measurement is allowed to vary in the schedule (e.g. Floquet colour codes [126]).

Each stabiliser generator of the Floquet code consists of a cycle of checks

surrounding a face. In other words we associate a stabiliser generator Pf := ∏e⊂ f Pe
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with each face f . Stabiliser generators on red, green and blue faces are X-type,

Y -type and Z-type respectively. We sometimes refer to these stabiliser generators as

the plaquette stabilisers for clarity. Note that the plaquette stabilisers commute with

all the checks. See Figure 7.1 for examples of the checks and stabilizers for Floquet

codes defined on hexagonal (6.6.6) and hyperbolic (8.8.8) lattices.

7.2.2 The schedule and instantaneous stabiliser group

The Floquet code is implemented by repeating a round of measurements, where each

round consists of measuring all red checks, then all green checks and finally all blue

checks. We refer to the measurement of all checks of a given colour as a sub-round

(so each round contains three sub-rounds).

Once the steady state is reached, after fault-tolerant initialisation of the Floquet

code, the state is always in the joint +1-eigenspace of the plaquette stabilisers defined

in Section 7.2.1, regardless of which sub-round was just measured. This property

allows measurements of the plaquette stabilisers to be used to define detectors for

decoding (see Section 7.2.7). However, the full stabiliser group of the code at a

given instant includes additional stabilisers corresponding to the check operators

measured in the most-recent sub-round. We refer to the full stabiliser group of the

code after a given sub-round as the instantaneous stabiliser group (ISG) [102]. In

the steady state of the code, just after measuring a sub-round of checks with colour

c ∈ R,G,B, the ISG is generated by all the plaquette stabilisers, as well as the check

operators of colour c. The phase of each check operator in the ISG is given by its

measurement outcome in the most-recent sub-round. We will sometimes refer to the

ISG immediately after measuring c-checks as ISG(c).

7.2.3 The embedded homological code

The state of a Floquet code can be mapped by a constant-depth unitary circuit to a

2D homological code, which we refer to as the embedded homological code. This

mapping is shown in Ref. [102] for the honeycomb code and in Ref. [198] for general

colour code tilings. The embedded homological code can be useful to understand and

construct the logical operators of the code, as we will explain in Section 7.2.4. As an
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Figure 7.4: The dashed lines in the left, middle and right diagrams of the 8.8.8 tiling show
the red (T ∗R ), green (T ∗G ) and blue (T ∗B ) restricted lattices, respectively. The
restricted lattice T ∗c of colour c ∈ {R,G,B} defines the embedded homological
code after the c-checks are measured. Each edge, face and vertex in the restricted
lattice corresponds to an effective qubit, plaquette stabiliser or site stabiliser in
the embedded homological code, respectively. All three restricted lattices are
regular tessellations, with four octagons meeting at each vertex.

example, consider the state of the Floquet code immediately after a red sub-round,

during which any red edge e = (u,v) has participated in an XuXv measurement. This

XuXv measurement projects the qubits u and v into a two-dimensional subspace,

which we can consider an effective qubit in an embedded 2D homological code. The

effective X and Z operators associated with this effective qubit are defined to be

X̂e := YuYv (or ZuZv) and Ẑe := XuIv (or IuXv), respectively.

More concretely, we denote by T ∗ the dual of the colour code tiling T , where

we define a vertex in T ∗ for each face of T , and two nodes in T ∗ are connected by

an edge iff their corresponding faces in T share an edge. Furthermore, the colour of

a node in T ∗ is given by the colour of the corresponding face in T . We then define

the restricted lattice T ∗c for c ∈ {R,G,B} to be the subgraph of T ∗ where all nodes

of colour c (and their adjacent edges) have been removed. We refer to T ∗R as the red

restricted lattice (and similarly for green and blue). See Figure 7.4 for examples of

the red, green and blue restricted lattices for an 8.8.8 hyperbolic tiling.

The embedded 2D homological code C(T ∗c ) associated with the Floquet code

after measuring checks of colour c is defined from T ∗c by associating qubits with

the edges, Z-checks with the faces and X-checks with the vertices. An effective X̂

operator on an effective qubit in T ∗c corresponds to a physical Pc⊗ I operator on

the Floquet code data qubits and similarly an effective Ẑ operator corresponds to

a physical Pc̄⊗Pc̄ operator, where here c̄ ∈ {R,G,B}\{c}. As an example of this
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Logicals Inner logicals

Figure 7.5: Left: Logical operators of the two logical qubits of the toric honeycomb code
after measuring the red checks. These representatives of the logical operators
commute with the round of green checks that follows. The overlaid black
lattice (with dotted and solid lines) is the tiling of the corresponding embedded
toric code, which has an effective qubit associated with each edge. The grey
highlighted region is the logical path of the corresponding logical operator.
The nontrivial support of the logical operator lies along its logical path in all
sub-rounds, even though the Pauli operator itself changes. Right: The inner
logical operators, which are products of the logical operators shown on the left.
Each inner logical is a homologically non-trivial path of check operators which
commutes with all check operators.

mapping, notice that a red X⊗8 plaquette stabiliser in Figure 7.4 corresponds to a

Ẑ⊗8 plaquette operator in C(T ∗R ) and to an X̂⊗4 site operator in C(T ∗G ) or C(T ∗B ).

7.2.4 Logical operators

We can derive a set of logical operators of a Floquet code from the logical operators

of the embedded 2D homological code [102, 198], as shown in Figure 7.5 for the

toric honeycomb code. An unusual property of Floquet codes is that the logical

operators generally do not commute with all of the checks. For example, none

of the logical operators shown in Figure 7.5 (left) commute with the blue checks.

Fortunately we can still preserve the logical operators throughout the schedule by

updating the logical operators after each sub-round, multiplying an element of the

ISG into each of them, such that they commute with the next sub-round of check

operator measurements. In this section we will give a suitable basis for the logical

operators and show how they are updated in each sub-round to commute with the

checks. This was explained in Ref. [97] for the toric honeycomb code (see their

Figure 1) whereas our description here is applicable to any Floquet code derived

from a colour code tiling of a closed surface (Euclidean or hyperbolic).
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Figure 7.6: A symplectic basis for the logical operators of the hyperbolic Floquet code
derived from the 8.8.8 tiling of the Bolza surface, which has genus 2 and
encodes 4 logical qubits into 16 physical data qubits. Opposite sides of the tiling
are identified. The logical X̄ and Z̄ operators of logical qubit i are denoted by X̄i

and Z̄i, respectively. For each logical, the grey highlighted path is its associated
homologically non-trivial logical path, which defines how the logical is updated
in each sub-round (see Figure 7.7).

We will define a basis for the logical operators of a Floquet code F(T ) from

the logical operators of C(T ∗R ), the embedded homological code immediately after

a red sub-round. After the first red sub-round of F(T ), each X̄i logical of F(T )
is defined to be an X̄i logical of C(T ∗R ) (a homologically non-trivial co-cycle), and

each Z̄i logical of F(T ) is defined to be an Z̄i logical of C(T ∗R ) (a homologically

non-trivial cycle). See Figure 7.5 (left) for an example using the toric honeycomb

code. With this choice of logical basis, none of the representatives of the X̄i or Z̄i

operators commute with all the check operators, so they are what Ref. [102] refers to

as outer logical operators.

We need representatives of logical X̄i and Z̄i operators that commute with the

green sub-round that immediately follows, however the definition we have just given

does not guarantee this property. This is because our choice of logicals so far is

only defined up to an arbitrary element of ISG(R), which is generated by plaquette

stabilisers as well as red checks, and the red checks do not generally commute with

the green checks. We will now show how we can choose a representative for each X̄i

and Z̄i operator that is guaranteed to commute with the subsequent green checks.
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For each logical X̄i or Z̄i operator we associate a logical path P(X̄i) or P(Z̄i)

(highlighted in grey in Figure 7.5 and Figure 7.6), a homologically non-trivial cycle

on T that includes the nontrivial support of the logical operator. We find each logical

path using a procedure that lifts the homologically non-trivial co-cycle (for X̄i) or

cycle (for Z̄i) of the logical operator from the restricted lattice to a homologically

non-trivial cycle on the colour code tiling T . We will use the red restricted lattice

T ∗R as an example. We can lift a co-cycle Q in T ∗R to a logical path P(Xi) in T by

choosing a path that passes only through the red edges that Q crosses and around

the borders of red faces. We can lift a cycle W in T ∗R to a logical path P(Zi) in T by

finding a homologically non-trivial path in T that passes only through the borders of

the blue and green faces in T associated with the nodes in W . Examples are shown

in Figure 7.5. We choose the representative of each X̄i to be the Pauli operator that

acts as Y on the endpoints of red edges that lie within its logical path P(X̄i) and acts

trivially on all other qubits. For each Z̄i, we choose its representative to be the Pauli

operator that acts as X on the endpoints of green edges that lie within the logical

path P(Z̄i) (and trivially elsewhere). It is straightforward to verify that these are

valid representatives of the logical operators and that they always commute with

the green check operator measurements in the sub-round that immediately follows.

Note that for each of the logical paths P(X̄i) and P(Z̄i) we could have picked any

homologically non-trivial cycle belonging to the same homology class (the product of

the Pauli operators obtained from two such choices belonging to the same homology

class is in the ISG). The use of the restricted lattice is helpful to understand the

logical operators and paths but is not especially helpeful for constructing them; we

can instead find homologically non-trivial cycles on the colour code lattice directly.

Logical operators and paths for the toric honeycomb code are shown on the left of

Figure 7.5. Similarly, logical operators and paths of the hyperbolic Floquet code

derived from the Bolza surface (the Bolza Floquet code) are shown in Figure 7.6.

We have so far only described the initial representatives of the logical operators

after the first red sub-round such that they commute with the subsequent green sub-

round, however we will now explain how the logical operators are updated after each
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Figure 7.7: Each logical operator changes over a periodic sequence of six sub-rounds (two
full rounds), as shown here for a logical operator (X̄0 in Figure 7.6) of the Bolza
Floquet code. Opposite sides of the tiling are identified. Crossing a bar of colour
c ∈ {R,G,B} means measuring the c-checks and then multiplying into each
logical operator the c-checks that lie within its logical path. Note that the X̄0
logical operator (top left) is mapped to the Z̄1 logical operator (bottom right)
every three sub-rounds and vice versa. This transition is an automorphism of
ISG(R) which acts on each logical operator by multiplying by the inner logical
operator that lies along the same logical path.

sub-round. After measuring the checks of colour c ∈ {R,G,B}, we multiply into

each logical operator the c-coloured checks that lie within its logical path. Updating

the choice of representative of the logical operator this way in each sub-round, we

guarantee that it will commute with the sub-round of checks that immediately follows.

This can be understood by noticing how the form of the logical operators changes

over a period of six sub-rounds (2 full rounds):
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r (mod 6) ISG Form of X̄i on P(X̄i) X̄i in T ∗c Form of Z̄i on P(Z̄i) Z̄i in T ∗c
0 R Y on red edges co-cycle in T ∗R X on green edges cycle in T ∗R
1 G Y on blue edges cycle in T ∗G Z on green edges co-cycle in T ∗G
2 B X on blue edges co-cycle in T ∗B Z on red edges cycle in T ∗B
3 R X on green edges cycle in T ∗R Y on red edges co-cycle in T ∗R
4 G Z on green edges co-cycle in T ∗G Y on blue edges cycle in T ∗G
5 B Z on red edges cycle in T ∗B X on blue edges co-cycle in T ∗B

where here each row describes the form of the logical operators on T and T ∗c after

a given sub-round r, which depends on r (mod 6). See Figure 7.7 for the cycle of

a logical operator in the Bolza Floquet code, as well as Figure 1 of Ref. [97] for

a similar figure using the honeycomb code. An X̄-type logical operator in ISG(R)

is mapped to a Z̄-type logical operator in ISG(R) (and vice versa) every three sub-

rounds by an automorphism of ISG(R). The same applies to ISG(G) and ISG(B).

Since we must multiple checks into the logicals in each sub-round, the measurement

of a logical operator in a Floquet code includes the product of measurement outcomes

spanning a sheet in space-time, rather than just a string of measurements in the final

round as done for transversal measurement in the surface code.

So far we have only consider outer logical operators, which move after each

sub-round. However there are some logical operators, called inner logical operators

in Ref. [102], which commute with all the checks. These inner logical operators act

non-trivially on the encoded logical qubits of the Floquet code and are products of

checks lying along homologically nontrivial cycles of the lattice. Each inner logical

operator is formed from the product of an X̄ and a Z̄ logical operator associated

with the same homologically nontrivial cycle of the lattice. For example, Figure 7.5

(right) shows the two inner logical operators, X̄0Z̄1 and Z̄0X̄1, in the toric honeycomb

code. One of the four inner logical operator of the Bolza Floquet code can be formed

from the product of the X̄0 and Z̄1 logical operators in Figure 7.6. However, even

though the inner logical operators are formed from a product of check operators, the

measurement schedule of the Floquet code is chosen such that it never measures the

inner logical operators, only the plaquette stabilisers [102, 198].
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7.2.5 Circuits and noise models

In this chapter we consider two different noise models, corresponding to the EM3

and SD6 noise models used in Ref. [95]. Both noise models are characterised by a

noise strength parameter p ∈ [0,1] (the physical error rate).

7.2.5.1 EM3 noise model

The EM3 noise model (entangling measurement 3-step cycle) assumes that two-

qubit Pauli measurements are available natively in the platform (and hence no

ancilla qubits are needed), as is the case for Majorana-based architectures [49,

156]. When implementing the measurement of a two-qubit Pauli operator Pc⊗Pc,

with probability p we insert an error chosen uniformly at random from the set

{I,X ,Y,Z}⊗2×{flip,no flip}. Here the two qubit Pauli error in {I,X ,Y,Z}⊗2 is

applied immediately before the measurement, and the “flip” operation flips the

outcome of the measurement. We assume each measurement takes a single time

step, and hence each cycle of three sub-rounds takes three time steps. Initialisation

of a qubit in the Z basis is followed by an X error, inserted with probability p/2.

Similarly, the measurement of a data qubit in the Z basis is preceded by an X error,

inserted with probability p/2. Single-qubit initialisation and measurement in the X

or Y basis is achieved using noisy Z-basis initialisation or measurement and noiseless

single-qubit Clifford gates. We do not need to define idling errors because data

qubits are never idle in this noise model.

7.2.5.2 SD6 noise model

The SD6 noise model (standard depolarizing 6-step cycle) facilitates the check

measurements via an ancilla qubit for each edge of the colour code tiling. Therefore,

this noise model introduces |E| = 3|V |/2 ancilla qubits and requires 2.5× more

qubits than the EM3 noise model for a given colour code tiling T . Note that the

distance in this noise model can be higher than EM3 for a given tiling though, so we

do not necessarily require 2.5× more qubits for a given distance.

Each measurement of a two-qubit check operator Pc⊗Pc is implemented using

CNOT gates and single-qubit Clifford gates, as well as measurement and reset of the
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ancilla qubit associated with the edge. We use the same circuit as in Ref. [97]. Each

CNOT gate is followed by a two-qubit depolarising channel, which with probability

p inserts an error chosen uniformly at random from the set {I,X ,Y,Z}⊗2 \{I⊗ I}.
Each single-qubit Clifford gates is followed by a single-qubit depolarising channel,

which with probability p inserts an error chosen uniformly at random from the set

{X ,Y,Z}. Single-qubit initialisation is followed by an X error with probability p

and single-qubit measurement is preceded by an X error with probability p. Each

cycle of three sub-rounds takes six time steps, with CNOT gates, single-qubit gates,

initialisation and measurement all taking one time step each. In each time step in the

bulk, each data qubit is either involved in a CNOT gate or a CZY X := HS gate (which

maps Z→ Y → X → Z under conjugation) and therefore never idles.

7.2.6 Implementing hyperbolic and semi-hyperbolic connectivity

Although hyperbolic and semi-hyperbolic Floquet codes cannot be implemented

using geometrically local connections in a planar Euclidean layout of qubits, they

can instead be implemented using biplanar or modular architectures.

In a biplanar architecture, the connections (couplers) between qubits can be

partitioned into two layers, such that the couplers within each layer do not cross.

More concretely, consider the qubit connectivity graph Gc = (Vc,Ec), which by

definition contains an edge (qi,q j) ∈ Ec if and only if qubits qi and q j directly

interacted in the quantum circuit implementing the code. Recall that the thickness of

a graph is the minimum number of planar graphs that the graph’s edge set can be

partitioned into. A graph is biplanar if it has thickness 2; i.e. Gc is biplanar if we can

partition the edge set as Ec = E1
c ∪E2

c , where the edge sets E1
c and E2

c each define

a planar graph. It is known that the thickness of a graph with maximum degree d

has thickness at most t = ⌈d
2⌉ (see Corollary 5 of Ref. [101], as well as Proposition

1 of Ref. [189] for this application to QEC). Therefore, since Gc has maximum

degree 3 for any (semi-)hyperbolic Floquet code, it must also be biplanar. Note that

the subsystem hyperbolic codes of Ref. [112] are also biplanar, since their qubit

connectivity graphs always have degree 4. Biplanarity of the connectivity graph

implies that we can fix the position of the qubits and have two layers of connections
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Quantum
databus

Figure 7.8: A modular architecture for a semi-hyperbolic Floquet code. Each module has the
connectivity of a planar Euclidean chip, and arbitrary connectivity is permitted
between modules. In this example, each module is the result of fine-graining
the neighbourhood of one vertex of the seed tiling T used to construct an l = 3
semi-hyperbolic Floquet code F(T3). The ‘quantum databus’ here facilitates
long-range two-qubit measurements between separate modules.

(e.g. above and below), each of which is planar. That both E1
c and E2

c can be planar

with fixed qubit positions can be understood from Theorem 8 of Ref. [101], which

shows that a planar graph always has a planar representation with nodes placed in

arbitrary positions.

We can also implement (semi-)hyperbolic Floquet codes using a modular archi-

tecture [150], in which long-range links connect small modules of qubits. Examples

of qubit platforms that could support modular architectures include ions [150, 178,

162], atoms [168, 20] or superconducting qubits [170, 190, 58, 211, 121]. We

break up the Floquet code into small modules, where each module supports planar

Euclidean connectivity and long-range two-qubit Pauli measurements are used to

connect different modules. For a hyperbolic Floquet code, variable length connec-

tions can be used to embed a small region of the lattice into each module [130]. For

a semi-hyperbolic Floquet code, local regions of the code have identical connectivity

to a honeycomb code; hence, each module can consist of a small hexagonal lattice of

qubits obtained from fine-graining the neighbourhood of one vertex of the seed tiling

T that the semi-hyperbolic Floquet code F(Tl) was derived from (see Figure 7.8).

By connecting these modules using long-range two-qubit measurements, we can

implement the connectivity required for the tiling of the closed hyperbolic surface.
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7.2.7 Detectors and decoding

In order to decode Floquet codes, we must make an appropriate choice of detectors.

Following the definition in the Stim [92] documentation, a detector is a parity of

measurement outcomes in the circuit that is deterministic in the absence of errors.

In the literature, detectors have also been referred to as error-sensitive events [183]

or checks [27, 61]. In a Floquet code, each detector in the bulk of the schedule is

formed by taking the parity of two consecutive measurements of a plaquette stabiliser.

For example, in the honeycomb code, each plaquette stabiliser is the product of the

six edge check measurements around a face, and so a detector is the parity of 12

measurement outcomes. For a Floquet code derived from an r.g.b tiling, detectors are

the parity of 2r, 2g or 2b measurement outcomes. With this choice of detectors, it is

known that any Floquet code can be decoded with minimum-weight perfect matching

(MWPM) [64, 80, 113, 207] or Union-Find (UF) [60, 119] decoders [102, 198, 97]

by defining a detector graph for a given noise model. Each node in the detector

graph represents a detector and each edge represents an error mechanism that flips

the detectors at its endpoints with probability p, and has an edge weight given by

log((1− p)/p). Given this detector graph and an observed syndrome, MWPM or UF

can be used to find a minimum-weight or low-weight set of edges consistent with the

syndrome, respectively. Some additional accuracy can be achieved by also exploiting

knowledge of hyperedge error mechanisms using a correlated matching [81] or

belief-matching [115] decoder, however in this chapter we use the PyMatching

implementation of MWPM [113] to decode and use Stim to construct the detector

graphs and simulate the circuits [92].

7.3 Constructions

In this section we present a performance analysis of our constructions of hyperbolic

and semi-hyperbolic codes, including a comparison with honeycomb codes and

surface codes. Section 7.3.1 contains our analysis of the code parameters, whereas

are simulations using EM3 and SD6 noise models are presented in Section 7.3.2.
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7.3.1 Code parameters

The number of data qubits n = |V | in a Floquet code is determined by the number of

vertices in the colour code tiling T = (V,E,F) and the number of logical qubits is

given by the dimension of its first homology group k = dimH1. From Equation (5.8)

and Equation (7.2) we see that the encoding rate k/n is determined by the plaquette

stabiliser weights and the fine-graining parameter l. No ancilla qubits are required

for the EM3 noise model (nanc = 0), whereas for the SD6 noise model we have

nanc = |E| = 3n/2 ancillas. We denote the total number of physical qubits by

ntot := n+nanc.

The distance of a circuit implementing a Floquet code is the minimum number

of error mechanisms required to flip at least one logical observable measurement

outcome without flipping the outcome of any detectors. Therefore the distance

depends not only on the colour code tiling used to define the Floquet code, but also

the choice of circuit and noise model. We consider three different types of distance of

a Floquet code. One of these is a “circuit agnostic” distance which we will refer to as

the Floquet code’s embedded distance. The embedded distance d of a Floquet code

is defined to be the smallest distance of any of its three embedded 2D homological

codes (the smallest homologically non-trivial cycle or co-cycle in T ∗R , T ∗G or T ∗B ).

The embedded distance is more efficient to compute than the distance of a Floquet

code circuit, since it involves shortest path searches on the 2D restricted lattices

(using the method described in Appendix B of [39]), rather than on the much larger

3D detector graph associated with a specific circuit over many rounds (which we

compute using stim.Circuit.shortest_graphlike_error in Stim [92]). We

also consider the EM3 distance de of a Floquet code, which is the graphlike distance

of its circuit for an EM3 noise model. Empirically, we find that the EM3 distance of

a Floquet code almost always matches its embedded distance (see Table 7.1), even

though the embedded distance does not consider measurement errors or the details of

a circuit-level noise model. Finally, we define the SD6 distance ds to be the graphlike

distance of the Floquet codes circuit for an SD6 noise model.

To achieve an EM3 distance de for either the toric or planar honeycomb code,
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Table 7.1: Parameters of some of the hyperbolic Floquet codes we have constructed. Here
n, k and d are the number of physical data qubits, number of logical qubits and
embedded distance, respectively. The EM3 distance de and SD6 distance ds are
the graphlike distances of 16-round circuits using EM3 and SD6 noise models
respectively, computed using Stim [92]. We omit ds where the calculation is too
computationally expensive. We only include a code if d, de or ds is at least as
large as the corresponding distance for all smaller codes in the family.

8.8.8
n k d kd2/n de ds

16 4 2 1.00 2 2
32 6 2 0.75 2 3
64 10 2 0.62 2 4
256 34 4 2.12 4 4
336 44 3 1.18 3 6
336 44 4 2.10 4 6
512 66 4 2.06 4 6
720 92 4 2.04 4 6

1,024 130 4 2.03 4 6
1,296 164 4 2.02 4 6
1,344 170 6 4.55 - 6
2,688 338 6 4.53 - -
4,896 614 6 4.51 - -
5,376 674 6 4.51 - -
5,760 722 6 4.51 - -

4.10.10
n k d kd2/n de ds

120 8 3 0.60 3 4
160 10 4 1.00 4 4
320 18 5 1.41 4 6
600 32 6 1.92 6 6

3,600 182 8 3.24 - -
10,240 514 9 4.07 - -
19,200 962 10 5.01 - -

4.8.10
n k d kd2/n de ds

240 8 4 0.53 4 6
640 18 6 1.01 6 8

1,440 38 8 1.69 8 8
7,200 182 10 2.53 - -

we need at least 2de columns of qubits and 3de rows, and hence use a patch with

dimensions 2de×3de using ntot = n = 6d2
e physical qubits [97, 100, 95, 156]. See

Figure 7.1 for an example of a 4×6 toric honeycomb code (de = 2).

7.3.1.1 Hyperbolic Floquet codes

Although planar and toric honeycomb codes can only encode one or two logical

qubits, respectively, hyperbolic Floquet codes can encode a number of logical qubits

k proportional to the number of physical qubits n. From Equation (5.8) we see

that a hyperbolic Floquet code has a finite encoding rate k/n = dimH1/|V | > R,

where R is 1/8, 1/40 and 1/20 for the 8.8.8, 4.8.10 and 4.10.10 colour code tilings,

respectively.

It follows from the d ∈ O(logn) distance scaling of hyperbolic surface codes

that the embedded distance of a hyperbolic Floquet code therefore also scales as d =

O(logn) [198]. This leads to the parameters of hyperbolic Floquet codes satisfying
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kd2/n = O(log2(n)), which is an asymptotic improvement over the parameters of

Euclidean surface codes and Floquet codes, for which kd2/n = O(1).

We give the parameters of some of the hyperbolic Floquet codes we constructed

in Table 7.1. These belong to three families of hyperbolic Floquet codes, derived

from 8.8.8, 4.10.10 and 4.8.10 tessellations. We have picked these tilings as they have

the lowest stabiliser weight and give the highest relative distance, although they give

the lowest encoding rate, see discussion in Ref. [44]. All of the codes constructed

have kd2/n exceeding that of planar and toric honeycomb codes for which kd2/n is

1/6 and 1/3, respectively. The largest improvement in parameters is given by the

[[19200,962,10]] 4.10.10 hyperbolic Floquet code which has kd2/n = 5.01, a 30.1×
larger ratio than is obtained using the planar honeycomb code.

7.3.1.2 Semi-hyperbolic Floquet codes

One potential concern is that hyperbolic Floquet codes can only achieve error sup-

pression that is polynomial in the system size, owing to their O(logn) distance

scaling. However, in this section we will show that we can achieve exponential

error suppression using the semi-hyperbolic colour code tilings we introduced in

Section 7.3.1.2, which fine-grain the hyperbolic lattice and have O(
√

n) distance

scaling, while still retaining an advantage over Euclidean Floquet codes.

We define a family of semi-hyperbolic Floquet codes from a hyperbolic colour

code tiling T and the fine-graining parameter l to obtain a semi-hyperbolic tiling Tl

(see Section 7.1.3), which we use to define the semi-hyperbolic Floquet code F(Tl).

Let us denote the parameters of the Floquet code F(T ) derived from T by [[n,k,d]]

and we denote the parameters of F(Tl) by [[nl,kl,dl]]. The topology of the surface is

unchanged by the fine-graining procedure so we have kl = k and from Equation (7.2)

we have that nl = l2n. The minimum length of a homologically non-trivial cycle

or co-cycle in the restricted lattices of Tl will increase by a factor proportional to l,

and so we have dl ≥C1ld for some constant C1. This leads to parameters [[nl,kl,dl]]

of the semi-hyperbolic Floquet code F(Tl) satisfying kld2
l /nl ≥ C2

1kd2/n. If we

fix the tiling T from which we define a family of semi-hyperbolic Floquet codes

F(Tl) then we have kld2
l /nl ≥C2 where C2 =C2

1kd2/n is a constant determined by
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Figure 7.9: Parameters of semi-hyperbolic Floquet codes. Each line corresponds to a family
of semi-hyperbolic codes constructed by fine-graining an 8.8.8 colour code
tiling, with l increasing by one from left to right (starting at l = 1). We plot
6kd2/n on the y-axis against d on the x-axis (where d is the embedded distance
of the Floquet code). Note that 6kd2/n = 1 for the planar Floquet code (black
dashed line) and hence this ratio corresponds to the multiplicative saving in the
number of physical qubits relative to the planar Floquet code to obtain a fixed
target k and d.

T . Although a family of semi-hyperbolic Floquet codes defined this way does not

have an asymptotic improvement over the parameters of the honeycomb code, it is

still possible to obtain a constant factor improvement if C2 > 1/6.

From our analysis of the parameters of the semi-hyperbolic Floquet codes

we have constructed, we find that this constant factor improvement over the planar

honeycomb code can be substantial. In Figure 7.9 we show the parameters of families

of semi-hyperbolic Floquet codes derived from 8.8.8 colour code tilings. For some

families of semi-hyperbolic codes we have C1 = 1, i.e. the line is horizontal on the

plot, at least for the system sizes we consider. For these semi-hyperbolic Floquet

code families, we can increase the distance by a factor of l using exactly l2× more

physical qubits. Many of these families of semi-hyperbolic codes retain an order-of-

magnitude reduction in qubit overhead relative to the planar honeycomb code even

for very large distances.

In Figure 7.10 we plot the number of logical qubits that can be encoded (with

embedded distance at least 12) as a function of the number of physical qubits avail-

able, using multiple copies of semi-hyperbolic Floquet codes and honeycomb codes.
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Figure 7.10: The number of logical qubits that can be encoded with embedded distance
d at least 12 using multiple copies of a semi-hyperbolic, toric honeycomb
or planar honeycomb floquet code. The EM3 distance is the distance of the
code for the EM3 noise model, for which two-qubit Pauli operators can be
measured directly without the need for ancillas. Each green circle corresponds
to multiple copies of a semi-hyperbolic floquet code, and the green line is the
Pareto frontier for the copies of semi-hyperbolic codes considered.

We can encode up to 27× more logical qubits using semi-hyperbolic Floquet codes

relative to planar honeycomb codes, including a > 10× increase in the encoding rate

for smaller system sizes using fewer than 10,000 physical qubits.

7.3.2 Simulations

So far we have focused our analysis on code parameters, however logical error rate

performance for realistic noise models is more relevant to understand the practical

utility of the constructions. We have carried out numerical simulations to compare

the performance of semi-hyperbolic Floquet codes with planar honeycomb codes

(for the EM3 noise model) as well as surface codes (for the EM3 and SD6 noise

models). All simulations were carried out using Stim [92] to simulate the circuits

and construct matching graphs and PyMatching [113] to decode. For the simulations

of planar honeycomb codes and surface codes, we used the open-source simulation

software [96] written for Ref. [95]. Note that we have made some Stim circuits of

hyperbolic and semi-hyperbolic Floquet codes available on GitHub [108].

7.3.2.1 Thresholds

We expect families of semi-hyperbolic Floquet codes to have the same threshold as

planar and toric honeycomb codes, since the bulk of a semi-hyperbolic Floquet code
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Figure 7.11: Threshold plots of two families of semi-hyperbolic Floquet codes, using an
EM3 noise model and 64 rounds. (a) A family of semi-hyperbolic Floquet
codes derived from the Bolza surface (see Table 7.2 for code parameters). (b)
A family of semi-hyperbolic Floquet codes derived from a genus-33 closed
hyperbolic surface (with code parameters given in Table 7.3). For both plots,
the legend gives the fine-graining parameter l and number of physical qubits n
and we observe a threshold of around 1.5%-2%, consistent with the threshold
of the honeycomb code [97, 95, 156]. Note that here (and throughout this
paper) the logical error rate is the probability that any of the encoded logical
qubits fail.

looks identical to a honeycomb code as we increase the fine-graining parameter l.

We demonstrate this numerically for two families of semi-hyperbolic Floquet codes

in Figure 7.11, which each have a threshold of at least 1.5% to 2%, consistent with

the threshold of the honeycomb code [97, 95, 156].

7.3.2.2 Overhead reduction

In Figure 7.12a we consider the Majorana-inspired EM3 noise model, which assumes

noisy direct measurement of two-qubit Pauli operators. We simulate the performance

of an l = 2 [[21504,674,12]] semi-hyperbolic Floquet code, which belongs to the

family of semi-hyperbolic Floquet codes described in Table 7.4. We compare

the logical error rate performance of the [[21504,674,12]] code with honeycomb

codes for encoding 674 logical qubits over 192 time steps. We find that the semi-

hyperbolic Floquet code matches the performance of d = 16 honeycomb codes using

1,035,264 physical qubits, corresponding to a 48× reduction in qubit overhead.

Honeycomb codes are already known to be 2× to 6× more efficient than surface

codes for comparable noise models that assume compilation into direct two-qubit



7.3. Constructions 174

Table 7.2: Parameters of a family of semi-hyperbolic floquet codes derived from the Bolza
surface. Here, ntot is the total number of physical qubits (including ancillas) for
the SD6 noise model. We verified that the EM3 distance de equals the embedded
distance d reported here for all codes in the table.

l k n d kd2/n ntot ds kd2
s /ntot

1 4 16 2 1.00 40 2 0.40
2 4 64 3 0.56 160 4 0.40
3 4 144 4 0.44 360 6 0.40
4 4 256 6 0.56 640 8 0.40
5 4 400 7 0.49 1,000 10 0.40
6 4 576 8 0.44 1,440 12 0.40
7 4 784 10 0.51 1,960 14 0.40
8 4 1,024 11 0.47 2,560 16 0.40
9 4 1,296 12 0.44 3,240 18 0.40

10 4 1,600 14 0.49 4,000 20 0.40

Table 7.3: Parameters of a family of semi-hyperbolic floquet codes derived from a genus-33
closed hyperbolic surface.

l k n d kd2/n
1 66 512 4 2.06
2 66 2,048 8 2.06
3 66 4,608 12 2.06
4 66 8,192 16 2.06
5 66 12,800 20 2.06
6 66 18,432 24 2.06
7 66 25,088 28 2.06
8 66 32,768 32 2.06
9 66 41,472 36 2.06
10 66 51,200 40 2.06

Pauli measurements [49, 156, 88]. Therefore, given a platform permitting direct

two-qubit Pauli measurements and semi-hyperbolic qubit connectivity (e.g. using a

modular architecture), our results suggest that semi-hyperbolic Floquet codes can

require over 100× fewer physical qubits than the surface code circuits from Refs. [49,

156, 88] for an EM3 noise model at around p = 0.1%.

Using a least-squares fit of the four left-most data points to extrapolate

the red curve in Figure 7.12a to lower physical error rates, we estimate that

the [[21504,674,12]] semi-hyperbolic Floquet code has a logical error rate of

≈ 1.8× 10−11 at p = 0.1% for the EM3 noise model. This implies a logical er-
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674 logical qubits, EM3 noise model, 192 time steps

64,704 (d=4 honeycomb)
258,816 (d=8 honeycomb)
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674 logical qubits, SD6 noise model, 192 time steps

318,128 (d=9 hcomb)
833,064 (d=15 hcomb)
1,590,640 (d=21 hcomb)
65,378 (d=7 surface)
162,434 (d=11 surface)
302,626 (d=15 surface)
53,760 (semi-hyperbolic)

(b)

Figure 7.12: Logical error rate vs. physical error rate for protecting 674 logical qubits using
674 copies of planar honeycomb codes (shades of blue) and a [[21504,674,12]]
semi-hyperbolic Floquet code derived from a 8.8.8 tessellation. In (a) an
EM3 noise model is used (direct pair measurements without the use of an
ancilla) whereas in (b) an SD6 noise model (ancilla-assisted) is used and we
also compare with standard surface code circuits (shades of green). For all
codes, we simulate 192 time steps and give the average of the logical X and
Z error rates on the y-axis. For the honeycomb and surface codes we plot
1− (1− plog)

674 where plog is the logical error rate for a single patch (one
logical qubit). The legend gives the total number of physical qubits (including
ancillas for the SD6 noise model).

Table 7.4: Parameters of a family of semi-hyperbolic floquet codes encoding 674 logical
qubits, constructed by fine-graining an 8.8.8 tiling of a genus-337 hyperbolic
surface. Note that d here denotes the embedded distance.

l k n d kd2/n
1 674 5,376 6 4.51
2 674 21,504 12 4.51
3 674 48,384 15 3.13

ror rate per logical qubit of ≈ 2.7×10−14, or ≈ 4.2×10−16 per logical qubit per

round. We therefore project that we can reach well below the “teraquop regime” [97]

of 10−12 logical failure rates using only 32 physical qubits per logical qubit. In

contrast, planar honeycomb codes have been shown to require from 600 [97] to

2000 [156] physical qubits per logical qubit to achieve the teraquop regime using the

same noise model in prior work.

In Figure 7.12b, we instead consider the SD6 noise model, which uses an

ancilla qubit to measure each check operator in the presence of standard circuit-level

depolarising noise. We compare a semi-hyperbolic Floquet code (the same as used



7.3. Constructions 176

in Figure 7.12a) with honeycomb and surface codes for encoding 674 logical qubits

over 192 time steps. In this noise model, we find that the semi-hyperbolic Floquet

code matches the performance of planar honeycomb codes with SD6 distance ds = 21

which require ntot = 1,590,640 qubits, whereas the semi-hyperbolic Floquet code

only needs 53,760 qubits (including ancillas), a 29.6× saving in resources. At a

physical error rate slightly below 0.1%, our semi-hyperbolic Floquet code achieves a

5.6× reduction in qubit overhead relative to surface codes, matching the logical error

rate of d = 15 surface codes which use 302,626 physical qubits. Note that the curve

for the d = 15 surface code has a shallower gradient than that of the semi-hyperbolic

Floquet code, indicating that the semi-hyperbolic Floquet code has a higher SD6

distance. Therefore, we would expect that the semi-hyperbolic Floquet code will

offer a bigger advantage over surface codes at lower physical error rates. If the

semi-hyperbolic Floquet code has SD6 distance ds = 21, then it would have similar

performance to d = 21 surface codes at very low physical error rates, which would

use 593,794 physical qubits (881 per patch), 11× more than the 53,760 needed for

our semi-hyperbolic Floquet code.

While the check weight is still two, compared to the honeycomb code, hyper-

bolic Floquet codes derived from a r.g.b tiling have a higher plaquette stabiliser

weights 2r, 2g and 2b, and each detector is formed from the parity of 2r, 2g or 2b

check operator measurements. Despite this, we show in this section that, even at high

physical error rates, hyperbolic Floquet codes have a logical error rate performance

that is comparable to that of the honeycomb code, but with significantly reduced

resource overheads.

7.3.3 Small examples

We also study the performance of small hyperbolic and semi-hyperbolic Floquet

codes that might be amenable to experimental realisation in the near future. In

Figure 7.13 we show the performance of a small hyperbolic Floquet codes (with SD6

distance 2 and 3) for an SD6 noise model, compared to small planar honeycomb

and surface codes. To achieve a given logical performance, the hyperbolic Floquet

codes in both Figure 7.13a and Figure 7.13b use around 5× fewer physical qubits
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Figure 7.13: Logical error rates vs. physical error rates for encoding k logical qubits using k
copies of small planar honeycomb or surface codes, compared to a hyperbolic
floquet code encoding k logical qubits, for 96 time steps using a standard
depolarising (SD6) noise model. In (a) we have k = 4 for the Bolza Floquet
code, which has SD6 distance ds = 2, whereas in (b) we have k = 6 for a
hyperbolic Floquet code with ds = 3. The hyperbolic Floquet codes in (a) and
(b) are both derived from 8.8.8 tilings. The legend gives the total number of
qubits, with the SD6 distance given in brackets.

than planar honeycomb codes but use a similar number of physical qubits to surface

codes.

For the EM3 noise model, we compare to planar honeycomb codes in Fig-

ure 7.14a and find that the d = 2 hyperbolic Floquet code derived from the Bolza

surface (using 16 qubits) has identical performance to four copies of a d = 2 planar

honeycomb code using 6× more physical qubits. We also study the performance

(again for the EM3 noise model) of an l = 2 semi-hyperbolic Floquet code derived

from the Bolza surface in Figure 7.14b and find it to be 3.4× more efficient than

four copies of d = 3 planar honeycomb codes achieving a similar logical error rate.

7.4 Conclusion
In this chapter, we have constructed Floquet codes derived from colour code tilings

of closed hyperbolic surfaces. These constructions include hyperbolic Floquet codes,

obtained from hyperbolic tilings, as well as semi-hyperbolic Floquet codes, which

are derived from hyperbolic tilings via a fine-graining procedure. We have given

explicit examples of hyperbolic Floquet codes with improved encoding rates relative

to honeycomb codes and have shown how semi-hyperbolic Floquet codes can retain
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Figure 7.14: Logical error rates vs. physical error rates for encoding 4 logical qubits using 4
copies of small planar honeycomb codes (blue) or a (semi-)hyperbolic floquet
code encoding 4 logical qubits (red), for the EM3 noise model (check operators
are measured directly without ancillas). In (a) we use a hyperbolic code derived
from the Bolza surface that has distance 2 in this noise model, whereas in (b)
we use an l = 2 semi-hyperbolic code derived from the Bolza surface that has
distance 3. The legend gives the total number of qubits, with the dimension of
the lattice given in parentheses for the planar honeycomb codes. All circuits
use 16 rounds of measurements, and the y axis gives the average of the logical
X and Z error rates. The black dotted line is the logical failure rate for the
(semi-)hyperbolic code for a decoder which always predicts that no logical
observable has been flipped. Note that the 4× 6, 6× 9 and 8× 12 planar
honeycomb codes have distances 2, 3 and 4 respectively for this EM3 noise
model.

this advantage while enabling improved
√

n distance scaling.

We have used numerical simulations to analyse the performance of our construc-

tions for two noise models: a Majorana-inspired ‘EM3’ noise model, which assumes

direct noisy two-qubit measurements, and a standard circuit-level depolarising ‘SD6’

noise model, which uses ancilla qubits to assist the measurement of check operators.

For the EM3 noise model, we compare a semi-hyperbolic Floquet code that encodes

674 logical qubits into 21,504 physical qubits with 674 copies of planar honeycomb

codes, and find that the semi-hyperbolic Floquet code uses 48× fewer physical

qubits at physical error rates as high as 0.3% to 1%. We demonstrate that this

semi-hyperbolic Floquet code can achieve logical error rates below 10−12 at 0.1%

EM3 noise using as few as 32 physical qubits per logical qubit. This is a significant

improvement over planar honeycomb codes, that require 600 to 2000 physical qubits

per logical qubit in the same regime [97, 156]. For the SD6 noise model at a noise
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strength of 0.1%, we show that the same semi-hyperbolic Floquet code uses around

30× fewer physical qubits than planar honeycomb codes, and around 5.6× fewer

qubits than surface codes. We also construct several small examples of hyperbolic

and semi-hyperbolic Floquet codes amenable to near-term experiments, including

a 16-qubit hyperbolic Floquet code derived from the Bolza surface. These small

instances are around 3× to 6× more efficient than planar honeycomb codes and are

comparable to standard surface codes in the SD6 noise model.

An interesting avenue of future research might be to study the performance of

other recent variants and generalisations of Floquet codes [56, 126, 2, 210, 14, 182,

57, 188, 68]. For example, the CSS Floquet code introduced in Refs. [56, 126] is also

defined from any colour code tiling, but with a modified choice of two-qubit check

operators. CSS Floquet codes can therefore also be constructed from the hyperbolic

and semi-hyperbolic colour code tilings in Section 7.1 and, since they have the same

embedded homological codes as the Floquet codes we study here, we would expect

them to offer similar advantages over CSS honeycomb codes.

Another possible research direction would be to study and design more concrete

realisations of hyperbolic and semi-hyperbolic Floquet codes in modular architec-

tures. This could include studying protocols for realising these modular architectures

where links between modules are more noisy or slow [84, 152, 153, 167], motivated

by physical systems that can be used to realise them, such as ions [150, 178, 162],

atoms [168, 20] or superconducting qubits [170, 190, 58, 211, 121].

Finally, we have focused here on error corrected quantum memories, but more

work is needed to demonstrate how our constructions can be used to save resources

within the context of a quantum computation. We note that the Floquet code schedule

applies a logical Hadamard to all logical qubits in the code every three sub-rounds;

however, to be useful in a computation we must either be able to read and write

logical qubits to the memory or address logical qubits individually with a universal

gate set. We expect that reading and writing of logical qubits to and from honeycomb

codes can be achieved using Dehn twists and lattice surgery by adapting the methods

developed in Ref. [39] for hyperbolic surface codes to (semi-)hyperbolic Floquet
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codes, however a more detailed analysis is required. Further work could also

investigate (semi-)hyperbolic Floquet codes that admit additional transversal logical

operations [166, 203] such as fold-transversal logical gates [41], examples of which

have been demonstrated for hyperbolic surface codes.



General Conclusions

In this thesis we have described techniques for making quantum error correction more

efficient and practical. Part I focussed on decoders for 2D topological codes such as

the surface code. In Chapter 1 we introduced the relevant background material, as

well as presenting our optimal local unitary encoding circuits for the surface code.

In Chapter 2 we presented sparse blossom, our implementation of the minimum-

weight perfect matching (MWPM) decoder, which we released in the PyMatching

software package. Sparse blossom avoids explicitly constructing a large auxiliary

graph, commonly used in MWPM decoder implementations, leading to a running

time that scales linearly in the number of detection events below threshold. Our

implementation can process surface code syndrome data in less than one microsecond

per round up to distance-17, which matches the rate at which it would be generated

in superconducting quantum computers [5]. In Chapter 3 we described our belief-

matching decoder, which improves on the accuracy of the MWPM decoder by

exploiting error mechanisms that flip more more than two detection events (non-

graphlike error mechanisms). Belief-matching increases the threshold of the surface

code with circuit-level noise, and reduces the required resource overhead below

threshold. We concluded Part I in Chapter 4 with schedule-induced gauge fixing

(SIGF), which changes the order of check operator measurements in subsystem

codes such that gauge operators are temporarily fixed as stabilisers. We showed that

SIGF increases the noise threshold of the subsystem surface code, with the biggest

improvements shown for biased noise.

In Part II we presented constructions of quantum LDPC codes that require fewer

resources than the surface code for storage, even for a noise model in which gates
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in the syndrome measurement circuit are noisy. Our constructions are derived from

tilings of closed hyperbolic surfaces and are related to hyperbolic surface codes by

constant-depth unitaries. Our subsystem hyperbolic codes are generalisations of

the subsystem surface code, which have three-qubit check operators. We exploited

symmetries in the tiling to construct optimal-depth parity check measurement sched-

ules, and showed that our subsystem hyperbolic codes could require 4.3× fewer

physical qubits than the surface code even at physical error rates as high as 0.2%. In

Chapter 7 we constructed Floquet codes derived from tilings of closed hyperbolic

surfaces. Some of our constructions have a qubit overhead that is 48× lower than

that of surface codes for a noise model where two-qubit Pauli measurements can be

implemented directly. We also presented small examples, including a code derived

from the Bolza surface that encodes 4 logical qubits into 16 physical qubits.

Many avenues of research follow naturally from the work presented in this

thesis. Firstly, while sparse blossom is designed to decode a batch of syndrome

data, a real-time decoder must be capable of decoding a stream of measurement

data. Furthermore, in order to reduce power consumption and achieve deterministic

running times, FPGA or ASIC implementations may be necessary. While there has

been recent progress in this direction, current approaches sacrifice accuracy relative

to MWPM or belief-matching decoders [141, 13]. Additionally, the belief-matching

decoder we presented is asymptotically efficient but significantly slower than sparse

blossom in practice, and further optimisations may provide a more favourable trade-

off of speed and accuracy. Finally, it will be important to develop more efficient

and accurate decoders for more quantum codes not amenable to MWPM or UF,

such as colour codes and more general quantum LDPC codes. While the BP-OSD

decoder has good accuracy for a wide range of quantum LDPC codes [158, 169, 35,

208], it has an expected running that is cubic in the number of error mechanisms,

in contrast to MWPM and UF which have a linear expected running time below

threshold. Therefore, an important research direction is the development of more

efficient decoders for more general quantum LDPC codes.

Important questions also remain for the development of practical quantum
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LDPC codes. In this thesis we have focused on the performance of our constructions

for storing quantum information, however ultimately we would like to use these

codes to reduce resources within the context of a quantum computation. To be useful

as a quantum memory within this context, it is important that quantum information

into and out of storage efficiently. In Ref. [39] a proposal was made for moving

logical qubits within hyperbolic surface codes using Dehn twists, and for teleporting

qubits into and out of storage using lattice surgery. Certain symmetries of codes,

such as automorphisms and ZX-dualities [41], can also be used to implement some

logical gates in LDPC codes. All of these techniques could be studied in more detail

for the subsystem hyperbolic and hyperbolic Floquet codes explored in this thesis.

An ultimate goal would be to demonstrate that these techniques can be used to reduce

the overall space-time cost of a quantum algorithm for realistic physical systems

capable of implementing the required long-range connectivity.



Appendix A

Optimal Unitary Encoding Circuits

In this section of the Appendix, we present some additional unitary encoding circuits

for surface does, which we originally published in Ref. [116].

A.1 Planar base cases and rectangular code
In Figure A.1 we provide encoding circuits for the L = 2, L = 3 and L = 4 planar

codes, requiring 4, 6 and 8 time steps respectively. These encoding circuits are

used as base cases for the planar encoding circuits described in Section 1.3.1. In

Figure A.2 we provide encoding circuits that either increase the width or height of a

planar code by two, using three time steps.

A.2 Rotated Surface Code
In Figure A.3 we demonstrate a circuit that encodes an L = 7 rotated surface code

from a distance L = 5 rotated code. For a given distance L, the rotated surface

code uses fewer physical qubits than the standard surface code to encode a logical

qubit [24]. Considering a standard square lattice with qubits along the edges, a

rotated code can be produced by removing qubits along the corners of the lattice

boundary, leaving a diamond of qubits from the centre of the original lattice. The

diagram in Figure A.3 shows the resultant code, rotated 45◦ compared to the original

planar code, and with each qubit now denoted by a vertex rather than an edge. For a

distance L code the rotated surface code requires L2 qubits compared to L2+(L−1)2

for the planar code.
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(a) (b)

(c)

Figure A.1: Encoding circuits for the L = 2, L = 3 and L = 4 planar codes. Each edge
corresponds to a qubit, each arrow denotes a CNOT gate pointing from control
to target, and each filled black circle denotes a Hadamard gate applied at the
beginning of the circuit. The colour of each CNOT gate corresponds to the
time step it is implemented in, with blue, green, red, black, cyan and yellow
CNOT gates corresponding to the first, second, third, fourth, fifth and sixth time
steps respectively. The hollow circle in each of (a) and (b) denotes the initial
unencoded qubit. The circuit in (c) encodes an L=4 planar code from an L=2
planar code, with solid edges denoting qubits initially encoded in the L=2 code.
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(a) (b)

Figure A.2: (a) Circuit to increase the width of a planar code by two. (b) Circuit to increase
the height of a planar code by two. Notation is the same as in Figure A.1.

  

Figure A.3: Encoding circuit for the L = 7 rotated code from an L = 5 rotated surface code
(shown as a red outline). The colour of each arrow denotes the time step the
gate is applied in. The gates are applied in the order: blue, red, black, purple.
The additional qubits are initialised in the |+⟩ (red) or |0⟩ (green) state. The
yellow squares denote a Z stabiliser on the four corner qubits, and the brown
squares represent an X operator on the four corner qubits. The rotated code has
additional stabilizers between states on along the edges. In the L = 5 code these
are shown as a red arch (with Z and X stabilisers on the vertical and horizontal
edges respectively), and the yellow and brown arches in the L = 7 code edge
are Z and X stabilizers between the two edge qubits.

The encoding circuit in Figure A.3 takes 4 steps to grow a rotated code from a

distance L = 5 to L = 7. This is a fixed cost for any distance L to L+2. To produce

a distance L = 2m code this circuit would be applied repeatedly m+O(1) times to

an L = 2 or L = 3 base case, requiring a circuit of total depth 2L+O(1). The circuit

in Figure A.3 can be verified by seeing that a set of generators for the L = 5 rotated

code (along with the single qubit Z and X stabilisers of the ancillas) is mapped to a

set of generators of the L = 7 rotated code, as well as seeing that the X and Z logicals

of the L = 5 code map to the X and Z logicals of the L = 7 rotated code.



Appendix B

Sparse Blossom

B.1 The blossom algorithm

The blossom algorithm, introduced by Jack Edmonds [73, 72], is a polynomial-time

algorithm for finding a minimum-weight perfect matching in a graph. In this section

we will outline some of the key concepts in the original blossom algorithm. We do

not explain the original blossom algorithm in full, since there is significant overlap

with our sparse blossom algorithm, which we described in Section 2.2. We refer the

reader to references [73, 72, 87, 131] for a more complete overview of the blossom

algorithm.

We will first introduce some terminology. Given some matching M ⊆ E in

a graph G = (V,E), we say that an edge in E is matched if it is also in M, and

unmatched otherwise, and a node is matched if it is incident to a matched edge, and

unmatched otherwise. A maximum cardinality matching is a matching that contains

as many edges as possible. An augmenting path is a path P ⊆ E which alternates

between matched and unmatched edges, and begins and terminates at two distinct

unmatched nodes.

Given an augmenting path P in G, we can always increase the cardinality of the

matching M by one by replacing M with the new matching M′ = M⊕P. We refer to

this process, of adding each unmatched edge in P to M and removing each matched

edge in P from M, as augmenting the augmenting path P (see Figure B.1(a)). Berge’s

theorem states that a matching has maximum cardinality if and only if there is no
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Figure B.1: (a) Augmenting an augmenting path. Matched edges become unmatched, and
unmatched edges become matched. (b) Examples of two alternating trees in
the blossom algorithm for finding a maximum matching. Each tree has one
unmatched node. The two trees have become connected via the red dashed edge.
The path between the roots of the two trees, through the green edges and red
edge, is an augmenting path. (c) An example of two alternating trees in the
blossom algorithm for finding a minimum-weight perfect matching. Each node
v now has a dual variable yv which, when yv is positive, we can interpret as
the radius of a region centred on the node. A new edge (u,v) with weight wu,v

can only be explored by the alternating tree if it is tight, meaning that the dual
variables yu and yv satisfy yu + yv = wu,v.

augmenting path [17].

B.1.1 Solving the maximum cardinality matching problem

We will now give an overview of the original unweighted version the blossom algo-

rithm, which finds a maximum cardinality matching (as introduced by Edmonds in

[73]). The unweighted blossom algorithm is used as a subroutine by the more general

blossom algorithm for finding a minimum-weight perfect matching (discovered, also

by Edmonds, in [72]), which we will outline in Appendix B.1.2. The algorithm

is motivated by Berge’s theorem. Starting with a trivial matching, it proceeds by

finding an augmenting path, augmenting the path, and then repeating this process

until no augmenting path can be found, at which point we know that the matching

is maximum. Augmenting paths are found by constructing alternating trees within

the graph. An alternating tree T in the graph G is a tree subgraph of G with an

unmatched node as its root, and for which every path from root to leaf alternates

between unmatched and matched edges, see Figure B.1(b). There are two types of

nodes in T : “outer” nodes (labelled “+”) and “inner” nodes (labelled “−”). Each
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inner node is separated from the root node by an odd-length path, whereas each outer

node is separated by an even-length path. Each inner node has a single child (an

outer node). Each outer node can have any number of children (all inner nodes). All

leaf nodes are outer nodes.

Initially, every unmatched node is a trivial alternating tree (a root node). To find

an augmenting path, the algorithm searches the neighboring nodes in G of the outer

nodes in each tree T . If, during this search, an edge (u,v) is found such that u is an

outer node of T and v is an outer node of some other tree T ′ ̸= T then an augmenting

path has been found, which connects the roots of T and T ′, see Figure B.1(b). This

path is augmented, the two trees are removed, and the search continues. If an edge

(u,v) is found between an outer node u in T and a matched node v not in any tree

(i.e. v is matched), then v and its match are added to T . Finally, if an edge (u,v) is

found between two outer nodes of the same tree then an odd-length cycle has been

found, and forms a blossom. A key insight of Edmonds was that a blossom can be

treated as a virtual node, which can be matched or belong to an alternating tree like

any other node. However, we will explain how blossoms are handled in more detail

in the context of our sparse blossom algorithm in Section 2.2.

B.1.2 Solving the minimum-weight perfect matching problem

The extension from finding a maximum cardinality matching to finding a minimum-

weight perfect matching is motivated by formulating the problem as a linear pro-

gram [72]. Constraints are added on how the alternating trees are allowed to grow,

and these constraints ensure that the weight of the perfect matching is minimal once

it has been found. The formulation of the problem as a linear program is not required

either to understand the algorithm, or for the proof of correctness. However, it does

provide useful motivation, and the constraints and definitions used in the linear

program are also used in the blossom algorithm itself. We will therefore describe the

linear program here for completeness.

We will denote the boundary edges of some subset of the nodes S ⊆ V by

δ (S) := {(u,v) ∈ E | u ∈ S,v ∈ V \ S}, and will let O be the set of all subsets of

V of odd cardinality at least three, i.e. O := {o⊆V : |o|> 1, |o| mod 2 = 1}. We
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denote the edges incident to a single node v by δ (v) (e.g. δ (v) = δ ({v})). We will

use an incidence vector x ∈ {0,1}|E| to represent a matching M ⊆ E where xe = 1

if e ∈M and xe = 0 if e /∈M. We denote the weight of an edge e ∈ E by we. The

minimum-weight perfect matching problem can then be formulated as the following

integer program:

Minimise ∑
e∈E

wexe (B.1a)

subject to ∑
e∈δ (v)

xe = 1 ∀v ∈V (B.1b)

xe ∈ {0,1} ∀e ∈ E (B.1c)

Edmonds introduced the following linear programming relaxation of the above

integer program:

Minimise ∑
e∈E

wexe (B.2a)

subject to ∑
e∈δ (v)

xe = 1 ∀v ∈V (B.2b)

∑
e∈δ (S)

xe ≥ 1 ∀S ∈ O (B.2c)

xe ≥ 0 ∀e ∈ E. (B.2d)

Note that the constraints in Equation (B.2c) are satisfied by any perfect matching, but

Edmonds showed that adding them ensures that the linear program has an integral

optimal solution. In other words, the integrality constraint (Equation (B.1c)) can be

replaced by the inequalities in Equation (B.2c) and Equation (B.2d).

Every linear program (referred to as the primal linear program, or primal

problem) has a dual linear program (or dual problem). The dual of the above primal
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problem is:

Maximise ∑
v∈V

yv + ∑
S∈O

yS (B.3a)

subject to slack(e)≥ 0 ∀e ∈ E (B.3b)

yS ≥ 0 ∀S ∈ O (B.3c)

where the slack of an edge is defined as

slack(e) := we−∑
u∈e

yu− ∑
S∈O:e∈δ (S)

yS. (B.4)

We say that an edge is tight if it has zero slack. Here we have defined a dual variable

yv ∈ R for each node v ∈ V , as well as a dual variable yS ∈ R for each set S ∈ O.

While each variable yS is constrained to be non-negative (Equation (B.3c)), each

yv is permitted to take any value. Although we have an exponential number of yS

variables, this turns out not to be an issue since only O(|V |) are non-zero at any given

stage of the blossom algorithm.

We now recall some terminology and general properties of linear programs (see

[146, 132] for more details). A solution of a linear program is feasible if it satisfies

the constraints of the linear program. Without loss of generality, we assume that

the primal linear program is a minimisation problem (in which case its dual is a

maximisation problem). By the strong duality theorem, if both the primal and the

dual linear program have a feasible solution, then they both also have an optimal

solution. Furthermore, the minimum of the primal problem is equal to the maximum

of its dual, providing a “numerical” proof of optimality.

We can obtain a “combinatorial” proof of optimality for any linear program

using the complementary slackness conditions. Each constraint in the primal problem

is associated with a variable of the dual problem (and vice versa). Let us associate the

ith primal constraint with the ith dual variable (and vice versa). The complementary

slackness conditions state that, if and only if we have a pair of optimal solutions, then

if the ith dual variable is greater than zero then the ith primal constraint is satisfied
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with equality. Similarly, if the ith primal variable is greater than zero then the ith dual

constraint is satisfied with equality. More concretely, for the specific primal-dual

pair of linear programs we are considering, the complementary slackness conditions

are:

slack(e)> 0 =⇒ xe = 0 (B.5)

yS > 0 =⇒ ∑
e∈δ (S)

xe = 1 (S ∈ O) (B.6)

These conditions are used as a stopping rule in the blossom algorithm (with Equa-

tion (B.5) satisfied throughout) and provide a proof of optimality.

While it is convenient to use the strong duality theorem, since it applies to any

linear program, its correctness is not immediately intuitive and its proof is quite

involved (see [146, 132]). Fortunately, we can obtain a simple proof of optimality

of the minimum-weight perfect matching problem directly, without the need for

duality theory [87]. First, we note that for any feasible dual solution, we have that

any perfect matching N satisfies

∑
e∈N

we = ∑
e∈N

(
slack(e)+∑

v∈e
yv + ∑

S∈O:e∈δ (S)
yS

)
≥ ∑

v∈V
yv + ∑

S∈O
yS, (B.7)

where here the equality is from the definition of slack(e) and the inequality uses

Equation (B.3b) and Equation (B.3c) and the fact that N is a perfect matching.

However, if we have a perfect matching M which additionally satisfies Equation (B.5)

and Equation (B.6) we instead have

∑
e∈M

we = ∑
v∈V

yv + ∑
S∈O

yS, (B.8)

and thus the perfect matching M has minimal weight.

So far in this section, we have only considered the case that each edge is a

pair of nodes (a set of cardinality two). Let us now consider the more general case

(required for decoding) where we can also have half-edges. More specifically, we

now have the edge set E = E1 ∪E2 where each (u,v) ∈ E2 is a regular edge and
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each (u,) ∈ E1 is a half-edge (a node set of cardinality one). We note that a perfect

matching is now defined as a subset of this more general edge set, but its definition

is otherwise unchanged (a perfect matching is an edge set M ⊆ E := E1∪E2 such

that each node is incident to exactly one edge in M). We extend our definition of

δ (S) to be

δ (S) := {(u,v) ∈ E2 | u ∈ S,v ∈V \S}∪{(u,) ∈ E1 | u ∈ S}. (B.9)

With this modification, the simple proof of correctness above still holds and the

slack(e) of a half-edge e ∈ E1 is well defined by Equation (B.4).

The blossom algorithm for finding a minimum-weight perfect matching starts

with an empty matching and a feasible dual solution, and iteratively increases the

cardinality of the matching and the value of the dual objective while ensuring the

dual problem constraints remain satisfied. Eventually, we will have a pair of feasible

solutions to the primal and dual problem satisfying the complementary slackness

conditions (Equation (B.5) and Equation (B.6)) at which point we know we have a

perfect matching of minimal weight. The algorithm proceeds in stages, where each

stage consists of a “primal update” and a “dual update”. We repeat these primal and

dual updates until no more progress can be made at which point, provided the graph

admits a perfect matching, the complementary slackness conditions will be satisfied

and so the minimum-weight perfect matching has been found. We will now outline

the primal and dual update in more detail.

In the primal update, we consider only the subgraph H of G consisting of tight

edges and try to find a matching of higher cardinality, essentially by running a slight

modification to the unweighted blossom algorithm on this subgraph. In [131], the four

allowed operations in the primal update are referred to as “GROW”, “AUGMENT”,

“SHRINK” and “EXPAND”. The first three of these already occur in the unweighted

variant of blossom discussed in Appendix B.1.1. The GROW operation consists of

adding a matched pair of nodes to an alternating tree. AUGMENT is the process of

augmenting the path between the roots of two trees when they become connected.

SHRINK is the name for the process of forming a blossom when an odd length cycle
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is found. The operation that differs slightly in the weighted variant is EXPAND.

This EXPAND operation can occur whenever the dual variable yS for a blossom

S becomes zero; when this happens the blossom is removed, the odd-length path

through the blossom is added into the alternating tree, and nodes in the even-length

path become matched to their neighbours. This differs slightly from the unweighted

variant as we described it, where blossoms are only expanded when a path they

belong to becomes augmented (at which point all the nodes in a blossom cycle

become matched). We refer the reader to [131] for a more complete description

of these operations in the primal update (and associated diagrams), although we

reiterate that very similar concepts will be covered in more detail when we describe

sparse blossom in Section 2.2.

In the dual update, we try to increase the dual objective by updating the value

of the dual variables, ensuring that edges in alternating trees and blossoms remain

tight, and also ensuring that the dual variables remain a feasible solution to the dual

problem (the inequalities Equation (B.3b) and Equation (B.3c) must remain satisfied).

Loosely speaking, the goal of the dual update is to increase the dual objective in

such a way that more edges become tight, while ensuring existing alternating trees,

blossoms and matched edges remain intact. The only dual variables we update are

those belonging to nodes in an alternating tree. For each alternating tree T we choose

a dual change δT ≥ 0 and we increase the dual variable of every outer node u with

yu := yu+δT but decrease the dual variable of every inner node u with yu := yu−δT .

Recall that each node in T is either a regular node or a blossom, and if the node

is a blossom then are changing the blossom’s dual variable (while leaving the dual

variables of the nodes it contains unchanged). Note that this change ensures that all

tight edges within a given alternating tree remain tight, but since outer node dual

variables are increasing, it is possible that some of their neighbouring (non-tight)

edges may become tight (hopefully allowing us to find an augmenting path between

alternating trees in the next primal update). The constraints of the dual problem (the

inequalities Equation (B.3b) and Equation (B.3c)) impose constraints on the choice

of δT ; in particular, the slacks of all edges must remain non-negative, and blossom
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dual variables must also remain non-negative.

There are many different valid strategies that can be taken for the dual update.

In a single tree approach, we pick a single tree T and update the dual variables

only of the nodes in T by the maximum amount δT such that the constraints of

the dual problem remain satisfied (e.g. we change the dual variables until an edge

becomes tight or a blossom dual variable becomes zero). In a multiple tree fixed δ

approach, we update the dual variables of all alternating trees by the same amount

δT (again by the maximum amount that ensures the dual constraints remain satisfied).

In a multiple tree variable δ approach, we choose a different δT for each tree T .

Our variant of the blossom algorithm (sparse blossom) uses a multiple tree fixed δ

approach. See [131] for a more detailed discussion and comparison of these different

strategies.

In Figure B.1(c) we give an example with two alternating trees, and visualise

a dual variable as the radius of a circular region centred on its node. Visualising

dual variables this way, an edge between two trivial nodes is tight if the regions

at its endpoints touch. In this example, we update the dual variables (radiuses)

until the two alternating trees touch, at which point the edge joining the two trees

becomes tight, and we can augment the path between the roots of the two trees.

Note that we can only visualise dual variables as region radiuses like this when they

are non-negative. While dual variables of blossoms are always non-negative (as

imposed by Equation (B.3c)), dual variables of regular nodes can become negative

in general. However, when running the blossom algorithm on a path graph, the dual

variable of every regular node is also always non-negative, owing to the structure

of the graph. This can be understood as follows. Consider any regular inner node v

that is not a blossom, which by definition must have exactly one child outer node w

in its alternating tree (its match), as well as its one parent outer node u. Recall that

the path graph is a complete graph where the weight w(x,y) of each edge (x,y) is

the length of shortest path between nodes x and y in some other graph (e.g. in our

case always the matching graph). Therefore there is also an edge (u,w) in the path

graph with weight w(u,w)≤ w(u,v)+w(v,w), since we know that there is at least
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one path from u to w of length w(u,v)+w(v,w), corresponding to the union of the

shortest path from u to v and the shortest path from v to w. Therefore, we cannot

have yv < 0 without having slack((u,w))< 0 which would violate Equation (B.3b).

More specifically, if yv = 0 then we know that the edge (u,w) must be tight, which

means we can form a new blossom from the blossom cycle (u,v,w) and this blossom

can become an outer node in the (possibly now trivial) alternating tree.

B.2 Comparison between blossom and sparse

blossom

In Table B.1 we summarise how some of the concepts in the traditional blossom

algorithm translate into concepts in sparse blossom. If the traditional blossom al-

gorithm is run on the path graph Ḡ[D] using a multiple tree approach (and with

all dual variables initialised to zero at the start), then a valid state of blossom at a

particular stage corresponds to a valid state of sparse blossom for the same problem

at the appropriate point in the timeline. The dual variables in blossom define the

region radiuses in sparse blossom (and these radiuses can be used to construct the

corresponding exploratory regions). Likewise the edges in the alternating trees, blos-

som cycles and matches in traditional blossom can all be translated into compressed

edges in the corresponding entities in sparse blossom. We note, however, that when

multiple alternating tree events happen at the same time in sparse blossom, any

ordering for the processing of these events is a valid choice. So just because we

can translate a valid state of one algorithm to that of the other, does not imply that

two implementations of the algorithms (or the same algorithm) will have the same

sequence of alternating tree manipuations (indeed it is unlikely that they will). This

correspondence between sparse blossom run on the matching graph and traditional

blossom run on a path graph, and the correctness of blossom itself for finding a

MWPM, is one way understanding why sparse blossom correctly finds a MWEM in

the matching graph.
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B.3 Compressed tracking in Union-Find

Compressed tracking can be naturally adapted to the Union-Find decoder [60, 119],

as shown in Figure B.2. Each detection event is initialised with a region, which we

refer to as a cluster, to be consistent with Ref. [60]. Using the same approach as for

the compressed tracking in sparse blossom, we can track the detection event that

each detector node has been reached from, as well as the observables that have been

crossed to reach it. More explicitly, let S(u) again denote the source detection event

of a detector node u, and we initialise S(x) = x for each detection event x at the start

of the algorithm. We denote the set of logical observables crossed an odd number

of times from a node’s source detection event by ł(u), and we initialise l(x) as the

empty set for each detection event x. We grow a cluster C by adding a node v from

an edge e := (u,v) on the boundary of C (i.e. an edge such that u ∈C and v /∈C). As

we add v to C, we set S(v) = S(u) and l(v) = l(u)⊕ l(e). Recall that l(e) is the set

of logical observables flipped by edge e and ⊕ denotes the symmetric difference of

sets. Since we store l(ei) as a bitmask for each edge ei ∈ E , the symmetric difference

of two edges l(ei)⊕ l(e j) can be implemented particularly efficiently using a bitwise

XOR.

We represent each cluster as a compressed cluster tree. Each node in the

compressed cluster tree corresponds to a detection event, in contrast to the cluster

tree introduced in [60], where each node is a detector node. Each edge c := (x,y)

in the cluster tree is a compressed edge, representing a path P through the detector

graph between detection events x and y. In contrast to compressed edges in sparse

blossom, this path is in general not the minimum-length path. The compressed

edge c is assigned the logical observables crossed an odd number of times by P,

denoted l(c) or l(x,y). We check which cluster a detector node u belongs to by

calling Find(S(u)).

We modify the path compression step of the Find operation such that whenever

a path B (consisting of compressed edges) through the cluster tree between two

detection events f and g is replaced by a compressed edge c := ( f ,g), the set of

logical observables l(c) of the new compressed edge is calculated l(c) :=
⊕

ci∈B l(ci).
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Figure B.2: Compressed tracking in Union-Find. (a) Two clusters collide. Each node in
the cluster tree denotes a detection event, and each edge is a compressed edge
representing a path between the two detection events in the detector graph (not
necessarily a shortest path). Each edge is labelled with a letter denoting the
bitmask of the observables crossed along the path it represents. This differs from
traditional Union-Find implementations, where every detector node in a cluster
is a node in the cluster tree. When two clusters collide, we store a compressed
edge for the path between detection events along which the collision occurred
(the collision edge). (b) The two cluster trees, along with the collision edge
(dashed line). (c) After finding the source detection events (5 and 7) involved in
the collision, we call Find(5) and Find(7). When using path compression (which
here connects node 5 to the root node), we ensure the observable bitmask is kept
up-to-date by taking the sum (modulo 2) of bitmasks along the path to the root
node. (d) Union(0, 6) adds the smaller cluster as a subtree of the root node of
the larger cluster (node 6 becomes a child of node 0). We store the observable
bitmask along edge (0, 6), by taking the sum (modulo 2) of the observable
bitmasks on edges (0, 5), (6, 7) and the collision edge (5, 7). (e) The combined
cluster now has even parity. We use compressed peeling to highlight a set of
edges (shown in red) such that each node is incident to an odd number of edges.
We take the sum (modulo 2) of the observable bitmasks on these highlighted
edges to find the predicted logical observable.
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A similar modification can be made if path splitting or path halving is used instead

of path compression for the Find operation.

The Union operation is adapted in a similar manner. Suppose a cluster Ci

collides with a cluster C j along an edge (u,v). In other words, (u,v) is an edge

in the detector graph such that u ∈Ci and v ∈C j. We construct the collision edge

(S(u),S(v)) from local information at the point of collision, and assign it the set of

logical observables l(S(u),S(v)) := l(u)⊕ l(v)⊕ l(u,v). When we merge cluster Ci

with cluster C j using the Union operation, we add the root nodeR(Ci) of the smaller

cluster tree (say Ci) as a child of the root node R(C j) of the larger cluster tree C j

by adding a compressed edge ci j := (R(Ci),R(C j)) to the tree. We assign its set of

logical observables l(ci j) to be l(ci j) :=
⊕

ck∈Pi j
l(ck), where Pi j is the path through

the tree betweenR(Ci) andR(C j).

Finally, once all clusters have even parity (an even number of detection events,

or connected to the boundary), we can apply the peeling algorithm [63] to the

compressed cluster trees, which returns a set of compressed edges P . We say the

compressed edges in P are highlighted edges in the cluster tree. The set of logical

observables that the decoder predicts to have been flippsed is then
⊕

ci∈P l(ci). This

stage is much more efficient than the traditional peeling step of UF, as we do not

need to construct a spanning tree in each cluster. Instead, we only run peeling on

our compressed representation of the cluster trees. Compressed peeling is linear

in the number of compressed edges in the cluster tree. For completeness, we give

pseudocode for compressed peeling in Algorithm 2, however this is simply a recursive

definition of the peeling algorithm of [63] applied to the case of a compressed cluster

tree comprised of a graph of compressed edges joining detection events, rather than

to a spanning tree subgraph of a conventional union-find cluster in the detector graph

(comprised of detector nodes and detector graph edges). The procedure is recursive

and takes as input a node x in the compressed cluster tree, returning px and lx. Here,

lx is the set of logical observables flipped by flipping the highlighted compressed

edges that are descendants of x in the cluster tree (a descendant edge of x is an edge

in the subtree rooted at x). The auxiliary variable px (used in the recursion) is the
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parity of the number of highlighted child edges of x in the cluster (where a child

edge is an edge connecting x to one of its children in the cluster tree). Initially, we

assume no node in the cluster tree is connected to the boundary, in which case we

initialise pinit
x = even for each node x. We run compressed peeling on the root node r

to find the set of logical observables lr flipped by all highlighted edges in the cluster

tree. Note that pr should always be odd for the root node if there is no boundary.

Recall that peeling should find a set of highlighted edges (edges in P) such that

each node in the tree is incident to an odd number of highlighted edges. We will first

show that lx (returned by compressed peeling) is indeed the set of logical observables

flipped by highlighted edges that are descendants of x, and that px is the parity of

the number of highlighted child edges of x. Consider the base case that x is a leaf

node, in which case it has no child edges or descendants. In this case, compressed

peeling correctly sets px to even (since we initialise pinit
x = even) and lx to the empty

set. Now consider the inductive step, where x has children C(x) in the cluster tree.

For each y ∈ C(x) we highlight the edge (x,y) if py is even, and px is set to the parity

of the number of these highlighted child edges of x, as required. The main loop of

the algorithm sets lx to

lx =

 ⊕
y∈C(x)

ly

⊕
 ⊕

(x,w):w∈C(x),(x,w)∈P
l(x,w)


and if we assume ly is the set of logical observables flipped by highlighted descendant

edges of y then clearly lx is the set of logical observables flipped by highlighted

descendant edges of x. Finally, note that since we apply compressed peeling to a tree,

the function is called on each node x exactly once, and we highlight an edge (x,y) to

a child y of x if and only if py is even. Therefore, each node becomes incident to an

odd number of highlighted edges, as required.

We haven’t yet considered the boundary. If there is a compressed edge (x,b)

in a cluster tree C connecting a detection event x to the boundary b (there can be

at most one such edge since a cluster becomes neutral once it hits the boundary),

we first add l(x,b) to the solution and remove (x,b) from C, then we set pinit
x = odd
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before applying compressed peeling to the root node r of the remaining cluster tree,

adding the resulting lr to the solution.

Algorithm 2 Compressed Peeling
procedure COMPRESSEDPEELING(x)

px← pinit
x ▷ Parity of the number of highlighted child edges of x

lx←{} ▷ Observables flipped by highlighted descendant edges of x
for each child y of x do

py, ly← COMPRESSEDPEELING(y)
lx← lx⊕ ly
if py is even then

lx← lx⊕ l(x,y) ▷ Compressed edge (x,y) becomes highlighted
flip px

return px, lx

B.4 Worst-case running time
In this section, we will find a worst-case upper bound of the running time of sparse

blossom. Note that this upper bound is likely loose, and furthermore differs greatly

from the expected running time of sparse blossom for typical QEC problems, which

we believe to be linear in the size of the graph. Let us denote the number of detector

nodes by n, the number of edges in the detector graph by m and the number of

detection events by q. First, note that each alternating tree always contains exactly

one unmatched detection event, in the sense that only a single growing region needs

to become matched for the whole tree to shatter into matched regions. Therefore,

the alternating tree events that grow the alternating tree, form blossoms or shatter

blossoms (events of type a, c, d or e in Figure 2.2) do not change the number of

detection events that remain to be matched. On the other hand, when a tree hits

another tree (type b), the number of unmatched detection events reduces by two, and

when a tree hits the boundary (type f), or a boundary match (type g), then the number

of unmatched detection events reduces by one. We refer to an alternating tree event

that reduces the number of unmatched detection events as an augmentation, and refer

to a portion of the algorithm between consecutive augmentations as a stage. Clearly,

there can be at most q augmentations and at most q stages.

We now bound the complexity of each augmentation, and of each stage. In
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each stage, there are at most O(q) blossoms formed or shattered, and at most O(q)

matches added to trees. When a blossom forms, each node it owns updates its

cached topmost blossom ancestor and wrapped radius, with cost proportional to

the depth of the blossom tree, and this step has complexity O(nq). Additionally,

every node owned by the blossom is rescheduled, with O(m) cost. Updating the

blossom structure and alternating tree structure (e.g. the compressed edges) is at

most O(q). In total, forming a blossom has a running time of at most O(nq+m),

and the same upper bound applies for shattering a blossom. When a match is added

to an alternating tree, the complexity is O(m) from rescheduling the nodes, which

exceeds the O(q) cost of updating the alternating tree structure. Finally, there is the

cost of growing and shrinking regions. In each stage, a node can only be involved

in O(1) ARRIVE or LEAVE flooder events: once a region is growing, it (or its

topmost blossom ancestor) continues to grow until the next augmentation. Therefore,

in each stage the worst-case running time is dominated by the O(nq2 +mq) cost

associated with up to q blossoms forming or shattering. There are q stages, leading

to a O(nq3 +mq2) worst-case complexity.

B.5 Handling negative edge weights

Recall that an edge weight w[i] = log((1−p[i])/p[i]) can become negative since we

can have p[i]> 0.5. It is therefore necessary to to handle negative edge weights to

decode correctly for these error models. For example, consider the distance three

repetition code check matrix

H =


1 1 0

0 1 1

1 0 1

 (B.10)

with prior distribution p = (0.9,0.9,0.9) and an error e = (0,1,1) with syndrome

s = He = (1,0,1). The two errors consistent with the syndrome are (0,1,1), which

has prior probability 0.1×0.92 = 0.081, and (1,0,0), which has prior probability

0.9×0.12 = 0.009. Recall that MWPM decoding uses a weights vector w ∈ R3 and
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finds a correction c ∈ F3
2 satisfying Hc = s of minimal weight ∑i w[i]c[i]. Therefore,

it is important that the edge weights w[i] = log((1−p[i])/p[i]) are indeed negative

here, as this leads the decoder to predict the more probable (albeit higher hamming

weight) c = (0,1,1) instead of the incorrect c = (1,0,0).

We now show how negative edge weights can be handled for the MWPM

decoding problem for some check matrix H ∈ Fn×m
2 with weights vector w ∈ Rm

and an error e ∈ Fm
2 with syndrome s = He ∈ Fn

2. Even though sparse blossom only

handles non-negative edge weights, we can still perform MWPM decoding when

there are negative edge weights using the following procedure, which uses sparse

blossom as a subroutine:

1. Define b ∈ Fm
2 such that b[i] = 1 if w[i]< 0 and b[i] = 0 otherwise.

2. From b, define adjusted edge weights v ∈ Rm where v[i] := (1−2b[i])w[i], as

well as the adjusted syndrome s′ = s+Hb.

3. Use sparse blossom to find a correction c′ satisfying Hc′ = s′ of minimal

adjusted weight ∑i v[i]c′[i]. Note that the definition of v guarantees that every

element v[i] is non-negative.

4. Return the correction c := c′+b, which is guaranteed to satisfy Hc = s with

minimal total weight ∑i w[i]c[i].

We can verify the correctness of this procedure as follows. Firstly, note that c′

satisfies Hc′ = s′ if and only if c satisfies Hc = s. Secondly, note that

∑
i

w[i]c[i] = ∑
i
(w[i]c′[i]+w[i]b[i]−2w[i]b[i]c′[i]) = ∑

i
v[i]c′[i]+∑

i
w[i]b[i].

(B.11)

Therefore, if we find a c′ of minimal adjusted weight ∑i v[i]c′[i] satisfying Hc′ = s′, it

is guaranteed that the correction c := c′+b has minimal weight ∑i w[i]c[i] satisfying

Hc = s. Intuitively, wherever we have an error mechanism with high error probability

(> 50%), we are re-framing the decoding problem to instead predict if the error

mechanism didn’t occur. The handling of negative edge weights was also discussed
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in [107], as well as in Corollary 12.12 of [132], where what Korte et al. refer to as a

minimum-weight T -join is equivalent to what we call a MWEM.



B.5. Handling negative edge weights 205

Blossom concepts (multiple tree approach, ap-
plied to Ḡ[D])

Sparse blossom concepts

Dual variable yu (for a node u∈D) or yS (for a set
of nodes S⊆D of odd cardinality at least three)

Radius yR of a graph fill region R, an exploratory
region containing nodes and edges in the match-
ing graph including an odd number of detection
events.

A tight edge (u,v) between two nodes u and v inD
that is in the matching or belongs to an alternating
tree or a blossom cycle. Since (u,v) is an edge in
the path graph, its weight is the length of a shortest
path between the two detection events u and v
in the matching graph G (found using a Dijkstra
search when the path graph was constructed). It is
tight since the dual variables associated with u and
v result in zero slack as defined in Equation (B.4).

A compressed edge (u,v) associated with a re-
gion edge, belonging to a match, alternating tree
or blossom cycle. The compressed edge (u,v)
represents a shortest path between two detection
events u and v in the matching graph G. Associ-
ated with (u,v) is the set of logical observables
l(u,v) flipped by flipping edges in G along the cor-
responding path between u and v. The two regions
in the corresponding region edge are touching (the
edge is tight).

An edge (u,v) between two nodes u and v in D
that is not tight. Its weight is the length of the
shortest path between u and v in the matching
graph G, found using a Dijkstra search when con-
structing the path graph. For typical QEC prob-
lems, the vast majority of edges in Ḡ[D] never
become tight, but for standard blossom they still
must be explicitly constructed using a Dijkstra
search.

There is no analogous data structure for this edge
in sparse blossom. The shortest path between
u and v is not currently fully explored by graph
fill regions. This means that either the path has
not yet been discovered by sparse blossom (and
may never be), or perhaps it had previously been
discovered (belonging to a region edge) but at
least one of the regions owning u or v since shrunk
(e.g. it was matched and then became a shrinking
region in an alternating tree).

In the dual update stage, update each dual vari-
able yu of an outer node with yu := yu + δ and
update each dual variable yu of an inner node with
yu := yu− δ . The variable δ ∈ R≥0 is set to the
maximum value such that the dual variables re-
main a feasible solution to the dual problem.

As time ∆t passes, each growing region R ex-
plores the graph and its radius yR increases by ∆t
and each shrinking region R shrinks in the graph
and its radius yR decreases by ∆t. Eventually at
∆t = δ a collision or implosion occurs (one of
the matcher events in Figure 2.2), which must be
handled by the matcher.

An edge (u,v) between a node u in an alternating
tree T and a node v in another alternating tree
T ′ becomes tight after a dual update. The path
between the root of T and the root of T ′ is aug-
mented and all nodes in the two trees become
matches.

A growing region R of an alternating tree T col-
lides with a growing region R′ of another alter-
nating tree T ′. The collision edge (R,R′) is con-
structed from local information at the point of
collision. R is matched to R′ with the collision
edge (R,R′) as a match edge. All other regions in
the trees also become matched. All regions in the
two trees become frozen.

An edge (u,v) between two outer nodes u and v
in the same tree T becomes tight after a dual up-
date. This forms an odd-length cycle in T which
becomes a blossom, which itself becomes an outer
node in T .

Two growing regions R and R′ from the same al-
ternating tree T collide. The discovered collision
edge (R,R′) as well as the regions and tree-edges
along the path between R and R′ in T become a
blossom cycle in a newly formed blossom. The
blossom starts growing, and is now a growing re-
gion in T .

Table B.1: The correspondence between concepts in the standard blossom algorithm and
concepts in sparse blossom. For the standard blossom algorithm we assume a
“multiple tree with fixed δ” approach is used, and further we assume that the
algorithm is applied to the path graph Ḡ[D] = (D, Ē).



Appendix C

Belief propagation review

C.1 Belief propagation algorithm
The belief propagation (BP) algorithm (also known as sum-product algorithm) has

been shown to be effective at decoding classical LDPC codes [144, 143]. It has

a running time that is linear in the block length of the code. In this section, we

will review BP for syndrome decoding of a binary r×n parity check matrix H. We

assume we have measured a syndrome s ∈ Fr
2, and the role of the decoder is to infer

a likely error e, which must satisfy He = s. Note that here H could correspond

to the parity check matrix of a binary linear code, or to a detector check matrix

(Section 1.4.2).

BP is a message passing algorithm, in which messages are passed along the

edges of a Tanner graph. The Tanner graph is a graphical model describing a

factorisation of the joint probability distribution of the error e and syndrome vector s.

The factorised joint probability distribution P(e,s) is

P(e,s) = P(e)1[s = He]

= ∏
i

P(ei)∏
j
1[s j = ∑

a∈∂ j
ea]

(C.1)

where P(e) is the prior probability distribution over the noise vector (i.e. P(ei) = p

for a binary symmetric channel with a probability p of error) and ∂ j ⊆ {1,2, . . . ,n}
denotes the indices of the variables involved in the jth parity check in H. The Tanner

graph T (H) of Equation (C.1) has a factor node f j for each parity check and a



C.1. Belief propagation algorithm 207

variable node vi corresponding to the random variable (error mechanism) associated

with each element ei of e. There is an edge between f j and vi in the factor graph if

variable i is involved in parity check j.

The problem BP approximately solves is the bitwise decoding problem of

finding the marginal posterior probabilities of each bit, P(ei = 1|s). BP solves the

bitwise decoding problem exactly on tree graphs, but is not exact on graphs that

contain loops. While Tanner graphs of classical and quantum codes generally do

contain loops, BP can often still perform well in practice provided the girth of the

graph is sufficiently large.

When implementing BP, we can represent each binary random variable U

using a log-likelihood ratio (LLR) defined as L(U) = log(P(U = 0)/P(U = 1)). BP

involves repeating multiple iterations, where each iteration consists of a “check-to-

variable” step and a “variable-to-check” step. In the check-to-variable step, which

iterates over the rows of H, each parity check factor f j sends a message Q f j→vi to its

adjacent variable nodes {vi : i ∈ ∂ j}:

Q f j→vi := (−1)s j2tanh−1

(
∏

i′∈∂ j\i
tanh

(
Qvi′→ f j/2

))
(C.2)

where each Qvi→ f j is initialised before the first iteration to the LLR of the prior of

variable vi, which is L(vi) = log((1− p)/p) for the binary symmetric channel with

bit-flip probability p.

In the vertical step, which iterates over the columns of H, each variable node vi

sends a message Qvi→ f j to its adjacent factor nodes { f j : j ∈ ∂i}:

Qvi→ f j := L(vi)+ ∑
j′∈∂ i\ j

Q f j′→vi. (C.3)

We can also obtain an estimate Qvi of the LLR of the posterior of each variable vi at

each step:

Qvi := L(vi)+ ∑
j∈∂ i

Q f j→vi. (C.4)

These estimates of the posteriors of each variable are also called the soft decisions.
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From the soft decisions we then obtain hard decisions c∈ Fn
2, where ci := 0 if Qvi > 0

and ci := 1 otherwise. If c is a valid correction satisfying Hc = s then BP stops

and returns c as a correction. If Hc ̸= s then BP instead continues and runs the

next iteration of the check-to-variable and variable-to-check steps. If BP reaches

a maximum number of iterations without finding a valid correction then it instead

returns a heralded failure. There are therefore two possible failure mechanisms

from BP: it either returns a valid correction that removes the syndrome but leaves

a residual error e+ c corresponding to a logical failure, or it fails to find a valid

solution, resulting in a heralded failure.

C.2 The tanh update

The update rules in Equation (C.2) and Equation (C.3) are called the “tanh rule”.

The tanh update rule involves expensive hyperbolic tangent computations and has

numerical instability issues, which we will review in this section. We will then

provide alternative update rules in the sections that follow which remedy these issues.

We refer the reader to Ref. [51] for more details.

The log-likelihood ratio L(U) of a binary random variable U is defined as

L(U) = log
(

P(U = 0)
P(U = 1)

)
(C.5)

where here the natural logarithm is used. It follows that P(U = 0) = eL(U)

1+eL(U) and

P(U = 1) = 1
1+eL(U) . In this representation, the sum (modulo 2) of two independent

binary random variables U and V is given by

L(U⊕V ) := log
(

P((U⊕V ) = 0)
P((U⊕V ) = 1)

)
= log

(
P(U = 0)P(V = 0)+P(U = 1)P(V = 1)
P(U = 0)P(V = 1)+P(U = 1)P(V = 0)

)
= log

(
eL(U)+L(V )+1
eL(U)+ eL(V )

)

= 2tanh−1
(

tanh
(

L(U)

2

)
tanh

(
L(V )

2

))
. (C.6)
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The identity in Equation (C.6) is the origin of the “tanh rule” check-to-variable update

rule for implementing BP using LLRs (see Equation (C.2)). However, using the tanh

rule directly in an implementation of BP can lead to at least two problems. Firstly,

once the LLR messages become sufficiently large, then a direct implementation of

the check-to-variable tanh rule updates as given in Equation (C.2) using floating point

arithmetic is numerically unstable. Secondly, the hyperbolic tangent computations

can be too expensive for some hardware implementations.

The numerical instability of the tanh rule can be understood by considering the

simpler problem of evaluating

f (x) := tanh−1(tanh(x)) = x (C.7)

using floating point arithmetic. Consider the regime x≫ 0 where tanh(x)≈ 1. In this

regime, the round-off error when evaluating tanh(x) using IEEE double precision is

approximately constant and equal to ∂tanh(x) ≈ 2−54. This results in an error in f (x)

of

∂ f (x) ≈
d f (x)

d tanh(x)
∂tanh(x) (C.8)

≈ e2x

4
∂tanh(x) ≈

e2x

256 . (C.9)

Since tanh and tanh−1 are both antisymmetric, the same holds for x≪ 0, i.e. the

numerical error scales exponentially in |x|, as ∂ f (x) ≈ e2|x|/256, as also shown empir-

ically in Fig. C.1. One approach to handle these underflows is to cap the magnitude

of the log-likelihood ratios when evaluating the check-to-variable messages. Alter-

natively, Equation (C.2) can be implemented exactly using the Jacobian approach,

outlined in Appendix C.2.1, which does not suffer from these numerical stability

issues.

However, the Jacobian approach requires evaluating logarithms and exponentials

and, as with the tanh rule, is not so amenable to fast implementations in hardware.

The min-sum update rule is an approximation of the tanh rule which avoids its
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Figure C.1: The numerical error caused by underflow when evaluating tanh−1(tanh(x)).

numerical instability issues as well as requiring only real additions, simplifying its

implementation. We review the min-sum update rule in Appendix C.2.2

C.2.1 The Jacobian approach

The check-to-variable tanh update rule of Equation (C.2) can be rewritten in a form

that does not suffer from numerical underflow issues. To derive this alternative

update rule [51, 76], first notice that

ea + eb = ea(1+ eb−a)

= ea+log(1+eb−a)

= emax(a,b)+log(1+e−|a−b|) (C.10)

from which we see that we can rewrite Equation (C.6) as

L(U⊕V ) = log

(
eL(U)+L(V )+1
eL(U)+ eL(V )

)
= L(V )+max(L(U),−L(V ))−max(L(U),L(V ))

+ log
(

1+ e−|a+b|
)
− log

(
1+ e−|a−b|

)
= sign(L(U))sign(L(V ))min(|L(U)|, |L(V )|)

+ log
(

1+ e−|a+b|
)
− log

(
1+ e−|a−b|

)
. (C.11)
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In order to implement the log-likelihood check-to-variable update rule using

Equation (C.11) [51], we first assume that the factor f j is connected to k variable

nodes on the factor graph labelled v1,v2, . . . ,vk, (i.e. we assume ∂ j = {1,2, . . . ,k}).
We now define f1 = v1, f2 = f1⊕ v2, . . . , fk = fk−1⊕ vk and gk = vk,gk−1 = gk⊕
vk−1, . . . ,g1 = g2⊕ v1, and then calculate all L( fi) and L(gi) using Equation (C.11)

recursively (e.g. L( fi) = L( fi−1⊕vi) and L(gi) = L(gi+1⊕vi)). Now since v1⊕v2⊕
. . .⊕ vk = z j, we can write vi = z j⊕ fi−1⊕ gi+1, from which we see that L(vi) =

(−1)z jL( fi−1⊕gi+1). Therefore, the horizontal messages are computed using this

‘Jacobian rule’ for 1 < i < k as

Q f j→vi = (−1)z jL( fi−1⊕gi+1), (C.12)

and the remaining messages are calculated as Q f j→v0 = (−1)z jg1 and Q f j→vk =

(−1)z j fk−1.

C.2.2 The min-sum update

While the tanh update rule and Jacobian update rule can both be implemented effi-

ciently in a time linear in the blocklength, for some practical applications it becomes

necessary to use an even simpler decoder, which avoids the costly evaluation of the

hyperbolic tangent. A widely used update rule is the min-sum rule, which approxi-

mates the tanh rule while being significantly simpler to implement in hardware [79,

51]. From Equation (C.11) we see that |L(U ⊕V )| ≤ min(|L(U)|, |L(V )|), which

leads us to the min-sum check-to-variable update rule

Q f j→vi = (−1)z jα min
i′∈∂ j\i

(Qvi′→ f j) ∏
i′∈∂ j\i

sign(Qvi′→ f j) (C.13)

where here 0≤ α ≤ 1 is a constant chosen to better approximate the tanh rule. By

setting α = 2−a +2−b for some a,b ∈ {1,2,3}, multiplications can be replaced with

bit shifts and additions, which simplifies FPGA implementations [196].
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Figure C.2: The marginals output by BP for an L= 15 toric code for five different syndromes
(and with a prior of 0.05 for each variable node in the Tanner graph). We
consider the problem of decoding Z errors using X stabiliser measurements,
and a qubit is associated with each edge and an X stabiliser with each vertex
of the lattice. For each syndrome we only show a 4× 7 region of the lattice.
A -1 X stabiliser measurement is displayed as a green cross, and the colour of
each edge shows the marginal probability output by BP (according to the colour
bar on the right). The title for each example syndrome shows the number of
iterations used by BP, as well as a tick if BP converged or a cross if it did not
converge. We use a maximum number of iterations of 100.

C.3 Locality of BP
In Figure C.2 we consider the simple problem of decoding a single vertical string-like

error in the 2D toric code using BP. In other words, the syndrome is a pair of -1 X

stabiliser measurements (detection events), separated by some number l of vertical

edges in a vertical column of the lattice. We have deliberately set up the problem in

such a way that there is only a single minimum-weight solution, to reduce the impact

of “split-beliefs” due to degenerate solutions in quantum codes.

We find that, for l ≤ 3, BP converges quickly, as shown by the marginals in the

left three examples in Figure C.2. However, when the defects are separated by 4 or

more edges (e.g. l = 4 and l = 5 for the right two examples in Figure C.2), BP instead

fails to converge. This suggests that information is only propagated effectively by

BP within some local region of the lattice. Since BP is exact on tree graphs, and split

beliefs are not a problem for this example, we expect that this issue arises due to loops

in the Tanner graph. For the 2D toric code, the shortest loop in the Tanner graph for Z

errors (e.g. considering only the X check matrix) has length 8; for each length-4 loop

around a face of the lattice, there is a corresponding length-8 loop in the Tanner graph.

Similarly, the defects separated by l = 4 edges in the lattice are in fact also separated

by 8 edges in the Tanner graph. This suggests that the ability of BP to effectively



C.3. Locality of BP 213

propagate information significantly degrades beyond a radius in the Tanner graph

that corresponds to its girth (some information propagates, but the strength of the

signal is reduced). We refer to this as the problem of bounded information spread in

BP. Note that we are not claiming that no information propagates beyond the radius

equal to the girth. Indeed, we verified that there is still enough information in the

BP marginals for l = 4 and l = 5 for OSD to find the minimum-weight correction in

Figure C.2, since the marginal probabilities are slightly larger along the minimum-

weight path (albeit much less than 0.5). However, in a more realistic setting in which

more defects are present, we might expect the messages propagated from nearby

defects (within the radius equal to the girth) to overwhelm or ‘hide’ the much weaker

messages passed from further away in the Tanner graph. Therefore, there may be

limited benefit in increasing the maximum number of iterations of BP with system

size for codes with Tanner graphs that have constant girth, and so it is reasonable to

leave this parameter as a constant (30 in our case). Note that the full Tanner graph of

a quantum code or stabiliser circuit in general has girth 4, in contrast to the Tanner

graph of either the X check matrix or Z check matrix alone when decoding X and Z

errors independently, as we have done here, which potentially worsens the problem

of bounded information spread in BP. This is due to the commutativity condition

of quantum codes. For example, for the full Tanner graph of a CSS quantum code,

each X stabiliser must overlap on an even number of qubits with each Z stabiliser.

Consider an X stabiliser SX and Z stabiliser SZ which overlap on two qubits i and j.

In the full Tanner graph there will be variable nodes corresponding to Y errors Yi and

Y j. As a result there will be a loop (containing four edges) in the full Tanner graph

that visits nodes in the order (SX ,Yi,SZ,Yj,SX).



Appendix D

Subsystem codes

D.1 Methods for numerical simulations

D.1.1 Matching graph edge weights

In order to decode the subsystem surface codes using minimum-weight perfect

matching, we construct a matching graph, where each individual fault that can

occur flips an edge in the matching graph [64, 36]. We assign each edge a weight

w = log((1− p)/p), where p is the total probability that any individual fault will

result in the edge being flipped [64, 202, 119].

In this section we will explain how we constructed the matching graph and

calculated the edge weights, however we note that this work was conducted before

the introduction of the Stim software package [91], which automates the construction

5*
2

3*

0
4*

1

7*

6*

Figure D.1: The different types of edges in the 3D matching graph of the subsystem surface
code for X-type checks only, when all X-type gauge operators are fixed. Each
unique edge type is labelled with a number. If an asterisk is present in the label,
the edge is from time step t to t + 1, otherwise the edge is purely space-like.
The whole X matching graph for a single time step is drawn with grey dashed
lines.
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of the matching graph given a description of the circuit, detectors, logical observables

and noise model.

We will first consider the matching graph obtained by only measuring X-type

check operators and fixing all X-type gauge operators as stabilisers. We will see later

that all other matching graphs for arbitrary homogeneous schedules can be obtained

by merging edges and/or nodes in this matching graph. There are two types of X-type

gauge operators in the subsystem surface code, as shown in Figure 6.2, labelled

by 1 and 3, which we will refer to as T1 and T3, respectively. Every space-like or

diagonal edge is from a T1 to a T3 (or vice versa), and the neighbourhood of every

triangle operator with the same label is identical. All seven types of edges in the

matching graph for X-type checks are shown in Figure D.1. All edges are undirected,

but are denoted by directed arrows in the diagram to remove any ambiguity in the

definition of the diagonal edges. The purely space-like edges are labelled 0, 1 and

2, purely time-like errors are labelled 6 and 7 and diagonal edges are labelled 3, 4

and 5. Diagonal and time-like errors are drawn from time step t to time step t +1,

whereas space-like edges connect nodes within a single time step. Therefore, each

node in this matching graph has degree 8 (since each node is both the source and

target of a time-like edge).

If an X-type check operators is measured directly after a Z-type check operator

that anti-commutes with it, then this X-type check operator cannot be fixed, and the

matching graph shown in Figure D.1 is not quite valid. However, we can use the

node merging procedure detailed in Section 4.2.1 to give the matching graph the

correct structure. When the X-type check operators within a face of the lattice cannot

be fixed, then the corresponding X-type matching graph nodes from that face (each

node vgi corresponding to a gauge factor gi) are merged into a single node vs. The

edges incident to vs each correspond to an edge incident to a gauge factor vertex vgi .

This process can result in more than one edge (a multi-edge) between the same pair

of nodes (such as for time-like edges in homogeneous (ZX)r schedules). When this

happens, we replace the multi-edge with a single edge, and assign it a flip probability

equal to the probability that an odd number of edges in the multi-edge would flip.
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Edge type GX
1 GZ

1 GZ
2 PX MX

0 2 2rZ 0 0 0
1 2 2rZ 2rZ 0 0
2 2 2rZ 2rZ 0 0
3 2 0 0 0 0
4 2 0 0 0 0
5 2 0 0 0 0
6 3 0 0 1 1
7 3 0 0 1 1

Table D.1: Number of single faults that can cause each type of edge to flip in the 3D matching
graph for X-type check operators. Each GX

1 or GZ
1 fault is a single Pauli error

arising from a CNOT gate in the measurement circuit for an X-type or Z-type
gauge operator respectively. Each GZ

2 fault is a pair of Pauli errors arising from a
single CNOT gate in the measurement circuit for a Z-type gauge operator. PX and
MX are state preparation and measurement errors in the X-type check operator
measurement schedule, respectively. rZ is the number of rounds of Z-type check
operator measurements that have occurred since the last X-type check operator
measurement. For example, rZ = 1 always for (ZX)r schedules, and rZ = 2
always for (ZZX)r schedules. The edge types are shown in Figure D.1. Faults
for the Z matching graph can be found by exchanging Z and X in the table.

In order to calculate the probability p that each edge flips (both for edge weights

and for simulations), we count the number of single faults (of each type) that can lead

to each type of edge flipping. These counts are given in Table D.1 for the X matching

graph (for X-type check operators). The operators GX
1 and GZ

1 are Pauli errors

from CNOT gates in the X or Z measurement schedule respectively, corresponding

to either a XI, IX or XX error acting after the gate. In the standard depolarising

model, GX
1 or GZ

1 errors occur with probability 4p/15. See Table D.2 for the gate

error probabilities under the independent noise model we use. GZ
2 errors correspond

to a pair of GZ
1 errors from the same CNOT gate in the Z measurement circuit that

both cause the same edge to flip. For example, both XI and XX errors on a CNOT

gate may cause the same edge to flip, and since these errors are mutually exclusive

on the same gate, the chance of either of these errors occurring is exactly twice the

probability that one of them occurs. The number of GZ
1 or GZ

2 errors that can cause

an edge to flip depends on rZ , the number of Z check operator measurements that

have occurred since the most recent prior X check operator measurement. We can

recover the matching graph for the standard (ZX)r schedule used in Ref. [36] by
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setting rZ = 1 and merging all nodes within each face (up to small differences in the

error model, shown in Table D.2).

D.1.2 Noise models

We consider two different types of noise models: a circuit-level depolarising noise

model, and a circuit-level independent noise model. The depolarising noise model is

widely used in the literature, and is useful for comparing to previous work. Later we

will consider biased noise, for which we use the independent noise model.

The circuit-level depolarising noise model is the same as that used in Refs. [48,

119], and is parameterised by a single variable p. Ancilla state preparation and mea-

surement errors each occur with probability 2p/3. With probability p, each CNOT

gate is followed by a two-qubit Pauli error drawn uniformly from {I,X ,Y,Z}⊗2\I⊗I.

A single qubit Pauli error drawn uniformly from {X ,Y,Z} occurs with probability p

after each idle single qubit gate location. Note that many of our syndrome extraction

circuits are fully parallelised, and do not contain single qubit gates or idle locations.

In our circuit-level independent noise model, Z-type errors and X-type errors

are independent. For a given error probability parameterised by p0, we choose a

high-rate error probability for Z-type errors pZ = p0η/(η +1) and the low-rate error

probability pX = p0/(η +1) for X-type errors. The bias η = pZ/pX parameterises

the relative strengths of Z-type and X-type errors. The total probability of any error

is:

ptot = 1− (1− pX)(1− pZ)

= p0−
p2

0η

(η +1)2 .
(D.1)

Each with probability pZ , a CNOT gate is followed by an error in {IZ,ZI,ZZ}, cho-

sen uniformly at random, an X-type ancilla is prepared or measured in an orthogonal

state, and a single qubit idle for one time step undergoes a Z error. Similarly, each

with probability pX , a CNOT gate is followed by an error randomly chosen from

{IX ,XI,XX}, a Z-type ancilla is prepared or measured in an orthogonal state, and a

single qubit idle for one time step undergoes an X error. Biased noise models are
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Error type GX
1 GX

2 GZ
1 GZ

2 PX MX PZ MZ

Depolarising 4
15 p 8

15 p 4
15 p 8

15 p 2
3 p 2

3 p 2
3 p 2

3 p
Independent 1

3 pX
2
3 pX

1
3 pZ

2
3 pZ pX pX pZ pZ

Ref. [36] 1
4 p 1

2 p 1
4 p 1

2 p p p p p

Table D.2: The probability of a fault occurring for each type of circuit element under the
two error models considered in this work, as well as for the depolarising error
model used in Ref. [36] for reference.

common in many physical realisations of quantum computers, and bias-preserving

CNOT gates can be realised using stabilized cat qubits [165]. We note that our

techniques significantly improve performance even for small finite bias (η ≤ 10),

which may be achievable even with CNOT gates that do not fully preserve bias, as is

the case in many architectures [7, 99].

The probability of each different type of circuit element undergoing a fault for

our two error models (as well as the error model in Ref. [36] for comparison) is

given in Table D.2.

D.2 Broader applications of our techniques

D.2.1 Inhomogeneous schedules

We have so far only considered homogeneous schedules, however sometimes it may

be advantageous to use schedules that are inhomogeneous, where check operators in

different faces of the lattice are given different schedules.

As an example, consider two different unparallelised ZX4 schedules, which

we call L0 and L1, obtained by omitting three quarters of the Z check operator

measurements in the ZX schedule, and such that L1 is identical to L0 other than a

lag of 4 check operator measurements. A section of 8 rounds of X check operator

measurements for these schedules looks like
(ZX)8 Z X Z X Z X Z X Z X Z X Z X Z X

L0 X X X Z X X X X Z X

L1 X Z X X X X Z X X X
where each column corresponds to a measurement round of either X-type or Z-type

check operators. We can assign either the L0 or L1 schedule to each face of the
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Figure D.2: Matching graphs (X-type) for the L = 5 subsystem surface code with triangle
operators fixed in all rows (left), odd rows (middle) and even rows (right). Filled
and hollow circles correspond to stabilisers and boundary nodes respectively.

planar subsystem surface code independently, since each schedule is a subset of the

ZX schedule, for which we have a consistent measurement circuit for every face. Let

GX
0 be the set of X triangle operators in faces assigned the L0 schedule, and let GX

1

be the set of X triangle operators in faces assigned the L1 schedule. Note that in each

round of X check operator measurements, either GX
0 , GX

1 or GX
0 ∪GX

1 may be fixed.

Can an inhomogeneous schedule be used to increase the Z distance of a sub-

system code? For the planar subsystem surface code, the only Z logical is a Pauli Z

operator applied to each qubit in a column of the lattice, corresponding to a path in

the matching graph joining the north and south boundaries. Consider the inhomoge-

neous schedule where we alternate between using the L0 and L1 schedule in each row

of the lattice: we assign the schedule L(i mod 2) to faces in the ith row of the lattice.

For a planar subsystem surface code with an odd distance, in each round of X check

operator measurements at least half of the gauge operators can be fixed: we can fix

gauge operators in all rows, then in even rows, then all rows again, then odd rows,

and so on in a cycle. In Figure D.2 we plot space-like slices (single time steps) of the

3D matching graph for when all rows, odd rows and even rows of gauge operators

are fixed. Within each of these slices of the 3D matching graph, the shortest path

between the north and south boundary is larger than the Z distance of the subsystem

surface code itself. We expect that the shortest path between the north and south

boundaries of the overall 3D lattice is also larger, leading to an increased Z distance

of dZ = ⌊3(L−1)/2⌋+1, but do not prove this here. The X distance cannot increase
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time

merge

split

Figure D.3: A slice of the matching graph for lattice surgery, which can be interpreted as
switching between different gauge fixes of a subsystem code. Left: the three
stages of lattice surgery are shown for a distance 3 rotated surface code. Red
(blue) squares and semi-circles denote X (Z) stabilisers, with data qubits at
their corners. Right: a slice of the matching graph for the X stabilisers at the
boundaries of the two codes where the merge takes place (denoted with red
borders in the left diagram). Stabiliser measurements are repeated three times
for each stage of lattice surgery, with the generalised difference syndrome used
to connect the stabiliser with its gauge factors.

in this schedule, since none of the Z gauge operators can be fixed.

Note that homogeneous schedules cannot increase the Z or X distance of the

code, since there are always time steps where all X gauge operators are measured

simultaneously, as well as time steps where all Z gauge operators are measured

simultaneously. Measuring all X gauge operators removes all Z gauge operators

from the stabiliser group, leaving time steps where none of the Z gauge operators

can be fixed (and therefore not increasing the X distance), and similarly there are

also time steps where no X gauge operators can be fixed.

D.2.2 Lattice surgery and code deformation

It was shown in Ref. [200] that the techniques of lattice surgery [117] and code

deformation [22] can be interpreted as switching between different gauge fixes of a

subsystem code. We can use this perspective to apply some of the techniques in this

work to lattice surgery and code deformation. As an example, consider performing

lattice surgery on two rotated surface code patches. During the merging step of

lattice surgery, the weight two X stabilisers on the opposing boundaries of the two

patches are merged into weight 4 square stabilisers. These weight four stabilisers

can be interpreted as stabilisers of a subsystem code, with the weight two checks that
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Figure D.4: Gauge fixings of a square (left) and hexagonal (right) face of a subsystem toric
and {6,4} subsystem hyperbolic code, respectively. Yellow filled circles are
data qubits, and X and Z stabilisers are denoted by red and blue filled polygons,
respectively.

they are merged from being gauge operators of the subsystem code. This procedure

is shown for distance 3 codes in the left side of Figure D.3, for which a single pair

of weight two X checks (with red borders) is merged into a single square stabiliser.

Since each pair of these weight two boundary X checks is a pair of gauge factors of

the corresponding weight 4 stabiliser, we can use the merging and splitting technique

given in Section 4.2.1 to construct the matching graph and decode them. This is

shown on the right side of Figure D.3, where three repetitions are used for each

of the three stages of lattice surgery. With this technique, each of the consecutive

stages of lattice surgery can be connected using the generalised difference syndrome,

leading to a single matching graph that can be used for error correction with the

overlapping recovery method of Ref. [64], and with information from the weight

two boundary X checks used directly where possible. The same ideas can also be

readily applied to code deformation, which can also be viewed as gauge fixing of

a subsystem code [200], and involves merging surface code patches in a similar

manner [22].

D.2.3 Subspace codes from gauge fixing

Another use of gauge fixing is to derive families of subspace codes from subsystem

surface, toric and hyperbolic codes, by choosing different abelian subgroups of

the gauge group G to be the stabiliser group S, permanently fixing some gauge

operators as stabilisers. For example, by fixing all the X-type triangle operators in

the subsystem toric code as stabilisers we obtain the hexagonal toric code, and by

fixing X-type triangle operators in the {8,4} subsystem hyperbolic code as stabilisers
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we obtain the {12,3} hyperbolic code.

By fixing different subsets of the triangle operators in the subsystem toric code,

we can interpolate between the hexagonal toric code and its dual. To achieve this

we define hexagonal surface density codes, inspired by the surface-density and

Shor-density codes of Ref. [138]. To construct a (subspace) hexagonal surface

density code with parameter q f from a subsystem toric code, we fix the X-type gauge

operators in each face with probability q f , else we fix the Z-type gauge operators.

When q f = 1 we obtain the hexagonal surface code, and at q f = 0 we construct its

dual, but setting 0 < q f < 1 allows us to interpolate between these two extremes.

With q f = 0.5, there are both weight 6 and weight 3 X-type and Z-type stabilisers,

and both X-type and Z-type stabilisers have average weight 4. The same idea can

be directly applied to subsystem hyperbolic codes: applied to the {8,4} subsystem

hyperbolic code, we can interpolate between the {12,3} hyperbolic code and its

dual, for example.

For the subsystem hyperbolic codes, we can choose to fix only a subset of the

triangle operators within each face. Consider the code obtained by fixing a single

Z triangle operator (chosen at random) within each face of the {6,4} subsystem

hyperbolic code, as well as the single X triangle operator that commutes with it (an

example of this for a single face is shown in Figure D.4). For both the X and Z

stabilisers, half have weight 6, and the other half have weight 3. This hyperbolic

code, derived from an irregular lattice, has average stabiliser weight 4.5 for both X

and Z stabilisers, an improvement on the weight 5 stabilisers in the {5,5} hyperbolic

code, which has the smallest stabiliser weight of hyperbolic codes derived from

self-dual regular lattices.

We can also use our choice of abelian subgroup of the gauge group to tailor

codes to spatially inhomogeneous noise models, where the noise is biased towards

Z-type errors in some regions of the lattice, and biased towards X-type errors in other

regions. We can fix X-type gauge operators in regions where there is a Z bias, locally

reducing the vertex degree and stabiliser weight in the X-type matching graph, and

likewise we can fix Z-type gauge operators where there is X bias. This method of
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tailoring a code to spatially inhomogeneous noise models has been demonstrated

in Ref. [138] using gauge fixes of the Bacon-Shor code, and the same ideas can be

readily applied here to gauge fixes of subsystem surface, toric and hyperbolic codes.

D.3 Tessellations of closed surfaces
We will now give some additional background on tessellations of closed Euclidean

and hyperbolic surfaces, since these tessellations are used to construct the subsystem

hyperbolic and semi-hyperbolic codes in this work. An {r,s} tessellation subdivides

a surface into disjoint faces, where each face is an r-gon, and s faces meet at each

vertex. Using Wythoff’s kaleidoscopic construction, an {r,s}-tessellation can be

related to a symmetry group Gr,s of distance-preserving maps (isometries). Gr,s is

generated by reflections on the edges of one of the 2r right triangles induced by the

symmetry axes of a face (r-gon) of the tessellation. Each triangle has internal angles

π/2, π/r and π/s, and will from now on be referred to as a fundamental triangle.

In Figure D.5(a) and Figure D.6(a) we draw a fundamental triangle of the {4,4}
and {8,4} tessellations respectfully, with sides labelled by the reflections a, b and

c which act on them, and which generate Gr,s. Note that the isometries a2, b2, c2,

(ac)2, (ab)r and (ca)s are equivalent to doing nothing and, since these are the only

relations satisfied by Gr,s, the group has presentation

Gr,s = ⟨a,b,c|a2 = b2 = c2 = (ac)2 = (ab)r = (bc)s = e⟩ (D.2)

where e is the identity element. By fixing one fundamental triangle as a fundamental

domain of Gr,s, every other fundamental triangle can be labelled uniquely by an

element of Gr,s.

We will be constructing codes derived from {r,s}-tessellations of closed Eu-

clidean and hyperbolic surfaces. The process of defining a closed surface is called

compactification. A regular tessellation of a closed surface can be defined by a

quotient group GH
r,s := Gr,s/H, where H is a finite index, normal subgroup of Gr,s

with no fixed points (see [44] for more details). Note that the generators of H become

relations in the presentation of Gr,s/H, so compactification can be interpreted as
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adding additional relations into the presentation of the symmetry group of the tessel-

lation of the hyperbolic plane. An important subgroup of Gr,s is the proper symmetry

group G+
r,s generated by double reflections, or rotations, ρ = ab and σ = bc. This

group has presentation

G+
r,s = ⟨ρ,σ |(ρσ)2 = ρ

r = σ
s = e⟩ (D.3)

where e is again the identity element. Regular tessellations of orientable closed

surfaces can be constructed from a quotient group GH+
r,s := G+

r,s/H, where H is a

normal subgroup of G+
r,s.

D.4 Symmetry groups that admit subsystem

hyperbolic codes

In Section 6.4 we introduced subsystem hyperbolic codes, which are derived from

{2c,4} tessellations of hyperbolic surfaces, where c ∈ Z+ and c > 2. In this section

we will show how a subsystem hyperbolic code can be described in terms of the

symmetry group of the tessellation from which it is derived. By doing so we will

show what conditions must be satisfied by the compactification procedure for a

{2c,4} tessellation of a closed hyperbolic surface to be used for constructing a

subsystem hyperbolic code.

Let us first consider some properties of the subsystem toric code in group

theoretic terms. These properties will later be used as requirements for the subsystem

hyperbolic codes we define. First, note that each triangle operator (gauge generator)

of the subsystem toric code can be identified by a pair of fundamental triangles

related by a b reflection in G4,4. In other words, each triangle operator is identified

by a left coset of the subgroup ⟨b⟩ given by g⟨b⟩ := {g,gb} for some g ∈ GH
4,4,

and thus each element g ∈ GH
4,4 identifies a unique triangle operator (but not vice

versa). For now we will consider only the Pauli type of each triangle operator, which

can be either Z-type (blue) or X-type (red). We will call an assignment of a Pauli

type to each triangle operator a colouring. For the subsystem toric code, note that
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blue triangle operators are always mapped to red triangle operators by either an a

or c reflection, and vice versa. We will make this property a requirement of our

subsystem hyperbolic codes, and will call a colouring that satisfies this property a

valid colouring.

Since each triangle operator can be identified by the coset g⟨b⟩ of an element

g ∈ GH
r,s, and after identifying each colour of triangle operator with a different

element of the cyclic group Z2 = Z/2Z, a colouring of the triangle operators can

be achieved by defining an appropriate function f : GH
r,s→ Z2. The constraint that

either a or c reflections map a triangle operator to another of a different type, with

b reflections leaving it invariant, defines the image of the generators and identity

element e of GH
r,s by f to be

f (a) = f (c) = 1,

f (b) = f (e) = 0.
(D.4)

Since we require that, by definition of the code, the action of a reflection a, b or

c should have the same effect on the colour of a triangle operator no matter which

triangle operator we apply it to, this implies that f (gig j) = f (gi)+ f (g j) ∀gi,g j ∈
GH

r,s. This condition implies (from the definition of a homomorphism) that f must

extend to a group homomorphism from GH
r,s to Z2. For each triangle operator to be

assigned a unique colour, we must also have that f (ri) = 0 for each relation ri in the

presentation of GH
r,s. This latter condition is in fact also a necessary and sufficient

condition for the function f to extend to a homomorphism from GH
r,s to Z2 [151].

This constraint f (ri) = 0 holds not just for the {4,4} tiling, but also {r,s} tilings for

which r and s are even, since (ab)r = e and (bc)s = e are relations. The constraints

do not hold if either r or s are odd. However, we also have the constraint f (gi) = 0

on the generators gi of the normal subgroup H defining the compactification (since

these generators are relations in GH
r,s) and, therefore, only a subset of the possible

compactifications of these regular tessellations admit valid colourings.

We must also ensure that each triangle operator in a coloured tessellation

commutes with every stabiliser, and that all stabilisers mutually commute (since by



D.5. Group theoretic condition for consistent scheduling 226

definition S is abelian and the center of G). We will now show that this condition

further restricts us to tessellations where s = 4 faces meet at each vertex. For regular

tessellations of closed Euclidean or hyperbolic surfaces, we are already restricted

to s ≥ 3, and we already require that s be even to ensure a valid colouring. For

all s ∈ {6,8,10, . . .} we see that each triangle operator anti-commutes with the

stabiliser (of the opposite Pauli-type) belonging to the face related to it by a (bc)3

rotation, since it overlaps with this stabiliser on only a single qubit. On the other

hand, for s = 4, it can be directly verified that each triangle operator commutes with

all stabilisers, since each triangle operator overlaps on either zero or two qubits

with stabilisers of the opposite Pauli type. Since stabilisers are products of non-

overlapping triangle operators, all stabilisers must also mutually commute. We are

therefore restricted to tessellations with s = 4 faces meeting at each face and with

r = 2c sides to each face, and for which f (gi) = 0 for each generator gi of the normal

subgroup H defining the compactification.

D.5 Group theoretic condition for consistent

scheduling
In Section 6.3 of the main text, we showed that any translationally invariant schedule

for the subsystem toric code assigns the same schedule to each triangle operator with

the same label, where a label is an assignment of an element of the cyclic group

Z4 to each triangle operator as shown in Figure D.5(b). We will now describe this

labelling of the triangle operators of the subsystem toric code in terms of the proper

symmetry group GH+
r,s of orientation-preserving symmetries of the lattice, generated

by the rotations ρ and σ (shown in Figure D.5(a)). First note that, after choosing

any triangle operator to be the fundamental domain, each triangle operator is now

identified by a unique element in GH+
r,s , and we will denote by Tg the triangle operator

identified by g ∈ GH+
r,s . A labelling of the triangle operators is then defined by a

function h : GH+
r,s → Z4. Note that, for the labelling of the subsystem toric code in

Figure D.5(b), applying either a ρ or σ rotation to any triangle operator adds one

(modulo 4) to the label. Using similar arguments to those given in Appendix D.4
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Figure D.5: An L = 2 subsystem surface code. (a) After associating a triangle operator with
the identity element e, every triangle operator is in one-to-one correspondence
with an element of the proper symmetry group GH+

4,4 of the tessellation. In blue
we have labelled a fundamental triangle with sides a, b and c, as well as the
rotations ρ = ab and σ = bc. (b) Each triangle operator can be labelled with
an element of the cyclic group Z4 using the homomorphism h(ρ) = h(σ) = 1
from GH+

4,4 to Z4.

for valid colourings, we see that the function h must extend to a homomorphism

h : GH+
r,s → Z4 with

h(ρ) = h(σ) = 1. (D.5)

We can generalise a translationally symmetric schedule of the subsystem toric

code to subsystem hyperbolic codes by first labelling the triangle operators of a

subsystem hyperbolic code in such a way that the neighbourhood of each triangle

operator is the same as it would be in the subsystem toric code, and then apply

the same schedule to all triangle operators with the same label in the subsystem

hyperbolic code. The neighbourhood of a triangle operator T is the relative position

and label of the triangle operators that overlap with T on at least one qubit (each of

which we call a neighbour). We see from Figure D.5(b) that each triangle operator

Tg in the subsystem toric code has seven neighbours: Tgσ , Tgσ2 , Tgσ3 , Tgρ , Tgρσ ,

Tgρ−1 and Tgρ−1σ−1 . In the toric code, exactly three of these neighbours overlap on a

vertex of the {4,4} tessellation. To ensure this remains the case for the hyperbolic

tessellations, it is necessary to require that s = 4, which is by definition a property of
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Figure D.6: The {8,4} subsystem hyperbolic code. (a) Each triangle operator can be
uniquely identified with an element of the proper symmetry group GH+

8,4 of
the lattice (after identifying a triangle operator with the identity element e). We
have labelled a fundamental triangle in blue. (b) Each triangle operator can
be labelled with an element of Z4 using the homomorphism h(ρ) = h(σ) = 1
from GH+

8,4 to Z4. The neighbourhood of each triangle operator (the labels and
relative locations of triangle operators it overlaps with) is the same as in the
toric code.

our subsystem hyperbolic codes. Setting s = 4 alone is not sufficient, since we must

now also ensure that the entire neighbourhood (all seven neighbours) of each triangle

operator with a given label in the lattice remains identical to that of a triangle operator

with the same label in the toric code. The relative labels of these seven neighbours is

determined by the homomorphism h : GH+
r,s → Z4 defined in Equation (D.5).

Therefore, a hyperbolic tessellation is schedulable if its proper symmetry group

admits the homomorphism h as defined in Eq. (D.5), which is the case if and only if

h(ri) = 0 for each relation ri in the presentation of GH+
r,s . This condition is met for

subsystem hyperbolic codes derived from the subset of closed {4c,4} tessellations

(where c ∈ Z+), for which the generators gi of the normal subgroup H defining the

compactification satisfies h(gi) = 0. As an example, consider the quotient group for

a distance L toric code which has presentation

GH+
4,4 = ⟨ρ,σ |ρ4 = σ

4 = (ρσ)2 = (ρσ
−1)L = (σ−1

ρ)L = e⟩ (D.6)
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from which it is clear that each relation ri satisfies h(ri) = 0.

For schedulable subsystem hyperbolic codes, we can use the very efficient mea-

surement schedule of Ref. [36] (which is translationally invariant for the subsystem

toric code) for each triangle operator, which requires only four time steps (one time

step is the duration of a CNOT gate) to measure all X and Z check operators. Note

that subsystem hyperbolic codes which do not satisfy these constraints will still admit

a measurement schedule, but such a schedule may be considerably less efficient and

also more difficult to construct.

Given the map m : Z4→ Z2 defined by m(x) = x mod 2 assigning a colour to

a label, we see that f (g) = m(h(g)) ∀g ∈ GH+
r,s , where f is defined in Eq. (D.4),

and hence every schedulable code is colourable (but not vice versa, as exemplified

by the {6,4} tessellation for which ρ6 is a relation yet h(ρ6) ̸= 0).

There is another way of interpreting the scheduling: Consider the graph which

is generated by the rotation subgroup ⟨ρ,σ⟩. this group acts regularly between the

triangles of the subsystem code, so there is a one-to-one map between them. The

labeling is a coloring of the Cayley graph of this group (each vertex of this Cayley

graph corresponds to a triangle). This coloring is achieved by a “covering” of the

cycle graph with 4 vertices (Cayley graph of Z4) since this is clearly 4-colourable.

More generally, we can consider normal subgroups N of the group as long as this

normal subgroup does not contain ρ or σ . The number of colours in this case is the

index of N in G.

The dual semi-hyperbolic tessellations used for constructing the subsystem semi-

hyperbolic codes do not have a group structure, so they cannot be labelled using

the homomorphism of Equation (D.5) alone. However, we now show that, given a

schedulable {4c,4} tessellation, the corresponding dual semi-hyperbolic tessellation

derived from it is also schedulable. Take a schedulable {4c,4} tessellation V , where

we have already labelled each corner in the tessellation with an element of Z/4Z.

Now consider its dual tessellation V ∗, constructed by exchanging vertices and faces

in the Hasse diagram of the tessellation [40]. Each corner in V is identified by a face

and vertex, and so each corner in V is in one to one correspondence with a corner in
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V ∗ (where the face and vertex are exchanged). We give each corner in V ∗ the same

label as the corner in V that it is in one to one correspondence with. This constitutes a

valid labelling of V ∗, since each pair of corners related by ρ (σ ) in V are related by σ

(ρ) in V ∗, and h(ρ) = h(σ) in Equation (D.5). We now construct a semi-hyperbolic

tessellation V ∗l by tiling each face of V ∗ with an l× l square lattice. Note that the

corners of each face in V ∗ are already labelled, so we can label V ∗l just by labelling

the new corners introduced by the l× l square tiling of each face. Corners related

by a σ rotation in V ∗ are still related by a σ rotation in V ∗l . Corners related by a ρ

rotation in V ∗ are now related by a (ρσ−1)l−1ρ translation in V ∗l . However, now

treating h as a function not a homomorphism, note that h(ρ) = h((ρσ−1)l−1ρ), so

the original labels retained from V ∗ remain valid. We can therefore label the new

corners in the square l× l tilings in V ∗l in a way that is consistent with the corners

already labelled. We now take the dual of V ∗l to obtain Vl , preserving the labels of

each corner when taking the dual as before. The tessellation Vl is now used to derive

a subsystem semi-hyperbolic code, and we have demonstrated that Vl is schedulable

if V is schedulable.

D.6 Subsystem semi-hyperbolic and subsystem toric

code comparison

A quantum code derived from a {r,s}-tessellation satisfies [44]

k
n
= 1− 2

s
− 2

r
+

2
n

(D.7)

where n is the number of physical qubits and k is the number of logical qubits.

A semi-hyperbolic code derived from such a code has l2n qubits, where l is the

dimension of the lattice tiling each face in the semi-hyperbolic code. Therefore, the

number of data qubits (excluding ancillas) in a subsystem {8,4}-semi-hyperbolic

code with k logical qubits is 6(k−2)l2. To compare the performance of subsystem

semi-hyperbolic codes with subsystem toric codes, we will compare each semi-

hyperbolic code to multiple independent copies of a toric code with the same rate
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Figure D.7: The subsystem toric code. The black dashed lines are edges of the {4,4}
tessellation from which the subsystem toric code is derived. The edges in
the X-type matching graph are the union of the solid red and green lines, and
vertices in the matching graph are denoted by circles. Each edge in the X-type
matching graph corresponds to a data qubit, and each face corresponds to a
Z-type triangle operator. The solid red lines are the edges of the matching
graph for the standard surface code derived from the same {4,4} tessellation.
Opposite sides are identified.

k/n, such that we can compare the performance keeping k and n fixed. Since the rate

of a subsystem toric code with distance L is 2/(3L2), we compare our subsystem

semi-hyperbolic {8,4} codes with copies of a toric code with distance close to

L = 2l

√
1− 2

k
(D.8)

where k is the number of qubits in the {8,4} semi-hyperbolic code and l is the

dimension of the lattice tiling each face in the semi-hyperbolic code. Note that the

total number of qubits including ancillas (1+4na/3)n is proportional to the number

of data qubits n with the same constant of proportionality for the subsystem toric,

hyperbolic and semi-hyperbolic codes. Here, na is the number of ancilla qubits used

per triangle operator (we can always set na = 1, but for some schedules setting na = 2

can improve performance by parallelising the measurement schedule). Therefore

Eq. (D.8) still holds once ancillas are taken into account.

D.7 Distance of subsystem hyperbolic codes
We can determine the distance of the subsystem hyperbolic and semi-hyperbolic

codes by considering their matching graphs. Each vertex in the X-type matching

graph corresponds to an X stabiliser, and there is an edge between each pair of
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Figure D.8: For all l = 2 {8,4} subsystem semi-hyperbolic codes we constructed, here we
plot the distance of each code (y-axis) against the distance of the (subspace)
semi-hyperbolic surface code derived from the same tessellation (x-axis), com-
puted using the method in Ref. [77]. The size of each blue circle corresponds to
the number of codes we found with the same (x,y) coordinate on the figure, and
the number of codes for each size of circle is given in the legend.

stabilisers u and v for which a single Z error on a data qubit anti-commutes with

both u and v. Each face in the X-type matching graph corresponds to a Z-type

triangle operator. Each non-contractible closed loop in the X-type matching graph

corresponds to a logical Z operator. Therefore, the Z-distance of the code is deter-

mined by the shortest non-contractible closed loop in the X-type matching graph. A

Z-type matching graph can be defined analogously for Z-type stabilisers and so the

X distance of the code is determined by the shortest non-contractible closed loop in

the Z-type matching graph.

For the subsystem toric, hyperbolic and semi-hyperbolic codes we construct,

the X-type matching graph is isomorphic to the Z-type matching graph, since the

Z-type matching graph can be obtained from the X-type matching graph (and vice

versa) by a single rotation that is also a symmetry of the tessellation from which the

code is derived. Therefore, the Z and X distances are the same for these codes.

We will now consider how the distance of a subsystem hyperbolic or semi-

hyperbolic code compares to the distance of the subspace CSS (surface) code derived

from the same tessellation. To do so, we will consider the structure of the matching
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graph for both codes. The solid red lines in Figure D.7 form the edges of the Z-type

matching graph for the toric code, and so the length of the shortest non-contractible

loop in that graph is the X distance of the toric code. We can obtain the X-type

matching graph for the subsystem toric code derived from the same tessellation by

adding in the green edges, also shown in Figure D.7, and keeping the same set of

vertices. Each green edge in the subsystem toric code X-type matching graph is

equivalent (up to a triangle operator) to a pair of red edges. Therefore, the distance

between two vertices in the matching graph consisting only of red edges can at most

be reduced by half by the inclusion of the green edges (and inclusion of the green

edges cannot increase the distance between vertices).

For the subsystem hyperbolic and semi-hyperbolic codes, we again find that

both the Z-type and X-type matching graphs can be constructed by adding additional

edges to the Z-type matching graph VZ of the subspace codes derived from the

tessellation, where each of these additional edges is equivalent to a pair of edges

in VZ . Therefore, the shortest non-contractible loop in either the Z-type or X-type

matching graph for a subsystem hyperbolic or semi-hyperbolic code is between one

and two times smaller than the shortest non-contractible loop in the Z-type matching

graph of the subspace code derived from the same tessellation. Consequently, given

a hyperbolic or semi-hyperbolic code with X distance dX , the distance d of the

subsystem hyperbolic or semi-hyperbolic code derived from the same tessellation is

bounded by dX/2 ≤ d ≤ dX . Furthermore, the X distance of hyperbolic codes we

consider is always less than or equal to their Z distance. Both the subsystem toric

code and standard toric code have distance d = L, but for the subsystem hyperbolic

and semi-hyperbolic codes we construct, the subsystem codes do have a reduced

distance compared to surface codes derived from the same tessellation. This is

shown in Figure D.8, which compares the distance of l = 2, {8,4} subsystem semi-

hyperbolic codes to the distance of the subspace semi-hyperbolic codes derived from

the same tessellations. We see that the distance of each subsystem code can be

reduced by up to 2× relative to the subspace code derived from the same tessellation

as expected, with some subsystem codes not suffering any reduction in distance.
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D.8 Scheduling from group homomorphisms
In Appendix D.5 we showed that an efficient syndrome measurement schedule for

subsystem hyperbolic codes could be constructed if the orientation-preserving sym-

metry group GH+
r,s of the tessellation (generated by rotations ρ and σ ) admits a homo-

morphism f : GH+
r,s → Z4 to the cyclic group Z4, with f defined by f (ρ) = f (σ) = 1.

This homomorphism is a useful tool for scheduling subsystem hyperbolic codes

for the same reason that translation invariance is useful for scheduling Euclidean

surface codes: the problem of scheduling the entire code reduces to the problem of

scheduling only a small number of stabilisers in a region of the tessellation.

While the homomorphism f : GH+
r,s → Z4 is a useful tool for scheduling the

subsystem hyperbolic codes, such a homomorphism only exists for a subset of

{r,s} tessellations (for which four divides both r and s). In this section we will

look for homomorphisms from GH+
r,s to any cyclic group, in the hope that these

homomorphisms will be a useful tool for scheduling subspace hyperbolic codes

based on a wider range of tessellations, where each Z stabiliser (plaquette) and X

stabiliser (site) is measured using a circuit with a single ancilla qubit. Each corner

Cg of a face of the tessellation is identified with an element g ∈ GH+
r,s . By finding

a homomorphism f : GH+
r,s → Zn to a cyclic group Zn, we can label each corner

uniquely with an element in Zn. The function f is a homomorphism if and only if

f (ri) = 0 for each relation ri in the presentation of GH+
r,s . The tessellation group GH+

r,s

has presentation

GH+
r,s := ⟨ρ,σ |(ρσ)2 = ρ

r = σ
s = e⟩ (D.9)

from which we see that (ρσ)2 is always a relation, and hence f must always satisfy

f ((ρσ)2) = 0.

For the homomorphism f : GH+
r,s → Zn to be useful for scheduling, we will

require that it must satisfy a additional properties. Firstly, the homomorphism should

not be defined by f (ρ) = f (σ) = 0, since this homomorphism does not give us any

additional information. Secondly, the label of each corner Cg should be different to

the corner Cgρσ . This is because Cg and Cgρσ overlap on an edge e in such a way

that, if both corners had the same schedule, two CNOT gates applied to the qubit at e
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would occupy the same time step.

We will assume that can have more than one ancilla for each stabiliser, to

parallelise the measurement circuits. If we were instead to insist that only a single

ancilla be used, then we must require that all corners belonging to the same vertex

must have different labels. This is because these corners share an ancilla qubit on

the vertex, and two CNOT gates cannot be applied to the ancilla qubit within the

same time step. Furthermore, we would also require that all corners belonging to a

face must have a different label, since only a single CNOT gate can be applied to the

ancilla qubit in the centre of each face in each time step.

Therefore for each tessellation {r,s}, we will seek to find a cyclic group order

n and elements x,y ∈ Zn such that the function defined by f (ρ) = x, f (σ) = y

extends to a homomorphism f : GH+
r,s → Zn. The restrictions on the relations in the

presentation of GH+
r,s , along with the additional three properties we have imposed,

correspond to the following constraints on x,y,n:

rx = 0 mod n

sy = 0 mod n

2(x+ y) = 0 mod n

x+ y ̸= 0 mod n

(D.10)

and if we could use only a single ancilla per stabiliser, then we would additionally

have the constraints

lcm(x,n) = rx

lcm(y,n) = sy.
(D.11)

For all r,s ≤ 10 we have searched for all n,x,y satisfying Eq. D.10 (for n <

5max(r,s)) and list all the tessellations we found which admitted at least one such

homomorphism in Table D.3.

While we have found homomorphisms to cyclic groups for many tessellations,

we did not find any for the {5,5} code, which has the desirable properties of being
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r s n x y
3 6 6 2 1
4 4 4 1 1
4 8 4 1 1
5 10 10 2 3
6 6 6 1 2
6 9 6 1 2
8 8 8 1 3
10 10 10 1 4

Table D.3: Solutions to Eq. D.10 for all r,s≤ 10,r ≤ s. By symmetry, solutions for r ≥ s
can be found by exchanging column r with s and column x with y. For each tes-
sellation {r,s}, we give the parameters n,x,y defining only one homomorphisms
f : GH+

r,s → Zn (the homomorphism which minimimises both n and x). There are
at least two solutions for each tessellation.

Schedule pth
depol pth,∗

depol
ZX 0.666(1) 0.666(1)

Z2X2 0.757(1) 0.6587(9)
Z3X3 0.810(2) 0.676(1)
Z4X4 0.811(2) 0.669(2)
Z5X5 0.792(2) 0.652(2)

Z10X10 0.522(2) 0.493(1)

Table D.4: Thresholds (in %) for the subsystem toric code for some balanced homogeneous
schedules under the circuit-level depolarising noise model, each computed using
the critical exponent method of Ref. [201] to analyse results from Monte Carlo
simulations using subsystem toric codes with distances L = 26,30,34,38,42,46.
Numbers in brackets are the 1σ uncertainties in the last digit. For each threshold,
we keep the number of syndrome extraction rounds constant for all codes, always
using at least 92 rounds to ensure boundary effects (in time) are small even for
the largest codes. For the column with an asterisk, gauge fixing was not used
when decoding.

self-dual and having low stabiliser weights. Therefore, an interesting question is

whether there exist homomorphisms to groups that are not cyclic, and which contain a

small number of elements, but otherwise satisfy the constraints of Equation (D.10). If

such a homomorphism exists for tessellations such as {4,5} and {5,5}, the trade off

of circuit-level threshold and encoding rate for these codes may be very favourable.
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Schedule pth
X pth,∗

X pth
Z pth,∗

Z
ZX 0.515(1) 0.515(1)

Z2X2 0.5863(9) 0.5863(9)
Z3X3 0.628(1) 0.628(1)
Z4X4 0.631(2) 0.631(2)
Z5X5 0.619(2) 0.619(2)
ZX2 0.3928(8) 0.3928(8) 0.749(1) 0.625(3)
ZX3 0.3236(9) 0.3236(9) 0.931(1) 0.7234(9)
ZX5 0.2449(5) 0.2449(5) 1.160(2) 0.816(2)
ZX10 0.1595(4) 0.1595(4) 1.430(3) 0.902(2)
Z2X10 0.2394(5) 0.2259(5) 1.197(3) 0.821(2)

X 0 0 2.2231(1) 1.029(2)

Table D.5: Thresholds (in %) for the subsystem toric code for various homogeneous sched-
ules under the independent circuit-level noise model, each computed using the
critical exponent method of Ref. [201] to analyse results from Monte Carlo
simulations using subsystem toric codes with distances L = 26,30,34,38,42,46.
Numbers in brackets are the 1σ uncertainties in the last digit. For each threshold,
we keep the number of syndrome extraction rounds constant for all codes, always
using at least 92 rounds to ensure boundary effects (in time) are small even for
the largest codes. For the final two columns (with asterisks in the title), gauge
fixing was not used even when possible.
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Figure D.9: Subsystem toric code threshold with a phenomenological noise model, and
without using gauge fixing (triangular lattice matching graph). Using the
critical exponent method we find a threshold of 0.02004(2).
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Figure D.10: Performance of the extremal subsystem {8,4} l = 2 semi-hyperbolic codes un-
der a circuit-level depolarising noise model. A homogeneous (ZX)20 schedule
is used for all codes, and the y axis is the probability that at least one logical Z
error occurs. Dashed lines are the probability of a Z error occurring on at least
one of k physical qubits without error correction under the same error model
and for the same duration (80 time steps), with k = 4 (orange), k = 8 (purple)
and k = 10 (pink).
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Figure D.11: Performance of a [[384,66,4]] {8,4} subsystem hyperbolic code (red) com-
pared to the L = 3 and L = 4 subsystem toric codes (shades of blue) using a
(ZX)10 schedule with the circuit-level depolarising error model. We use 33
independent copies of the subsystem toric codes to fix the number of logical
qubits at k = 66. In the legend we give the number of physical qubits used,
including ancillas.
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D.9 Additional numerical results
In this section we give some additional numerical results from simulations of the

subsystem toric and semi-hyperbolic codes. In Table D.4, we give thresholds for the

subsystem toric code code under a circuit-level depolarising noise model using gauge

fixing with balanced schedules. In Table D.5, we give thresholds for the subsystem

toric code under an independent circuit-level noise model using both balanced and

unbalanced schedules. In Figure D.9 we plot the threshold for the subsystem surface

code with a phenomenological noise model, which we find to be 0.02004(2) using

the critical exponent method of Ref. [201]. In Figure D.10 we plot the threshold of

the l = 2 {8,4} subsystem semi-hyperbolic codes without adjusting for the number

of logical qubits, unlike in the text. This is helpful to better understand the logical

error rates of the codes themselves, but less so for understanding the threshold

for the logical error rate per logical qubit, for which multiple independent copies

of the smaller codes should be taken, as done in the main text. In Figure D.11

we compare the performance of a [[384,66,4]] {8,4} subsystem hyperbolic code

with 33 copies of L = 3 and L = 4 subsystem toric codes, all encoding 66 logical

qubits. Since this hyperbolic code is quite small, its overhead n/(kd2)≈ 0.36 is less

favourable than that of the much larger [[8064,338,10]] subsystem semi-hyperbolic

code analysed in Section 6.5 of the main text, for which n/(kd2)≈ 0.24. However,

as can be seen from Figure D.11, the [[384,66,4]] subsystem hyperbolic code still

uses 2.3× fewer physical qubits than the subsystem toric code to achieve the same

logical error rate per logical qubit below a circuit-level depolarising physical error

rate of 0.1%. Furthermore, it only requires 896 physical qubits to implement this

subsystem hyperbolic code including ancillas, compared to the 18,816 needed for

the [[8064,338,10]] subsystem semi-hyperbolic code.



Appendix E

Hyperbolic Floquet

E.1 Additional results
Figure E.1 gives the number of logical qubits that can be encoded with embedded

distance at least 20 and 30 using semi-hyperbolic Floquet codes or honeycomb codes

(these plots are slight variants of Figure 7.10).
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Figure E.1: The number of logical qubits that can be encoded using multiple copies of a
semi-hyperbolic, toric honeycomb or planar honeycomb floquet code. In (a) the
distance is required to be at least 20 for an EM3 noise model, whereas in (b) the
distance is at least 30.
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