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Abstract

We describe the cross section measurement of e+e− → cc̄cc̄ process at
√
s =

10.52 GeV. This study is based on 68 fb−1 data collected at KEKB with Belle

detector. Experimentally, e+e− → D0D0 + X is measured with D0 → K−π+

decay mode. Monte Carlo generation is implemented by CompHEP and PYTHIA

is used for the hadronization process. We report the cross section upper limit of

e+e− → cc̄cc̄ is σupper limit at CL = 95 %(e+e− → cc̄cc̄) = 24.5 pb including systematic

errors.
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Chapter 1

Introduction

In nature forces are categorized into 4 kinds, gravitational, electromagnetic, weak

and strong forces. All forces but gravity are described by Standard Model. The

Standard Model explains what are the basic constituents of matter and how they

interact with each other.

1.1 Standard Model

In Standard Model(SM), nature is composed of quarks, leptons and force carriers.

Figure 1.1 shows the constituents of matter and force carriers responsible for the

three interactions. The quarks and lepton are fermions because of their 1/2 spins

and force carriers, photo, Z0, W± and gluon are boson because of 1 spin.

Quarks are constituents of hadrons. For example, a proton is composed of two

up-quarks and one down-quark. There are three pairs of quarks, up-down, charm-

strange and top-bottom. They are also called three generations. The only difference

between the generations is particle mass. For example, a top quark is 35000 times

heavier than a up quark. This looks somewhat like a puzzle, but that is the way

our nature is understood in SM . Table 1.2 shows quantum numbers of quarks, Q

(charge), U (upness), (D) downness, (S) strangeness, (C) charmness, (B) bottom-

ness, and (T) topness. There are 6-anti quarks with opposite charge. In addition

to the above quantum numbers, quarks have color charges, R(red), G(green) and

B(blue). Thus there are 36 quarks in total.

There are other kind of particles, leptons. Similar to quarks, they can be paired

up into 3 generation. The three generations are electron-electron neutrino, muon-

muon neutrino and tau-tau neutrino. The three generations and their corresponding
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Figure 1.1: An illustration of particles and their interactions. Particles connected

by lines have interactions with each other.

Table 1.1: Classification of quarks. q, Q, U, D, C, S, T, and B are quark, charge,

upness, downness, charmness, strangeness, topness, and bottomness.

q Q U D C S T B

u 2/3 1 0 0 0 0 0

d -1/3 0 -1 0 0 0 0

c 2/3 0 0 1 0 0 0

s -1/3 0 0 0 -1 0 0

t 2/3 0 0 0 0 1 0

b -1/3 0 0 0 0 0 -1
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Table 1.2: Classification of leptons. l, Q, Le, Lµ, and Lτ are lepton, charge, electron

number, muon number, and tau number.

l Q Le Lµ Lτ

e -1 1 0 0

νe 0 1 0 0

µ -1 0 1 0

νµ 0 0 1 0

τ -1 0 0 1

ντ 0 0 0 1

quantum numbers, Q (charge), Le (electron number), Lµ (muon number), and Lτ

(tau number). For each lepton, there are corresponding anti-leptons. Therefore,

there are 12 leptons in total.

In SM interactions are described by exchanging force carriers and each interaction

has its carriers. Photon is responsible for electromagnetic interaction, W± and Z for

weak interaction and gluon for strong interaction. Gluons carry color charges, thus

they can be distinguished by their color charges. There are 8 distinctive gluons. The

Glashow-Weinberg-Salam theory requires at least one Higgs particle. Thus we have

12 leptons, 36 quarks, 12 force carriers and at least one Higgs particles. Therefore

we have at the minimum 61 elementary particles in Standard Model.

1.2 Quantum Chromodynamics

The strong interaction is explained by QCD(Quantum Chromodynamics). This

interaction is responsible for the binding of hadrons and hadron-hadron interac-

tions. The interaction of photons with charged particles is described by Quantum

Electrodynamics (QED). In QED, the coupling which is vertex factor in Feynman

diagrams is ∼ 1/137. Thus, diagrams with many vertices have little contributions to

calculations. This means that perturbation theory is a proper tool for calculations.

However, in QCD coupling is in the order of 1 and diagrams with many vertices are

as important as ones with a few vertices. This situation makes the perturbation the-
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ory no longer applicable. Another important feature of QCD is interaction of gluon.

Photons interact with only charged particles. This means photon-photon interaction

does not occur. However gluons carry color charges, thus gluon-gluon interaction

does take place. This produces complicated situations. Nonetheless, some impor-

tant features of QCD have been understood both theoretically and experimentally.

They are confinement and asymptotic freedom.

Theorists can not manage the interactions between gluons in a long range because

it is very complicated problem. In theory it seems impossible for gluon to have long

range field while a massless particle, photon, same as gluon has long range fields.

To remove this long range field problem, it is assumed that all physically existing

particles have neutral color charge. This means there is no long range gluon fields

because gluon fields of each quarks are cancelled out each other at long distance.

All bound states of quarks have white color charge. This results in the fact that

a single quark can not be separated from bound state. If one is detached, neither

of them are color neutral. Thus such action is forbidden. This is confinement; the

quarks are confined in a small region near one another. Hadronization that quarks

and gluons form into hadrons is the result of this physical phenomenon. When two

quarks become separated from some point it is energetically favorable for a new

quark and anti-quark pair to appear simultaneously out of vacuum, than to allow

the two quarks fly further. This is why quarks and gluons can not be observed

experimentally. There are several models of hadronization. In PYTHIA [1], Lund

model [2] is used.

As mention before, perturbation theory can not be used because of the large

coupling contant. By the way, the coupling depends on energy not being contant.

The higher energy becomes, the smaller the coupling gets. This is called asymptotic

freedom. Thus in interactions that occur at high energy, perturbative expansion

works as QED.

1.3 e+e− → cc̄cc̄

The Belle collaboration has measured the cross section for the exclusive J/ψηc pro-

duction in e+e− annihilation at
√
s=10.6 GeV [3]:

σ[e+e− → J/ψηc(γ)]× B(ηc →= 4 charged) = 0.033+0.007
−0.006 ± 0.009 pb, (1.1)
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while theory calculation claimed that

σ[e+e− → J/ψηc] = 3.78± 1.26 fb [4], (1.2)

σ[e+e− → J/ψηc] = 5.5 fb [5]. (1.3)

The measured cross section was by an order of magnitude larger than what was

expected from the calculation. A suggestion from theorists was made to look for

an inclusive production of the four charmed particles [6] for e+e− collisions. One of

-e

+e

γ

c

c

g

c

c

Figure 1.2: One of the Feynman diagrams for e+e− → cc̄cc̄ at leading order in α

and αs.

the Feynman diagrams of the process e+e− → cc̄cc̄ is illustrated in Figure 1.2. The

authors of Ref. [6] predicted the cross section as

σ(e+e− → cc̄cc̄) = 250 fb (1.4)

with charm quark mass 1.25 GeV. If a measurement is compatible with this value

then calculation of hadronization part may have some flaws or new production mech-

anism exists. On the other hand, if much larger inclusive four charm cross section is

measured as e+e− → J/ψηc cross section, we would cast doubts to the perturbative

QCD calculation and perturbative expansion is not applicable for the prediction.

This study was motivated from this question.

Meanwhile, recently the theorists came up with a solution and its calculation for

the double charmonia cross section is [7]

σ[e+e− → J/ψηc] = 17.6+8.1
−6.7 fb (1.5)

which is in the same order as recently measured cross sections [8], [9].
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Chapter 2

Belle Experiment

The data used in this analysis is taken by Belle detector at High Energy Acceler-

ator Research Organization (KEK). Originally, the aim of the Belle experiment is to

observe CP violation effects in B meson decays and test the KM model predictions

for CP violation. However, not only the B meson physics but also other interesting

physics such as charm and tau physics are being studied. In this chapter, we de-

scribe the KEK B-Factory (KEKB) [10] electron-positron accelerator and the Belle

detector.

2.1 The KEKB Accelerator

The KEKB accelerator is a high luminosity e+e− collider. The layout of the

KEKB is illustrated in Figure 2.1. Its specification is listed on the Table 2.1. The

Table 2.1: Specification of KEKB accelerator.

Ring circumference 3 km

RF frequency 508 MHz

Electron energy 8 GeV

Positron energy 3.5 GeV

Design luminosity 1034 cm−2s−1

more than 108 B meson(Υ(4S)) pairs/year

electrons are generated by an electron gun and accelerated in a LINAC (LINear
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Figure 2.1: Schematic view of the KEKB storage ring.
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ACcelerator). Once the electron energy reaches to 8.0 GeV, the electrons are shot

into the HER (High Energy Ring). The pairs of electron and positron are produced

by injected electron beam to a tungsten target. Positrons are shot into the LER

(Low Energy Ring) after being separated and increasing energy up to 3.5 GeV in

the LINAC. The electrons and positrons collide at one interaction point in Tsukuba

area where the Belle detector in installed.

2.2 Belle Detector

Figure 2.2: The side view of Belle detector.

The Belle detector [11] is composed of several sub-detectors. The side cross

section view is shown in Figure 2.2 with each sub-detector and beam direction

indicated.
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2.2.1 Silicon Vertex Detector

Figure 2.3: Configuration of SVD1. Top figure shows an r-z view and bottom figures

show r-φ views.

In the innermost region to the beam pipe Silicon Vertex Detector (SVD) [12]

is located to measure B meson decay vertices. The first version of SVD, SVD1,

is composed of three layers of double-sided strip detectors (DSSD) and covers the

region 23 ◦ < θ < 139 ◦, 86 % of the solid angle. The three layers consist of 8, 10,

and 14 ladders in the inner, middle, and outer layers, respectively (Figure 2.3).

Although basic performance of SVD1 was satisfactory, it had some limitations

such as weak radiation tolerance, limited angular acceptance, relatively large radius

of the innermost layer, and failure of the integrated AC coupling capacitor [13]. So,

a new vertex detector, SVD2, was installed in 2003. It has four layers of DSSD and

covers the region 17 ◦ < θ < 150 ◦ which is nominal Belle angular coverage. The

four layers are composed of 6, 12, 18, and 18 ladders in the first, second, third, and

fourth layers respectively.

2.2.2 Central Drift Chamber

Outside of SVD, Central Drift Chamber (CDC) [14] performs the measurements

of three-dimensional trajectory and momenta of charged particles. It also offers

important information to the trigger system and particle identification information
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Figure 2.4: An r-φ view of SVD2. Compared with SVD1, the new design has one

more layer and smaller radius of the innermost layer.



2.2. BELLE DETECTOR 11

Figure 2.5: Schematic view of CDC structure. Left figure shows an r-z view and

bottom figure shows r-φ views.
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by precise dE/dx measurement. The structure of CDC is shown in Figure 2.5. The

CDC covers region 17 ◦ < θ < 150 ◦ and r = 8.5 ∼ 90 cm. The small r region has

conical shape in order to prevent accelerator components and maximize acceptance.

The chamber has small square cell structure and 50 cylindrical layers. 11 super

layers are organized between four layers to attain highly efficient and fast z-trigger.

50:50 mixture of Helium and Ethane is used to reduce multiple scattering. When

particle a particle pass a gas chamber, it loose it energy by gases are ionized by

acquiring energy from the incident particle. The ionized particles drift to the sense

wires to which high voltage (2.4 kV) is applied. A simple schematic view of this

process is illustrated in Figure 2.6.

2.2.3 Aerogel Cherenkov Counter

When a charged particle moves faster in a medium than the speed of light in the

medium, Cherenkov radiation happens. The speed of light in a medium of refraction

index, n, is

v = c/n (2.1)

where c is the speed of light in vacuum. In order for Cherenkov radiation to occur,

the speed of particle must be faster than this. In such condition, an electromagnetic

shock wave is created. ACC [15] detects this light. Pions can produce Cherenkov

radiation in ACC whose refractive index is from 1.01 to 1.03. while aerogel is

insensitive to charged kaons below 3.5 GeV. Thus ACC is designed to distinguish

charged pions and kaons in momentum range 1.5 GeV ∼ 3.5 GeV. There are 5

aerogel tiles in an ACC module whose size is 12 cm × 12 cm × 12 cm. 960 counter

modules are installed in barrel region and 228 modules at forward endcap part of

the detector. The Cherenkov light is detected by fine-mesh photomultipliers (FM-

PMT) which is designed to operate in a strong magnetic fields. It is operated in 1.5

T magnetic field.

2.2.4 Time Of Flight

Time Of Flight (TOF) [16] detector is used to distinguish K from π for momen-

tum below 1.2 GeV/c [17]. It also offers precise event timing to Belle trigger system.

The TOF and TSC configuration is shown in Figure 2.7. One TOF module consists

of two TOF counters and one Trigger Scintillation Counter (TSC). TOF counters
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+
+

+
+

+

Charged 
Particle 

Sense
Wire HV

Drift Time

Charge 

Position 

Signal from Sense Wire 

dE/dx

Figure 2.6: Schematic view of the process when a charged particle passes through

CDC. When a charged particle passes through CDC, the gases are ionized and drift

to the high voltage sense wires.
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TSC    5t x 120W x 2630 L
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1825 1905
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Figure 2.7: Configuration of TOF and TSC. Two TOF counters and one TSC form

a one TOF module.

Table 2.2: Specification of TSC and TOF.

cntr scinti z inner thick seg.

cm radius cm

TSC BC412 -80.5∼182.5 118.0 0.5 64

air-gap 1.5

TOF BC408 -72.5∼182.5 120.0 4.0 128
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are at both ends while TSC is only at backward end. There are 128 TOF counters

and 68 TSC at radius 120 cm (Table 2.2). It covers region 33 ◦ < θ < 121 ◦. A

charged particle whose transverse momentum is less than 0.28 GeV/c can not reach

TOF.

2.2.5 Electromagnetic Calorimeter

Figure 2.8: Configuration of ECL.

Electromagnetic Calorimeter (ECL) [18] detects the photons from B meson de-

cays with high efficiency and good resolution. Most of them are products of decay

cascade, they have relatively low energy. Thus good performance below 500 MeV is

of great import. ECL is also used for electron identification by comparison of the

charged particle track momentum and the energy is deposits in ECL. Fine-grained

segmentation of calorimeter is required because high momentum π0 detection needs

high resolution of two close photons and precise determination of their opening an-

gle. The whole calorimeter has 3.0 m long and 1.25 m inner radius section and

endcap sections at z = 2.0 m and -1.0 m. The overall configuration of ECL is shown

in Figure 2.8.
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Table 2.3: The geometrical parameters of the CsI calorimeter.

θ coverage θ seg. φ seg. # of crystals

Forward Endcap 11.7 ◦ - 31.5 ◦ 13 48 - 128 1168

Barrel 32.2 ◦ - 128.7 ◦ 46 144 6624

Backward Endcap 130.8 ◦ - 158.3 ◦ 10 64 - 144 1024

ECL is composed of array of CsI(Tl) crystal and geometrical parameters are

given in Table 2.3. Each crystal is tower-like and faces almost interaction point. The

entire calorimeter covers 91 % of solid angle; 17.0 ◦ < θ < 150 ◦. An independent

pair of silicon PIN photodiodes and charge sensitive preamplifiers are attached at

the end of the each CsI(Tl). The preamplifier output is sent to a shaping circuit

for the two signals from the same crystal are to be summed. The summed signal is

split for main ADC and trigger electronics.
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Chapter 3

Analysis Tools and Techniques

Monte Carlo simulation is done by CompHEP, Belle-EvtGen, and Geant based

computer simulator. The modified Super Fox Wolfram moment reduces backgrounds

significantly and the signal yields are extracted by sideband subtraction. Finally the

cross section upper limit is calculated based on the idea of Bayes’ Theorem.

3.1 Monte Carlo Simulation

Figure 3.1 shows overall Monte Carlo simulation flow. Event generation was

done by CompHEP [19], hadronization and decay by Belle-EvtGen [20], and detector

simulation was implemented by Geant [21] based computer simulation (GSIM [22]).

3.1.1 e+e− → cc̄cc̄ generation by CompHEP

The e+e− → cc̄cc̄ process may not simply be generated by usual Belle-EvtGen

since it is not a typical 2-2 process in the tree level. PYTHIA [1] which is embedded

in EvtGen does not have full matrix elements for 2-4 process. We have looked

into this issue and found an alternative method. It is CompHEP [23] which is able

to produce 2-4 processes in tree level. CompHEP generates e+e− → cc̄cc̄ process

leaving 3 momenta of the 4 charm and anti-quarks as an output. Once the four

quark momenta were obtained, we put the output into the Belle-EvtGen. A careful

study was done in order to interface CompHEP and the PYTHIA within the Belle

software framework.

The validity of CompHEP generation was confirmed by comparing with a full 2-4

matrix element calculations [6]. In Figure 3.2, (a) the differential cross sections of
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Figure 3.1: Monte Carlo simulation flow. CompHEP generates e+e− → cc̄cc̄ events

and Belle-EvtGen is responsible for hadronization and particle decays. Detector

simulation is done by Geant based computer simulator (GSIM).

CompHEP
CM Frame
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Event 
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Figure 3.2: Differential cross sections of (a) dσ/dmcc as a function of mcc in fb/(0.12

GeV) with respect to the invariant mass mcc and (b) dσ/dmcos θ in fb/(0.04) with

respect to the angle between the cc system and the direction of the incoming electron.

Points with error bars show the results from the CompHEP, and the curves represent

results from analytic calculations [6]. 100K events were generated.

dσ/dmcc with respect to the invariant massmcc and (b) dσ/d cos θ with respect to the

angle between the cc system and the direction of the incoming electron are shown.

Both distributions show good agreement between the CompHEP generation and the

analytic calculation, which indicates validity of CompHEP as a MC generator.

3.1.2 Hadronization and Decay by Belle-EvtGen

The success of implant of CompHEP output to Belle-EvtGen was confirmed in

two ways, comparing 1) the number charm quarks generated and 2) the angular

distribution of charm quark momentum in CM frame.

1) was done by counting all prompt charmed particles, charmonia, charmed

mesons and charmed baryons. For 100K e+e− → cc̄cc̄ events, we have 200K charm

quarks and the counted number of charmed particles was 200K. We could see that

the interface between CompHEP and Belle-EvtGen successfully worked and the

charm quarks were properly fragmented. The rest decay processes totally depend

on PYTHIA in Belle-EvtGen.

For 2), we compared the cos θ distributions, where θ is an angle between the

momentum and the beam axis, of charm quarks from CompHEP and D mesons

from Belle-EvtGen. Similarity is expected since D mesons acquire their momenta
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Figure 3.3: cos θ of (a) charm quark momenta in CompHEP output and (b) D+

momenta in generator level of Belle-EvtGen. θ is the angle between the momentum

and the beam direction. Both are in the CMS frame.

primarily from charm quarks.

Table 3.1: Branching fraction (BF) of D+/D− and D0/D̄0. BF(Belle-EvtGen) are

obtained by dividing the total number of generated D mesons by the number of

D mesons which decay into K∓π±π±(D+/D−) and K∓π±(D0/D̄0), respectively.

BF(DECAY.DEC) is the branching fraction in DECAY.DEC. PHOTOS PHSP model is used

in DECAY.DEC.

mode BF(Belle-EvtGen) BF(DECAY.DEC)

D+ → K−π+π+ 0.0524± 0.0004 0.0531

D− → K+π−π− 0.0538± 0.0004 0.0531

D0 → K−π+ 0.0384± 0.0002 0.0382

D̄0 → K+π0 0.0380± 0.0002 0.0382

From Figures 3.3, we can see the similarity of both distributions. Branching

fractions of D+ and D0 (and their charge conjugates) by counting in generation

level are on Table 3.1 with the branching fractions in DECAY.DEC [20] of Belle-

EvtGen. The Branching fractions on the table show consistency with each other.

In both decays of D+ and D0 , PHOTOS PHSP [20] decay model was applied, rather

than D DALITZ [20] model for Kππ. From the two comparisons, we conclude that

the generation and embedment of CompHEP to Belle-EvtGen are successfully done.

One thing to note is that the CompHEP generation is done in e+e− CM frame, while
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the Belle-EvtGen in lab frame. For some reason, only does CM-lab combination give

total generation in lab frame. This was confirmed by boosting D+ to CM frame and

comparing this with CM-CM combination which is obviously a total CM frame

generation.

3.1.3 Detector Simulation

The validity was confirmed by comparing numbers of reconstructed D+ candi-

dates at generator level with the number of reconstructed D+ after detector simula-

tion. At both stages, D+ was reconstructed by using K−π+π+ mode. The number

of total e+e− → cc̄cc̄ events is 100K.

Table 3.2: Number of signal events (D+D+) at generator level and detector simula-

tion. D+ were reconstructed by K−π+π+ mode. Signal tracking efficiency, εdetector,

is multiplied to the counted number in generator level as many times as the number

of charged tracks, 6. This number is compared with the number of D+D+ events

after detector simulation.

generator level detector simulation

counted number 2390± 50

detector efficiency εdetector = 0.8 ± 0.1 600± 400 540± 20

The number 2390 was obtained by simply counting events with more than two

D+ candidates which are within the mass window |MK+π−π− −MD+ | < 0.012 GeV.

Supposing the detector efficiency of one charged track is 0.8 ± 0.1, we obtain 600 ±
400 events from the simple relation,

εdetectorNtrue = Nmeasure. (3.1)

The number of signal events obtained from detector simulation is 540± 20, which is

consistent with the one in generator level. We can conclude that detector simulation

is done properly.

3.2 Modified Super Fox Wolfram moment
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cc̄cc̄ qq̄

Figure 3.4: The event shapes of cc̄cc̄ and qq̄ events. Since cc̄cc̄ events are four-jet-like,

the overall event shape is likely to be spherical while qq̄ events are two-jet-like.

The normal qq̄ events such as cc̄, uū, dd̄ and ss̄ have two-jet-like event shapes. In

CM frame of qq̄, the quark and the anti-quark fly in the opposite direction because

of momentum conservation. During their flight they are hadronized and subsequent

hadrons obtain their momenta primarily from the quarks. The hadrons decay into

other particles and the event look like two jets. However, the cc̄cc̄ events are four-jet-

like and their event shapes are likely to be spherical. Fig 3.4 show the event shape

difference graphically. It is this event shape discrepancy that one can distinguish

four charm events from qq̄ events.

We take advantage of the modified Super Fox Wolfram moment [24] which can

be calculated by following steps.

1. Calculate 17 event shape variables,

Roo0 Roo1 Roo2 Roo3 Roo4

Rso00 Rso01 Rso02 Rso03 Rso04

Rso10 Rso12 Rso14

Rso20 Rso22 Rso24

Pt

where Rso and Roo are Hoo/Hmax and Hso/Hmax, respectively and Pt is transverse
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momenta. The original Fox Wolfram (FW) moment [25] is defined by

Hl =
∑
i,j

|~pi||~pj|
s

Pl(cosφij) (3.2)

where Pl(cosφij) is Legendre polynomials, i and j run over all hadrons in an event,

and φij is the angle between particles i and j. We can categorize Hl into three kinds,

Hss, Hso, and Hoo. Hss is when i and j are all D0. Hso is when i is D0 but j

is other particles. Finally, Hoo is when i and j are all other particles. Then we

have relation H = Hss + Hso + Hoo. For KSFW moment only are Hso and Hoo

used. Hso has two indices while the original FW has only one. The first index in

Hso indicates types of the other particles, 0 for the charged, 1 for the neutral, and

2 for the missing particles. The distributions of the 17 variables for signal MC and

sideband of real data are shown in Appendix A.

2. Construct a Fisher discriminant [26] by linear combination of the 17 variables.

The Fisher discriminant is defined by

F =
17∑
i=1

αixi (3.3)

where xi are the 17 variables. αi is determined by

αi =
17∑
j=1

(Σsig + Σbkg)
−1
ij (x̄sig − x̄bkg)j (3.4)

where Σij is a correlation coefficient of xi and xj and x̄j is mean of xj. This con-

dition gives the best separation between the signal and background distributions.

The Fisher discriminants are classified to 7 categories according to their missing

mass2(mm2).

3. Using the obtained F at 2., construct probability distribution functions (pdf)

in 7 mm2 regions. In each region, signal and background distributions give corre-

sponding likelihoods at the end.

4. Given KSFW distributions of signal and background, we do fitting with an

asymmetric Gaussian function and obtain fit parameters. Signal and background

likelihoods are calculated using the parameters and we use likelihood ratio, klr =

Ls/Ls+Lb, as a cut variable, where Ls and Lb are signal and background likelihood
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Figure 3.5: a) the invariant mass distribution of the first D0 and b) second D0. In

a) signal region(I) and sideband region(II) are specified. I and II in b) indicated

that the corresponding first D0 is in I and II region in a). The light gray histogram

in b) is the sideband subtracted histogram.

ratio, respectively. The KSFW pdfs of signal MC and sideband of real data are

shown in Appendix A.

3.3 Sideband Subtraction

In order to extract the signal yield, the method of sideband subtraction is used.

An advantage of this method is that we can cut off combinatorial backgrounds by

fitting. Since there are two D0s in a signal event, we reconstruct 2 D0 candidates.

Here we do not select the best candidates because the random combinations will be

subtracted at the end. To the two candidates, we assign indices, first and second

D0. Table 3.3 shows all possible combinations of the two D0s. We need to choose

only combination A and it can be carried out by following steps.

1. Draw the invariant mass distribution of the 2nd D0 when the first D0 is in
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Table 3.3: All combinations of the two D0 candidates. D0 means the real D0 and X

means combinatorial background. Real signal events correspond to combination A.

combination first D0 second D0

A D0 D0

B D0 X

C X D0

D X X

the signal region. The region I in a) of Figure 3.5 shows the signal region of the first

D0 and I in b) shows the invariant mass distribution of the second D0 for signal

region first D0. The I in b) includes all four combinations.

2. Draw invariant mass distribution of the 2nd D0 when the first D0 is in the

sideband region. The region II in a) of Figure 3.5 shows the sideband region of the

first D0 and II in b) shows the invariant mass distribution of the second D0 for

sideband region first D0. Since the first D0 in the sideband region, this histogram

contains combination C and D only.

3. Subtract the histogram II from I. The resultant light gray histogram in Fig-

ure 3.5 is the sideband subtracted histogram. Because combination C and D are

subtracted, the subtracted histogram contains only A and B.

4. The last step is to do fitting to the subtracted histogram. The combinatorial

backgrounds (combination B) have a shape of the first polynomial. Thus, with fit

function, signal function + fisrt polynomial, only can signal be extracted.

To validate the result of sideband subtraction one can do 2 dimensional fitting

to M(first D0) vs. M(second D0) distribution. The comparison is described in

Appendix B.

3.4 Cross Section and Upper Limit

When no significant excess of signal is seen in measurements we set upper limit
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at certain confidence level. In the Belle experiment the optimization of cut values

are determined by Figure Of Merit, which is defined to be

F.O.M. =
S√
S +B

(3.5)

where S and B are signal and background, respectively. However, for the mea-

surements whose expected signal events are not known, using Figure Of Merit is

meaningless. In this case, the upper limit is used to optimize cut value by maximiz-

ing sensitivity.

The total cross section is calculated by

σ(e+e− → cc+X) =
Ndata −Nbkg

εsig × Lint ×BF (D0 → K−π+)2 × P (c→ D0)2
(3.6)

where Ndata is the number of events in data, Nbkg is the number of event estimated in

background MC, εsig is the efficiency of the given set of selection criteria for selecting

D0D0 + X events, Lint is the integrated luminosity, BF is branching fraction and

P (c → D0) is the ratio of c → D0 to c → X. We use P (c → D0) = 0.565 [27].

Supposing there is no signal, we can calculate the upper limit of cross section at

certain confidence level. Even though Ndata has to be Poisson-fluctuated, we can

ignore it for simple calculation. In this case, we have

σupper limit =
δNbkg

εsig × Lint ×BF (D0 → K−π+)2 × P (c→ D0)2
(3.7)

and the numerator varies by confidence level. The Nbkg follows the Poisson distri-

bution,

P (n|µ, I) =
e−µµn

n!
(3.8)

where I is all information used to construct µ. P (n|µ, I) is interpreted as ‘for a

given mean, µ, the probability of measuring n events’. We can put the Nbkg to µ

and find n up to which integration of P (n|µ, I) gives 0.95. The thing is that since

n is a positive integer, integration may not give exactly 0.95. However, because

we are dealing with a conditional probability, we may solve this problem by Bayes’

Theorem [28],

P (µ|n, I) ∝ e−µµn

n!
P (µ|I). (3.9)

The RHS is normalized so that integration is 1 and a priori probability, P (µ|I) is

assumed to be constant. Now we have different interpretation that ‘for a given n,

the probability of its mean being µ.’
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There comes another problem in interpreting the Nbkg as n because Nbkg is rarely

an integer. It is obtained by fitting and it rarely gives integers while n should be

integers. So we Poisson-fluctuated Nbkg and obtained distribution of

µ̄ at 95 % with n = P (n|Nbkg, I)× µ at 95 % with n (3.10)

where µ at 95 % with n is the µ at which C.L. is 95 % for given n. We use µ̄ at 95 % with n

for δNbkg at C.L. = 95 %.
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Chapter 4

Event Selection and Signal

Extraction

In this analysis, we reconstruct D0/D̄0 that decay into K∓π± final states. With

candidates that pass several criteria listed below, we do sideband subtraction and

fitting for the signal yield extraction. In addition, systematic errors are studied.

Data was taken at
√

s = 10.52 GeV and Lint = 68 fb−1.

4.1 Event Selection

The D0 candidates selection criteria are as follows.

• |dz| < 4.0 cm, |dr| < 2.0 cm

• LK/π > 0.55 for K and LK/π < 0.55 for π

• |MK−π+ −MD0 | < 0.012 GeV/c2

• pass vertex fit

• number of K∓ > 1 and number of π± > 1 in one event

• klr > 0.85

The mass window is determined by signal Monte Carlo simulation. The invariant

mass distribution of MK−π+ with the signal mass window is shown in Figure 4.1.

The klr distributions of a) sideband of real continuum data and b) signal MC is

shown in Figure 4.2. The two distributions are clearly separated to 0 and 1. The klr
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Figure 4.1: Invariant mass distribution MK−π+ and signal region.
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Figure 4.2: The klr distribution of a) sideband of real data b) signal MC.
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is optimized by minimization of the cross section upper limit supposing no signal

is observed. In order to obtain the yields in the signal window, we do fitting to

the sideband subtracted invariant mass distribution of the second D0. The real

continuum data at
√
s = 10.52 GeV is used to remove systematic uncertainties due

to background modeling. Total luminosity of the available continuum data is 68 fb−1.
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Figure 4.3: Sideband subtracted distribution of the second D0. Fitting is done only

to the sideband region to determine the background level in signal the region in case

no signal is observed.

Figure 4.3 shows the fitting done only in the sideband region. The fit function is

first polynomial. From the obtained fit function we calculate the yields in the signal

region. By doing this and calculating the cross section upper limit with various klr,

we optimize the klr value at which the upper limit is least. Figure 4.4 shows the

cross section upper limit at C.L.=95 % with various klrs. The upper limit has its

minimum , 5.2 pb, when klr > 0.85.

4.2 Signal Extraction

By using sideband subtraction method we can obtain the number of signal events.

Figure 4.5 shows the invariant mass distributions of the second D0 when the first

D0 is in a) signal region and b) sideband region. The c) is the subtracted second
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Figure 4.4: Cross section upper limit at C.L. = 95 % with respect to klr. At

klr=0.85, the cross section upper limit is least and the corresponding cross section

is 5.2 pb.
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Figure 4.5: Invariant mass distribution of the second D0. 68 fb−1 continuum data

at
√
s = 10.52 GeV is used. a) and b) are when the first D0 is in signal region

and sideband region, respectively. c) is the sideband subtracted second D0 invariant

mass distribution to which fitting is done. Only are statistical errors included.
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Figure 4.6: Fitting to the sideband subtracted histogram. Errors are statistical only.

D0 mass distribution. A fitting with a function,

Gaussian + first polynomial. (4.1)

is done to the sideband subtracted second D0 mass distribution. The mean and

width of the Gaussian are fixed to the nominal D0 mass, 1.8646 GeV, and 0.0043

GeV/c2, respectively. The width is obtained from signal Monte Carlo. The signal

yield is counted by integrating the Gaussian in ±3σ region and dividing the result

by 0.1 GeV/20, mass window per bin.

4.3 Systematic uncertainties

Two sources of systematic uncertainties are listed on Table 4.1. All systematics are

added in quadrature.

• charm quark mass variation

In CompHEP generation the charm quark mass is varied from nominal mass,

1.25 GeV/c2. The corresponding signal efficiencies at each mass are on the

Table 4.2. The uncertainty to the signal efficiency is

∆εsig = 0.007 (4.2)

and its contribution to the cross section is 9.1 %.
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Table 4.1: Sources of systematic uncertainties and their contributions to the e+e− →
cc̄cc̄ cross section.

Source Contribution (%)

charm quark mass variation 9.1

fit bias 19

Total 21 %

Table 4.2: Signal efficiencies at various charm quark masses in CompHEP genera-

tion.

charm quark mass (GeV/c2) 1.1 1.25 1.5 1.6

εsig 0.089 0.087 0.091 0.094

• fit bias

Table 4.3: Number of signal yields in various fit regions. The bin size is fixed to

0.005 GeV/c2.

fit region (GeV/c2) 1.8046 1.7946 1.7846 1.7746 1.7646

∼ 1.9246 ∼ 1.9346 ∼ 1.9446 ∼ 1.9546 ∼ 1.9646

signal yields 34± 42 31± 42 29± 42 29± 42 27± 41

With a fixed bin size, 0.005 GeV/c2, the fit region is gradually increased from

0.1 GeV/c2 to 0.2 GeV/c2. The change of signal yields by this increase is

∆signal yield = 6.4, (4.3)

which has 19 % contribution to the cross section.

These two sources have 21 % contribution to the total systematic uncertainty.
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4.4 Discussions

The obtained signal yields are

32 ± 43(stat.) ± 6(syst.) (4.4)

and the cross section upper limit at C.L. 95 % is

σupper limit at C.L.=95 %(e+e− → cc̄cc̄) = 24.5 pb. (4.5)

The Belle and BaBar measured σ(e+e− → J/ψcc̄) and σ[e+e− → J/ψηc(γ)]×B>2

to be

σ(e+e− → J/ψcc̄) = 0.74± 0.08+0.09
−0.08 pb (Belle) [29], (4.6)

σ[e+e− → J/ψηc(γ)]× B>2 = 25.6± 2.8± 3.4 fb (Belle) [8], (4.7)

σ[e+e− → J/ψηc(γ)]× B>2 = 17.6± 2.8+1.5
−2.1 fb (BaBar) [9]. (4.8)

Comparing the measurements we can see that P (cc̄ → ηc), the probability that

cc̄ is hadronized to ηc, is in the range between 1/20 and 1/30. If we assign 1/20 to

P (cc̄→ J/ψ) then we have

σ(e+e− → cc̄cc̄) ≈ 15 pb. (4.9)

The cross section sensitivity, σupper limit at CL=95 %(e+e− → cc̄cc̄) = 25.4 pb, mea-

sured in this study is in the same order as the rough estimation , σ(e+e− → cc̄cc̄) ≈
15 pb, based on the Belle and BaBar measurements [29], [8], [9].
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Chapter 5

Conclusions

We set the cross section upper limit of e+e− → cc̄cc̄ at 95 % confidence level to

σupper limit at CL = 95 %(e+e− → cc̄cc̄) = 24.5 pb (5.1)

which is compatible with a simple estimation from recent Belle and BaBar measure-

ments [29], [8], [9]. However, the significance of this study is 0.7σ. Thus we may

need more D0 decay modes to improve the result statistically.
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Appendix A

KSFW

The modified Super Fox Wolfram moment, which is also called Kakuno’s Super

Fox Wolfram (KSFW) moment needs 17 input variables. In Figure A.1 the distribu-

tions of the 17 input variables are shown. The solid distribution is from signal MC

and the dashed one is from sideband of real data. The variable R2 which is generally

used for continuum suppression is defined to be H2/H0 where H2 and H0 are the

second and the zeroth Fox Wolfram moment [25], respectively. Its correspondence

to KSFW is Roo0, Rso02, Rso12, and Rso24. KSFW enhances the distinction by

constructing Fisher discriminant which linearly combines all 17 variables.

The KSFW has large dependence on mm2 [30]. Thus it is separated into 7 mm2

regions. Table A.1 shows the seven mm2 regions.

Table A.1: 7 mm2 regions.

region imm0 imm1 imm2 imm3 imm4 imm5 imm6

mm2 ∼ -0.5 0.3 1.0 2.0 3.5 6.0

-0.5 ∼0.3 ∼1.0 ∼2.0 ∼3.5 ∼6.0 ∼

The Figure A.2 shows the KSFW distributions in 7 mm2 regions. a) shows

the relative number of entries in each mm2 region and b) - h) indicate the KSFW

distributions in each mm2 region.
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Figure A.1: The 17 input variables of KSFW for signal MC (solid) and sideband of

real data (dashed).
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Figure A.2: a) relative number of entries and b) - h) KSFW distributions in 7 mm2

regions. Solid distributions are from signal MC and dashed distributions are from

sideband of real data.
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Appendix B

Comparison of sideband

subtraction with 2D mass fit

In order to confirm the validation of the sideband subtraction method, the signal

yield is extracted from the 2 dimensional mass distribution of the first and second

D0s. Signal efficiency is compared for the validation check. Signal MC is used

throughout the confirmation.
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Figure B.1: Sideband subtracted mass distribution of the second D0 and fitting

result. The horizontal error bars indicate the bin size and the vertical error bars are

incorporated statistically only.

Figure B.1 shows the sideband subtracted mass distribution of the second D0.
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Fitting with a fit function,

Gaussian + 1st polynomial, (B.1)

is done to the distribution with all parameters floating. The Gaussian is responsible

for the signal.

)(GeV)+!
-

M1(K

1.82
1.84

1.86
1.88

1.9)(GeV)

+!
-

M2(K

1.82
1.84

1.86
1.88

1.9

2
E

n
tr

ie
s
/(

0
.0

0
5
 G

e
V

)

0

100

200

300

400

500

600

)(GeV)+!
-

M1(K

1.82
1.84

1.86
1.88

1.9)(GeV)

+!
-

M2(K

1.82
1.84

1.86
1.88

1.9

2
E

n
tr

ie
s
/(

0
.0

0
5
 G

e
V

)

0

100

200

300

400

500

600

700

a)

b)

Figure B.2: a) 2 dimensional mass distribution of the first D0 and second D0. b)

shows the corresponding fit function. M1 and M2 are the invariant masses of the

first and the second D0, respectively.

The two dimensional mass distribution and the corresponding fit function is

shown in Figure B.2. Fitting is done to the distribution with a fit function,

(Gaussian + 1st polynomial)× (Gaussian + 1st polynomial), (B.2)
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and the Gaussian×Gaussian is responsible for the signal. Signal MC is used and

klr > 0.85. All parameters are floating.

Table B.1: The number of signal events and signal efficiencies obtained by two

methods, sideband subtraction and 2 dimensional mass fit. Events are counted out

of 30, 000 generated signal events.

Sideband subtraction 2D mass fit

Number of signal events 3670± 110 3650± 720

signal efficiency εsig 0.122± 0.004 0.122± 0.024

As shown on the Table B.1, the signal efficiencies obtained by the two methods

are consistent. We can conclude that the sideband subtraction extracts correct

signal yields.
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Appendix C

Error estimation of a function of

independent variables

For a function of two variables, the error is calculated from

δf =

[(
∂f

∂x1

δx1 +
∂f

∂x2

δx2

)2
] 1

2

(C.1)

=


(
∂f

∂x1

)2

(δx1)
2 +

(
∂f

∂x2

)2

(δx2)
2

+2

(
∂f

∂x1

)(
∂f

∂x2

)
(δx1) (δx2)


1
2

. (C.2)

The last term vanishes if x1 and x2 are independent. Then the error becomes

δf =

[(
∂f

∂x1

)2

(δx1)
2 +

(
∂f

∂x2

)2

(δx2)
2

] 1
2

. (C.3)

If we generalize it for a function of n independent variables, the error becomes

δf =

[(
∂f

∂x1

)2

(δx1)
2 +

(
∂f

∂x2

)2

(δx2)
2 + ... +

(
∂f

∂xn

)2

(δxn)2

] 1
2

. (C.4)

For the calculation of signal yields in chapter 3, we need to calculate the error

of f(x1, x2) = Ax1x2 where A is a constant. In this case the overall error becomes
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δf =

[(
∂f

∂x1

)2

(δx1)
2 +

(
∂f

∂x2
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(δx2)
2

] 1
2
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2 (δx2)
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2 (C.6)

= |A|
[
x2

2 (δx1)
2 + x2

1 (δx2)
2] 1

2 . (C.7)

When there are four variables,in other words, f(x1, x2, x3, x4) = Ax1x2x3x4, the

error is calculated by

δf =

[
4∑
i=1

(
∂f

∂xi

)2

(δxi)
2

] 1
2

(C.8)

= |A|
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3 (δx4)
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2

. (C.9)

As an example, we can calculate the error of signal efficiency using eq. (C.5).

The signal efficiency is defined by

εsig =
Nm

Ng

(C.10)

where Nm and Ng are the number of measured and generated events, respectively.

Since Nm and Ng follow poison distribution, δNm =
√
Nm and δNg =

√
Ng. Thus,

the error of εsig becomes

δεsig =

[(
∂εsig
∂Nm

)2

(δNm)2 +

(
∂εsig
∂Ng

)2

(δNg)
2

] 1
2
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