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Quantum Chromodynamics (QCD) describes strong interactions among the

fundamental particles known as quarks and gluons. In principle, QCD can be used

to explain complicated phenomena in the strong sector. However, at the energy scale

of hadronic physics, the strong coupling constant is so large that the traditional per-

turbative method is not applicable. There are two powerful alternative approaches

utilized in the non-pertubative regime: (1) lattice QCD, which discretizes space-time

and utilizes Monte Carlo computer simulations, and (2) finding new systematic ex-

pansion regimes to obtain physical insights in certain limits.

In this dissertation, three problems are studied in the context of these two

approaches. In Chapter 2, a notorious numeric problem in lattice QCD known as

the sign problem is explored. A subtle phenomenon caused by the interplay between

the sign problem and the infinite volume limit is discussed and explained using the

saddle point approximation. This work provides insight into the sign problem and

the physics of the QCD θ-vacuum.



Chapter 3 and Chapter 4 focus on tetraquarks, which are unconventional

hadrons containing four valence quarks. Despite numerous tetraquark candidates

seen in experiments, there is no unified and well-accepted theoretical descriptions of

the tetraquark state yet. This dissertation examines the existence of tetraquarks in

the heavy quark mass limit. A powerful systematic expansion regime can be built

when the heavy quark mass is extremely large.

In Chapter 3, a framework is established to analyze tetraquarks in the heavy

quark mass limit. It is shown in a model-independent way that multiple paramet-

rically narrow q̄q̄′QQ tetraquarks must exist in this limit. Many of these states will

be parametrically close to the threshold of decaying into two heavy mesons.

In Chapter 4, based on a modification of the framework in Chapter 3, it is

shown that qq̄′QQ̄ tetraquarks with appropriate large angular momentum must exist

in the heavy quark mass limit. This may provide insights into the experimentally-

observed narrow near-threshold tetraquarks which contain a heavy quark and a

heavy antiquark.
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Chapter 1: Introduction

1.1 Overview

Quantum Chromodynamics (QCD) is the quantum field theory of the strong

interaction, one of the four fundamental interactions of nature. QCD describes

the interactions of quarks and gluons. In principle, it can be used to explain rich

and complicated hadronic phenomena, which is an important task of QCD physics.

However, due to the non-perturbative nature of QCD in strong coupling regimes,

it is extremely challenging to study hadronic physics and other strong interaction

related phenomena using first principle derivation based on traditional perturbative

Feynman diagram approach.

There are alternative methods to study QCD. The first is lattice QCD, which

utilizes numerical brute force with the help of advancement in high-performance

computing. The second is the development of a systematic expansion with appro-

priate approximations, such as various Effective Field Theories (EFT) and Large

N QCD, under which QCD physics becomes more tractable. This dissertation will

cover aspects of both methods to gain insights on problems that are currently hard

to handle with perturbative QCD.
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1.2 QCD: underlying theory of the strong interacion

The QCD Lagrangian for NF quark flavors is written as[3]:

L =

NF∑
k=1

q̄k(iγ
µDµ −mk)qk −

1

4
Ga
µνG

aµν , (1.1)

where qk is quark Dirac field with mass parameter mk. Dµ = (∂µ − igsAµ) is the

gauge covariant derivative. Aµ = Aaµt
a is the gluon field, where ta with a = 1, 2, ..., 8

are 3×3 matrices and are generators of SU(3) color group. Ga
µν is the field strength

of gluon field given by:

Ga
µν = ∂µA

a
ν − ∂νAaµ − gsfabcAbµAcν (1.2)

[ta, tb] = ifabct
c,

where the fabc are completely anti-symmetric structure constants of the SU(3) group

with fabc = fcba = −facb.

Conventionally, tas take the form of Gell-Mann matrices as in Eq. (1.3), which

are similar to the role of the Pauli spin matrices of SU(2) physics.
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λ1 =


0 1 0

1 0 0

0 0 0

 λ2 =


0 −i 0

i 0 0

0 0 0

 λ3 =


1 0 0

0 −1 0

0 0 0



λ4 =


0 0 1

0 0 0

1 0 0

 λ5 =


0 0 −1

0 0 0

−i 0 0

 λ6 =


0 0 0

0 0 1

0 1 0



λ7 =


0 0 0

0 0 −i

0 i 0

 λ8 =
1√
3


1 0 0

0 1 0

0 0 −2

 (1.3)

The structure constants fabc can be obtained using these matrices. Most of

the structure constants are 0, while all non-zero ones can be obtained by completely

anti-symmetric relation from the following values:

f123 = 1 (1.4)

f147 = f165 = f246 = f257 = f345 = f376 =
1

2

f485 = f678 =

√
3

2
.

The current experimentally known quarks imply Nf = 6 flavors, named as the

up quark, down quark, strange quark, charm quark, bottom quark (also referred to

as the beauty quark), and top quark (also referred to as the truth quark). These
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six quarks have different quantum numbers and masses. The mass parameters mk

in Eq. (1.1) depend on renormalization scheme and renormalization scale. Under

MS scheme, the current-quark masses are reported as[3]: mu = 2.16 MeV, md =

4.67 MeV, ms = 93 MeV, mc = 1.27 GeV, mb = 4.18 GeV, and mt = 172 GeV.

These quark masses have apparent different energy scales, and result in different

physic behaviors.

An important symmetry of QCD is called the chiral symmetry, which happens

in the limit that quark masses are taken to be 0. This symmetry is spontaneously

broken by dynamic chiral symmetry breaking, which happens at scale Λχ ∼ 1GeV,

and is explicitly broken by the non-zero quark masses in reality. Conventionally, a

quark is considered to be heavy if its mass mk > Λχ, and light if mk < Λχ[3]. Thus,

charm quark, bottom quark, and top quark are called heavy quarks, which will play

important roles in the work presented later in this dissertation.

Another important symmetry of QCD is the SU(3) color symmetry. In the

above Lagrangian Eq. (1.1), each quark is assigned to the fundamental representa-

tions of the non-abelian local gauge group SU(3). The gauge quantum number is

named “color”, and the corresponding symmetry is SU(3) color symmetry. There

are three different color charges. Conventionally, they are named red, green, and

blue. Quarks carry one of these three colors; while anti-quark carries one of the

anti-red, anti-green and anti-blue color charges.

The gauge boson of QCD is called the gluon. Gluons transform under the

adjoint representation of SU(3) group. The dimension of the adjoint representation

is N2
c − 1 = 8, so there are 8 kinds of gluons, which are known as a “color octet”.

4



The eight kinds of gluons are commonly written as the following linear independent

basis:[4]:

(rb̄+ br̄)/
√

2, −i(rb̄− br̄)/
√

2, (1.5)

(rḡ + gr̄)/
√

2, −i(rḡ − gr̄)/
√

2,

(bḡ + gb̄)/
√

2, −i(bḡ − gb̄)/
√

2,

(rr̄ − bb̄)/
√

2, (rr̄ + bb̄− 2gḡ)/
√

6

where r, g, and b are red, green, and blue; r̄, ḡ, and b̄ are anti-red, anti-green, and

anti-blue.

There is no color singlet gluon as (rr̄ + gḡ + bb̄)/
√

3, otherwise it can be

exchanged between two color singlets such as proton and neutron, which contradicts

with the experimental fact that there is no long-range force with strong coupling[4].

Another way to interpret this fact is that the existence of a color singlet gluon

requires QCD to be in U(3) symmetry, which has 9 degree-of-freedom, rather than

SU(3) symmetry with octet representation in the real world. Even if the world was

created with “U(3) symmetry QCD”, the U(3) would decouple into U(1) symmetry

plus SU(3) symmetry with different renormalization scheme. Thus, they would have

different coupling constants and representations, and it effectively still looks like our

world.

As is the case with photons, gluons are formally massless particles of spin 1.

However, the gluon itself carries color charges, which is different from QED where

the gauge boson photon does not carry an electro-weak charge. As a result, the
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gluon not only interacts with quarks but also interacts with each other. Triple-

gluon vertex of order gs and four-gluon vertex of order g2
s can be read from the

Lagrangian Eq. (1.1), and are shown in Fig. 1.1.

Figure 1.1: Gluon vertexes.

Neither quark nor gluon is observed as a free particle, while a hadron, which

is color-singlet combination of (anti)quarks and gluons, and therefore color-neutral,

can be observed as a free particle. The fact that color-charged particles cannot be

experimentally isolated is called “color confinement”. The color confinement is not

yet formally proved, and it belongs to one of the seven Millennium Prize Problems:

Yang-Mills Existence and Mass Gap Problem[5].

The quantity gs (or αs = g2s
4π

) appears in the covariant derivative Dµ and

field strength Gµν is the QCD coupling constant, which may be thought of as the

fundamental unit of color[4]. It is the only fundamental parameter of QCD besides

quark masses. The renormalized coupling αs(µ
2
R ∼ Q2) indicates the strength of

strong interaction depends on the momentum transferQ. The renormalization group

equation (RGE) of this coupling is[3]:

6



µ2
R

dαs
dµ2

R

= β(αs) = −(b0α
2
s + b1α

3
s + b2α

4
s + ...). (1.6)

The minus sign in Eq. (1.6) indicates that the strong coupling becomes weaker

for processes with larger momentum transfer. The strong coupling approaches 0

logarithmically when momentum transfer Q→∞[6], which can be seen from[4]:

αs(|Q2|) =
αs(µ

2)

1 + αs(µ2)
12π

(11Nc − 2Nf ) ln( |Q
2|

µ2
)
, (|Q2| � µ2) (1.7)

This is the so-called “asymptotic freedom”. Under this regime, such as high-

momentum-transfer scattering processes, because the coupling is weak, QCD can be

studied perturbatively in expansion of the coupling constant, in a similar method-

ology used in study of QED.

However, when the energy is around or below a scale called ΛQCD (around

89 ∼ 332 MeV under MS[3]), the coupling gets large, and QCD becomes strongly

coupled. In this case, the theory is highly non-perturbative, so that perturbative

calculation of Feynman diagrams is no longer reliable as in the weak coupling regime.

This makes it difficult to study. Thus, alternative methods are required to analyze

enormous phenomena in this regime.
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1.3 Lattice QCD

As an important non-perturbative approach to study QCD, Lattice Quantum

Chromodynamics (LQCD), proposed by K. Wilson in 1974[7], has been successfully

used in research with the help of high-performance computing. It has been used to

calculate properties of hadrons, determine fundamental parameters of the standard

model, such as strong coupling constants, quark masses, and many other important

research topics.

1.3.1 Methodology of lattice QCD

Lattice QCD is defined on a discretized hypercubic lattice with Euclidean

space-time with appropriate boundary conditions. The finite lattice spacing a im-

poses an ultraviolet cut-off, so the theory is ultraviolet regulated. The continuum

limit is recovered by taking a→ 0.

Lattice formulation of QCD preserves gauge symmetry. The gauge transfor-

mations of quark field q(x) and gluon field Uµ(x) are:

q(x)→ V (x)q(x) (1.8)

q̄(x)→ q̄(x)V †(x) (1.9)

Uµ(x)→ V (x)Uµ(x)V †(x+ aµ̂), (1.10)

both V (x) and Uµ(x) are elements of SU(3) group, and µ̂ is the unit vector in

direction µ. Gluon field Uµ(x) is also called gauge link, because it connects quark

8



field on lattice site x to another lattice site x+ aµ̂.

A simplest gauge-invariant action for gluon field called Wilson gauge action is

given by[3]:

Sg = β
∑
x,µ,ν

[1− 1

3
ReTr[Uµ(x)Uν(x + aµ̂)]U†(x + aν̂)U†ν(x)] (1.11)

It involves a trace along a simplest closed loop on the lattice as shown in Fig (1.2)

Figure 1.2: The sketch of a lattice.

One can obtain the continuum limit of this simple action and verify if it

9



matches Eq. (1.1). To do so, notice that U(x) joins quark fields on adjacent lattice

points along direction µ. Thus classically, U(x) is determined by integral of quark

field Aµ along the link as[8]:

Uµ(x) = P exp(−i
∫ x+aµ̂

x

A · dy) (1.12)

Under the continuum limit, a is small, so that Uµ(x) ∼ e−iaAµ(x), and can be ex-

pressed in powers of a. Then the leading order Wilson action becomes:

Sg →
∫
d4x

1

4g2
lattice

Tr[GµνG
µν ], (1.13)

which matches the continuum form of gluon action in Eq. (1.1).

The lattice version of fermion action is much more non-trivial than the gluon

action. Naive implementation of fermion action has the fermion doubling problem,

which means the appearance of extra unphysical “doubler” fermions. Nielsen and

Ninomiya [9] have proved a no-go theorem states that there is no discretization form

of local fermion action that i) is local, ii) has correct continuum limit, iii) preserves

chiral symmetry, and iv) have no fermion doublers.

Several strategies have been proposed to deal with the fermion doubling prob-

lem, with the price of violating other conditions in the Nielsen-Ninomiya no-go the-

orem. The Wilson fermion action [7] violates chiral symmetry, and introduce extra

error linear in a. The Twisted mass fermion action [10] modifies the Wilson fermion

action to remove the error linear in a, but results in an isospin breaking effects. The

10



Staggered fermion action [11] preserves certain chiral symmetry but not completely

removes all the doublers. The Ginsparg-Wilson fermion action [12, 13, 14] has no

doublers and preserves a modified version of chiral symmetry. One commonly used

type of the Ginsparg-Wilson fermion action in lattice QCD simulation is called the

Domain wall fermion action[15, 16, 17], which introduces a fictitious fifth dimension

space.

After the action is chosen, Monte Carlo simulation method is used to create

gauge configurations with probability measure [dU ]e−Sg [U ]
∏

f det(D[U ]+mf )[3]. For

example, a simple Monte Carlo method to generate a Markov chain of configurations

is the Metropolis-Hastings algorithm[18, 19], and an example is given in Ref. [8].

The basic idea is that every-time a new random change in configuration is made,

one needs to calculate the difference in action ∆S caused by this change. The new

configuration is only accepted when the action is decreased or exp(−∆S) > η, where

η is a uniform random variable between 0 and 1.

A large number of configuration should be generated, in order to calculate the

average of certain correlation functions. There are two subtleties when select proper

configurations. Firstly, a number of configurations should be discarded before the

lattice is well thermalized. After that, since the successive configurations generated

by this way are quite correlated to each other, there should be a sufficient number of

configurations that are not selected between configurations that are actually selected

to carry on numerical evaluation.

Next, in order to extract desired physical information, one should measure

the expectation of correlation functions among these selected configurations. Take

11



lattice study of hadron spectroscopy as an example, hadron interpolators O and Ō

with certain quantum numbers are at first constructed, which can annihilate and

create certain hadron state on the lattice. For simplicity, we will take these operators

to be integrated over space and thus carry zero momentum. These interpolators are

used to construct correlator as:

Cnt =
〈
O(nt)Ō(0)

〉
=
∑
k

〈
0|O(nt)|k

〉〈
k|Ō(0)|0

〉
e−nkEk , (1.14)

where Ek is the energy of different states with the same quantum numbers as the

interpolator. When nt is large, the exponential term of the ground state energy

dominate Cnt ∼ Z0e
−nkE0 , and excited states terms can be neglected. Thus, physical

information such as mass of the lowest energy state can be extracted out from the

fitting of the results.

There are two important facts. Firstly, the interpolators not only create the

state we want but also create other states with the same quantum numbers. These

states can be higher excited states, and may even be states with different hadron

species. Secondly, for any set of quantum numbers, there is an infinite number of

ways to construct different interpolators. These interpolators all create the same set

of states with the same quantum numbers, but different interpolators may have dif-

ferent overlapping with different states, which means the coefficient before the expo-

nential would be different. Thus, usually, we want to construct better interpolators

that have a larger overlap with the state we want, to decrease the contamination

from other states.
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Besides hadron spectroscopy, Lattice QCD has been successfully used in many

other physical problems. A review can be found in Ref. [3]. However, there are still

some limitations of the lattice QCD method.

For example, the well-known signal-to-noise problem[20, 21, 22] states that

correlation functions describing one or more baryons have signal-to-noise ratios that

are exponentially bad at late Euclidean times. For instance, when evaluating a

single nucleon correlation function projected to 0 momentum, the desired signal is

the expectation of correlation function:

〈
OO†

〉
∼ e−MN t, (1.15)

where O is the nucleon interpolator. However, at large times, the variance of this

signal is

〈
(OO†)†OO†

〉
∼ e−3mπt, (1.16)

because three pions system can have the same quantum numbers as two nucleons

system. Thus (OO†)†OO† have overlapping with both two nucleons system and

three pions system, while the latter have lower mass thus dominants the behavior

in Eq. (1.16). As a result, the signal-to-noise ratio is e−(MN− 3
2
mπ)t, which decreases

exponentially at large times.

There is another well-known numerical problem encountered in Lattice QCD

simulation called the sign problem. In regime such as QCD with finite chemical
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potential and QCD with a θ-term, which will be introduced later in Eq. (2.3),

the standard Monte Carlo method cannot be directly used because the probability

measure used in generating configurations become negative or complex. This issue

will be explained in further detail in the discussions of Chapter 2.

1.4 Systematic expansions

An alternative method to study complex phenomena of QCD is to find a good

expansion parameter other than the strong coupling constant in QCD Lagrangian.

As mentioned before, the strong coupling constant is not small in the hadronic energy

regime, so a perturbative expansion cannot be constructed. If we can instead find

a new expansion parameter that is small, then we may be able to capture non-

perturbative features of QCD in a systematic expansion of this new parameter.

Moreover, approximations can be made once we have written down the power

counting rule of this expansion regime, since we can truncate the expansion to any

desired order, and the error caused by this truncation is controlled by the expansion

parameter. Under a proper approximation, the complicated theory becomes much

easier to handle, while still provides insight into the physical reality.

One successful example is Large Nc QCD, which was at first proposed by

Gerard’t Hooft[23, 24] for meson physics and then extended to baryon sector by

Edward Witten[25]. In this theory, the QCD SU(3) color gauge group is replaced

by SU(Nc). By allowing the number of colors Nc to be large, 1/Nc will become a

small expansion parameter. One can systematically include polynomial correction
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of 1/Nc order by order. Besides meson and baryon phenomenology, Large Nc QCD

has been used to study the U(1) problem and QCD θ-vacuum[26, 27, 28], exotic

hadrons[29, 30, 31, 32, 33, 34] and many other questions. In some situations, the

quantities in the large Nc limit are not far away from the real world, while in other

cases the physics may even be qualitatively different since Nc = 3 may not be large

enough. Detailed reviews of Large Nc QCD method and its applications can be

found in Ref. [35, 36, 37, 38].

Another prominent application of this idea is effective field theory (EFT), such

as chiral perturbation theory. Reviews on various of effective field theories can be

seen in Ref. [39, 40, 41, 42, 43]. By taking advantage of the separation of different

energy scales in the physical world, one can make precise calculations on a lower

energy scale without knowing the detail of the underlying ultraviolet (UV) theory on

the higher energy scale. This provides enormous simplifications because it is often

unnecessary to take into account the details of the short-distance physics. There

are also cases that exact full theory is even unknown, so one has to use effective

field theory as a practical approximation. In this sense, effective field theory is the

low-energy limit of a more fundamental theory. The current Standard Model of

particle physics is also viewed as an effective field theory since the underlying UV

theory is still unknown.

Effective field theory has one or more small expansion parameters with specific

power counting rules. Calculations are done in systematic expansion to a certain

order of expansion parameters, with errors controlled to be one order higher.

Since the high energy scale and short distance physical details are wrapped
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in this manner, effectively the heavy particles, which require large energy to create

and only propagate short distance, are eliminated from the theory. The effective

field theory is thus only valid up to energy scale below the masses of these heavy

particles.

The short distance physics is encoded in the coefficients of the effective the-

ory’s Lagrangian. The numerical values of these parameters can be obtained by

experiment measurements, lattice QCD simulation, or matching to the underlying

short-distance physics. Once the finite number of coefficients are fixed, one can

conduct predictions for all other relevant quantities.

An example is the chiral perturbation theory (χPT), which describes the low-

energy dynamics of QCD. The underlying full theory QCD is non-perturbative in

the hadronic scale, and QCD Lagrangian is written in terms of quarks fields and

gluons fields. In contrast, the degree-of-freedoms in chiral perturbation theory are

meson fields and baryon fields. The expansion parameter in QCD is p/Λχ or m/Λχ,

where p is the momentum transfer during the process, and Λχ ∼ 1 GeV is the

scale of chiral symmetry breaking. Below Λχ, chiral symmetry is preserved given

that the light quarks are considered as massless. Chiral perturbation theory is

widely used in the study of interactions among hadrons, and reviews can be found

in Ref. [44, 45, 46, 47].
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1.4.1 Heavy quark effective theory and non-relativistic QCD

Two chapters of this dissertation will be devoted to analysis related to heavy

quarks and heavy mesons, so it is important to have a short introduction on two

commonly used effective field theories about the heavy quarks system. One of

them is called heavy quark effective theory (HQET), and the other is called non-

relativisitic QCD (NRQCD).

HQET[48, 49, 50, 51, 52, 53] describes low-energy interactions of a single

heavy quark with light particles. The expansion parameter is ΛQCD/mQ. ΛQCD is

the confinement scale where perturbative-defined coupling would diverge, and non-

perturbative dynamics dominates. ΛQCD is around 89 ∼ 332 MeV under MS[3].

mQ is the heavy quark mass. Recall that heavy quark masses mc = 1.27 GeV,

mb = 4.18 GeV and mt = 172 GeV. Thus heavy quark mass mQ is considered to be

much larger than ΛQCD.

In this theory, the heavy quark is viewed as nearly on-shell, so its 4-momentum

pQ can be decomposed as:

pµQ = mQv
µ + kµ, (1.17)

where vµ is the velocity, and the residue momentum kµ is of order ΛQCD.

The leading order Lagrangian of HQET is written as[3]:

L(0)
HQET = h̄νiv ·Dshν , (1.18)

17



where hν is the field that destroys the heavy quark with velocity v. The covariant

derivative Dµ
s = ∂µ − igAµs only contains soft gluon field.

Notice that, this leading order Lagrangian does not depend on the spin of the

heavy quark, which suggests there is an emergent SU(2) spin symmetry[54, 55].

This in turns implies the degeneracy of hadronic states with quantum numbers that

only differ in the heavy quark spin, such as D meson and D∗ meson, in the heavy

quark mass limit.

Another important physical phenomenon in the heavy quark mass limit is that

the creation and annihilation of heavy quark and heavy anti-quark is suppressed, so

the number of heavy quarks and heavy anti-quarks is conserved.

The next-to-leading order HQET Lagrangian contains two terms[3]:

L(1)
HQET =

1

2mQ

h̄v(iDs)
2hv +

1

2mQ

Cmag(ν)
g

2
h̄νσµνG

µν
s hν . (1.19)

The first term is the kinetic energy term, corresponding to the first order correc-

tion in Taylor expansion of the energy. The second term is the chromo-magnetic

interaction term.

HQET has also been extended to describe hadronic degree-of-freedom by com-

bining with chiral perturbation theory. The resulting heavy hadron chiral pertur-

bation theory (HHχ PT)[56, 57, 58, 59, 60, 61] describes the interaction of heavy

hadron containing one heavy quark with light mesons. The chiral symmetry is as-

sumed for the light mesons so that one can treat them as pseudo-Goldstone bosons.

A lot of properties of hadron systems containing a single heavy quark have
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been studied using HQET. However, HQET is not the appropriate effective field

theory for hadrons containing two or more heavy quarks (or heavy anti-quarks).

The correct effective theory for this kind of system is the Nonrelativistic Quantum

Chromodynamics (NRQCD)[62, 63]. Detailed introductions can be found in Ref.[64,

65, 66].

NRQCD has the same Lagrangian as HQET, but is formulated with a different

expansion parameter[67]: the velocity of heavy quarks v ∼ αs(mQ). With different

power counting rules, the relative scalings of terms in Lagrangian are also quite

different.

For a bound state containing two or more heavy quarks, the typical momentum

scale of the heavy quarks is mQv, and the typical kinetic energy of the heavy quarks

is mQv
2. Since v is small, we have mQ � mQv � mQv

2. The energy and momentum

of light degree-of-freedom are both of the scale ΛQCD. At the extreme heavy quark

mass limit, mQv
2 � Λ, while in reality for charm quark system mQv

2 ∼ ΛQCD ∼

400MeV[67].
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Chapter 2: Sign problems and the infinite volume limit

2.1 Sign problems in Monte Carlo simulations

As introduced in the previous chapter, lattice QCD relies on the Monte Carlo

method. Monte Carlo method is a powerful and widely-used numerical method for

understanding the physics of many-body systems and strongly correlated theories,

for which analytical methods are intractable. Thus, it is not only used in lattice QCD

but also used in condensed matter physics to study interesting properties of many-

body systems. However, there are circumstances where the Monte Caro method

faces a great challenge, which is known as the sign problem. In particle and nuclear

physics, the sign problem prevents QCD at finite chemical potential[68, 69, 70],

QCD with a θ-term[71] and real-time quantum field theories[72] from being explored

by lattice simulation. In condensed matter physics, the sign problem also causes

trouble in simulation of many-body fermionic systems or frustrative models, such as

the repulsive Hubbard model[73, 74, 75], electron structure calculations[76, 77, 78],

polymer theory[79], and so on.

The physical quantity one normally computes using a Monte Carlo method is
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the phase space average of an observable as in Eq. (2.1).

〈O〉 =

∑
cO(c)p(c)∑

c p(c)
(2.1)

The quantity O is summed over every possible configuration c with corresponding

weight p(c). In field theories, like lattice QCD, the p(c) here is usually the Boltz-

mann factor e−S, where S is the Euclidean-space action; while in a general case, p(c)

may be more complicated form associated with the Hamiltonian or Lagrangian of

the system, which depends on the specific scheme and basis one works with. For ex-

ample, in Handscomb’s simulation scheme using Suzuki-Trotter approach[80, 81, 82],

which is widely used in Quantum Monte Carlo simulating of spin system, e−βH is

expanded in a Taylor series, and the weight p(c) turns out to be (−β)n

n!
Tr(
∏n

j=1 Hj),

where β is inverse temperature and the original Hamiltonian is divided into n sep-

arated pieces Hj. It is important to notice that the usage of Monte Carlo method

relies on considering these weights as the probabilities to generate configurations.

The sign problem arises when the weights p(c)s are not positive definite. For

example, in fermionic many-body systems, weights with a negative sign appear due

to the Pauli exclusion principle when two fermions are changed. What’s more, in

gauge field theories, the weights are generally complex numbers with phase factors

like eiφ. Then the standard Monte Carlo regime is not directly applicable to these

problems, because only non-negative real numbers can be viewed as probabilities.

One may formally eliminate the negative sign or phase factor eiφ of the weights p(c)s

by absorbing the sign or phase factor into observable O, and define Õ = Oeiφ. Then
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the new weight p̃(c) = p(c)/eiφ becomes positive and can be used as the probability

of generating certain configurations in Monte Carlo simulation. However, it usually

turns out this gives extremely large cancellations due to the oscillating signs of the Õ.

Accordingly, the computational cost to obtain 〈O〉 is usually scaling exponentially

with the size of the system and the inverse temperature.

For QCD, there are well-known cases where sign problems exist. One is QCD at

non-zero chemical potential µ, in which case the fermion determinant has a complex

phase because the Dirac operator is non-hermitian for non-zero µ:

det(D + µγ0 + m) = eiθ|det(D + µγ0 + m)|. (2.2)

This renders the standard Monte Carlo method inapplicable. It has been pointed

out that, the actual problem is that the phase of the fermion determinant fluctu-

ates wildly for µ > mπ/2, so that the average phase factor is exponentially small

in volume[83, 84]. It is also pointed out that the origin of non-positive weights

in QCD-like theories is different from the fermionic problem in Monte Carlo sim-

ulation of condensed matter physics. Rather, it is related to the existence of a

tightly bound state of valence fermions, which is accompanied by dynamical chiral

symmetry breaking[85].

Another example of the sign problem is QCD with a θ-term, which will be

the main focus of this chapter. The QCD Lagrangian density with a θ-term has the

form:
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L =

NF∑
k=1

q̄k(iγ
µDµ −mk)qk −

1

4
Ga
µνG

aµν − g2
s

32π2
θεαβµνGαβG

µν , (2.3)

where the last term is often omitted as in Eq. (1.1). Then the Euclidean space QCD

partition function has a factor exp(−SYM + iθQ), where SYM and Q are functionals

of the gluon field configurations on a space-time region of volume V . The factor is

not positive definite because of the existence of the θ-term. The severity of the sign

problem in this regime will be explained further in following sections.

Since the form of Monte Carlo weights p(c) in Eq. (2.1) depends on the par-

ticular scheme and basis used, it is noticed that, by choosing a different scheme or

basis, the sign problem may be eliminated. This is true for specific cases. However,

it is often difficult to find such kind of transformation, and the difficulty of solv-

ing the numerical sign problem may change to the difficulty of solving other hard

problems. For example, it is shown that a sign problem in double-spin-chain system

disappears by switching to a special basis[86], but it is nearly impossible to find that

kind of basis to eliminate the sign problem for a generic complicated system. For

another example, a QCD-like theory Nambu-Jona-Lasinio (NJL) model is shown

to have a sign problem in one formulation but not have a sign problem in another

formulation. However, the formulation without sign problem has a new problem,

called “overlap problem”, which is also hard to solve[85].

Over the past two decades, many algorithms and methods have been pro-

posed to evade the sign problem. These techniques includes Taylor expansion[87,
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88, 89, 90, 91, 92] , analytic continuation[93, 94, 95, 96, 97, 98, 99], imaginary

chemical potential[69, 93, 95, 96, 100], reweighting[101, 102, 103, 104, 105], the den-

sity of states method[106, 107, 108], the complex Langevin method[109, 110, 111],

the Lefschetz-thimble path-integral method[112, 113, 114], the generalized thimble

method[115], the sign optimized manifolds method [115, 116, 117], the meron-cluster

method[118, 119], the worm algorithms[120], the canonical ensemble approach[121,

122, 123, 124, 125], and so on. A good but not complete review can be found in

Ref.[126].

Due to these progress in the past years, it is now possible to perform reliable

calculations in some systems where sign problems are not extremely severe, such as

the region near the finite temperature phase transition with a non-zero but small

chemical potential µ.

However, most of the methods are currently only reliable on simple systems,

and it is still not clear whether it can be successfully extended to complicated

problems such as the high-density regime of QCD. Some of these methods depend

significantly on the specific physics details of the system and uses the special prop-

erty of the system to eliminate the random signs, which makes it not applicable to

different systems.

Currently, none of these methods is accepted by the community as a generic

solution to the sign problem. This is not surprising since there is a no-go theorem by

Troyer and Wiese[127] that precludes the existence of a generic solution to the sign

problem. The argument of Troyer and Wiese is that a generic solution to the sign

problem means one can solve all the NP-hard problems in the sense of complexity
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theory in theoretical computer science.

2.2 Motivations

As mentioned in the previous section, QCD with a θ-term has a sign problem.

This chapter focuses on a specific phenomenon related to it, which may shed some

light on how to avoid the sign problem.

The other motivation of this chapter is related to the so-called strong CP prob-

lem. The resolution[128, 129] of the axial U(1) problem[130] requires a nontrivial

topological effect. This topological effect implies the existence of CP-violating term

in the QCD Lagrangian: the so-called θ-term as in Eq. (2.3). In principle, the coef-

ficient θ can take any value between −π and π. (There is no need to consider other

values of θ because of the periodicity of 2π.) However, the extracted value in the

neutron electric dipole experiments leads to the bound |θ| < 10−9[131, 132]. This

extraordinary small value apparently violates Gell-Mann’s famous statement about

particle physics: “what is not forbidden is mandatory”[133]. The puzzle why θ, the

coefficient marks the strength of CP violation in the strong sector, is so close to zero

is called the strong CP problem. One famous theoretical attempt to solve this prob-

lem was proposed by Peccei and Quinn (PQ) in 1977[134, 135]. They introduced

an auxiliary chiral U(1)PQ symmetry, which is spontaneously broken. The PQ so-

lution implies the existence of a pseudo-Goldstone boson, the axion[136, 137]. The

properties of axion makes it becomes a popular candidate of dark matter[138, 139].

However, up to now, the existence of axion in the real world is still neither confirmed
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nor excluded by experiments[138, 139], thus PQ solution to strong CP problem is

not experimentally verified yet.

The subtlety here is that, in the real world, the possibility that θ ≈ π rather

than θ ≈ 0 is not rigorously ruled out. The neutron electric dipole moment ex-

periments only tell us that the CP-violation in the strong sector is too tiny to be

observed. Since we know the value of θ is proportional to CP violation, and the

lattice calculations are done with θ = 0 appear to matches the real world well,

people imply the missing of CP violation as |θ| < 10−9. However, theoretically,

|θ− π| < 10−9 is also not conflict with neutron electric dipole moment experiments,

since θ = π is also CP invariant.

It is thus of theoretical interest if one can rule out the case that θ = π,

which will enhance our understanding of QCD θ-vacuum. Fortunately, it has been

pointed out that this case can be easily falsified if CP is spontaneously broken

around θ = π[140]. If CP symmetry is indeed spontaneously broken at θ = π, then

the energy density with respect to θ, ε(θ) will have a cusp at θ = π (in the infinite

volume limit). In other words, the slope of ε(θ) will have discontinuity at θ = π,

which is clearly different from θ = 0 where the slope is 0. The appearance of cusp

in ε(θ)’s curve at θ = π is named Dashen’s phenomenon[140].

There are certain theoretical regimes where Dashen’s phenomenon occurs at

θ = π. For example, in the large Nc limit, high order terms in ε(θ) are suppressed

by 1/Nc, and thus the even function ε(θ) is approximated as only having a quadratic

term. Then given the periodicity of 2π, ε(θ) must be a piece-wise function propor-

tional to min
∑

k (θ − 2πk)2 [141, 142]. It is easy to see that this form leads to a
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cusp at θ = π. For another example, it has been shown that near the chiral limit

with isospin symmetry, ε(θ) is proportional to (1−cos θ
Nf

) in region θ ∈ [−π, π] with

higher-order terms neglected, where Nf is the number of degenerate quarks which

are massless in the chiral limit[143]. This regime also leads to Dashen’s phenomenon

for Nf ≥ 2. The illustration of these two regimes are shown in Fig.2.1, where the

curves of ε(θ) are plotted in units of the topological susceptibility and with ε(0)

subtracted off. The dashed line is at the large Nc limit and solid line is at leading

nontrivial order in a chiral expansion for two degenerate light flavors.

Figure 2.1: Dashen’s phenonena occur at ε(θ) in the large Nc limit (dashed line)
and ε(θ) in a chiral expansion for two degenerate light flavors (solid line). χ0 is the
topological susceptibility.

However, the occurrence of Dashen’s phenomenon does not guarantee that the
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same thing happens in the real world. It is possible that, though CP is spontaneous

broken at θ = π in regime with Nc = ∞, CP may be unbroken in the real world

with Nc = 3. Similarly, though there is a discontinuity at θ = π in the massless

limit of light quarks, the light quarks have small and different masses in the real

world, which may render ε(θ) smooth at θ = π.

In the absence of lattice studies near θ = π, one cannot say for sure whether

Dashen’s phenomenon happens in the real world. In order to obtain a deeper under-

standing of QCD vacuum, it is important to have direct lattice calculations in this

region. However, as mentioned before, this is difficult because of the sign problem,

especially when θ approaches π.

In this chapter, we will study an interesting phenomenon related to the sign

problem and Dashen’s phenomenon, with the interplay of the infinite volume limit.

The hope is that this may help to improve our understanding of the sign problem

and the strong CP problem in the future.

2.3 Formalism

To show the main observation of this chapter, it is necessary to first define the

key quantities. As the related measurement of energy density can be done in lattice

studies, here we define these quantities in Euclidean space within a four-dimensional

space-time box with volume V = LxLyLzLt. Periodic and anti-periodic boundary

conditions are imposed at the edge of this box for bosons and fermions respectively.

Practically, V is finite rather than infinity, however, it should be large enough to
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reduce the finite volume corrections. For simplicity, we consider the continuum limit

of the discrete lattice setting. There are some subtleties related to topological charge

in discrete lattice[144, 145, 146, 147], but it is irrelevant to the discussion of this

chapter.

The QCD partition function on a space-time region volume V is given by path

integral:

Z(θ, V ) =

∫
[dA] det[iD[A]−M ] exp(−SYM + iθQ), , (2.4)

where θ is the vacuum angle, and integer Q is the topological charge dependent on

the gluon field configuration. It is well-known that Z(θ, V ) is an even function and

is periodic in θ[148].

According to Atiyah-Singer index theorem[149], the winding number Q equals

the difference between the number of right-handed modes and the number of left-

handed modes of the Dirac operator. Q is given by:

Q =

∫
V

g2

32π2
εαβµνGαβGµν . (2.5)

The energy density with respect to vacuum angle θ, which is the most im-

portant quantity of this chapter, is given by the QCD partition function Z(θ, V )

as:
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ε(θ) = − lim
V→∞

1

V
logZ(θ, V ), (2.6)

Z(θ, V ) can be written as a Fourier sum over partition function ZQ(V ) with

fixed topological charge Q as:

Z(θ, V ) =
∑
Q∈Z

ZQ(V ) eiθQ

=
∑
Q∈Z

ZQ(V ) cos(θQ), (2.7)

where we have used the feature of even function. The corresponding inverse trans-

formation is

ZQ(V ) =
1

π

∫ π

0

Z(θ) e−iθQ dθ

=
1

π

∫ π

0

Z(θ) cos(θQ) dθ, (2.8)

One can further define energy density with respect to topological charge den-

sity q ≡ Q
V

as:

ε̃(q, V ) = − 1

V
log(Z(qV )(V )), (2.9)

where Q ≡ qV can only be integer.

Then, the relation between the two kinds of energy density functions are:
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ε(θ) = − lim
V→∞

1

V
log

(
∞∑

Q=−∞

e−ε̃(
Q
V
,V )V eiθQ

)
. (2.10)

Since one expects that ε̃(q, V ) , the energy density function with respect to q,

is well-defined in the infinite volume limit, it is natural to define its infinite volume

limit as:

ε̃(q) ≡ lim
V→∞

ε̃(q, V ) with qV a positive integer (2.11)

= − lim
V→∞

1

V
log

(
1

π

∫ π

0

e−ε(θ)V e−iθqV dθ

)
.

It would be helpful if one could directly compute the energy density near

θ = π through lattice simulations, then one can tell whether there is spontaneous

CP broken at θ = π. However, the well-known sign problem prevents it from being

done as mentioned in previous sections. To see exactly how sign problem looks in

this problem, we consider the difference between ε(π) and ε(0), which can be written

as:

ε(π)− ε(0) = − lim
V→∞

1

V
log

(
A(V )−B(V )

A(V )

)
with A(V ) ≡ ZQ=0(V )

Z(θ = 0, V )

and B(V ) ≡ −
2
∑∞

Q=1(−1)QZQ(V )

Z(θ = 0, V )
, (2.12)
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where we have used the fact that ε̃
(−Q
V
, V
)

= ε̃
(
Q
V
, V
)

because of CP invariance.

Notice that [150],

lim
V→∞

ZQ=0(V ) = lim
V→∞

Z(θ = 0, V ) , (2.13)

which implies that A(V ) is a sub-exponential function of V .

Thus, if one assumes that the difference ε(π) − ε(0) is of order unity, then

one must compute the difference between A(V ) and B(V ) with an accuracy of the

same level as exp (−V (ε(θ)− ε(0))), which is exponentially small in V , in order to

get a sensible result of ε(π)− ε(0) through Fourier sum. Lattice simulation can be

used to obtain the result in each topological sector with specific Q, however, the

time complexity of the Monte Carlo algorithm is polynomial in accuracy. This in

turns means, one need to spend computational resource exponentially large in V to

compute each part of A(V ) and B(V ) exponentially accurate in V . This difficulty

is caused by the oscillating sign of the summation over different topology sectors in

Eq. (2.7), so it is a sign problem.

This sign problem is tractable when θ is small but becomes severe near θ = π

where the cancellation caused by oscillating sign is the most serious. Since there

is no sign problem when θ is purely imaginary, one may analytically continue the

calculation result from the imaginary θ region to real θ. This strategy has been used

to calculate deconfinement temperature, electric dipole moment and so on[151, 152,

153, 154, 155, 156] for small real θ near 0. The validity of this method is because

that when θ is small, one can use the lowest order terms in Taylor expansion to
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approximate the behavior of the exact form of ε(θ). However, when θ is away from

0, this method is no longer valid if we lack knowledge of the exact form of ε(θ). This

is because the higher-order terms in θ is not negligible for not small θ, and there

might exist non-analytic discontinuities.

The main purpose of this section is not solving this sign problem associated

with θ-term. The actual focus is on a theoretical issue related to the subtle inter-

play of this sign problem and the infinite volume limit. The issue is as following:

suppose one could calculate ε̃(q), which is the infinite volume limit of ε̃(Q
V
, Ṽ ), to

arbitrary accuracy, could we use this information to re-obtain full information of

ε(θ)? Naively, the answer seems to be yes, since both quantities are well-defined

intensive quantities in the infinite volume limit, and are independent of finite volume

corrections. However, the true answer is subtle. To show this subtlety, let us define

a new quantity:

ε(θ) = − lim
V→∞

1

V
log

(∑
Q

e−ε̃(
Q
V

)V eiθQ

)
(2.14)

= − lim
V→∞

lim
Ṽ→∞

1

V
log

(∑
Q

e−ε̃(
Q
V
,Ṽ )V eiθQ

)
.

The only difference between ε(θ) and ε(θ) is the order of taking limits. In

obtaining ε(θ), the limit Ṽ → ∞ is taking before the limit V → ∞, which means

ε(θ) is constructed from ε̃(q) without the finite volume correction; while in obtaining

ε(θ) in Eq. (2.10), these two limits are taken at the same time, so the finite volume

correction in ε̃(Q
V
, Ṽ ) is taken into account. Thus, the previous question is equivalent
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to ask: whether ε(θ) = ε(θ).

The answer turns out to be tricky. It seems plausible that ε(θ) = ε(θ) since

both of them are intensive quantities. It turns out that, it is true if ε(θ) curves

upward (i.e. ε′′(θ) > 0) everywhere in the region −π < θ < π, one can find

ε(θ) = ε(θ). Notice that, in this case, ε(θ) has Dashen’s phenomenon because

ε′′(θ) > 0 in the whole region. However, if there is a region where ε′′(θ) < 0, ε(θ),

obtained by direct summation over topological sectors, would be different from ε(θ).

This seems to imply that the sign problem is so severe that, even perfect knowledge

of ε̃(q) is insufficient to reconstruct the original ε(θ) in this regime.

In the following section, at first, a toy model will be used as a demonstration

of this phenomenon. The analysis and generalization will be given in subsequent

sections.

2.4 A toy problem: dilute instanton gas

For illustrative purposes, we are going to consider a toy problem: the dilute

instanton gas. Though it is known that QCD is not well approximated by dilute

instanton gas [157], this toy model has two virtues: it has a θ term with a sign

problem, which is similar to QCD, and its ε(θ) has a known analytical form, which

simplifies the relevant discussion.
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2.4.1 ε(θ) versus ε(θ)

Instantons in quantum field theories are solutions of the classical field equations

in Euclidean space with finite action. It describes tunneling processes in Minkowski

space-time from one vacuum at one time to another vacuum at another time[158].

They are thus often used to study the tunneling behavior among vacuums of quan-

tum field theory. Historically, instantons were involved in the discussion of the chiral

U(1) anomaly problem[128, 129, 159], and was closely related to the introduction

of θ-term[160, 161, 162]. Detailed reviews of the dilute instanton gas model can be

found in Ref. [157, 158, 163].

The partition function of the dilute instanton gas model is obtained by sum-

ming over all instantons and anti-instantons as:

ZQ(V ) = Z0

∞∑
n=0

(
1
2
c e−S0V

)|Q|+2n

n! (n+ |Q|)!
= Z0IQ(ce−S0V ), (2.15)

where Z0 is a real prefactor that sums up effects other than instantons, S0 is the

action of a single instanton, V is the space time volume, and c is a constant with

dimension 4 that includes the effects of fluctuations. The sum yields a modified

Bessel function of the first kind IQ(ce−S0V ).

With Eq. (2.7) and taking into account the fact that

IQ(z) =
1

2π

∫ π

−π
ez cos θ cos(Qθ)dθ, (2.16)

for integer Q, it is easy to derive the partition function with respect to θ:
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Z(θ) = Z0 exp
(
ce−S0V cos(θ)

)
. (2.17)

Then it is straight forward to obtain the energy density function with respect

to θ as:

ε(θ) = ε0 + χ0(1− cos(θ)) (2.18)

with χ0 ≡ ce−S0 , and ε0 ≡
− log (Z0)

V
− ce−S0 ,

which is well known in the literature[163] .

In order to obtain the energy density function with respect to topological

charge, we need to use the series expansion of the modified Bessel function of the

first kind Iν(νz) in the uniform limit ν →∞ for positive real values,

Iν(νz) ∼ eνη

(2πν)
1
2 (1 + z2)

1
4

∞∑
k=0

Uk(p)

νk
, (2.19)

with η = (1 + z2)
1
2 + log

(
z

1 + (1 + z2)
1
2

)
, and p = (1 + z2)−

1
2 ,

where Uk(p)s are polynomials in p of degree 3k with U0(p) equal to unity[164].

Then,

ε̃(q, V ) = ε0 + χ0 + q log

(
q +

√
χ2

0 + q2

χ0

)
−
√
χ2

0 + q2

+

log ((2π)2V 2(q2 + χ2
0))− 4 log

∑k

Uk

(
q√
q2+χ20

)
(qV )k


4V

. (2.20)
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After taking the infinite volume limit, one can get rid of the tedious finite

volume correction and obtain a clean analytic form:

ε̃(q) = lim
V→∞

ε̃(q, V )

= ε0 + χ0 + q log

(
q +

√
χ2

0 + q2

χ0

)
−
√
χ2

0 + q2

= ε0 + χ0 + q sinh−1

(
q

χ0

)
−
√
χ2

0 + q2 . (2.21)

The plot of ε̃(q) is shown in Fig. 2.2.
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χ0
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ε
∼
(q) - ε0

mπ

Figure 2.2: The plot of ε̃(q) .

The topological charge density q is a real number, however, if we analytically

continuate it to complex q plane, the function ε̃(q) is multi-branched with branch

37



cuts starting from branch points at ±iχ0 and extending to infinity along the imag-

inary axis. This is an important feature that will be used later.

We can use this expression of ε̃(q) to calculate ε(θ) though Eq. (2.14) , and

verify whether ε(θ) = ε(θ) is true. However, there is no analytic closed form expres-

sion for ε(θ) in this case, so we can only conduct the calculation numerically with

large but finite V .

The numerical evaluation of ε(θ) was done in finite four dimensional volume.

Define dimensionless quantity v = V χ0, where constant χ0 = ∂2ε(θ)
∂θ2
|θ=0 is the topo-

logical susceptibility. The tendency of increasing volume is shown in Fig. 2.3, where

v is between 5 and 50. One can see that, as v increases, ε(θ) appears to become

more and more cuspy at θ = π, which seems to imply the Dashen’s phenomenon is

going to happen for ε(θ) at the infinite volume limit.

π
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π
2

3 π
4 π 5 π

4

θ
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1.0

1.5

2.0

2.5

3.0
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ε (θ) v=30
ε (θ) v=40
ε (θ) v=50
ε (θ)

————
χ0

—

—

—

—

—

—

—

Figure 2.3: The cusp behavior when v increases.

For very large v = V χ0 = 350, the result is already quite stable, and shown in
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Fig. 2.4. In the plot, ε(θ) and ε(θ), in units of χ0, for a dilute instanton gas model

are compared. There are two important things to notice in this plot. The first is

that, the curve of ε(θ) matches the curve of ε(θ) very well for 0 < θ < π
2
. However,

for π
2
< θ < π, ε(θ) looks linear, which is very different from ε(θ). This difference

indicates that in this region, knowledge of ε̃(q) is insufficient to reproduce ε(θ) by

direct summation, even though they are both intensive quantities. For θ > π, the

result is symmetric to θ < π because of the function is even and periodic in θ. Thus,

as mentioned before, the answer to whether ε(θ) = ε(θ) is “it depends”. ε(θ) = ε(θ)

when ε(θ) curves upward; while ε(θ) 6= ε(θ) when ε(θ) curves downward. The reason

of this phenomena will be discussed later.

Figure 2.4: For a dilute instanton gas model with v = V χ0 = 350, compare ε(θ)
with ε(θ)
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2.4.2 The severity of the sign problem

The difference between ε(θ) and ε(θ) for π
2
< θ < π shows clearly the severity

of the sign problem in this region. Even though the difference between ε̃(q) and

ε̃(q, V ) is tiny and vanishes in the infinite volume limit, the associated energy density

function of θ, ε(θ) and ε(θ), becomes very different for θ > π
2
.

Before proceeding, it is useful to examine this example in more detail. Notice

that in the summation with oscillating sign Eq. (2.7), the key quantity being summed

is ZQ(V ) rather than ε̃(q, V ). An order 1
V

difference between ε̃(q) and ε̃(q, V )

will result in an order unity difference in ZQ(V ). Naively, one may think this is

what causes the order unity difference between ε(θ) and ε(θ). However, this naive

reasoning is not correct.

To see this, it is useful to define a new quantity ε̃n(q, V ), which is an approx-

imation to ε̃(q, V ) that includes all terms up to O(V −n) but truncates higher order

corrections.

ε̃0(q, V ) = ε̃(q) (2.22)

ε̃1(q, V ) = ε̃(q) +
log ((2π)2V 2(q2 + χ2

0))

4V

ε̃2(q, V ) = ε̃1(q, V )−
U1

(
q√
q2+χ2

0

)
qV 2

... .
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Then the corresponding energy density function with respect to θ can be de-

fined as:

εn(θ) = − lim
V→∞

1

V
log

(
∞∑

Q=−∞

e−ε̃n(Q
V
,V )V eiθQ

)
, (2.23)

which is just Eq. (2.10) with the original ε̃(q, V ) replaced by ε̃n(q, V ).

Then εn(θ) can be numerically computed following the same procedure as ε(θ)

for large but finite volume. If the order unity difference between ε(θ) and ε(θ) is

really caused by O(1/V ) term in ε̃1(q, V ), then εn(θ) with n ≥ 1 should matches

ε(θ) for very large volume, since correction term of this order is already included.

However, this is not the case.

The comparison of ε(θ), ε2(θ) and ε(θ) is shown in Fig. 2.5, where the numerical

computation of ε(θ) and ε2(θ) are both done in v = V χ0 = 350. It is clear that

ε2(θ) is indistinguishable from ε(θ), rather than ε(θ). This indicates that, the order

unity difference between ε(θ) and ε(θ) for θ > π
2

is not caused by the order O(1/V )

and order O(1/V 2) term in ε̃(q, V ).

The reason is that, an accurate calculation of ε(θ) requires cancellations of

ZQ(V ) that are exponentially accurate in terms of volume, so it is not surprising

that the inclusion of any power law correction term is not sufficient for a full recon-

struction. Then, the actual surprising thing is not ε(θ) 6= ε(θ) for π
2
< θ < π, but

ε(θ) = ε(θ) for 0 < θ < π
2
. The question of why ε(θ) matches ε(θ) for 0 < θ < π

2

even though there is an order O(1/V ) difference between ε̃(q, V ) and ε̃(q) will be

answered in the next several sections.
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Figure 2.5: A comparison of ε(θ), ε2(θ) and ε(θ)

2.5 Saddle point approximation for the instanton gas model

2.5.1 An identity relating sum and integral

Before go into details of the explanation of the phenomena found in previous

section, it is useful to at first introduce an important identity that relates sum and

integral under the limit of parameter λ approaches infinity:

lim
λ→0

∫∞
−∞ dx exp

(
−λf

(
x
λ

))
exp(iθ x)∑∞

n=−∞ exp
(
−λf

(
n
λ

))
exp(iθ n)

= 1, (2.24)

where f(x) can be any well-behaved function that goes positive infinity as x→ ±∞

along the real axis. Using this identity, one can replace the sum of e−ε̃(
Q
V

)V eiθQ in

Eq. (2.10) by integral, so that it can be studied analytically using techniques of

complex analysis.
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Notice that, the validity of Eq. (2.24) is not trivial since it is not the case that

the limit of the sum converges due to Riemann’s construction for integrals. Rather,

the derivation of this identity requires some complicated manipulations.

The proof of this identity is as following. At first, use the property of Dirac

delta function
∑∞

n=−∞ δ(x − n) =
∑∞

k=−∞ exp (i2πkx) to rewrite the integral in

Eq. (2.24) as:

∞∑
n=−∞

exp
(
−λf

(n
λ

))
exp(iθ n) = (2.25)

∞∑
k=−∞

∫ ∞
−∞

dx exp
(
−λf

(x
λ

))
exp(iθx) exp(i2πkx) =

∞∑
k=−∞

λ

∫ ∞
−∞

dy exp (−λ (f(y)− i(θ + 2πk) y)) ,

where function f(x) is assumed to be well behaved so that the sums and integrals

are all convergent.

Then, assuming appropriate analytic properties, in the limit of λ approaches

infinity, the integrals in the last line of Eq. (2.25) can be approximated using the

the function value at saddle point with the help of saddle point approximations[165]

as

∫ ∞
−∞

dy exp (−λ (f(y)− i(θ + 2πk) y)) ∼ maxk exp(−λgk)

where gk = minj(g
j
k) with gj

k = (f(yj
k)− i(θ + 2πk) yj

k), (2.26)

where we have neglected power law factors in λ. yjk is the jth saddle point for the
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function (f(y)− i(θ + 2πk) y) which satisfies:

d (f(y(t))− i(θ + 2πk) y(t))

dt

∣∣∣∣
t=tjk

= 0, (2.27)

where y(t) is a contour in the the complex plane parametricalized by t, and yjk ≡

y(tjk).

At the saddle point of the complex plane, the derivative along any direction

is exactly zero, so it will be the local minimum point along certain contours and

the local maximum point along other contours. A function may have more than

one saddle point on the complex plane. When λ is large enough, each integral in

Eq. (2.25) is dominated by its minimum saddle point. Furthermore, the sum over

an infinite number of integrals labeled with k is dominated by the largest integral

which is exponentially larger than all other integrals when λ approaches infinity.

This dominant integral is the one that has the smallest gk. Typically, this is

the k = 0 term for −π < θ < π for a wide classes of functions. When π < θ < 3π,

the k = −1 term will take its turns and become the dominant one, and so forth for

other values of θ because of the periodic property. Our discussion will only focus

on the region −π < θ < π since the behavior in other regions are just the replicas

of this region. Thus, we only concentrate on the case that k = 0 dominates, which

leads to the desired identity Eq. (2.24).

As mentioned before, the saddle point approximation relies on function’s ap-

propriate analytic properties in the complex plane, this is because this approxima-

tion relies on distorting the integral contour on the analytic region of the complex
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plane without crossing any singularity or non-analytic point. If the function is not

analytic everywhere on the complex plane, there is another kind of point that can

also dominate the integral in a similar manner as the saddle point, so that can

be used to approximate the value of the integral. This kind of point is a branch

point, which is the endpoint of the branch cut on the complex plane. All the previ-

ous derivation with the help of the saddle point also applies to this kind of branch

point. Notice that, one function may have multiple saddle points and multiple

branch points, the integral will be exponentially dominated by one of them when

the parameter λ is large as shown in Eq. (2.26). This kind of saddle point ap-

proximation with the possibility of saddle point being replaced by branch point is

important to understand the subtle relation between ε(θ) and ε(θ).

Now we can use the identity Eq. (2.24) to analyze the expression of ε(θ) while

the volume V serves as the role of parameter λ.

ε(θ) = − lim
V→∞

1

V
log

(∑
Q

e−ε̃(
Q
V

)V eiθQ

)

= − lim
V→∞

1

V
log

(∫
dQ e−ε̃(

Q
V

)V eiθQ
)

= − lim
V→∞

1

V
log

(
V

∫
dq e−V (ε̃(q)−iθq)

)
= ε̃(qsp

θ )− iθqsp
θ , (2.28)

where we have used the saddle point approximation and qsp
θ is the dominant saddle

point associated with ε̃(q)− iθq.

Since in Euclidean space, 1
V

∂ log(Z(θ))
∂θ

= iq, which means real θ corresponds to
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imaginary q, one expects the dominant saddle point appears on the imaginary axis

of q. Because ε̃(q) is even function, (ε̃(q)− iθq) is real when q is imaginary and ε̃(q)

is locally analytic. After rewrite q = iq0, the saddle point condition on imaginary

axis is:

∂ (ε̃(ix)− iθ · ix)

∂x

∣∣∣∣
x=q0

= 0 . (2.29)

Eq. (2.28) shows that, in the infinite volume limit V →∞, the relation between

ε(θ) and ε̃(q) is similar to a Legendre transformation but with an extra i:

ε̃(q(θ)) = ε(θ) + i θ q(θ) with q(θ) = i
∂ε(θ)

∂θ

ε(θ(q)) = ε̃(q)− i θ(q) q with θ(q) = −i∂ε̃(q)
∂q

.

(2.30)

This equation is the central equation of the following analysis. It is also im-

portant to recall that the pre-required conditions of this equation: i) ε̃(q) should be

analytic on certain regions so that appropriate distorting of the integral contour can

be done; ii) the saddle point approximation is valid and there exists saddle point or

branch point that dominates the integral in the infinite volume limit; iii) the sum

of integrals over k in Eq. (2.25) is dominated by k = 0 term when V is large.
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2.5.2 The saddle point approximation for the dilute instanton gas for

|θ| < π/2

Now let us go back to the toy model dilute instanton gas. We will assume the

key equation Eq. (2.30) is valid in this case and combine it with the specific energy

density expressions of dilute instanton gas, to see what will happen. We will at first

consider the region 0 < θ < π
2
, and test if ε(θ) = ε(θ) in this region.

For dilute instanton gas, the energy density with respect to θ is given by

ε(θ) = ε0 + χ0 (1− cos(θ)). If ε(θ) = ε(θ) is true, one obtains ∂ε
∂θ

= χ0 sin(θ). Then

Eq. (2.30) changes into:

ε̃ (iχ0 sin(θ)) = ε0 + χ0 (1− cos(θ))− χ0 sin(θ)θ. (2.31)

Next, using ε̃(q) = ε0 + χ0 −
√
χ2

0 + q2 + q sinh−1
(
q
χ0

)
and q(θ) = i∂ε

∂θ
=

iχ0 sin(θ), the left-hand side of Eq. (2.31) becomes

ε̃ (iχ0 sin(θ))

= ε0 + χ0(1−
√

1− sin(θ)2 − χ0 sin(θ) sin−1 (sin(θ))

= ε0 + χ0 (1− cos(θ))− χ0 sin(θ)θ,

(2.32)

which is equal to the righthand side of Eq. (2.31) because sin−1 (sin(θ)) = θ and√
1− sin(θ)2 = cos(θ) when |θ| < π/2.

Thus, we shows that the numerically observed ε(θ) = ε(θ) for |θ| < π/2 in

Fig. 2.4 is consistent given Eq. (2.30) is true.
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Let us now check the three conditions of Eq. (2.30). It is easy to see Condition

i) is valid. On the complex plain, ε̃(q) is analytic except two branch cuts along

imaginary axis: one from iχ0 to ∞ and the other from −∞ to −iχ0. The function

is analytic between two branch points −iχ0 and iχ0, so it is appropriate to distorting

the integral contour from the real axis to any other contour as long as it does not

crosses the two branch cuts.

As there is a solution q = iχ0 sin(θ) for the saddle point existence condition

Eq. (2.29) on the imaginary axis, Condition ii) is also satisfied.

For Condition iii), it is straightforward to show there is no saddle point for

k 6= 0 terms on the imaginary axis using proof by contradiction. Let us at first

assume a saddle point exists for k 6= 0, then

θ + 2πk = −i ∂ε̃(q)
∂q

∣∣∣∣
q=qsp

. (2.33)

Combined with ε̃(q) = ε0 + χ0 −
√
χ2

0 + q2 + q sinh−1
(
q
χ0

)
, this yields

θ + 2πk = − sin−1

(
i
qsp

χ0

)
. (2.34)

Notice that qsp is supposed to be imaginary, so i q
sp

χ0
is real. For sin−1, the

principle branch is taken, so a real value input corresponding to result between −π
2

and π
2
. Recall that we are restricting the consideration in −π < θ < π because of

periodicity, so k 6= 0 contradicts with Eq. (2.34).

Thus, there is no saddle point on the imaginary axis. As explained before,

physically one expects the dominant saddle point should be on imaginary axis if
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it exists. Since there is no such saddle point, the branch point qbp = ±χ0 on the

imaginary axis may dominate the integral in a similar manner as saddle point:

εk(θ) ≡ − lim
V→∞

1

V
log

(
V

∫
dq e−V (ε̃(q)−i(θ+2πk)q)

)
= ε̃(qbp)− (θ + 2πk)(iqbp),

(2.35)

Using qbp = ±χ0, we have:

εk(θ) = ε0 + χ0 + χ0(|θ + 2πk| − π

2
) . (2.36)

Recall that here k 6= 0, when |θ| < π
2
, εk(θ) is larger than ε(θ) = ε0 + χ0(1 −

cos(θ) which is the k = 0 term. Thus, in the sum of exponential with negative factor

times ε in Eq. (2.25), k 6= 0 terms are exponentially suppressed by the volume, V ,

compared to k = 0 term, which means the Condition iii) is satisfied.

In other words, for |θ| < π
2
, the saddle point on the imaginary axis dominates

the computation and causes ε(θ) = ε(θ), which agrees with the result shown in

Fig. 2.4. The existence of this saddle point prevents the sensitive cancellation in

the oscillating sum being ruined by the difference between ε̃(q) and ε̃(q, V ), even

though the sign problem requires exponentially accuracy in V .
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2.5.3 The saddle point approximation for the dilute instanton gas for

π/2 < |θ| < π

Now let us considering the case for π
2
< |θ| < π. It is easy to see that the

saddle point in the previous section no longer exists on the imaginary axis.

As in Eq. (2.34), the existence condition of saddle point says:

θ + 2πk = −i ∂ε̃(q)
∂q

∣∣∣∣
q=qsp

= − sin−1

(
i
qsp

χ0

)
, (2.37)

where qsp is imaginary, so the the equation’s right-hand side − sin−1
(
i q

sp

χ0

)
should

take the principal branch value between −π/2 and π/2. However, the left-hand side

of the equation θ + 2πk ranges from π/2 + 2πk to π + 2πk for integer k, which has

no overlapping range with the right-hand side. Thus, this equation is not consistent

with π
2
< |θ| < π, and there is no saddle point on imaginary axis of q for any integer

k.

Thus, one cannot arrive at ε(θ) = ε(θ) following the same argument in the

previous section when θ takes a different range where sign problem is softer.

The other way to see the break down of ε(θ) = ε(θ) is to at first assume

there is a saddle point or branch point that makes Eq. (2.30) true. Notice that, for

π
2
< |θ| < π, sin−1 (sin(θ)) = ±(π − θ) (where ± is the same as the sign of θ) and√
1− sin(θ)2 = − cos(θ). Then if one assume ε(θ) = ε(θ), Eq. (2.32)’s last step is

changed to:
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ε̃ (iχ0 sin(θ)) = ε0 + χ0 (1 + cos(θ))± χ0 sin(θ)(π − θ)

6= ε0 + χ0 (1− cos(θ))− χ0 sin(θ)θ,

(2.38)

which says, either ε(θ) 6= ε(θ) or that there is no appropriate saddle point or branch

point so that Eq. (2.30) is wrong.

When there is no saddle point on the imaginary axis, one expects that the

branch point qbp = ±iχ0 dominates the integral. In this case, the result is given by:

εk(θ) = ε0 + χ0 + χ0(|θ + 2πk| − π

2
) . (2.39)

as derived in Eq. (2.36).

It is obvious that k = 0 branch is dominant over k 6= 0 branches in the infinite

volume limit, so the final result is given by:

ε(θ) = ε0 + χ0 + χ0|θ| −
π

2
, (2.40)

which matches what we have seem in Fig. (2.4): ε(θ) is a linear function for π/2 <

θ < π.

It is intuitive to understand why ε(θ) is a linear in this case. The branch

point is fixed point and cannot move as the saddle point do when θ changes. Thus,

Eq. (2.30), which is similar to Legendre transformation with an extra i, leads to a

linear ε(θ).
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To summarize, for π/2 < |θ| < π, there is no saddle point on the imaginary

axis of q so that ε(θ) 6= ε(θ). However, the branch point on the imaginary axis

dominates the integral in a similar way, and the fixed position of branch point

yields linear behavior of ε(θ).

2.5.4 Analytic considerations

We have shown that, one cannot reconstruct ε(θ) for π/2 < |θ| < π via direct

summation over topological sectors. However, does that means ε̃(q), which is the

infinite volume limit of ε̃(q, V ), does not contain enough information to reconstruct

ε(θ) for π/2 < |θ| < π? The answer is subtle.

In principle, one can use ε̃(q) to reconstruct ε(θ) for |θ| < π/2, then analytically

continuate from |θ| < π/2 to π/2 < |θ| < π. For a dilute instanton gas, the energy

density with respect to θ is known to be analytic, so there is no problem of doing

this. In this way, it seems that one can reconstruct ε(θ) = ε0 + χ0 (1− cos(θ)) for

π/2 < |θ| < π from ε̃(q), and ε̃(q) have the full information needed.

How to reconcile these two views? The key point is to observe that, on the

complex plane, ε̃(q) has multiple branches. When we use ε̃(q) = ε0+χ0−
√
χ2

0 + q2+

q sinh−1
(
q
χ0

)
in previous sections, we are actually using the principal branch. If one

circles around the branch point, in other words, crosses the branch cut along the

imaginary axis, one can arrive at other branches.

It can be easily verified that if one uses the branch:
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˜̃ε(q) = ε0 + χ0 +
√
χ2

0 + q2 + q

(
iπ − sinh−1

(
q

χ0

))
. (2.41)

in the previous section’s analysis, one will be able to reconstruct ε(θ) = ε0 +

χ0 (1− cos(θ)) for π/2 < |θ| < π via direct summation of topological sectors.

However, it is obvious that ˜̃ε(q)’s value is not real when q is real, so it is

impossible to get ˜̃ε(q) though directly taking infinite volume limit of ε̃(q, V ). In

practice, the only way to get the value of ˜̃ε(q) is though analytical continuating ε̃(q)

onto another branch in the complex plane, which is numerically non-trivial, and

may require knowledge of ε̃(q) with extraordinary high accuracy.

2.6 The general case

The previous discussion focuses on a toy model: the dilute instanton gas,

because the simple form of the energy density of this model makes it easy to conduct

analysis. However, the analysis can be generalized to cases that have no simple

closed-form expression.

The original energy density ε(θ) and the reconstructed one ε(θ) in general case

are shown as:

ε(θ) = − lim
V→∞

∞∑
k=−∞

1

V
log

(
V

∫
dq e−V (ε̃(q,V )−i(θ+2πk)q)

)
.

(2.42)
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ε(θ) = − lim
V→∞

∞∑
k=−∞

1

V
log

(
V

∫
dq e−V (ε̃(q)−i(θ+2πk)q)

)
,

(2.43)

The key argument is that when there exists a saddle point that dominates

the integral for a range of θ, ε(θ) = ε(θ). The proof is straightforward and is as

follows. Eq.( 2.30) is true as long as there is saddle point. If a saddle point exists

for Eq.( 2.43), one has ε(θ(qsp)) = ε̃(qsp) − iθ(qsp)qsp and θ(qsp) = −i∂ε̃(q
sp)

∂qsp
. Then

θ(qsp) = −i lim
V→∞

∂ε̃(qsp,V )
∂qsp

is true because ε̃(q) = lim
V→∞

ε̃(q, V ). Thus, saddle point

also exist for Eq.( 2.42) in infinite volume limit, and ε(θ(qsp)) = lim
V→∞

ε̃(qsp, V ) −

iθ(qsp)qsp = ε(θ(qsp)). Thus, ε(θ) = ε(θ) is true as long as saddle point exists for

the range of θ considered.

Then the question becomes, what is the range of θ that ε(θ) = ε(θ)? In other

words, where does ε(θ) 6= ε(θ) happen?

The general answer is that for analytic ε(θ) with |θ| < π,

ε(θ) = ε(θ) if |θ| < θmax, (2.44)

where θmax is the smallest positive value of θ satisfying either of the following con-

ditions

1. d2ε(θ)
dθ2

∣∣∣
θ=θmax

= 0 .
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2. θmax = π .

Condition 2) is just because of the periodicity of 2π. To see the reason of

Condition 1), let’s start by assuming ε(θ) = ε(θ) is true for small real |θ| near

0. This is reasonable because at small enough |θ|, any even function of θ is well-

approximated by θ2 because of Taylor expansion. The case of ε(θ) = θ2 can be

easily shown to satisfy ε(θ) = ε(θ).

Note that, for small |θ|, if ε(θ) = ε(θ), the integral must be dominated by a

saddle point near q = 0 on the imaginary axis, rather than a branch point on the

imaginary axis. This is because the branch point is a fixed point, which will result in

linear ε(θ), so it contradicts with the assumption that ε(θ) is analytic in this small

region.

We start from this small |θ| region, and without loss of generality, we consider

positive θ. When increases positive θ’s value, the saddle point qsp moves correspond-

ingly along imaginary q axis. The ε(θ) = ε(θ) keeps valid since the saddle point still

exists on imaginary q axis. This breaks when the saddle point disappears or when

it moves to a non-analytic point such that it cannot exist after this point. Then,

the ε(θ) = ε(θ) breaks down.

The argument is that this break down happens when θ is at the inflection

point, which means d2ε(θ)
dθ2

= 0, Condition 1). To see why the corresponding saddle

point on imaginary q axis no longer exists after θ increases and passes this reflection

point, it is useful to notice that, when ε(θ) = ε(θ) is valid before this inflection

point, one can use Eq. (2.30) to obtain:
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∂2ε(θ)

∂θ2

∂2ε̃(q)

∂q2

∣∣∣∣
qspθ

= 1, (2.45)

Right at the inflection point, d2ε(θ)
dθ2

= 0, the only way it can be consistent with

Eq.( 2.45) is that, ∂2ε̃(q)
∂q2
|qspθ diverges as θ approaches the inflection point from small

positive θ. The divergence of ∂2ε̃(q)
∂q2
|qspθ means that saddle point qsp approaches the

non-analytic point of ε̃(q) on the imaginary axis, so that it cannot proceed beyond

this point. In the case of dilute instanton gas, the saddle point disappears after it

hits the branch point, which is the starting point of the non-analytic branch cut

along the imaginary axis.

The inflection point therefore serves as a signal of where ε(θ) = ε(θ) starts

to break down. After this point, in general ε(θ) 6= ε(θ). Since the inflection point,

if it exists, is the point where d2ε(θ)
dθ2

changes from negative to positive, it implies

that, for 0 < θ < π, when increases θ, ε(θ) = ε(θ) remains valid until ε(θ) changes

from curving up to curving down, as shown clearly in the numerical result Fig. 2.4.

More examples are shown in Fig. 2.6 and Fig. 2.7 for ε(θ) = 1− cos(2θ) and ε(θ) =

1− cos(3θ) with corresponding ε(θ)s.
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Figure 2.6: ε(θ) = 1− cos(2θ) and the corresponding ε(θ)

2.7 Summary

This chapter focused on an interesting phenomenon caused by the interplay of

the infinite volume limit and the sign problem in QCD with a θ-term.

As a conclusion, it has been shown that if ε(θ) has reflection point in θ ∈

(−π, π), then there exists regions where one can not correctly reconstruct the ε(θ)

by direction summation over different topological charge Q using ε̃(q). The reason

is that the sign problem in these regions are so severe that even though ε(θ) is

intensive quantity in the infinite volume limit, the finite volume difference between

ε̃(q) and ε̃(q, V ) can spoil the delicate summation.

However, it is also worth noting that, given the sensitivity of this summation,

it is remarkable that one can reconstruct ε(θ) using ε̃(q) in other regions of θ. Recall

that a power-law difference of 1/V between ε̃(q) and ε̃(q, V ) will result in order unity

57



π
4

π
2

3 π
4

π 5 π
4

θ

0.05

0.10

0.15

0.20

0.25

0.30

ε(θ)-ε(0)

ε (θ)

ε(θ)=1-cos3θ

χ0
_______

_

Figure 2.7: ε(θ) = 1− cos(3θ) and the corresponding ε(θ)

error in ZQ. As the summation result of ZQ is exponentially small in V compared to

individual terms of ZQ, this summation requires exponentially accurate cancellation

between terms. The fact that each term has order unity error but still yields to

correct ε(θ) after cancellation is surprising. The reason behind this phenomenon is

that in this region, the sum can be replaced by integral, which is dominated by a

saddle point.

One interesting implication of this analysis is that unless both ε(θ) and ε̃(q)

are trivial constant functions, at least one of them cannot be analytic over the

whole complex plane. It is because the inflection point of ε(θ) corresponding to the

branch point of ε̃(q), which is the starting point of the non-analytic branch cut in

the complex plane of q. While if non-constant ε(θ) does not have any inflection

point for θ ∈ (−π, π), then ε′′(θ) is positive over the whole region between −π and

π. However, if this is true, due to the periodicity of 2π, ε(θ) must have Dashen’s
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phenomenon at θ = π, which is non-analytic.

Though the analysis in this section does not solve the sign problem in QCD

with a θ-term, it may help to shed light on extracting information of ε(θ) near θ = π,

which is related to the strong CP problem.
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Chapter 3: Tetraquarks in the heavy quark mass limit: q̄q̄′QQ

3.1 Review of exotic hadrons

When the naive quark model was invented during the 1960s, the phenomeno-

logical evidence seems to imply that there are only two kinds of hadrons: mesons

as bound states of quark and antiquark qq̄ and baryons as bound states of three

quarks. However, it was realized that the naive quark model in principle also allows

for multiquark states[166]. Ten years later, QCD was formulated. The complicated

interaction of gluons and quarks described in QCD Lagrangian allows for a much

more complicated structure of hadron. Exotic mesons called glueballs, which are

made only by gluons, and hybrids, which are qq̄ pairs with an excited gluon, seem

possible because of gluons’ self-coupling. Moreover, multiquark color singlet exotic

states may also exist, such as tetraquark with four valence quarks and pentaquark

with five valence quarks.

In the light quark sector, there have been many theoretical predictions and

experimental evidence for the existence of exotic hadrons such as glueball and hy-

brid state. For example, it is suggested that isoscalar resonance f0(1500) is mainly

glue[167, 168]. π1(1600) observed by E852 collaboration is considered to be good

candidate of hybrid state[169, 170]. The a0(980) and f0(980) are strong candidates
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of tetraquark state[171, 172, 173, 174, 175, 176]. However, there is still no universal

agreement on the true structure of these states. A detailed review of exotic hadrons

in the light quark sector can be found in Ref. [167].

The difficulty of distinguishing exotic states in the light quark sector is that it

is very easy to create light quark anti-quark pair from gluons, which makes it hard

to tell, for example, whether there were indeed a strange quark and an anti-strange

quark in the state we are looking at before decaying into Kaons. The other difficulty

comes from the fact that the light quark spectrum is full of broad and overlapping

conventional states, so it is difficult to unambiguously identify these multiquark

states candidates[177]. The situation changes in the heavy quark sector. The heavy

quark is much more non-relativistic than the light quarks, thus it is difficult to

have pair creation and pair annihilation of heavy quark and heavy anti-quark. As a

result, it is easy to tell whether there were heavy quarks from the decay products,

and there are not so many broad and overlapping conventional states because there

are fewer decay channels.

In 2003, the surprising discovery of X(3872), which is believed to have qq̄QQ̄

configuration, in decay process B0 → J/Ψπ+π−K by Belle[178] opened a new era in

hadronic physics. This discovery was latter confirmed by BABAR[179, 180], CDF

II[181, 182, 183], D0[184], LHCb[185] and CMS[186]. Since then, more than two

dozen of exotic candidates with heavy flavor are found in experiments. These include

exotic meson configurations X, Y, Z, and pentaquark Pc, with their masses in MeV

added in parentheses, such as i) Y (4260)[187], Zc(4430)[178], and Zc(3900)[188] in

charmonium sector; ii) Zb(10610) and Zb(10650)[189] in bottomonium sector; iii)
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the hidden-charm pentaquark states Pc(4380)+, Pc(4450)+[190], and the very recent

hidden-charm molecular pentaquark Pc(4312)+, Pc(4440)+, Pc(4457)+ announced by

LHCb in 2019 with strong evidence[191]. For example, Fig. 3.1 and Fig. 3.2 show

the S-wave open charm thresholds and exotic states candidates in the charmonium

sector, where Fig. 3.1 is taken from Ref.[1] with data from Ref.[192] and Fig. 3.2 is

taken from Ref.[2]. Similarly, Fig. 3.3 from Ref.[2] shows the exotic states candidates

in the bottomonium sector. However, no consensus on the interpretation of these

states has been achieved, so there is still an ongoing effort to study their properties

both theoretically and experimentally. Detailed reviews on these exotic states in

heavy quark sector can be found in Ref.[1, 177, 193, 194, 195, 196, 197, 198, 199,

200, 201, 202, 203, 204, 205, 206].

Lattice QCD simulations have found some exotic candidates close to the exper-

imental data for certain configurations. For example, an isosinglet I = 0 candidate

for X(3872) was found[207, 208, 209] only if both the cc̄ and DD̄∗ interpolators are

included. There is no candidate if use the diquark-antidiquark and DD̄∗ interpola-

tors without cc̄ interpolator, which suggests the cc̄ Fock component is important for

X(3872). However, this result was obtained at unphysical pion mass mπ = 266MeV,

which is larger than the physical pion mass mπ ≈ 140MeV, and the lattice volume

used was also small. If the pion mass in the lattice simulation was smaller, the DD̄∗

component may play a more important role, since the one-pion-exchange potential

would be exponentially larger with a smaller pion mass in the hadronic molecular

picture. In order to explore the structure of these XYZ exotic states, it would be

important to have full lattice QCD simulations near the physical point. Reviews of
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Figure 3.1: Candidates for exotic states in charmonium sector from Ref.[1] .

current lattice investigation on exotic hadrons can be found in Ref. [206].
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Figure 3.2: Candidates for exotic states in charmonium sector from Ref.[2].
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Figure 3.3: Candidates for exotic states in bottomonium sector from Ref.[2].

3.1.1 Tetraquarks with heavy flavor

The main focus of this chapter and the next chapter is on tetraquark with

heavy quark flavors. 65



Despite the numerous exotic tetraquark candidates that have been found in the

heavy quarkonium sector since the discovery of X(3872), a unified and well-accepted

theoretical description of these tetraquarks candidates has still not appeared. Sev-

eral theoretical models often used to describe tetraquark states are listed below:

• Hadronic molecules: these models are often used to treat near-threshold tetraquark

as a loosely bound state of two mesons[210, 211, 212, 213]. A review of this

approach can be found in Ref. [1].

• Hadroquarkonia: these models treat heavy tetraquark as QQ̄ compact core

surrounded by the light degrees-of-freedom[214, 215].

• Diquark-antidiquark mesons: this approach use color-nonsinglet diquark as

tightly bounding blocks to build tetraquark[195, 196, 197, 216].

A detailed review of these and other models can be found in Ref. [198]. How-

ever, even for the most thoroughly studied candidate X(3872), there are still con-

troversies on whether it is primarily a D0D̄∗0 molecular because of its exceedingly

closeness to threshold, or it has large cc̄ component[1, 195].

3.1.2 q̄q̄′QQ Tetraquarks in the heavy quark mass limits

As described in the introduction, systematic expansions in certain physical

limits is a good way to study heavy tetraquark systems. The analysis of this chapter

and the next chapter will use a systematic expansion around the heavy quark mass

limit to show the existence of near-threshold tetraquarks with configuration q̄q̄′QQ,

and qq̄′QQ̄ tetraquarks with large angular momentum.
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For tetraquark with the configuration q̄q̄′QQ, there have been two distinct

arguments regarding its existence in the heavy quark mass limit. These arguments

are valid for deeply bounded tetraquark states, which is different from the focus

of this chapter: loosely bounded near-threshold tetraquark. However, it is still

worthwhile to briefly review these works.

The first argument relies on the fact that the Coulomb potential of two heavy

quarks is attractive in 3̄ color configuration[217, 218]. This implies that, in the

heavy quark mass limit, two heavy quarks can form a deeply bound diquark in

3̄ configuration with a binding energy of order O(α2
sMQ) and characteristic size

O(αsMQ)−1. The binding energy O(α2
sMQ) is much larger than the hadronic scale

ΛQCD in the heavy quark mass limit, so this diquark system is tightly bound and

has a small size. As a result, it acts as a nearly point-like static source of color

Coulomb field, which behaviors dynamically the same way as a heavy antiquark.

This similarity between a heavy diquark and a heavy antiquark is the so-

called doubly-heavy-diquark-anti-quark (DHDA) duality. This duality becomes ex-

act when MQ is infinitely large. The duality states that, as long as the system is well

below the excitation energy of heavy diquark, every hadronic state of the system

containing two heavy quarks has an analog state for the system with one heavy anti-

quark. As a result, since an antibaryon with a heavy antiquark is a strong-interaction

stable state, the dual state, q̄q̄′QQ tetraquark, must also exist as strong-interaction

stable state in the extreme heavy quark mass limit, with corrections that vanishes

when MQ →∞.

However, it is also known that charm quark mass is too small for DHDA to
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apply, and bottom quark mass is at best marginal[217, 218]. Thus, the DHDA

duality is not an appropriate approach to treat the heavy tetraquark system in the

real world, while it is still of theoretical interest since it shows that the structure of

QCD does not exclude the existence of heavy tetraquarks.

The second argument treats q̄q̄′QQ tetraquark system as a bound state of two

heavy mesons[217, 218], each containing a heavy quark. The key point is to notice

that, if these two heavy mesons remain distinct, are located far away from each

other, move non-relativistically, and there are no new particles created, then the

system can be described by Schrödinger equation.

Consider a system containing two non-relativistic particles, between which

the relative dynamics can be described by Schrödinger equation, and assume there

exists a parameter λ which can be used to tune the mass but only weakly affects the

potential. For simplicity, if one consider s-wave channel without mixing from other

channels, then the Schrödinger equation for the n-th bound state is written as:

(
− 1

2µ(λ)

∂2

dr2
+ V (r;λ)

)
un(r;λ) = En(λ)u(r;λ) (3.1)

where µ ≡ m1m2/(m1+m2) is the reduced mas. u is normalized so that
∫
dr|u(r)|2 =

1. The potential goes to zero at infinity.

From the equation, one can see that increasing µ is equivalent to increasing

V when solving bound state for this equation, since only the product µV matters.

Based on the basic conclusions of quantum mechanics, it is clear that if V is attrac-

tive, there will exist bound states if µ is large enough. A similar argument holds for

68



systems in other channels, or with mixing degrees of freedom.

As for the system consisting of two heavy mesons, each containing one heavy

quark, it is known that the long-distance interaction is the one-pion-exchange po-

tential. The precise form of this one-pion-exchange potential depends on the heavy

quark symmetry and can be described with HHχPT[56, 218]. For certain channels,

this potential can be negative, thus the previous simple quantum mechanics conclu-

sion can be extended to here to show the existence of a bound state of two heavy

mesons. Imagine these two heavy mesons are released far away from each other at

long distance, with negative potential configuration, they are attracted to each other

and are going to form a bound state. After they are trapped together and form a

tetraquark, the tetraquark may but is not required to be in a “hadronic molecule”

picture since one is unclear about the short distance interaction, which might be

outside the regime of validity of the Schrödinger equation. However, one can still

deduce a bound state exists since the true ground state energy must be below any

trial wave function that is in the region of validity of the Schrödinger equation.

Thus, even though at first glance this approach seems to rely on the validity of the

“hadronic molecule” picture, it actually holds independent of whether the “hadronic

molecule” picture is true.

The previous paragraphs have shown the two arguments regarding the exis-

tence of q̄q̄′QQ tetraquark in the heavy quark mass limit. The first argument is

for deeply bound tetraquark, while the second argument does not specify the dy-

namics and energy scales inside the tetraquark. Starting from the next section, the

principal result of this chapter will be shown, regarding the existence of parametri-
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cally narrow near-threshold q̄q̄′QQ tetraquarks, which was not covered by previous

literature. The near-threshold tetraquarks are of theoretical importance because

many experimentally detected tetraquarks are close to the threshold, but these are

in qq̄′QQ̄ configuration which will be discussed in next chapter.

3.2 On the existence of multiple q̄q̄′QQ tetraquarks with fixed quan-

tum numbers in a toy model description

As mentioned before, this chapter focuses on the near-threshold tetraquark

system with two heavy quarks. For the near-threshold system we are focusing on,

the two heavy quarks are separating from each other by a long distance. A key

point is that, in the heavy quark mass limit, this system with long distances between

heavy quarks is well-described by two heavy meson interacting via a Yukawa-type

potential.

In this section, we start from a toy model: use the two-body Schrödinger

equation description and use semi-classical analysis to show the existence of a large

number of bound states of the two heavy mesons in the heavy quark mass limit. We

will begin the discussion with a system with a simple quantum number, and then

generalize it to other quantum numbers.

However, as will be discussed later, in a more complete description with more

degree of freedom, these states are narrow resonances rather than stable bound

states. This will be discussed in the next section.
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3.2.1 Description based on the two-body Schrödinger equation

For illustrative purposes, initially, we start with I = 1, J = 0, positive parity

states with two heavy mesons. The virtue of this kind of state is that it does not

involve coupled channels; it involves only one single degree of freedom, the distance

r between the two heavy mesons.

According to standard semi-classical analysis, the number of bound states

between energy E0 and E0 + ∆E for this system is approximated by:

N(E0,∆E) ≈
∫ E0+∆E

E0
dE
∫

dp dq δ(E −H(p, q))

2π

=

∫
dp dqΘ(E0 + ∆E −H(p, q))Θ(H(p, q)− E0)

2π

(3.2)

where H is the classical Hamiltonian and Θ is a Heaviside step function. The

more number of states there are, the more accurate this approximation will be. The

number of bound states is around (2π)−1 times the area of phase space with energies

in the appropriate range. Suppose potential V (q) is independent of reduced mass µ

in Hamiltonian H = p2

2µ
+V (q). It is easy to see the phase space area between energy

E0 and E0 + ∆E is proportional to
√
µ, and so is N(E0,∆E), which validates the

usage of semi-classical analysis in heavy quark mass limit.

The purpose of this section is to show that, for this toy model, there exists

a large number of bound states increasing with heavy quark mass. Since we do

not have much knowledge of short-range interaction, we will use the knowledge of

long-range interaction to derive a lower bound.
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For Sl = 0 states, one-pion exchange potential is given by Yukawa form:

Ṽlong(r) = −
(
I(I + 1)− 3

4

)
g2m2

π

πf 2
π

e−mπr

r
(3.3)

where I is the total isospin of the state, g is the coupling constant for H −H∗ − π

coupling (evaluated at q = 0) and fπ ≈ 93 MeV is the pion decay constant; the

quantities g, fπ and mπ are all understood to be at their heavy-quark limit.

Since we only know the form of interaction at long distance, we will focus

on the number of bound states with r large enough to be in the region where

the Yukawa potential is valid, which is denoted by N long(E0,∆E). The logic is,

if assume N long(E0,∆E) is large, we can use semi-classical approximation. Then,

N long(E0,∆E) is proportional to square root of reduced mass µ = MQ/2. In the

heavy quark mass limit, N long(E0,∆E) diverges as
√
MQ, so there is a large number

of states, which justify the usage of semi-classical approximation.

The total number of two heavy meson bound states ntot is bounded byN long(−B,B)

as

ntot ≥ nB ≡ N long(−B,B), (3.4)

where nB is the number of bound states with binding energy less than B.

Define rB through Ṽlong(rB) = −B, and B should be small enough to make rB

large enough, so that the system is in the appropriate regime. According to WKB

approximation:

N long(−B,B) ≥
∫ ∞
rB

dr

√
−MQṼlong(r)

π
, (3.5)
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With explicit quantum number put into Eq. (3.3), one can prove that:

nB >

√
MQB

2
√

2mπ

∼
√
MQB

Λ
. (3.6)

Recall that the condition of this analysis is that the number of states nB is

large so that semi-classical analysis can be used. When a small B is a fixed value,

nB grows with
√
MQ, which is large in the heavy quark mass limit. Thus, this

analysis is self-consistent.

Suppose one is interested in the states close to threshold. Let us consider the

case that B is not held fixed; rather, it is chosen to decrease parametrically with

increasing MQ to ensure that, the states are parametrically close to threshold at

large MQ:

B = b2 2π2 m
2−ε
π

M1−ε
Q

∼ Λ2−ε

M1−ε
Q

, (3.7)

where b is a dimensionless numerical constant of order unity and 0 < ε ≤ 1.

Then Eq. (3.6) yields nb > b (MQ/mπ)ε/2, which means nb is still large in

heavy quark mass limit, and grows when MQ increases. Thus, the system is still in

semi-classical limit, and the previous analysis is self-consistent.

This tells us that even if one restricts the consideration to very near threshold

states, there are still a large number of them exist in the formal large MQ limit. The

physical scenario is that, as MQ increases, new bound tetraquark states will continue

to emerge at the threshold. After a new state appears, it moves below the threshold

with increasing MQ, eventually leaving the regime that can be identified as being
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“near-threshold”. However, as the old state leaves the near-threshold regime, there

are always new states that enter at threshold, which ensures that there are always

a large number of near-threshold states.

To quantify this behavior, it is useful to look at the binding energy of the least

bound state Bmin(MQ). Bmin(MQ) is zero when a new bound state just emerges,

then grows with MQ, reaches local maximum, and drops discontinuously to zero

when the next new bound state appears. For near-threshold binding energy B ∼

Λ2−ε

M1−ε
Q

, it requires Bmin(MQ) go to zero as MQ goes to infinity, at least as fast as

M−1
Q .

We illustrate this scenario in a toy model with a potential given as:

V (r) =
−10mY e

−
√

4m2
Y r

2+1/2√
4m2

Y r
2 + 1

, (3.8)

which is a Yukawa function (mimicking Ṽlong(r)) at long distances while being non-

singular at short distances. The behavior of Bmin(MQ) (in units of the Yukawa

mass) is shown in Fig. 3.4 as a function of the heavy meson mass (in units of the

Yukawa mass). The dots correspond to values of MQ just prior to the entrance

of a new bound state, which are local maximum of Bmin(MQ) during the process

of increasing MQ. The solid line with a slope of -1 on this log-log plot represents

B = Λ2

MQ
with Λ fit to the lowest mass point on the plot, which apparently shows

that the binding energies of the least binding states fall off with MQ slightly faster

than M−1
Q . This is consistent with the expected scenario.

Though the plot is for this specific toy model, it seems apparent that paramet-
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Figure 3.4: Binding energy of the least bound state for a toy model.

rically light bound tetraquark states at large mass MQ exist for generic potential

models that asymptote to a Yukawa form at long distance. Based on the previ-

ous analysis, there are a large number of these states exist, even for parametrically

near-threshold region provided that MQ is large enough.

Note that here we consider a toy description: a Schrödinger equation descrip-

tion. In real QCD, the system can emit pions, which renders the potential model

description invalid. Thus, the conclusion that a large number of bound states exist
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in Schrödinger equation description for large MQ does not directly apply to QCD.

This issue will be tackled in Sec. 3.3. Before that, let us at first generalize the

conclusion of this section to more generic quantum numbers.

3.2.2 Other quantum numbers

The purpose of this section is to show the discussion in the previous section can

be generated to attractive channels with quantum numbers other than I = 1, J = 0,

positive parity states. For these general states, the one-pion-exchange interaction is

complicated. The effect of the tensor force mixes channels with different L quantum

numbers, causes a coupled-channel problem.

The solution is to choose a basis in which the channels decouple up to cor-

rections that vanishes in the heavy quark mass limit so that the problem is ef-

fectively reduced to one kinetic degree of freedom. The argument is based on the

Born-Oppenheimer approximation[219]. The Born–Oppenheimer approximation as-

sumes that the dynamics of fast degree-of-freedom and slow degree-of-freedom can be

treated separately because of their distinct time scales. It has been used in the con-

text of other heavy quark exotic states such as heavy-quark hybrids[220, 221, 222].

Because of the potential between the two heavy mesons couples different chan-

nels, it can be expressed in a matrix form. In a Schrödinger equation description,

the equation and potential can be generally written as:
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(
−
←→
1

2µ
∂2
r +
←→
V

)
~ψ = E~ψ

with ~ψ(r) ≡



ψ1(r)

ψ2(r)

...

ψk(r)



and
←→
V (r) ≡



V11(r) V12(r) ... V1k(r)

V21(r) V22(r) ... V2k(r)

...
...

...
...

Vk1(r) Vk2(r) ... Vkk(r)


,

(3.9)

where µ is the reduced mass.
←→
V (r) has a magnitude of order Λ and varies over a

distance of order 1
Λ

; while the kinetic term is controlled by µ ∼MQ.

The diagonal terms are interactions that within a channel, and off-diagonal

terms are cross-channel coupling. According to finite-dimensional spectral theorem,

since
←→
V (r) is Hermitian, it is guaranteed to be diagonalizable by a unitary matrix

←→
U (r) for any fixed r, and the resulting diagonal matrix

←→̃
V (r) ≡

←→
U (r)

←→
V (r)

←→
U †(r)

has only real entries.

Physically, the eigenvalues are the potential for the new channels expressed

in the form of
←→̃
V (r), and the eigenvectors give the new channels, which are not

coupled to each other, in terms of the old ones.

However, for a physical dynamic system, r is not a fixed value, thus
←→
U (r)

and
←→
V (r) are changing with r, so there is no fixed diagonal

←→
V (r) for all r, which
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naively would render the analysis complicated.

The key point is to notice that since we are considering the heavy quark mass

limit, the two mesons move slowly so that the process is adiabatic. According to

Born-Oppenheimer approximation, if the adiabatic system is in the lowest eigenstate

for one value of r, it will remain in the lowest eigenstate for all value of r. This

approximation will become perfect as MQ → ∞. In this case, the system will

effectively act as a single channel with the potential given by the lowest eigenvalue.

Define ~̃ψ(r) ≡
←→
U (r)~ψ(r). One can decompose the Hamiltonian as:

(H0 +H1 +H2) ~̃ψ = E ~̃ψ with

H0 =
−←→1
2µ

∂2
r +
←→̃
V (r) ,

H1 =
1

µ

←→
U ′(r)

←→
U †(r)∂r

and H2 = − 1

2µ

←→
U ′′(r)

←→
U †(r) .

(3.10)

H0 is diagonal. We are going to show that H0 is dominant over H1 and H2

in the heavy quark mass limit. Notice that we are considering semi-classical bound

states, so the spatial derivatives of ψ are of order
√
MQΛ. Thus, the scaling of H0,

H1 and H2 with MQ are:
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H0 ∼ Λ, (3.11)

H1 ∼

√
Λ3

MQ

, (3.12)

H2 ∼
Λ2

MQ

(3.13)

From the scaling, it clear that the diagonal H0 is dominant, while H1 and H2

can be treated as perturbations. Since H1 is entirely off-diagonal, it only contributes

to the energy in the second order. Therefore, the contributions from H1 and H2 are

of order Λ2

MQ
, which can be neglected in the heavy quark mass limit.

Since in the heavy quark mass limit, only the contribution from diagonal H0

survives, finding the bound state in terms of the lowest eigenvalue of
←→
V (r) becomes

a problem with a single radial degree of freedom. Then all the discussions in the

previous section can also be applied here. The conclusion is that, in the heavy quark

mass limit, for all quantum numbers with attractive interaction at long distance,

there are a large number of tetraquark states.

3.3 A more complete description

In infinite volume limit, the q̄q̄′QQ tetraquark states of interest are loosely

bounded states with a long distance between heavy quarks, while it is known in

the literature that deeply bounded q̄q̄′QQ tetraquark states with binding energy of

order α2
sMQ relative to the threshold exist. The energy level of the deeply bounded
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tetraquark states are lower than the loosely bounded tetraquark states by more than

mπ, Given that there is no symmetry prevents the loosely bounded one decaying

to deeply bounded one by emission of pions, the loosely bounded tetraquark will

decay via pion emission, which renders the discussion under Schrödinger equation

description in previous section incomplete.

The potential model in the previous discussion is actually not valid because of

the pion emission, so stable bound states with binding energy of order Λ presumably

not exist. However, it will be shown in this section, that unstable but long-lived

tetraquark resonances with binding energy of order Λ and narrow width do exist in

the heavy quark mass limit.

The treatment is similar to the hydrogen spectrum. A Schrödinger equation

description with coulomb potential gives rise to many bound states; while in QED,

these states can decay through emission of photons, so none of the excited states

are stable. However, these states are so long-lived that their decay widths are

much smaller than the energy level spacing between two nearby states in the energy

spectrum. Our goal in this section is to show that a similar scenario happens

for these loosely bounded tetraquark states: their decay widths are parametrically

smaller than their level spacing so that they exist as narrow resonances in the heavy

quark mass limit.

As we are considering the heavy quark mass limit, the effects of relative order

Λ
MQ

will be dropped in the rest of the discussion in this chapter.

In the heavy quark mass limit, there is a separation between the fast and slow

degree-of-freedoms. The light quarks and gluons are the fast degree-of-freedoms with
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a characteristic scale Λ. The nonrelativistic heavy quarks are the slow degree-of-

freedoms. At the leading order of NRQCD (Non-relativistic QCD)[62], the number

of heavy quarks is fixed since pair creation is suppressed. The characteristic velocity

of the heavy quarks is of order
√

Λ
mQ

, so the three momentum scale is of order√
mQΛ.

For illustrative purposes, in the following analysis, we will focus on attractive

positive parity I = 1, J = 0 channel. However, the conclusion holds for the mixed

channel cases as explained in the previous section, with correction up to relative

order Λ
MQ

(which can be neglected in the heavy quark mass limit).

We are going to show that, in the heavy quark mass limit, for tetraquark states

of order Λ below threshold, the scaling of widths Γ and level spacing ∆E with mQ

are:

Γ ∼ Λ2

mQ

, (3.14)

∆E ∼

√
Λ3

mQ

. (3.15)

Then the ratio of widths to level spacing is:

Γ

∆E
∼

√
Λ

mQ

. (3.16)

Thus, Γ
∆E

is vanishing in the heavy quark mass limit, which means the decay

width is much smaller than level spacing so that these tetraquark states exist as

narrow resonances.
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The scaling of level spacing Eq. (3.15) comes from semi-classical analysis. The

size of level spacing in the semi-classical region with long distance between heavy

quarks can be characterized by binding energy B, which is of order Λ, divided the

number of total states nB in this region:

∆E ∼ B

nB
, (3.17)

where nB is given in Eq. (3.6) as

nB >

√
MQB

Λ
, (3.18)

from which it is easy to derive Eq. (3.15).

The rest of this section will be devoted to the scaling of decay width Eq. (3.14).

We will work in a Hamiltonian description of QCD. The full Hamiltonian in-

cludes unphysical states that do not respect Gauss’s law. To proceed we introduce

a projection operator P̂phys to project states from the full Hilbert space onto phys-

ical state with ~Pcm = 0 and with the quantum number of interest. Then we can

define a physical Hamiltonian Ĥphys = P̂physĤP̂phys, which acts in the Hilbert space

of physical states with fixed quantum number of interest. The time-independent

eigenstates |Φ〉 can be solved by:

Ĥphys|Φ〉 = EΦ|Φ〉. (3.19)

Here |Φ〉 is state of the whole system, so encoded information of both slow and fast
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degree of freedom.

Let us assume there exist a projection operator P̂r, which projects the physical

Hamiltonian to a description of nonrelativistic quantum mechanics with a single

spatial degree of freedom r, which corresponding to the distance between two heavy

quarks, and a Yukawa-like potential that dependent on r as in Eq. (3.3). This space

is the space of tetraquark states with no additional pions as in the previous section.

The complement of P̂r is defined as Q̂r = (1−P̂r), which projects tetraquark states

with no pions out of its space and implies the decay of tetraquark. Later we will

see that the operator P̂r indeed exists.

The energy eigenvalue equation can be rewritten in the form of a two-by-two

matrix of operators

 P̂rĤphysP̂r PrĤphysQ̂r

Q̂rĤphysP̂r Q̂rĤphysQ̂r


 |Φ; ~P 〉r

|Φ; ~P 〉nr

 = EΦ

 |Φ; ~P 〉r

|Φ; ~P 〉nr


with |Φ; ~P 〉r ≡ P̂r|Φ; ~P 〉 , |Φ; ~P 〉nr ≡ Q̂r|Φ; ~P 〉 (3.20)

and by construction the states are eigenstates of the total momentum.

The full Hamiltonian can be decomposed as:

Ĥphys = Ĥ0 + ĤI with

Ĥ0 ≡ P̂rĤphysP̂r + Q̂rĤphysQ̂r

HI ≡ P̂rĤphysQ̂r + Q̂rĤphysP̂r ;

(3.21)
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Let us denote a typical tetraquark state as |Φ〉r which satisfies

Ĥ0|Φ〉r =

(
E + 2MQ +O

(
Λ2

MQ

))
|Φ〉r , (3.22)

where E is the energy relative to the threshold for breaking into two heavy mesons.

The O
(

Λ2

MQ

)
correction can be neglected since we are considering the heavy quark

mass limit. It is useful to define an effective two-body Hamiltonian Ĥ2 body
0 ≡ Ĥ0 −

2MQ to get rid of the rest mass 2MQ. Then the Schrödinger equation becomes

Ĥ2 body
0 |Φj〉r = Ej|Φj〉r. One can rewrite the Schrödinger equation in positional

space, depends on single kinetic degree of freedom r, so the semiclassical analysis in

previous section can be applied here.

From Fermi’s Golden rule, the decay width Γ is:

Γj = 2π|r〈Φj|ĤI |Φ′〉nr|2ρ(Enr)

= 2r〈Φj|ĤIĜ(Ej)ĤI |Φj〉r ,

with Ĝ(E) ≡ lim
ε→0+

Im

(
1

E − Ĥ2 body
0 + iε

)
.

(3.23)

where |Φ〉r is an initial tetraquark state in the space with no additional pions,

and |Φ〉nr is a final state outside this space. ρ is the density of states, and is

also called spectrum function. It comes from integrating over all final state en-

ergies with energy conservation taken into account explicitly by delta function as

ρ(Ef ) = | dn
dE
|Ef =

∫
dn
dE
δ(E − Ei)dE. The second equation comes from the fact

that (the spectral representation of) imaginary part of Green’s function provides
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the local density of states of the system[223]. In other words, Ĝ(E) comes from the

decomposition in terms of continuum eigenstates of Ĥ0 that are outside the space

r, and is only nonzero for states with energies that overlap E. These eigenstates in

Ĝ(E) are tetraquark states with separation r plus one or more mesons.

In order to derive the scaling of Γ with mQ. It is useful to define an gauge

invariant operator R̂, which measures the distance between the two heavy quarks,

as:

R̂ ≡
∫

d3x d3y |y| Q̂†(~x)Q̂†(~x+ ~y)Q̂(~x+ ~y)Q̂(~x)

2
, (3.24)

Denote a typical eigenstate of R̂ as |r, ψfast,r〉, where a fixed value r is the

separation between two heavy quarks and ψfast,r describes the state of the fast degrees

of freedom. ψfast,r depend implicitly on r. For each fixed separation r between heavy

quarks, the light quarks and gluons have a corresponding distribution ψfast,r over

space. For different heavy quarks separation r, the wave function of fast degree-of-

freedom ψfast,r is different.

The wave function of the whole tetraquark system |Φ(r)〉r can be written as:

|Φ(r)〉r = φslow(r)|r, ψopt
fast,r〉 . (3.25)

The φslow(r) is the distribution of different r, and therefore captures the information

about the motion of the heavy quarks. In other words, it is the wave function related

to the slow degree of freedom. φslow(r) depends explicitly on r; while ψfast,r,the wave

function of the fast degree of freedom, depends implicitly on heavy quarks separation
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r.

In other words, |Φ(r)〉r can also be doneted by:

|Φ(r)〉r = φslow(r)|r〉 ⊗ |ψopt
fast,r〉 .

= |φslow〉 ⊗ |ψopt
fast,r〉

= |φslow, ψ
opt
fast,r〉 (3.26)

One can decompose P̂r, assume it exists, as:

P̂r =

∫ ∞
0

dr |r, ψopt
fast,r〉〈r, ψ

opt
fast,r| with

R̂|r, ψopt
fast,r〉 = r|r, ψopt

fast,r〉

〈r′, ψopt
fast,r|r, ψ

opt
fast,r′〉 = δ(r − r′)

(3.27)

where “opt” means the optimal state among degenerate eigenstates of R̂.

The next step is using energy considerations to determine the optimal state

ψopt
fast,r. Once the optimal state is determined for every r, the projection operator P̂r

is fixed by Eq. (3.27).

One can define the potential operator by:

V̂ ≡ Ĥ − T̂ heavy, (3.28)

where Ĥ is the leading order NRQCD Hamiltonian, and T̂ heavy ≡
∫
d3xQ†(~x)

(
− ~D2

2mQ

)
Q(~x)

is the gauge invariant kinetic energy of the heavy quarks. V̂ commutes with R̂ be-
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cause it does not contain a derivative with respect to r.

Then the potential can be defined by:

Vψfast,r
(r)δ(r − r′) = 〈r′, ψfast,r|V̂ |r, ψfast,r〉 . (3.29)

Now finding the optimal states among eigenstates of R̂ is just finding the

ground state of the fast degree of freedom ψopt
fast,r that minimizes Vψfast,r

(r).

Recall the Born-Oppenheimer considerations, in which the slow and fast degree

of freedom decouple. The heavy quark positions are the slow degree of freedom

associated with characteristic momentum scale
√
mQΛ, while the light quarks and

gluons are the fast degree of freedom with a characteristic scale Λ. Heavy quarks

move slowly, so the change in r is slow and the system is adiabatic. Thus, the system

will remain in the fast degree of freedom’s ground state ψopt
fast,r.

Since we have the optimal states and projection operator, the next step is to

use Fermi’s Golden rule to derive the scaling of decay rate Γ using Eq. (3.23) based

on Ĥ1’s effect on |Φ〉r = φslow(r)|r〉 ⊗ |ψopt
fast,r〉 = |φslow, ψ

opt
fast,r〉.

Notice that in the incomplete Schrödinger equation description of previous

section, we used the kinetic energy of the heavy quarks rather than the full kinetic

energy of the total system including both slow and fast degree of freedom. The

difference between these two is the previous missing part, ĤI . Thus, ĤI can be

obtained by subtracting the kinetic energy of heavy quarks T̂ heavy from the total

kinetic energy of the tetraquark system:

87



ĤI |r, ψopt
fast,r(r)〉 =

(
− D

2
r

MQ

− T̂ heavy)

)
|r, ψopt

fast,r(r)〉, (3.30)

where Dr is covariant derivative acting on the single degree of freedom r.

The covariant derivatives implies the inclusion of gluonic corrections. However

since the fast degrees of freedom vary with characteristic scales of Λ, the contribution

to covariant derivative is at order Λ2

mQ
, so it can be neglected to the order at which

we work. Thus, One can replace − D2
r

MQ
by − ∂2r

MQ
:

ĤI |φslow, ψ
opt
fast,r〉 = −

(
T̂ heavy +

∂2
r

MQ

)
|φslow, ψ

opt
fast,r〉, (3.31)

where the derivatives in the second term ∂2r
MQ

act both explicitly on φslow(r) and

implicitly on ψopt
fast,r.

Consider the first piece in Eq. (3.31), the matrix element of the kinetic energy

is:

〈φslow, ψ
opt
fast,r|T̂

heavy(~x)|φslow, ψ
opt
fast,r〉

= 〈φslow, ψ
opt
fast,r −

1

MQ

(∂2
r |φslow〉)⊗ |ψopt

fast,r〉+O
(

Λ2

mQ

) (3.32)

where the derivative in heavy quark kinetic energy operator T̂ heavy only acts on the

heavy quark part of |r, ψopt
fast,r(r)〉, but not on the fast degree of freedom part.

Then consider the second piece in Eq. (3.31). Recall that the derivative in

the second piece acting both explicitly on φslow and implicitly on ψopt
fast,r. To make it

88



clear, we write it in the tensor product form as:

∂2
r |φslow, ψ

opt
fast,r〉 =

(
∂2
r |φslow〉

)
⊗ |ψopt

fast,r〉+

2 (∂r|φslow〉)⊗
(
∂r|ψopt

fast,r〉
)

+ |φslow〉 ⊗
(
∂2
r |ψ

opt
fast,r〉

)
.

(3.33)

In the first term, the derivative only acts on heavy quarks’ state |φslow〉, which

is the same as Eq. (3.32) of T̂ heavy but with a different sign. Thus, this first term

cancels with T̂ heavy.

In the third term of Eq. (3.33), the derivative only acts on |ψopt
fast,r〉. Recall that

the characteristic scale of the fast degree-of-freedom is of order Λ. The contribution

of this term to Eq. (3.31) of H is of order O
(

Λ2

mQ

)
, which in the heavy quark mass

limit should be neglected in our discussion as mentioned before.

Thus, only the contribution from the second term in Eq. (3.33) survives in

Eq. (3.31):

ĤI |φslow, ψ
opt
fast,r〉 = −

(
T̂ heavy +

∂2
r

MQ

)
|φslow, ψ

opt
fast,r〉

= − 1

mQ

(∂r|φslow〉)⊗
(
∂r|ψopt

fast,r〉
)
,

(3.34)

up to corrections of order
(

Λ2

mQ

)
.

Now we can evaluate the formula of decay width Eq. (3.23).
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Γj =
2

m2
Q

∫
dr1dr2 (∂r1〈φslow,j|)⊗

(
∂r1〈ψ

opt
fast,r|

)
Ĝ(E) (∂r2 |φslow,j〉)⊗

(
∂r2|ψ

opt
fast,r〉

)

(3.35)

Introduce X = (r1 + r2)/2, x = r1− r2. Note that, both r1 and r2 are dummy

variable stand for separation between heavy quarks. Then,

Γj =
1

m2
Q

∫ Xm(B)

0

dX

∫ 2X

−2X

dx φ′slow,j(X − x/2)∗K(X, x;−B)φ′slow,j(X + x/2)×
(

1 +O
(

Λ

mQ

))
,

K(X, x;−B) ≡
(
〈X − x/2| ⊗ ∂X〈ψopt

fast,r(X − x/2)|
)
Ĝ(E)

(
|X + x/2〉 ⊗ ∂X |ψopt

fast,r(X + x/2)〉〉
)
,

(3.36)

where the prime indicates differentiation. The upper bound of the X integral,

Xm(B), is defined implicitly through:

V (Xm(B)) = −(B +mπ). (3.37)

Xm(B) is of order Λ−1 even if B is arbitrarily small because of the mπ in this

equation.

The scaling of K(X, x;E) is
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K(X, x;E) =
√
mQΛ3 κ

(
XΛ, x

√
mQΛ,

E

Λ

)
(3.38)

K(X, x;E) ∼ O
(√

mQΛ3 E−a
√
mQΛ

)
with a > 0

when V (X ± x/2) +mπ > E (3.39)

where κ is a dimensionless function of dimensionless variables.

K(X, x;E) characterizes the response of the fast degrees of freedom for given

values of the slow degrees of freedom; hence the dependence on E, will go as E/Λ

(rather than E/mQ). The dependence on x can be seen from the fact that Ĝ(E)

has the heavy quark kinetic energy in the denominator. In the absence of that term

in the denominator or when mQ → ∞, the dependence on x would necessarily be

a δ-function (because of energy conservation factor δ(Ei − Ef ) in Fermi’s Golden

rule). Moreover, the only place that mQ enters in K(X, x;E) is in the kinetic energy

term. The presence of that term spreads out the dependence on x = r1−r2, because

the kinetic energy can take a continuous range of values. Since the conjugate space

of x is momentum space, the dependence must scale as x
√
mQΛ (where

√
mQΛ

is the characteristic momentum scaling in semiclassical regime). The dependence

on X can be seen by integrating K with respect to X and x, yielding a result

independent of mQ. This is because when there is no mQ-dependence or when

mQ →∞, the result is independent of mQ. Since now we are working in expansions

around mQ → ∞, the leading order result after integration should be independent

of mQ. Finally, the overall factor of
√
mQΛ3 is obtainable from dimensional analysis
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and the disappearance of mQ once one integrates over X and x. Note that Eq. (3.38)

implies that there are only substantial contributions to Γj from regions in which

x ∼ O
(
(mQΛ)−1/2

)
), i.e. x is parametrically small.

In order to know the scaling of Γ, one also needs to know the scaling of φslow,j.

The system is in semiclassical regime. The classically allowed region, where φslow,j

is away from the turning points, is the region of dominant contributions. In this

region, according to the WKB approximation,φ can be approximated by:

φslow,j(r)

N
=

Λ
3
4 sin (δj(r))

(Ej − V (r))
1
4

,

δj(r)≡
∫ r

0

dr′
√
MQ(Ej − V (r′)) (3.40)

where N is a dimensionless normalization constant:

N =

(
Λ

3
2

2

∫ rB

0

dr′√
Ej − V (r′)

)− 1
2

(3.41)

rB is the turning point: V (rB) = Ej.

V (r) is of order O(Λ), and in general independent of mQ. Thus,

δj(r) =

√
mQ

Λ
δ̃j(rΛ) (3.42)

where δ̃ is dimensionless.

For tetraquark state with binding energy of order Λ below threshold, N is

independent of mQ, and of order unity.
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Then let us look at the derivative of φslow,j:

φ′slow,j(X ±
x

2
) = −N

(
Λ3m2

Q(Ej − Λv(ΛX))
) 1

4 cos

(√
mQ

Λ
δ̃j

(
(X ± x

2
)Λ
))

(3.43)

Insert φ′ back to Γ’s expression Eq. (3.36), one gets:

Γj =
|N |2Λ

3
2

mQ

∫ Xm(B)

0

dX (Ej − Λv(ΛX)))
1
2 kj(X,B)×

(
1 +O

(
Λ

mQ

))
, (3.44)

where kj(X,B) is defined as:

kj(X,B) ≡
√
mQΛ3

∫ X
2

−X
2

dx κ

(
XΛ, x

√
mQΛ,−B

Λ

)
× cos

(√
mQ

Λ
δ̃j

(
(X − x

2
)Λ
))

cos

(√
mQ

Λ
δ̃j

(
(X +

x

2
)Λ
))

(3.45)

In the expression of kj(X,B), the cosines are bounded by unity, and the in-

tegral over x yields a factor of 1√
mQΛ

, which cancels with the mQ dependence in

the factor
√
mQΛ2 before integral. Thus, kj(X,B) is of order unity or less in a Λ

mQ

expansion.

Since N is of order unity given that the tetraquark under consideration is

order O(Λ) below threshold, it is easy to see that Γj ∼ Λ2

mQ
. Thus, the scaling in

Eq. (3.14) is proved.

Therefore, we have shown model-independently that, in the heavy quark mass

limit, there exist many barometrically narrow tetraquark resonances. Though the

demonstration is for specific quantum numbers, the same argument is true for any

93



attractive channel as discussed in Section 3.2.2.

3.4 Near-threshold tetraquarks

The discussion in the previous section is for tetraquarks with binding energy

of order O(Λ). The purpose of the current section is to extend the discussion to

near-threshold tetraquarks with binding energy B that is parametrically decreasing

with mQ.

As discussed in Section 3.2.1, for near-threshold scenario, let us consider bind-

ing energy scales as:

B .
Λ2−ε

M1−ε
Q

for any εwith 0 < ε < 1 , (3.46)

where b is a dimensionless numerical constant of order unity and 0 < ε ≤ 1. The

number of tetraquarks with binding energy smaller than B is nb > b (MQ/mπ)ε/2,

which grows asmQ increases. This means there are still a large number of tetraquarks,

and the system is also in semi-classical limit.

Thus, most parts of the semi-classical analysis in the previous section are still

valid here except for the scaling of some quantities discussed below.

The energy level spacing ∆E is changed since the density of states in near

threshold region is higher than the density of states in region that is order O(Λ)

below threshold.

∆E ∼ B

nb
∼ Λ2− ε

2

m
1− ε

2
Q

(3.47)
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The derivation of the scaling of N =

(
Λ

3
2

2

∫ rB
0

dr′√
Ej−V (r′)

)− 1
2

with V (rB) =

Ej is complicated. The integral region can be divided to three parts, which have

different characteristic behaviors. We then write the full integral as the sum of these

three parts: I ≡
∫ rB

0
dr′√

Ej−V (r′)
= II + III + IIII .

These three regions are separated by the behaviors of the potential V (r), so

that we need to approximate it in three different ways. For the near threshold states

we are interested in, B . Λ2−ε

M1−ε
Q

. Recall that in the discussion below Eq. (3.22), we

have said that E is defined relative to the threshold. Let us focuses on B ∼ Λ2−ε

M1−ε
Q

,

then the eigenenergy Ej ∼ Λ2−ε

M1−ε
Q

.

In denominator, whether Ej is comparable to V (r) would greatly influence the

scaling of the integrand, so we define Region I as from r = 0 to r = r1, where r1 is

defined as the the lower end of the region where V (r) is of order Λ2−ε

M1−ε
Q

. From the long

range Yukawa-like form potential such as Eq. (3.3), it is clear that r1 ∼ 1/Λ. In most

of the region, the denominator is dominated by V (r) ∼ Λ, so the integrand is of order

1
Λ1/2 ; while near r1, the integrand is of order

m
1/2−ε/2
Q

Λ1−ε/2 . Thus, 1
Λ3/2 . II .

m
1/2−ε/2
Q

Λ2−ε/2 .

Next, define r2 as the lower end of the Region III, which is close to the turning

point at rB that V (r) is well-approximated by V (rB) +V ′(rB)(r− rB). It is easy to

see from the form of V (r) that rB ∼ 1/Λ, r2 ∼ 1/Λ, rB − r2 ∼ 1/Λ, Ṽ ′(rB) ∼ Λ3−ε

m1−ε
Q

.

Then IIII ∼ (rB − r2)
√

1
V ′(rB)(rB−r2)

∼ m
1/2−ε/2
Q

Λ2−ε/2 .

Then, region II is the region between r1 and r2. The length of this region is

still r2 − r1 ∼ 1/Λ, and the integrand is of order 1
Λ1−ε/2 , so III ∼

m
1/2−ε/2
Q

Λ2−ε/2 .

Combine the three results: I = II + III + IIII ∼
m

1/2−ε/2
Q

Λ2−ε/2 , which in turn gives
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N = (Λ
3
2

2
I)−

1
2 ∼ Λ1/4−ε/4

m
1/4−ε/4
Q

.

Finally, Γ ∼ |N |2Λ2

mQ
∼ Λ

5
2−

ε
2

m
3
2−

ε
2

Q

. Then, for near threshold tetraquark with binding

energy B ∼ Λ2−ε

M1−ε
Q

, we have Γ
∆E
∼
√

Λ
mQ

which is the same as the generic case with

B ∼ Λ in Eq. (3.16) of previous section.

3.5 Summary

This chapter has been focused on doubly heavy tetraquark with qq̄′QQ̄ config-

uration. While there already exists arguments on the existence of qq̄′QQ̄ tetraquark

in the heavy quark mass limit[217, 218], the work in this chapter showed in a model-

independent way that, in the heavy quark mass limit, many parametrically narrow

qq̄′QQ̄ tetraquark states exist, and many of them are parametrically close to thresh-

old.

This work is not directly related to experiments, since qq̄′QQ̄ near-threshold

tetraquark has not been observed. Moreover, the charm quark mass and bottom

quark mass are too small for the extreme heavy quark mass limit regime used in

here to be valid. However, this work is still of theoretical interest, since it offers

insight into near-threshold doubly heavy tetraquark systems, and the regime set

up in this section can be extended to qq̄′QQ̄ tetraquark system, which is of more

phenomenological relevance and will be discussed in next chapter.

96



Chapter 4: Tetraquarks in the heavy quark mass limit: qq̄′QQ̄

In the previous chapter, we have shown that in the heavy quark mass limit,

there exist q̄q̄′QQ tetraquark narrow resonances, with binding energy of order O(Λ)

and Λ2−ε

M1−ε
Q

(0 < ε < 1), given that at a long distance the interaction between the two

heavy quarks is attractive Yukawa-like interaction.

The purpose of this section is to use similar formalism to show the existence

of large angular momentum qq̄′QQ̄ tetraquark narrow resonance in the heavy quark

limit.

4.1 Logic of this work

The analysis in the previous chapter for q̄q̄′QQ type tetraquark cannot be

directly used to proof the existence of qq̄′QQ̄ type tetraquark. A qq̄′QQ̄ tetraquark

can decay to a more deeply bounded qq̄′QQ̄ tetraquark through emission of pions,

which is similar to the q̄q̄′QQ tetraquark, so the same analysis can be used to

deal with this decay channel. However, qq̄′QQ̄ has an extra difficulty caused by a

rearrange effect, which was not an issue in the previous q̄q̄′QQ case. In this case,

the qq̄′QQ̄ can decay into heavy quarkonium plus one or more light meson, which

renders the regime in the previous chapter invalid.

97



If one can show that this decay to heavy quarkonium channel is suppressed by

heavy quark mass under certain regimes, then qq̄′QQ̄ will exist as narrow resonance

in the heavy quark mass limit.

It is useful to take a look at the spectrum of the qq̄′QQ̄ tetraquark system.

Consider the separation r between heavy quark Q and heavy anti-quark Q̄. When

r is very large, it is easy to see that the qq̄′QQ̄ system will look like a bound state

of heavy meson and heavy anti-meson. This is similar to the case in the previous

chapter since there are many narrow tetraquark resonances, the spectrum of the

light degrees of freedom is gapped. However, at a very short distance, Q and Q̄

are close to each other and forms a heavy quarkonium, and the whole system may

decay to heavy quarkonium plus one or more light mesons. Since the light meson

can carry a continuous range of energy, the spectrum of the light degrees of freedom

in this region is gapless.

The logic of this chapter is: at first we make some assumptions so that the

potential description is valid, then we will prove the tetraquarks states exist, and

the assumptions are indeed valid. Thus, the analysis is self-consistent.

In the heavy quark mass limit, we make the following assumptions:

• The system stays in the gapped region and away from the gapless region.

Thus, the system will not decay into heavy quarkonium plus one or more light

mesons.

• There exist many tetraquarks in this region, so that semi-classical analysis can

be used.
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• These tetraquarks’ decay width is parametrically narrower than the energy

level spacing. Thus, in the heavy quark mass limit, the potential description

is valid, and one can use Schrödinger equation description.

• The separation r of Q and Q̄ in these states are large enough so that Yukawa-

like potential dominants, which will be used to prove the existence of many

tetraquark narrow resonances.

It is easy to see that the most important part is to show the wave function

of the system stays away from the gapless region and with r large enough so that

Yukawa-like potential is valid. Then one can use an analysis the same as the previous

chapter to prove our arguments.

Denote the potential as V (r), which depends on a single degree-of-freedom r

that is the distance between heavy quark and heavy anti-quark. The key point is

to notice that V (r) may have a potential well for a system with certain angular

momentum L. Bounds states must exist inside this potential well in the heavy

quark mass limit. If the location of the potential well rwell is at the gapped domain,

the tunneling rate of wave function centered at this well to gapped region will be

parametrically suppressed by mQ. If at rwell, the potential is indeed Yukawa-like,

then all the previous assumptions are indeed true, and the proof is self-consistent.

In the next section, we will use these assumptions to show that in the heavy

quark mass limit, with large but not too large angular momentum L, many tetraquark

states exists at rwell as large as φ
mπ
≈ 2.28 fm, where φ stands for the golden ratio

φ ≈ 1.618. With such a long separation between heavy quark and heavy anti-
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quark, the Yukawa potential is expected to be dominant because of phenomenolog-

ical knowledge of nucleon-nucleon potential[224], and the system is expected to be

in a gapped domain. Thus, as in the previous chapter, the analysis is self-consistent

and many tetraquark states exist as resonances parametrically narrow in mQ.

4.2 Existence of the potential well

The goal of this section is to show that in the heavy quark mass limit, based

on the assumptions in the previous section, a potential well with a minimum in the

gapped region exists for channels with large but not too large angular momentum.

This in turns leads to the existence of many tetraquark states in this potential well

at a proper location.

As mentioned in the assumption, the potential V (r) is Yukawa-like at large

distances. Notice that when angular momentum L is large, the centrifugal term

1
µ
l(l+1)
r2

matters, which creates a centrifugal barrier. For large angular momentum,

there may be a tensor force and mixing channel effects, but as discussed in the

previous chapter, one can still reduce the problem to a single degree-of-freedom up

to corrections that can be neglected in the heavy quark mass limit.

Generally, at long distance r, the potential is written as:

V (r) = −ae
−mπr

r
+
l(l + 1)

2MQr2
, (4.1)

where a is a constant coefficient, and MQ is the mass of heavy meson. MQ is equal

to the heavy quark mass mQ with whose relative size corrections vanishes in the
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heavy quark limit.

Let us think about the two terms in this potential. Denote

V (r) = −VY (r) + VL(r) (4.2)

VY (r) = a
e−mπr

r

VL(r) =
l(l + 1)

2MQr2

Since VL should be comparable to VY in the area we are interested in, it is clear

that the angular momentum should scale as L ∼ √mQ. Otherwise, VL is negligible

in the heavy quark mass limit.

Generally, the functions look like Fig. 4.1, where the region for small r is not

plotted, since the Yukawa form is only dominant when r is large enough, and the

potential description is not valid when r is too small.

1 2 3 4 5
r*mπ

0.2

0.4

0.6

0.8

1.0

V/mπ

V=VL-VY

VY

VL

Figure 4.1: A potential without a minimum.
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r*mπ

0.2

0.4

0.6

0.8

V/mπ

V=VL-VY

VY

VL

Figure 4.2: A potential with a potential well.

VY decreases exponentially in r, while VL decreases polynomially in r. Poten-

tial well is a local minimum, so we should consider the derivative of the potential

V ′(r) = V ′L(r) − V ′Y (r), and find where it equals 0, as shown in the Fig.4.2. Both

V ′L(r) and V ′Y (r) are negative. When r is extremely large, |V ′Y (r)| < |V ′L(r)| so

V ′(r) < 0. When r is not very large, it is possible that, |V ′Y (r)| < |V ′L(r)| is always

true as in Fig.4.3, such that there is no local minimum in the domain we are inter-

ested in. However, it is also possible that, |V ′Y (r)| > |V ′L(r)| for not very large r,

then one can find a potential well with a minimum centered at location rwell such

that V ′(rwell) = 0 and V ′′(rwell) < 0.

Whether the local minimum exists is determined by the relative size of the

coefficients of these two potential terms, which can be arbitrarily tuned by fixing

the angular momentum L. Although L is discrete in the heavy quark mass limit, the

coefficient l(l+1)
2MQ

can be arbitrarily close to any positive value when proper angular
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Figure 4.3: The derivative of potential terms when there is no potential well.

momentum l ∼ √mQ is taken.

As the basic feature of the Schrödinger equation, when the mass approaches

infinity, if a potential well exists, no matter how shallow the potential well is, there

must exist a large number of bound states. This means, in the heavy quark limit,

the semi-classical analysis can be used.

If we can show there exist rwell that is far away from the gapless region of

the energy spectrum, then the system is exponentially hard to tunnel to the gapless

domain because of simple quantum mechanics argument. Moreover, there is another

reason we want rwell to be large: the Yukawa-like potential is not dominant when Q

is too close to Q̄.

Therefore, the question now becomes finding the local minimum point rwell(a, l)

of Eq.4.1, and tuning l to obtain the maximum value of rwell(a, l).
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Figure 4.4: The derivative of potential terms when there is a potential well.

We rewrite Eq.4.1 in dimensionless form as:

f(t) ≡
V ( t

mπ
)

amπ

= −e
−t

t
+
k

t2
, (4.3)

where t ≡ mπr and k ≡ l(l+1)mπ
2amQ

. When mQ is large enough, by varying l, k can be

arbitrarily close to any positive value.

Denote tmin(k) ≡ mπrwell as the position of minimum point of f(t), and denote

the largest value of tmin(k) as toptimal,

toptimal ≡ max
k∈(0,∞)

{tmin(k)} = max
k∈(0,∞)

{arg min
t∈(0,∞)

f(t)} (4.4)

After solving this optimization problem, one can find toptimal = φ ≡ 1+
√

5
2

,

which happens to be the famous golden ratio, with corresponding k ≈ 0.42. Thus,

the largest rwell is roptimal ≡ toptimal

mπ
≈ 2.28 fm.
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At roptimal > 2 fm, Q is far away from Q̄, such that the system looks like

a hadronic molecular of heavy meson and heavy anti-meson. Thus the system is

in the gapped domain, whose upper end is around rgapless ∼ 1/Λ, where Λ is the

typical hadronic scale. Also, the previous assumption that the Yukawa potential

is dominant over the short distance interaction is expected to be valid because

of phenomenological knowledge of nucleon-nucleon potential[224]. This will hold

except in unnatural models where the short distance interaction is exceptionally

large at such long distance.

Even if the one-pion-exchange Yukawa-like interaction is not dominant be-

cause of exceptionally strong short-distance interaction, the final argument about

the existence of tetraquark still holds, provided the correction to the potential is

small so that the exact location of the potential well rwell is still inside the gapped

regime.

Since the possibility that the system tunnels to gapless domain can be ne-

glected in the heavy quark mass limit, the system will not decay into heavy quarko-

nium plus one or more light mesons.

The tetraquark can still decay to a more deeply bounded tetraquark in the

same potential well by emission of pions. This may render the Schrödinger equation

description invalid. However, one can follow the same analysis as in the previous

section, to show that, though these tetraquarks are not stable due to pion emission,

their width is parametrically narrower than the energy level spacing. Thus, a large

number of qq̄′QQ̄ narrow resonances exist in the potential well.

105



4.3 Summary

This chapter has been focused on tetraquark with one heavy quark and one

heavy anti-quark. It is shown that qq̄′QQ̄ narrow resonances with appropriate large

angular momentum exist in the extreme heavy quark mass limit. While there has

been much experimental evidence of qq̄′QQ̄ states, these observed states haven’t

known with large momentum configuration. The deviation between this theoretical

work and the reality may well be a consequence of that the heavy quark mass in the

real world is not sufficiently heavy for the arguments in this chapter to hold. How-

ever, this work may still shed light on the understanding of tetraquarks’ structure

of this type.
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Chapter 5: Overall summary

Lattice QCD method and finding new systematic expansion regimes are two

important approaches to handle non-perturbative QCD problems. The main body

of this dissertation consists of three works related to these approaches.

In Chapter 2, we explored a subtle relationship between the infinite volume

limit and the sign problem in the context of gauge theories with a θ-term. When

the energy density function ε(θ) has a point of inflection between −π and π, in

certain regions one cannot obtain the correct ε(θ) from ε̃(q), which is the infinite

volume limit of ε̃(q, V ), via direct summation. This shows the severity of the sign

problem. As a result, high accuracy of ε̃(q, V ) is required in order to not spoil the

cancellation among different topological sectors. However, there exist regions where

ε̃(q) is sufficient to obtain ε(θ) by direct summation. This is remarkable because

there are power-law differences in the volume between ε̃(q, V ) and ε̃(q), which could

have spoiled the summation. The reason why ε̃(q) turns out to be sufficient in these

regions can be explained using the saddle point approximation method. When V is

large, the sum over topological sectors can be written as a sum of integrals, which

is dominated by a single integral. This single integral may be approximated by a

saddle point or a branch point. While this analysis has focused on a theoretical
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issue, it may be helpful to extracting information about ε(θ) from practical lattice

calculations.

In Chapter 3, we focused on tetraquarks containing two heavy quarks. While

it has long been known that deeply bound tetraquarks must exist in the heavy

quark limit of QCD[217, 218], this work showed that many parametrically narrow

tetraquarks that are parametrically close to the threshold also must exist in this

limit. A framework based on systematic expansions in terms of 1/mQ is developed

to analyze heavy tetraquarks. The full QCD Hamiltonian in the sector of the exotic

quantum numbers can be decomposed into a piece describable via the Schrödinger

equation and a remainder. The former can be used to deduce the existence of near-

threshold tetraquarks in this circumstance. The remainder turns the exotic bound

states into parametrically narrow resonances. While the result obtained here may

be of theoretical interest, it is of limited direct phenomenological relevance because

tetraquarks with two heavy quarks have yet to be observed experimentally. This

may be because they are much less likely to form than tetraquarks containing a

heavy quark and a heavy antiquark in particle experiments. It is also possible that

charm or even bottom quarks are not sufficiently heavy for the bound states to form.

However, the result here minimally shows that near-threshold narrow exotic hadron

resonances can arise naturally in QCD when quarks are heavy enough.

In Chapter 4, we focused on tetraquarks containing a heavy quark and a heavy

antiquark. Unlike the problem in the previous chapter where the strong interaction

width of the tetraquarks arises solely due to channels in which the decay is into light

mesons plus more deeply bound tetraquarks, the tetraquarks considered in Chapter
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4 can also decay into light mesons plus heavy quarkoniums. This new decay channel

is shown to be suppressed in the extreme heavy quark mass limit if there exists a

potential well in the appropriate region. As an example, qq̄′QQ̄ narrow resonances

with a proper large angular momentum must exist in the extreme heavy quark mass

limit. However, so far, none of qq̄′QQ̄ candidates seen in experiments has a large

angular momentum. It may be because the heavy quark mass is not large enough in

the real world for this scenario to be valid. Nevertheless, this work provides insight

into the relationship between the existence of tetraquarks in QCD and the heavy

quark mass limit.
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[14] Martin Lüscher. Exact chiral symmetry on the lattice and the ginsparg-wilson
relation. Physics Letters B, 428(3-4):342–345, 1998.

[15] David B Kaplan. A method for simulating chiral fermions on the lattice. arXiv
preprint hep-lat/9206013, 1992.

[16] Yigal Shamir. Chiral fermions from lattice boundaries. Nuclear Physics B,
406(1-2):90–106, 1993.

[17] Yigal Shamir. Anomalies and chiral defect fermions. Nuclear Physics B,
417(1-2):167–180, 1994.

[18] W Keith Hastings. Monte carlo sampling methods using markov chains and
their applications. 1970.

[19] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Au-
gusta H Teller, and Edward Teller. Equation of state calculations by fast
computing machines. The journal of chemical physics, 21(6):1087–1092, 1953.

[20] G Parisi. Common trends in particle and condensed matter physics. proceed-
ings, winter advanced study institute. Les Houches, France, 1983.

[21] G Peter Lepage. The analysis of algorithms for lattice field theory. Technical
report, 1989.

[22] William Detmold, Silas Beane, Konstantinos Orginos, and Martin Savage.
Nuclear physics from lattice qcd. Progress in Particle and Nuclear Physics,
66(JLAB-THY-10-1166; DOE/OR/23177-1484; arXiv: 1004.2935), 2011.

[23] Gerard ’t Hooft. A planar diagram theory for strong interactions. In The
Large N Expansion In Quantum Field Theory And Statistical Physics: From
Spin Systems to 2-Dimensional Gravity, pages 80–92. World Scientific, 1993.

[24] Gerard ’t Hooft. A two-dimensional model for mesons. In The Large N Expan-
sion In Quantum Field Theory And Statistical Physics: From Spin Systems
to 2-Dimensional Gravity, pages 94–103. World Scientific, 1993.

[25] Edward Witten. Baryons in the 1n expansion. Nuclear Physics B, 160(1):57–
115, 1979.

[26] Edward Witten. Large n chiral dynamics. Annals of Physics, 128(2):363–375,
1980.

[27] Edward Witten. Instatons, the quark model, and the 1/n expansion. Nuclear
Physics B, 149(2):285–320, 1979.

111



[28] Gabriele Veneziano. U (1) without instantons. Nuclear Physics B, 159(1-
2):213–224, 1979.

[29] Steven Weinberg. Tetraquark mesons in large-n quantum chromodynamics.
Physical review letters, 110(26):261601, 2013.

[30] Marc Knecht and Santiago Peris. Narrow tetraquarks at large n. Physical
Review D, 88(3):036016, 2013.

[31] GC Rossi and Gabriele Veneziano. The string-junction picture of multiquark
states: an update. Journal of High Energy Physics, 2016(6):41, 2016.

[32] Thomas D Cohen. Quantum number exotic hybrid mesons and large nc qcd.
Physics Letters B, 427(3-4):348–352, 1998.

[33] Thomas D Cohen and Richard F Lebed. Tetraquarks with exotic flavor quan-
tum numbers at large n c in qcd (as). Physical Review D, 89(5):054018, 2014.

[34] Elizabeth Jenkins and Aneesh V Manohar. 1/n expansion for exotic baryons.
Journal of High Energy Physics, 2004(06):039, 2004.

[35] Aneesh V Manohar. Large n qcd. arXiv preprint hep-ph/9802419, 1998.

[36] Sidney Coleman. Aspects of symmetry: selected Erice lectures. Cambridge
University Press, 1988.

[37] Biagio Lucini and Marco Panero. Introductory lectures to large-n qcd phe-
nomenology and lattice results. Progress in Particle and Nuclear Physics,
75:1–40, 2014.

[38] Richard F Lebed. Phenomenology of large n c qcd. Czechoslovak Journal of
Physics, 49(9):1273–1306, 1999.

[39] Howard Georgi. Effective field theory. Annual review of nuclear and particle
science, 43(1):209–252, 1993.

[40] Aneesh V Manohar. Effective field theories. In Perturbative and nonperturba-
tive aspects of quantum field theory, pages 311–362. Springer, 1977.

[41] Antonio Pich. Effective field theory. arXiv preprint hep-ph/9806303, 1998.

[42] Cliff P Burgess. An introduction to effective field theory. Annu. Rev. Nucl.
Part. Sci., 57:329–362, 2007.

[43] Ira Z Rothstein. Tasi lectures on effective field theories. arXiv preprint hep-
ph/0308266, 2003.

[44] Antonio Pich. Chiral perturbation theory. Reports on Progress in Physics,
58(6):563, 1995.

112



[45] Stefan Scherer. Introduction to chiral perturbation theory. In Advances in
Nuclear Physics, Volume 27, pages 277–538. Springer, 2003.

[46] Veronique Bernard. Chiral perturbation theory and baryon properties.
Progress in Particle and Nuclear Physics, 60(1):82–160, 2008.
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