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Abstract: We investigate loosely bound composite states made of dark matter, where the
binding energy for constituent particles is considerably less than the constituent mass. We
focus on models of nuclear and molecular dark matter, where constituents are separated
by length scales larger than the inverse constituent mass, just like nuclei and atoms in the
Standard Model. The cosmology, structure, and interactions at underground experiments
are described. We find that loosely bound composites can have a very large cross section for
scattering with nuclei that scales with nucleon number like ∼ A4. For some couplings, these
composites produce extremely soft (≪ keV) individual atomic recoils while depositing a large
amount of total recoil energy (≫ keV) in a single passage through a detector, implying an
interesting new class of signatures for low threshold direct detection.
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1 Introduction

The nature of dark matter (DM) remains an intriguing puzzle for modern physics. It has long
been appreciated that dark matter may be a composite state that is much larger in size or
occupancy number than bound states like nuclei or atoms in the Standard Model (SM) [1–35].
Prior composite DM studies have focused on composites with a few constituents or with
many constituents that each have a sizable binding energy EB relative to the constituent
particle mass outside the composite, md. In the case of asymmetric fermions bound together
by a scalar field, composites with large constituent number usually have a binding energy
that is a little less than the mass of an unbound constituent, EB ≲ md, making the mass
per constituent md comparatively small, md ≪ md ∼ EB. These have been called “saturated
composites” [29–33], and they have a high density of constituents tightly bound together. In
this work, we will begin exploring less dense, loosely bound composites where the binding
energy of a constituent is substantially smaller than the constituent mass so that md ≈ md.
The cosmology and detection of such loosely bound composites differs from more tightly
bound composites, and in particular we will find that the cross section for coherent SM
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nuclear scattering on loosely bound composites can be very large, and lead to different
regimes of interactions.

In the visible sector, nuclei composed of protons and neutrons match this loosely bound
description, since the nucleon mass is larger than the inter-constituent length scale, and
much larger than the nuclear binding energy

mn > ΛS > E
(nuclear)
B ,

where ΛS ≈ 100 MeV is the confinement scale for the SU(3) color gauge force in the SM, which
sets the inter-constituent spacing in nuclei, with nucleon binding energies E

(nuclear)
B ≈ 10 MeV.

Molecular composites in the SM, which are bound together by electrons with mass me and
fine structure constant αe, also follow this hierarchy of scales where the atomic mass is
greater than the inverse Bohr radius r−1

B ≈ αeme and much greater than the molecular
binding energy E

(molecular)
B ≈ α2

eme,

mn > r−1
B > E

(molecular)
B . (1.1)

Hereafter we will consider loosely bound composites that hew to these SM scalings, and also
begin more widely surveying the loosely bound composite space, and in particular composites
with binding energies smaller than their constituent mass by many orders of magnitude
EB ≪ md. One prior example of such loosely bound composite dark matter is quirky
composite dark matter [9], although that work considered a regime in which there are only a
few constituents per composite. There has also been early work on models and signatures of
few-body bound state loosely bound composite dark matter [36, 37], and how the breakup of
these states would alter their expected recoil energies for single-scatter detection processes.

In contrast, we will see here that coherently enhanced scattering processes for loosely
bound composites with many constituents markedly alter their characteristics and detection.
Distinctive multiscatter interactions arise from large physical separation between constituents
that can manifest in the dark sector as a confinement scale in a nuclear theory of dark
matter, or as an inter-molecular scale akin to the Bohr radius for a dark molecular bound
state. For both these composite models, we study couplings between dark constituents and
SM nucleons in terms of a constituent-nucleon cross section σnd and examine scattering
signatures at experiments like DEAP-3600. We also study dark constituents coupling to
electrons with a cross section σed, and for this we will find a unique regime of scattering
where individual composites induce a very large number of low energy atomic recoils during
a single passage through a dark matter detector.

The rest of this paper is as follows. In section 2 we outline models for loosely bound
composites and discuss their cosmology and formation. Detection of loosely bound composites
coupled to the SM via coupling to nucleons is detailed in section 3, leading to predictions
for number of nuclear scatters in a single passage through an experiment like DEAP-3600,
presented in section 4. Coupling of constituents to electrons is covered in section 5 along
with a novel kind of composite-detector interaction, where a large amount of recoil energy
is deposited over many low-recoil energy atomic scatters. We outline some calculations
concerning future detection prospects in condensed matter-based detectors in section 6.
Section 7 concludes. Some formal details of loosely bound composite-nucleon scattering are
presented in appendix A. Throughout we will be using natural units where ℏ = c = 1.
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2 Models and cosmology for loosely bound composites

To begin an inquiry into loosely bound composite dark matter, we can consider a model
where the dark matter is a “dark nucleus”, composed of dark nucleons held in stable bound
states by either a dark confining force or dark electron. Such a model would arise from a
dark sector composed of dark fermions charged under SU(N) (see e.g. refs. [11, 12]), which
form dark nucleons with a confinement scale ΛD and corresponding radius RD = 1/ΛD,
analogous to SM quantum chromodynamics. A coupling to a dark pion πd, inducing an
attractive force between nucleons, would induce the formation of larger “dark nuclei” through
πd emission: d + d → D2 + πd. The subsequent formation of nuclei with larger constituent
number has been previously studied [11], and depending on factors like bottlenecks, nuclei
can grow to very large nuclear number.

Most of the above considerations can also be applied to a model of molecular dark
matter, where in this case the dark atoms have a separation scale ΛD ≈ αdemde determined
by the strength of a dark sector U(1) gauge coupling and the mass of a dark electron. In
this case, the attractive force between dark constituents is provided by dark electrons, and
the formation of dark molecules in the early universe would proceed through processes like
d + d → D2 + γd, where γd would be the photon field of the dark sector.

In the treatment that follows, we will estimate the number of constituents that would
assemble to form composites, for a various binding energies and separation scales ΛD. We
will assume these composites are asymmetric, and have a relic abundance set by a dark sector
asymmetry. We note that there are many viable models that obtain an asymmetric dark
matter abundance, for fermion masses extending down to the keV range [38–40]. Assuming
that loosely bound composites follow a “liquid drop” model for their structure, the dark
composite radius will scale with the dark constituent number ND as

RD ∼
N

1/3
D

ΛD
(2.1)

In the early universe, the composites will grow in size through N -body binding processes,
DN + DN → D2N . We can estimate the expected constituent number in a dark composite at
the time when the binding rate drops below the Hubble rate, Γ/H = ⟨σDN

vDN
⟩nDN

/H ∼ 1,
where this expression equates the rate for composites to scatter with the Hubble rate. Re-
expressing the interaction rate of the composites in terms of the constituent velocity, vd, and
cross section, the ND-constituent composite velocity will scale as vDN

= vdN
−1/2
D . We also

assume the constituent cross section scales geometrically: σDN
= 4πN

2/3
D /Λ2

D. Rewriting
nDN

= ndN−1
D , we find that the typical constituent number at the temperature of composite

assembly Tca is,

ND =
(

4πndvd

Λ2
DH

)6/5
=
(√

18
5

π5/2√
g∗

caT
3/2
ca TrMpl

ζm
3/2
d Λ2

D

)6/5

≃ 2.5 × 1013
(

10
g∗

ca

)3/5( Tca

0.01 GeV

)9/5(10−5

ζ

)6/5

(
10 GeV

md

)9/5( GeV
ΛD

)12/5

(2.2)
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where in the first equality, we have used the Friedmann equation, 3H2M2
pl = g∗

caπT 4/30,
the dark constituent velocity vd =

√
T/md, and estimated the dark constituent number

density by nd = g∗
rπ2T 3

caTr/30ζmd, where we take Tr ≃ 0.8 eV, g∗
r ≃ 3 as the temperature

and effective relativistic degrees-of-freedom at matter-radiation equality [41]. For cosmologies
in which the dark matter abundance is diluted after composite assembly, ζ = sbefore/safter
parametrizes the dilution factor due to, e.g. a decaying field, or any other source of early
universe entropy injection that depletes the final abundance of dark composites [42]. The
temperature of composite assembly Tca will be determined by the binding energy of the
two-body state BE(2), and is approximately given by Tca ∼ BE(2)/10.

We next discuss the binding energy per constituent for loosely bound composites. In
the case of molecular dark matter, we have already noted that the binding energy will
be determined by the dark sector gauge coupling and dark electron mass. For loosely
bound nuclear dark matter, we can consider a Yukawa potential describing the attractive
interaction between dark nucleons, like in the SM. Then at large N , the binding energy per
nucleon can be determined with the liquid drop model, which, in the SM is determined by
Coulomb, degeneracy, and attractive strong binding terms. In this case the binding energy
per constituent for dark nuclei would be proportional to [43]

BE(ND)
ND

∝ aV − aSN
−1/3
D − aCN

2/3
D , (2.3)

where aV , aS , aC are standard liquid drop model coefficients with dimensions of energy. More
generally, if we consider a Yukawa potential ∝ exp (−mπd

r)/r with range m−1
πd

, then we
would have

BE(ND)
ND

= a′
V

Λ3
D

(mπd
)2 − a′

S

Λ4
D

(mπd
)3 N

−1/3
D − a′

cΛDN
2/3
D , (2.4)

where have re-expressed the liquid drop coefficients in terms of ΛD and mπd
, and a′

V , a′
S , a′

C

are unitless. In the following treatment, for the sake of simplicity we will be assuming a
simple model for our nuclear binding energies where

BE(ND)
ND

≈ a′
V ΛD , (2.5)

which for a′
V ≲ 0.1 and for negligible Coulomb interactions, will be a good approximation for

a wide range of model space. We will allow the dark confinement scale to take on a wide
range of values. Finally we note that in this work, we will consider ΛD ≫ 1 eV, so that
confinement and composite formation occurs before matter-radiation equality, as discussed
previously, cf. eq. (2.2).

3 Regimes of composite-nucleus scattering

In this section, we outline the different regimes for loosely bound composite dark matter
scattering in a detector, parametrized by the constituent spacing scale ΛD. When the size of
the composite is small, either because ΛD is large or the number of constituents is small (or
both), the composite behaves like a point particle. For slightly more loosely bound composites

– 4 –



J
C
A
P
0
3
(
2
0
2
5
)
0
1
3

Figure 1. Different DM-nucleus scattering regimes for composite dark matter with total mass
MD = NDmd = 1015 GeV, and assuming a liquid argon target. The x-axis shows the constituent
mass inside the composite md, while the y-axis shows the inter-constituent spacing Λ−1

D . Here the
binding energy per constituent has been fixed to ΛD/10. The momentum exchange between DM
and nucleus has been fixed using a collisional velocity vD = 10−3. For the smallest inter-constituent
spacing, nuclear scattering will proceed with the DM composite being pointlike. For larger spacing, a
DM form factor is required, until at a large enough spacing determined by the nucleus-constituent
reduced mass, nuclei will scatter with individual constituents through an inelastic exchange, and for
small enough binding energies, through an exchange that removes constituents from the composite.

(intermediate ΛD), the dark matter scatters elastically, but with the cross section suppressed
by the form factor. For even more loosely bound composites, the momentum transfer is
large enough for a nucleus to scatter with individual constituents, leading to incoherent
scattering which can excite the composite (which we denote “inelastic scattering”). And
finally, for extremely loosely bound composites, the binding energy may be insufficient to
hold the composite together following a collision, resulting in spallation of the DM composite.
In figure 1, we show the values of the in-medium constituent mass md and the interparticle
spacing Λ−1

D that correspond to these different scattering regimes, for a composite state
with a total mass MD = 1015 GeV.

3.1 Large ΛD (pointlike dark matter)

In the case of arbitrarily large ΛD, the radius of the composite is smaller than that of a
nucleus, and smaller than any momentum transfer in the problem, meaning that the dark
matter form factor is always equal to one. This is the pointlike limit, where the scattering is
always coherent across the dark composite. When the coupling to nuclei is small, the Born
Approximation holds, and the composite DM-nucleon scattering cross section σnD is given by

dσnD

dER
= N2

D

(
µnD

µnd

)2 dσnd

dER
, (3.1)

where µnD is the composite-nucleon reduced mass, µnd is the constituent-nucleon reduced
mass, and ER is the nuclear recoil energy. Note that the reduced mass ratio will reduce to
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ND as long as the mass of the composite and constituent are much larger than that of a
nucleon, and is not dominated by binding energy. The phenomenology of this case is then
identical to that of a weakly interacting massive particle with mass MD.

If the coupling to nuclei is made too large, then the Born Approximation breaks down,
and for a repulsive DM-nucleus interaction, the cross section saturates to approximately the
geometric size of the nucleus. The confinement scale ΛD becomes large enough for the DM
to be considered pointlike when the composite radius is small compared to the maximum
allowed momentum transfer. For a heavy composite scattering with xenon, that maximum
momentum transfer is about 240 MeV. So the dark matter is pointlike for RD ≪ 1 fm. For
scattering with argon, the maximum momentum transfer is about 75 MeV, so we still find
that the pointlike limit is RD ≪ 1 fm. The upper boundary of the pointlike dark matter
region, in figure 1 is thus set by RD = q−1 ≃ 1 fm in the argon target.

3.2 Intermediate ΛD (composite with form factor)

When ΛD is larger than about 1 fm (for scattering with xenon), and the coupling to nucleons
is small, the DM form factor begins to suppress the coherent scattering cross section. In this
subsection we consider the case that ΛD is small enough that the composite is not pointlike,
but larger than the energy a nucleus can transfer to a constituent (i.e. scattering with a
nucleon cannot break apart the composite). The differential cross section is

dσnD

dER
= g2N2

D

(
µnD

µnd

)2 dσnd

dER
|FD(ER)|2 , (3.2)

where

g2 = min
[

1,

(
LA

RD

)3
]2

(3.3)

accounts for the overlap of the DM with the wavefunction lengthscale LA of the nucleus,
which we take as the thermal de Broglie wavelength of the atom. When the radius of the
composite is very large compared to the thermal de Broglie wavelength of the atom, this
overlap factor would seem to heavily suppress the scattering rate, and if the composite were
scattering with an individual atom, this would be the case. But when the dark matter passes
through a medium, as in a detector or the crust of the Earth, the composite will overlap with
many atoms, and a volume integral must be performed to compute the proper scattering
rate. In this section, we are always in the regime where RD ≲ LA, so for simplicity we
neglect performing such a volume integral.

So long as ND is sufficiently large, this coherent scattering term, eq. (3.2) can dominate
over the incoherent scattering cross section described in the next section. However, we see
that for large enough momentum transfer, this coherent scattering cross section will become
suppressed. How strongly it is suppressed depends on the choice of the dark form factor FD(q).
The Helm form factor [44, 45] has an exponential falloff, but this is due to the nuclear skin
depth factor. If we neglect this part of the Helm form factor, we get the square of a spherical
Bessel function, which goes like q−4 times sinusoidal resonances. We discuss some particulars
of this in appendix A. Irrespective of form factor choice, once the coupling to nucleons are
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large enough, the dark matter form factor ceases to be a relevant quantity, since at such a large
implied cross section between the SM nucleus and the composite, the Born Approximation
for scattering on the composite fails. If the dark composite potential is extremely large, then
a nucleon is not able to penetrate the dark matter composite to probe its internal structure.
In that case, the total cross section again reaches the geometric limit of the composite’s area.

For small coupling to nucleons, i.e. where the ND scaling still holds, the cutoff could be
higher: the point where the composite gets large enough that the form factor suppression fully
compensates for the factors of ND in the coherent cross section, and incoherent scattering
(i.e. excitation of the composite) takes over.

We define the upper boundary of the dark matter with form factor region in figure 1,
as where the inverse momentum transfer is of the same scale as a constituent, Rd = q−1,
and incoherent scattering becomes dominant.

3.3 Small ΛD (incoherent scattering: inelastic/disassembly)

When ΛD is small, and the coupling to nucleons is small, coherent scattering is totally shut off,
and the scattering is between a nucleus and a constituent. This may lead to excitation of the
constituent inside the composite, or, if the composite is loosely bound enough, the collisions
could knock constituents out of the composite, which could lead to the disintegration of the
dark matter state. We define the transition from inelastic scattering to composite disassembly
in figure 1 as the point at which the recoil energy of a scattered constituent becomes larger
than its binding energy, Erecoil = q2

2md
= BEND

/ND.
The constituent-nucleus cross section in this case carries the standard µ2A2 dependence of

pointlike dark matter scattering with a nucleus, and the composite-nucleon cross section is just
dσnD

dER
= g ND

dσnd

dER
SD(q) . (3.4)

The function SD(q) encodes the kinematics of a constituent being either fully liberated from
the composite, or upscattered into an excited state, the latter of which depends on the energy
level structure of the composite and on which energy levels are Pauli blocked. In the limit of
an extremely weakly bound composite, any constituent that is struck by a SM particle is
fully liberated from the composite, and SD(q) = 1. We thus assume here that SD(q) = 1,
and leave the computation of SD(q) for more strongly bound composites to future work.

In the case of large coupling, the constituent-nucleus cross section saturates to the
geometric size of the nucleus. The total cross section to scatter with the constituent is
Min[4πR2

D,ND × 4πR2
A], i.e. either the size of the nucleus times number of targets, or just

the size of the composite, depending on how diffuse the constituents are in the composite.

4 A concrete example: DEAP-3600 search for supermassive dark matter

As a concrete example, we examine the limits on supermassive dark matter recently reported
by the DEAP collaboration [46]. This analysis considered two models for the DM-nucleus
interaction. In the first model, the DM-nucleus scattering is equal to the DM-nucleon cross
section times the nuclear form factor:

dσAd

dER
= dσnd

dER
|FA(q)|2 . (4.1)
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Figure 2. Log of the number of DM-nucleus collisions in the DEAP-3600 detector, using the second
model assumed by the DEAP collaboration, in which the DM-nuclear scattering cross section is
assumed to scale with nucleon number as A4. The black bounded region is the DEAP-3600 exclusion
region, reproduced from ref. [46]. The bottom of the exclusion region is where the number of scatters is
too small to constrain. The top of the exclusion region is where scattering is so frequent that the DEAP
analysis breaks down due to individual light pulses merging together. On the right of the exclusion
region, the DM flux is too low to constrain, while on the left, attenuation in the Earth causes the DM
to lose energy before reaching the detector. The region above the white line represents parameter
space where attenuation due to the Earth’s overburden causes the dark matter to lose 99% of its
kinetic energy before reaching the DEAP-3600 detector; we see that the attenuation approximation
used in this work closely matches the DEAP-3600 calculation.

This model is described as a scenario in which the nucleus is opaque to dark matter. The
second model includes the traditional A4 scaling seen for heavy dark matter with spin-
independent interactions

dσAd

dER
≃ A4 dσnd

dER
|FA(q)|2 , (4.2)

where the approximate equality becomes an equality when md ≫ mA. Hereafter, we will
examine the limits shown for this second model, and show how the scaling of eq. (4.2) can be
obtained from a simple model of loosely bound composite dark matter.

Figure 2 shows the parameter space probed by the DEAP-3600 detector. The black
bounded region is the exclusion region reported in ref. [46]. The bottom of the exclusion
region is where the number of collisions is too small to constrain with the DEAP analysis,
while the flat top of the exclusion region is where there are so many collisions that the light
pulses produced by individual collisions merge together, causing the analysis procedure to
break down. For masses above about 1019 GeV, the DM flux is too small to constrain. The
diagonal ceiling is due to DM being slowed in the Earth before reaching the detector. The
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color scale is the base-10 log of the number of collisions that a DM particle produces within
the DEAP-3600 detector. We see that the bottom and top of the DEAP region correspond to
O(1) and O(106) collisions, respectively. We account for attenuation in the Earth by setting
the scattering rate to zero if the DM has lost 99% of its kinetic energy before reaching the
detector. We model the Earth overburden as composed purely of silicon, as the target with
which scattering will dominate. We estimate the density of the overburden as 2.7 g/cm3, as
appropriate for the continental crust of the Earth, and set its depth as 2 km.

This is not a perfect way of modeling attenuation, but it is a simple approximation that
matches the ceiling reported by DEAP quite well.

In the remainder of this section, we consider the three distinct regimes for composite
DM discussed in the previous section, and in each regime we ask whether it is possible to
reproduce the event rates shown in figure 2.

4.1 Pointlike dark matter

We first consider a repulsive DM-nucleon interaction, in the case where the DM is a composite
with ND = 104 and ΛD = 100 GeV. The binding energy here is large enough that the dark
matter is essentially pointlike: that is, the geometric size of the DM is smaller than any
other distance scales in the problem, namely the size of an argon nucleus and the inverse
momentum transfer associated with a collision. As discussed in ref. [24], for pointlike DM
with a repulsive interaction, the scattering cross section cannot be larger than approximately
the geometric size of the nucleus.

In this case, the DM form factor, and indeed the fact that the DM is composite at all,
is negligible, and any scattering with the DM is coherent across the whole composite. The
DM-nucleus differential cross section is

dσAD

dER
=
(

µAD

µnd

)2
A2N2

Dg2 dσnd

dER
F 2

A(q), (4.3)

derived in the general case in appendix A, and applied to the pointlike regime, where
FD(q) = 1.

Figure 3 shows the number of times a pointlike DM particle scatters with argon when
passing through the DEAP-3600 detector. We see that above a cross section of about 10−30

cm2, the event rate in the detector becomes constant. This is due to the aforementioned
geometric limit for pointlike DM. We also see that the effect of attenuation in the Earth
becomes largely negligible, because slowing the DM significantly in the Earth would require
a cross section larger than the geometric limit. Note that for smaller cross sections, where
the geometric limit is not relevant, the number of collisions is approximately equal to the
number shown in figure 2.

4.2 Composite with form factor

We can get around this geometric limit by making the composite DM geometrically large.
When the DM is more physically extended than the nucleus, the geometric limit for the
cross section becomes the geometric size of the DM. However, when the DM is geometrically
large, its form factor must be considered alongside the form factor of the nucleus, and in
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Figure 3. Log of the number of DM-nucleus collisions in the DEAP-3600 detector, using a model of
pointlike DM with ND = 104, ΛD = 100 GeV. In this case, DM-nucleus scattering is coherent across
the entire composite, and so σnd ∝ σnD/N2

D, hence the DEAP-3600 region being shifted downward by
exactly 8 orders of magnitude. The contour lines show the value of the dilution factor ζ that would
give rise to composite states with these masses, according to eq. (2.2). The attenuation region lies
above the parameter space plotted in this figure.

fact produces more suppression than the nuclear form factor. In this case, the DM-nucleus
differential cross section is

dσAD

dER
=
(

µAD

µnd

)2
A2N2

Dg2 dσnd

dER
F 2

A(q)F 2
D(q) , (4.4)

where the composite form factor FD(q) is defined in the same way as the usual Helm nuclear
form factor, using the composite’s radius RD and the inter-constituent spacing Λ−1

D as the
dark nuclear skin depth.

Figure 4 shows the number of collisions in the detector for a geometrically extended DM
composite, with the same number of constituents as before, but now ΛD = 10 MeV. In this
case, because the geometric limit is much larger, the number of collisions in the detector is no
longer limited to ∼1. However, the presence of the DM form factor suppresses the number of
collisions, so that at the bottom of the DEAP region, the number of collisions is ≪ 1. We
also see that attenuation is largely negligible, because the form factor not only suppresses the
number of collisions, but also weights the scattering toward low energy transfer.

Increasing the value of ΛD reduces the form factor suppression, but makes the geometric
limit more of a problem. Decreasing the value of ΛD raises the geometric limit, but also
makes the form factor suppression more severe. In general, we find that the scaling used by
DEAP is not obtained via coherent scattering with an extended composite.
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Figure 4. Log of the number of DM-nucleus collisions in the DEAP-3600 detector, this time setting
ND = 104, ΛD = 10 MeV. The composite is more geometrically extended than the nucleus, so that the
geometric limit is set by the DM composite size, and the cross section must take into account the DM
form factor. Here σnd ∝ σnD/N2

D, hence the DEAP-3600 region being shifted downward by exactly 8
orders of magnitude. The contour lines show the value of the dilution factor ζ that would give rise
to composite states with these masses, according to eq. (2.2). The attenuation region lies above the
parameter space plotted in this region.

4.3 Incoherent scattering (inelastic/disassembly)

On the other hand, we can consider the case of maximally incoherent scattering, where a
nucleus sees the DM as a loosely bound collection of individual constituents. This is the
case when ΛD is small compared to the typical momentum transfer between a nucleus and
a constituent. The scattering is then described by the following equation, which is also
derived in appendix A

dσAD

dER
= g

(
µAd

µnd

)2
A2ND

dσnd

dER
|FA(q)|2SD(q) , (4.5)

where SD is a structure function for the composite accounting for the binding energy of
constituents. We can see that as long as md ≫ mA, this cross section scales approximately
with A4|FA(q)|2. In what follows, we set SD(q) = 1, which is appropriate for a loosely bound
composite, where the binding energy has negligible effect on the scattering.

Figure 5 shows the result for incoherent scattering, where we set ND = 106 and ΛD =
1 MeV. We see that for almost all of the DEAP-3600 parameter space, the event rate shown
here approximately matches the event rate shown in figure 2. The only difference comes at
the lowest masses, and is due to the reduced mass of the constituent-nucleus system, i.e.,
the fact that the above requirement that md ≫ mA no longer holds.
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Figure 5. Same as above, but for incoherent scattering with ND = 106 and ΛD = 1 MeV. In this
case, scattering occurs between the nucleus and individual constituents in the DM composite. The
constituent-nucleus scattering cross section is σnd ∝ σnD/ND, hence the DEAP-3600 detection region
is shifted downward in number of scatters by around 6 orders of magnitude. The contour lines show
the value of the dilution factor ζ that would give rise to composite states with these masses, according
to eq. (2.2). The region above the white line represents parameter space where attenuation due to
the Earth’s overburden causes the dark matter to lose 99% of its kinetic energy before reaching the
DEAP-3600 detector.

5 Composite-atom scattering

In this section, we outline the dynamics for loosely bound composite dark matter interactions
in the form of atomic recoils, as would be expected for dark matter coupled to an electron
bound to an atom. In the low-momentum kinematic regime we will consider, the scattered
electron remains in its original orbital instead of up-scattering to an excited state or ionizing
the atom, so that the whole atom itself recoils [47].

It is also possible to search for composite dark matter through ionizations or electron
excitations, see e.g. ref. [33]. In this paper, we will focus on the regime of coherent composite-
atomic scattering. In this context, loosely bound composites present a novel dynamic, where
many soft scatters are induced by dark matter during a single transit through a detector.
The large number of constituents expected in loosely bound composites, as well as their large
size, cause a large enhancement to the incoherent constituent-atom scattering. Thus, these
composites would leave a signature of a potentially large number of expected scatters, each
of which imparts very little energy. This is a distinct and interesting signature that may
be sought out by future low-threshold detection experiments.

– 12 –



J
C
A
P
0
3
(
2
0
2
5
)
0
1
3

5.1 WIMP-atom scattering

First we outline the standard WIMP-atom scattering. The differential cross section for an
atom with mass number A is

dσAd

dER
=
∑
n,l

dσed

dER
|fn,l(q)|2|Fϕ(q)|2 (5.1)

where σed is the reference cross section for dark matter-electron scattering [48],

σed =
µ2

ed

16πm2
dm2

e

|Med(q)|2|q2=α2m2
e

(5.2)

such that the form factor Fϕ(q) contains the momentum-dependence of the scatter, and
in general,

|Med(q)|2 = |Med(q)|2|q2=α2m2
e

× |Fϕ(q)|2 . (5.3)

The form factor, assuming a fermionic constitutent and scalar mediator ϕ, can be simplified
in terms of q as

Fϕ(q) =
α2m2

e + m2
ϕ

q2 + m2
ϕ

, (5.4)

which reduces to Fϕ(q) = 1 in the heavy mediator limit (mϕ ≫ q) and Fϕ(q) = α2m2
e/q2

for light mediators (mϕ ≪ q).
The atomic form factor fn,l(q) depends on the radial atomic wavefunctions Rn,l [47],

fn,l(q) =
∑
m

⟨nlm|ei(k−k′)x|nlm⟩

= (2l + 1)
∫

dr r2|Rnl|2
sin qr

qr
,

(5.5)

where the radial wavefunctions can be approximated through a linear combination of Slater-
type atomic orbitals Sj,l. The wavefunctions are thus written as Rn,l =

∑
j SjlCjln, where

Sjl is a Slater-type orbital, Cjln are coefficients, and the sum is over the linear basis set Sj,l

defined for the azimuthal quantum number j [49]. At low momentum transfer (q < 100 keV),
fn,l(q) gives a Z2 enhancement to the cross section due to the number of available electron
targets. At higher q, where the electron is more likely to be excited to a higher energy level,
it strongly suppresses elastic atomic scattering.

5.2 Regimes of composite-atom scattering

We now discuss composite dark matter scattering with an atom, once again in the three
different regimes set by the confinement scale ΛD.
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5.2.1 Large and intermediate ΛD: coherent scattering

We first consider a composite scattering coherently with the target atom, which is appropriate
when the composite size is smaller than the atomic size and the inverse momentum transfer
of the problem. The coherent scattering cross section is determined from eq. (5.1),

dσAD

dER
= g2N2

D

(
µeD

µed

)2 dσAd

dER
|FD(q)|2 , (5.6)

where we include form factors to describe the spatial extent of the composite state, FD(q)
and g(LA). As in the nuclear scattering case, FD(q) is a composite form factor analogous to
the nuclear form factor, and g accounts for the limited overlap of the atomic wavefunction
with the composite. In this case, we estimate the size of the atom as its Bohr radius, rather
than de Broglie wavelength, when calculating g.

For a large ΛD, the dark matter composite is essentially pointlike, and the scattering is
just like WIMP-atom scattering. When the composite size becomes larger than the atom and
inverse momentum transfer, FD(q) begin to suppress the scattering rate at large q, and there
is a further suppression due to the partial overlap encompassed in g. Finally, the transition
form factor |fn,l(q)|2 provides an enhancement at low momentum transfer (q < 100 keV),
and a strong suppression for higher q.

5.2.2 Small ΛD: incoherent scattering

In the incoherent scattering limit, the scattering will be with individual constituents, and

dσAD

dER
= gND

dσAd

dER
|SD(q)|2 (5.7)

where as before, SD(q) = 1 for a loosely bound composite: so long as the binding energies are
well below the constituent recoil energies, we treat the constituents as a cloud of unbound
dark matter particles. In the regime where RD ≫ RA, we must perform a volume integral
to calculate the total scattering rate, to account for the fact that the composite overlaps
with many atoms. We estimate that the number density of constituents in the composite
is constant, and thus the volumetric integral induces an additional factor of R3

D ∼ NDΛD

to the scattering rate.
In this region of parameter space, where the composite can overlap with a large number

of atoms, it is also natural to consider collective excitations of the target material in addition
individual scattering events. Recent papers have investigated collectived effects induced by
dark matter interactions [52–54], usually for the case of pointlike dark matter when the
inverse momentum transfer is large compared to the interparticle spacing. This has also
been considered for asymmetric composite dark matter in [22]. Characterizing collective
excitations caused by a cloud of dark matter particles, as in this loosely bound composite
regime, and outlining the parameter space in which they become relevant, is a non-trivial
pursuit which will require further study. We leave this for future work, although for some
related discussion of structure functions for loosely-bound composite scattering, see section 6.
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Figure 6. Number of scatters and energy deposited in a low threshold argon detector, for a composite
dark matter model where constituents interact via a constituent-electron cross section defined in
eq. (5.2). The region above the white line represents parameter space where attenuation due to
the Earth’s atmospheric overburden causes the dark matter to lose 99% of its kinetic energy before
reaching the detector. Here we have estimated this atmospheric column density as ∼ 103 g/cm2

of nitrogen [50, 51]. Left: log of the number of DM-atom collisions over one cm in a liquid argon
detector, using a model of composite dark matter with ΛD = 1 MeV and md = 10 MeV, implying a
total composite mass MD = mdND. Right: total energy deposition in one centimeter for the same
target.

5.3 Searching for composite-atom scattering with low-threshold detectors

So far we have seen that composite-atom scattering can have an ND enhancement to the
cross section when the composite is larger than an atom, so we can expect there will be
multi-scattering on atoms by sufficiently large, loosely bound composite dark matter states.
Indeed, we will find that a single composite state traversing a detector can cause a large
number of scatters, each imparting a small amount of energy to the target nucleus, in certain
experiments. Here we will focus on low-threshold DM searches aimed at sub-GeV DM searches.
In this section, we outline what this multi-scattering atomic recoil signature would be like in
a low-threshold liquid argon experiment, akin to the Scintillating Bubble Chamber [55].

In figure 6, we show the base-10 log of the number of atomic scatters expected from
one composite traversing a centimeter of argon, as well as the total energy deposition in
the material. We have assumed a liquid argon density of 1.4 g/cm3. For our dark matter
model parameters, we have fixed the length scale ΛD = 1 MeV and fixed the constituent
mass to be an of magnitude larger than ΛD, so that we are in a loosely bound regime, while
varying the constituent number ND and constituent-electron cross section σed. We also
assume a heavy mediator (Fϕ(q) = 1). As in previous sections, we overlay on each plot
some contour lines showing the value of the dilution factor ζ that would give rise to such
composite states, according to eq. (2.2).

In the leftmost region of figure 6, where the composites are smallest, coherent scattering
is the dominant scattering regime. At ND ≈ 108, the radius of the composite begins to
exceed the radius of an argon atom, RD > RAr, and coherent scattering is increasingly
suppressed. At ND ≈ 1013, the incoherent scattering rate becomes dominant and we see a
large enhancement to the scattering rate as ND increases. In the right panel of figure 6 we see
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that a substantial amount of energy can be deposited over a centimeter of liquid argon, even if
individual recoil energies for constituents are rather small, where in this case for m̄d = 10 MeV,
constituent-atom scattering on argon will result in individual recoil energies ∼ 1 eV–1 keV.

We can contrast this signature of many low-energy recoils for loosely-bound composites
with signatures from denser composites, which would have recoil energies that track the
reduced mass of the composite-nucleus system (µAD ∼ mA), as compared to loosely-bound
composites where scattering occurs with constituents, so that the recoil energies track the
reduced mass of the constituent-nucleus system (µad ∼ m̄d). Thus, we have found that
for loosely bound composite dark matter, in the incoherent scattering regime, there is a
distinctive signature of a large number of soft recoils in a detector, which we wouldn’t
expect from pointlike composites, where the reduced mass for nuclear recoils would be much
larger. Interestingly, we expect composite states with ΛD ∼ MeV, and which formed through
composite assembly as outlined in section 2, to have very large ND even without dilution
(as shown by the ζ = 1 contour in figure 6). This leads us to expect that loosely bound
composites with MeV-scale constituents will interact primarily through incoherent scattering.
In future work, it will be useful to determine the response of a low-threshold liquid argon
detector to such a trail of low-energy depositions.

6 Searches with condensed matter systems

The phenomenology and detection prospects of loosely bound composite states in low-
threshold condensed matter-based detectors will be the subject of future work. However,
for completeness, we provide here some details on how to estimate scattering and energy
deposition rates in these systems (see e.g. ref. [56]). We will focus on electrophilic couplings
and solid-state detectors, such as conventional semiconductors and metals. In this scenario,
the rate of excitations produced by a constituent within a composite state moving at velocity
vD, is expressed as

Γ(vD) = πσed

µ2
ed

∫
d3q

(2π)3 |Fϕ(q)|2S(q, ω) (6.1)

where the energy transfer ω = q · vD − q2/2md and the dynamic structure function

S(q, ω) = q2

2παe
Im
[
− 1

ε(q, ω)

]
(6.2)

is proportional to the imaginary part of the inverse dielectric function ε in Fourier space
through the Fluctuation-Dissipation Theorem. This can be computed from a model that
accounts for the microphysics of the material, or experimentally measured since it is directly
related to the response of the system to an external electron. The exact functional form
sensitively depends on the kinematic regime, i.e. the range of values of the momentum transfer
q and energy transfer ω. Note that the energy deposition rate can be estimated by multiplying
by an additional factor ω in the integration in eq. (6.1).

For composite states with md ≪ 100 MeV, the accessible range of energy/momentum
transfer becomes smaller than the Fermi momentum and electron plasma frequency of most
common materials, and screening and many-body effects become relevant. In other words,
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the dynamic structure function deviates significantly from the single nuclear recoil branch.
For this reason, the detection prospects of loosely bound composite states, for a variety of
solid-state detectors, will be explored in detail elsewhere.

7 Conclusions

We have studied the properties of loosely bound composite dark matter, including its
cosmology, aspects of its structure, and in particular the dynamics of its interactions with SM
nuclei and atoms. We have examined interactions where the constituents in the composite are
coupled directly to either SM nucleons or electrons. We have found that for loosely bound
composites with an inter-constituent spacing scale ΛD < 1 MeV, it is possible for dark matter
to scatter many times with nuclei, and for the number of these interactions to scale with
nucleon number as ∼ A4, for constituent masses well in excess of the nuclear mass, md ≫ mA.
This has provided the first details of a composite dark matter model that would scatter
many times in a large volume detector like DEAP-3600, with a larger-than-nuclear-sized
cross section and ∼ A4 scaling.

In addition, we have found some new dynamical regimes of composite interactions. Here
there has been a preliminary investigation of loosely bound composites that, through a
coupling to electrons, scatter softly many times with atoms in a single passage through a low
threshold dark matter detector. The detectability of this kind of composite interaction, and
in particular the response of a low threshold detector to many soft scatters in a single transit,
will need to be addressed in further studies. In future work, it will also be interesting to
investigate the detection of loosely bound composites for the scenario that the constituents’
binding energy is less than a typical nuclear recoil.
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A Details of composite-nucleus scattering

Computing the differential cross section for a dark composite to scatter elastically with
an SM nucleus requires knowledge of the density distribution of both the nucleus and the
dark composite, and is best done using potential scattering theory. As in the standard case
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of WIMP-nucleus scattering, we assume that the potential felt by a pointlike dark matter
particle passing through a nucleus is proportional to the density of the nucleus

VA(r) = V0
ρ0

ρA(r) . (A.1)

We can write the potential between a composite dark matter state and a nucleus as a
convolution of the dark matter number density with the potential sourced by the nucleus

V (r) = 1
md

∫
d3r′VA(r)ρD(r − r′) (A.2)

= V0
mdρ0

∫
d3r′ρA(r)ρD(r − r′) . (A.3)

In the weakly-coupled limit, i.e. the limit in which the dark matter-nucleon interaction can
be treated using the Born Approximation, the scattering amplitude can be written as

f = −µAD

2π

∫
d3reiq·rV (r) (A.4)

= −
√

2πµAD Ṽ (q) , (A.5)

where µAD is the reduced mass of the composite-nucleus system and Ṽ (q) denotes the
Fourier transform of V (r).

In the case of a point dark matter particle scattering on a nucleus, the form factor
of the nucleus encodes this momentum dependence, i.e. f ∝ F (q). Assuming again that
VA(r) ∝ ρA(r),

FA(q) = 1
mA

∫
d3reiq·rρA(r) (A.6)

= 4π

qmA

∫
drr sin(qr)ρA(r) , (A.7)

where we have assumed that the density profile is spherically symmetric (see ref. [45] for
details on commonly used nuclear form factors). We can define the dark composite form
factor FD(q) in the same way, with the replacement A → D for the dark composite.

Next we treat the joint form-factor suppression for nucleus-composite scattering. In this
case, the Convolution Theorem states that the Fourier transform of a convolution is just
the product of the Fourier transforms, or more precisely

Ṽ (q) = V0
mdρ0

(2π)3/2ρ̃A(q)ρ̃D(q) , (A.8)

where for either density,

ρ̃i(q) = 1
(2π)3/2

∫
d3reiq·rρi(r) (A.9)

=
√

2π

q

∫
drr sin(qr)ρi(r) (A.10)

= mi

2
√

2π
Fi(q) . (A.11)
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Putting all of this together,

f = −πµADV0mAmD

2mdρ0
FA(q)FD(q) (A.12)

and thus

dσ

dΩ = π2µ2
ADV 2

0 m2
Am2

D

4m2
dρ2

0
|FA(q)|2|FD(q)|2 . (A.13)

By analogy to all of the above, we can compute σnd, the zero-momentum-transfer cross
section for dark matter (constituent)-nucleon scattering. So far, we have made no assumptions
about the density profile of the dark composite: the above holds for, e.g., any of the ND vs.
RD scalings given in ref. [29]. If we now assume for concreteness that ρd ≃ ρD, i.e. that the
volume of a dark composite is approximately the volume of a constituent times the number
of constituents, and thus RD ∝ N

1/3
D , as is the case for SM nuclei, we find

σnd =
π3µ2

ndV 2
0 m2

nm2
d

m2
dρ2

0
. (A.14)

So finally, we obtain the differential cross section for elastic composite scattering, in terms
of the zero-momentum constituent-nucleon cross section

dσ

dΩ = 1
4π

(
µAD

µnd

)2
A2N2

DσndF 2
A(q)F 2

D(q) . (A.15)

The derivation above is approximately correct when the geometric size of the nucleus is
similar to that of the dark composite. However, a correction must be made when this is
not the case, due to the wave function of the nucleons or dark constituents being localized
within the nucleus or dark composite, respectively. The scattering amplitude is modified by
a factor of the ratio of the volumes of the two composites, such that the differential cross
section is multiplied by a geometric factor g2

g2 = min
[

1,

(
LA

RD

)3
]2

. (A.16)

When the radius of the composite is very large compared to the inverse momentum transfer
in scattering with a nucleus, incoherent scattering can dominate over coherent, elastic
scattering. In this case, the total cross section to scatter with a nucleus is just ND times
the constituent-nucleus cross section

dσinc

dΩ = 1
4π

(
µAd

µnd

)2
A2NDσndF 2

A(q)SD(q) . (A.17)

Here, SD(q) is a structure function for the composite, which contains details about the
binding energy of the constituents. When the binding energy is negligibly small, SD(q) ≃ 1.
Examining this equation, we see that when md ≫ mA, this cross section scales with A4, but
is not limited to the geometric size of the nucleus, but rather that of the composite.
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