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The Borromean halo nucleus 6He has been studied by a kinematically complete measurement of Coulomb 
and nuclear breakup into α + 2n on Pb and C targets at 70 MeV/nucleon. Fully quantum-mechanical 
four-body breakup calculations reproduce the energy and angular differential cross sections below 
Erel ∼ 1 MeV for both targets. The model used here reproduces the 6He ground-state properties as well 
as α-n and n-n scattering data and predicts an average opening angle 〈θnn〉 of 68◦ between the two 
halo neutrons. However, the model underestimates the breakup cross sections for higher Erel, indicating 
a possible contribution from the inelastic breakup. Alternatively, we examine the empirically modified 
calculations that reproduce the energy-differential cross sections for a wide range of scattering angles 
for both targets. The extracted B(E1) peaks at Erel ∼ 1.4 MeV and amounts to 1.6(2) e2 fm2 for Erel ≤
20 MeV, resulting 〈θnn〉 = 56+9

−10 degrees. In either interpretation, the current results show evidence of 
the dineutron spatial correlation in 6He.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
Neutron halo is an intriguing quantum tunneling phenomenon 
observed in nuclei when we approach the neutron dripline. The 
extended spatial distribution of the halo neutron(s) induces large 
interaction cross section [1], narrow core momentum distribu-
tion [2,3], and enhanced electric dipole strength, B(E1), at low 
excitation energies (Ex) ∼ 1 MeV, known as the soft E1 excita-
tion [4–13]. Recent high-lights for halo nuclei are the observation 
of deformation-driven halo in the island-of-inversion region, for 
instance 29Ne [14], 31Ne [15], and 37Mg [16]. Extensive experi-
mental efforts have also been devoted to the Borromean 2n-halo 
nuclei, such as 6He [5,17–29], 11Li [2–4,11,30–38], 14Be [39,40], 
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17,19B [41–47] and 22C [48–50], where any of the two-body con-
stituent subsystems are unbound but the whole three-body system 
is bound. One of the important questions regarding the Borromean 
2n-halo nuclei is if the two halo neutrons are correlated and spa-
tially compact as “dineutron” [51–53]. Such dineutron structure 
was first predicted by A. B. Migdal as appearing on the nuclear 
surface [51] although this has not yet been established experi-
mentally. So far, such dineutron correlation has been hinted in the 
2n transfer [22,26], the Coulomb breakup [11,47] and the charge 
radius measurements [33]. Very recently, the quasi-free neutron 
knockout reaction also showed the existence of the dineutron in 
11Li [54].

The large soft E1 excitation strength for the 1n-halo nuclei, 
originating from the long tail of the halo wave function, has been 
understood as having a nonresonant character [6–10,12]. However, 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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despite considerable experimental and theoretical efforts, the E1 
excitation of the Borromean 2n-halo nuclei is still elusive [13]. 
The observed E1 excitation of 11Li from the Coulomb dissociation 
that peaks at Ex ∼ 0.6 MeV [11] is understood as a nonresonant 
enhancement from direct breakup, while low-lying dipole reso-
nances located at Ex ∼ 1 MeV were recently identified in the (d, d′) 
[37] and (p, p′) [38] reactions. The B(E1) distributions of 6He from 
two previous experiments at 240 MeV/nucleon at Gesellschaft für 
Schwerionenforschung (GSI) [5] and at 23.9 MeV/nucleon at Michi-
gan State University (MSU) [23] are not consistent with each other. 
Further studies are needed to reach a unified understanding of 
the two-neutron correlations as well as the breakup mechanism 
of Borromean nuclei.

Among all the known Borromean nuclei, 6He is the lightest 
and simplest that can be treated as α+n+n. The α core is nearly 
inert due to its large neutron and proton separation energies of 
about 20 MeV and no bound excited states. The ground state of 
6He has been extensively studied both experimentally and the-
oretically. The bulk properties, such as mass [28], charge radius 
[24,25,28] and matter radius [55–57], have been measured with 
high precision. The neutron knockout reactions showed that the 
valence-neutron configuration of 6He is dominated by (p3/2)

2 with 
small mixtures of (p1/2)

2 around 7% [19,21] and (s1/2)
2 in the level 

of 5–10% [27,29]. Theoretically, 6He has been intensively studied 
using the α+n+n three-body models [58–69], in which the αn and 
nn interactions are known with little ambiguity [70–72]. We note 
that due to the small number of nucleons, ab initio type calcula-
tions of 6He are also available [73–76]. As such, the spectroscopy 
of 6He is of great importance since this can provide a stringent test 
for those advanced theories in order to assess the two-nucleon and 
three-nucleon interactions and many-body correlations at extreme 
isospin conditions. We should also note that the dynamical process 
such as breakup reactions can now be studied microscopically for 
the Borromean 2n-halo nuclei using the advanced four-body CDCC 
(continuum-discretized coupled-channels) method [77,78].

This Letter reports the kinematically complete measurements 
of Coulomb and nuclear breakup reactions of 6He on Pb and C tar-
gets at 70 MeV/nucleon with much higher statistics than previous 
works. We show here the first full microscopic analysis of the 6He 
breakup reactions using the state-of-the-art CDCC calculations at 
intermediate energies, so that one can now discuss the Borromean 
structure of 6He and its breakup dynamics consistently.

The experiment was performed at the RIKEN Accelerator Re-
search Facility. A secondary 6He beam was produced through frag-
mentation of a 100 MeV/nucleon 18O primary beam on an 8 mm
thick 9Be target and purified using the RIKEN Projectile Frag-
ment Separator [79]. The 6He momentum acceptance was set 0.1%, 
where purity of 96% and intensity of ∼3×104 pps were achieved. 
The 6He particles were identified event-by-event using the energy 
loss (�E) and time of flight (TOF) information. The 6He beam, 
tracked by two beam drift chambers (BDCs), then bombarded a 
783 mg/cm2-thick natural Pb target or a 347 mg/cm2-thick C tar-
get, with mid-target energy of 70 MeV/nucleon. The empty-target 
run was also performed to measure the background events gen-
erated by other beam-line materials instead of the target, which 
were then subtracted in the offline analysis.

The current experimental setup was nearly identical to the one 
adopted in the 11Li Coulomb breakup measurement [11], except 
that we did not measure the γ -rays as α has no bound excited 
states. The charged fragments following the breakup reaction were 
bent by a dipole magnet and tracked by two drift chambers (MDC 
and FDC) located upstream and downstream of the magnet. A plas-
tic scintillator array (HOD) consisting of seven 1 cm thick plastic 
scintillator slats was used to measure the �E and TOF of the frag-
ments. Particle identification was performed by combining the �E, 
TOF with the magnetic rigidity information from the tracking. The 
2

Table 1
Inclusive two-neutron removal cross sections of 6He on Pb and C targets compared 
with previous data measured at different incident beam energies [5,23].

Energy 
(MeV/nucleon)

Pb(6He, α)X 
(mb)

(6He, α)X 
(mb)

Ratio

23.9 [23] 1700(100) 360(25) 4.7(4)
70 (present) 1184(64) 242(10) 4.9(2)
240 [5] 1150(90) 190(18) 6.1(7)

momentum of the fragments was deduced from the TOF as well as 
the tracking results of the BDCs and MDC. The neutrons were de-
tected by a plastic scintillator array called NEUT consisting of two 
detector walls called NEUT-A and NEUT-B. [11]. Each wall of NEUT 
consisted of two adjacent layers of plastic scintillator bars, each of 
which was coupled to two photonmultiplier tubes at both ends to 
record both the timing and the charge signals. The front surface of 
NEUT-A and NEUT-B was located at 4.684 m and 5.872 m respec-
tively, downstream of the target, covering an angular range from 
−8.0◦ to +17.5◦ in the horizontal direction and ±4.4◦ in the ver-
tical direction. A thin layer of plastic veto detectors located in front 
of NEUT-A were used to reject charged particle background. Total 
1n detection efficiency of 23.0(11)% and TOF resolution of σ ∼ 450 
ps were obtained, using the 7Li(p,n)7Be(g.s.+0.43 MeV) reaction. 
In the case of two-neutron detection for Borromean nuclei, rejec-
tion of cross-talk signals caused by neutron scattering is required 
[11,80]. In the present work, the cross-talk rejection procedures 
detailed in Ref. [11] were applied. We note that the present ex-
perimental setup was sufficiently sensitive to the decay of 6He at 
low excitation energies down to the α+n+n decay threshold, as 
demonstrated in Fig. 1 of Ref. [11].

The inclusive two-neutron removal cross sections σ−2n
1 of 6He 

on Pb and C targets were first examined and compared in Ta-
ble 1 with previous works at different incident beam energies. The 
quoted errors of σ−2n from present work include both the statisti-
cal (3%) and the systematic (4% for the Pb target, 3% for the C tar-
get) errors, with the latter mainly originating from the acceptance 
correction. The current σ−2n on the C target is higher than that 
at 240 MeV/nucleon [5], and smaller than that at 23.9 MeV/nu-
cleon [23], consistent with the energy dependence of σ−2n from 
the eikonal model calculations [81,82]. σ−2n on the Pb target are 
about 5 times larger than those on the C target for all the three 
energies. Such a large factor shows the dominance of electromag-
netic dissociation process for 6He breakup on a high-Z target, as 
expected for halo nuclei [2].

The experimental differential cross sections as a function of 
the α-n-n relative energy (Erel) and the scattering angle in the 
center-of-mass frame (θcm) are shown in Fig. 1. The integrated 
cross sections are 1105 ± 19 (stat) ± 87 (sys) mb (Erel ≤ 6 MeV, 
θcm ≤ 7◦) and 115 ± 3 (stat) ± 9 (sys) mb (Erel ≤ 6 MeV, θcm
≤ 10◦) for Pb and C targets, respectively. The quoted systematic 
uncertainties arise mainly from the estimation of the two-neutron 
detection efficiency. The experimental spectra were compared to 
four-body CDCC calculations that treats both nuclear and Coulomb 
breakup processes simultaneously. In the calculations, the ground 
state of 6He was described within a three-body model as detailed 
in Ref. [67], which reproduces the 2n separation energy, the matter 
and charge radii of 6He. The scattering wave functions of 6He were 
expanded by a series of wave functions including the ground- and 
discretized continuum states obtained using the pseudostate dis-
cretization method [83,84]. We employed the KKNN [70] and the 

1 Here and in Ref. [23], σ−2n is the inclusive cross section of 6He → α + X, 
where we do not consider any conditions for neutrons, and was denoted as σsum in 
Ref. [5]. σ−2n in Ref. [5] was used as the 2n-removal cross section where the two 
neutrons were both out of the acceptance of the neutron detectors.
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Fig. 1. Breakup cross sections as a function of the three-body relative energy for (a) 
6He + Pb with θcm ≤ 7◦ and (b) 6He + C with θcm ≤ 10◦ . The insets show the scat-
tering angular distributions in the center-of-mass frame of 6He + target. θgr denotes 
the grazing angle of 3.45◦ . The data is compared with the four-body CDCC calcu-
lations (black solid lines) decomposed to 0+ (magenta dotted-dash lines), 1−(red 
dashed lines) and 2+ (blue dashed lines) continuum states.

Minnesota [71,72] potentials for the internal αn and nn interac-
tions, respectively, which reproduce the corresponding scattering 
data. The double folding model was adopted to construct the opti-
cal potentials for the n-target and α-target systems using the JLM 
effective nucleon-nucleon interactions [85]. It is known that the 
normalization factor for the imaginary part of the JLM interaction, 
NI , is required [86–88]. Here, NI is chosen to be 0.1 and a reason-
able variation of NI from 0.1 to 0.6 affects the cross sections at 
forward angles only slightly, less than 10% for Erel ≤ 1 MeV. The 
calculation incorporated 0+ , 1− , 2+ continuum states, while 3−
state was found negligible.

As shown in Fig. 1, the CDCC calculations reproduce well the 
differential cross sections for C and Pb targets below Erel ∼ 1 MeV, 
while the cross sections at higher excitation energies are under-
estimated. Note that theoretical curves have been convoluted with 
the experimental resolutions.2 The breakup cross sections for the C 
target are dominated by a narrow peak located at Erel ∼ 0.85 MeV, 
coinciding with the known 2+

1 state of 6He with excitation energy 
of Ex = 1.8 MeV [89] (Ex = Erel + S2n, where S2n = 975.46(23) keV 
[28]). The good reproduction of the data indicates that the nuclear 
breakup effects are well controlled in the current CDCC calcula-
tions. The Pb target data shows a large bump at low relative en-
ergies just above the 2n breakup threshold, a characteristic feature 
inherent to neutron halo, known as soft E1 excitation. The mul-
tipole decomposition of the calculation shows that the cross sec-
tions are dominated by the excitation to the 1− state, as expected. 
Around the peak, however, also the 2+ contribution is found to 
be important. The calculations underestimate the cross sections at 
higher excitation energies, probably due to the missing of the in-
elastic breakup processes, such as the target excitation. In this case, 

2 The energy resolutions (1σ ) have the form of �Erel = 0.027 +0.177 ×E0.654
rel MeV 

for the Pb target and �Erel = 0.016 + 0.151 × E0.655
rel MeV for the C target.
3

Fig. 2. Breakup cross sections as a function of the three-body relative energy for 6He 
+ Pb with angular cuts of (a) θcm ≤ 3◦ and (b) θcm ≤ 7◦ . The data is compared 
with the “modified CDCC” calculations. See text for details.

such contributions must be subtracted first in extracting the B(E1) 
distribution from the experimental breakup cross sections. Accord-
ingly, the B(E1) distribution will be represented by the result of 
the three-body model adopted in the calculation (see solid black 
line in Fig. 3).

As an alternative scenario, we may tune the three-body model 
Hamiltonian to reproduce the measured breakup cross sections, as-
suming that the experimental data purely correspond to the elastic 
breakup events. To do this, we modify the 1− states of 6He via 
changing the α-n interaction and introduce a multiplying factor to 
the coupling between the 0+ and 1− states. The value of the mul-
tiplying factor and its associated uncertainty were obtained based 
on χ2 minimization. The CDCC calculation with this empirically 
modified model is referred to as “modified CDCC”. As shown in 
Fig. 2, the modified CDCC results in a slightly broader 1− com-
ponent comparing with the original calculation in Fig. 1. The cal-
culations reproduce consistently the experimental breakup cross 
sections for a wide range of different angular cuts (θcm ≤ θcut, with 
3◦ ≤ θcut ≤ 7◦). Fig. 2 shows two representative cases of θcut = 3◦
and 7◦ , where the former θcut is close to the grazing angle of 
θgr = 3.45◦ . We also compare the data to the one-step Coulomb 
breakup calculations that do not consider nuclear breakup and 
multi-step effects. The one-step calculations overestimate the cross 
sections for θcut = 7◦ , while they agree with the data in addition to 
the modified CDCC calculation for θcut = 3◦ . This agreement is due 
to the fact that the nuclear breakup effect offsets the multi-step 
effect for θcm ≤ 3.0◦ , in which the former increases the cross sec-
tion while the latter decreases it. We found that such agreement 
is obtained only in the angular range of θcut = 3◦–4◦ . The effects 
of multi-step and nuclear breakup are found strong in 6He, even 
in some range of θcut < θgr, which is different from the situation in 
11Li where θcut below θgr worked for extracting the Coulomb one-
step component [11]. As such, we adopt here a different approach 
to extract B(E1) empirically using the modified CDCC.

The B(E1) extracted using the modified CDCC for the current 
data is shown in Fig. 3, where it is compared with the B(E1) evalu-
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Fig. 3. The B(E1) distribution obtained by the present work compared with previous 
results from GSI [5] and MSU [23]. The experimental B(E1) distributions are also 
compared with the three-body calculations (black solid line from this work, red 
dashed line from Ref. [90]) and ab initio six-body calculation (blue dotted line) [91].

ations from the previous experiments [5,23]. The current B(E1) dis-
tribution has been determined to reproduce the energy-differential 
breakup cross sections consistently for θcut from 3 to 7 degrees. 
The error band arises mainly from the estimation of the param-
eters in the modified CDCC (7%) and the two-neutron detection 
efficiency (8%). Our B(E1) distribution shows a low-energy bump at 
Erel ∼ 1.4 MeV, being shifted ∼0.5 MeV lower than the MSU result 
which has large statistical uncertainty. The low-energy bump was 
missing in the GSI result. Above 2 MeV, the current and the GSI 
data exhibit consistently considerable strength extending to higher 
excitation energies.

The energy-integrated B(E1) strength is obtained to be 1.1(1) e2

fm2 for Erel ≤ 6 MeV. This value is consistent, but with better 
precision, compared to the previous GSI result of 0.87(26) e2 fm2

(see Fig. 4 in Ref. [5]). The current result in terms of Weisskopf 
unit is 5.2(5) W.u., nearly as large as the so-far strongest case of 
11Li (∼4.5 W.u., for Erel ≤ 3 MeV) [11], demonstrating the soft-
E1 excitation characteristics of 6He. The B(E1) spectrum of 6He is 
much broader compared to the spectrum of 11Li that peaks at very 
low relative energies around 0.3 MeV [11]. This could be due to 
the different (s1/2)

2 probabilities in their ground states and the 
different core-n final-state interactions [92,93].

Comparing with theoretical predictions, the three-body model 
used in our original CDCC calculations (black solid line) repro-
duces the present dB(E1)/dE below Erel ∼ 1 MeV, while it under-
estimates the strength at higher excitation energies, as expected 
from Fig. 1(a). It is interesting to note that a very recent three-
body calculation by Grigorenko et al. [90] (red dashed line), that 
may have improved the older results by Danilin et al. [61], also 
reproduces the current dB(E1)/dE below Erel ∼ 1 MeV. We also 
compare our B(E1) distribution to the ab initio six-body calculation 
[91,94] employing the Argonne two-nucleon potential AV4′ [95]. 
However, this calculation does not show any low-energy bump at 
Erel ∼ 1 MeV. This indicates that the missing components in AV4′ , 
such as the tensor and spin-orbit forces, could play a significant 
role in describing photoabsorption of the Borromean system. It is 
thus desirable that full ab initio calculations be performed in the 
near future to assess the nucleon-nucleon and three-nucleon forces 
at extreme neutron-to-proton ratios. Note also that the present 
results would also serve as a benchmark for a wide range of few-
body calculations dealing with the electric response of 6He, for 
instance the models in Refs. [58–60,63–66,69,77,96–100].

We now extract the geometrical information on the three-body 
structure of 6He. First, one can extract the mean-square distance 
4

between the α core and the center-of-mass of the two halo neu-
trons, 〈r2

c−2n〉, as the non-energy weighted E1 cluster sum rule 
shows that this distance is proportional to the total integrated 
B(E1) strength [101,102]:

B(E1) =
+∞∫

−∞
dE

dB(E1)

dE
= 3

π

(
Ze

A

)2 〈
r2

c−2n

〉
. (1)

When we adopt the modified CDCC estimation, the integrated 
B(E1) strength up to Erel ≤ 20 MeV amounts to 1.6(2) e2 fm2. We 
thus obtained 

√
〈r2

c−2n〉 = 3.9(2) fm. In the three-body model of 
2n-halo nuclei, the core-2n distance is related to the mean-square 
distance between the two halo neutrons, 〈r2

nn〉, by [103–105]

〈r2
m〉 = Acore

A
〈r2

m〉core + 2Acore

A2
〈r2

c−2n〉 + 1

2A
〈r2

nn〉, (2)

where A is the mass number of the halo nucleus (namely 6 in this 
case) and 〈r2

m〉 is the mean-square matter radius. The root-mean-
square matter radii of α and 6He are 1.463(6) fm and 2.49(4) fm, 
respectively, deduced from the charge-radius measurement [106], 
the interaction cross section [17,107] and the elastic scattering 
data [57]. We thus extract the value of 

√
〈r2

nn〉 = 4.1(7) fm for 6He. 
Note that this value is smaller than the value of 5.9 ± 1.2 fm ob-
tained using two-neutron interferometry technique [108], which 
is more sensitive to the populated continuum states instead of 
the ground state configurations [109]. Combining the core-2n dis-
tance and n-n distance, we obtain the mean n-n opening angle of 
〈θnn〉 = 56+9

−10 degrees. The extracted opening angle is significantly 
smaller than the average opening angle of 90◦ for two noncor-
related neutrons. This indicates that 6He has a sizable dineutron 
correlation.

We should note that the modified CDCC assumes a three-body 
model adjusted to reproduce the breakup data without incorpo-
rating inelastic breakup effects, such as the target excitation. As 
mentioned, the original CDCC calculation shown in Fig. 1, which 
uses the exact interactions between the constituent two-body sys-
tems, underestimates the breakup data for Erel >1 MeV. The reason 
could be attributed to the missing of the inelastic effects in the 
calculation. If it is the case, there is still a possibility that the true 
B(E1) distribution is closer to the black solid line in Fig. 3, where 
slightly smaller dineutron correlations are predicted (〈θnn〉 = 68◦). 
Evaluating the B(E1) differences between the exact three-body cal-
culation and the empirical one extracted with modified CDCC is an 
open question for future experimental and theoretical works.

In summary, we have performed the Coulomb and nuclear 
breakup of 6He on Pb and C targets at 70 MeV/nucleon. State-of-
the-art four-body CDCC calculations reproduce the obtained energy 
and angular differential cross sections below Erel ∼ 1 MeV for both 
targets. However, the calculations underestimate the cross sections 
at higher excitation energy region, probably due to the missing of 
inelastic breakup processes. In such case, our data would support 
the adopted three-body model in the calculation, which predicts 
an average opening angle of 68◦ between the two halo neutrons 
relative to the α core. Alternatively, we assume that there is no 
inelastic contribution in the experimental data and empirically 
modify the CDCC calculations to reproduce the energy-differential 
breakup cross sections for a wide range of different angular cuts. 
The extracted E1 strength of 6He peaks at about Erel = 1.4 MeV 
and amounts to 1.6(2) e2 fm2 for Erel ≤ 20 MeV. Applying the 
non-energy weighted cluster sum rule, the average opening angle 
between the two halo neutrons relative to the α core is evaluated 
as 56+9

−10 degrees. Either interpretation shows the opening angle is 
significantly smaller than the non-correlated angle of 90 degrees, 
revealing the existence of the dineutron spatial correction in the 
ground state of the halo nucleus 6He.
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