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Abstract

In this thesis we describe a procedure for isolating the infrared singularities present in
gluonic scattering amplitudes at next-to-leading and next-to-next-to-leading order.
We adopted the antenna subtraction framework which has been successfully applied
to the calculation of NNLO corrections to the 3-jet cross section and related event
shape distributions in electron-positron annihilation. We consider processes with
coloured particles in the initial state, and in particular two-jet production in hadron-
hadron collisions at accelerators such as the Large Hadron Collider (LHC). We derive
explicit formulae for subtracting the single and double unresolved contributions from
the double radiation gluonic processes using antenna functions with initial state
partons. We show numerically that the subtraction term effectively approximates

the matrix element in the various single and double unresolved configurations.
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Preface

With the start up of the new Large Hadron Collider (LHC) imminent attention is
firmly focused on the high energy frontier. The main goal is to probe the mechanism
of electroweak symmetry breaking and, if the Standard Model is correct, to discover
the Higgs boson in the first years of LHC operation. Because of its prominent role in
electroweak symmetry breaking, the Higgs boson is especially sensitive to any new
physics that could explain in a satisfactory way the stability of the electroweak scale
against higher energy corrections. Therefore the LHC provides an extraordinary
opportunity for addressing the great questions surrounding the structure of matter,
the unification of fundamental forces, and the nature of the universe. It is expected
that high luminosity pp collisions at the LHC at the TeV scale could result in new
phenomena such as the production of supersymmetric particles, new families in the
quark sector, new gauge interactions and/or extra dimensions and many detailed
analyses of these scenarios are available in the literature.

On the other hand, to firmly establish the discovery or any other new physics,
precision studies of QCD processes have to be made. This involves understanding the
standard model backgrounds to both the Higgs production and to the new physics
signals which are governed by the dynamics of QCD. This can be achieved by making
theoretical predictions including next-to-leading order (NLO) or when needed, next-
to-next-to-leading order (NNLO) effects to reduce the theoretical uncertainty.

In parallel with this, there is an opportunity for the precision study of the free
parameters of the theory using the LHC data. The single jet inclusive cross section
o(pp — j + X) constrains «ag and the density of gluons in the proton at large
values of x. Their determination proceeds by fits of the best experimental data

with the best theoretical predictions. It is expected that the uncertainty from the

xii



Preface

experimental data will be smaller that the current NLO predictions which means
that a next-to-next-to-leading order (NNLO) estimate is mandatory.

This thesis focuses on the perturbative calculation of next-to-next-to-leading
order (NNLO) corrections to two-jet production at the LHC. The bottleneck in this
calculation is a procedure to handle the infrared divergences present in intermediate
steps of the calculation. The antenna subtraction method is a potential solution
to this problem. We look at the extension of this method to tackle processes with
coloured particles in the initial state which is relevant for both hadron-hadron or
hadron-lepton colliders.

The thesis is structured as follows. In chapter 1, we review some of the basic
concepts of QCD. Chapter 2 describes the phenomena of jet production at colliders.
In chapter 3, we describe the antenna subtraction method to compute observables at
NLO. Chapter 4 discusses the NNLO extension of the antenna subtraction method.
In chapter 5 we look at the sector decompisition method as another approach to
perform NNLO calculations. For the remainder of the thesis we develop the antenna
subtraction method. In chapter 6 we deal with the regularisation of the double real
contribution relevant to the NNLO cross section for two-jet production at hadron
colliders. Subsequently, in chapter 7 we test our implementation of the matrix

element and the NNLO subtraction term. We summarise our findings in chapter 8.



Chapter 1

Higher order corrections in

perturbative QCD

Since the main work of this thesis is the higher order calculation of a QCD observable,
in this chapter we will briefly collect all the ingredients that make such an observable
well defined.

First we explain the concept of asymptotic freedom and why the methods of
perturbation theory are useful at high energy. Then we look at the procedures used
to regulate the different types of singularities that appear in intermediate steps in
the perturbative calculation. It is important to have a formal method to describe the
singularities of the problem so that we can assemble all the divergent pieces to obtain
a finite physical result. The methods of choice are Dimensional Regularisation,
Renormalisation and Factorisation and the way they are implemented is explained
below.

Then we introduce the ideas of the helicity basis and colour decomposition used
in the derivation of the matrix elements for gluon scattering and finally we recall
the universal behaviour of colour ordered QCD gluonic amplitudes for up to two
unresolved particles. This is essential for the derivation of NLO and NNLO sub-
traction terms within the antenna subtraction method we introduce in the following

chapters.



1.1. Running o, and perturbative expansions in QCD 2

1.1 Running oy and perturbative expansions in
QCD

Consider now a dimensionless physical observable R which depends on a single
energy scale (). By assumption the scale () is much bigger than all other dimensionful
parameters such as quark masses (m?/Q* < 1) and we shall therefore set the masses
to zero. Setting the quark masses to zero introduces infinities when computing higher
order corrections to R, however, a sensible zero mass limit exists within dimensional
regularisation and we will discuss it in more detail in section 1.3.

When we calculate R as a perturbation series in the coupling constant a, = ¢* /4w
the perturbation series requires renormalisation to remove ultraviolet divergences.
This procedure will be explained in section 1.4 but what is important is that it
will introduce a second mass scale p - the point at which the subtractions that
remove the ultraviolet divergences are performed. Since this renormalisation scale
1 is arbitrary, physical observables should be independent of the choice made for .

The p-independence of R may be expressed by:
5 0 n , 00, 0
a ou? a Ou? Oag

where R can only depend on the ratio @?/u? and the renormalised coupling constant

d
u2d—M2R(Q2/u2,as) = R=0 (1.1)

a,. The second term in the previous equation defines the renormalisation coefficient
(. Its form is:

5 00,
ou?

This equation represents the Renormalisation Group Equation which provides

Blas) = p (1.2)

the p dependence of the strong coupling constant. Rewriting this equation in its

2 as(Q?) do
log | = :/ 2 1.3
& (IUZ) as(u?) ﬂ(as) ( )

This equation governs the evolution of the coupling constant from one scale u to

integral form we obtain:

another scale (). The solution to this equation can be approximately found when

the QCD S function is expanded as a perturbative series in as:

ﬂ(;:) = b (%)2 ~ (%)3 — O(ay) (1.4)




1.1. Running o, and perturbative expansions in QCD 3

where the coefficients are extracted from the higher-order (loop) corrections to the
bare vertices of the theory. The coefficients y and 3, for N (massless) quark

flavours are:

By = 11C4 — 4TrNp 7 8, = 17C4 — 10CATrNr — 6CrTrNE (15)
6 6
where N is the number of colours, and
op N1 Ca=N, Tp—- (1.6)
F — IN ’ A — ’ R — 9 .

for SU(N) gauge theory.
If we solve equation (1.3) to first order (keeping only the first term in (1.4)

proportional to (3, we get:

2\ O‘S(/ﬂ)
Q) = T 2) (o 2m) Tog (2 1) (.7

This gives the relation between a,(Q?) and a,(u?) when both are small enough to

lie in the perturbative region. As the scale ? becomes large the running coupling
as(Q?) decreases. This is the property of asymptotic freedom. The positive sign 3y
is crucial for this effect and we can see that this is the case for a number of active
flavours Ny < 16 which is realised in nature.

We can now rewrite equation (1.1) by defining ¢ = log(Q?/u?) and obtain:

0 0
T + /6(045)87% R(e" as) =0 (1.8)

It is easy to prove that R(1,as(Q?)) is a solution of the last equation. Indeed,

aR(l,OZS<Q2)) _ da aR(laas(Q2>>

ot ot Oag
_ o M@ 1o

which completes the proof. This analysis shows that all the scale dependence in R
enters through the running of the coupling constant a,(Q?). From equation (1.7)
we found that for big energy scales o, becomes small and this is the property which

allows a perturbative expansion of a QCD observable in terms of o for large energies:

R = R(1,04(Q%) = m10a,(Q%) + r20s(Q%)* + r305(Q%)° + - - - (1.10)
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1.1.1 Scale choice and uncertainty

Keeping the leading order term (LO) in equation (1.10) we can express R in terms

of as(u?) using equation (1.7):

R(1, O‘S(QQ)) = T1a8(ﬂ2)

o () () i (2 (2 -

using the known series:

1

=1—x+a2>— ..
1+«

Thus order by order in perturbation theory there are logarithms of Q*/u? which are
automatically resummed by using the running coupling. The leading log behaviour
of (1.11) is as(u?)N log(Q?/u?)N~1. Higher order terms in R such as ro (NLO) or
r3 (NNLO) when expanded give terms with fewer logarithms per power of ag. For

example an NLO term ra? would give:

e @ = o 1= 20,6) (2 ) 10g ()] (112)

i
with one less logarithm in each term, ie a,(u?)Y log(Q?/u?)N 2.

It is important to keep all terms with the correct power of oy when computing
higher order NLO or NNLO corrections to a given observable R. For example at
NNLO we have to include the solution of the renormalisation group equation keeping
more terms. Including the NLO [ coefficient in the beta function (1.4) we find the
following solution to the renormalisation group equation (1.3):

2 2
- at w e (g ) e () -0

Because there is no rule on how to pick the value for the renormalisation scale

1 - the point at which the subtractions that remove the ultraviolet divergences are
performed, it becomes natural to chose a scale 1 not far from the physical scale Q.
This way we avoid large logarithms of the form log(Q?/u?).

So far we have indicated that the theoretical calculations in QCD can be carried

out perturbatively for small coupling corresponding to the high energy regime. In
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principle the full prediction from the theory is an infinite number of terms in the
perturbative expansion but in practice we can only calculate a finite number of
them. It is important to have this in mind when it comes to comes to comparing the
theoretical predictions with the experimental observations. An equivalent expansion

of a general observable without the resummation of the logarithms to all orders is:

o0

R(as(Q%), @ /p®) =Y ra( Q%)) ars ()" (1.14)

n=1
We can consider the effect of truncation of the perturbative series to N terms by

calculating its 1 dependence:

d N . o d 0 o .
dlogﬁ;rn(@ [i)asr) __mn%:“m(@ [1*)as(p?)" ~ Ofa™)

(1.15)

where we have used the renormalisation group equation (1.1). The truncated series
on the Lh.s of equation (1.15) is dependent on the scale p as determined by the
absent higher order terms on the r.h.s. of equation (1.15). This means that when
we truncate the series we introduce a residual dependence in the QCD prediction
on the value of the renormalisation scale. We can see however that the remainder of

the truncated series is of order aN +1

This means that when higher order terms are
included the dependence on the renormalisation scale is reduced as the cancellation
of the scale dependence occurs between different orders. This is shown in figure
1.1 for the cross-section for single inclusive jet production with transverse energy
Er = 100 GeV at leading order (LO), next-to-leading order (NLO) and next-to-
next-to-leading order (NNLO) for proton-antiproton collisions at /s = 1800 GeV.
The NNLO curve is based solely on the renormalisation scale dependence prediction
of the lower order terms because the NNLO coefficient is presently unknown.

This is the main motivation for the huge effort to compute higher order correc-
tions to a multitude of QCD observables and processes. The predictions become
more accurate at higher order as the theoretical uncertainty is reduced. We can

make high precision tests of the theory and also extract its free parameters with

more accuracy.



1.1. Running o, and perturbative expansions in QCD 6

1 : —
I‘ NNLO -------
08F | |
=~ 06F \ .
S
5 N
- 0.4F e g
02f / |
0 1 1 1
0 0.5 1 15 2
£
Er

Figure 1.1: Renormalisation scale dependence for the production of single jet with
transverse jet energy Ep = 100 GeV in proton-antiproton collisions at /s = 1800

GeV at different orders in the perturbative series [1].

1.1.2 Determination of o, from experiment

At this point it is important to remember that QCD makes no prediction for the
value of the coupling constant a,. As a free parameter in the theory it must be
extracted from experimental measurements. In theory it should be possible to make
a number of experimental observations at different energy scales () and thus extract
measurements of a,(Q)) over a broad range of @ and test that the coupling runs as
we expect. This is shown in figure 1.2 where the decrease in (@) with increasing
() is demonstrated.

Its more convenient to convert all measurements of as(Q) into a value at @ =
My, the mass of the Z boson, and use the following running coupling to one loop

approximation:
Ofs(Mz)
1+ (22)log (2 ) as(M7)
2 8 My s Z

as(Q) = (1.16)

This is because at the scale () = My we are sufficiently far away from quark thresh-

olds (and hence non-zero mass effects) and also close to the asymptotic region where
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0.3 | _
@ |
5”02 j ¢ ¢ .
? ¢
01 &9
I | |
0 | L 11l | L 11l >
1 10 10
Q GeVv

Figure 1.2: Summary of the values of a,(Q) at the values of Q) where they are
measured taken from the PDG review 2008 [2]. The running coupling is determined
by solving the renormalisation group equation to two loop order, shown by the

dashed line.

perturbation theory should apply (a5 ~ 0.1). In addition the experimental measure-
ments on the Z pole are of high precision due to high statistics of the LEP data.
One recent analysis is the first determination of the strong coupling constant
using an NNLO prediction for hadronic event shapes in ete™ annihilations. In this
study a fit was made with the QCD predictions calculated at next-to-next-to-leading
order (NNLO) and matched to resummation in the next-to-logarithmic approxima-
tion (NLLA) to the data collected by the ALEPH detector in e*e™ annihilations at
LEP. By combining the results for six event-shape variables and eight centre-of-mass

energies ranging between 91 and 206 GeV the following result was obtained [3]:

ay(Mz) = 0.1224 + 0.0009(stat) £ 0.0009(sys) % 0.012(had) £ 0.0035(theo)
(1.17)

1.2 IR and UYV singularities

In the previous sections we have shown the validity of the use of perturbative meth-

ods to compute the predictions from the theory and the importance of higher order
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corrections. The leading order estimate contains large errors due to the renormali-
sation scale dependence and clearly is a good tool to estimate relative magnitudes
of processes, but not enough to do precision studies or to identify a discovery with
a particular model.

However when we try to compute higher order corrections using perturbation
theory we encounter a new difficulty. Obviously we would expect the first order
(NLO) corrections to be a small contribution to the (LO) estimate and the second
order (NNLO) corrections even smaller. This we expect by the convergence of the
perturbative series. However we encounter a new difficulty which is the appearance
of infinities from ultraviolet (UV) and infrared (IR) divergences in the higher order
diagrams. We will now look at their origin and find a way to obtain finite corrections
that can be tested against the experimental observations.

For example we can consider the following one-loop integral, associated with the

fermion-antifermion gauge boson vertex for massless fermions such that p? = p2 = 0

and (p1 + pa2)* # 0,

[ —po
p=p1+p2

Figure 1.3: Virtual one-loop correction to the fermion-antifermion gauge boson ver-

tex.

_ [ f)
= /d l(l2 +ie)((I+p1)? +ie)((I = p2)? + ie)

Within perturbation theory the integral I must be carried out over all possible

(1.18)

values of the virtual momenta [#. We find divergences associated with high virtual

momenta,

]| w00 = [— (logarithmically)
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called wultraviolet (UV) divergences. There are also divergences appearing when one

of the propagators in the loop becomes zero for a specific value of the momenta,
’” _>07_p17p2 = [ — o0

called infrared (IR) divergences'. We considered p? = p5 = 0 but if the propagators
are massive, e.g. (I + p)? —m?, the mass plays the role of regulator. In QCD, the
presence of massless gluons and the assumption of light quarks, gives rise to this
divergent behaviour.

The UV divergences are then associated with high energy modes of the theory
and will be dealt with a procedure called renormalisation that we will explain in
detail in section 1.4.

The IR divergences are associated with low energy modes of the theory and
will cancel order by order when we consider also the diagrams from real radiative

corrections?:

b1 b1

p=Dpi+p2+ps3 p=p1+p2+Dp3

D3 + D3

P2 P2

Figure 1.4: Real correction single emission diagrams.

Computing these two diagrams gives the following matrix element:

q9q

g Sag SqgSag

|M|2 ~ (@ + Sag + 28‘1(18%9) (119)
Parametrising p, and p, gives:

Pq = Eq(lal?q)a Py = Eg<1a17>g) = Sqg = 2E,E,(1 — cos ‘gqg) (1.20)

'We will use infrared to denote both soft and collinear divergences.
2The cancellation happens when we add the interference of the virtual amplitude of figure 1.3

with the tree diagram v — ¢q to the real emission diagrams of figure 1.4. Both quantities are of

the same order in «y.
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Therefore, in the regions where the radiated gluon becomes soft (£, — 0) or
collinear with the hard partons (6,, — 0) this correction becomes divergent and the
final state is indistinguishable from the diagram related to the virtual correction.
In this limit the radiated parton cannot be observed by any physical detector so it
makes sense to add the cross section for producing these low-energy modes to the
cross section without radiation. After regulating both diagrams we see that the IR
divergences cancel in the combined result for a particular kind of observables and a
finite result is obtained. An example of this will be given in chapter 3.

This example will just be a particular case of the theorems due to Bloch and
Nordsieck [4] and Kinoshita [5], Lee and Nauenberg [6] that prove that the IR diver-
gences present in both real and virtual corrections cancel to all orders in perturbation
theory.

This means that we have identified the ingredients that build up the higher order
corrections for an observed cross section. We must include unresolved contributions
up to the order in perturbation theory we wish to calculate. For instance at NLO one
must include all real emission diagrams which are single unresolved. This includes
single soft and collinear emission which is at equivalent order in a, to the loop
(virtual) corrections. The real emission must be integrated over the unresolved

phase space:

oNLO — ) / dLIPS(1)0), o (1.21)

n n,virtual

At two loops (NNLO) the situation is more complicated as we must include single

unresolved contributions at 1-loop and double unresolved contributions at tree level:

n n,virtual

GNNLO _ (@) / dLIPS(1)o\), o + / dLIPS(2)0, )y (1.22)

The behaviour at the amplitude level in various soft/collinear limits is univer-
sal and we will study it in detail for colour ordered gluonic amplitudes in section
1.8. This will be important to derive counterterms that make the real correction
contribution finite in four dimensions. However to perform the analytic cancellation
of the IR singularities between real and virtual corrections, as anticipated by the

mentioned KLN theorem, and the removal of the UV singularities with renormali-
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sation, we still need a regularisation method that will separate the infinities present
in these contributions from the finite parts.
The dimensional regularisation scheme works equally for UV and IR divergences

and will be described in the next section.

1.3 Dimensional Regularisation

Dimensional regularisation due to 't Hooft and Veltman [7], assumes that the space-
time dimension is not 4 but rather D which need not be an integer. Therefore the
Lagragian is changed from 4 to D, but the action is still dimensionless. The Feyn-
man integrals become analytic functions of the number of dimensions D = 4 — 2e.
Divergent quantities in the usual 4 dimensional space appear now as poles in ¢, i.e,
1/e" withn = 1,2, ... since the € — 0 limit is equivalent to the D — 4 limit. By doing
this, divergent quantities are properly controlled and mathematical manipulations
are made legitimately.

At the end of the day for experimentally observable quantities such as cross
sections or decay-rates the limit D — 4 (e — 0) should be well-defined, as all the
singularities in the calculation will have dropped out according to the considerations
of the previous section.

When going from 4 to D dimensions one must apply the following modifications:

e In the Feynman rules the measure we use to integrate over each loop-momentum

[ [

The poles in € will appear explicitly after the D dimensional integration that

k; changes:

we must learn how to perform.

e In D dimensions the metric g* obeys ¢g*'g,, = D. The Clifford algebra will
also be affected with Dirac matrices being manipulated as a set of D 4x4

matrices whose contraction identities are modified to:

Y= =21 =€)y, APy =497 — ey, ..
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e The measure of the phase-space integration over the final state external mo-

menta will also have to be converted:

/2ECE2];)3' - (2m)'0N (pi = py) = /# o mP0% (i —py)

The soft and collinear singularities are regulated appearing as poles in e.

S:/de[,

is a dimensionless quantity, so the QCD Lagrangian has to be modified to

e the action

have a consistent number of dimensions. From the kinetic energy terms of the
quarks and gluons of this Lagrangian, we can see that the mass dimension of

their fields are

_ D -1

from mU,;V; = [Uy]= Ca
D

from 0,A70,4;, = [Al] = 5 1

Then the interaction term gW;AV, is actually telling us that [, AV,] =
3D/2 — 2. Imposing that the interaction term in the Lagrangian should have
dimension D we fix the dimension of the coupling constant g to be:

D
[9]:2—526

In D = 4 the coupling constant has no dimension. Since we decided to use the
number of dimensions as a regulator our theory acquires one more scale. We

introduce an arbitrary mass p and replace the coupling strength with

g — gu (1.23)

where € = %.

This regularisation method has the advantages that it preserves the gauge in-
variance of the theory and this guarantees as we will see in the next section the
renormalisability of the theory. Also Lorentz invariance is preserved. Other regular-
isation schemes such as the Cut-off regularisation or the Pauli-Villars regularisation

do not enjoy these properties.
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Let us now look at the way the D dimensional integrals are done. We can

consider as an example the following scalar D-dimensional integral:

dPk 1
I = 1.24
' / (2m)P (k? —m? +i0+)" (1:24)

Starting from the definition of the Gamma function

P(n) = / dt et = / d(at)(at)™ e = a / dt et (1.25)
0 0 0

we derive the following identity:

1 1 >
— = dt t" e~ 1.26
am F(n)/o € ( )

The result for the D dimensional gaussian integral is also useful:

/de K /dkle l/dk ekz/ /dkoe 6 =P (1.27)

Applying (1.26) to the integral (1.24) we obtain:

I, = 1 /dt i 1/de€—t —k24+m?—iO0T)
n 7T
—1)"

L(n)
ey

n) (
1 o0
/ dt t" et 4= D/2 D/ (1.28)
0

’1

}1
>}

1
[(n) (2m)P

/\[\3
v

Il
~.

where in the last step we took the iO — 0 limit and did a Wick rotation ky — iky.
The remaining integration is done with (1.25) and we finally obtain:

[ dPk 1 (=D T = D/2), 5 pmn
h= / (2m)P (k2 — m? +4i0+)"  (4m)P/2 T(n) (m*)?/ (1.29)

Setting n =2 and D =4 — 2¢ in (1.29) we find that:

(471r)2 <% + In(47) — v, — In(m?) + (’)(e)) (1.30)

I =

We can see that the singularity reveals itself as a pole of 1/e as anticipated.
Other scalar/tensor integrals with more than one propagator can also be calculated
along the lines described.

After continuation of the loop momenta into D dimensions one is still left with

some freedom concerning the dimensionality of the momenta of the external particles
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as well as the number of polarisations for internal and external particles. Within
the Conventional Dimensional Regularisation scheme (CDR) no distinction is made
between real or virtual particles and massless quarks are considered to have 2 helicity
states while gluons have D — 2 helicities.

In the 't Hooft-Veltman scheme external particles are 4 dimensional and external
gluons have 2 helicity states whereas virtual particles are D dimensional and virtual
gluons have D — 2 helicity states. Finally in the four dimensional helicity scheme
(FDH) the number of helicity states is 2 for internal and external gluons. Only the
momenta of the virtual particles is kept D dimensional. We will mention in more

detail the helicity basis for the computation of the amplitudes in section 1.6.

1.4 Renormalisation

The idea behind renormalisation is to reinterpret the parameters of the Lagragian.
We proceed by redefining all the fields and parameters in the QCD Lagrangian by

a multiplicative factor:

Ac = zy%40, (1.31)
U = 2370, (1.32)
gs == Zggr,s (133)

Each field/parameter on the left-hand side represents a bare field/parameter whilst
those on the right represent renormalised fields/parameters. The renormalisation
constants Z absorb the UV divergences and hence represent infinite quantities.
With these modifications the Green’s function of the renormalised fields become
UV-divergent free as all the UV divergences are now in the multiplicative factors.
In this way the renormalised fields are interpreted as the ones that have a physical
meaning and the renormalised couplings as the ones we measure. We can then
determine the values of these parameters with a few experiments and compute any
other observable in terms of them and the predictive power of theory is not lost.

The renormalisability of the theory is guaranteed by the fact that we don’t have



1.4. Renormalisation 15

an infinite number of different types of divergent diagrams. The diagrams we need
to consider are the quark self-energy, vacuum polarisation or gluon self-energy and
the quark-gluon vertex functions, and the divergent terms always appear in the final
answer combined with the bare parameters. There is a proof that the divergences
in these diagrams can be eliminated to all orders by redefining the free parameters
of the theory [7].

It is important to remember now that to regularise the mentioned diagrams we
use dimensional regularisation and a new scale y is introduced in the theory to keep
the action dimensionless. The relation between the renormalised strong coupling

constant and the “bare” coupling constant is given by:
_ 27 2\€
ap = Z (1) (1.34)

where the value of Z, can be calculated perturbatively to give

S, = (1), [1 Sy (ﬁ—g - @) (S) + O(a;%)} (1.35)

€ \27 e e s

where
Se =e 9 (4m)° (1.36)

The finite part of the Z’s is not fixed at all and to define it we need a renormal-
isation scheme. In the M S (minimal subtraction scheme) the finite part is set to 0
whereas in the M S (modified minimal subtraction scheme) we remove the UV pole

defined as:

|

1
= (47) e~ 7= with 7 being the Euler’s constant. (1.37)
€

This choice simplifies our calculation because in practice the finite part of the poles

always appear in the combination:

I'(1+e)

(4m)° = % +In(4m) — v+ O(e) = =+ O(e) (1.38)

We have now described the procedure of renormalisation and its final importance
in the description of the theory comes from the renormalisation group equations.
As we have seen in section 1.1 the invariance of the renormalised quantities under a
change of the renormalisation scale p gives an indication of the asymptotic behaviour

of the theory at high energy.
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1.5 Factorisation

In this section we will derive the formalism that allows us to tackle computations
for processes with hadrons in the initial state. Reviews of this topic can be found
in [8-10].

The cross section for a hard scattering process initiated by two hadrons with
four-momenta P; and P» can be written as:

o(Pr, Pp) = Z/dxldxzfi(xl)fj(xz)ﬁij(l’lpla$2P27Oés(NQ),QQ//Lz) (1.39)
i.j

The formula (1.39) is called the parton-model formula and we must discuss its
validity when computing hadronic cross sections.

When applying (1.39) we must always require a very large momentum transfer
in the reaction. This is because if the scale of the event Q2 is much bigger than
the hadronic scale A, characteristic of the binding of the quarks and gluons, the
partons behave as free particles in the collision. This means that we can see the
hadronic reaction as a scattering of the partons, that is, the point-like constituents
of the hadrons. Soft processes will follow that create gluons and quark-antiquark
pairs that neutralise colour and respect confinement so that the scattered partons
appear as a jet of hadrons travelling in the direction of the momentum transfer.
This hadronisation process occurs at an energy scale much lower than the scale Q?
of the event and therefore has no influence on the hard scattering itself.

We have just stated that the initial state interactions happen too early to affect
short-time scale of the hard interaction while the final state interactions between
fragments happen too late. The hard scattering depends on the density of partons
and the hadronic cross section may be written as the probability of finding a parton
with given momentum fraction, in each of the colliding hadrons, times the cross
section for the scattering of the two partons as in (1.39).

These effects were first observed experimentally in deep inelastic scattering col-
lisions at SLAC in the 70’s. Analogously to the Rutherford experiment with «
particles that probed the structure of the atom and led to the discovery of the
atomic nucleus, large angle scattering of high-energy electrons probing the proton

suggested that the proton is made of smaller, point-like particles that can deflect
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the electron by a large amount.

In equation (1.39) the parton distribution functions are universal, that is, in-
dependent of the particular hard scattering process that we treat. Their non-
perturbative nature implies that they are not computable with the methods of per-
turbative QCD but instead are obtained by means of a global fit to experimental
data for one or more physical processes which can be calculated using perturbative
QCD. This is a legitimate procedure as the coupling is small at high energy and the
short-distance cross section can be calculated as a perturbation series in the running
coupling a.

We will now look at the inclusion of higher-order corrections to the parton-
model. We will focus on initial-state radiative corrections because they will introduce
an important modification of the parton-model formula (1.39). The initial state

correction is described by the following diagram:

A=giM(p—1) (g:lﬁ Y u(p)en(l)

Figure 1.5: NLO corrections to the parton model.

where €,(l) is the polarisation vector of the emitted gluon and M(p — [) is the
amplitude for a partonic cross section initiated by a quark with momentum p — [.
We are neglecting at this order a process in which an initial state gluon splits into
a quark-antiquark pair. As [ becomes parallel to p we expect a collinear singularity

and thus it is convenient to write [ in the following way:
M= (1-2z)p'+1] +&nt (1.40)

with p? = 0 and n is an arbitrary vector such that n? =0 and n-1, = 0 but n-p # 0.

In terms of these variables the phase space for the emission of the gluon is:

B Pl de (1.41)
200027)3  2(27m)31 — 2 '
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which yields, from the on-shell conditions for the gluon:

£ = __ Al and (p—1)* = _ AL (1.42)
2p-n(l—2) 1—=2 '

The amplitude for the radiative correction can now be written as:

A= g M(p— l)%’y“u(p)e#(l) (1.43)

Using Dirac algebra and keeping only singular terms we can square (1.43) and obtain:

2

AP = g2 (1 MU = DEM (1) (1.44)
1

To get the cross section, we should multiply the above expression by N/p® and

integrate over the phase space. We obtain:

OZSOF 1 + 22 dli
0'(51) — o /a'lgo)(zp) - ﬁdz (1_45)
where
o\ (zp) = NM(p — l)%MT(p —1) (1.46)

and we have made use of the relation g2 = 4wa, and the factor Crp = 4/3 arises
from the colour algebra. This is the contribution due to the real emission of a gluon.
Virtual corrections, where the gluon is emitted and reabsorbed by the same line, are

also present and when included the final result is:

2 172
(1) _ asCr / (0)( — O 1+2 dl_i

o) = o, (zp) — oy (p) dz (1.47)
a 27 o . )] 1—2

We see that there is an apparent singularity at z = 1 corresponding to soft gluon
emission which cancels between real and virtual corrections. However the I3 integral
is still divergent in the lower limit. Its upper limit is the scale @) of the typical
momenta involved in the hard process.

This is different from the case of final state collinear singularities where we obtain
a similar formula to equation (1.47) but with a very important difference: in the
born cross section for real emission we would have ¢(®) (p) instead of 0¥ (zp). This
property is characteristic of splitting processes taking place in the final state rather

than in the initial state. The figure below illustrates this fact:
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(7)) . L~ A o®(zp)
. P ZQP o zP
(77— =
2) p (7“2) p

Figure 1.6: Collinear processes in the final and in the initial state.

This means that collinear singularities cancel in the final state, between real
and virtual corrections, but the “naive” parton model has uncancelling collinear
divergences in the initial state.

In order to proceed we need to introduce some modifications to the parton model

to allow the computation of higher order corrections. First of all we define:

11—z

PO(z) = Cy (1 - 22)+ (1.48)

where the notation with the + suffix is called the plus prescription. This prescription

introduces a ’'+’-distribution:

D,(z) = <1“<nl<1f;;))+ (1.49)

defined by its action on a generic test function:

1 1
/ dzg(z) [Dn(2)], = / dz[g(z) — g(1)|Du(2) (1.50)
0 0
According to this, the expression in (1.48) is to be interpreted as a distribution and
its integral against a smooth function f(z) is given by:

[ (3E2) s = [ 206 - s (151)

1—2 1—=z2

The quark cross section including one-loop corrections can now be written as:
0 1 Q° 0) 0
o,(p) = Ué )(p) + J(S )(p) = / ((5(1 —z) —|— — log 32 P( (z )) aé )(zp)dz (1.52)
where we have performed the [, integral in (1.47) with an infrared cutoff \. We can
see that the previous equation has the form of the parton model cross section (1.39)

except for the Q? dependence. It is telling us that we should consider a parton as
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having structure that depends upon the scale at which we are probing it. If we

multiply the previous formula by the parton density f,(y) and integrate in y we get:

o(P) = /dydzfq(y)qu(z, QQ)U(O) (yzP) (1.53)
where
T2, Q%) = (5(1 —2)+ ;I—W log %QP;;D(Z)) (1.54)

The formula (1.53) is the probability to find a parton ¢ in the hadron with a
fraction y of its momentum, times the probability to find a parton ¢ in parton ¢
with a fraction z of its momentum, times the cross section for the final parton with
momentum yzP. It is more convenient to introduce the identity [ dxd(z — yz) so

that we can finally obtain:

o(P) = [ dat i) (aP. i) (1.55)
where:
6(xP, p?) = o O(xP) + s—; log (%22) /dquq(z)(O)a(o)(sz) (1.56)
and:

f(o ) = / dydz f,(4)T gy (2 12)6(z — 1)

- a0+ [ o () ra(2)  am

The formula (1.55) is called the improved parton model formula and it is the gener-
alisation of the “naive” parton model formula (1.39). To achieve it we introduced a
new scale p called factorisation scale that separates long and short distance physics.
A parton emitted with transverse momentum less than p is considered to be part
of the hadron structure and is absorbed into the PDF by the redefinition given by
equation (1.57). Exactly as for the renormalisation of the coupling constant, we can
regard f,(x) as an unmeasurable bare distribution. The collinear singularities are
absorbed into this bare distribution at a factorisation scale p which plays a similar
role to the renormalisation scale. The finite contribution which is absorbed into

the distribution defines the factorisation scheme. In the M S scheme in addition to
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the divergent piece a contribution of the form In(47w) — . is also absorbed. Once
a scheme has been fixed it must be used in all cross section calculations so that
the same results are obtained independent of the scheme used. For example the
higher-order corrections to a cross section in hadron-hadron collisions use the same
factorisation scheme used to define the parton distributions.

After this procedure is completed we can safely use equation (1.55) because
the partonic cross section 6 (x P, u?) is now free from collinear singularities and the
redefined parton distribution function f,(x, u?) which receives contributions from the
long-distance (non-perturbative) part of the strong interaction, can be determined
from experimental data at any particular scale. A schematic representation of the

improved parton model formula is given in figure 1.7.

I

Hard Scattering

Figure 1.7: Schematic representation of factorisation of hadron/hadron collisions

with the improved parton model formula.

In this case the improved parton model formula is:

o(PuP) = Y [ dord fion, 1) oo 1) 00, 002,/ 5 )

/L‘?j
Also in analogy to the renormalisation group equations already mentioned before
we can too calculate the dependence of the parton distribution function on the

factorisation scale p. This is done by demanding p independence of the hadronic
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cross section:

0

,ﬂa—”Qa(P) =0 (1.58)

which gives in the general case the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi equa-

tion [11-13]:

8lozu2fi(x”u) :/m %;Ba’(%(u),Z)fj(ﬂf/z,u) (1.59)

With the equation above, given the parton distribution function at a specified value
of p1, we can compute it at any other value. The functions P;; are called splitting
functions and have a perturbative expansion in powers of a(p):
p. _ ) o, (s oo, () Lo 4
(). 2) = S P 4 (S) pD 4 (25) A0 4 0l (o0
They can be found in [11] and in [14-17]. Their complete NNLO corrections have
been computed and are documented in [18,19].
The Factorisation Theorem [8] generalises our argument to the case of an ini-
tial state gluon splitting and proves that the factorisation holds to all orders in

perturbation theory.

1.6 Helicity method

In this section we review the helicity method for the computation of tree and loop
amplitudes. In this approach the amplitudes are calculated for fixed helicities of all
external particles with each possible configuration treated separately.

In the traditional Feynman diagram approach as the number of external particles
increases the number of diagrams increases factorially. This leads, in intermediate
stages of the calculation, to expressions which become much more complicated than
the full result. This is because of large cancellations between different diagrams
that are related by gauge invariance. By decomposing the calculation in colour
and helicity gauge-invariant pieces, called partial amplitudes, we not only reduce
the number of diagrams that need to be evaluated but also identify the ones that
vanish using the colour/helicity information. This formalism was first developed in

references [20-25].
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The number of fixed helicity amplitudes that need to be computed can be reduced
thanks to symmetries such as parity, that allows one to simultaneously reverse all
helicities in an amplitude, and, charge conjugation which allows one to exchange a
quark and an anti-quark. Further to this we will see in the next section that the
gluonic amplitudes used throughout this thesis decomposed in colour obey cyclic
invariance on the gluon indices, line reversal and Ward identities and this reduces the
number of independent objects to calculate. The use of supersymmetric identities
can also simplify the calculation of loop amplitudes by managing the spins of the
particles propagating around the loop.

Once the independent helicity configurations, according to the scattering process
that we are interested in, are known, we can evaluate them as complex numbers and
then square to obtain the amplitude summed over helicities numerically.

We will now review how to write the amplitude in the most compact form,
by using spinor products, and how to evaluate the spinor products numerically to
compute the amplitude. We follow closely the notation in [26].

The solutions of the massless Dirac equation contain positive and negative energy
solutions interpreted as particles and antiparticles u(k) and v(k). These solutions
are identical up to normalisation conventions. Applying the projection operator P =

2(1+£75) on u(k) and v(k) yields two helicity states for particles and antiparticles:
1
ur(k) = S(1+7s)ulk)
1
ve(k) = 5(1£a)0(k (1.61)

The opposing signs in the equation above reflect that for the negative energy solution
v(k) the helicity of the antiparticle is the opposite of its chirality. The conjugate

spinors are:

w2 (F) = w5 (1 )

v (F) = o(R) (15 %) (1.62)

For amplitudes with a large number of lightlike momenta we use the shorthand

notation:

%) = 65) = we(ke) = ve(ki) (%] = (K] = us (ki) = ve (ki) (1.63)
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Amplitudes are expressed in terms of spinor inner products, combinations of the

spinor brackets above. They are defined by:

(ig) = G 15") = u(ki)us(k;) [ij] = (i7157) = ug(ko)u_(k;)  (1.64)

For numerical evaluation of the spinor products it is useful to have explicit for-
mulae for them, for some representation of the Dirac v matrices. In the Dirac

representation,

0 -1 -0 0 10

the massless spinors can be chosen as follows,

1 \/k_—eis% 1 -V k+
up (k) =v_(k) = oo | u-(k) = vi (k) = V2| i
—Vk~e
\/Fei¢k vkt
where,
14 7.2 14 7.2
i — k' +k _ k' £ ik Lt — 10 4 13 (1.65)

T VE2+R)? VETE
We can obtain explicit formulae for spinor products for the case when both

energies are positive,

@) = \Jhkfes = \Jkkr e = | Jlsyles
i) = ke ke = Jlsgle @ (166)
where s;; = (k; + k;)* = 2k; - k; and
R — R Kk — A2k

\/ ‘Sl]‘kj_k;_ \/ lswlkjk:;r

The spinor products are, up to a phase, square roots of Lorentz products. If

cos(g;;) = sin(¢;;) = (1.67)

both or one of the energies are negative we use the same formula (1.66) but with
k; replaced by —k; if kY < 0 and similarly for k;, and, with an extra multiplicative
factor of ¢ for each negative energy particle. We define [ij] through the identity:

1

() = ) = o (50— aelig ) =2k =y (168)
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We have showed that external fermions can be treated as helicity spinors [i*)
and (i*|. For gluonic amplitudes we also can to construct polarisation vectors from
spinor products. Each outgoing gluon or photon is written as a polarisation vector

¢*(p, k) where p is the momentum of the gluon and k is a reference momentum:

(0|l k)
V2(k|p*)

This form has the desired properties such that states with helicity £1 are produced

6, (p. k) = (1.69)

by €. We can make different choices of reference momenta k for each gluon in an
amplitude because when all the different terms that contribute are added we always
obtain a gauge invariant expression. This can be used to simplify the calculation by
making many terms and diagrams vanish.

The convention adopted to label the amplitudes is to assign the helicities to
bosons as well as fermions when they are considered outgoing. If they are incoming
the helicity is reversed. This means that in the amplitudes derived all the momenta
are outgoing. We can then apply crossing symmetry, by exchanging momenta to the

initial state, to obtain different scattering amplitudes from the same expression.

1.7 Colour decomposition

Further simplification in the computation of matrix elements comes from treating
the colour degree of freedom in a similar manner to the spin degree of freedom
described in the previous section. By keeping track of the colour information of
external particles it will be possible to factorise the matrix elements as a colour
structure times partial amplitudes [27-29] . The partial amplitudes are functions of
the kinematic invariants only and are easier to calculate than the full amplitude.

To achieve this we begin by identifying all possible colour structures that can
appear. The colour, in a general SU(N) theory, comes from quarks carrying a
fundamental colour index i = 1,..., N, antiquarks carrying antifundamental “anti-
colour” index 7= 1, ..., N and gluons carrying an adjoint colour index a = 1, ..., N?—
1.

The generators of the group 73} connect the fundamental, antifundamental and

adjoint representations of the SU(N). This means that for each ¢gg vertex we
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introduce a term proportional to T} whereas gluons couple through fobe with f

being the structure constants of SU (V) defined by:

[T, 7,7 = i\/éfabCT;j- (1.70)
We proceed by eliminating any structure constants ¢ appearing in Feynman dia-
grams in favour of the T%’s using:

Tr (T°T%) = &° (1.71)

fabc _ _% (Tl" (TaTch) —Tr (TchTa) ) (172)

The first property represents the normalisation of the colour algebra that is used in
the remainder of this thesis. The advantage of the choice of normalisation in (1.71)
is to avoid a proliferation of v/2’s in the partial amplitudes. If we now apply the
previous equation to eliminate the structure constants f,;. in favour of the T%’s, we
can reduce any tree diagram for n-gluon scattering into a sum of single trace terms.
This leads to the following decomposition of the n-gluon tree amplitude:

A (ks diyaid) = g" 72 Y T(T%W - T ) AT (1), -+ o (™))

O'ESn/Zn

(1.73)

Here g is the gauge coupling (% = ), ki, A; are the gluon momenta and helicities,
and Aee(1M ... pAn) are the colour ordered partial amplitudes.

The colour ordered amplitudes are far simpler to calculate than the full amplitude
A because they only receive contributions from diagrams with a particular cyclic
ordering of the gluons. Most importantly they are all separately gauge invariant
and this allows us to choose a gauge which simplifies the calculation for each colour

ordered amplitude independently. They satisfy the following properties:
e A,(1,2,...,n) is gauge invariant
e cyclic symmetry: A,(1,2,...,n) = A4,(2,3,...,1)
e reflection symmetry: A,(1,2,....n) = (=1)"A,(n,n —1,...,1)

e dual Ward identity:
An(1,2,3,..,n) + A(2,1,3,...,n) + ... + A,(2,3,...,1,n) =0
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e factorisation of A,(1,2,...,n) on multi-gluon poles

e incoherence to leading order in the number of colours:

Z |.A |2 n 2Nn 2 N2 Z { |A 1/\1 (n)‘”))|2—|—(9(N*2)}

colours 0ESn)Zn

To determine the singularities of the colour ordered amplitudes we must remem-
ber that fixing the ordering of the gluons means that the poles can only occur in
the invariants made out of cyclically adjacent momenta. But for now we leave the
discussion of the factorisation on multi-gluon poles mentioned to be done in more
detail in the next section.

For amplitudes involving external quarks there are in addition to traces some
strings of T%’s terminated by fundamental indices in the colour structure. In this
case the Fierz identity between the T" matrices:

Sy — Bir O (1.74)

N 11717272

T Te =

1)1 12]2 11]2

allows us to find the following colour decomposition for a gqgg---g amplitude at

tree level:

Azee({kiv )‘i7 az}) = gn—2 Z (Tag(s) T%(n))Atree(1>\1 2)\2 (3>\3)7 e 70_(n>\n))

) q )
gESH_2

where numbers without subscripts refer to gluons.

This procedure can be continued at the loop level where new structures are
generated. This is again an important simplification as it makes possible to break
the calculation of even more complex loop matrix elements into many gauge invariant

components that can be worked out separately.

1.8 Universal behaviour of QCD gluonic ampli-
tudes

In this section we will recall the divergent behaviour of the colour ordered ampli-
tudes. Unlike QED [30], it is the colour ordered partial amplitudes mentioned in

the previous section that have nice factorisation properties in the unresolved limits.
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Following from the factorisation of the primitive amplitudes on multi-gluon poles
we want to look at the factorisation properties at the amplitude squared level which
is valid for the leading colour diagonal piece. These were first derived in [31]. We will
consider first one unresolved parton, which is appropriate for isolation of infrared
singularities of (n + 1) parton scattering processes contributing at next-to-leading
order and then, two unresolved partons relevant to isolate singularities of the (n+2)
scattering processes contributing at next-to-next-to-leading order.

In both cases we find that the factorisation is:

e universal, in the sense that we only need to specify the type of singular limit
and the singular behaviour (at leading order in colour) will have a characteristic

structure

e is process independent, in the sense that it does not depend on the detailed

structure of |A,,1(1,2,...,n+1)?
e is always in the form of singular termx finite subamplitude squared

This study provides many insights into the infrared structure of QCD ampli-
tudes. In addition to this, subtraction methods to handle the occurrence of infrared
divergences at higher order, like the one used in this thesis, rely on constructing
counterterms with the same pointwise singular behaviour of the divergent ampli-
tudes. The precise formulation of the antenna subtraction method employed in
this work and how the counterterms are derived will be established in chapters 3,4.
However, the following results will be fundamental to guarantee that both matrix
elements and subtraction terms have the same infrared structure for one unresolved

parton (NLO) up to two unresolved partons (NNLO).

1.8.1 One unresolved particle

For an n tree gluon amplitude we have, in the limit where gluon b is soft, the QED-
like factorisation into an eikonal-type singular factor and a colour ordered tree-level

squared amplitude where gluon b has been removed:

Anir (L asbie, o on+ D 2 S 1A, . ase, .. n+ D) (1.76)
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with the eikonal factor given by:

2
Sope = Sac (1.77)

SabSbe

Similarly in the limit where two gluons become collinear, the sub-amplitudes
factorise. If gluons a and b become collinear and form gluon ¢, then adjacent gluons

give a singular contribution:

a//b 1
(Apir (1, anb, o+ D)2 Y8 —Pogg(2) An(Ly e n 4 D)
ab

(1.78)

while separated gluons do not,

Apir(L,-varee b n+ D 2 finite (1.79)

In equation (1.78), z is the fraction of momentum carried by one of the gluons
and, after integrating over the azimuthal angle of the plane containing the collinear
particles with respect to the hard process, the Altarelli-Parisi [11] collinear splitting

function Py,_., is given by:

Ppyg(z) =2 (1 - —+ ! . St a(1- z)> (1.80)

As we mentioned before the singular limits (1.76) and (1.78) are of the form of

a singular term times a finite subamplitude squared with one less gluon.

1.8.2 Two unresolved particles

In the case of two real unresolved particles there are a variety of different configu-
rations extensively studied in [32-34]. The expressions for these universal limits are
organised according to whether the two unresolved particles are colour connected or
not. In the unconnected case, the singular limits are merely obtained by multiply-
ing single unresolved factors. However, when the particles are colour connected, the
structure is more involved.

To define colour connection we return to the equation (1.73) where the n gluon
subamplitude is associated with the colour structure Tr(7T%® - .. T%x) depicted in

figure 1.8.
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a a, an-1 an

Figure 1.8: Colour flow contained in the colour ordered amplitude

Atree(1M ... phn),

This is a colour antenna with ordered emission of gluons with colour ay, as, . . .,
ap_1,an. Within this colour antenna, gluon 1 is colour connected to gluon 2 which is
colour connected to next gluon in the chain until gluon n which is colour connected

to gluon 1.

Two collinear pairs - colour unconnected

Two pairs of particles may become collinear separately, but the particle in one
or both the pairs themselves not “colour connected”. In these cases there are no
singular contributions containing both of the vanishing invariants. For instance if

partons {a,d} and {b,c} are collinear then,
A(...,a,...,b,...,c,...,d,...)|> — less singular (1.81)

By this we mean there is no contribution proportional to 1/s.48. and, when inte-
grated over the small region of phase space relevant for this approximation yields a
negligible contribution.

The situation where two pairs of colour “connected “ gluons are collinear is rather
trivial. If gluons a and b form P while ¢ and d cluster to form @ so that P and @

are themselves colour unconnected then,

1 1
AC-vab, e d )P = =Pyo(21) = Py-c(2) A P, Qo )P

Sab cd

(1.82)

Here z; and zy are the momentum fractions carried by a and ¢ respectively. As

before, azimuthal averaging of the collinear particle plane is understood.
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Triple collinear factorisation - colour unconnected

If three collinear particles are colour “unconnected” then there is no singularity. So

if a,b and ¢ all become collinear,
JA(... a,. .. b, . c,...)|* — finite (1.83)

and there is no singular contribution involving the invariants s.,Sp. Or Sgpe. AS
before, because the region of phase space where the triple collinear limit is valid is
extremely small, this gives a negligible contribution to the cross section. When two

of the three collinear particles are colour “unconnected” we find a singular result,
A(...,a,...,bc,...)|°> — 1/sp

However, when integrated over the triple collinear region of phase space that requires
SabsShe OF Sgpe all to be small, we again obtain a negligible contribution that is
proportional to the small parameter defining the extent of the triple collinear phase

space. We therefore ignore contributions of this type.

Soft /collinear factorisation - colour unconnected

Two particles may be unresolved if one of them is a soft gluon and another gluon
pair is collinear. When the soft gluon g is not colour connected to either of the

colour “connected” collinear particles ¢ and d, factorisation is straightforward,

1
A a,9,b,...,c,d, )2 = Sagb(Sab, Sag, sbg)S—ngqg(zﬂ.A(. cab, . P )P

cd
Two soft gluons - colour unconnected
When two unconnected gluons are soft, factorisation is again simple. For gluons ¢;

and gy soft we find,

’A( <oy @y g1, b> -y C,go, da .- )‘2 - aglb(sab7 Sagn Sbgl>ch2d(5cd7 chza sdg2)

x|A(... a,b,...,c,d,...)] (1.84)

so that the singular factor is merely the product of two single soft gluon emission

factors given by (1.77). Note that b = ¢ is allowed.
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Triple collinear factorisation - colour connected

In this configuration three colour connected gluons cluster to form a single parent

gluon. The colour ordered sub-amplitude squared then factorises:
JA(. .. a,b,¢,.. )7 = Puygc(W, 2,9, Sab, Sacs Stes Save) A -, P )|* (1.85)
where w, x and y are the momentum fractions of the clustered partons,
Do =wpp,  py=2app,  Pe=Yypp, With wH+z+y=1 (1.86)

The colour ordered function Py, — G is given by,

Pabc%G(u% T, Y, Sab; Sbe, Sabc) =2 X {

(1 —€) (xSape — (1 — y)Spe)? n 2(1 — €)Spe N 3(1—¢)

i Szbszbc (1 - y>2 Sabsczbbc 28(2160

N 1 ((1—y(1—y))2_ 22 + 2y + o xw—xzy—2+26 x >
SabSabe \  Yw(l —w) l—y y(1—y) (1-y)

N 1 (3x2_2(2—w+w2)(x2+w(1—w))+L+ 1 )
2SabShe y(1—y) yw  (1-y)(1-w)

£ (m o o p) (187

This splitting function is symmetric under the exchange of the outer gluons (a and

¢), and contains poles only in s,, and sp..

Soft/collinear factorisation - colour connected

In the situation when gluon a is soft, gluons b and ¢ are collinear and colour connected

the gluonic subamplitude factorises as:
lA|(...,d,a,bc,...)|* = PraelA(...,d, P,...)J? (1.88)
In this limit the collinear gluons form parton P and carry momentum fractions,
Py = 2pp, pe=(1—2)pp (1.89)
and we write the soft/collinear factor as,

Pd;abc(Za Saby Sbes Sabes Sady Sud Scd) (190)
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This limit can be obtained directly from the triple collinear limit of the previous
section by keeping only terms proportional to 1/w and subsequently replacing 1/w
by (54 + 5ea)/Saas 1/(1—w) by 1 and y by (1 - 2).

In fact in this limit we find a universal soft factor multiplied by a collinear

splitting function,

1
Pd;abc(zu Saby Sbes Sabes Sads Sbd Scd) = Sd;abc(za Saby Sbes Sabes Sads Sbd Scd)gpgg—(;(z)
(1.91)
where,
S + SC Sa + 2 C
Sd;abc(z7 Sabs Sbey Sabes Sady Sbds Scd) = M <Z + u) (1-92)
SabSad Sabe
A similar result holds for gluon ¢ becoming soft,
|A(...,a,b,c,e,.. )2 = Puee A(. .., Pe,...)|? (1.93)
where,
Pabc;e = Pd;abc(a — C, d— 6) (194)

In the case that b is soft the matrix element do not possess sufficient singularities

since the collinear gluons a and ¢ are not directly colour-connected,
|A(...,a,b,c,...)]> — less singular (1.95)

Here, there may be two powers of small invariants in the denominator, but, when
integrated over the appropriate (small) region of phase space this yields a vanishing

contribution.

Two soft gluons factorisation - colour connected

For gluons b and ¢ soft the colour ordered subamplitude factorises,
’A( -, a, b7 C, d7 .. )|2 - abcd(sada Saby Scds Sbey Sabes 5bcd)|~'4(' - @, d7 s )’2 (196)

where the connected double soft gluon function is given by,

252,
Sabcd<3ad7 Sabs Seds Sbes Sabes 3bcd> =
SabSbedSabeScd
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25, 1 1 1 4 21 —¢) [ s s 2
+ d( + + - )+(2)<“"+Cd—1).
She SabScd SabSbed ScdSabe SabeSbed She Sabe Sbed

(1.97)

Here a and d are the hard gluons surrounding the soft pair.

1.9 Summary

In this chapter we have collected all the ingredients required to calculate a perturba-
tive solution to QCD in powers of the strong coupling a,. By doing this we reviewed
some of the most important aspects of the theory and a practical application should

now be addressed. This will be the topic of the next chapter.



Chapter 2

Dijet production

In the previous chapter we described in a general way the technicalities that are
inherent in the theoretical description of a physical observable. Now we want to
apply those concepts to the study of dijet production at the LHC.

We proceed by making the definition of a jet from both the theoretical and ex-
perimental point of view in section 2.1. Subsequently, the first theoretical estimates
for jet production are given by the leading order cross section that we review in
section 2.2.

We already know that beyond leading order a method is required to handle the
infrared divergences present in the intermediate steps of the calculation. We will

address this problem in the next chapter.

2.1 Jet definition

Since the first propostion for the quark model was announced independently by
Gell-Mann [35] and Zweig [36,37] in 1964, several searches to disprove it or confirm
it were attempted. The quark model was able to classify the baryons and mesons
that were discovered throughout the 50’s and 60’s in a simple picture, where every
baryon is composed of three elementary quarks and every meson is composed of a
quark and an antiquark. New combinations of these states led to the prediction and
subsequent discovery of additional hadrons. So far combinations which are excluded

from the quark model have not been found.

35
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CAL+TKS END VIEW 25-MAR-1997 12:22 |Run 87288 Event 22409‘257DEC71994 02:20

Max ET = 344.6 GeV
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Figure 2.1: (a) End view and (b) side view of a high Er event recorded at DO.

The structure of the proton in terms of quarks is one of the predictions of the
model and experiments carried out in the late 60’s at the Stanford Linear Accelerator
Center (SLAC), indicated that indeed the proton has substructure. By increasing
the energy in the collisions involving protons we would expect to be able to break
this substructure apart and observe the quarks in the detector. Signals of this should
be straightforward because quarks carry fractional electric charge and at least one of
them should be absolutely stable. However in successive generations of experiments
with more and more powerful colliders, isolated quarks have never been observed.

This problem with the quark model has been reformulated by introducing the
idea of quark confinement. In this notion quarks are absolutely confined within
baryons and mesons and cannot be studied or observed in any more direct way than
at a hadron level. This property of QCD is intuitively related to the fact that the
force-carrying gluons of the strong interaction are charged and as a consequence the
force between quarks increases as they are separated. In this picture free quarks fly
apart but when they reach a separation distance of around 107" m (the diameter
of a hadron) their strong interaction is so great that new quark-antiquark pairs are
produced mainly from gluons. Thus many quark and antiquark pairs are produced
in a typical modern experiment that subsequently join together in combinations of

mesons and baryons that are actually recorded by the detector. This results in a
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http://atlas.web.cern.ch/Atlas/public/EVTDISPLAY/events.html

J EXPERIMENT Collision Energy

2009-12-14, 04:30 CET, Run 142308, Event 482137

Figure 2.2: Display of an event recorded by ATLAS with jets from the first pp
collisions at center of mass energy of 2.36 TeV. (Taken on December 14th 2009).

“spray” of roughly collinear colourless hadrons that are called jets.

In figure 2.1 we show an example of a two-jet event recorded at the Tevatron
resulting from a pp collision. We identify two clusters of energy appearing back to
back with high transverse energy which are composed of individual hadron tracks
highly collimated. We also see additional tracks and energy deposits between the
two outgoing hard scattered jets. These contain hadrons that do not fit in the jets
and constitutes the underlying event. This underlying event consists of particles
that arise from the beam-beam remnants and from multiple parton interactions. It
is an unavoidable background to most collider observables and it is the reason why
hadron-hadron collisions are more “messy” than electron-positron annihilations.

In figure 2.2 we show the first events with jets recorded by the ATLAS detector
with the LHC running at the highest center of mass energy achieved to date of 2.36
TeV.

To understand these reactions we have to proceed then by classifying the hadronic
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events according to the number of such clusters of energetic particles, referred to as
jets. The rate of these events can then be measured by introducing a procedure to
quantify the number of jets in the event at the detector level that we will discuss
below. On the theoretical side we use the concept of local parton-hadron duality
which postulates that the quantum numbers and momentum flow of the produced
hadrons closely follow those of the partons that initiated the jet. If we suppose that
the effects of hadronisation - the process whereby quarks and gluons cluster to form
hadrons - are small, we should obtain a reasonable agreement between theory and
experiment associating one jet with each parton.

This means that the measured cross section for high- £ jet production in hadron
colliders should follow closely the prediction obtained by computing the same cross
section in the parton model, considering the scattering of free partons given by the
matrix elements at fixed order in perturbative QCD.

To make this description more accurate and hence closer to the real world we
can compute the hard scattering cross section to higher order in the strong coupling
as. This introduces additional partons in the final state that can cluster to form a
spray of partons, much like the spray of hadrons observed in the experiments.

However since it is impossible to calculate and integrate the matrix elements
for the typical large number of partons produced in a collision (of the order of 30)
another refinement is the inclusion of a parton shower, matched to the fixed-order
perturbative calculation, that simulates soft and collinear QCD radiation from the
hard scattering scale down to the hadronisation scale where hadronisation models

can be incorporated to describe the formation of hadrons from quarks and gluons.

Jet algorithms

As we mentioned in the previous section, we need to formulate a procedure to
quantify the meaning of a jet. The goal is to apply an algorithm both to data and
to the theoretical calculation without ambiguities such that a reliable comparison
can be made between the two. The jet algorithms must satisfy certain criteria. For

example, on the experimental side they should be:

e detector independent, as they should not depend on the details of the detector
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geometry.
e minimising energy smearing or angular biases.

e stable with luminosity, that is the jet size behaves well under multiple scatter-

ings and high detector occupancy.

e computationally efficient in the reconstruction of jets from N particles.

easy to calibrate.

On the theoretical side the requirements are:

infrared and collinear safety, as the cross sections must be finite at any order
of perturbation theory and emission of soft particles should not change the

number of jets in the event.

low sensitivity to hadronisation.

invariant under longitudinal boosts.

produce the same number of jets at parton, particle and detector level.

According to this, two broad classes of jet algorithms are in widespread use at
modern colliders. These are the sequential recombination type algorithms and cone
type algorithms that we describe in the next subsections. A recent extensive review

on the topic of jet algorithms can be found in [38].

Sequential recombination type algorithms

Sequential recombination type algorithms such as k; [39,40] and Cambridge/Aachen
[41,42] define jets by repeatedly combining particles that are close in some distance

measure d;;. For eTe™ experiments the following steps are implemented:
1. For each pair of particles 7, j compute the distance measure d;;.
2. Find the minimum d,,;, of all the d;;.

3. If d,;n is below some jet resolution threshold d.,; then recombine ¢ and j into

a single new particle and repeat step 1.
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4. Otherwise, declare all remaining particles to be jets and terminate the itera-

tion.

For these algorithms a single parameter d.,; controls the number of jets. As d..
approaches zero we allow very narrow jets until eventually all hadrons are identified
as separate jets. Conversely, increasing the value of d,.,; produces broader jets with
far fewer multi-jet events.

When it comes to derive a corresponding hadron collider algorithm there is an
introduction of an additional particle-beam distance d;z. In that case if d;p is the
smallest distance we declare 7 to be a final state jet and remove it from the list of
particles before returning to step 1.

These type of algorithms are infrared and collinear safe because any soft or
collinear particle will get recombined right at the start of the clustering.

The choice of the distance measure d;; is what defines the sequential recombina-
tion algorithm. This choice has to be adapted to eTe™ experiments or experiments
with incoming hadrons. For example in pp collisions it is important that the choice
of distance is invariant under longitudinal boosts.

Problems with this type of algorithms are the irregular shape of the jets (which
makes them harder to calibrate at the detector level) and how to incorporate non-
perturbative corrections. They are also often quoted as computationally slow as
the procedures needed to cluster N particles scale like N3. We will look at new

developments that address these issues in the next section.

anti-k; jet clustering algorithm

The anti-k; [43] jet algorithm for hadron colliders generalises the distance measure

of the k; [39,40] and Cambridge/Aachen [41,42]:

_ AR?,
dij = min(k, k7 —" ARY = (y; — ;)" + (65 — ¢;)°,
dip = pi¥ (2.1)

where k;,, y; and ¢; are respectively the transverse momentum, rapidity and azimuth

of particle ¢. The d;; are the distances between entities ¢ and j and d;p is the distance



2.1. Jet definition 41

between entity i and the beam (B). From their definitions we can easily see that the
distances are invariant under longitudinal boosts.

The clustering process proceeds by identifying the smallest of the distances and,
if it is a d;;, recombining entities ¢+ and j, while if it is d;p identifying 7 as a jet
and removing it from the list of entities. The distances are recalculated and the
procedure repeated until no entities are left. We have introduced a new parameter
R that acts as a size and defines what gets called a jet. The remaining parameter p
takes the values p = 1 for the k; algorithm and p = 0 for the Cambridge/Aachen.

The value p = —1 defines the anti-k; algorithm and the distance measure d;; =
min(1/k7, 1/k7)AZ;/R? defines its general behaviour. According to the definition
of d;;, the distance between similarly separated hard and soft particle or two soft
particles will be larger in the latter case due to the transverse momentum of the
hard particle. This causes soft particles to cluster with hard ones before they cluster
among themselves [43]. If a hard particle has no hard neighbours within a distance
2R then it will simply accumulate all the soft particles within a circle of radius R,
resulting in a perfectly conical jet.

The case of two hard particles within R < Ay < 2R creates two hard jets. If
ki, > ki, then jet 1 will be conical and jet 2 will be partly conical missing the
part overlapping with jet 1. Instead if k;, = k;, neither jet will be conical and the
overlapping part will simply be divided by a straight line equally between the two.
For the general case k;, ~ ki, both cones will be clipped, with the boundary b
between them defined by ARyy/ki, = ARy /ky,.

Finally when we have A5 < R hard particles 1 and 2 will cluster to form a single
jet. If ki, > Kk, then it will be a conical jet centered on ky,. For ky, ~ k;, the shape
will be the union of the cones (with radius < R) around each hard particle plus a
cone (of radius R) centred on the final jet.

The previous paragraphs tell us that soft particles do not modify the shape of
the jet, while hard particles do. The jet boundary in the anti-k; algorithm is then
resilient with respect to soft radiation, but flexible with respect to hard radiation.

To address the speed issue of the sequential-recombination clustering algorithms,

reference [44] proposed a solution that reduces the computational time for the re-
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construction of N particles from N3 to N In N. This solution comes from rewriting
the problem of jet-finding into a two dimensional (rapidity and azimuth coordinates)
computational geometry nearest neighbour finding problem.

Technically, the problem is that of establishing and maintaining a nearest-neighbour
graph on the 2-dimensional surface of a cylinder. In computational geometry this is
addressed with Voronoi diagrams as a main structure. This has an approach imple-
mented in a public code CGAL that handles dynamic point sets in the construction
of Voronoi diagrams for N points with O(N In V) operations.

Combining these ideas and other strategies an implementation of the anti-k; jet

clustering algorithm is publicly available in the FastJet [45] implementation.

Cone type algorithms

The cone type algorithms follow a different approach to the jet definition. In such
algorithms, a seed particle ¢ sets some initial direction, and one sums the momenta
of all particles 7 within a circle (“cone”) of radius R around i in azimuthal angle ¢

and rapidity y:
AR = (yi — )" + (65 — )" < R? (2.2)

where y; and ¢; are respectively the rapidity and azimuth of particle . The direction
of the resulting sum is then used as a new seed direction and one iterates the
procedure until the direction of the resulting cone is stable.

Therefore seeded algorithms have to define how to pick the seeds and then two
main procedures, one to find a “stable cone” (a cone pointing in the same direction as
the momentum of its contents) and a “split-merge” procedure to convert those cones
into jets, somehow resolving the problem of cones that have particles in common.

One solution is to take as the first seed the particle with the largest transverse
momentum. Once a stable cone has been found with this seed, one calls it a jet
and removes all the particles contained in that jet. After that, the next seed is the
hardest particle among those that remain and use that to find the next jet, repeating
the procedure until no particles are left. This procedure guarantees that there are

no overlapping cones but it is collinear unsafe, as the splitting of the hardest particle
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(say p1) into a nearly collinear pair (pi4,p1p) can alter the ordering of the hardest
particles in the event and thus leading to a different final set of jets.

The split-merge approach merges a pair of cones if more than a fraction f of
the softer cone’s transverse momentum is in particles shared with the harder cone;
otherwise the shared particles are assigned to the cone to which they are closer.
Generally the overlap threshold f is chosen to be 0.5 or 0.75. One of the main issues
with this approach is again not being collinear safe since the addition of a new soft
seed particle can lead to new stable cones being found involving hard particles and
thus, altering the final set of jets.

Infrared and collinear unsafety problems have to be corrected since they can
violate the finiteness of perturbative QCD calculations, by altering the cancellation
between real and virtual corrections, but also invalidate the correspondence between
the complex hadron level and a simple few-parton picture of an event. This happens
when a random 1 GeV non-perturbative particle changes the multi-hundred GeV
events.

A solution to these problems is to carry out a seedless search for all stable cones.

We will see an example of that in the next section.

SISCone - Seedless infrared safe cone algorithm

In a seedless cone algorithm, the addition of a soft particle may lead to the presence
of new stable cones, however none of those new cones will involve hard particles and
therefore the multi-hundred GeV events are not altered and therefore the set of hard
stable cones is infrared safe.

To find the stable cones one takes all subsets of particles and draws a circle
around the jet axis of each particle, made from the momentum of all the particles
within a radius of it, and checks if the points contained in the circle are exactly as
those in the initial subset.

However, this procedure takes O(N2V) time to compute all the subsets and
check the stable cone property, making it impossible to use at hadron or detector
level. The SISCone implementation [46] reduces this to O(N?In N), following the

observations in [44] that considering the geometrical aspects of the problem can be
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p, [GeV] Cam/Aachen, R=1

p. [GeV] SISCone, R=1, f=0.75 P, [GeV]

Figure 2.3: A sample parton-level event together with many random soft “ghosts”,
clustered with four different jet algorithms, illustrating the “active” catchment areas

of the resulting hard jets [38|.

advantageous.

In the SISCone approach, the stable cone search reduces to a 2D “all distinct
circular enclosures” problem solved by considering all circles having a pair of par-
ticles on their circumference, resulting in an seedless infrared safe cone algorithm
that takes O(N%In N) time to reconstruct the jets. The code for the algorithm is

available publicly [47] both in standalone form and as a FastJet [45] plugin.

Jet algorithms - final remarks

We presented two types of strategies for jet definition: the use of sequential recom-
bination jet algorithms and cone algorithms. Both methods will be used in future
experiments, as it has been noted in [48], that for some observables they provide

complementary sensitivities to different classes of non-perturbative corrections.
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It is crucial that jets are defined in an infrared safe way to make measurements
meaningful when compared to fixed order (LO,NLO,NNLO) predictions. In addi-
tion, they should be computationally efficient in the jet reconstruction and we have
reviewed two examples that address both issues.

Figure 2.3 illustrates the jets that are produced with four different TRC-safe
algorithms, showing among other things the degree of regularity of the boundaries
of the resulting jets. Also in figure 2.4 the timings in terms of scaling with N are

shown for a subset of commonly used algorithms.

10% F T T T T
I R=0.7 : ;

LHC Io-Iur;ni LHC hi-lumi ' LHC Pb-Pb

100 1000 10000 10000

N

Figure 2.4: Timings for the clustering of a simulated 50 GeV dijet event, to which
increasing numbers of simulated minimum-bias events have been added (both sim-

ulated with Pythia) [38].

At the time of writing both ATLAS and CMS will incorporate FastJet [45] within
their software frameworks. CMS will use the k; algorithm and SISCone as their
default jet collections whereas ATLAS has adopted the anti-k; jet clustering as the

standard choice.

2.2 LO cross section

In this section we review the leading order (LO) cross section for dijet production:

p+p—ji+iJ (2.3)
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This reaction will be investigated at the LHC, i.e. pp collisions at /s = 14 TeV
where the jets arises from the large angle scattering of the elementary constituents
of the hadrons, the quarks and gluons. The use of a jet algorithm in the prediction
allows to determine also the single inclusive jet cross section pp — 7 + X according
to the experimental cuts. This offers an important precision test of QCD since this
reaction can be measured to a very high experimental accuracy and therefore be
used for measurements of the strong coupling constant and of parton distribution
functions. It is also important if we want to look for a breakdown of the standard
model due, for example, to the composite structure of quarks or production of new
particles. For this we would analyse the scattering of quarks and gluons at the
largest pr scale possible and look for deviations in the form of resonances or in the
shape of the QCD prediction.

The hadronic cross section for the process initiated by two hadrons with four-

momenta P; and P, can be written in factorised form as:

do(Py, o) =) / dayda f") (@, 13) [ (2, 13) 4635 (p, Py s (1), @/ 13,)
.J

(2.4)

;are the

The sum is over the parton flavors 4, 7 in the hadrons hy, hy and fi(hl), f (ha)

corresponding parton densities. The initial state partons i,j for the hard scattering
partonic process carry momenta p; = x1 P and py = x9FP,. The characteristic scale
of the hard scattering denoted by () could be the transverse momentum of a jet. The
pr and pg are respectively the factorisation and renormalisation scales introduced
in chapter 1. The partonic cross section can be calculated perturbatively and it

gives at leading order:

) 1
daﬁo=:d®xpmpuphﬁﬁ§'§:\N@;MVJfkpmpﬂ (2:5)

colour
spin

where the matrix elements that we need to consider are:

qg+q¢ — q+d¢
qg+q — q+gq

9tq — g+yg
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(d)

Figure 2.5: Diagrams for jet production at leading order.

g+g9g — g+yg (2.6)

which are shown in figure 2.5. These are the independent matrix elements squared
for 2 — 2 parton subprocesses with massless partons [49]. All other channels can
be obtained from the above by time reversal and crossing. S5 is the symmetry
factor for identical partons in the final state and f denotes an appropriate sum
and average over spin and colour degrees of freedom for incoming and outgoing
particles. Each quark in the initial state is ascribed a colour average of 1/N while
gluons receive a factor 1/(N? —1). Since a fermion has two spin degrees of freedom,
an additional factor of 1/2 has to be included for unpolarised quarks. For gluons

2(1 — €) polarisation states are possible in d dimensions. d®s(pg,pi;p1,p2) is the
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2 — 2 phase space for a final state with total momentum p/ + ph:

dd— lpk dd_lpz

dq)?(pkapl;plaPQ) = 2Ek(2ﬂ'>d71 2El(271')d71 (27T)d5d(p1 + P2 — Pk — pl) (27>

Finally the function J™ defines an n-jet final state through cuts on the m-parton
final state momenta. In this case, there are two partons, each of which must produce
a jet.

Because the center of mass of the parton-parton scattering is normally boosted
with respect to that of the two incoming hadrons, it is useful to classify the final
state in terms of variables which transform simply under longitudinal boosts. We
proceed by parameterising the four-momentum of a particle with mass m using the

rapidity y, the transverse momentum pp and the azimuthal angle ¢:

P = (E,ps, Dy, D-)

= (my cosh y, prsin ¢, pr cos ¢, my sinh y) (2.8)

where the transverse mass is defined as my = \/p2 + m?2. The rapidity y is defined

by:
1 E+p, 1 1+ Bcosf
=1 =—-In| ———— 2.9
Y QH(E—pZ> 2n(1—60089> (2:9)

and is additive under the restricted class of Lorentz transformations corresponding

to a boost along the z direction. Rapidity differences are boost invariant.
In the high energy limit (5 — 1) or in the massless case (m — 0) the rapidity is
often replaced by the pseudorapidity variable 7:

n = —Intan(0/2) (2.10)

It is a more convenient variable experimentally, since the angle # from the beam
direction is measured directly in the detector. It is also standard to use the transverse

energy:
Er = FEsinf (2.11)

rather than the transverse momentum pr, because it is the former quantity which

is measured in the hadron calorimeter. For massless particles the rapidity y and
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pseudorapidity 1 may be used interchangeably, as may the transverse momentum
pr and transverse energy Er.

The cross section for a 2 — 2 scattering process is given by:

E;E,dot© 1 —<
;3p§d3p4 1672 D IMP5H(pr+ p2 = ps = pa) (2.12)

colour
spin

We can obtain the inclusive jet cross section at the parton level, in terms of the

new variables, by integrating (2.12) over the momentum of one of the jets:

Edot©  dot©
d*p  dyd’pr

1 —
=3 > IMPa(s 4+t + u) (2.13)
colour

spin

where ¢t and u are fixed by s and the center of mass scattering angle,
1 1
t= —53(1 — cosf) u= —53(1 + cos ) (2.14)

There are several limitations when we truncate the prediction at leading order.
The calculation becomes strongly dependent on the choice of renormalisation scale,
that enters using the running coupling constant, due to the absence of higher order
terms. Also, the absence of diagrams including initial sate radiation means that
at this order the jets always appear back to back. Furthermore, a single parton is
identified with a jet and there are no extra radiation to give the jet a shape. Thus
the cross section is independent of the parameter R that defines the jet size contrary
to what is measured in a detector and this also makes it impossible to study the

energy profile of a jet.

2.3 Summary

In this chapter we defined from the experimental and theoretical point of view the
jet production phenomena as observed in hadron colliders.

On the experimental side we discussed the need for good algorithms that can
classify the recorded events at the detector level according to the number of produced
jets. For hard scattering events we expect an agreement between the measured data

and QCD predictions. These also implement the same jet algorithms to define jet
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observables and are given by the partonic cross section which can be calculated
perturbatively as a power series in the coupling constant folded with the parton
distribution functions.

We analysed the LO term of the series for jet production in pp collisions and will

turn to the more interesting case of NLO contributions in the next chapter.



Chapter 3

NLO antenna subtraction

When we consider now the NLO corrections to an observable we expect to find the
divergences mentioned in chapter 1. As we have seen theorems guarantee that these
singularties cancel when all the divergent pieces are assembled together. That is
usually achieved within a subtraction formalism.

Therefore we introduce the antenna subtraction method as a solution to this
problem. We leave the next-to-next-to-leading order (NNLO) extension of this
method to the next chapter and concentrate for the moment on the next-to-leading
order (NLO) antenna subtraction. The building blocks are, as we will see, antenna
functions that we introduce in section 3.1. The numerical implementation for final-
final, initial-final and initial-initial kinematic configurations is also treated in section
3.2.

After that we illustrate the application of the method for the next-to-leading
order (NLO) real and virtual corrections to dijet production in sections 3.3, 3.4. As
we expect for an infrared safe observable, we will obtain the cancellation of infrared
divergences between the two contributions.

We finally end the chapter with the motivation to extend this calculation to

next-to-next-to-leading order (NNLO) accuracy.

ol
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3.1 Antenna subtraction at NLO

Suppose we want to compute the m-jet cross section to NLO. According to the
considerations of chapter 1, we have to consider the exclusive cross section do® with
(m++1)-partons in the final state, the one-loop correction do” with m-partons in the
final state, and a mass factorisation counterterm do™* to absorb the divergences

arising from initial state collinear radiation into the parton densities:

donro =/ doy 1o +/ doy o +/ doNto (3.1)
A1 A% d®,,

The terms on the right hand side of (3.1) are separately divergent although their
sum is finite. To write a Monte Carlo program to compute those integrals we must
first isolate and cancel the singularities of the different pieces and then numerically
evaluate the finite remainders of the (m + 1) and m-parton channels to obtain the
NLO contribution to the cross section.

Subtraction schemes are a well established solution to this problem. They work
by finding a suitable counterterm do¥; , for do®; ,. It has to satisfy two properties,
namely it must have the same singular behaviour in all appropriate limits as do%;
and yet be simple enough to be integrated analytically over all singular regions of
the (m + 1)-parton phase space in d dimensions. We proceed by rewriting (3.1) in
the following form:

donro = /dq) (dUﬁLo - dUJSVLO) + /dq) (/dUJSVLo +dog o+ dU%fo) (3.2)
m+1 m

1

In its unintegrated form doy;, has the same singular behaviour as do¥; 5 such
that the first integral is finite by definition and can be integrated numerically in
four dimensions over the (m + 1)-parton phase space. The integrated form of the
counterterm do¥; , then analytically cancels the explicit singularities of the virtual
contribution do;, and the mass factorisation counterterm dol/f, as required by
the KLN and Factorisation theorems mentioned in chapter 1. After checking the
cancellation of the pole pieces, we can take the finite remainders of these contribu-
tions and perform the last integral on the right hand side of (3.2) numerically over

the m-parton phase space.
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The actual form of the counterterm do¥,;, depends on the subtraction formalism
employed because there are many ways of approximating the (m + 1)-parton matrix
elements in the neighbourhood of its soft and collinear singularities.

Using the general properties of soft and collinear emission Catani and Seymour
[50] proposed a subtraction method that is completely process independent. They

derived an improved factorisation formulae, called dipole formulae:

dU]AS;fLO = Z dULO ® dv;lipole (33)

dipoles

The dipole factors are universal, i.e., completely independent on the details of the
process and built from the physical knowledge of how the (m + 1)-parton matrix
elements behave in soft and collinear limits. They can be computed once and for
all and applied to any process to mimic any of the (m + 1)-parton singularities that
are kinematically degenerate with a given m-parton state.

Alternative approaches include the FKS subtraction [51-53] and more recently
[54]. Tt is also important to mention that both the Catani-Seymour [50] and FKS [51]
subtraction terms have been implemented in an automated way in [55-60] and [61]
respectively. These packages aim to automatically generate the subtraction terms
and real emission amplitudes for any given process. Used in conjunction with recent
automated packages that compute the virtual contribution [62-65], there is the
exciting possibility of having an automated NLO QCD parton level event generator
available in the near future.

For the rest of this thesis we are going to employ the antenna subtraction
method [66-69]. This method has been extended to NNLO but we leave that dis-
cussion to the next chapter. Here we focus only on the antenna subtraction at
NLO. In this method, antenna functions describe the colour-ordered radiation of
unresolved partons between a pair of hard (radiator) partons. We must distinguish
three possible configurations of radiators: final-final when both radiators are final
state partons, initial-final when one radiator is an initial state parton and the other
radiator is a final state parton and, finally, initial-initial where both radiators are
initial state partons.

This means that we will derive subtraction formulae decomposed in these three
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final-final | initial-final | initial-initial
ete” v X X
ep v v X
pp v v v

Table 3.1: Antennae configurations needed according to the scattering process

configurations and label them with a superscript (ff), (if), (i7). In table 3.1 we
distinguish the configurations that are needed according to the scattering process
that we are interested in. Even though we will write down all formulae specifically for
pp collisions these formulae can be easily adapted to ep or ete™ for the configurations
they have in common. To achieve that we should only modify the number of partons
that enter the matrix elements in these formulae. This is because we obtain an m-jet
production at leading order from an m-parton matrix element in e*e™, an (m + 1)-
parton matrix element in ep and an (m + 2)-parton matrix element in pp.

To proceed we write down the m-jet real radiation cross section at NLO in pp

collisions:

1
dofo = N Y AP (ko o o) g——

perms

X |Mm+3(k17 s /fm+1;P17p2)|2J751m+1)(k17 sy km+1) (3'4)

The normalisation factor N includes all QCD-independent factors as well as the de-
pendence on the renormalised QCD coupling constant . |M,i3(ki, ..., kmi1; p1, p2)|?
is a colour ordered amplitude squared and the sum in (3.4) is over all colour order-
ings including a symmetry factor S, 1 for identical partons in the final state. The
initial state momenta are labeled as usual as p; and py whereas the (m+1)-momenta
in the final state are labeled ky,..., k1. d®,,.1 is then the 2 — m + 1 particle

phase space:

dq)m+1(k17 R km+1;p17p2) =
dd—lk1 dd_lkm—i-l
2By (27) 1 2By (2m)

(27T)d5d(p1 + P2 — kl — ... karl) (35)

The jet function Jim+n (k1 ..., kmy1) defines the procedure for building m-jets from
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(m + 1)-partons. The main property of JD s that the jet observable defined

above is collinear and infrared safe.

Antenna subtraction - final-final configuration

When summing over all colour orderings in equation (3.4) we find terms of this type:
|Mpis(. .. 0,5, k, .. ) (3.6)

where 7, j, k are colour connected final state partons. This configuration contains a

singularity when 7 is unresolved between ¢ and k which can be approximated by:
Xije| Mo (.. T, JK, .. ))? (3.7)

where X is a final-final antenna function that describes all configurations (for this
colour-ordered amplitude) where parton j is unresolved. The momenta for the new
partons IJ and JK are linear combinations of ki, k;, ki, obtained with a final-final
mapping that we describe in section 3.2.1. Both radiator partons ¢ and k are in
the final state and we call this situation a final-final antenna, depicted in figure
3.1. We still have to sum over all possible unresolved partons in this colour ordered
amplitude. After that we can then sum over all colour orderings to obtain the full
subtraction term, for the final-final configuration, to use with (3.4). The subtraction
term for this configuration reads:

1

AU = NS A (ki - s k1 1, P2) 5
m+1

perms

X ZX?]‘k|Mm+2(kla .. -akIJkaKa CI ;plap?)P‘LEnm)(kla s 7KIJaKJKa .. '7km+l)
J

(3.8)

The subtraction term involves the (m + 2)-parton amplitude depending only
on the redefined on-shell momenta ki, ..., K, Kk, ... y kma1, where K, K are

linear combinations of k;, k;, kx, while the tree antenna function X7, depends only

ijk
on k;, kj, ki. The momenta redefinition that generates on-shell momenta Ky, Kyx
and implements momentum conservation will be discussed in section 3.2.1.

The jet function J5" in (3.8) does not depend on the individual momenta k;, k;

and ky,, but only on K7, K k. One can therefore carry out the integration over the
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K

Figure 3.1: Antenna factorisation for the final-final situation.

unresolved dipole phase space appropriate to k;, k; and kj, analytically, exploiting

the factorisation of the phase space,

d®,1(kr, oo By p1,p2) =
dq)m(kb ) KLB RJK? R km+1;p17p2) : dq)Xle (kz’ k]’ kk’ RIJ T RJK)(BQ)

The NLO antenna phase space d®y,;, is proportional to the three-particle phase
space relevant to a 1 — 3 decay.

For the analytic integration, we can use (3.9) to rewrite each of the subtraction
terms in the form:

|Mm+2|2 ‘]r(nm) dq)m/dq)xuk Xzojk’

The analytic integral of the subtraction term is therefore defined as the antenna

function integrated over the fully inclusive antenna phase space, normalised appro-

priately,
1
Xii(sijn) = ol0] /dq’Xuk Xij- (3.10)
where
66_6’7
C(e) = (4m) o (3.11)

This integration is performed analytically in d dimensions to make the infrared
singularities explicit and added directly to the one-loop m-particle contributions.
The factor (872 (47)~¢e?) in the above equation is related to the normalisation of
the renormalised coupling constant (1.35).

Factors of ¢g? that appear in real radiation and virtual contributions can be

combined with C'(e) to give:

¢C(e) = (O‘—) Cl(e) (3.12)
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where:

Cle) = (4m)e (3.13)

Antenna subtraction - initial-final configuration

In the presence of hadrons in the initial state, matrix elements exhibit singularities
that are not accounted by the subtraction terms discussed in the previous section.
These singularities are due to soft or collinear radiation within an antenna where
one or the two hard partons are in the initial state [68]. This occurs in equation
(3.4) when in the ordered amplitude parton j is unresolved between an initial state

parton and a final state parton:
IMopis(1,2,7,k,...) 2 (3.14)

The hat denotes the initial state partons. The singularities of 7 between initial state

parton 2 and final state parton k can be approximated by:

—

Xojk|Mumio(1,22, JK, ...)|? (3.15)

where X, j; is an initial-final antenna function that describes configurations (for
this colour-ordered amplitude) where parton j is unresolved. The mapping that
generates the new momenta JK and the fraction 2 will be discussed in 3.2.2. This
configuration is depicted in figure 3.2. The full subtraction term for the the initial-
final configuration reads:

1

Sm—l—l

do-S’(if) = N Z d(IDm+1(/€1, ce ,km—l-l;pl?pQ)

perns
2

X Zngk ‘Mm+2(k1; e 7KJK7 oo kg pr, apo) J,(nm)(/ﬁ, S RJK; o k)
J
(3.16)

Replacing 1 — 2 generates the subtraction term associated with singularities with
the other incoming parton.

The terms necessary to subtract singularities associated with coloured particles in
the initial state can then be simply obtained by crossing the corresponding antennae
for final state singularities. Due to the different kinematics involved, the factorisa-

tion of the phase space is slightly more involved and the corresponding phase space
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x2

Figure 3.2: Antenna factorisation for the initial-final situation.

mappings are different. To cancel explicit infrared poles in virtual contributions and
in terms arising from parton distribution mass factorisation, the crossed antennae
must be integrated, analytically, over the corresponding phase space.

The tree antenna ngk, depending only on the original momenta p;, k; and kg,
contains all the configurations in which parton j becomes unresolved. The (m + 2)-
parton amplitude depends only on redefined on-shell momenta &y, . . ., Kjk,..., and
on the momentum fraction x.

The jet function, J,(nm), in (3.16) depends on the momenta k; and k; only through
K. Thus, provided a suitable factorisation of the phase space, one can perform
the integration of the antennae analytically. Due to the hard particle in the initial
state, the factorisation of phase space is not as straightforward as for final-final
antennae.

The phase space can be factorised as an m-parton phase space convoluted with

a two particle phase space [68]:

dq’m+1(k’1, < k?m+1;]917p2) = dq)m<k17 cee KJK: cee ,km+1§p1a$p2)

Q? dz
—d®y(k;, ky; — 3.17
X o 2( ' k7p27q) T ( )
with @* = —¢* and ¢ = k; + kx — p2. Replacing the phase space in (3.16), we

can explicitly carry out the integration of the antenna factors over the two particle
phase space. When combining the integrated subtraction terms with virtual contri-

butions and mass factorisation terms, it turns out to be convenient to normalise the
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Figure 3.3: Antenna factorisation for the initial-initial situation.

integrated antennae as follows

X = /dcb e (3.18)
i,jk — C(G) 22’/T 1,7k » .

where C/(¢) is given in (3.11).

Antenna subtraction - initial-initial configuration

The last situation to be considered is when the two hard radiators are in the initial

state. The following colour ordered amplitude:
M, 5,21, ) (3.19)

has the singularities of j between initial state partons 1 and 2. These singularities

can be approximated by:
X127j|M($1p1,I2p2,]%,l~,...)|2 (320)

where X9 ; is an initial-initial antenna function that describes configurations (for
this colour-ordered amplitude) where parton j is unresolved. The momentum frac-
tions x; and x5 as well as the tilde momenta will be discussed in section 3.2.3. This
configuration is displayed in figure 3.3. The full subtraction term for the initial-
initial configuration can be written as:

1

Serl

dUS’(ii) = N Z dq)m+1<k17 teey kj*l? kja kj+17 R km+1;p17p2)

perms

0
2 X
J

ijg@m)(lz:la---7l~€j—17kj+1a"'7km+1)- (321)

- N - - 2
Mm—i—Z(kla cee kj—h k‘j+1, ceey k‘m+1; Z1P1, $2p2)
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In order to fulfill overall momentum conservation all the momenta in the arguments
of the reduced matrix elements and the jet functions have been redefined. The
two hard radiators are simply rescaled by factors x; and x, respectively that we
will discuss in section 3.2.3. The spectator momenta are boosted by a Lorentz
transformation onto the new set of momenta {k;, [ # j}.

The phase space factorises into the convolution of an m particle phase space,

involving only the redefined momenta, with the phase space of parton j [68]:

dq)m+1(k1> cee km+1;p17p2) = d@m(iﬁ, ceey kj—la /fj+17 cee km+1;$1p1,9€2p2)
X(5<£L'1 — .@1) 5(&32 — i'g) [dkj] dl’l d$2 . (322)

Inserting the factorised expression for the phase space measure in eq. (3.21), the
subtraction terms can be integrated over the antenna phase space. The integrated
form of the subtraction terms must be, then, combined with the virtual and mass
factorisation terms to cancel the explicit poles in €. In the case of initial-initial
subtraction terms, the antenna phase space is trivial: the two remaining Dirac delta
functions can be combined with the one particle phase space, such that there are no

integrals left. We define the initial-initial integrated antenna functions as follows:

1 R N
Xik,j(mly .I'Q) = m /[dk‘]] T1 X2 5(1’1 — 1'1) (S(IEQ — .I'Q) Xik,j (323)

where C/(€) is given in (3.11).

Antenna functions

In the previous subsections we have seen that the subtraction term is constructed
from products of antenna functions with reduced matrix elements (with fewer final
state partons than the original matrix element), and integrated over a phase space
which is factorised into an antenna phase space (involving all unresolved partons
and the two radiators) multiplied with a reduced phase space (where the momenta
of radiators and unresolved radiation are replaced by two redefined momenta). The
full subtraction term is obtained by summing over all antennae required for the
problem under consideration. In the most general case (two partons in the initial

state, and two or more hard partons in the final state), this sum includes final-final,
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initial-final and initial-initial antennae. We will see an example of this in section 3.3
when we compute the NLO corrections to the dijet cross section.

To conclude this section we will briefly review how to derive the antenna func-
tions.

Each antenna is determined by both the external state and the pair of hard
partons it collapses to. In general we denote the antenna function as X. For
antennae that collapse onto a hard quark-antiquark pair, X = A for qgq. Similarly,
for quark-gluon antenna, we have X = D for qgg and X = E for ¢q¢'q final states.
Finally, we characterise the gluon-gluon antennae as X = F for ggg, X = G for gqq
final states.

We are considering only tree level three-particle antennae involving only one un-
resolved parton which suffices at NLO. At NNLO we will need four-particle antennae
involving two unresolved partons and one-loop three-particle antennae.

In all cases antenna functions are derived from physical matrix elements: the
quark-antiquark antenna functions from v* — ¢gq + (partons) [70], the quark-gluon
antenna functions from Y — ¢ + (partons) [71] and the gluon-gluon antenna func-
tions from H — (partons) [72]. The tree-level antenna functions are obtained by
normalising the colour-ordered three- and four-parton tree-level squared matrix el-

ements to the squared matrix element for the basic two-parton process,

Ml
X, =5, ‘k,IK#
T MY
Ml
X = Sijraz ‘MZ(;LP ; (3.24)

where S denotes the symmetry factor associated with the antenna, which accounts
both for potential identical particle symmetries and for the presence of more than

one antenna in the basic two-parton process.

3.2 Numerical implementation of NLO antenna
functions

In the colour-ordered quark-gluon and gluon-gluon antenna functions derived from

physical matrix elements for neutralino decay [71] and Higgs boson decay [72], it is
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in general not possible to identify the hard radiators and the unresolved partons in
a unique manner. The reason for this ambiguity is in the cyclic nature of the colour
orderings, which is already evident in the three-parton antenna functions: each pair
of two partons can in principle act as hard radiators, resulting in more than one
antenna configuration present in a single antenna function. This means that we
have to disentangle the multiple singularities of these antennae into sub-antennae
where an appropriate mapping can be used.

We will concentrate on the pure gluon channel and describe the numerical im-
plementation of the gluon-gluon antenna function with a pure gluonic final state

.

3.2.1 Final-Final emitters

The tree level three-parton antenna corresponding to the gluon-gluon-gluon final

state is [67]:

F??(lm 297 39) =

513523 512523 512513 5923 513 512

2 82 S 82 S 82 S 5128 5128 513S
123°12 123°13 123223 12213 12223 13923
5123

+43123 + O(E) > (325)

where the invariant masses between final-state momenta are always defined with a

plus sign:

sij = (ki + k;)°
The simple unresolved limits of FY(1,2,3) are:

1. Soft limits:

F9(1,2,3) = Sy,
F9(1,2,3) 2= Sy,
F3(1,2,3) = Sizz (3.26)
2. Collinear limits:
P23 "%, (),

S12
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)3, 1

F§(1,273) ng—>G<Z) ’
513
0 24113¢ 1
F3 (1,2,3) — —ng_(;(z) (3.27)
523

where the single eikonal factor S;;;, and the splitting function P,,_.c(z) were defined
in (1.77) and (1.80) respectively. As can be seen from the pole structure, this
tree level antenna function contains three antenna configurations, corresponding to
the three possible configurations of emitting a gluon in between a gluon pair. We

decompose [67]:
Fy(1,2,3) = f5(1,3,2) + [3(3,2,1) + f3(2,1,3) (3.28)

where:

1 52025 S198 S128 8
fy?(l,3, 2) = —2 123512 | 512513 | 512523 +—8123+(9(6)> (3.29)
5123 513523 S23 S13 3

This sub-antenna f3(i, 7, k) has the full j soft limit and some of the i || j and j || k
limits of the full antenna (3.25), such that ¢ and k can be identified as hard radiators.
Therefore this is the antenna we use in the numerical implementation with a unique

{3—2} momenta mapping: (i, 7, k) — ((ij), (;lg))

K vk +rkl + 2k
Ky = (L—2)kl+(L—r)k + (1—2)kf (3.30)
where:
v Q(Sij‘f‘sik) P Szjk Tsjk
1
— L [a-ps2rs)
§ Q(Sjk + 3ik> |:( p) Sjk TS]
Ar(1l —7) s::5.
o= 14 o) sys (3.31)

SijkSik
The parameter r can be chosen conveniently, we use [73, 74]:

Sik

r= .
Sij+5jk
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This mapping implements momentum conservation K an+ K (JK) = ki +kj + kg

and satisfies the following properties:

K(QIJ) =0 K(QJK) =0
f((u) — k; f((JK) — ky, when j is soft
K () — ki +k;j K (k) — ki when ¢ becomes collinear with j
K (15 — ki K 7Ky — kj + ki when j becomes collinear with &

This guarantees proper subtraction of infrared singularities.

As it was mentioned in the description of the antenna formulation we also need
the analytic integral of the subtraction term to combine it with the virtual correc-
tions and obtain the cancellation of the singularities analytically. That necessarily
implies that we need the integrated form of the antenna over the antenna phase

space (final state kinematics) which has been calculated and documented in [67].

3.2.2 Initial-Final emitters

In this section we use invariant masses between a final state momentum and an

initial state momentum that we define with a minus sign:

sip = (pi — /‘ff)2

The initial-final gluon-gluon-gluon antenna function like all NLO initial-final
antenna functions can be obtained by appropriate crossing of particles from the
final to the initial state [68]. Its unintegrated form can then be obtained from (3.25)

by making the replacements:
so3 — (ko + k3)?
s12 = (p1 — ka)?
s13 — (p1 — k3)2
Q% = 512+ S13 + 23

and it reads [68]:

F??(im 24, 39) = 2(@2)2

1 882 882 852 882 882 882
12 12 13 13 23 23
513 593 S12 S93 512 513
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12812513 4 12523813 i 12812523 4 48?2 4 48?3 i 4553

523 512 513 523513 523512 512513

+24823 + 24812 + 24813 + (9(6) ) (332)

where the hat identifies the gluon crossed to the initial state. It is convenient to

decompose this antenna in the following way:
F(1,2,3) = £3(1,2.3) + f3(1,3,2) (3.33)

where:

1 /8s%; 8s3, 12593513  4s3, 453,

g + + +

(Q ) 512 512 512 523512 812(312 + 313)
88%3 n 6812813

91,2,3) =
f3(7’> 2

+ 12893 + 12519 + 12513 + O(G) )
S23 523

This sub-antenna f2(1, 7, k) has the full j soft limit, the full 1 || j limit and some
of the j || k limit of the full antenna (3.32), such that we can identify 1 as the initial
state radiator and k the final state radiator. To numerically implement this antenna

we use the following {3—2} mapping: (1,7, k) — (T, (}%)) [68]:

plo= xpy

Ky = K+ k- (1—2)p (3.34)

where the bar denotes a rescalling of the initial state parton and x is given by:

_ S15 + S1x + Sik (3 35)
815 + S1k .

Proper subtraction of infrared singularities requires that the momenta mapping

satisfies:
Tp1 — Pi, K (JK) — ki when j becomes soft ,
Tp1 — pr, K(JK) — kj + kg when j becomes collinear with &,
xpy — p1— k;j K (JK) — ki when j becomes collinear with 1.

In this way, infrared singularities are subtracted locally, except for angular corre-

lations, before convoluting with the parton distributions. That is, matrix elements
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and subtraction terms are convoluted together with PDFs. In addition, the re-
defined momentum f(( sKk) must be on shell and momentum must be conserved,
p—kj— ki =xp — R'(JK), for the phase space to factorise in (3.17).

The integrated form of the antenna (3.32) over the antenna phase space (initial

state kinematics) has been calculated and documented in [68].

3.2.3 Initial-Initial emitters

In this section the invariant mass between two initial state momenta is defined with

a plus sign:

s12 = (p1 +p2)2

The initial-initial gluon-gluon-gluon antenna function is obtained immediately
from the corresponding initial-final (3.32), but the Mandelstam invariants have to

be replaced by:

s12 — (p1 +p2)2
513 — (pl - k3)2
S23 — (pz - k3)2

2
Q” = 512 + S13 + 523

and it reads [68]:

F3(1,2,3)

(@22

12813823 i 12812823 4 12813812 4 48?3 4 48%3 i 48?2

1 882 882 882 882 882 882
13 13 23 23 12 12
593 S12 S13 512 513 S93

512 513 523 512523 512513 513523

—|—24812 + 24813 + 24823 + O(E) ) (336)

where the hat identifies the gluons crossed to the initial state.

In the antenna F{(1,2, j) the only gluon that can be soft is j, because the initial
state gluons are not allowed to be soft by kinematics, and it can also be collinear with
the initial state gluons 1 or 2. This antenna can then be used with a single initial-

initial mapping where j is unresolved and 1 and 2 act as the initial state radiators and
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therefore does not need to be further decomposed in sub-antennae. The mapping
used in this configuration is the following {i,ﬁ,j,...,l,m, L} = {i,i, ol m, ...}
68]:

Py = xpf
Py = Toph
~ 2k - (¢ +q) . 2k - q .
ku — ku _ _ qu + qu + q#
: (g +g)? ( ) ¢
¢ = pf+ph -k
@ = P+ (3.37)

where the bar denotes rescaling of both the initial state partons and the tilde mo-
menta are all the momenta in the final that are not actually part of the antenna
but require boosting in order to restore momentum conservation. This is because
g = p1 + D2 lies along the beam axis but the vector component of ¢ = p; + p2 — p;

is in general not along the beam axis. The x; and x, are given by [68]:
$ . S12 + 525 \/812 + S1j + 595
=
S12 + S15 S12
S12 + S15 [S12 + S2; + Sij
Ty = 12 1j \/ 12 27 1j (338)
S12 + Sgj 812

It yields the correct soft and collinear limits:

1. jsoft: x1 — 1, x9 — 1.
2. kj = z1p | p1: x1 = (1 — z1), 22 = 1.

3. kj=zp2 || par w1 =1, 22 = (1 — 22).

It should be pointed out the transformation is not unique. Possible transforma-
tions are however strongly constrained. If one requires a symmetrical treatment of
x1 and 9, rotations are not allowed as transformation. To show that, we take p;
to be transverse to the beam axis. Bringing ¢ to the beam axis with a rotation will

force us to choose to rotate ¢ either towards the p; or the p, side. This would favor



3.3. NLO real corrections to dijet production 68

either x; or x5. The only way to bring ¢ to the beam axis, without having to choose
between z; and x5y is in this case a boost transverse to the beam axis.
The integrated form of the antenna (3.36) over the antenna phase space (initial

state kinematics) has been calculated and documented in [68].

3.3 NLO real corrections to dijet production

We are now ready to implement the antennae functions as building blocks for sub-
traction at NLO. We consider the real radiative corrections to dijet production from
the pure gluon channel where the antennae decompositions of the previous sections
can be immediately applied. In this case the LO cross section is:
dogo = dq)2(p3,p4;p1,p2)% Z !Mggﬂgg|2J2(2)(p3,p4) (3.39)
colour
spin
Using the colour ordered decomposition of section 1.7 we can rewrite it in the fol-
lowing form:

1 - A . .
do_[l?o = NBorndCDQ(pi%pél; p17p2)5 Z Ag(lm 0(2>g7 0(2)97 0(])9) ‘]2(2) (plvp]>
T {2,...,4)

1 Aa L.
- NBorndq)Q(pfﬂ?pll;phpQ)? Z (2"4401(197 297 Zgajg)‘]Q(Q)(pi)pj)

" P(i,j)e(3,4)
+A2<ig,z'g,ég,jgwé%i,pj)) (3.40)

where the {2,...,4} are the 3! permutations in the four gluon amplitude where
index 1 is kept fixed. In the second equality we reduced these to 2! using the
cyclic symmetry of the amplitudes A}. Finally the factor Np,,.,, contains the sum
and average over spin and colour degrees of freedom for incoming and outgoing
particles, as well as the coupling constant, that appears at leading order:

N2(N?-1) ,

N, orn — T/ aro  aNo
5 ANz —1)2?

(3.41)

Using the same colour ordered decomposition of section 1.7 we can write the five

gluon real radiation cross section in the following form:

g C(E) ' 2
%) C(e) d®3(ps, pa, Ps; P15 D2) o7

dajj\%/'LO = N Nyorn ( 31
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2 A . . 3
Z (A[B)(1972gazgajgakg) ‘]2( )(p’ijﬂpk’)

P(i,5,k)€(3,4,5)
+Ag(ig)zguégng)kg) J2(3)(pzap]7pk)> (342)

With the help of the antennae functions defined in the previous sections we will now
write the subtraction term for the single unresolved configurations of the gg — ggg

matrix element of (3.42). The real radiation subtraction term reads:

as\ Cle) 2
d 5 - NNorn<_s> ——do 5 5 ; ’ o1
ONLO b 2r) Cle) 3(ps, p1, P53 P1, p2) 3 Z {
P(i,5,k)€(3,4,5)
f??(ég>igajg)f42(igv g3 (73)97 kg) J§2)(@;>pk)

1, Gigs ko) AS(Ag, 24, (i7)g, ()g) 57 (i 1)

19 kogy 1) A1 g, 20, 0g, (KG)g) IS (i i)

DO

A . A fay fa3 ~ ~ 2 ~ ~
+Fz’?(1g> g, 29)A2(1ga 29, Jg Kg) JQ( )(pj7pk)

A . A R Fay /'\/ 2 —
"‘f:?@ga]g? kg)Ag(lm ig,2g, (7K)g) Jz( )(piapjk)

19 kgy 1) A1 g, 29, (KG)g) IS (i i)

} (3.43)

where we have used a combination of gluon-gluon-gluon antenna functions with two
emitters in the final state, initial state and one emitter in the final state and one
in the initial state. Each of these antennae has a reduced matrix element evaluated
with hard momenta given by the momentum mappings of the previous sections. The
total number of antenna functions used is equal to the total number of unresolved
particles in the final state per colour ordered amplitude.

This subtraction term has been checked with phase space trajectories generated

with RAMBO [75]. In each singular region the ratio of the matrix element with the

subtraction approaches unity.
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3.4 NLO virtual corrections to dijet production

The virtual contribution has the following form:

I *
doxro = dq’2(p37p4;p1>P2)§ Z 2 Re(MLoMl-loop)J2(2) (pi, ;)

colour
spin

Qg 1
= N Nyorn, <%) d®s(ps, pa; p1, 2) o1 2Re Z
’ {2,...,4}

(3.44)

where M}, and My, are the four gluon tree and one-loop primitive amplitudes.

The singular part of the loop amplitude is given by [76]:

< s . D=6l +e)(dn)
Myi(1g,24,1g, Jg) = ( 13(1(—2€>)( )

2 11 1 S12 S2i 1.9 5 4
2t ()

+O() (3.45)

Keeping only the divergent poles in 1/¢% and 1/e we can rewrite the virtual correction

in a more appropriate form to perform the analytic cancellation of the infrared

singularities:
dg]‘\/fLO -
o 1 (1 — €)’I(1 + €)(4m)°
:NN o’r‘n<_>d® 5 s ) ar 2R,
B o 2(P3, pas 1 p2)2! T'(1— 2e) Z e
P(i,5)€(3.4)

2 11 1 S12 S9; &AL . 2
2 () o (2)) ] 2
2 11 1 S1i S2i A A 2
a- et () () )
+0O(e°) (3.46)

Using the symmetry of the gluon phase space the 2! permutations precisely cancel
the identical particle factor of 1/2! and it is more convenient to keep one particular
ordering. The virtual contribution becomes:

g 47T €
doXro = N Npomn (%) dq)2(p3;p4§p1ap2)%2 Re{
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2 11 1 S s A A
20 () (22| 2 2 0

2 11 1 S13 S93 A A 2
MR AHUCHBACH) )

+0(%) (3.47)

where we have used the identity:

L(1—€)’T(1 +e€) 1 3
Ti—209 —Ta—g 9 (3.48)

Introducing now the colour ordered infrared singularity operator:

v 1 11 Se0\
7O S (e _ S99 Py
a6 (899) 2I'(1 —¢) | € * 6e Re p? (3.49)

we can rewrite the virtual contribution as:

¥

dO'XTLO = NNBorn <27T

) d®2(p3,p4;p1,pz)0(6)2{
[I%)(Slz) + I (s3) + ) (s34) + Ié?(sm)} 248(14,24,35,49) J5” (ps, ps)

+ [Iélg)(sm) + Iglg)(523) + I;z)(824) + I%)(SM)} AZ(ig, 345 Qm 4g)<]2(2) (p3;p4)}

+0(€°) (3.50)

3.5 Cancellation of infrared divergences

We will now collect the leading poles of the integrated antenna functions used to

write down the subtraction term do® [67,68]:

1 . 2\ ~¢ 1
o [ 120,29 = 218@00 -0 - (%) Sl + 0
% /d%,g F(1,2,3) = —I{)(Q)0(1 — 21)8(1 — 22) — TE)(Q1)6(1 — 22)8(1 — 1)
2\ —€ g\ —€
- (%) Qiepé%’@l)é(l —13) — (%) gepg?(@)m —21) + O(")

where the colour ordered splitting kernel is:

11 2
Phy (2) = 500 =)+ 2Do() + — — 4+ 20 — 207 (3.51)
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and the distributions Dy(z) were defined in (1.49). The analytic integration of the
subtraction term over the factorised phase space can be carried out using the pre-
vious results. Using the symmetry of the gluon phase space the 3! permutations in
(3.43) precisely cancels the identical particle factor of 1/3! and it is more convenient
to keep one particular ordering in (3.43). After relabeling the final state particles

we obtain the following for the poles of the integrated counterterm:

[ 080 = N Noow (52) é<e>2{

d(I)Z (p?n D4; plap2)2Az(10)(ig> an 397 4g>J2(2) (p37p4)
[T (529) — T (55) - Iy;(su) 1) (s1)|

~ (2) Q2 - dr 1 (0)
—d@z(p37p4,p1,p2)214 (1 039> 49) S5 (3, P4) - __pgg( )
L T 2€
B PN 2\ "¢ dz 1
—d®y(ps, pai pr, 52)2AY (14, 24, 3. 49) IS (3. pa) (F) ?2—6195,?)( )

+d®2<p37p4;p17p2)A1(10)<ig7 39: 24 4g)J2(2) (p3,p4)
[_Iélg)(sﬂ) - Ié?(SM) - Ig;)<313) - Ig?(éés)}

T 2e€

dr 1 ©) (5
2

_ A N d.%' 1
—d®y(p3, pa; 1, p2) AL (1, 39> 24, 49) I8 (D3, a) (—) / —p\(x)

. Q2
—d@z(p3,p4;p1,]32)14510)(19, 3g: 2g, 49)J2(2) (p3, pa) <—2)
(3.52)

The poles contained in the operator I g]) match exactly the ones appearing with
opposite sign in the virtual contribution. The remaining poles correspond to the

mass factorisation contribution. The mass factorisation counterterm is given by [50]:

Qg 1 S
dO_NLO = — (%) ﬁ/dmlde dafo(z,j;pl,pQ){
1 [Arp®\ €
o1 = aa) |1 () W) + K2 (o)
F

+0(1 — 1) {—% (42—52>6Np§g)(x2) + Kj;_gsi(mg)} } (3.53)

where the actual form of the kernel K% (z) specifies the factorisation scheme. Set-

ting K% (r) = 0 defines the MS factorisation scheme. Introducing the expression
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Figure 3.4: (a) Single jet inclusive cross section at NLO compared to DO data [77]
and (b) errors on extraction of a; at CDF [78].

for the born cross section (3.40) in the previous equation we achieve the cancellation

of the remaining collinear singularities in (3.52).

3.6 Beyond NLO

As we have argued in chapter 1 the inclusion of the NLO correction makes the QCD
prediction more accurate. This can be seen in figure 3.4(a) where a good agreement
(over 6 orders of magnitude) between NLO QCD and experimental data on the
single jet inclusive cross section is observed.

However, when using this data to determine the strong coupling constant oy,
it turns out that the dominant source of error in this extraction comes from the
unknown higher order corrections. Figure 3.4(b) shows the theoretical uncertainty
in the prediction in excess of the experimental errors. As a result, CDF find from

their Run I data
as(Mz) = 0.1178 £ 0.0001 (stat) "5 ooes (578) o 004r (scale) & 0.0059(pdf).

To lower the theoretical error, it is mandatory to compute next-to-next-to-leading
order (NNLO) corrections to the single jet inclusive cross section.
Furthermore the high- F'r jet data helps to constrain the gluon parton distribution

function at large values of x. However, as the truncated cross section depends on the
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Figure 3.5: (a) Scale dependence of the jet cross section at Er = 70 GeV at the
Tevatron [79] and (b) total theoretical uncertainties at the LHC as a function of the

jet transverse momentum [80)].

choice of scale, then, as the scale is varied, the parton distribution function will have
to change in order to be able to fit the data. Figure 3.5(a) shows that doing a fit
with a larger renormalisation scale causes the high-x gluon pdf to be larger since the
high- £ partonic cross section has decreased. Therefore the scale dependence of the
cross section makes a contribution to the pdf uncertainty. A better determination of
the gluon pdf, which requires all observables computed consistently at NNLO, can
then be used as a new input to improve the theoretical accuracy of any hadronic
scattering prediction such as the Higgs boson production.

Figure 3.5(b), taken from the CMS physics analysis summary [80], shows the dif-
ferent contributions to the total theoretical uncertainty at the LHC for the inclusive
jet cross section as a function of the jet transverse momentum.

It is hoped that the inclusion of the hitherto unknown NNLO contribution will
reduce the theoretical uncertainties. An example of this is given in Figure 3.6 that
shows, for the electroweak boson rapidity distribution, the excellent convergence of
the perturbative expansion when going from LO to NNLO and an increased stability
against scale variations.

At this order, the inclusion of initial state radiation (in figure 3.7) gives the final
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Figure 3.6: Electroweak rapidity gauge boson distributions at NNLO for the LHC.

The bands indicate the residual scale dependence [81].

state a transverse momentum kick. At LO the incoming particles have no transverse
momentum with respect to the beam such that the jets always appear back to back.
The effects of initial state radiation give a more complex final state and a more

theoretical accurate description of transverse momentum distributions.

NNLO

Figure 3.7: Radiative corrections coming from the initial lines

Also at NNLO the reconstruction of the jets where up to two partons can cluster

to form a jet becomes more precise (figure 3.8). The additional radiation gives a

much more rich structure to the jet.

3.7 Summary

In this chapter we looked at the antenna subtraction method to perform calculations
at NLO. This formalism is completely general at this order in perturbation theory
for ete™, ep and pp collisions for massless fermions [68]. In all cases it allows the

cancellation between real and virtual diverging pieces to be done analytically. An
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LO NLO NNLO

Figure 3.8: Jets modeled by extra partons at NNLO

extension to include massive fermions already appeared [69].

Also in this chapter we derived, as an example, an implementation of the method
for the NLO corrections to the dijet cross section. However we have seen that there
are strong arguments to extend this calculation to NNLO accuracy. This necessarily
implies the extension of the method to NNLO which is going to be the topic of the

next chapter.



Chapter 4

NNLO antenna subtraction

In this chapter we discuss the NNLO extension of the antenna subtraction method.
We begin by identifying the ingredients for the computation of a NNLO observable
and review the general subtraction formula at this order in section 4.1.

In section 4.2 we concentrate on the tree level double real subtraction term
that subtracts singularities corresponding to two partons becoming simultaneously
soft and/or collinear. In this derivation there are several configurations to consider
depending on the colour connection of the unresolved partons. It is very important
to understand this general formula as we will apply it in chapter 6 to build the NNLO
real corrections to gluon scattering, the dominant contribution for the two-jet cross
section at NNLO.

As we will see, subtraction terms for all these configurations can be constructed
using either single four-parton antenna functions or products of three-parton antenna
functions. The four-parton antenna functions are a new ingredient at NNLO. We
end the chapter discussing the numerical implementation of the gluon-gluon-gluon-
gluon antenna function F} for the three possible assignments of radiators: final-final,

initial-final and initial-initial.

4.1 NNLO general infrared subtraction term

There have been several approaches to build a general subtraction scheme at NNLO

(82-90]. We will follow the antenna subtraction method which was derived in [67].

7
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This formalism has been applied in the computation of NNLO corrections to three-
jet production in electron-positron annihilation [91-94] and related event shapes
[95-99], which were subsequently used in precision determinations of the strong
coupling constant [3,100-103].

The aim of this thesis is to show that this method can also tackle computations
of NNLO processes with coloured particles in the initial-state, which is relevant for
both hadron-hadron or hadron-lepton colliders. We will concentrate on the double
real corrections within the pure gluon channel for the two-jet production at NNLO.
To achieve this we need a new ingredient - the 4-parton (or NNLO) FY antenna
function for the three possible assignments of radiators: final-final, initial-final and
initial-initial.

The unintegrated form of all NNLO antennae, derived from physical matrix ele-
ments, for the final-final configuration is documented in [67]. However, as we have
seen in the NLO example of the previous chapter, it is the inclusive integrated an-
tennae over the antenna phase space that explicitly cancels the singularities arising
from virtual contributions. Obtaining the analytic integration of all the NNLO an-
tennae functions is then crucial to establish the generality of the method at this
order. For the final-final configuration of radiators, reference [104] used a reduction
procedure based on methods developed for multi-loop integrals, to relate all anten-
nae integrals into four four-particle phase space master integrals. Their analytical
evaluation followed by direct analytic integration in closed form and by unitarity
relations between known multi-loop integrals and phase space integrals.

The results for these master integrals were also checked numerically with the
sector decomposition approach to the 1 — 4 particle phase space. We will look at
the sector decomposition method in the next chapter.

For the initial-final radiator configuration, we can obtain the unintegrated form
of all initial-final antennae by crossing particles to initial state in the corresponding
final-final antennae. These have to be analytically integrated over the appropri-
ate antenna phase-space (initial-state kinematics) and this was achieved recently
in [105]. These results can now be implemented in a parton-level event generator

programme and allow the full calculation of NNLO corrections to jet production
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A (99 — 9999) AM (g9 — gg9) AP (gg — g9)

Figure 4.1: Sample diagrams for matrix elements contributing to the dijet inclusive

rate at NNLO

observables in deeply inelastic electron-proton scattering.

For hadron-hadron scattering processes we still need initial-initial antennae func-
tions, which can again be obtained from the corresponding initial-final ones by
crossing. However the integrated initial-initial antenna functions are at the present
known only to NLO, and work on their integration at NNLO is ongoing. To proceed
we will now look now at the contributions that enter the NNLO corrections.

NNLO calculations for pp — m-jets require several ingredients: the two-loop
(m 4+ 2)-parton matrix elements, the one-loop (m + 3)-parton matrix elements and

the tree level (m + 4)-parton matrix elements:

GNNLO ~ / [(M(0)|M(O)>}m+4 d@me,(nm“)

L /[<M<°>|M(”>+(M(1>|M<0>>}m A, , ., J0+D

+3

+ / [(M(l)IM(1)> + (M(O)IM(Q)) + <M(2)|M(0)>}m+2 d@mJ}er)

where a sample diagram for each ingredient with m = 2 in the pure gluon channel is
given in figure 4.1. As usual the individual contributions in the (m+2), (m+3) and
(m + 4)-parton channels are all separately divergent although their sum is finite.
In the 4-parton channel (or virtual-virtual channel), Affxo) (99 — gg) represents
the interference between the tree level 2 — 2 matrix element with the two-loop
2 — 2 gluon matrix element. It was derived in [106,107]. The remaining two-
loop matrix elements, for quark-quark and quark-gluon scattering, needed for the
NNLO contribution to inclusive jet production were obtained in [108-111]. This
contribution contains explicit infrared divergences coming from the integration over

the loop momentum. This singular behaviour is predictable with the Catani formula
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for the IR pole structure for a general on-shell QCD amplitude at two loop order
derived in [112]. Also the self interference of the one-loop ASXD (99 — gg) amplitude
contributes in the 4-parton channel and it was calculated in [113].

In the 5-parton channel (or real-virtual channel), Aélxo) (99 — ggg) is the in-
terference between the tree level 2 — 3 matrix element with the one-loop 2 — 3
matrix element. It was derived in [114]. This contribution contains explicit infrared
divergences coming from integrating over the loop momenta and implicit poles in
the regions of the phase space where 1 of the final state partons becomes unresolved.
This corresponds to the soft and collinear limits of the one-loop amplitude that were
analysed in [115,116].

Finally, in the 6-parton channel (or real-real channel), Aéo) (99 — gggg) is the
2 — 4 tree level matrix element squared. It was derived in [25,27,28]. In this chan-
nel the singularities occur in the phase space regions corresponding to two gluons
becoming simultaneously soft and/or collinear. However this “double” unresolved
behaviour is universal and was discussed in section 1.8.

Understanding the origin of the singularities of the different contributions is
fundamental to constructing a subtraction procedure that can achieve their analytic
cancellation. In the antenna subtraction method we have the following general
formula for subtraction at NNLO [67]:

_ R s S
donvro = / (doNnro — doXnio) + / doNnro
dq>7n+2 dq>7n+2

V1 VS,1 VS,1
+ / (dUNNLo - dUNNLo) + / doynzo
AP i1 o

m—+1

b [k, (11)
do,,

where, for pp — m-jets, do¥ v denotes the real radiation subtraction term coin-
ciding with the (m + 4)-parton tree level cross section do&y, in all singular limits.
Likewise, da]‘\/,}g\}lLO is the one-loop virtual subtraction term coinciding with the one-
loop (m+3)-parton cross section dax,’}v o in all singular limits. Finally, the two-loop
correction to the (m + 2)-parton cross section is denoted by dcr]‘\/,’?V LO-

In chapter 6 we will give an explicit formula for do¥ v for gg — gggg and show

in chapter 7 that indeed the phase space singularities of the double real correction
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can be written in terms of antenna functions. In the next section we will show how

to derive the tree level double real radiation subtraction term do® v o-

4.2 Tree level double real subtraction term do%

Let us consider the construction of the subtraction term for the double radiation
contribution do¥ ; o, which shall correctly subtract all single and double unresolved
singularities contained in the (m-4)-parton real radiation contribution to m-jet final

states in pp collisions,

1
dogyro =N Z APy io(ky, ..., k’m+2;p1,p2)s—
m—+2
perms
X |Mm+4(k17 <o 7km+2;p17p2)|2 Jr(rzm+2)<k17 s 7km+2) : (42)

Single real radiation singularities correspond to one parton becoming soft or collinear,
while double real radiation singularities occur if two partons become soft or collinear
simultaneously. Singular terms in these limits can be identified by requiring a mini-
mum number of invariants tending to zero in a given kinematical configuration. This
number depends on the limit under consideration and follows from the phase space
volume available to a given configuration. A detailed discussion of the kinematical
definition of double unresolved limits was already given in section 1.8.

We must distinguish the following configurations according to the colour connec-

tion of the unresolved partons:

(a) Ome unresolved parton but the experimental observable selects only m jets.
(b) Two colour-connected unresolved partons (colour-connected).

(¢) Two unresolved partons that are not colour connected but share a common

radiator (almost colour-unconnected).

(d) Two unresolved partons that are well separated from each other in the colour

chain (colour-unconnected).

For each configuration mentioned the subtraction formula has a characteristic
antenna structure. Therefore in the following subsections we will discuss the indi-

vidual formulae for each of the configurations (a) to (d).
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Figure 4.2: Colour connection of the partons showing the parent and daughter

partons for the double unresolved antenna.

L 8 e I (B

Figure 4.3: Colour connection of the partons showing the parent and daughter

partons for two adjacent single unresolved antennae.

The first configuration was treated already in the context of antenna subtraction
at NLO in section 3.2. In the context of the construction of do¥ o, the same
single-particle subtraction terms can be used. These do however not yet guarantee
a finite (m + 4)-parton contribution in all single unresolved regions for two reasons:
(1) while the jet function in do¥;, ensured that the subtraction term is non-zero
only in the single unresolved limit it was constructed for, this is no longer the case
for single unresolved radiation at NNLO; (2) the subtraction terms for the remain-
ing three double unresolved configurations will in general be singular in the single
unresolved regions, where they do not match the matrix element. Both problems
will be addressed below.

The remaining three configurations (b)—(d) are illustrated in Figures 4.2, 4.3
and 4.4. The singular behaviour of the full (m + 4)-parton matrix element in these
configurations is the product of double unresolved factors (see section 1.8) and re-
duced (m+2)-parton matrix elements. Subtraction terms for all these configurations
can be constructed using either single four-parton antenna functions or products of
two three-parton antenna functions. In all cases, attention has to be paid to the
matching of different double and single unresolved regions. This problem has been
addressed already in publications on subtraction at NNLO [70,82-84,117,118], the
most concise discussion can be found in [84].

In the following, we construct the subtraction terms for all four configurations.
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U UL ===+ 1J -

Figure 4.4: Colour connection of the partons showing the parent and daughter

partons for two disconnected single unresolved antennae.

4.2.1 Subtraction terms for single unresolved partons dai}’?\, 10

The starting point for the subtraction terms for single unresolved partons are the

NLO single unresolved antenna subtraction terms (3.8), (3.16), (3.21):

1

Sm+2

S,a,(
doyaiid) =N Z AP0k, - - . Kir2; p1, p2)

perms

X Z Xiojk (Mopis(k, ..o Ky, Kk, ..., Km2; 1, p2)|?

J;nm+1)(]€1, R ,K[J,KJK, .. .,]{Zm+2>

(4.3)

do Jff?VLlQ =N Z d(I)m+2 ki,..., km+2;p17p2)57i+2

perms
o ZXg,jk (Mis(k, o, Kyie, oo ki prapa)|?
J

T (e, Kgy o kngs) |0+ (1e2)

(4.4)
doyaio =N Y dd,., kl,...,kj_l,kj,kjﬂ,...,km+2;p1,p2)5;2
perms
X ZX123|Mm+3 /ﬁ, ceey I%j—la /;?j+1, e 7]%m+2§ I1p1,$2p2)|2

JH D Ky ko Ky, kmya) (4.5)

where the NLO jet function J&™ is now replaced by Jn, (m+1),

The sum over j is the
sum over all unresolved partons in a colour ordered amplitude between radiators i

and k£ which can be both located in the final state (4.3), ¢ in the initial state and k
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in the final state (4.4) or both in the initial state (4.5). Their position defines the
type of the three-parton antenna which is used Xjj;, X; jr or Xj; i respectively and
the mapping used to generate the momenta in the reduced colour ordered amplitude
(M3

When j is unresolved, doy% o coincides with the matrix element (4.2). However
at NNLO the jet function J""™) allows one of the (m + 1) momenta to become
unresolved while at NLO J7(nm) required all m momenta to be hard. In this limit
Aoy o does not coincide with the matrix element (4.2). We distinguish two cases:
(1) when one of the new momenta, K;; or K, becomes unresolved and case (2)
where any other momentum k, or /;O becomes unresolved.

Case (1) is necessarily a double unresolved limit since the new momenta K;;,
Kk, are linear combinations of two momenta and we discuss it below.

In case (2) dai}}l\, Lo becomes singular as &, or k, become unresolved and it does
not coincide with the limit of the full (m + 4)-parton matrix element. However if
we take this limit we find that daf,’}l\,LO collapses into the product of two almost
colour-connected or colour-unconnected antenna functions with reduced (m + 2)-
parton matrix element which coincide with the structures (c¢) and (d) that we will
define below. This means that this spurious limit cancels exactly against do% LO
and dov% LO-

For the double unresolved limits we have on the one hand the limit where one of
the new momenta K, Kk, is unresolved, or the colour-neighbouring limit, where
two pairs of momenta become independently collinear but one pair lies inside the
antenna while the other pair consists of the remaining antenna momentum and its
colour-connected neighbour. Each of these appears twice in the sum over j giving
the two possibilities of attributing the inside/outside pair. These spurious limits
will cancel exactly against similar terms that also appear twice in the structure
(b) of do3% ,, that we will define below. Any other colour connected unresolved
configuration vanishes.

On the other hand, double unresolved limits involving k; and any other mo-
menta k, in the reduced matrix element that are almost colour connected or colour

unconnected are not vanishing in doi;?\, o- In fact they yield twice these double
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unresolved limits of the (m+4)-parton matrix element because the role of k; and k,
can be interchanged and having j = o in the sum results in two identical terms con-
tributing to the same limit. The formulas for dJJS\;]CVLO and da}i’?\,Lo will be defined
to compensate this oversubtraction.

The analytic integration of this piece proceeds by using the formulas for the
phase space factorisations given in section 3.2 with the results for the integrated

antennae at NLO.

4.2.2 Subtraction terms for two colour-connected unresolved

S,b
partons doy ;o

When two unresolved partons j and k are adjacent, we construct the subtraction
term starting from the four-particle tree-level antennae Xz, X jri, Xi jx. By con-
struction they contain all colour connected double unresolved limits of the (m + 4)-
parton matrix element associated with partons j and k unresolved between radiators
1 and [. However this antenna can also become singular in single unresolved limits
associated with j or £ where it does not coincide with limits of the matrix element.
To ensure a finite subtraction term in all these single unresolved limits, we therefore
subtract the appropriate limits of the four-particle tree antennae, which are prod-
ucts of two tree-level three-particle antennae, such that the colour-connected double

subtraction term reads:

1
do‘]%%(Lf(];) = N Z d®m+2(k17 s 7km+2;p17p2)5
perms m+2
| D (K = XX — XXl

jk

|Mm+2(k17 ceey KIJKa KLKJ; ceey k’m+2;P17P2)|2

J?Slm)(kla o Krgr, Ky, - Jkma2) |, (4.6)

i 1
da]%?\}([/]cO) = N Zd(bm—i-Q(kla'"7km+2;plap2)5,—

m+2

perms

0 0 0 0 O
X E (X2,jkz - X2,ij§,Kz - XjleQ,JL)
jk
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|(Mopio(k1, oo, Kygps - - ka2 D1, Tpo)|?

J&m)(k’h--wKJKLa-"akm—&—Q) + (]_ <—>2) , (47)

S,b, (it
da]\f’?\}(L()) = N Z dq)m-i—?(kla sy kj) kla cee 7km+2;p17p2)s—+2
perms m
X Z (X?ij - Xg,ij?Q,K - X?,ij%Q,J)
jk

|Mm+2(]%17 cee l;?j—la /;?k+1; ooy Ko mapy, $2p2)’2

T (Eyy ki B, - ) (4.8)
where the sum runs over all colour-adjacent pairs j, k and implies the appropriate
selection of hard momenta 4,/ which as usual have three possible assignments of
radiators. In all cases the (m + 2)-parton matrix element is evaluated with new
on-shell momenta given by a momentum mapping that we will discuss in section 4.3
when we describe the numerical implementation of this formula.

The products of three-parton antenna functions in do}?,’?\, .o subtract the singular
limits of the associated four parton antenna and each contribute equally in the
colour-neighbouring configuration and spurious limits of do¥%, Lo discussed in the
previous section. In all genuinely colour-connected limits, the four-parton antenna
functions correctly match the singular structure of the (m+4)-parton matrix element
(4.2). Singularities in the (m + 2)-parton matrix element itself are forbidden by the
jet function.

The analytic integration of this counterterm follows from the antenna factorisa-
tion of both the squared matrix elements and the (m + 2)-particle phase space in
figures 4.5, 4.6, 4.7.

The factorisation of the phase space reads for final-final, initial-final and initial-

initial respectively:

d®m+2(kla ceey k‘m+2;p1,p2) = dq)m(kh cee f(IJKa f(LKJa ceey km+2;plap2)
x d®x,,, (ki ki, ki, by Krox + Kiig) (4.9)

d®m+2(k1,...,k3m+2;p1,p2) = dq)m(k}l,...,KJKL,...,km+2;p1,ZL'p2)
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i
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Figure 4.5: Tllustration of NNLO antenna factorisation representing the factorisation
of both the squared matrix elements and the (m + 2)-particle phase space when the

unresolved particles are colour connected between two final state radiators.

1
k
2 J
JKL
JKL
x2
Figure 4.6: Tllustration of NNLO antenna factorisation representing the factorisation
of both the squared matrix elements and the (m + 2)-particle phase space when the

unresolved particles are colour connected between and initial state ¢ and a final state

[ radiator.

2 dz
X g_d(bS(kjakk)kl;p?vCI)_ ) (410)
m xr

ch)m—i—Q(kla cee ,k‘m+2;p1,p2) = dq)m(]%la cee ];?j—la l;?k;+1, sy k?m+2; Z1P1, x2p2)
X5($1 — Zi’l) (5(1’2 — (2’2) [dl{?]”dkk] dl’l dl’g R (411)

where in (4.10) Q* = —¢?, ¢ = k; + ki + k; — po. A similar factorisation holds with
(1 « 2) for initial state singularities with parton 1. Using (4.9), (4.10), (4.11) we

can rewrite each of the genuine four-particle subtraction terms in the form,

M2 T dD,, / AP, X, (4.12)
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Figure 4.7: Tllustration of NNLO antenna factorisation representing the factorisation
of both the squared matrix elements and the (m + 2)-particle phase space when the

unresolved particles are colour connected between two initial state radiators.

dzx
Mool JE b, / k. b . 0) X0 (4.13)

Moyol2 T d,, / [k [ARl6 (s — ) 8y — £2) X0 dlr dary (4.14)

The antennae integrals can be worked out separately once and for all to become
universal building blocks for subtraction at NNLO. The integrated antenna is the
antenna function integrated over the fully inclusive antenna phase space including

a normalisation factor to account for powers of the QCD coupling constant,

1

)C;gkl = [C(G)P /dq)Xijkz Xiojkl (4.15)
1 02

XZ.?M — COF / dq>3 ijkl (4.16)
1 ~ ~

Xk = e / (k) [dke] 1 29 61 — 31) b(xs — 82)X0,  (4.17)

where C(e€) is given in (3.11). These integrations are performed analytically in d
dimensions to make the infrared singularities explicit. Using the techniques in [104]
all integrated antennae in (4.15) were obtained and are documented in [67]. Also
all integrated antennae of (4.16) were computed recently in [105,119]. The remain-
ing integrals in (4.17) are the presently unknown NNLO initial-initial integrated

antennae functions. Work on their analytic evaluation is underway [120].
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4.2.3 Subtraction terms for two almost colour-unconnected

S,c
unresolved partons do'yy;

There are double unresolved configurations where the unresolved partons are sepa-
rated by a hard radiator parton, for example, ¢, j, k, [, m where j and [ are unresolved.
In this case we take the strongly ordered approach where i, j, k form an antenna with
hard partons I and K yielding an ordered amplitude involving I, K, I, m. As usual,
the momenta of the hard radiator partons I and K are constructed from k;, k;, ki
The cases where [ is unresolved are then treated using an antenna K, [, m with hard
partons K and M. The momenta of the hard radiator partons K and M are made
from K g, ki, km. The other case where first k.1, m form an antenna followed by
1, 7, K is also included.

In this configuration there is a common radiator that can be in the final or the

initial state. The subtraction term for the almost colour-connected configuration

reads:
dUJ%zC\}(Lfg) = -N Z d@m+2(k17--‘,km+2;p17p2)sqj+2
perms
xS0 X0 a0 Mok, Kin KoK s - )
75l
T (ke Ky K ion K s - Ema)
3 X0 e [ Musa(kr, o K (1)K (00, Kiats - Fy) 2
75l
Ty, Ky K ey Koy kmga) |, (4.18)
daﬁfvlff)f) = N Z d(I)erZ(kla ceey km+2§p1,p2)#+2

perms

X0 20 | Mook, .. K K Komso: 2

X 2,jk$m1K| m+2( Ty N (KL INLMy - -+ m+2,p1,$p2)|
Jsl

T (ko K (eyps Kiags -+ s ko)

> X 135 (Mo (k- K (xnyg, Kpa, - ks pr, aps))?
Iy
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TS (ko K (senyss Kiags - kmya) | 4+ (1452)
, (4.19)
c2,(z 1
dg]%]\?i(g) = _N Z d(bm-i-?(kla R km+2;plap2)s o

perms

~ - ‘ , 9
X E XZ]k ‘r2lm m+2(k:1,...,KJK,KLM,...,km+2,p1,xxp2)|

J (ky, oo Ky, Ko, - ooy ko)

+ Z X2 Im x%]k |Mm+2<k17 ) KLM: KJK: s )km+2;p17 $$/p2)|2

xJT(nm)(kh...,KLM,KJK7~-ukm+2) + (1<_>2)

, (4.20)

e (i 1
do_]%]\}(l,()) = N Zd®m+2(1€1,---,km+2;p1,p2)s—

perms m+2

0 0 7 7 7 7 ) ! 2
X E X2,jk L1 Mook, .. ki1, ke, o ka2 101, TyTap2)|

XJT(nm)(lgla'-'7]%jflal%l+17--'7km+2)
X0, 23 i (Moo (k ki1, k [— op)|?
+Z 21,1 $27jk| mt2(k1, ki ki, Bges 1pr, 22290
gl
XJr(nm)(l%h...,%j,17%1+17...,];m+2) -+ (1 > 2)

: (4.21)

where 20 .- denotes a sub-antenna, that contains only the collinear limit of m with
[, but not the collinear limit of [ with K. In the soft limit of /, this sub-antenna
yields half the soft eikonal factor. (4.19) applies if the common radiator is in the
final state, while (4.20) applies if the common radiator is in the initial state.

In the almost colour connected configuration daf,’f\,LO yields minus the double
unresolved limit of the matrix element and therefore cancels the oversubtraction of
dajs\;?v Lo in the same configuration. In the single unresolved limits when either j or

. S, . . . L.
[ is unresolved doyy o exactly cancels the spurious single unresolved singularities
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encountered in do?%, o for the configuration of an unresolved momentum p, in the
(m + 3)-parton matrix element.

To obtain the integrated form of this counterterm we exploit the factorisation of
the (m + 2)-parton phase space into a m-parton phase space and the phase space

for the product of the two antennae.

4.2.4 Subtraction terms for two colour-unconnected unre-

solved partons dajs\;f,lVLO

When two unresolved partons j and o are completely disconnected ¢,7,k,. . .,n,0,p the
(m+ 4)-parton matrix element factorises into the product of two uncorrelated single
unresolved factors with a reduced (m + 2)-parton matrix element. The subtraction

for the colour-unconnected configuration reads:

1
d JSV?V(Lf(])C) = —-N Zd(Pm—&-Q(kl)--'7km+2;p1>p2)5—

perms m+2

% % % % 2
X E : z]k nop m+2(k17'"7KIJ7KJK7-"7KN07KOP7'"7km+2)‘

X Jélm)(kl,...,k}],kJK,...,KNo,f(OP,...,km+2)] , (422)
daf,’?\}%é) = N Z APy i2(k1, ~7/€m+2;P17P2 » [Z XO,]k nop
perms m j

X |Mm+2(k17 sy KJK) cee 7[~(NOa KOP) ey km+2;p17xp2)|

X Jr(nm)(kla"'7[~(JK7"'>RNO7ROP7"'7]{M+2) + (1H2)7
(4.23)
s,
doyvio = —N > dq’m+2(k1>---,km+2;P1>P2 - [Z X gk X2 op
perms m
X [ Mpgalky, ... 7KJK7 e 7ROP7 ooy Kmaa; $1p17$2p2)|2
X J}nm)(kl,...,KJK,...,KOP,...7kZm+2)] ) (424)
do—]%?\?’L(g) = N Z d®m+2(k17”'7km+2;pl7p2 » [Z X12; nop
perms m
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X |Mm+2(/;?17~~u/fj—17kj+1,~~-77~€No,];?OP7~~akm+2;$1p1,$2p2)|2
X qunm)(kla---7lz;j71;l;j+17-~-;];N071270P;---;]:7m+2) s (425)

where the summation over o is such that it only includes two antenna configurations
with no common momenta. The nature of the radiator pairs i,k and n,p defines the
formula to be used.

In the colour unconnected configuration da%{mo yields minus the double un-
resolved limit of the matrix element and therefore cancels the oversubtraction of
Ao, Lo 1n the same configuration. In the single unresolved limits when either j or
o is unresolved doi,’?l\,LO exactly cancels the spurious single unresolved singularities
encountered in daf,’?mo for the configuration of an unresolved momentum in the
(m + 3)-parton matrix element.

To obtain the integrated form of this counterterm we exploit the factorisation of
the (m + 2)-parton phase space into a m-parton phase space and the phase space

for the product of the two antennae.

4.2.5 Subtraction terms for large angle soft emission

It was shown in [93,94] that the previous antenna subtraction terms result in an
oversubtraction of large-angle soft gluon radiation. If we take a single soft gluon limit

j — 0 of the formulae of the previous sections we obtain the following contributions.

final-final:

Xtk [ Mynso(kr, o, Koy K, ooy ko p1y pa)|* %
<_S(il)j(lk) + Sijik + Shjcity — Shji + Skyjm — Skim) (4.26)
final-initial:

X2,lk |Mm+2(k17 cee >kj—17 kj+17 ceey f(uo < /fm+2;p1,l’p2)’2 X

(=S3jak) + S2jk + Shja — Swj2 + Sakyjm — Skjm) + (1 < 2) (4.27)

initial-initial:

- - - - ‘ )
X12,l |Mm+2(k1; . >kj71; kj+1> oo ki1, Egg, oo kg T, $2p2)| X
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(—Sijg + S1jo + Shji — Shj1 + Szjm — S2jm) (4.28)
where
Sabc =2 Sac (429)
SabShe

are eikonal factors related with the remnant soft behaviour of the phase space map-
pings. To account for this large angle soft radiation, a new subtraction term doj 7o

is introduced and added to the (m + 4)-parton piece do® y;o:

daﬁ](vLé X(zg Y(jk) |Mm+2(kla ce (IJ)LaK(JK)b cee km+2;p1ap2)|2 X
(Stainicarwn = Seniar = Switin + Shies) = Spnim + Siryim)  (4.30)
da;‘,NLO = Xs i) Mmga(ky, .. kjm1, ki, - ,I?(JK)L, o ko 1, xx/p2)|2 X
(S35(Grn) = S2iGw = Shya + Shiz = Sigpnim + Sirsm) + (1= 2) (4.31)
dUﬁiZ&)ZZJCQJLA4m+2@Ha~~7z;—1j;+17~-,Z?—hz%+1y~-,Z%Ha;$1$;p1,x2$;pzﬂ2 X
(5153 — S12 = Spjt + St — S5 + Szjm) (4.32)

These large-angle soft subtraction terms do4 y;, contains soft antenna functions
of the form S,;. which is simply the eikonal factor for a soft gluon j emitted between
hard partons a and ¢, that precisely cancels the behaviour in (4.26), (4.27), (4.28).
Those soft factors are associated with an antenna phase space mapping (i, j, k) —
(1J,JK) (final-final), (p,j, k) — (zp, JK) (initial-final), (p1,p2,7) — (x1p1, Tap2)
(initial-initial). The hard momenta a, ¢ do not need to be equal to the hard momenta
7, k in the antenna phase space - they can be arbitrary on-shell momenta. In the [
soft limit the eikonal factors cancel between each other in (4.30), (4.31), (4.32) such
that no new spurious limits are introduced.

Once this terms is included in do¥ ;o the subtraction term for the (m + 4)-

parton matrix element becomes finite in the single soft limit.

4.2.6 Correction terms in the m-jet region

The full double radiation subtraction term is given as sum of all subtraction terms

constructed above:

s S,a Sb S,c S,d A
doXnro = doxnro T doynro + doxyro + doyyro + dovnro - (4.33)
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As outlined in the previous subsections, this subtraction term correctly approximates
the (m + 4)-parton matrix element contribution to m-jet final states as defined in
(4.2) in all double and single unresolved regions. Although individual terms in (4.33)
contain spurious singularities in these limits, they cancel among each other in the
sum.

The integrated form of (a) corresponds to an (m+ 3)-parton configuration, while
the integrated forms of (b), (¢) and (d) are either (m + 3)-parton or (m + 2)-parton
configurations (for all but the four-parton antenna terms in (b), we can actually
choose which type of configuration we want to integrate). They are added with the
two-loop (m + 2)-parton and the one-loop (m + 3)-parton contributions to m-jet

final states to yield an integrand free of explicit infrared poles.

4.3 Numerical implementation of NNLO antenna
functions

Having looked at the general formula for the double real radiation piece it is impor-
tant to discuss its numerical implementation and to do so, we focus on a specific
example. If we concentrate on the pure gluon channel contributing to the two-jet
cross section we find that the four gluon antenna F} (given in the appendix B.1) is
the genuinely new ingredient at NNLO. In F}, derived from H — gggg, the gluonic
emissions are colour ordered. The colour structure is a trace over the gluon indices
and F) is symmetric under cyclic interchanges of momenta. We will take this into
account when we discuss the numerical implementation of F} for the final-final,

initial-final and initial-initial arrangements of radiators.

4.3.1 Final-Final emitters

The decomposition of F}(1,,2,,3,,4,) is needed since any pair of two gluons can
become soft. Its unintegrated and integrated form has been written down in [67].
In the case of the final-final configuration, this antenna has all the partons in the

final state and can be used to subtract double unresolved final state singularities
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of colour ordered matrix elements when the unresolved gluons are colour connected
between two final state gluons. We consider eight different mappings to achieve the

decomposition:

a): (1,2,3,4) — (123,432), b): (1,2,4,3) — (124, 342)

e): (2,3,1,4) — (231,413), f): (2,1,4,3) — (214, 341),

(a): ( ) = ( ) (

(c): (1,4,3,2) — (143,234) (d): (1,4,2,3) — (142,324)

(e): ( ) = ( ) (

(g): (4,3,1,2) — (431,213), (h): (4,1,2,3) — (412,321)  (4.34)

In each mapping of the type {pi,, Pirs Dis» Pis} — {Piriniss Disisio } Partons is and
13 become unresolved and i; and 74 are the hard radiators. The new momenta are

given by:

e~

D(ivizis) = T Piy +T1Piy + T2 Dig + 2 Piy

—~—

Dlisisin) = (1—2)piy + (1 —711)piy + (1 —=72)piy + (1 —2)ps, . (4.35)

Defining sy = (pi, + pi,)?, the coefficients are given by [117]:

S S23 + S24
L =
S12 + So3 + So4
534
ro =
S13 1 S23 + S34
: (1+9)
r = S
2(s12 + S13 + S14) P} J1234
- (823 + 2 824) —T9 (523 + 2 834)
+(r1 _ 7“2) 512534 — 813524}
S14
[
z = —p)s
2(814 + So4 + 834) p) 51234
—r1 (S23 + 2 812) — 12 (S23 + 2 513)
512534 — 513524
—(ry —ra) }
S14
2
r—=T
p = [1 + % A(812 534, 514 523, 513 S24)
514 51234

+ {2 (r1 (1 = 72) 4+ r2(1 — 71)) (512534 + S13524 — S23514)

514 51234

1
2

+47r (1 —11) S12804 + 472 (1 —19) 813534}] ;

Mu,v,w) = u?+ v+ w? = 2(uwv + vw + vw) .
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This mapping smoothly interpolates all colour connected double unresolved singu-

larities. It satisfies the following properties:
Plivinia) = Pin  Diisigin) — Dis  When ig,ig — 0

—_— —_—

Divigis) — Piy T Piy T Dig D(igisiz) — Pis when i1/ /is/ /i3

pm) — Diy pm) — Diy + Pis + Piy when iy//is/ /i

D(ivizis) = Piy D(igiziz) — Pig + Dis when io — 0413/ /14

Pliriais) = Pir + Pi Plisinia) — Diz when iz — 04 i1/ /iy

Dliviniz) — Pix T Dis Digiziz) — Dis T Diy when i/ /iy + i3/ /ia
(4.36)

Moreover in single unresolved limits it collapses into an NLO mapping allowing the
subtraction of single unresolved limits of FJ(1,,2,,3,,4,) with products of three
parton antenna functions as in equation (4.6).

The task left now is to disentangle the various double and single unresolved limits
of the full antenna F}(1,,2,,3,,4,) into eight sub-antennae such that each sub-
antenna (a),(b),...,(h) contains only those singularities appropriate to the mapping
(a),(b),...,(h).

These numerous double and single unresolved limits can be disentangled very
elegantly by repeatedly exploiting the N' = 1 supersymmetry relation [31] among
the different triple collinear splitting functions [31-34,121,122]. Using this relation,
one can show that the following left-over combination is finite in all single unresolved

and double unresolved limits:
Fgl(1,2,3,4) = F)(1,2,3,4) —
DY(1,2,3,4) + DY(2,3,4,1) + D3(3,4,1,2) + DJ(4,1,2, 3)

(1,
—A%1,2,4,3) — A%9(2,3,1,4) + H(2,1,4,3) + H)(4,1,2,3)
(4,

(14),2, (34))
+%G§(4,1,2)K§((12),(14) 3) + G°(1 3) K3((23), (12),4)

+A%(2,3,4) JO(1, (23), (34) ))+A°(3 4,1) J.

—_— ——

)+
+A3(4,1,2) J5((12), 3, (14)) + A3(1,2,3) J5((12), (23),4)
5(
2
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—_—

+%Gg(2, 3,4) K3((34),(23),1) + %Gg(s, 4,1) K3((14), (34),2)

—_— ——

+5G9(2,1,4) K9((14), (12),3) + 56303, 1,2) K3(12), (23),4)

+%Gg(4, 3,2) K9((23), (34),1) + %Ggu, 4,3) K9((34), (14),2)

(4.37)

where JY and K9 are useful combinations of the following three parton antenna

functions:

J3(1,2,3) = FJ(1,2,3) + A5(3,1,2) + A3(1,2,3) + A3(1,3,2)
—-D§(1,2,3) — D§(2,3,1) — D§(3,1,2) (4.38)
K3(1,2,3) = F3(1,2,3) - D5(2,3,1) — D5(3,1,2) + A5(3,1,2)

+G9(1,2,3) (4.39)

Neither J§ or KJ contains any soft or collinear limit, but to distribute the single
unresolved limits among the momentum mappings it is convenient to introduce the

following antennae:

T3(1,2,3) = f5(1,2,3) + A3(1,2,3) — d5(1,2,3) — d§(3,2,1)  (4.40)

where T3 is finite in all single unresolved limits but U contains the 1 || 2 limit. We

can now rewrite J9 and K3 as:

J5(1,2,3) = T3(1,2,3) + T3(1,3,2) + T3(2,1,3) (4.42)

K$(1,2,3) = U§(2,3,1)+U§(3,2,1) + T9(2,1,3) + G3(1,2,3)  (4.43)

Starting from the terms in the expression (4.37) the following sub-antennae can be

constructed:

1
Fﬁa(1,2,3,4) — ZF£I(1,2,3,4)+D27a(1,2,3,4)+D27a(4,3,2,1)

—A§(1,2,3,4) + %H}f(l, 2,3,4)
+A5(1,2,3) T((12), (23),4) + A3(2,3,4) T{(1, (23), (34))

—_—

—%Gg(1,2,3) T9((12),(23),4) — 303(4,3, 2) T9((34), (23),1)

—_— ——
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ng(1,2,3,4) =

where the definition of D}, and D, is given by decomposition:

obtained in [91].

Dy(1,2,3,4) + Dy r(3,4,1,2) — A} (1,2,4,3)

+a3(1,2,3) Ty

1
—5G3(1,4,3)

1
—5G5(3,2,1)

1
+§G§(4, 1,2)

—_— ——

—_—

(12),4,(23)) +a3(3,4,1) T5((14),2, (34))

US((14), 2, (34)) + US(2, (14), (314)) + G((34), (14),2)

e~ — —

— —_—

U3((23),4,(12) + US(4, (23), (12)) + G3((12), (23),4))

US((41), 3, (12)) - US(3, (41), (12)))

US((14), 2, (43)) — U3 (2, (14), (43)))

D} =D}, +Dj,+Dj, + D,

The sum of the F}; is given by F}:

(4.44)

F{ = Fy + Fy + Fo+ FLg + o+ Fop + FYy + 1),

such that we can organise the calculation in a way that only F must be integrated

analytically over the antenna phase space. That integral has been calculated and

documented in [67]. For the numerical implementation we only need to implement

the sub-antennae F}, and Fj; because we can rewrite the previous equation in the

following way:

F)(1,2,3,4)

- F‘ga(lh7 2’ 37 4h) + Flgb(lhv 27 3h7 4)

+F‘Ea(1h’ 47 37 2h> + Flgb(lhv 47 3h7 2)

+F£b(2h, 3,4 1) + Fga(Qh, 1,4,3")

+F4[{b(4h,3,2h, 1)+ Fga(4h, 1,2,3M (4.45)
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We can then reconstruct the full F}(1,,2,,3,,4,) by adding four Fy, and four

Fy, with different orderings of the gluon indices.

The label h identifies the hard

momenta within each sub-antennae. This means that the sub-antenna vanishes if

we take the h soft limit and therefore each sub-antenna has only the singularities

appropriate to the mappings (4.34).

and single unresolved limits is the following:

This disentanglement of the different double

14—0,2,—0
th(1727374) — S4123 9
FP.(1,2,3,4) + Fu4(1,2,3,4) R B T
14—0,44—0
Fz?,f(172a374) — 53412 )
Fé?,a(la 27 37 4) 29*)%%0 51234 )
0 24—0,4,—0
Fy(1,2,3,4) + Fua(1,2,3,4) — S1235341
F‘ﬁc(lv 2a 37 4) 357_)0_’43_’0 S2341 )
141124,34—0 1
FOL(1,2,3,4) + F,(1,2,3,4) + F2 (1,2,3,4) 2570 g,0(2) o Paal2).
0 0 0 14]|2g,44—0 1
F4,b(17 2, 3, 4) ‘I— F4,d(1’ 2, 37 4) “I'_ }74"]0(17 2, 37 4) — 837412(2) 5 ng—>G(Z) s
0 0 0 2613¢,14—0 1
F4,e<1’27374) +F4,g(]‘727374)+F4,h(172’374) E— S4;123(Z) 3_23 gg—>G(Z) s
0 0 O 2QH39749—>0 1
F4,b(1’273’4) +F4,c(]‘7273’4> +F4,d(172’374) — 81;432(2) 5_23 gg—>G(Z) N
0 0 0 34]14g,14—0 1
F47@(172a374) +F4,f(17273a4) +F4,g(172a374) - 82;143(2) Q ng—>G<Z) )
0 0 0 34l44,24—0 1
F4,a(1a27374)+F4,b(17273a4>+F4,d(172’374) - 81;234(2) Q gg—>G<Z) )
0 0 0 44114,24—0 1
F4,b(1a273>4) +F4,d(172>374) +F4,h(172’374) - 53;214('2) 5 QQ*G(Z) >
44]|14,34—0 1
FO(1,2,3,4) + F2.(1,2,3,4) + F2,(1,2,3,4) %77 6,001 (2) — Pual2).
FO(1,2,3,4) + F,(1,2,3,4) + F2 (1,2,3,4) + F, (1,2,3,4) "0 oy o(w,a,y) |
FO(1,2,3,4) + F2,(1,2,3,4) + F2,(1,2,3,4) + F0,(1,2,3,4) P py o(w,z,y)
FO(1,2,3,4) + F2,(1,2,3,4) + F0,(1,2,3,4) + F2 (1,2,3,4) 20 poy o(w,z,y)
49 g g
Ffb(1727374)+F£d(1a27374)+F£f(1727374)+F4?,h(1727374> M2 P412—>G(wa-r7y) )
F4a(1 27374)+F4b(1 27374>+F4f( )+F4g(1234>

140124,34l14g 1
—
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FQC(L 2,3,4) + Fﬁd(1, 2,3,4) + F§€(1, 2,3,4) + Fj{hu, 2,3,4)

213:4911s 1
o 13949111 Pyyc(2) Pyyc(y)

593514
14—0
Fffu 2,3,4) 2= Suo £3(3,4,2)
14—0
Fﬁ?h(1727374) — 5412 f§(37274) ;
F£€(1727374)+F9(1727374) 19;9 5412 f??(27374)7
Ffa(1727374) 29—_{) 8123 f§(1>374),
24—0
Fé?h(]'727374) — 8123 f:?(sa 174) )
FO,(1,2,3,4) + F2(1,2,3,4) = Siy f9(3,4,1)
FO(1,2,3,4) 25 Sp f9(1,2,4)
ch(1727374) 39—_)9 8234 fg(1>472)7
FO.(1,2,3,4) + FY (1,2,3,4) 22 Sy £9(2,1,4)
FO(1,2,3,4) 2= Sy £9(1,3,2)
FOp(1,2,3,4) 22 Sy £2(2,1,3),
Fé?b(l 2 3 4)+F4?d(1727374) 49__? 8341 fi?(37271)7
1
FL(1,2,3,4) + F,(1,2.34) 22— Py o(2) fi(4,3,(12)) +ang.,
12
1
Fyy(1,2,3,4) + F;(1,2,3,4) g + Pog—al(2) f5((12),4,3) +ang. ,
12
0 12, 1
Fn(1,2,3,4) — I~ Pyy—c(2) f5(3,(12),4) + ang.
1
FR(1,2,8.4) + Fla(1,2,3.4) 2 — P, 6(2) (1,4,(23)) +ang.
23
0 0 24113¢ 1 0
F4,e(172’374)+F4,h(1727374) - S_ QQHG(Z) f3((23)a174) +ang~7
23
0 23, 1
F4,a(1727374) - 5 gg—*G()f?)( ( ) )+ang-7
1
FL(12,3,4) + FL,(1,2,3,4) 2 — Py o(2) f5(1,2,(34)) +ang.
34
0 0 3g||4g 1 0
F4,f(1’27374)+F4,g(172>374) - St wg—G(2) f3((34),1,2) + ang. ,
34
0 314, 1
F4,c(172>374) - Q 99—>G()f3( ( ) )+ang.,
1
Fégc(172a374)+F2@(1727374) % S_ gg—>G<Z) f§(2,3,<14)) —i—ang.,
14
1
FO,(1,2,3,4) + F2,(1,2,3,4) ¢ — P, o(2) f2((14),2,3) +ang. ,

S14
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a1, 1
- o QQHG(Z> f??(37 (14>7 2) + ang.

ﬁﬁfuﬂ25x4) -

(4.46)

All other limits are vanishing. It can be seen that certain limits are shared among

several antenna functions, which can be largely understood due to two reasons:

1. in a gluon-gluon collinear splitting, either gluon can become soft, and the
gluon-gluon splitting function is always shared between two sub-antennae, as

in (3.28) to disentangle the two soft limits.

2. the unresolved emission of gluon pairs 1, and 3, and also 2, and 4, is shared
between the mappings (e) and (g) and (b) and (d) respectively according to
the decomposition of the non-ordered antenna function [12, which distributes

the soft limit of both gluons between both mappings.

4.3.2 Angular terms

The angular terms in the single unresolved limits are associated with a gluon splitting
into two gluons or into a quark-antiquark pair. In this collinear configuration the
four-parton antenna functions factorise into the corresponding tensorial splitting

functions and tensorial three parton antenna functions [33,34,50], e.g.,

1

igllig v ..
FY(1,2.3.4) 72 =P o(2)(F)uw((id). k. 1)
ij
1 ..
- 5. ggHG<Z>F3?((U)a k,l) 4+ ang. (4.47)
ij

Pi‘;:(ij) stands for the spin dependent gluon splitting function given by [33,34]:

KikT
K

P =2 [—g"” ( 1 Z) —2(1— €)z(1 - 2) (4.48)

1—2 z
while Pj;_,(;;) stands for the spin averaged gluon splitting function (1.80). The
tensorial three-parton antenna function (FY),, can be derived by analogy with the
scalar three-parton antenna functions from physical matrix elements. Their tensorial
structure is obtained by leaving the polarisation index of the gluon associated with

momentum P* uncontracted.
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Since we use scalar three parton antenna functions to remove the single unre-
solved limits of the four parton antenna function (this was discussed in eqs (4.6),
(4.7), (4.8)) we are left with uncancelling angular terms in (4.47). However, we will
show that the angular terms average to zero after integration over the antenna phase
space. The angular average in single collinear limits can be made using the standard

momentum parametrisation [50,123] for the 4, || j, limit:

K2 nt K2 n
R R R A CRE Rl et rrrs
/f2
ith 2p; - p; = ———+=— 2=np2=0. 4.4
with 2pi-pj = =37 p-=n"=0 (4.49)

In this p* denotes the collinear momentum direction, and n* is an auxiliary vector.
The collinear limit is approached as k% — 0.

In the simple collinear ¢ || j limit of the four-parton antenna functions Fy (l,, 4, 74, kq),
one chooses n = p to be one of the non-collinear momenta, such that the antenna
function can be expressed in terms of p, n, k; and p;. Expanding in £/ yields only
non-vanishing scalar products of the form p; - k;. Expressing the integral over the
antenna phase space in the (p,n) centre-of-mass frame, the angular average can be

carried out as

1 [ 1 [ ) 5 D DIM P
—_— . —_— R — . = — _— 4_
o ), dop(p-k1) =0, o i do (p - k1) ki o (4.50)

Higher powers of k] are not sufficiently singular to contribute to the collinear
limit. Using the above average, we could analytically verify the cancellation of
angular terms within each single phase space mapping, which is independent on the
choice of the reference vector n,. This is means that in a collinear limit which is
distributed between two mappings as in (4.46) the angular terms vanish within each
single phase space mapping that contributes to the limit.

However this cancellation was obtained only globally after performing the az-
imuthal integration analytically. This means that on a point-by-point check the
numerical behaviour of the subtraction terms won’t be correct in the presence of
a single collinear gluon splitting. One solution to this behaviour is to add a local
counterterm to every four parton antenna containing gluon-gluon collinear splittings.

This local counterterm should yield the correct behaviour in this particular limit and
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integrate to zero over the corresponding unresolved phase-space. We should add the

following replacement for an i, || j, splitting:
F{(1,i,5,2) = F(1,4,4,2) — Opo(i, j, z, k1) (4.51)

where the function ©po(i, j, 2, k1) isolates the angular terms and is given by:

.. 1 y 1 ..
Opo(i,j,2,k1) = {;3‘}_,@)(37 k;L)(F??)W—;Bj_,(ij)(z)Fg(l,(m),Q)]
ij ij

4 52,52 , + 52 52
_ s ( 12 12;)2 h 2110 p2> $1251pSp2 kJ_ ) kJ_
Si751p2 S1251p5p2

—4p1 - k1py - kisipspe + 2(p1 - /ﬁ)Qsig +2(p2 - ]ﬁ)%%p]

(4.52)

where p and k; were defined in (4.49). Using (4.50) we can indeed check that (4.52)
integrates to zero.

However, due to the decomposition of Fj in eight sub-antennae (4.45) the an-
gular terms of the full FY antenna function given by (4.52) are distributed in the
subantennae that contribute in the singular limit. To make a local subtraction we
have to compute this singular limit in the subantennae and subtract it explicitly.
This is allowed since we checked that the angular terms vanish within each phase
space mapping. For the F} initial-final and initial-initial antennae functions we will
see in the next subsections that we implemented them with a single phase space
mapping. This means that in that the case we can perform a local subtraction with
(4.52) with appropriate crossing of particles to the initial state.

After these replacements the resulting four-parton antenna is locally free from
angular terms in the single collinear (s;; — 0) unresolved region. However, in the
regions of the phase space where other invariants in the denominator of (4.52) vanish
new singularities are introduced. For example since:

pr=p i+ Smiﬁn“ (4.53)
the invariants s, and sy, become singular in the 1//i//j and 2//i//j triple collinear
limits respectively. This means that introducing © o (4, j, 2, k1) may not be the best

strategy to achieve the cancellation of the angular terms. Even so, we will discuss in
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subsection 7.1.5 the numerical impact of introducing (4.52) for the single collinear

limit.

4.3.3 Initial-Final emitters

The NNLO antenna with one parton in the initial state Ff(ig, 24,34,4,) is obtained
by crossing one gluon from the final state antenna F}(1,,2,,3,,4,) to the initial
state. It is used to subtract double unresolved initial state singularities when both
the unresolved gluons are colour connected between an initial and a final state gluon.

The unintegrated form is then obtained by making the replacements:

S1; — (Pl - ki)z

sij — (ki + kj;)? i,j=2,3,4

In all single (double) unresolved limits this antenna collapses into a three (two)
parton antenna with a gluon in the initial state. There is no need to further split
this antenna since the reduced matrix elements that accompany it have a gluon in
the initial state and can be convoluted with a gluon parton distribution function.
However special care has to be taken with three parton or four parton gluon initiated
antennae with quarks in the final state since the splitting ¢ — ¢g looks like ¢ — ¢
or g — g depending on the collinear limit. These collinear limits have to be split
for the antenna under consideration and the corresponding sub-antennae integrated
separately because each has a different reduced matrix element accompanying it.

The mapping used in the configuration FO(1,4,7, k) is the following {4 — 2}

mapping: {1,4,j,k} — {1, (ijk)} [68]:

plo= apf

Kigry = ki + K+ kg — (1 —2)pi (4.54)

where the bar denotes a rescaling of the initial state parton and z is given by [68]:

_ S1; + S1j + S1k + Sij + Sk + Sik (4 55)
S1; + S1j + S1k .

It satisfies the appropriate limits in all double singular configurations:

1. 7 and j soft: z — 1, l;:(l-jk) — ky,
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2. i soft and p; || pr: © — 1, ke — kj + ka,
3. k;=zp1 || p1 and j soft: x — 1 — z, l;:(,-jk) — ki,
4. ki=zpy || prand kj || kp: # — 1 — 2, l;:(ijk) — kj + ki,

5. k)l || k)j || k?ki xr — 1, ff(ijk) — /CZ + k‘j + k‘k,

&

ki+k;j=zp||p:x—1—2, l;(ijk) — kg,

where partons ¢ and j can be interchanged in all the cases. In single unresolved limits
this mapping collapses into an NLO mapping (3.34) allowing their subtraction from
the four-parton antenna F} (ig, 2,,3,,4,) with products of three parton antennae.
We can identify the initial state parton as the hard radiator and because of
the symmetry under ¢ < ji < k,j < k of the mapping (4.54) any of final state
partons 7,7,k can act as a hard radiator. We could do a decomposition where the
radiator in the final state is uniquely identified but we would end up with three
sub-antennae where we would use the same mapping for each. Because of this we
use the full F} (ig, 24,34,4,) in the numerical implementation. Its integral over the

antenna phase space (initial-state kinematics) was obtained recently in [105,119].

4.3.4 Initial-Initial emitters

The NNLO antenna function with two partons in the initial state is obtained from
the corresponding initial-final antenna of the previous section by crossing one final-
state gluon to the initial state. We have to distinguish the cases where the two
initial state partons are adjacent FY(1,,2,,3,,4,) or non-adjacent F?(1,,3,,2,,4,).

In each case the unintegrated form is obtained by making the replacements:

s12 = (p1 + p2)’?
— (p1 — ki)®

— (pa — ki)?

si; — (ki + kj)? i,j7=23,4

They are used to subtract double unresolved initial state singularities when both

the unresolved gluons are colour connected between two initial-state gluons. Since



4.3. Numerical implementation of NNLO antenna functions 106

in the single (double) unresolved limits these antennae collapse into a three (two)
parton antenna with gluons in the initial state no further splitting is required. The
reduced matrix elements accompanying this antenna have gluons in the initial state
and can be doubly convoluted with a gluon parton distribution function.

The mapping used in the numerical implementation when ¢ and j are the unre-

solved partons in the final state is the following mapping: {1,2,4,7,....,m,[,..} —

A

(1,2, ..7m,1,..} [68]:

o %
by = T1py
o w
Py = T2Py

. 2k - (g + q) . 2k - q .
ku — ku _ _ qu + qu + q#
: Y (g+9)? ( )
¢ = YAy -k =k
¢ = P+ (4.56)

where the bar denotes rescaling of both the initial state partons and the tilde mo-
menta are all the momenta in the final state that are not actually part of the antenna
but require boosting in order to restore momentum conservation. The x; and x5 are

given by [68]:

- . \/812 + S9; + SQj \/812 + S14 + Slj + S9; + ng + Sij
1 =

812 + S1; + S15 S12

I \/512+31i+31j\/312+31i+31j+52z’+52j+3ij
2

812 + So2; + Soj S12

(4.57)

These two momentum fractions satisfy the following limits in double unresolved

configurations:
1. i and j soft: x1 — 1, 29 — 1,
2. isoft and k;j = z1py || p1: w1 — 1 — 21, 22 — 1,

3. ki=2p1 || p1 and kj = 29ps || por 1 — 1 — 21, 19 — 1 — 29,
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4o ki +kj=2zp1 || s 1 — 1 — 21, 20 — 1,

and all the limits obtained from the ones above by exchange of p; with ps and of k;
with k;. Moreover in single unresolved limits this mapping turns into a NLO map-
ping (3.37) allowing the subtraction of these limits from the four-parton antennae
functions.

The integrated form of the initial-initial four parton antenna over the antenna
phase space (initial state kinematics), for the adjacent and non-adjacent crossing is

underway [120].

4.4 Summary

In this chapter we examined the structure of perturbative calculations at next-to-
next-to leading order. We identified the new ingredients that appear at this order
in perturbation theory at the matrix element level and found out that there are
infrared divergences in the different pieces in intermediate steps of the calculation.
These are the real-real, virtual-real and virtual-virtual channels. Their cancellation
is very intricate since it occurs between phase spaces of different multiplicity.

The antenna subtraction method is a procedure that can solve this problem
by introducing subtraction terms with known building blocks that render the real-
virtual and double real contributions finite. The integrated form of the building
blocks makes their infrared divergences explicit such that they can be analytically
canceled against the virtual contributions.

We introduced a general formula in section 4.2 to generate a subtraction for the
real-real channel. We will apply it in a particular case in chapter 6.

The current status of the method at NNLO is that it is fully general for massless
fermions for colourless initial states [67] or one coloured parton in the initial state
[105,119]. The extension to two coloured partons in the initial state is currently

underway and expected to be concluded soon.



Chapter 5

Sector decomposition

In this chapter we discuss the sector decomposition method used to isolate diver-
gences from parameter integrals occurring in perturbative quantum field theory. A
good review of this topic can be found in [124].

As we have seen in the previous two chapters precise theory predictions become
increasingly difficult at higher orders. The structure of the singularities is cumber-
some as the divergences overlap in regions of the Feynman parameter space. We
will illustrate this using the parametric form of both the virtual and real correc-
tions. The sector decomposition method is a solution to perform the extraction of
these singularities and we review in section 5.1 its application to the computation
of multi-loop Feynman integrals and, in section 5.2, its treatment of real radiation
phase space integrals at NNLO.

In both cases, working in D = 4 — 2¢ dimensions, the method isolates the over-
lapping singular parts and disentangles them producing a Laurent series in €, where
the coefficients of the pole and finite terms are sums of regular parameter integrals
which can be evaluated numerically. The very algorithmic nature of method leads
to automatised programs to compute the Laurent series.

As an example, more related to the previous chapters of this thesis, we work out,
in section 5.3 a direct check with sector decomposition of the analytic result for the

integrated antenna F} obtained in [67] for final-final kinematics.

108
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5.1 The algorithm for multi-loop integrals

The original idea of sector decomposition goes back to the proof of the BPHZ the-
orem by Hepp [125], who used a decomposition of integration parameter space into
certain sectors in order to disentangle overlapping ultraviolet singularities.

The starting point application for a multi-loop diagram is the generic expression
for a scalar Feynman graph in d dimensions at L loops with N propagators, where

the propagators can have arbitrary powers:

N N,—(L+1)d/2

vi—1 u
dﬂfj J;jj (5(1 — le> —f‘NU—Ld/Q
=1

(5.1)

¢ = (il —Ld/2/

oo N
0 J=

1

In this expression N, = Zj\;l vj where v; is the power of the j propagator in the
Feynman graph. Integration over loop momenta has been performed with the aid of
the Feynman parameters ;. The functions &/ and F can be constructed from the
topology of the corresponding Feynman graph and contain the Feynman parameters

x; as well as Lorentz invariants. For example for the massless double box:

b1 > < D4
2 )
1 4 7
D2 5> 3 6 < D3
Figure 5.1: Massless double box
we have:

7
G = —T'(3+2¢) / Hdwl — le)m (5.2)
U = (r1+x2+ x3)(x5 —|— x6 + x7) -
+x4(x1 + T2 + 23 + 25 + X6 + X7) (5.3)
F = (—s){xgxg(x4 + x5 + 6 + x7)

+wswe(r) + T2 + T3 + T4)
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+Xox 4T + $3$4.’L’5}

+(—t)z1z477 (5.4)

where s = (p1 +p2)2 and t = (p2 —I—p3)2.

A necessary condition for the infrared divergence is:
F=0 (5.5)

and, from the example above, we see that singularities are overlapping as several z;
should vanish. The sector decomposition method proposed in [126,127] is a solution
to disentangle the regions of overlapping infrared divergences. The strategy adopted

is the following:

1 - Generate primary sectors

Decompose the integration range into N sectors, where in each sector [, x; is the

largest:
00 N N
/ dVr = ZdeHG(xl > xj) (5.6)
0 I=1 Jj=1
i

The O-function is defined as

1 if z >y is true
0z >y) =

0 otherwise.
This produces N new G| integrals and in each we substitute:
xt;  for j <l
Tp=4 1 for j=1 (5.7)
xitj— for j>1
AsU (5.3), F (5.4) are homogeneous of degree L ; L+1, respectively, and z; factorises
completely, we have U(7) — U(t)z} and F(F) — F(tf) 2z ™ and thus, we can
integrate over z; in sector [ using the delta function: [ da;/a; 61—z (14305 t)) =
1. Performing the integration this way makes the 6 function condition (5.6) produce
integrals from 0 and 1 and the singularities are located when a set of parameters t;
goes to zero. The sector [ of the original Feynman graph is of the following form:

11ﬁ ) uN,,—(LH)D/z({)
G, = / dt; 7 o ., l=1,...,N. (5.8)
0 =1 ’ Fi / (t)
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2 - Iterated sector decomposition

For each of the G, determine a set of parameters S = {t4,,...,ta,}, such that U,
respectively F;, vanish if the parameters of S are set to zero.
Once a set has been found decompose the sector [ into a r—cube containing r

subsectors with:

s s

[[oa=>t, >0 =

j=1 k=1

-

Ota, > ta, > 0) (5.9)

Yl
o~

J
J

Remap the variables to the unit hypercube in each new subsector by the substitution

to.te, for 74k
D i (5.10)

’ ta for j=k.

k

This gives a Jacobian factor of tg;l. By construction ¢,, factorises from at least one
of the functions U, F;. The resulting subsector integrals have the general form

Lo/N—1 1 Nv=(LA1)D/2
le = / <H dt] t?j_bje> lkjvuw, k: 1,...,T. (511)
o \j=1 Fu

This procedure is now repeated for each subsector Gy, by looking at the set of param-
eters where now U, F;; vanish. This means that for each subsector new subsectors
are created and the process grows in a tree-like structure until the functions Uy, k..

or Fix,k,.. contain a constant term:

Uprk,.. = 1+u(d) (5.12)

Flkrks.. = —So+ Z(—S/B)fﬂ(;) ;
B

where u(f) and fs() are polynomials in the variables ¢; (without a constant term),

and sg are kinematic invariants.

3 - Extraction of the poles

Let us consider Eq. (5.11) for a particular ¢;, i.e. let us focus on

1
CLj—bj€
L= [t 2 )0 (5.13)
0
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where 7 = UZIZW(LH)D/Q/FZJZ”*LD/Q in a particular subsector. If a; > —1, the
integration does not lead to an e—pole. In this case no subtraction is needed and
one can go to the next variable ¢;;,. For a; = —1, which is the generic case for
renormalisable theories (logarithmic divergence), this simply amounts to

1
1 —1-bje
Ij = == Z;(0, {tizj}  €) +/dtj t; (I(tjy{t#j}ﬁ) — Z;(0, {ti¢j}7€)> 7
! 0
which is equivalent to applying the “plus prescription”. We can then repeat the
same step for the remaining ¢; variables to extract all the poles in the subsector Gy

and expand the resulting expression in e. The original Feynman graph G (5.1) is

now written as a Laurent series in € with coefficients Cjy ,,, for each subsector:

2L N a()
Clk,m
Gy = Z e“:” + O(€T+1) , G= (—1)NUF(NV — LD/2) Z Zle . (5.14)
m=-r =1 k=1

The Ciy,m are finite integrals over parameters ¢; that can be evaluated numerically
for a given phase space point.

Using this technique numerical checks for the analytic formulae for massless
planar [128] and non-planar [129] two-loop box diagrams were done in [126]. In the
same work results for the same diagrams with one leg off-shell were given before any
analytic formulae as well as some 3-loop 3-point graphs with two on-shell legs.

Subsequently, sector decomposition was used to check a considerable number of
analytical results for two-loop [127,130-136], three-loop [137-139] and four-loop [127,
140] diagrams.

In references [141,142] a combination of sector decomposition and contour de-
formation has been worked out to allow the evaluation of multi-loop Feynman dia-
grams with infrared and threshold singularities. In [143], an implementation of an
algorithm based on sector decomposition extracts the 1/e poles as well as large loga-
rithms of type In(s/M?) in the high-energy limit, contributing to the next-to-leading
logarithmic electroweak corrections of multi-loop diagrams.

Further improvements of the method were given in [144] where there is a formal
proof that the iterated sector decomposition procedure is guaranteed to stop and a

public code, with a implementation of the method, is available.
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5.2 Sector decomposition for infrared divergent
real radiation integrals

Following its application in multiloop calculations references [145-147] extended its
use to phase space integrals as well. To achieve this we begin by rewriting the
phase space integral into a dimensionally regulated multi-parameter integral over
the unit hypercube. In this case, the singularities arise in the unresolved configura-
tions obtained when a certain number of invariants tends to zero. These invariants
are located in the denominators of matrix elements and therefore, if they can be
written in a form amenable to sector decomposition, the extraction of the infrared
divergences can be done within this framework.

As an example we will work out the 1 — 4 (¢ — p; + p2 + p3 + p4) phase space
treatment in sector decomposition. Setting m = 2 in equation (4.9) we find that the
antenna phase space for the four-parton antennae in the final-final configuration is

proportional to the four-particle phase space:

d®, = P, d®x,,, (5.15)
where P; is the volume of the two particle phase space:
N . D1 —¢) _
Py= [ ddy =273 2 1te———_(%)¢ 5.16
2 / 2 ™ T(2 - 2¢) (¢°) ( )

To proceed we start from the definition of the phase space for a 1 — 4 decay in d

dimensions:

/ do . — o) / A" 'pyd?py A ps iy
. (2m)4a-0 | 2B, 2E, 2F; 2F,
_ (27T)d / dd—lp1 dd—lp2 dd_lpg
(27T)4(d_1) 2E1 2E2 2E3

5d(q —P1—P2—P3 —p4)

6((g — pr — p2 — p3)?) (5.17)

where we used the delta function to perform one integration:

dd—l
[ St = [t (515)

Going to the rest frame of the decaying particle we parametrise the momenta in the

following way:

g = (BE,0°7Y)
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P = El (]-7 6(D_2)7 ]-)
Py = Ey (1,6(D73),sin 01, cos ;)
ps = FEs(1, 0P~ sin 6y sin 63, sin O cos B3, cos 0s)

pa = Q—p1—p2—ps, (5.19)
which leads to a description of the phase space in terms of energies and angles:

1
/ dq)lﬂzl = §(27T)473d / dE1 dE2 dE3 d(91 d02 d93 [ElEQEg sin 91 sin 92]d’3 sin 6?74
A1 dQys dQu_30(E;) O(E,) O(E)O(E — Ey — By — Es)

§(E* = 2E(Ey 4+ By + E3) +2(p1 - pa + p1 - p3 + p2 - p3)) (5.20)
since:
dtp, = ET2dE,dQy (5.21)

and:

d
2

2
Vd:/de: T (5.22)

(3

is the solid angle in d dimensions. Now we carry out change of variables

{Eb Ey, By, 01,09, 93} - {8127 513, S14, 523, S24, 334}

to obtain the phase space in terms of invariants. The jacobian of the transformation
is given by:

0
d812d813d814d823d824d834 = ‘%‘ dEldEng3d01d02d03
i YUf

= 2°EPEYEIFE] sin 67 sin 0; sin 03d B, d Eyd E3d6,; df,d6s

which can be written as the determinant A, of the Gram matrix G;; = 2p; - p;:

2p1-p1 2p1p2 ... 2p1-ps

2po - ;1 ce. 2po - py
Ay(q, p1,p2, p3) = Aa(p1, p2, 03, 04) =

2p4'p1 2p4'p4

= )\(812534, 513524, 814823) = —(4EE1E2E3 sin 01 sin 02 sin 93)2 (523)
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where we introduced the Kallen function A\(z,y, 2) = 2?4+ y? + 2% — 22y — 2yz — 2x2.

With the dimensionless variables:

Y12 = 812/Q27 Y13 = S13/Q2>y14 = 814/Q2, Y23 = 823/Q27 Y2a = S24/Q2>y34 = 834/Q2
(5.24)

we finally obtain the phase space written in terms of invariant variables:
/d®1—>4 — (27T)4_3d(Q2>3d/2_4 2—2d+1 ‘/21_1 Vd—Z ‘/d—3

/dy12dyl3dy14dy23d?124dy349(912)@(913)@(914)@(923)@(924)9@34)
O(

—A) [~ATPTE(1 = y1o — Y13 — Y1 — Yos — Yoa — Y1) (5.25)

where we have:

Ay = YhYss + YisUsy + YiiYas

—2 (Y12Y23Y34Y14 + Y13Y23Y24Y14 + Y12Y24Y34Y13) (5.26)

Looking at (5.25) we see that A, has to be negative semi-definite and this will
constrain the physical regions of the phase space.

In order to proceed and map the phase space integral into a parametric form
amenable to sector decomposition we must choose the phase space variables that
are convenient for our problem, that is, they should produce a simple formula for
the invariants in the denominators of the matrix element. We can choose the set of

five independent invariants to be {y134, Y234, Y34, Y13, Y23} introducing;:

1= /dy1345(y134 — Y13 — Y14 — Y34) /dy2345(y234 — Y23 — Y24 — Y34) (5.27)

and map the phase space integral to the unit hypercube with:

Y2sa = Mt

Ysa = A1

Yz = Ml — M)A

Y13a = Ao+ A3(1 —A)(1— Ag)

yis = As(yis — vis) + Us (5.28)
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where \; vary between 0 and 1 and the formulas for the remaining invariants can be
obtained by linear dependence. The limits of integration on the variable y;3 come

from solving the constraint (—A,) = —(ay?; + by1z + ¢) > 0 that gives:

2
v = (1= 20) [Vsha V(1= A) (1= M) (5.29)
and for y134 we solve the constraint (b* — 4ac) > 0 that yields:

The jacobian for the transformation gives:

dyozadysadyssdyisadyis = 4A3(1— A)2(1 — X2)2V/ Aa(1 — M) As(1 — M)y
A\ dhodrgdAgd s (5.31)

and the Gram determinant A, factorises:

=Ny = alyis — yis) (1 — yiz) = a(l — A)As(1 = Xs) (s — yig)?

= 16AT(1 — A1)?Xa(1 — A2)?A3(1 — A3) (1 — A As(1 — Xs)  (5.32)

leading to the following parametric form of the phase space:

1

/ A0y s = () HQRMA MY,V Ly / D dAadAsdAdAs

0

[/\1(1 — )\1)(1 — )\2)}1_2E [)\2)\3(1 — /\3))\4<1 — )\4)]_6 [)\5(1 _ )\5)]—1/2—6
(5.33)

When we substitute 1 — 4 matrix elements in massless QCD these contain denom-

inators of the form 1/s3489345134. Using the mapping (5.28) we obtain:

1 1

= 5.34
53452345134 /\%/\2 [)\2 + /\3(1 - )\1)(1 - /\2)] ( )

The third term in this denominator contains the triple invariant s34 that can vanish
for double unresolved real radiation configurations at NNLO. This happens when
e.g. when both \y,\3 — 0, but not when only one does. Combining this denominator
with the integration measure (5.25) and expanding Ay '™ — —0(Xg)/e 4+ ..., \3€ —
1 —e€ln(A3) produces unregulated singularities as A3 — 0. This means that there are

overlapping singularities in the phase space integral associated with the variables Ay
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and A3. These can be disentangled with the sector decomposition method [145-147].

To illustrate this we consider the integral:

1
I:/ dedyr "y (x4 y)°. (5.35)
0

The 1/x and 1/y factors cannot be expanded in plus distributions, as the logarithms
from the expansion of x + y will produce singular terms. We split this integral into

two parts,

1 T 1 Yy
I =/ dx/ dyz "y ' (z+y) ", Izz/ dy/ dea "y " (z+y) "
0 0 0 0
(5.36)

In I} weset y = y/x, and in I, we set 2 = 2/y. Performing these variable changes,

we find

1 1
I = / dedyz '3y (1 4+y)™°, L= / dedyy ' (1 4+2)7°.
0 0
(5.37)
The singularities in x and y of (5.35) are now separated in each integral (or sector)

of (5.37), and can be extracted using:

M

1 00
—1+e _ —
AT = 2500 + )

n=0

n [m”A(A)L? (5.38)

S

where a plus distribution is defined via

/01 ax [@Lﬂ» = /01 dAIn"(\) {w} | (5.39)

However, before implementing these transformations it is necessary that all singular-
ities in the \; occur at the origin A\; — 0. In (5.28) some invariants vanish at \; — 1
and two cases can occur when we consider the denominators of matrix elements. In
the first case the denominator has singularities when one of the \; — 1. In this
case the transformation \; — 1 — \; remaps the singularity to the origin. In the
second case the denominator causes singularities when \; — 0 and A\; — 1. In this

case it is convenient to separate the two singularities that can occur by splitting the

1 1/2 1
0 0 1/2

integration:
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and substitute \; = \;/2 in the first integral and A; = 1 —\;/2 in the second integral
to move all singularities to the origin. After these checks and steps are performed
the remaining singularities are already factorised or are of the type of the example
(5.35) and amenable by sector decomposition.

The great advantage of this method is in its algorithmic procedure that can be
easily implemented in symbolic manipulation programs such as MAPLE or MATH-
EMATICA. To do that we carry out the following instructions:

—_

. read a term in the matrix element.

2. combine it with the phase space measure in equation (5.33) keeping the in-
variants in the numerator as functions of A\; (su(A;)) and the denominator

replaced with (5.28).

3. remap all the singularities in the denominator to the origin A\; — 0 by making

the split (5.40).

4. search for entangled singularities in the expression generated by the previous
step. If it becomes singular when two variables A;; \; — 0, but remains finite
when either \; — 0 or A\; — 0, then the transformation below (5.35) should

be performed.

5. all singularities are factorised and can be expanded in a Laurent series in €

using (5.38).
6. proceed to the next term in the matrix element.

It should be mentioned now that it is possible [147] to combine the output of the
sector decomposition procedure with any infrared safe measurement function to
obtain differential results. In that case we arrive at an expansion with the following

form:

NNLO _ Zf] — ) f3( )_|_ f2(>\l) fli )+ﬁmte (541)

I €2

where we have used as an input the matrix element relevant to the double real

correction at NNLO. The functions f; are non-singular functions that can be inte-
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grated numerically to yield the pole coefficients. These can then be combined with
real-virtual and virtual-virtual contributions to verify their cancellation numerically.

To summarise, the key ideas to produce (5.41) is a parameterisation to the
unit hypercube of the phase space of the double real correction where the singular
invariants in the denominators of the matrix element can be brought to a factorised
form using sector decomposition. For example the parameterisation (5.33) given by
the mapping (5.28) is only convenient for expressions that do not contain sq3 or s14 in
the denominator. These invariants, in terms of \;, contain square root terms (5.28),
that arise from solving the constraint —A, > 0 for s13 (5.29). Because Ay (5.26)
is a quadratic equation the solutions always introduce square root terms and the
extraction of the singularities in this case is not amenable with sector decomposition.
In this case, 1/s13 develops a singularity when As = 0 and y;3 = 0 < A3Ay = Ao(1 —
A3)(1—Ay) (5.28). One solution is to remap the momenta of the final state particles
in a way to eliminate the invariants si3 and s14 from appearing in the denominators.
However this is not possible in general for all the 1 — 4 massless matrix elements
to which this parameterisation applies. The other solution is to shuffle the square
root terms to the numerator with the following non-linear transformation of A5 in

(5.33) to bring the limits of the s;3 integration from 0 to 1 [147]:

o ot . + -
fo= L0V sy (Rg) = Y8 (5.42)
Yis+ = Y13 Y13 (13 — y13) (1 — As) + y3
The jacobian of the transformation is given by:
+ —
d\s = leleA - dAs
(it = )1 = %s) + i)
() .
- $13(%s) dAs (5.43)

(95 — y13) (1 = As) + w3
and we derive the following parameterisation of the 1 — 4 phase space to the unit

hypercube:

1
/ dd,_, = (2m)*3YQ»3 24272 Y,V WV, s / dArdAadAsdAyd)s
0

A1 = AL = 2)) 7 PaAs(L = Ag)Aa(1 = Ag)]™ [5\5(1 — 5\5)} o

Q L _1-1/2—€ SN 4 _ %
Y13(As) [913913] {(1 - )‘5)(%3 - y13) + ylS} (5.44)
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The jacobian of the non-linear transformation is proportional to s13 and therefore,
in this parameterisation, factors of s;3 in denominators of matrix elements are can-
celled. The transformation of A5 — A (5.42) does not change the other invariants
in (5.28) that keep simple forms amenable to sector decomposition and there are no
singularities in (5.44) associated with \s.

However, using (5.29) we find:

]—1/2—5

Yy = (1= X)) 72 (1 = A3) (1 — Ay) — Mgy 172 (5.45)

This expression is singular on a manifold of points in the interior of the phase space.
It is a new type of singularity and, as before, we wish to move it to the boundary

of the integration region. The singularity occurs when:

1 _
)\4 N )\2( )\3)

— 5.46
L4 (1 = Ns) (5.46)

and this value is always in the integration region. To remap the singularities we

1 AL 1
0 0 A

s
4

split the A\, integration:

and we substitute Ay = A5\, in the first integral and Ay = 1 — (1 — A$)A4 in the
second to obtain integrals from zero to one. Doing this produces two integrals (or
sectors) where the invariants in (5.28) have now a slightly different form due to the
transformations in Ay mentioned. However their singularities can be extracted using
the sector decomposition technique.

In conclusion, to extract the singularties in 1 — 4 massless matrix elements,
relevant to the computation of NNLO real corrections to 1 — 2 processes, it is
convenient to use as much as possible the phase space parameterisation of (5.33).
This means that it is better to avoid, with rotations of the final-state momenta,
terms with s13 or s14 in the denominator. This can be implemented as a new
step in the start of the algorithm. If this is not possible then proceed using the
parameterisation (5.44) of the phase space. The number of times this happens
should be kept minimal because using (5.44) introduces two sectors (5.47) in the

beginning of the algorithmic procedure. This number increases further according
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to the complexity of the structure of the denominator in terms of the \; making
the size of the functions f; in (5.41) considerably lengthy which means harder to
evaluate numerically and impossible analytically.

In general the NNLO matrix elements are lengthy to begin with, and, their
expansion in a Laurent series of the type (5.41), using sector decomposition leads
to unavoidable even lengthier formulas for the functions f;. The size of the matrix
element and the number of times (5.44) needs to be applied determines the number
of coefficients in (5.41) that can be computed analytically. In the best cases the
first three terms in the series, corresponding to the deepest poles, can be evaluated
analytically and the remaining ones numerically. We will see an example in the next
section.

It is important to understand these limitations when applying this method as
new ideas may be needed to improve its behaviour. For example a parameterisation
for the 1 — 5 massless phase space derived in [148] relevant to calculate ete™ — 3
jets at NNLO using sector decomposition leads to an unacceptable number of terms
to evaluate [124] with the necessary numerical precision. This is due to the large
number of massless particles in the final state generating an extremely complicated
infrared structure. On the other hand, if massive particles are involved, the infrared
structure is in this case less complex as the mass regulates some of the infrared
divergences and the number of terms produced by sector decomposition is reduced.
The invariants may have a complicated formula in the unit hypercube, but, as long
as they do not vanish, sector decomposition and the non-linear transformation (5.42)
used in the massless case is no longer needed.

Examples of differential results at NNLO using this method are ete™ — 2
jets [149], Higgs production [150-153], vector boson production [154]. In [155] the
complete O(a?) QED corrections to the electron energy spectrum in muon decay
were computed. O(a?) corrections to fully differential decay rates for b — cly; were
derived in [156].

For the calculation of pp — 2 jets that this thesis refers to, an application of
the sector decomposition method is not straightforward. As we have discussed, the

most difficult part is to extract the divergences from the double real emission matrix
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element, without integrating over any kinematic parameter that describes the real
emission process. To achieve this we need to derive parameterisations for the 2 — 4
particle phase space to the unit hypercube. Although this is possible, the number of
massless particles in the final state makes the infrared structure very complicated. In
this case multiple invariants develop square root terms, making it impossible to find
a parameterisation that can handle simultaneously all the invariants that appear in
the most complicated denominators of six-parton matrix elements. In addition to
this, we want to avoid squaring the matrix elements and use the compact expressions
for scattering amplitudes derived in the helicity basis, but it is not clear how to use

the helicity amplitudes efficiently.

5.3 Numerical integration of final-final NNLO an-
tenna functions

In this section we are going to perform a direct check with sector decomposition of
the analytic results for the integrated antenna F) obtained in [67]. As we explained
in the previous chapter this antenna is the matrix element for H — gggg normalised
to the squared two-parton basic matrix element. Its unintegrated form is given in
appendix B.1. The terms of O(¢) are omitted there but the integration of the antenna
over the antenna phase space has to be performed in d dimensions to obtain the full
singular structure. This is because at NNLO we expect poles up to 1/e* that can
hit the O(e) terms and therefore contribute to the pole structure and finite pieces.
Also in the sector decomposition approach we need the O(¢) terms in the matrix
elements to expand the singular structure in a Laurent series.

By inspection of the formula for F}(1,,2,,3,,4,) in B.1 we find that are denom-
inators that contain the invariant s;3 or si4 that cannot be avoided by rotations of
the momenta of the final state particles. This means that in our implementation
of the sector decomposition procedure we use both the parameterisations given by
(5.33) and (5.44).

We also notice the presence of denominators of the type 1/(s?5s3,). When we

combine this denominator with the phase space measure we produce a parameter
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integral of the form:
1
/ dzz®™ f(z) (5.48)
0

with @ = —2. This is not expected because physical singularities in a renormalisable
theory are not worse than logarithmic and a > —1 always. In these few cases we
may choose not to keep the numerator as a symbolic function f(z) but introduce
its explicit form at the level of the e-expansion to cancel the quadratic singularity.

Alternatively we can expand these higher order singularities in plus distributions

using:

! ' f(z) = bt L0 o) f™(0)

A=+ () — / dwbe k=0T TR 5.49
/0 o () = [ dea po +; At 1-ntbg >4

and introduce f(x) only for the numerical integration.

As we mentioned in the previous section the antenna phase space is proportional
to the 1 — 4 phase space and we worked out there its treatment within sector
decomposition. With these ingredients we can do a check on the analytic results of
the integrated antennae functions for final-final kinematics.

The analytic integral of the F antenna function was obtained in [67]. In this
work, the phase space integrals were related to loop integrals in the form of a cut
diagram. A reduction procedure using integration-by-parts (IBP) identities showed
that all antennae integrals can be expressed as a linear combination of four master
integrals. These were computed in [104] analytically and numerically with sector

decomposition. An analytic result for the F antenna function was then obtained:

121 1 (4 1172 1 /234 106772
F(1972ga39>4g) = 2{ o ( 36 i ) (23 95 B 067

24 123 T2\ 9 13 e \ 108 72
379 304951 778172 2288 47974
_?C@)) +( 210 108 9 ¥t g )}
5, 121 2451178992  10.03211182 oo
et 6ed €2 €

The same integral computed directly with the sector decomposition approach

gives:

5 121  24494+0.02 10.18£0.14

F(lg,24,34,44) = LT; 63 €2 €

—219 =+ 1.1}
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The output of the procedure were parameter integrals for all the coefficients. In
this case the first two poles contain fewer integrations and are simple functions that
could be evaluated analytically. For the remaining coefficients, the large size of
the parametric function to be evaluated where complicated logarithmic functions
involving multiple variables appear, makes an analytic result impossible.

We proceeded using VEGAS [157] to perform the multi-dimensional integral
over the unit hypercube and quote the errors produced in the integration routine.
The comparison reveals a good agreement but for the finite piece the precision
is worse. This can be improved with a more sophisticated numerical integration
technique. Numerical results for the remaining four-particle antennae functions
were also obtained as these are of the same level of complexity as the F{ antenna

function and, for all, an agreement with the analytic results was observed.

5.4 Summary

In this chapter we examined the uses of the sector decomposition method for phe-
nomenological applications. As we have seen from its description, the method can
regarded as an universal method in the extraction of singularities from parame-
ter integrals. Within field theory and using dimensional regularisation it provides
factorisation and subtraction of infrared poles to (in principle) all orders in pertur-
bation theory, not only for individual integrals, but also for entire squared matrix
elements.

For multi-loop integrals it has been very successful to arrive at numerical results
before analytic formulae were available but it provides also a cross-check of subse-
quent cutting-edge analytic calculations of two and three loop integrals. Alternative
techniques include the Mellin-Barnes representation [158,159] but this will not be
discussed.

For phase space integrals the method has been useful to obtain results for full
processes at NNLO where the advantages, compared to analytic subtraction, are an
automated procedure starting from suitable phase space parameterisations and the

production of expressions with good numerical behaviour. Also in this case there is
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no need for an analytic integration of subtraction terms over the singular regions of

the phase space.



Chapter 6

NINLO real corrections for gluon

scattering

In this chapter we describe the calculation of the NNLO real corrections to gluon
scattering. Infrared singularities due to double real radiation at tree level are sub-
tracted from the full QCD matrix element for gg — gggg using antenna functions.
All relevant formulae were written down in chapter 4 for the general case. Here
we will apply them to the pure gluon channel to obtain finite contributions for the
six-parton process.

In section 6.1 we write down the double real radiation contribution to the cross
section split into three topologies that we define. For each, the relevant counterterms

will be derived.

6.1 Six-gluon subtraction term

In this section we will consider the six-parton double real radiation contribution to
the NNLO cross section. In the gluon-gluon channel we have the tree-level six parton
process gg — gggg. This process requires subtraction of all double unresolved and

single unresolved singularities. The double real radiation is given by:

g\ 2 1
dUﬁNLo = N? Nyorn (%) d(I>4(p3,...,p6;p1;pg)I
0/5 A . (4) 1
Z Ag(1g, 24, 1g, Jg, kg, lg) S5 (Dis - 1) + O N2 (6.1)

{2,..6)
126
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where the sum with the prime, 2{2 6V is over all 5! non-cyclic permutations of
2.3, ...,6 and we have suppressed sub-leading colour terms. The squared amplitude

A2 summed over helicities is obtained by:
A3(1g 20,39, 49, 50, 6) = 3 M(1g, 20,35, 44,50,60) M (14,25, 39,49, 54,6,) (6:2)
h

where the sum includes MHV and next-to-MHV 6 gluon primitive amplitudes [25,
27,28] that we evaluate as a complex number and square to obtain AJ. These are
written down in the appendix A.6 and their evaluation was described in section 1.6.

We can now use the cyclic symmetry of the colour ordered squared amplitudes
A and reduce (6.1) to three independent topologies:

A

dU]I\%/NLO = N? Neorn (%

2
> dq)4<p37 s 7p6;p17p2> (

~aA L 4
T Z A8(19729alg7]g7kgalg)J2( )(ph -

P(Z7J7k7l)€(374?576)

2
+= > AY(1yyig, 2, Ggr kgr 1) IS (0 - 1)
© P(i,5,k,1)€(3,4,5,6)

2 A4 4
2 Aeiede 20 kg lg) s ><pi,...,pl>> (6.3)
Pc(i,4,k,1)€(3,4,5,6)

where the first two sums are over the 4! permutations of the gluon momenta in the
final state and in the last sum only 4!/2 cyclic permutations are summed. Therefore,
depending on the position of the initial state gluons we have different topologies.
These are labelled ITFFFF, IFIFFF, IFFIFF respectively. In the following subsec-
tions we will write down the counterterm that regularises the infrared divergences

of the double real correction for each topology separately.

6.1.1 IIFFFF topology

The real radiation contribution to the cross section for the first topology is obtained

by averaging over all possible 24 orderings:

0\ 2 2
dUJI\%fNLO = N2 Nborn (%) dq)4(p37"'7p67p1>p2) 4!

Z Ag(igvégvigng7kgvlg)J2 (Dis---.11)
(4,5,k,1) € P(3,4,5,6)
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— N2N, (O‘s)2dc1>( 1, pa) —
- born o 4\P3,---,P6;P1,P2 41
| X010 20: 3014454 6,) + XE(15,25,35,5, 44, 6,)

X0 (19,2535, 49, 64,5,)| (0. -, o) (6.4)

where each X{ contains 8 colour ordered squared amplitudes given by the 4 cyclic

permutations of the final state gluons plus their line reversals:

Xg(ig’ég73974g’59’69) = Ag 19’29739749759769 +Ag 19729769759’49739

For the numerical implementation we use the X{ function because this form of
the real correction is more appropriate for the construction of the subtraction term.
It matches onto the full F} (i, j,, kg, l,) final-final antenna function which has a
cyclic ambiguity in the momentum arrangements. This is because as it was men-
tioned in section 4.3.1 F} (i, jg, kg, l,) contains four-different colour-ordered anten-
nae. The real correction should have 4 colour-ordered squared amplitudes per each
F(ig jg, kg, 1y) in the subtraction term too. There is an extra factor of 2 because in
the subtraction term we will use initial-final antennae of the type F. f(@, i, 7, k) which
has the unresolved limits of ¢ and j between 2 and k and the unresolved limits of k&
and j between 2 and i that come from two different orderings in the real radiation.
This brings the total number of squared ordered amplitudes to implement in this
topology to 8 (6.5).

The remaining 16 orderings in this topology corresponding to the last two X{
functions are obtained by permutations of the gluon indices when calling the IIFFFF
routine. These actually yield the same contribution to the cross section and need
not to be evaluated. However if we sum over all orderings the topology becomes
symmetric with respect to all gluon indices and this is better for the Monte Carlo
integration.

The real radiation subtraction term for this topology to be used with
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X0(14,24,34,44,54,6,) is given by the following sum where:
(1,7,k,1) = (3,4,5,6), (4,5,6,3), (5,6,3,4), (6,3,4,5)
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(6.6)

In the numerics we explicitly implemented the summation over (i, j, k, ). This

is needed to reconstruct the full F(iy, jg, kg, ;) from the Fy, and Fyp as in (4.45).

This makes sure that all the double unresolved limits of the amplitudes in (6.5) are

subtracted and only F (i, j,, kg, [,) must be analytically integrated over the antenna

phase-space. It is important to notice that this six-gluon subtraction term introduces

spurious limits from large angle soft radiation. The single soft limit of (6.6) is non-

vanishing. To account for this large angle soft radiation a new subtraction term

dod y10, defined in section 4.2.5, is introduced. Its contribution reads:
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6.1.2 IFIFFF topology

The real radiation contribution to the cross section for the second topology is ob-

tained by averaging over all possible twenty-four orderings:

g\ 2 2

dU]}\%lNLO = N? Niorn <%> dq)4(p37 cee 7P6;P17p2) Z

A A 4
Z Agﬂgazngg’]gangg)JQ( ) P3;-- -, D6)

(4,5,k,l)EP(3,4,5,6)
= N? Nyorn <%)2 ch)4(p3, e 7])6;]?17])2) E
27 4!
| X0 (103302 20140:54:6) + X8 (15451 25,5, 6,.3,)
+X2(1,,54,24,64,34,44) + XC(14,64,2,, 34,44, 5)
I (ps, - ps) (6.8)

where each X{ contains 6 colour ordered squared amplitudes where the first final
state gluon index is kept fixed and we sum the 3 cyclic permutations of the remaining

final state gluons:

X0(1,3,2,4,5,6) =  AS(1,3,2,4,5,6) + A%(1,3,2,4,6,5) + A(1,3,2,5,4,6)
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~ ~ ~ ~

+A%(1,3,2,5,6,4) + A%(1,3,2,6,4,5) + A%(1,3,2,6,5,4)

This form (6.8) is more appropriate for the construction of the real radiation sub-
traction term, since it matches onto the symmetry of the full F initial-final antenna
function. F, f(i, J, k, 1) contains the unresolved limits of j and k between 2 and [ and
the unresolved limits of & and [ between 2 and j. It is suitable to use it when subtract-
ing the singular limits of the ordered emissions A%(1,4,2, 4, k,1) + AY(1,4,2,1,k, 7).
Also the initial-initial antenna function F9(1,4,2,j) subtracts double unresolved
limits of the ordered emissions A9(1,4,2, j, k,1) 4+ AY(1,i,2,k,1,j). Combining these
symmetries brings the total number of ordered squared amplitudes to implement in
this topology to 6 and the remaining 18, corresponding to the remaining 3 X{ func-
tions, can be obtained by permutations of the gluon indices when calling the IFIFFF
routine. The real radiation subtraction term to be used with X 0( ,1,2,j,k, 1) is the

following;:
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It is important to notice that this six-gluon subtraction term introduces spurious
limits from large angle soft radiation. The single soft limit of (6.10) is non-vanishing.
To account for this large angle soft radiation a new subtraction term dog ;o is
introduced. Its contribution reads:
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doyyro = N7 Nyorn (%) dq)4(p3,---7p6,1717p2)@ Z {
PC (]7kvl)
! (851 + 5
2 (55

- — S+ Syt = Sagr + St ) FY (1,7, 2y)
XAg(igjgv];ga

)y )(pk,p,)

'\\‘R R‘l

1 .
+§ <_S§i: + SQ k- Sll] + Sll] - Séli + Siﬁ) F??<1ga lg, 29)

x ALy, 2. kg, Jo) 1S (07, )

1 ~ ~ 2
hb) (Siﬁc — Sg;i + 5537 = Spi + 521 — 5§3i> F)(14,14,2,)

2 0z 2 =z 9
XAO( 9729a2gakg)']2( )(pg,p];)

(5— — Sk + S5 — Sup + St — 5§ﬁ> Fy(1g, g, 24)

ik 1k

< A3 (Lys s 29: kg) I8 (95, 97)
+% (—Szj( (ki)1) T+ S2j(kj) = STj(ki) T STjakgy — Sg1 T S2ﬁ> 13 (Ly.1y. (Kj)y)
% AUy igs 24, (kD)D) g 757 (01 )
—ié <_52l((k:l)j) + Saukty — Stukt) T Sty — Out + 5211) fg(ig’jg’ (kl)g)
$ ATy 25, (kD)1 (pis i)
)+ S1itks) = O2jks) T Szjawk5)) — P15 T Sljé) f{?(ig; ly, (Kj)g)

k3)0)
XAg(ig7lga§ (k])l )JQ (p?n D(k )))
1 2.
5 <_Sll((kl)j) + Sty — Samn T sy — Oz + Sué) 1324, 3g, (Kl)g)

+2

XAQ(ig’igjga (kl) )Jz (pu kl)j ))

1 L
+§ <_S§ﬁ + 5o — S Pt S1i7 — Stz + Si;i) Fg?(lg,]g, 2,)
x A§(Lg: 29 kg 1) 157 (97 97)

1 1..0..2
( Ss= + Sgi5 — S=z + Siz — Stig + Si;i) F (1,10, 2,)

2 213 12]

X A§(1, 24, kg, o) 157 (07, 1)

} 611



6.1. Six-gluon subtraction term 138

6.1.3 IFFIFF topology

The real radiation contribution to the cross section for the third topology is obtained

by averaging over all possible twelve orderings:

g\ 2 2
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where each X{ contains 2 colour ordered amplitudes given by:
X0(1,3,4,2,5,6) = A(1,3,4,2,5,6) + A%(1,4,3,2,6,5) (6.13)

This form (6.12) is more appropriate for the construction of the real radiation
subtraction term, since it matches onto the symmetry of the full Ff(ig, jg,ﬁg, ky)
initial-initial antenna function. The real radiation subtraction term to be used with

Xg(igaiwjg:ég’kg’lg) Is:
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} (6.14)

It is important to notice that this six-gluon subtraction term introduces spurious
limits from large angle soft radiation. The single soft limit of (6.14) is non-vanishing.
To account for this large angle soft radiation a new subtraction term dog ;o is
introduced. Its contribution reads:
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(6.15)

6.2 Summary

In this chapter we derived the counterterms to compute the double real correction to

gluon scattering relevant to the calculation of pp — 2 jets at NNLO. Remembering
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the formula for subtraction at NNLO,

_ R s s
donvro = / (donNnro — doRnio) + doNnro
d®,, 42 d®r42
V1 VS,1 VS1
+ / <d‘7 NnLo — do NNLO> + doynzo
dq)m+1 d(bm+1
V2
L / doV2 (6.16)
dd,,

the results of this chapter correspond to (do¥ .o — doXyro)-

To derive the counterterm we analysed the singularities present in the double
real correction, that we know from the universal behaviour of the colour ordered
gluonic amplitudes. The factorisation of these amplitudes for one and two unresolved
gluons was discussed in section 1.8. To generate the counterterm we considered
all the possible colour configurations for the double unresolved pair and used the
appropriate antennae subtraction formulae written down in chapter 4.

We concentrated on the pure gluon channel and for this reason we made extensive
use of the FY and F antennae functions in different kinematic configurations (initial-
initial, initial-final and final-final). This is expected since calculations for hadronic
collisions require subtraction of both final and initial state singularities, described
by these antennae with the three possible assignments of radiators. In all cases their
numerical implementation was discussed in chapters 3, 4 respectively.

The output is a numerical routine that receives as an argument a phase space
point given by a set of four-momenta P and computes the matrix element and the
subtraction term. This can then be incorporated in a flexible parton-level generator
to compute the pure gluon contribution to infrared-safe observables related to two
jet states to NNLO accuracy at the LHC. However, this still requires a numerical
implementation for the second line in equation 6.16. This term represents the mixed
real-virtual contribution and subtraction of singularities in this channel can also be
completed using the antenna subtraction method. That treatment is beyond the
scope of this thesis.

In both cases, the analytical integration of the subtraction terms still needs the
integrated form of the four-parton tree level initial-initial and three-parton one loop

antenna functions. This work is currently underway and is expected to be completed
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soon. Combining it with the results for the integrated antennae at NLO [67,68] and
NNLO [67,105,119,120] will show the infrared poles of the antennae analytically
cancelling with the infrared poles of the two-loop virtual correction.

In the next chapter we show that the infrared structure of both the matrix
element and the subtraction term of this chapter coincide in all double and single

unresolved regions of the phase space of the real-real correction.



Chapter 7

Numerical implementation

In this chapter we will test the limits of the matrix element and subtraction term
written down in the previous chapter. We will do this numerically by generating a
series of phase space points using RAMBO [75] that approach a given double or single

unresolved limit. For each generated point we compute:
_ [ Mgg/?

Ste'rm

R (7.1)

where | Mggr|? is the matrix element squared given in equation (6.3) and Sye,, is the
subtraction term given by equations (6.6), (6.10), (6.14) summed over all orderings
and including large angle soft gluon terms of equations (6.7), (6.11), (6.15). The
ratio of the matrix element and the subtraction term should approach unity as
we get closer to any singularity. This tests if the subtraction term has the same
infrared behaviour as the matrix element so that their difference can be integrated

numerically over the unconstrained phase space in four dimensions.

7.1 Numerical checks

In this section we will discuss the numerical simulations that check if the subtraction
term was implemented correctly and argue that the various unresolved singularities
are in fact correctly described by the subtraction term. For each unresolved con-
figuration, we will define a variable that controls how we approach the singularity
subject to the requirement that there are at least two jets in the final state with

pr >50 GeV.
144
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7.1.1 Double soft limit

A double soft configuration can be obtained by generating a four particle final state
where one of the invariant masses s;; of two final state particles takes nearly the full

energy of the event s as illustrated in figure 7.1 (a).

6000 T T nal

x:]o:: —
ratio IMggl*/S grm X0 ||

double soft limit for gg-gggg

5000 1 #PS points=10000
1487 outside the plot X=(s-s;)/s

4000 - 59 outside the plot

— 3000 |

# events

2000 ~

1000 ~

|

0
0.99997  0.99998  0.99999 1 1.00001  1.00002  1.00003

(a) (b)

Figure 7.1: (a) Example configuration of a double soft event with s;; &= s12 = s. (b)

Distribution of R for 10000 double soft phase space points.

In figure 7.1(b) we generated 10000 random double soft phase space points and
show the distribution of the ratio between the matrix element and the subtraction
term. The three colours represent different values of x = (s —s;;)/s [z = 107* (red),
x = 107" (green), x = 107% (blue)] and we can see that for smaller values of z we
go closer to the singularity and the distribution peaks more sharply around unity.
For x = 1075 we obtained an average of R = 0.9999994 and a standard deviation
of 0 = 4.02 x 107°. Also in the plot we give for each distribution the number of
points that lie on the outliers of the histogram. As expected this number is always
decreasing as we move closer to the singular region.

In figure 7.2 we explicitly show the behaviour of the matrix element squared and
the subtraction term as a function of x. It is clear that both diverge in the double

soft limit £ — 0 but their ratio goes to 1.

7.1.2 Triple collinear limit

In this subsection we generate phase space points with three hard particles sharing a

collinear direction. This probes the triple collinear region of the phase space where
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Figure 7.2: Matrix element squared (solid lines) and the subtraction term (dashed
lines) as a function of z = (s — s;;)/s for three different values of py for the final

state. Also plotted is the ratio |Mgg|?/Sterm-

we demand the vanishing of the triple invariant formed by both final state (figure

7.3 (a)) and initial state particles (figure 7.4 (a)).
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Figure 7.3: (a) Example configuration of a triple collinear event with s;;, — 0. (b)

Distribution of R for 10000 triple collinear phase space points.

In figure 7.3 (b) we use again three colours to denote different values of x = s;;1,/s
[z =10"" (red), z = 1078 (green), x = 10~ (blue)] that control how we approach the
singular region and for each we plot distribution of the ratio of the matrix element
squared and the subtraction term for 10000 phase space points. For z = 107 we
obtained an average of R = 1.0000004 and a standard deviation of o = 4.2 x 1075.
This shows that, as we wanted, the subtraction term coincides with the matrix

element squared in this limit. The number of points that lie on the outliers is also
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Figure 7.4: (a) Example configuration of a triple collinear event with s1;, — 0. (b)

Distribution of R for 10000 triple collinear phase space points.

shown on the plot.

In figure 7.4 (b) we do the same analysis for the initial state singularity. In this
case & = Sy;5/s [t = —1077 (red), z = —107% (green), x = —107Y (blue)] and we
have a configuration with two final state gluons collinear with the initial state gluon.
The triple collinear configurations involving ps produce identical results and are not
shown. For the blue distribution again with 10000 phase space points we obtained
an average of R = 0.99954 and a standard deviation of 0 = 0.04. The plot shows

that this singular region is also accounted for by the subtraction term.

7.1.3 Soft and collinear limit

To probe the soft and collinear regions of the phase space, we generate an event
configuration with a soft final state gluon by making a triple invariant s;j; close to
the full center of mass energy s. For a final state singularity we then produce a
decay into two particles sharing a collinear direction making their invariant mass
small (in figure 7.5 (a)), and, for an initial state singularity, we rotate the momenta
to make one of the emitted gluons collinear with the initial state (in figure 7.6 (a)).

In the first case (figure 7.5 (b)) we plot three distributions in different colours
where now we use two variables to approach this unresolved limit. We define z =
(s—sik)/s and y = s;;/s and make x — 0 and y — 0. In red we have z = y = 1074,

green ¥ = y = 107° and in blue = y = 107% For x = y = 107% again with
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Figure 7.5: (a) Example configuration of a soft and collinear event with s;;; ~ s12 =

s and s;; — 0. (b) Distribution of R for 10000 soft and collinear phase space points.
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10000 phase space points we obtained an average of R = 0.99999993 and a standard
deviation of o = 0.0001.

For the initial state singularity (figure 7.6 (b)) we define x = (s — s;;%)/s and
y = s1;/s and make z — 0 and y — 0. In this case in red we have z = |y| = 1075,
green z = |y| = 107% and in blue x = |y| = 1077, where we obtained an average of
R = 0.99999998 and a standard deviation of o = 1.6 x 107",

The combination of the antennae implemented with the formulae of the previous

chapter also converges in this limit to the matrix element.

7.1.4 Double collinear limit
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Figure 7.7: (a) Example configuration of a double collinear event with s;; — 0 and
sg — 0 simultaneously. (b) Distribution of R for 10000 double collinear phase space

points.

In this section we analyse the various double collinear limits. This is the last
double unresolved configuration in the real correction at NNLO. In this case, we
generate three different topologies where two pairs of particles can become collinear
separately by demanding that two invariants vanish simultaneously. The double
invariants pair can involve only final state momenta (illustrated in figure 7.7(a)), or
initial and final state momenta (illustrated in figures 7.8 (a) and 7.9 (a)).

In all cases we generate 10000 phase space points that will approach the double
collinear limit. For each we compute the ratio between the matrix element squared

and the subtraction term and plot the distribution obtained. For the first case (in



7.1. Numerical checks

150

jk

e 2

(a)

# events

3500

3000

2500

2000

1500

1000

500

0 .
09 092 094 096 098

 ratio IMggl/Serm
#PS points=10000
| 154 outside the plot

0 outside the plot

double collinear limit for gg-gggg

1

R

1.1

Figure 7.8: (a) Example configuration of a double collinear event with s;, — 0 and

s1; — 0. (b) Distribution of R for 10000 double collinear phase space points.
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figure 7.7 (b)) we have z = s;;/s, y = sp/s and we make x = y = 107 in red,
x =y = 107% in green and finally # = y = 107® in blue. As we approach the
double collinear limit the subtraction converges to the matrix element squared. We
obtained, for z = y = 1078 an average of R = 0.9999995 and a standard deviation
of o = 0.00037.

For the second configuration (in figure 7.8 (b)) we have x = sj;, y = s1; and we
make z = |y| = 107% in red, x = |y| = 107® in green and = = |y| = 107 in blue.
The average obtained for z = |y| = 1071 was R = 1.00012 and a standard deviation
of 0 = 0.018.

In the last case (in figure 7.9 (b)) we have x = sy1;, ¥ = S9; and we make
r=y=-10"%inred, 2 =y = —107% in green and z = y = —107% in blue. The
average obtained for z = y = —107!° was R = 1.00001 and a standard deviation of
o = 0.004.

In all cases we found convergence of the matrix element and the counterterm as

we approach these singular limits.

7.1.5 Subtraction of single unresolved final and initial state
singularities

In this subsection we will check that the integrand defined in chapter 6 is integrable
over the single unresolved phase space regions. Single unresolved subtraction is
well understood at NLO, but, in this case it is necessary to verify that the new
NNLO subtraction term does not introduce divergences when one parton becomes
unresolved. In other words it has to be correct simultaneously for both double
unresolved and single unresolved configurations. In the 2 — 4 phase space these
correspond to three jet configurations and, depending on the observable, these are

allowed by the jet defining function through cuts on the final state momenta.

Soft limit

In figure 7.10(a) we analyse the single soft limit. To produce these distributions we

generate configurations where a triple invariant s;j;, is close to the full center of mass
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Figure 7.10: (a) Example configuration of a single soft event with s;;;, ~ s12 = s.

(b) Distribution of R for 10000 single soft phase space points.

energy s. We defined = = (s — s;;1)/s and plot in figure 7.10 (b) the distributions
for z = 107° in red, = 107% in green and x = 1077 in blue. The distributions
show that the subtraction term converges to the matrix element as we approach this
singular limit. In this case the singularities related to soft gluons cancel and, the
piece of the subtraction term described in section 4.2.5 correctly subtracts point by
point the oversubtraction of large-angle soft gluon radiation. When x = 1077 we

obtained an average R = 0.999998 and a standard deviation of 0 = 1.9 x 107°.
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Figure 7.11: (a) Example configuration of a single collinear event with s;;, — 0. (b)

Distribution of R for 10000 single collinear phase space points.
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Figure 7.12: (a) Example configuration of a single collinear event with s;; — 0. (b)

Distribution of R for 10000 single collinear phase space points.

Finally we generate points corresponding to the final and initial state single
collinear regions of the phase space. These are shown in figures 7.11 (a) and 7.12 (a)
respectively. As we have discussed in section 4.3.2, using scalar four-parton antennae
functions the factorisation in the collinear limits where a final state gluon splits into
two gluons introduces angular terms. This is the reason why the distributions in
figures 7.11(b) and 7.12(b) have a much broader shape than the previous examples.

For the final-final collinear singularity, we introduce the variable x = s;;/s12 and
7.11(b) shows the distribution for z = 107 (red), x = 107 (green) and z = 10719
(blue). Similarly in the initial-final collinear limit, we define z = sy;/s12 and show the
distributions of R for the same z-values in 7.12(b). It is clear that as we approach the
collinear limits x — 0, the azimuthal terms are not suppressed and the subtraction
term is not, point by point, a better representation of the matrix element.

Nevertheless, the azimuthal terms coming from the single collinear limits were
shown to vanish in section 4.3.2. This happens only globally after an azimuthal
integration over the unresolved phase space. Here we are performing a point-by-point
analysis on the integrand defined by the matrix element squared and the subtraction
term. Omne solution to proceed is to introduce the angular @Fg(z’,j, z, k) function
defined in 4.3.2 to reconstruct the angular terms. Subtracting this additional term
from the FY four-parton antenna functions for the final-final and, initial-final and

initial-initial configurations (by crossing momenta to the initial state) produces a
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Figure 7.13: (a) Example configuration of a single collinear event with s;;, — 0. (b)
Distribution of R for 10000 single collinear phase space points.
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Figure 7.14: (a) Example configuration of a single collinear event with s;; — 0. (b)

Distribution of R for 10000 single collinear phase space points.

subtraction term that is locally free of angular terms.

With this azimuthally modified subtraction term, we recompute the distributions
in figures 7.13(b) and 7.14(b). In figure 7.13(b) we show the R distribution for 10000
single collinear phase space points and x = 107® (red), in green x = 107!% (green)
and in blue z = 1072 (blue). For x = 107'? we obtained an average R = 0.99994
and a standard deviation of o = 0.015.

We repeat the same analysis for the initial state singularity in figure 7.14(b) for
r = —107% (red), in green x = —107'% (green) and in blue z = —107'? (blue). For
x = —107'? we obtained an average of R = 1.00007 and a standard deviation of

o = 0.012.
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For both cases, the distributions now peaks around R = 1 with a more pro-
nounced peak as the limit is approached, just as in the double unresolved and single
soft limits discussed earlier. This demonstrates the the convergence of the countert-
erm to the matrix element.

We note however that introducing © po (1,7, 2z, k1) may have an unfortunate side
effect by generating new singularities in the previously analysed (double unresolved)
phase space regions. For example, looking into equation (4.52) for ©po (4, j, 2, k1) we
see a invariants in the denominator of that expression that are not compensated by a
small quantity in the numerator when they vanish. This introduces new divergences
in triple collinear regions which are not present in the matrix element. More work
is needed to decide the best strategy for these single collinear limits. Alternative
techniques include the cancellation of the angular terms by combining phase space
points related to each other by a rotation of the system of unresolved partons in the

integration routine [91].

7.2 Summary

In this chapter we demonstrated that the results of our numerical implementation
of the antenna subtraction behave in the expected way. This follows from checking
the same limits analytically with the known singular behaviour of both the colour
ordered amplitudes in the matrix element and the three-parton Fy and four-parton
F} antennae functions in the subtraction term. The agreement between the analytic
limits of the formula for do3 y;, Written in chapter 6 and the numerical limits of its
implementation represent the first sanity check on the NNLO subtraction method
that we are developing.

All the singular regions of the phase space corresponding to a certain number of
invariants tending to zero were analysed separately. With the caveat of the correct
handling of the azimuthal terms associated with the single collinear limit, all of the
double unresolved and single soft singularities present in the matrix elements are

cancelled in a point-by point manner by the subtraction term of chapter 6.



Chapter 8

Conclusions

The aim of this thesis was to show that the antenna subtraction method can also
tackle computations of NNLO processes with coloured particles in the initial state.
We have particularly focused on jet production in hadron-hadron collisions.

As we have discussed, the quality of the data already collected at the Tevatron
and the improved experimental accuracy which is expected with the forthcoming
runs at the LHC drives an ambitious effort to perform precision studies of QCD.
At the moment, the experimental error on single jet production is lower than the
error of the prediction obtained with NLO QCD. This means that the measurements
are sensitive to NNLO effects which are described by Feynman diagrams involving
two virtual particles propagating in internal loops, diagrams with unresolved real
emission of an amplitude with a virtual particle propagating and finally diagrams
related with the emission of two unresolved on-shell particles.

All the matrix elements of QCD that describe these contributions are available
in the literature. We list the matrix elements relating to gluon scattering in the
appendix. Each of the separate building blocks is infrared divergent. The major
remaining difficulty is to derive a procedure to obtain an analytic cancellation of the
IR divergences between the various matrix elements to produce a physical prediction.
In this thesis we made a first attempt to tackle this problem and presented an
implementation based on the antenna subtraction method.

We started in chapter 1 by demonstrating that we can compute the theoretical

predictions by means of a perturbative expansion in a power series of the strong cou-
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pling constant. Truncation of this series leaves a residual dependence of the calcula-
tion on unphysical scales, which we saw that can only be ameliorated by computing
higher order terms. We then discussed the procedure to make these higher order
terms well defined. They contain ultraviolet (UV) divergences in virtual corrections
arising from the high momentum limit of the loop momenta. The renormalisability
of the theory guarantees that this type of divergences can be shifted to the fields and
parameters of the QCD Lagrangian order by order by a multiplicative redefinition
of the fields and coupling constant.

Another type of divergence, the infrared divergence (IR), is present in both the
virtual and real contributions. In the virtual contribution, internal massless propa-
gators can vanish in the low momentum limit thereby giving rise to infrared singu-
larities. In this limit the virtual diagram is indistinguishable from the real emission
diagram which also becomes singular when the emitted particle becomes unresolved.
Using dimensional regularisation for both contributions at next-to-leading order, we
find that the singularities appear with opposite sign and can be combined to give
a finite physical prediction. Similarly, at NNLO the double virtual, real-virtual
and double real contributions all have infrared singularities that ultimately cancel
between the three contributions.

To conclude chapter 1 we described the techniques of helicity and colour decom-
position, essential to simplify the computation of tree and loop matrix elements from
which the predictions at a given order are derived. Within the colour decomposition
basis we discussed the universal behaviour of the colour ordered gluonic QCD tree
amplitudes when one or two particles become unresolved. As mentioned earlier, the
tree amplitudes (which constitute the real corrections) become divergent in these re-
gions of the phase space. Knowing how they factorise allows us to construct suitable
counterterms, using simpler building blocks, that coincide with the matrix element
of the real correction in the diverging limits. This yields a proper subtraction of
infrared divergences which can be carried out at NLO or NNLO.

Chapter 2 dealt with the definition of a jet from the experimental and theoretical
point of view. Jets are a spray of roughly collinear colourless hadrons that show up

in the detectors as tracks with hadronic energy being deposited in the form of clus-
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ters. Events can be classified by the number of such clusters of energy that appear
in a given event. This procedure depends on the jet algorithm that is employed in
both the experimental analysis and in the theoretical calculation. To make com-
parisons of experimental and theoretical results the same jet algorithm should be
used. The details on the implementation of some jet algorithms were given and we
also described the convenient variables to compute jet distributions from fixed-order
perturbative QCD.

In chapter 3 we examined the antenna subtraction method at NLO. As we have
discussed there, this method can be applied at this order for ete™, ep and pp pro-
cesses with massless fermions. We introduced the antennae functions that describe
single unresolved emission between a hard pair of radiators. Details of the numerical
implementation of NLO antennae for a pure gluon channel relevant to this thesis
were also given there. As an example we performed the analytic subtraction of IR
singularities between real and virtual corrections for dijet production using the an-
tenna method at NLO. The aim of this thesis is to extend this calculation to NNLO
accuracy and a brief motivation for work on this direction was discussed.

Chapter 4 described the antenna subtraction method at NNLO. We discussed
the formulae necessary for the construction of the subtraction of infrared divergences
from double real emission diagrams at this order. The singular structure is much
more complicated than at NLO because both double and single unresolved limits
must be subtracted to obtain a physical prediction. We gave details of the numerical
implementation of the NNLO antennae functions for a pure gluon channel which is
the new ingredient developed in this thesis. The gluon scattering channel is expected
to be the dominant contribution at NNLO. Other channels involving quark and gluon
matrix elements will make use of the same antenna building blocks and momentum
mappings given in this chapter but the flavour of the antennae in the counterterm
will change accordingly.

An alternative numerical method to isolate infrared divergences from parameter
integrals is the sector decomposition method. We discussed in chapter 5 its appli-
cations for multi-loop Feynman integrals as well as phase space integrals. For the

specific case of extraction of real radiation singularities we argued that this method
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can produce differential results at NNLO. We gave an example to show how this pro-
cedure works in practice. Based on this experience, the advantages and limitations
of this approach to our problem were then identified.

In chapter 6 we described the implementation of the NNLO real corrections for
gluon scattering using the antenna subtraction method. The formulae given there
follow from applying the general formulae discussed in chapter 4, but adapted to
this particular case. By construction the counterterm subtracts double and single
unresolved singularities in the final and initial state. To achieve this we used a
combination of NNLO final-final, initial-final and initial-initial antennae functions.
The analytic integration of the NNLO antennae functions is presently known for
the final-final [67] and initial-final [105,119] assignments of radiators. Work on the
initial-initial case is expected to be concluded soon [120].

Chapter 7 constitutes the numerical check of the implementation of the double
real correction derived in chapter 6. We tested the matrix element and the sub-
traction term in all double and single unresolved regions of the phase space. The
numerical results showed that the combination of the antennae correctly describes
the infrared singularity structure of the matrix element. The antenna subtraction
method, which has been successfully applied to the calculation of NNLO corrections
to the 3-jet cross section and related event shape distributions in electron-positron
annihilation, is now being applied for an NNLO computation of a process with
coloured particles in the initial state.

Future steps include the subtraction of infrared divergences in the mixed real-
virtual correction. Both real-real and real-virtual subtractions are integrated analyt-
ically with the results for the NNLO integrated antennae and added to the two loop
contribution. This will enable the construction of a numerical program to compute

NNLO QCD estimates of jet production in hadron collisions.



Appendix A

QCD Matrix elements for gluon

scattering

A.1 gg — gg tree level

For four-gluon helicity amplitudes the only non-zero sub-amplitudes will be of the
form (— — ++) up to permutations of the indices. These were initially conjectured
by [160] and proven later by [161]. They are written in the following form:

2 (1J)"

Mata—(91, G2, 93, 94) = ig (12)(23)(34) (41) (A.1.1)

where [ and J are the indices of negative helicity gluons. We can square this sub-

amplitude and sum over helicities to obtain the colour-ordered amplitude squared:

1
Ag(gth:gS?ng) = 94 (Z 3%’) - (A12)

§12523534S
i>j 12923934541

This is the colour ordered amplitude that accompanies the antenna functions in the

counterterms in chapter 6.

A.2 ¢gg — gg one-loop
We denote the squared amplitude summed over spins and colours by

(MIM) =" |M(g+g— g+ 9)I> = Dls, t,u) (A.2.3)
160
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that corresponds to the process:

g(p1) + 9(p2) — g(ps) + g(pa) (A.2.4)

D(s,t,u) is symmetric under the exchange of s, ¢t and u that are given by:

s=(p+p2)?  t=(p—ps)?  u=(p2—ps)’ s+t+u=0. (A.25)

The function D can be expanded perturbatively to yield:

a5

D(s,t,u) = 167°a2 |D*(s,t,u) + ( )DG(s,t,u) +0 (ag)} ,

2T

where:

Di(s.t,u) = (MOIMD)

= 16VN%(1 - ¢)? (3 - Z—;“L - g - Z—Z) , (A.2.6)
Di(s,t,u) = ((MOIMD) + (MDD IMDY), (A.2.7)

and N is the number of colours and V = N? — 1. D(s,t,u) is the standard four
gluon matrix element given by (A.1.2) summed over all orderings. The expression

for DY(s, ¢, u) can be obtained from [162]:

4\ T(1+ e)T%(1 — )
6 _
D(S’t’“)‘(@) Il 20
AN 22N 8Tx 67N 20T
Ds.tu)| — 2 — _
X[(s”“)< 2 3¢ T3 9 T

€ 52 t2u?
16NV3 2us  ut+ st
€ ‘) (3 2 u?s?
16NV 25t st 4t
[ 3—
€ () ( u? s2t2 )
+AVN2(fU(s, t,u) + fULw, 8) + fU(u,5,1)) + O(e) (A.2.8)

where f¢ is given by

Fs,t,u) = N[<M> 2(s) + (M - 6) 1)1 ()

tu
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Atu 1412 +u? 2 2
— - —14 -8 =+ — | |i(s) =1 —=?
+ (3 52 3 tu <u2 + 12 (5) m

102 +u?2  16tu s% 4+ tu
— —— —2]I(s) — I?
(3 tu + 3 52 ) (s) (s)

+Tgr

2 + u?
tu

—2 1) (u) +2 — 7r2] (A.2.9)

The poles present in eq (A.2.8) are a consequence of the singularities due to the

emission of soft and collinear radiation. The notation [(z) denotes the logarithm,

[(z) = In (-é) . (A.2.10)

If z is greater than zero [(z) has an imaginary part since Q* > 0. In equations

(A.2.8) and (A.2.9) it is understood that only the real part is kept. Explicitly:

P(r) — In? % — 7, x>0,
P(r) — In? <g2—f> : x <0,
T
I(z) — In o (A.2.11)

These assignments should be made after crossing to the appropriate region. Q? is
an arbitrary momentum scale. It will often be most convenient to make the choice
Q? = s but the scale is left arbitrary to make the behaviour under crossing manifest.
The colour structure is fixed in terms of the quantities,

1
V =N*—1, N =3, Trn =30y (A.2.12)

and ny is the number of quark flavours.

A.3 gg — gg two-loop

This matrix element is not implemented in our program but we reproduce it here
for convenience. Subsection A.3.1 through subsection A.3.3 are taken from reference
[106] and similarly, subsection A.3.4 and subsection A.3.5 are taken from [113]. The

same matrix element was also computed in [107]. It corresponds to the process:

g(p1) + 9(p2) + 9(p3) + g(pa) — 0, (A.3.13)
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where the gluons are all incoming with light-like momenta, satisfying
PU+ph s +ph =0, pi=0.
The associated Mandelstam variables are given by
s = (p1+p2)?, t = (p2+ps), u=(p1+ps)?, s+it+u=0. (A3.14)

The renormalised four point amplitude in the MS scheme can be written

2
M) = 4m5[|M<0>>+(;“—;) MO+ (52) M) + 0 (al)

Y

(A.3.15)

where ay = a,(p?) is the running coupling at renormalisation scale x and the |AM®))
represents the colour-space vector describing the renormalised i-loop amplitude. We

denote the squared amplitude summed over spins and colours by
(MIM) =" |M(g+g— g+9)]* =D(s,t,u). (A.3.16)

which is symmetric under the exchange of s, t and u. The function D can be

expanded perturbatively to yield

_ 2 2|y Qs '\ 146 5\? g 3
D(s,t,u) = 167°as; [D (s,t,u) + <27r> D°(s,t,u) + <27r> D(s,t,u) + O (ad)],
(A.3.17)
where
Di(s.t,u) = (MOMD)
ut  us st
= 16VN?*(1—¢)? <3 —Z"E - @) , (A.3.18)
DS(s,t,u) = ((MOIMD) + (MDIMO)) | (A.3.19)

Di(s,t,u) = ((MDIMYY + (MOMP) + (MBIMOY) | (A.3.20)

where N is the number of colours and V' = N? — 1. Expressions for D° are given in
A.2 using dimensional regularisation to isolate the infrared and ultraviolet singular-
ities.

In the next subsections the pole and finite pieces for both the two-loop contri-

bution and one-loop self interference of (A.3.20) are given.
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A.3.1 Two loop contribution - Pole piece

In the following sections, we present expressions for the infrared singular and finite

two-loop contributions to D®

D@05 t u) = (MO MP) + (MPDIMO). (A.3.21)
The two-loop contribution are decomposed as a sum of two terms

D@05t u) = Poles(s, t,u) + Finite(s, t,u). (A.3.22)

Poles contains infrared singularities that will be analytically canceled by those oc-
curring in radiative processes of the same order (ultraviolet divergences are removed
by renormalisation). Finite is the remainder which is finite as ¢ — 0. Following
the procedure outlined in Ref. [112], the infrared pole structure of the two loop con-
tributions renormalised in the MS scheme in terms of the tree and unrenormalised

one-loop amplitudes, |[M©®) and | M) respectively, can be written as

Poles = 2 Re (MO TD ()| MO)

—%<M(O)|I(1)(€)I(1)(6)|M(0)> — 2_660

MO M)

—l—e”% (% + K) (MW (26)| M @)

+ (MO H (&) MO) (A.3.23)

where the Euler constant v = 0.5772.... The first coefficient of the QCD beta

function, (o, for Np (massless) quark flavours is

11C4 — 4Ty N 1
and the constant K is
67 w2 10
K=[——-— — —TrNpg. A.3.2
(18 6 ) Ca = 5 TelNe (A.3.25)

Note that the unrenormalised one-loop amplitude |[M1%")) is what is obtained by
direct Feynman diagram evaluation of the one-loop graphs.
It is convenient to decompose |[M©) and | M) in terms of SU(N) matrices

in the fundamental representation, 7%, so that the tree amplitude may be written
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as:

|M(O)> _ Z Tr (Ta1Ta2Ta3Ta4) Aflree(L 2’ 3’ 4)’ (A326)
P(2,3,4)

while the one-loop amplitude has the form:

MOy = NOST T (T e A (1,2,3,4)
P(2,3,4)
+ ) T (TUT) Te (TT™) Ah(1,2,3,4)
Q(2,3,4)
+ Np Y Te(TTTT) AY(1,2,3,4).  (A3.27)
P(2,3,4)

To evaluate Eq. (A.3.23) it is convenient to express |[M@) and |[M1¥™) as nine-
dimensional vectors in colour space

M) = (T, B, T, Th, . Ts, 0, 0, 0)", (A.3.28)

’M(l,un)> = (Elu £27 £37 ‘647 ‘657 £67 £77 £87 £9)T7 (A329)

where ()7 indicates the transpose vector. Here the 7; and L£; are the components of

IMO) and |MI¥)) in the colour space spanned by the (non-orthogonal) basis

Ci = Tr(T“T™=TT),
Cy = Tr(T“T™=T™“T%),
Cy = Tr(T“THT=T),
Ci = Tr(T“T™wT%T%),
Cs = Tr(T“T™T™“T),
Co = Tr(TTH“T™T),
Cr = Tr(T™T%)Tr(TT),
Cs = Tr(T%T%)Tr(T%2T%),
(

Cy = Tr(T™T)Tr(T=T%). (A.3.30)

The tree and loop amplitudes 7; and L; are directly obtained in terms of AY°°,
AE]D .AE;]?) and AE{Q] by reading off from Egs. (A.3.26) and (A.3.27). However, the
amplitudes themselves are not required since the computation of the interference of

tree and loop amplitudes is given directly.
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In the same colour basis, the infrared-singularity operator I (1)(6) introduced by

Catani [112] has the form

€y 1 ﬁ
10 =~ (2 )

N(S+T) 0 0 0 0 0 (T —1) 0 (s —v)
0 N(s+1U) 0 0 0 0 U-—T) (5—T) 0
0 0 (T+70) 0 0 0 0 (T—s) (U-—5)
0 0 0 N(T+U) 0 0 0 (T—s) (U-—5)
X 0 0 0 0 N(S+U) 0 U-T) (5—T) 0
0 0 0 0 0 N(s+T) (T-U) 0 (s—v)
(S—U) (S—T) 0 0 (S—T) (S—U)  2NS 0 0
0 U—-T) (U—s) (U-8) (U-T) 0 0 2NU 0
(T-1) 0 (T—8) (T—5) 0 (T-1) 0 0 2NT
(A.3.31)
where

s (E) () (B e

The matrix I (€) acts directly as a rotation matrix on |M©) and | M4 in colour
space, to give a new colour vector | X), equal to IW(e)| M), TW () TW (e)| M)
or TW(e)|M1#m) | The contraction of the colour vector |X) with the conjugate tree

amplitude obeys the rule

MOIX)=3" Y Z T X,CC; (A.3.33)

spins colours ¢,j=1

C; C; which are

In evaluating these contractions, there are terms of the type > _ ... C;

given by the 77 component of the symmetric matrix (C

¢, C C C C C NV —-N NV
G, Ci C C, C; Cy NV NV -N
G, Cy C C; C C —-N NV NV
Cy Cy C3 ¢ Cy Cy —-N NV NV
C, C3 C, C, C C, NV NV —N |, (A3.34)
Gy Cy C C Cy € NV —N NV
NV NV —-N —N NV NV N?V N? N?
N NV NV NV NV —-N N? N2V N2
NV —-N NV NV —N NV N? N? N2V

~ 16N?




A.3. g9 — gg two-loop 167

with
Ci=N*'-3N*+3,  (,=3-N?  (C3=3+N> (A.3.35)

Similarly, the interference of the tree-level amplitudes ) . 7.*7; is given by 77 5,

spins <1

where

64(1 — €)*(t* + ut + u?)?

TT = poroe vy, (A.3.36)
and the vector V is
V=(u,t, s, st u 0,0, 0), (A.3.37)
while the interference of the tree-level amplitudes with one-loop amplitudes Zspms 1L,
is given by 7L;;, where
T = VW, (A.3.38)

and the vector W is
W = (7‘“(5,07 F(s,u), Flu,t), Flu,t), F(s,u), F(s;t), G, G, Q). (A.3.39)

Here the function F(s,t) is symmetric under the exchange of s and ¢, while G is

symmetric under the exchange of any two Mandelstam invariants, so that

F(s,t) = fi(s,t,u) + fi(t,s,u), (A.3.40)
G = fals,t,u) + fa(s,u,t) + folt, s,u) + fo(t,u,s) + falu, s, t) + fo(u,t,s).
(A.3.41)

Here f; and f, are given in terms of the one-loop box integral in D = 6 — 2¢

dimensions and the one-loop bubble graph in D = 4 — 2,

fi(s,t,u) = 16N£21t2_26) [2(1 — 6)2 (54 + s34 st3 t4) +3(1— 5€)$2t2] BOXﬁ(S’t)
SJVF(it_m [(1 — 6)2 (32 + t2) + 6(1 + 36)St] BOX6(57t)
16N (1 —¢)

2 3\ 4 2 3 4\ 3
- m[(l?—ﬂe—i—me +2€%) 5" + (24 — 58 4 50e” — 6e” — 2¢*) 57t

+ (36 — 99¢ + 93¢% — 24¢® — 2¢*) %12 + (1 — €) (24 — 50€ + 23¢%) st®

+4(1 — €)(1 — 2¢)(3 — 2¢)t"] Bub(t)

16Np
st?u(3 — 2e)
+ (6 — 15€ + 21> — 8¢*) st> + (1 — €) (5 — 6€ + 2¢%) t°] Bub(t), (A.3.42)

[(4— 126 + 16€* — 4€”) s° + (3 — 10e + 23¢* — 8¢%) 5°¢
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fa(s, t,u) = 32(11;26) [—4(1 — €)*st + 3(1 — 5e)u?] Box®(u,t)
32(1 — ¢
isuQ) [4(1 —26)(1 — €)t* + (8 — 17€)(1 — €)ut
+ (6 — 20€ + 15€> + €) u*] Bub(s). (A.3.43)

Series expansions around € = 0 for the one-loop integrals are given in section A.3.3.
Finally, the last term of Eq. (A.3.23) that involves H® (¢) produces only a single
pole in € and is given by

ev

O @ oy - _ -
(MOTHO M) =

H® <M(0)|M(0)>
where the constant H® is

11 2 2 N
H® — (ggg + g 5 ﬁ2> N2+ 2_(7) N2+ (—1 - @) NNp—=£  (A3.44)

and ¢, is the Riemann Zeta function with ¢, = 72/6 and (3 = 1.202056. .. In this
case H® is renormalisation-scheme dependent and Eq. (A.3.44) is valid in the MS

scheme.

A.3.2 Two loop contribution - Finite piece
The finite two-loop contribution to D3(s, t,u) is defined as
Finite(s, t,u) = DX (st u) — Poles(s, t,u), (A.3.45)

where the series expansions of both D%?*0) (s, ¢, u) and Poles(s,t,u) are subtracted

and set € — 0. As usual, the polylogarithms Li, (w) are defined by
: Yt
Li,(w) = 7L1n_1(t) forn=2,3,4
0

Lis(w) = — /Ow % log(1 —1). (A.3.46)

Using the standard polylogarithm identities, polylogarithms with arguments z, 1 —=
and (r — 1)/x are retained, where

t U U r—1
T =—-, y=——=1-—u, 2=——= .
S S t T

(A.3.47)

For convenience, the following logarithms are introduced

_t —
X =log (?) , Y =log <?u> , Ls = log <%) , (A.3.48)
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where g is the renormalisation scale.
The results are shown by grouping terms according to the power of the number

of colours N and the number of light quarks Ng, so that

Finite(s,t,u) = V| N*A+ N?B+ N*NpC+NNpD+ N?NEE+ N;F |, (A.3.49)

where
. . . . . 98 _.
A = 48 Liy(x) — 48 Lig(y) — 128 Liy(2) + 40 Liz(x) X — 64 Liz(x) Y — 3 Liz(z)
. . . 98 _. 16 _ . 9 .
+64 Liz(y) X —40Li3(y) Y + 18 Liz(y) + 3 Lig(z) X — 3 Lig(x) 7 — 18 Lis(y) Y
37 23 49 35 38 22
X XY - X 16 XY 4+ XY - Xt - X - D Is X
6 3 3 3 3 3
2 1 22
—§0XY3—9XY2+8XY7r2+10XY—%X7T2—22g3X+§LsX+%X
11 11 11 22 266 35 418 257
— Y - Y3 - VP - TLsY? 4+ Y- YVt —LsY + Y
*% 9 IR S DR R+
31 11 31 242 418 2156
186Y — =7t — —Lsn?+ =72+ — L’ + — s
H8GY =g m =g lsm + g m 4+ = L™ 4 == G+ = Ls
11093 t2
818LSC3>52
. . . . , 64 _ .
+| — 256 Lig(z) — 96 Lig(y) + 96 Lis(2) + 80 Liz(z) X + 48 Liz(x) Y — 3 Liz(x)
304 64 32 304
—48Liz(y) X + 96 Liz(y) Y — = Liz(y) + ) Lig(z) X — 3 Liy(z) 72 + =5 Lis(y) Y
2 4 4 1
+§6X4—%X3Y—%X3+20X2Y2+%X2Y+24X27r2+76X2—%LSXQ
104 1 1 1
+§XY3+%XY2—;XYH—&—?LSXY—%XY—%XWQ—%@,X
2350 440 176 4 176 494 5392
X4 Ls X 44V - YR Y2 - LsYi - Yl Y
T At sAt g 1yt oy o 'ty
496 308 200 968 8624 44372
—64GY + —71t - —Lsn?+ —r?4 —Ls’+ —Ls — ——
64 (3 —|—457r 9b7T+97T+98+27b a1
1864 t
+ 4332Lsg3>
u
220 .
+<8;L13(;z:)838L12(:z:)X+2X48X3Y90X‘3+12X2Y2+838X2Y+§X2772
88 304 16 176 77 1616
—— IsX? 4+ —— X% 8XY3 - —XYnl+ —LsXY - —Xn?+—X
3 STt g At Ty CIT
1 2 1
+¥LSX—8§3X+4Y4—$Y3—§0Y2w2—$LsY2—?Y7r2—16C3Y
5392 4 308 1408 968 44372
Y - — ' - - Lsn? —207% - 32Ls — — Ls? — ——=
+27 157r g Lsm T s(3 + 5 (3 + 9 s a1
8624 t?
27 Ls>u2

44 110 22 14 44
+ <3L13(z) - ELiQ(I)X—X4+7X3 - §X2Y+§X27r2+§LsX2
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152 484 808 7 31
- X?’-10XY —X AGX - —LsX — o= X +  ——
9 0 + w2+ (3 57 30 9 s
11 5 418 242 5, 2156 11093
+§LS7T — Cg—?L —27LS+8LSC3+81>52
206 206
+ (— 176 Lig(v) + 88 Lia(w) X — 168 Lis(2) ¥ — == Lis(x) + == Lia(z) X
L5 40 sy 295 s qovaye 105 o 29 p p 670 4,
6 3 9 3 3 9
242 4 1811
M2y ix2y§ XY7T2+ 09XY+44LSXYf—§ X 72 8g§3X
1870 31 i 361 2 017 1331 12452
1543 129475
+ 9 (3 — 162 —44LSC3> }—F{th}, (A.3.50)

B = { ( — 288 Liy(x) + 480 Liy(y) — 288 Lis(2) + 240 Liz(2) X — 144 Lig(z) Y

+224 Lig(x) + 144 Lis(y) X — 432 Lis(y) Y — 224 Lig(y) + 48 Liy(z) X2

—224 Lig(x) X — 176 Lig(z) 7% + 48 Lia(y) Y2 + 224 Lis(y) Y — 16 X* + 112 X° Y

556

—?Xi” — 48 X2Y?2+180X2%2Y —40X2%27%2 +9220 X2 —-32X VY3 —92XY?

292
—16XY7r2—%mXY—16X7r2—80X+96(3X+8Y4—|-%Y3—32Y2772
284 38 12
Y216V 7t £ 80Y —96¢ Y + — ' — 187 )82

+ ( — 576 Lig(z) + 384 Lis(y) — 1152 Lis(z) + 1056 Liz(z) X — 768 Liz(z)Y

+448 Lig(z) + 768 Li(y) X — 768 Lis(y) Y + 896 Lis(y) — 192 Liy(z) X

—448 Lig(z) X — 544 Lig(z) 72 — 384 Lig(y) X Y — 896 Lia(y) Y — 28 X* + 144 X3 Y

2
30)(3 336 X2Y2 - 224 X2Y —40X? 7?2 —64 X% - 32X Y3 +128 X V2
1
—64 XY 72 +ﬁXY7288X7r2+160X71248(3X7240Y27r2—928Y7r2
1216 1912 t
FT68Ca Y + — = 7 4—37r2—448§3>

+ ( — 384 Liy(y) — 384 Lis(2) + 384 Liz(x) X — 384 Lig(x) Y + 384 Lis(y) X

—192Lig(z) X% — 192 Lig(z) 72 — 384 Lin(y) X Y —8 X* - 32 X3Y — 176 X3

752

—192X2Y? +352X%2Y —80 X2 7% + 7)(2 —3R2XY 2176 X712 —384(3 X

t2
—96Y27m? —352Y 12 4+384(3Y + 56 7% — 9287r2> —
u

+ (— 192 Lig(x) + 192 Liz(z) X — 96 Lig(z) X? —4 X* - 32 XY +88 X3

+12X2Y2—88X2Y+48X2n2—%mX — 48X Y 72 +%76XY
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64 ut
— 1
+157T + 8T >52

+ (48 Liz(x) X + 144 Liz(2) Y 4 672 Liz(z) — 48 Lig(x) X2 — 672 Liy(2) X + 16 X*

1444

4
—32X3Y—§X3+24X2Y2+12X2Y—192X27r2+ X24+72XY 72

80 509
+g XY - 624 X 72 + 80X — 288 (5 X + —— o 7 — 707 72 —36—2800(;:,)}

+{u<—>t}, (A.3.51)

74 32
56 Lis (y) X +44 Li(y) Y — 22Lis(y) — 5 Liz(#) X + 5 Lia(a) n° + 22 Lia(y) ¥

2 2
+Z5X4726X3Y+4X3+14X2Y2 37X2Y+7X2 2 —7X2+5LSX2
292 2
+§XY3+11XY2—4XY7r2—11XY+3 X 72 +12g3X—§77X—fL X
19 16 221 7 25 175
vyt 2yl V2p? o oy CsY?P -yl Sy —12
12 9 +3 18 3 ° 6 9 G Y
98 1 2 203 88 4849 386 12
_ Y + =t Lsm b R =/ s | =
g LsY +pmi+glsn + orm C3 L'+ 1o ~ o7 S>52

124

280 124 64
+24 Liz(y) X — 48 Liz(y )Y+—L13( )f—le( )X+—L12(a;)7r2
2 1
—@Lm( )Y—%X4+6X3Y—7X3—3X2Y2 56X2Y—%X2w2—2LsX2
7 14
—gox —6XY?-26XY?%— 3XY7T +4LsXY+—38XY—§X7r
124 938 32 4 1096
S s X+ o X 464G X fy?’ V2r2 4+ S LsY2 - Y- Y
3 + o7 +64(3 X + 9 3Y°n* + 3 S 9 o7
829 10 356 352 1544 388 9698 \ t
24 gt —Lsm? - S - o - s — ==
F2AGY =55 g T T r T T g T Ty TR B
16 16 40 16 22 16 32
— —Li Li X+ =X X2V 4+ X2+ —Ls X2 -2 1sXY
+< 3 Lis(@) + - Liz(7) X + 5 3 Ty ATty 3 "
14 224 2 2 2 11 1
+—X7r2f—Xf£L X+3—Y3 3 LsY2 6Y 27@3/ 56L
3 27 27
340 , 1544 9698 32 352 12
T T Ty Bt Ty e g s >u

%LSX2+11XY—X7T2

20 4 11
+<—L13( )+ - Lia(z )X—§X3+§X2Y—§X2—

o7 Xt 7LX*7L7T7574 9 162 o7

112 176 203 5, 88, o 4849 386 4<3>ut
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206 206 71
14 68 . 5 29 973 77
XY - X415 XYVP XY - X4 X% s X?
+3 9 + 15 +3 3 T+ 13 + 3 S
2 1 1 1 2
fG—XszngYfSLsXYfﬂXﬁfﬁXf@LSXJrZLCgX
3 6 18 27 9
47 , 3799 , 4T, 484, 2825 932 70025
- == Lsmt- ——Ls?— T Is 4 (3 ——
07 Ts " To T - g -yt g at o5y
+{u<—>t}, (A.3.52)
. . . . . 46 _ .
{ (24 Lig(z) — 24 Lig(y) + 88 Lig(z) — 52 Liz(z) X + 36 Liz(z) Y — 3 Liz(x)
46 46 44
—36 Lig(y) X +52Lis(y) Y + - Lis(y) — 4Lis(x) X%+ 5 Lia(2) X + - Lia(2) w2
46 79 82 817
—16Lig(y)XY+4Lig(y)Y2—gLig(y)Y—i-ﬁX‘l—§X3Y+1—8X3+3X2Y2
184 13 545 38 136 4 155
XY+ X - X+ XY XY XY+ S XY
3 Ty AT oy ATy T3 Ty AT
2 2
—10X772—32C3X+7—36X—%Y‘l—%Y3+3Y27r2+%Y2+10Y7r2—§Y

11 7 55\ 2
2GY — — 7t + 72 2Ls — — | =
+32(3 307T +27r +8(3+2Ls 6)52

92
+ (176 Lig(xz) — 48 Liy(y) + 48 Lig(z) — 104 Liz(z) X + 32 Liz(z) Y — 3 Liz(z)

184 92 160
—32Li3(y) X + 64Lis(y) Y — —- Lis(y) — 8 Lia(2) X%+ 7 Lia(2) X + —=Lis(2) 2
184 23 385

+16Lig(y)XY—16Lig(y)Y2+TLig(y)Y—€X4—10X3Y—7X3+19X2Y2
161 14 2
+%X2Y—17X27T2+?X2—KXY?’—S?XYQ—;XYWQ—%OXY

215 152 545 571
+ X - X 168G X +TY P oY a4 8Y —32GY — —— 7t

3 3 3 90

742 ., 188 110 t

- (-~ 1 8Ls | =
tg Tt (3 5t s)

1 2
+<32X3—64X2Y—330X2+32X772+64Y7r2—|—8Y+32772+8Ls

110 12
—— +32 g3> —
u

3
155 155 7 55\ ut
rl—exP 16Xy 2 x2 - 22 xy - L2 g 2Lste 2|8
3 3 2 6 |52
+ <64 Lis(z) — 20 Lis(z) X — 108 Lis(z) Y — 46 Liz(z) — 12 Lis(z) X2
, 5 s s 401 Ly 21 o 34 o, 1,
+46Lip(r) X + 2 X' —10 XY — = XF - S X?Y? - XY — o X7r
1303 _, 16 340 52 67

11
XYWQfEXY+ X7r2+104<3Xf§X7—

— m
6 3 3 20
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2081 1166 461
+ﬁﬂ' +11Ls + 3 (3 — 12) }+ {UHt}, (A.3.53)
1 2 2 2 4 2 1 2 2
E = — o X s X+ S X - X S Is X - S X+ Y3 4 D Y24 D LsY?
{( 3 3 S +3 3 0 +3 S 3 +3 +9 +3 S

2 4 2 2 8 12
YL TIsY 2y S 20 2162 =
Tyt T gty +277r+9s>s2

2 2 4 4 2 8 2 8
X I XY 4+ X% CIs XS XY?2—CIs XY+ XnP4+-LsX
+<3 3 +3 +3 S 3 3 S +3 ™ +3 S

4 2 52 4 32 t
+3X—Y7r2—7r2+Ls7r2+9L52> —
(7

3 27 3

+<1;X2+?;2LSX—;127T2+?;2LS2>£22
+(§Xz{jLsX;7ﬂszsz)g

+ (—X3—2LsX2+2§X2—2X7r2+I;)X+5;Lsx—;liw2+4;Ls2

+% + 4Ls> } + {u o t}, (A.3.54)

2 2
F = {3<X+Y> <3X24XY14X+3Y26Y+27r2+4>2
S
[ 1 t
+ 4X‘37§X2Yf§X2+§XY2+@XY—4X7r2+—6Xf§Y7r2—247r2 s
3 3 3 3 3 3 u
32 12 16 16 ut
Sl N N o —— X2+ =XV |—=
3 ( o ) T ( 5 T3 >s2
2 4 1 4
+ 7X3+2X2Y+20X2+7XY——6X7r2+§X—6—7r2 +duety.
3 3 3 3 3
(A.3.55)

A.3.3 Master integrals

In this appendix, the expansions for the one-loop box integrals in D = 6 — 2¢
are listed. The results are given in the physical region s > 0, u,t < 0, with the
coefficients written in terms of logarithms and polylogarithms that are real in this
domain. More precisely, the notation of Eqs. (A.3.47) and (A.3.48) is used to define
the arguments of the logarithms and polylogarithms. The polylogarithms are defined
as in Eq. (A.3.46).
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The box integrals have the expansion

oo = RO () {1y o

25T (1 —2¢) (1 —2¢) \ s

. ) 1 ., =
+2¢ |Lig(x) — XLis(x) — §X - 7X

1 1 1 1
—2¢? [Li4(x) + YLig(x) — §X2Lig(x) - gX4 - 6X3Y + ZX2Y2

7.[_2 2 4

s >
——X? - XY - —
4 3 45

+ (u e t)} + 0 (%), (A.3.56)

and

6 (1 +el(1—e)? w2\ 9 .
Box"(s,t) = 2ul (1= 20)(1 = 20) <_E) {(X + 2in X)

2
(—2Li3(x) + 2XLiy(z) — gx?’ +2YX? - ?X + 2@)

+e

2
+im <2L12(x) +4Y X - X? — %)]

+€

<2Li4(z) + 2Liy(y) — 2Y Liz(7) — 2XLis(y) + (2XY — X? — 72)Liy(7)
1 4 ) 3 3 2v2 2 22 2 1 4

1
+im (—QLig(m) — 2Liz(y) + 2Y Liy(z) + §X3 —2X%Y +3XY?

2
——Y +2
3 + C3>

} +0 (€. (A.3.57)

Box’(s,u) is obtained from Eq. (A.3.57) by exchanging u and t.
Finally, the one-loop bubble integral in D = 4 — 2¢ dimensions is given by

_e”f‘(l—i—e)f‘(l—e)2 w2\ €
Bub(s) = T(2—20)¢ (—?) . (A.3.58)

A.3.4 One-loop self-interference contribution - Pole piece

The one-loop contribution is decomposed as a sum of two terms

D8N (st u) = Poles(s, t,u) + Finite(s, t,u). (A.3.59)
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Poles contains infrared singularities that will be analytically canceled by those oc-
curring in radiative processes of the same order (ultraviolet divergences are removed
by renormalisation). Finite is the remainder which is finite as e — 0.

The contraction of the colour vector |X) with the conjugate colour vector (Y|

obeys the rule

Yix)y=>" > i Y X;CrC;. (A.3.60)

spins colours %,7=1

In evaluating these contractions, the terms are typically of the type >
which are given by (A.3.34).

e

colours ~¢

For the expansion of the pole structure coming from this contribution, eqs

(A.3.31) through to (A.3.43) are valid.

A.3.5 One-loop self-interference contribution - Finite piece
The finite two-loop contribution to D8(s,t,u) is defined as
Finite(s, t,u) = DXV (st u) — Poles(s, t,u), (A.3.61)

where the series expansions of both D3V (s ¢ u) and Poles(s,t,u) is subtracted
and set € — 0.
The results are shown by grouping terms according to the power of the number

of colours N and the number of light quarks Ng, so that

.. N2
Finite(s, t,u) =V <N4A + N?*B+ N*NpC + NNpD + N*NZE + NAF + F1;“6) ,
(A.3.62)
where
1 2 2 2 2 2 2 t4
A = 5 X2-2XY+Y? +m? | [ XP-2XY —2X +Y?42Y + 7% |
S
4 3 56 3 2 2 2 22 2 2 _2 56 2
+(3X4—4X Yng +6X%Y?24+20X YfEX Ls+10X2% 7 +§X
154
—4XY3—20XY2—4XY7r2—6XY+%XLs—16X772+%X+Y4
22 2 11 21 242
+4Y3——YQLs+2Y27r2——8Y2+—0YL5+16Y7r2+7—Y+—L32
3 9 3 9 9
2948 9014 \ t2
L 4 2 VRN
R e A B T >s2

4 44 56 40
+ <4X4+12X3+3X2Y3X2Ls+16X27r29X2+3XY2
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22 1442
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(A.3.63)

4

s4

t
B = {6 <X22XY+Y2+W2> <X22XY2X+Y2+2Y+7T2>

1280 .,
3

+<72X4 —120X3Y — 356 X3 + 48 X° V2 + 580 X2Y + 156 X272 +

1184
+24XY3 —404XY?2 - 144X Y 72 — TXY—392X7r2 — 112X —24Y*

2

t
+180Y3 —12Y2 72 —32Y2—|—392Y7r2—|—112Y+127r4+127r2> =
S

+<—24X4+ 144 X3Y +408 X3 —48 X2 Y2 — 272 X2V +120 X% 72 — 64 X?

2752
496 X Y3 +624XY?+288 XY 72 + TXY+792X7r2+224X

2200 t
+144Y?% 7% + 528 Y 72 + = 772) -
u

4
+12 X2 <X2 + 47r2> 14
u

t3

u3

424 X <X3 +2X2+4X7r2+47r2>

1184
7 x2
3

+<84X4 —96X3Y —104 X3 +96 X2Y?2+352X2Y + 288 X272 +
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1112 t?
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+<42X4+32X3+66X2Y2+416X2Y+288X27r2+8308X2+84XY7r2
424 ) A )
+7XY+716X7T + 112X + 157 +6667m2 +48 | S +u—t (A.3.64)
t4
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4

t
D = {2<X22XY+Y2+W2> <X22XY2X+Y2+2Y+7T2> —
S
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389 446
=5 X’y —8X%m2— X2

+<—4X4+8X3Y+75X3—6X2Y2 =

424 232 1 (
93XY2+4XY7r +—XY 3 X+ 36X+2Y4—43Y3

22 232 116 t2
+4Y2 2 3Y 3Y7T2—3Y_7T4—47T2>

188 44

+<—4X4—16X3Y—102X3+12X2Y2 X%y —-32X%n% + 3X

—8XY3—?XY —24 XY 72 —312XY—?X 2-%){ 4Y?%n

2 2 t
7£Y7T2+27T47@7T2 —
3 3 U

t4
—4X? <X2 +47r2> —
u

t3
—-8X <X3+2X2+4X772 +4w2> —
u

424
+<— 14X*+8X3—64X%Y —56 X272 — 7X2 — 16X 72 —64Y 72

400 L\ t?
a3 BUS
3 u?

35

+<—4X4—4X3Y—3X3—85X2Y—26X2772—206X2—2XY7T2

148 484 116 1 721
-5 XY - — X=Xt =a? —16) }+ {th} (A.3.66)

3 3 2 3
1 2 2 2 2 2 2 t4
E = 3 X2 2XY+Y?+n X?—2XY -2X+Y?+2Y +7° |
S
1 4 3 3 2 2 2 1 2 2 _2 32 2
+ —§X +2X3Y - X3 -3X2Y?242X Y—§XL - X%z +§X
3 2 0 1 4
+2XY?—2XY?4+2XY 72 76XY+—XL577X7T fﬁxfiy
10 34 8 80
y?3 7Y2L Y252 Y2 YL Y -y Ls? + —Ls
+ +3 sS—Y m* 4+ — +3 s+3 7T+9 +9 +27
1, 5 236 t2
T +81>52
4 2 20 2 4
+<X4+6X3—3X2Y+3X2Ls+4X27r2+3X2+3XY2—3XYLS
4 4 1 2
+3 X Ls +3—X +§X+ Y2+ 96L82+§L +2i70L

+22 2, 472 t
L2 Azt
3 81 ) u

+4
+X° <X2 + 47r2> —
u



A.3. g9 — gg two-loop 179

+2X <X3+2X2 +4X7r2+47r2>
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S

. t
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+12X <X3+2X2+4X7r2+47r2> —
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+<12X4+36X3 +48 X272 +36 X2+ 72X 72 +247r2> t
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3
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Although it is expected that the finite piece contains polylogarithms, they are
all predicted by the infrared singular structure and are obtained by expanding
Eq. (A.3.23) through to O (¢). This is because the polylogarithms appear as the
O (€) and O (%) terms in the expansion of the box integral in D = 6 and must
be multiplied by an infrared singular term to contribute at O (1). At O (1), the
interference of one box graph with another only collects the O (1) terms in each and

therefore yields only logarithms.

A.4 gg— ggg tree level

For five-gluon helicity amplitudes the only non-zero sub-amplitudes will be of the
form (——+++4) up to permutations of the indices. They are written in the following
form [160, 161]:

(17)"
12)(23)(34)(45)(51)

m342— (917 g2, 93, 94, 95) = i93< (A~4~70)

where [ and J are the indices of negative helicity gluons. We can square this sub-

amplitude and sum over helicities to obtain the colour-ordered amplitude squared:

AS(91, 92, 93, 91 g5) = 29° (Zs (A.4.71)

5125235345458
i>j ) 12923934945°51

This is the colour ordered amplitude that accompanies the antenna functions in the

counterterms in chapter 6.
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A.5 ¢gg — ggg one-loop

This matrix element is not implemented in our program. We reproduce it here from
reference [114] for convenience.

In this case one first decomposes the n-gluon amplitude, depending on the ex-
ternal momenta, helicities, and colour indices k;, A\;, and a;, into sums over certain
permutations of colour factors, times partial amplitudes, in analogy to the helic-
ity [20-25] and colour decomposition [27-29] of tree amplitudes. At one-loop order
in an SU(N) theory, one must also sum over the different spins J of the internal
particles; this takes the following form when all internal particles transform as colour

adjoints,
ln/2]+1

2 (kN ai}) ZnJ Y Y Grue(o) Al(o) (A.5.72)

c=1  0€Sn/Snc

where Gr, (1) = NTr (T ---T%), Gry(1) = Tr (T ... T% 1) Tr (T% .- T%),
Sy, is the set of all permutations of n objects, and S, is the subset leaving the trace
structure Gry,. invariant. The 7'* are the set of hermitian traceless N x N matrices,
normalised so that Tr (T"Tb) = 0% For internal particles in the fundamental
(N + N) representation, only the single-trace colour structure (¢ = 1) is present,
and it is smaller by a factor of N. In each case a spin-J particle has two states:
gauge bosons, Weyl fermions, and complex scalars.

The objects one calculates are the partial amplitudes A ., which depend only on
the external momenta and helicities. For the five-point function, there is only one
independent partial amplitude for each configuration of external helicities; As.» and
As 5 are related to the adjoint contributions to As; via decoupling equations [163].
Taking the fifth leg to be a photon, and setting the coefficient of Tr(T*T*T*T%)
to zero yields the first decoupling equation [163],

> Asa(o(1),0(2),0(3),0(4),5) + A52(5,1,2,3,4) = 0 (A.5.73)

oEZyY

A new feature of the five-point amplitude is the emergence of additional con-
straints from other trace structures, still considering the one-photon substitution;

the coefficient of Tr(7 7)) (T T*) must vanish, which means that [163]

A55(1,2,3,4,5)+A5.5(1,2,4,3,5)+A55(3,4,1,2,5)+A5,3(3,4,2,1,5) = 0. (A.5.74)
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Substituting two photons for gluons, only one equation emerges [163],

+ Z <A5;2(57 U(D? U<2)7 0(3)7 4) + A5;2(47 0(1)7 U(2>7 0(3)7 5))
+A5;33<4,5,1,2,3) =0 (A575)

where COP (cyclic ordered permutations) denotes the subsets of S, that leaves the
ordering of the a; unchanged up to a cyclic transformation. These equations can be
solved to eliminate the partial amplitudes As., and As3. Using the one-photon single
trace equation (A.5.73) to substitute for As5 in the two-photon equation (A.5.75)
gives [163]

Ass(4,5,1,2,3) = Y A5y (0(1),0(2),0(3),0(4),5). (A.5.76)

oeCOP123

From this equation along with the one-photon double trace equation (A.5.74) gen-

erates the constraint [163]
> Asa(0(1),0(2),0(3),0(4),0(5) =0 (A.5.77)

Additional equations obtained by substituting three or more photon legs are
not independent. For the finite helicity amplitudes, supersymmetric identities [164]
imply that the contributions of particles of different spin circulating around the
loop are related, ALl;]c = —AE;QQ] = AL?;]C. (This holds true for the partial amplitudes
whether or not the theory as a whole is supersymmetric.) Indeed, in the string-based
method, these identities hold for the integrands of each diagram. The amplitudes
are [114]

Al (1+ ot gt 4+ 5+) — i S12823 + S23534 + S34545 + S45S51 + Szs12 + £(1,2,3,4)
51 (17,27,37,4%, 062 (12) (23) (34) (45) (51)
(A.5.78)

Al (17,27 3% 4t 5%) = !

©4872[12](23) (34) (45) [51] (523 + S31 + 545)[25)°

~ 24 (43) B3] 25] - %(ﬂyﬂ?f%
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+(13)%(1 4)2% + 141 5>2@>] (A.5.79)

In order to present the results for the remaining, infrared-divergent amplitudes

in a compact form, it is helpful to define the following functions,

_ In(r) CIn(r)+1—r In(r) = (r—1/r)/2

L0<T) - 1’ L1<r) - (1 _ T)2 ) LZ(T) - (1 — 7”)3 )
Ls1(r1, 1) = | Tig(1 — 1) + Lin(1 — 1) + Inry 1 772
r1,T2) = is(1—r irs(1—1r nry Inryg — —
171,72 I—r—r) 2 1 2 2 1 27 %

+ (1 -7 — 7"2) (LO(TI) + Lo(Tg)) (A580)

where Lis is the dilogarithm; a prefactor,
4m)cT(1 21—
o= U A+ ¢) (A.5.81)

1672 T(1— 2€)

a universal function,

(A.5.82)

the following functions for the (17,27,3%,4%,5) helicity configuration [114],

5 1 o1 2
Vf:_2_€_§ {ln(—523)+ln<—351)] v :_§Vf+§
Ff:_1<12>2(<23>[34]< D+ 24H)[5 Gl >)L°<—sm)

2 (23) (34) 45) (5 1) 851
s L1B4MAD EH[E5(23) 34 (A1) + (24 [45) (51)) L2 (7) Loy

3 (34) (45) S 3

1 (35)[35)° 1 (12 [35)° 1(12)[34] (41) (24) [45]

TR B U5 1 3R B AP 6 s34 @) ss
(A.5.83)

and the corresponding ones for the (17,2%,37,47 5) helicity configuration [114],

5 1 2 2 1 2
Vie—— | 1 —2 Vei=—-VIig 2
2¢ 2 |:n(—834) + n(—851 ' 3 _'_9

$23 —S34

o apranpaRln (55 5m)  ageapsrle (52 2)
F -
AHH 1) B1{5)
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L(13°(15) 52 23) — 342 21)) Lo (52)

1 4)
2 (12)(23) (34) (45) (51) S51
P 0203 @0unRa 2 L (S0 =) 1 (5) <1 (5)
(45)(51)(24)* $31
BRI Eyee 2 e (52 =) + 1 (52) (=)
(54)(43)(25)° s34
L2 3)2(41)°[2 4° L2 (iﬁf) 2021335’ L2 <_534>
3 (45GENEY) s 3 (54)(43)25 i
N L2 (:4> 1(13)[24] 25/ ((15) [52] 23) — (34) [42] (21))
$31 3 (45)
2(12)%34)° @124 2(32%(15)°(B3)[25)°
3 45 (51)(24) 3 (54)(43)(25) )
1(13)° ((15)[52) (23) — (34) [42] 21)) Lo () 1 R4py’
6 (12) (23) (34) (45) (51) S51 3[12R3IBAA5)p ]
1 121’24’ 1 (325325 1(13)*[24] [25]
C3@RGLRHRIBAss  3GAHMA3)25)R1)[15]s3s 6 s34 (dB)ss

For positive values of s;;, the logarithms and dilogarithms develop imaginary parts
according to the prescription s;; — s;; +¢c. The correspoding tree amplitudes are,
Afree (17,227,347 57) = i1 2)4/((1 2) (23) (34) (45) (51)) and

Abree (17,2737 47 51) =i(1 3)4/((1 2) (23) (34) 45) (51)).

In terms of these functions, the MS renormalised amplitudes are

AR = cp (VAL +iF?)
AL = —ep (VI 4+ Vo) AL +i(F! + F?)) |
AW = e (VO 4+ 4VF + Vo) AT 4 i(4FT + F?)) .
(A.5.84)

The rest of the helicity amplitudes are related by cyclic permutations or complex
conjugation to those given above. It is interesting to note that in supersymmet-
ric theories, the V*® and F* terms cancel out of the final amplitude, and that in
N = 4 supersymmetric theories only the V9 term survives. The separation implied
above into g, f, and s pieces arises naturally on a diagram-by-diagram basis within

the string-based approach. In this approach the V9 term represents the only cal-
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culational difference between the contributions with gluons circulating around the
loop, and those with fermions; this term has a particularly simple expression at
every intermediate stage of the calculation. The parameter g controls the variant
of dimensional regularisation scheme [76,165]: for dg = 0, one obtains the four-
dimensional helicity scheme, while for §g = 1 one obtains the 't Hooft—Veltman
scheme.

At next-to-leading order, only the infrared-divergent helicity amplitudes enter
into the construction of a program for physical quantities. In order to construct
such a program for three-jet quantities, one must form the interference of the tree

amplitude with the loop amplitude; this has the form [163]:

Z [Af Ao = 20°N* (N? —1) |Re Z Agee* (o) Asa (o)

colours o€Ss/Zs
1 ree * ree *
b Re S0 [AE ) Asa(p) — AT () Asa (7 )
pESs5/Zs
2 ree %
+mReZ > At (hep)Ass(p) | (A.5.85)
heHs 5
pep(3)

where 7 is the permutation (24 135); P(g) is the ten-element set of distinct parti-
tions of five elements into lists of length two and three; and

Hs; ={(12345),(34125),(31245),(21345),(32145),(34215)}. For QCD with
ny flavors of massless quarks, one substitutes As.; — Ag]l + %AE{Q] and As3 — A[51]3

into equation (A.5.85).

A.6 gg — gggg tree level

For six-parton amplitudes two sets of helicity amplitudes are needed: my_4. and

mg4s—. The first ones are [160, 161]:

5 (17)*
(12)(23) (34) (45) (56) (61)

Mo+ (91, 92, 93, 94, 95, J) = ig (A.6.86)

where I and J are the indices of negative helicity gluons. The second ones are de-

scribed by three distinct sub-amplitudes, characterised by three inequivalent helicity
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orderings: (+++ — ——), (++—+ ——) and (+ — + — +—). For the pure gluonic

case they can be written in the following form [25,27,28]:

ma43— (91> g2, ...

where t;;, = (pi + p; +pr)? = 5ij + i + Ski. The coefficients for «, 3, v are given

in table [25].

_ 4
7g6) =19
2
Y
+
1345534545561512

a?

/32

1123512523545556

1234523534 556561

t123B7 + tosaya + tagsaf

Y

512523534545556561

17273147576~

X =pi+p2+p3

17273741576~

Y =pi+p2+ps

17273147576~

Z =p1+p3+ps

—[12](56) {4]Y'[3)

[13]{46) (5| Z|2)

[23](56) (1] X]4)

[24](56)(1]Y'[3)

[51]{24)(3|Z16)

r‘)/

[12]{45)(3].X6)

[12](35){4]Y'[6)

[35](62)(1]Z]4)

Table A.1: Coefficients for the ms 3 (g1, 92, 93, 94, g5, gs) sub-amplitudes. We define

(IIK[J) = (I + K -~J+)

The evaluation of the spinor products proceeds as described in 1.6.




Appendix B

Gluon-Gluon antenna functions

B.1 FALO(91792793794)

The tree-level four-parton gluon-gluon antenna contains three final states: gluon-
gluon-gluon-gluon, FY, and gluon-quark-antiquark-gluon at leading and subleading
colour, GY and @2 and quark-antiquark-quark-antiquark, HY. The antenna for the

gggg final state is [67]:

F£<gl7927937g4> = ff(la 27 374) + f£(47 37 27 1) + fz(l)(27 37 47 1) + f£(1747 3’ 2)
+f£(3747 17 2) —"_ f£(27 1747 3) —"_ f£(47 17273) —"_ f£<3727 174) 9
(B.1.1)
with
1 283451357 1
f£(17273a4) = 3 { - ki + 7[2512814 — 2812824 + 2812834
57234 59351235234  Sa3

2 2 2
+57y — 2813514 — 2513824 — 2813534 — 2514524 + 2814834 + 87, + 834}

513 2 2
+ 2 [4813814 + 4813824 -+ 4813834 - 8814834 - 2814 — 4824834 — 4834]
5535123
52
13 2 2 2
+—5—5 [4814824 + 4514834 + 257, + 4594834 + 255, + 2834]
5935123
1
3 2 2 3 4 4
_— [2813824 + 3573554 + 2573524 + S75 + 824]
4593512534514
1 2 2 2 2 3
+— 6813814824 + 2813814 + 6813824 + 3813814 + 6813524 + 2813
523512534
. . S
2 2 3 3 24 2 2
+3814524 + 2314524 + 814 + 2524 + [824334 + 824 _|_ 2834}
5235125124

187
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1
3 2 2 3 4 4
59351252345124

2 2 2 2 3
+ 2813814834 + 2813814 + 2813834 + 3813814 + 3813834 + 2813

5935125234 [

2 2 3
+2514334 — 814534 + 314i| -+

2
[20813814 + 14813824 + 9813 -+ 16814824
523512
4 1952, + 752, — 1082, | + — 4 4 42
4514834 + 1987, + (55, — 1Us3, | + — 513514 — 4513534 — 4573
52351235234
4 2 4 2 6 6 2 6 2 3
+814834 — 4574 — 4834 | + 514524534 + 0514854 + 0874524 + Sy
592351235134

3
2 2 3 3 2
+6524554 + 955,534 + 655, + 334] + — { — 3514824834 — =S145%,
$2351235124 2
3 3
2 2 2 3 2 2 3 3
1 2
+— — 7813814 + 18813824 - 16813834 - 11813 - 41814824 — 36814834
45235123

—63s%, — 16594534 — 2153, — 183%4 + [7312514 + 2519824 + 8512534

5935134

2 2 2 2
—457y + 4514524 — 3514534 — 574 + 2524534 + 355, — 3534}

1
—|—8— [21512 + 69513 + 14514 + 69594 + 21834}

523
1 9 2 2 2 2
52 9 [— 513514523524 + S13S54 + 814823]
2579534
1
D —— [4314534 + 65%4334 + 45?4524 + 34114 + 534]
51253451235234
1
3 2 2 3 4 4
51253451235134
v 12 1251452, — 12851452, — 652 1852
85125315 814823524 + 12814855 — 12814585, — 0574803 — 13574524
125345123
453, + 2759352, + 212 353, + bsd — |12
—487y + 2052355y + 21553504 + 9853 + 055, + 513514524
85125345234

+185135%, + 381355, + 12523514 + 3573504 + 3555 + 1251455, + 1857504

+12s:1)’4 + 3834} + [16313514 + 315813893 + 45813594 + 255%3

8512534
—8514593 + 16514594 + 63?4 + 31893894 + 21533 + 25334}

5
2 2 2 2
+— [12814824834 + 12514854 + 451455, + 1257,524 + 657,534
851281235234

+4S§4 + 4524834 + 6834834 + 4834 + 834} + [4814823 — 8814824

85125123
—4 — 657, + 2 — 855 — 3 — 385, — 53
514534 S1a T 2823524 + 523834 — Sa3 524534 854 — S34

3

2 2
—|—8— |:4813$14 + 2813524 + 813834 + S13 + 8514824 + 4514834 + 6814
S125234
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3
+3524834 + 3834 + 854} + Sors [—S13 — 4514 + S23 — 2594 — S34]
12
3

2 2 2 2 3
R —— [ — 4513514524 — 0513574 — 513554 — 4513814 — 513524 — S13
853451235234

3

2 2 3
—451455, — 6874524 — 4574 — Soy 4513514 — 513823 + S13524

|+
85345123
+875 — 4514503 + 4514524 + 657, — Sa3S24 + Sog + 534]
1

1

2

+ [—2514 + S24 — 2834) + — [2514824 + 2514834 + 87,4
52451235134 8123

2 2
+2594834 + 854 + 54| + [ — 12513514 — 6513524 — 3513534

851235234

—35’%3 — 24814894 — 12814834 + 385%4 — 9594534 — 9534 — 3534]

+

8

85123

35
[—6813 + 45814 — 3823 + 58824 + 36834] + =+ O(G)} . (B12)

The above expression for fY is not related to the decomposition of section 4.3.1

which is used in the numerical implementation.
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