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ABSTRACT

The discovery of the Higgs boson at the Large Hadron Collider (LHC) in 2012

marked a significant milestone in particle physics. Since then, extensive investigations have

been carried out to unravel the properties of the Higgs boson and understand its

interactions with other fundamental particles.

Monte Carlo simulations play an important role in studies of particle physics. They

generate theoretical predictions and can be compared with experimental data to test our

understanding of physics.

In this dissertation, the anomalous Higgs boson coupling to vector bosons was

implemented in VBFNLO for Higgs boson plus three jets via VBF at the next-to-leading

order (NLO) accuracy. I present results for a number of collider observables that are

sensitive to the CP structure, whether in different CP scenarios and in the Standard Model.

I also investigate the effects of NLO multijet merging and NLO QCD corrections matched

to a parton shower on selected observables through the framework provided by Herwig 7.
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CHAPTER 1
INTRODUCTION

The quest to unravel the fundamental mysteries of the universe has captivated the

human intellect for centuries. In this pursuit, particle physicists have made groundbreaking

discoveries that have significantly advanced our understanding of the fundamental building

blocks of matter and the forces that govern their interactions. The Standard Model

(SM) [6–8] of particle physics was developed in the seventies in the past century, has

successfully explained most of the experimental results and also precisely predicted a

variety of phenomena in particle physics [9]. Among these remarkable discoveries, the

identification and subsequent verification of the Higgs boson have emerged as one of the

most pivotal achievements in recent years. The Higgs boson was proposed by Peter

Higgs [10] and François Englert [11] in 1964, providing a mechanism to explain the origin

of mass and the spontaneous breaking of electroweak symmetry. On 4 July 2012, both

ATLAS and CMS experiments at CERN’s Large Hadron Collider (LHC) announced they

had each observed a new particle in the mass region around 125 GeV- 126 GeV [12,13]. In

the following year, after analyzing two and a half times more data, physicists confirmed

that the new particle discovered was the Higgs boson [14]. In the current measurement of

the Higgs boson production by ATLAS Run 2 [3], the VBF cross section is measured with

a precision of 12%, and the gluon fusion process is measured with a precision of 7%. The

other production processes include WH, ZH, ttH, and tH have also been observed. The

results are shown on the left of Fig. 1.1. The branching fractions of the different Higgs

boson decay modes are measured with a precision ranging from 10% to 12%, and the

results are shown in Fig. 1.1 (right). The results of the current measurements are

compatible with the predictions of the SM.

While the present measurements on properties of the Higgs boson exhibit

compatibility with the predictions of the SM [15], the precision of the experiment is not

sufficient to exclude the possibility of anomalous couplings, which leaves room for new
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physics (NP) resulting in modified Higgs couplings with the SM particles. For example, the

SM does not explain the baryon asymmetry problem. It refers to a reasonable assumption

that matter and antimatter were initially present in equal quantities during the early

stages of the universe [16]. However, our everyday experience solely involves interactions

with matter, not antimatter [17]. The baryon asymmetry problem leads to the study of CP

violation [18]. Higgs boson production through vector boson fusion (VBF) is an ideal

process to test CP violations. In the case of CP symmetry conservation, the behavior

patterns of detected jets and leptons remain unchanged when particles are exchanged with

their antiparticles and their flight directions are reversed. Conversely, if CP symmetry is

violated, particles and antiparticles should behave differently.

The anomalous Higgs boson coupling via VBF can be derived from the effective

field theory approach and the corresponding anomalous couplings have been implemented

in VBFNLO [19–22], which is a Monte Carlo program, at the next-to-leading order (NLO)

quantum chromodynamics (QCD) accuracy [23]. The NLO matched parton shower effects

for VBF have been investigated in Ref. [24] by implementing the Higgs Characterisation

(HC) model [25] in FEYNRULES [26, 27] and passed to MADGRAPH5_AMC@NLO framework [27].

In order to study the higher-order effects and multiplicities of jets, one needs to calculate

the matrix elements for the Higgs boson plus three jets at NLO accuracy. In this

dissertation, anomalous Higgs couplings for HV V (V = W,Z) vertex are studied and

implemented in the Monte Carlo program, VBFNLO, for Higgs production plus three jets at

NLO. The general-purpose Monte Carlo event generator, Herwig 7 [28–31] which is

interfaced with VBFNLO as one of the matrix element providers via the Binoth one-loop

accord [32,33] provided the numerical computation tool for this study. By utilizing the

matching and merging framework provided by the Herwig 7, the phenomenological results

are presented for Higgs boson production in SM and anomalous couplings via the VBF.

The layout of this dissertation is the following: Chapter 2 sets the stage for

theoretical background, introduces the model-building ingredients of the SM, and gives the

2



general description of NLO QCD calculations on parton-level at hadron colliders, including

the Catani-Seymour subtraction method [34] using in the NLO calculation. Chapter 3

discussed the merged and matched framework in Herwig 7 and contains results from

Ref. [35]. In Chapter 4, the HV V anomalous couplings and technical details of the

implementation in VBFNLO are presented. Subsequently, the discussion of the validation and

numerical checks of the code is performed in Chapter 5. Chapter 6 is devoted to the

phenomenological study of the Higgs boson plus two jets using the matching and merging

framework. Finally, Chapter 7 closes with a conclusion and future study of this

dissertation.
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CHAPTER 2
THE THEORETICAL BACKGROUND

This chapter presents a short overview of the theoretical basis of the dissertation. I

start with a brief introduction of the SM decomposed into its two interaction sectors:

Electroweak and QCD. Much of this chapter’s notation is taken from the book " The Black

Book of Quantum Chromodynamics" [36] by Frank Krauss, Joey Huston, and John

Campbell, which I highly recommend. After that, the calculation of leading order (LO)

and NLO and the related concepts are introduced. A brief discussion of the

Catani-Seymour subtraction method [34] is appended.

2.1 The Standard Model
The Standard Model of particle physics is a remarkable theoretical framework that

describes the fundamental building blocks of the universe and the forces that govern their

interactions. It provides a comprehensive understanding of the subatomic world by

unifying three of the four known fundamental forces: the electromagnetic force, the weak

nuclear force, and the strong nuclear force. The construction of the SM relies on the gauge

invariance and can be described with the gauge symmetry groups

SU(3)c × SU(2)L × U(1)Y [7, 8, 37], where the SU(3)c is the gauge group of Quantum

Chromodynamics (QCD) which is, and SU(2)L × U(1)Y the gauge group of electroweak

(EW) interactions. Besides the Higgs boson, the particle content of the SM can be split into

gauge bosons, mediating the interactions, and fermions, which make up the matter content

of the SM and themselves are divided into color-charged quarks and colorless leptons.

2.1.1 The Standard Model Before Electroweak Symmetry Breaking

The electromagnetic and weak interactions between quarks and leptons are

described by the Glashow-Weinberg-Salam electroweak theory [7, 8, 37], which is a

Yang-Mills theory [38] based on the symmetry group SU(2)L × U(1)Y . The matter field

has three generations of left-handed and right-handed chiral fermions, carry spin 1
2 and

4



with the field components, ψL,R = 1
2(1 ∓ γ5)ψ. The quantum number conserved

corresponding to SU(2)L is weak isospin T3. The electric charge Q can be computed from

the weak quantum numbers according to

Q = T3 + Y

2 , (2.1)

where Y is the weak hypercharge quantum number associated with gauge group U(1)Y .

The fermions with right-handed chirality are in doublets, while the fermions with

left-handed chirality are in singlets,

L
(1)
L,i =

νe

e


L,i

, L
(2)
L,i =

νµ

µ


L,i

, L
(3)
L,i =

ντ

τ


L,i

;

Q
(1)
L,i =

u
d


L,i

, Q
(2)
L,i =

c
s


L,i

, Q
(3)
L,i =

t
b


L,i

;

u
(1)
R,i = uR,i, u

(2)
R,i = cR,i, u

(3)
R,i = tR,i;

d
(1)
R,i = dR,i, d

(2)
R,i = sR,i, d

(3)
R,i = bR,i;

l
(1)
R,i = eR,i, l

(2)
R,i = µR,i, l

(3)
R,i = τR,i; (2.2)

where i represents the color charge in the fundamental representations, and the number

superscript represents different generations of fermions. The assignment of the quantum

numbers to the fermions is shown in Tab. 1, for the fermions of the first generation, which

second and third generation fermions have identical quantum numbers [39–41].
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Table 1: The electroweak quantum numbers for the first generation fermions.

T3 Y Q
νeL

1
2 −1 0

eL −1
2 −1 −1

uL
1
2

1
3

2
3

dL −1
2

1
3 −1

3
eR 0 −2 1
uR 0 4

3
2
3

dR 0 −2
3 −1

3

The gauge invariant derivatives on the fermions are given by

DµQ
(I)
L,i,α =

(
∂µ + igs

λa
ij

2 Ga
µδαβ + ig2

σa
αβ

2 W a
µδij + ig1

Y

2 Bµδijδαβ

)
Q

(I)
L,j,β

Dµu
(I)
R,i =

(
∂µ + igs

λa
ij

2 Ga
µ + ig1

Y

2 Bµδij

)
u

(I)
R,j

Dµd
(I)
R,i =

(
∂µ + igs

λa
ij

2 Ga
µ + ig1

Y

2 Bµδij

)
d

(I)
R,j

DµL
(I)
L,α =

(
∂µ + igs

σa
αβ

2 W a
µ + ig1

Y

2 Bµδαβ

)
L

(I)
L,β

Dµl
(I)
R =

(
∂µ + ig1

Y

2 Bµ

)
l
(I)
R , (2.3)

where i and j is the color indices, α and β are weak isospin indices. The λ are Gell-Mann

matrices, which are explicitly shown in Eq. 2.46. σ are the Pauli matrices which are

explicitly shown in Eq. 2.5. Here gs,g2, and g1 are the coupling constant of SU(3)C ,

SU(2)L, and U(1)Y , respectively. The gauge field indicates there are eight gluons Ga
µ, three

weak isospin bosons W a
µ , and the weak hypercharge Bµ. The gauge field Bµ corresponds to

U(1)Y group with generator Y. For SU(2)L group, there are three gauge field W a
µν with the
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generators τa, where a = 1, 2, 3. The generators τa are given by half of the Pauli matrices,

τa = 1
2σa, (2.4)

σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 , (2.5)

and the commutation relation is given by,

[σa, σb] = iϵabcσc. (2.6)

Here ϵabc is the completely anti-symmetric Levi-Civita symbol.

The SM Lagrangian without mass terms for fermions and gauge bosons is given by

LSM = Lmatter + Lgauge (2.7)

where

Lmatter =
3∑

I=1

[
Q̄

(I)
L
/DQ

(I)
L + ū

(I)
R
/Du

(I)
R + d̄

(I)
R
/Dd

(I)
R + L̄

(I)
L
/DL

(I)
L + l̄

(I)
R
/Dl

(I)
R

]
, (2.8)

Lguage = −1
4G

a
µνG

a,µν − 1
4W

a
µνW

a,µν − 1
4B

a
µνB

µν (2.9)

The field strength tensors are given by,

Ga
µν = ∂µG

a
ν − ∂νG

a
µ + igsf

abcGb
µG

c
ν , (2.10)

W a
µν = ∂µW

a
ν − ∂νW

a
µ + g2ϵ

abcW b
µG

c
ν , (2.11)

Bµν = ∂µBν − ∂νBµ. (2.12)

This Lagrangian is invariant under the local SU(3)C × SU(2)L × U(1)Y gauge

transformations but violates the gauge invariance if one adds the mass term of form m2A2.
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For example,

BµB
µ → B′

µB
′µ = BµB

µ 2
g
Bµ∂µθ + 1

g2 (∂µθ)(∂µθ) ̸= BµB
µ (2.13)

In addition, if one includes explicitly a mass term mψ̄ψ for fermions in Lagrangian, for

example [40],

−meēe = −meē
[1
2(1 − γ5) + 1

2(1 + γ5)
]
e = −me(ēReL + ēLeR) (2.14)

is not invariant under the weak isospin symmetry transformation since eL is a member of

an SU(2)L doublet but eR is a member of a singlet. The Feynman rules for gauge bosons

interacting with fermions are shown in Fig. 2.1, where the chirality τ = ±.

Figure 2.1: qqV vertex for fermions and gauge bosons.

In the following sections, I will briefly sketch the spontaneous symmetry breaking

and the Higgs mechanism, which solve the problem of gauge invariant mass generation in

an elegant way.
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2.1.2 Spontaneous Symmetry Breaking

Consider the Lagrangian,

L = 1
2(∂µϕ)2 − (1

2µ
2ϕ2 + 1

4λϕ
4), (2.15)

where λ is a constant and λ > 0 [42]. The L is invariant under the transformation ϕ → −ϕ.

If one plots the graph of potential V (ϕ) = 1
2µ

2ϕ2 + 1
4λϕ

4, there will be two possibilities :

µ2 > 0 and µ2 < 0. If µ2 < 0, the Lagrangian has the wrong sign for the mass term. Unlike

the case in which µ2 > 0, the potential has two minima that satisfies [42],

∂V

∂ϕ
= ϕ(µ2 + λϕ2) = 0, (2.16)

where

ϕmin = ±v, (2.17)

and v =
√

−µ2/λ. In this case, the minimum energy is not at ϕ = 0. It corresponds to

ϕ = v or ϕ = −v. One could rewrite ϕ(x) as

ϕ(x) = v + η(x), (2.18)

where η(x) represents the quantum fluctuations about this minimum. Substituting into

Lagrangian equation (2.15),

L′ = 1
2(∂µη)2 − λv2η2 − λvη3 − 1

4λη
4 + const. (2.19)

so the mass term is mη =
√

2λv2 =
√

−2µ2 and the higher order terms of η represent the

interaction of the couplings [42]. The way to "generate" mass through the field is known as

"spontaneous symmetry breaking."

9



2.1.3 The Higgs Mechanism

Let’s first introduce a complex scalar Φ = (ϕ+, ϕ0)T , which is coupled to the

SU(2)L × U(1) through the gauge invariant derivative DµΦβ. The DµΦβ reads [36]

DµΦβ = (∂µδαβ + ig2
σα

αβ

2 Wα
µ + ig1

Y

2 Bµδαβ)Φβ, (2.20)

where α and β labels weak isospin of the doublet Φ. The quantum numbers of this doublet,

Φ, are:

T3 = ±1
2 , Y = 1

2 . (2.21)

Then there are two new terms added to the Lagrangian in Eq. 2.7:

LH = (DµΦ)†(DµΦ) + µ2Φ†Φ − λ(Φ†Φ)2, (2.22)

LHF = −f IJ
u Q̄

(I)
L Φ̃uJ

R − f IJ
d Q̄

(I)
L ΦdJ

R − f IJ
e L̄

(I)
L ΦlJR, (2.23)

where LHF describes the Yukawa interactions with fermions. Here µ2 and λ are real

numbers, and f IJ are arbitrary matrices in generation space. For µ2 < 0, a vacuum

expectation value v will be developed by the neutral component of the field Φ,

⟨Φ⟩0 =

 0
v√
2

 . (2.24)

For simplicity, by choosing the unitary gauge, the Higgs doublet then becomes,

Φunitary = U(ξ)Φ =

 0
v+η(x)√

2

 . (2.25)
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The set of transformations is introduced as

( ∑
i=±,3

W i
µτ

i
)′

= U(ξ)
[ ∑

i=±,3
W i

µτ
i
]
U−1(ξ) + i

g2

[
∂µU(ξ)

]
U−1(ξ),

B′
µ = Bµ,

Ψ′
L = U(ξ)ΨL,

Ψ′
R = U(ξ)ΨR. (2.26)

It is clear that the Higgs potential is invariant under such transformation, and the phase

will be canceled out,

(Φ†Φ) → (Φ†Φ) = Φ†U †(ξ)U(ξ)Φ = (Φ†Φ). (2.27)

Therefore, after the transformation, the Higgs potential reads,

LH.pot = −2λv2

2 η2 − λvη3 − λ

4η
4 + const, (2.28)

where the η is the Higgs field. While this field gives the mass term of

mH = v
√

2λ. (2.29)

The kinematic Lagrangian reads,

Lη = 1
2(∂µη)(∂µη), (2.30)

LM = m2
WW

−
µ W

+,µ + 1
2m

2
ZZµZ

µ, (2.31)

LI = m2
W

v2 (η2 + 2vη)W−
µ W

+,µ + m2
Z

2v2 (η2 + 2vη)ZµZ
µ. (2.32)
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The new gauge filed Aµ and Zµ for photon and Z boson is given by

Aµ = sin θWW
3
µ + cos θWBµ, (2.33)

Zµ = cos θWW
3
µ − sin θWBµ (2.34)

It can be shown that the photon is massless, and the mass of W and Z gauge bosons is

mW = vg2

2 , (2.35)

mZ = v

2

√
g2

1 + g2
2. (2.36)

And the weak mixing angle is

tan θW = g1

g2
, (2.37)

cos θW = mW

mZ

= g2√
g2

1 + g2
2

. (2.38)

The Feynman rule for HV V vertex is shown in Fig. 2.2, where V represents vector bosons,

W and Z.

Figure 2.2: Feynman rules for HV V vertex.

After applying the transformation to the Yukawa interaction, as shown in Eq. 2.26,
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the fields become

LHF = v + η√
2
[
f IJ

u ū
(I)
L u

(J)
R + f IJ

d d̄
(I)
L d

(J)
R + f IJ

l l̄
(I)
L l

(J)
R

]
. (2.39)

The arbitrary mass matrices f IJ
u,d,l which are denoted as M for simplicity, can be

diagonalized using the bi-unitary transformation,

Mdiag = S†MT, (2.40)

where S and T are unitary matrices and Mdiag is diagonal with non-zero eigenvalues. Then

the mass term can be diagonalized through

ψ̄LMψR = (ψ̄LS)(S†MT )(T †ψR) = ψ̄′
LMdiagψ

′
R (2.41)

The unitary transformation will rotate the right-handed quarks to their mass eigenstates,

ψ̄I
Rγ

µψI
R = ψ̄′K

R γµTKIT
†
ILψ

′L
R = ψ̄′K

R γµδKLψ
′L
R = ψ̄′K

R γµψ′K
R . (2.42)

This also applies to the left-handed fermions for neutral interactions, but there is relic

dependence in the charged current, which is expressed in terms of the

Cabibbo-Kobayashi-Maskawa (CKM) matrix,

ūI
Lγ

µdI
L = ū′K

L γµS†
u,KISd,ILd

′L
L = ū′K

L γµV
(CKM)

KL d′L
L , (2.43)
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where the absolute value of the CKM matrix read [4]

V
(CKM)

KL =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 =


0.97435 ± 0.0001 0.22500 ± 0.0006 0.00369 ± 0.0001

0.22486 ± 0.00067 0.97349 ± 0.00016 0.04182+0.00085
−0.0007

0.00857+0.00020
−0.00018 0.04110+0.00083

−0.00072 0.999118+0.000031
−0.00003

 .

(2.44)

In the VBFNLO, the CKM matrix is taken to be diagonal in the calculations.

2.1.4 Quantum Chromodynamics

Quantum Chromodynamics is the gauge field theory that describes the strong

interactions of colored quarks and gluons. It obeys the SU(3) non-abelian gauge

invariance, in which SU(3) is the special unitary group in 3 dimensions, and all elements

are the set of unitary 3 × 3 matrices with determinant equal to one [4,36,43,44]. The QCD

Lagrangian is given by

L =
∑

q

ψ̄q,a(iγµ∂µδab − gsγ
µtCABA

C
µ −mqδab)ψq,b − 1

4F
A
µνF

Aµν , (2.45)

where γµ are the Dirac γ matrices, ψq,a are quark-filed spinors for quark with flavor q and

mass mq. The color index a runs from 1 to 3, also denoted as red, green, blue, and green,

which are carried by quarks. The anti-quarks carry the anti-color quantum numbers. The

sum over q in Lagrangian runs over the different quark flavors. The AC
µ corresponds to the

gluon fields with color index C runs from 1 to 8. tCab denoted as eight generators of the
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SU(3) group and proportional to Hermitian and traceless Gell-Mann matrices λa,

λ1 =


0 1 0

1 0 0

0 0 0

 , λ2 =


0 −i 0

i 0 0

0 0 0

 , λ3 =


1 0 0

0 −1 0

0 0 0

 , λ4 =


0 0 1

0 0 0

1 0 0

 ,

λ5 =


0 0 −i

0 0 0

i 0 0

 , λ6 =


0 0 0

0 0 1

0 1 0

 , λ7 =


0 0 0

0 0 −i

0 i 0

 , λ8 = 1√
3


1 0 0

0 1 0

0 0 −2

 . (2.46)

Here λ also satisfies the commutation relation,

[λA, λB] = ifABCλC . (2.47)

The fABC are the structure constants of SU(3) and given by

f123 = 1,

f147 = f165 = f246 = f257 = f345 = f376 = 1
2 ,

f458 = f678 =
√

3
2 . (2.48)

The quantity gs is the QCD coupling constant. The filed tensor FA
µν is

FA
µν = ∂µA

A
ν − ∂νA

A
µ − gsfABCA

B
µA

C
ν . (2.49)

Some useful color algebra relations are,

tAabt
A
ab = CF δac, (2.50)

fACDfBCD = CAδAB, (2.51)

tAabt
A
ab = TRδAB, (2.52)
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where

CF = N2
C − 1
2NC

= 4
3 , (2.53)

CA = NC = 3, (2.54)

TR = 1
2 . (2.55)

Here CF is the Casimir color factor associated with gluon emission from a quark, CA is the

color factor associated with gluon emission from a gluon, TR is the color factor associated

with a gluon split to quark anti-quark pair. The Feynman rule for gluon interaction with

quarks is shown in Fig. 2.3, where a, b, and c are color indices.

Figure 2.3: Feynman rules for gluon interacts with quarks.

When making predictions in the framework of QCD, the observables are expressed

in terms of the renormalized coupling αs(µ2
R ≈ Q2), where µR is the renormalization scale

introduced during the renormalization process. The coupling satisfies the following

equation [4],

µ2
R

dαs

dµ2
R

= β(αs) = −(b0α
2
s + b1α

3
s + b2α

4
s + · · · ), (2.56)
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where

b0 = 33 − 2nf

12π ,

b1 = 17C2
A − nfTR(10CA + 6CF )

24π2 = 153 − 19nf

24π2 ,

b2 =
2857 − 5033

9 nf + 325
27 n

2
f

128π3 . (2.57)

Here b0 is denoted as the 1-loop β function coefficient, b1 is the 2-loop β function

coefficient, and b3 is the 3-loop β function coefficient. The nf is the number of quark

flavors, which is 6 in the SM. The value of strong coupling is usually specified by giving the

reference scale Q2, then to the first order accuracy [36],

αs(Q2) = αs(Q2) 1
1 + b0αs(Q2) ln µ2

R

Q2

. (2.58)

The negative sign of the Eq. 2.56, combined with b0 > 0, is the origin of the asymptotic

freedom [45,46], which the strong coupling increases with increasing distance or decreasing

scale and decreases with the decreasing distance or increasing scale. As Q2 → ∞, αs goes

to zero, which means that quarks and gluons almost interact as free particles for high

energy. In the other direction, as Q2 → 0, αs goes to infinity. One could write the solution

involving another scale Λ,

αs(µ2
R) = 4π

β0 ln Q2

Λ2

[
1 − 2β1

β2
0

ln[ln (Q2/Λ2)]
ln (Q2/Λ2)

]
. (2.59)

where Λ ≈ 250 GeV is called the QCD scale. A standard choice is µR = MZ , the strong

coupling is αs ≈ 0.118 [4]. A summary plot of measurements of αs as a function of Q is

shown in Fig. 2.4 [4].
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Figure 2.4: Summary of measurements of αs as a function of the energy scale Q. NNLO rep-
resents next-to-next-to-leading order, NNLO+res represents NNLO matched to a resummed
calculation, and N3LO represents next-to-NNLO. Figure taken from Ref. [4].

2.2 Factorization Formula for QCD Cross Sections
Many processes of interest involve large invariant momentum transfer that can be

described using the factorization formula. Cross sections for a scattering subprocess of n

body final state at hadron colliders can be computed in collinear factorization

through [36,47]

σh1h2→n =
∑
a,b

1∫
0

dxadxb

∫
fa/h1(xa, µF )fb/h2(xb, µF ) dσ̂ab→n(µF , µR) (2.60)

=
∑
a,b

1∫
0

dxadxb

∫
dΦn fa/h1(xa, µF )fb/h2(xb, µF )

× 1
2ŝ |Mab→n|2(Φn;µF , µR) ,
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where fa/h(x, µ) denote the parton distribution functions (PDFs). At the leading order

they represent the probability for resolving a parton of flavor a with momentum fraction x

in the parent hadron h at the factorization scale µF [48]. Here parton a and b are taken as

massless particles. σ̂ab→n is the parton-level cross section for initial partons a and b product

final state n. It depends on the momenta given by the final-state phase space Φn,

factorization scale µF and renormalization scale µR. The |Mab→n|2(Φn;µF , µR) is

amplitude squared, which can be evaluated as a square of sum over sub-amplitudes

corresponding to subprocesses [49]. dΦn is the differential phase space element over the n

final-state particles,

dΦn =
n∏

i=1

d4pi

2π4 (2π)δ(p2
i −m2

i )(2π)4δ4
(
pa + pb −

∑
i

pi

)
Θ(Ei), (2.61)

where pa and pb are the initial-state momenta [49].

The LO is only reliable for the shape of distributions due to large higher-order

corrections. An accurate simulation often requires at least the NLO calculation. A cross

section calculated at NLO depends on three parts, the LO or Born part, virtual

corrections, and real emissions [36]. At NLO,

σ(NLO)
n =

∑
a,b

∫ 1

0
dxadxbfa/h1(xa, µF )fb/h2(xb, µF )

∫
dσ̂NLO

ab→n(µF , µR)

=
∫
dΦB

[
Bn(ΦB;µF , µR) + Vn(ΦB;µF , µR)

]
+
∫
dΦRRn(ΦR;µF , µR) (2.62)
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where

Bn(ΦB;µF , µR) =
∑̄

h

|M(b)
n (ΦB, h;µF , µR)|2

Vn(ΦB;µF , µR) = 2
∑̄

h

Re|M(b)
n (ΦB, h;µF , µR)M⋆(b+1)

n (ΦB, h;µF , µR)|

Rn(ΦR;µF , µR) = 2
∑̄

h

|M(b+1)
n+1 (ΦR, h;µF , µR)|2 (2.63)

For phase space elements,

dΦB = dxadxbfa/h1(xa, µF )fb/h2(xb, µF ) 1
2ŝab

dΦn

dΦR = dxa′dxb′fa′/h1(xa′, µF )fb′/h2(xb′, µF ) 1
2ŝa′b′

dΦn

dΦn =
n∏

i=1

d4pi

2π4 (2π)δ(p2
i −m2

i )(2π)4δ4
(
pa + pb −

∑
i

pi

)
Θ(Ei) (2.64)

To analyze the experimental data from the hadron collider, it would be beneficial to

measure the distributions of final-state quarks and gluons. Unfortunately, due to the

confinement of color charge, these particles are not the final-state particles of the reaction.

Instead, the final-state particles are colorless. The jet provides a tool to study the footprint

of the hadron collisions and should have the following event properties [50]:

• It is well-defined and can be easily measured from the hadronic final state.

• The order-by-order calculations in perturbation theory are easy to compute from the

partonic final state.

• It is important to closely correlate the distributions of the final state quarks and

gluons.

A precise algorithmic jet definition, or called jet algorithm will need to classify the jet final

state of a collision and reconstruct its total momentum [49]. Many algorithms have been

developed to satisfy the requirement of theoretical calculations and experiments. For a
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thorough review of jet algorithms, see Ref. [36].

A jet observables in a given m-patron configuration and in all m+ 1-parton

configurations should have the same value [34]. If the function Fm
J gives the value of a

certain jet observable in terms of the momenta of the n final-state partons, then it should

have

Fm+1
J → Fm

J (2.65)

The Born-level cross section dσB can be written in terms of jet defining function F
(m)
J as

dσB = dΦ(m)|Mm|2F (m)
J (2.66)

where dΦ(m) is the phase space of m-parton final state, and Mm is the matrix element.

Then the real emission dσR is

dσR = dΦ(m+1)|Mm+1|2F (m+1)
J . (2.67)

2.3 The Dipole Subtraction Method
In the calculation of the NLO cross section, one obstacle is the occurrence of

divergences. There are many ways to solve this problem. This section will introduce one

widely used method in Monte Carlo event generator, which is called the Catani-Seymour

subtraction method [34]. For a typical NLO jet cross section, one can write

σ = σLO + σNLO. (2.68)

The LO cross section can be computed by integrating exclusive born level cross section dσB

over the phase space

σLO =
∫

m
dσB. (2.69)
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Then consider the exclusive cross section dσR with m+ 1 partons in the final state. Adding

the one-loop correction dσV to the process with m partons in the final state, it can be

written as

σNLO ≡
∫
dσNLO =

∫
m+1

dσR +
∫

m
dσV . (2.70)

In the above equation, phase space integral over dσR and dσV is individually divergent in

four-dimensional space-time d = 4. When combined in Eq. 2.70, their sum becomes finite.

To perform numerical integration of the phase space, it is necessary to regulate the

divergences of dσR and dσV separately. By employing dimensional regularization, in which

the integrations are carried out in d = 4 − 2ϵ dimensions, the divergences are replaced by

double poles, 1/ϵ2 (soft and collinear), as well as single poles, 1/ϵ (soft, collinear, or

ultraviolet). Ultraviolet divergences in dσV can be absorbed into coupling constants

through the renormalization procedure. The general idea of the subtraction method is to

use the identity

dσNLO =
[
dσR − dσA

]
+ dσA + dσV , (2.71)

where dσA is a proper approximation of dσR which must have the same pointwise singular

behavior in d dimensions as dσR. dσA is a local counterterm for dσR. Now introducing the

phase space integration,

σNLO =
∫

m+1

[
dσR − dσA

]
+
∫

m+1
dσA +

∫
m
dσV , (2.72)

where the first term on the right side of Eq. 2.72 can be integrated numerically in the limit

ϵ → 0.

Now, all singularities converge to the last two terms on the right-hand side of

Eq. 2.72. One can compute the integration of dσA over the one-parton subspace

analytically and combine those singularities with those in dσV , and then the divergences
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will be canceled. The final structure of the calculation is as follows:

σNLO =
∫

m+1

[
dσR − dσA

]
+
∫

m

[
dσV +

∫
1
dσA

]
. (2.73)

The symbolic factorization formulae of the Catani-Seymour method for the

arbitrary process is

dσA =
∑

dipoles
dσB ⊗ dVdipole, (2.74)

where dσB denotes an appropriate color and spin projection of the born-level exclusive

cross section. The symbol ⊗ denotes properly defined phase space convolutions and sums

over color and spin indices. The dipole factors dVdipole are independent of the process and

should match the singular behavior of dσR. As the m+ 1 parton state in dσR approaches

the soft and/or collinear region, the dipole factor in dσA approaches the same region with

an equivalent probability to that of dσR. Then one can map the m+ 1 parton phase space

to an m parton phase space times a single-parton phase space. Thus,

∫
m+1

dσA =
∑

dipoles

∫
m
dσB ⊗

∫
1
dVdipole =

∫
m

[
dσB ⊗ I

]
(2.75)

where the universal factor I is defined as

I =
∑

dipoles

∫
1
dVdipole. (2.76)

The dipole factor I contains the 1/ϵ and 1/ϵ2 poles with equal value and opposite signs as

in the dσV . After canceling all divergences, one can take the limit ϵ → 0 and perform the

integration analytically in four space-time dimensions. Here are the two contributions,

σNLO {m+1} and σNLO {m} are separately finite and integrable. The final structure is as
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follows,

σNLO = σNLO {m+1} + σNLO {m} (2.77)

=
∫

m+1

(dσR
)

ϵ=0
−

 ∑
dipoles

dσB ⊗ dVdipole


ϵ=0

+
∫

m

[
dσV + dσB ⊗ I

]
ϵ=0

.

The Catani-Seymour method provides the general formalism to calculate the NLO QCD

corrections. The Higgs boson production via VBF is calculated in Ref. [51]. The NLO

QCD corrections to Higgs boson production in association with three jets via vector boson

fusion were calculated and implemented in VBFNLO in Ref. [22].
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CHAPTER 3
MATCHING AND MERGING

In this Chapter, based on Ref. [35], we perform our first investigation into the NLO

predictions for electroweak Higgs production that has been merged with a dipole shower

using the full set of tree-level and one-loop matrix elements available via the HJets matrix

element library. The Ref. [35] was published in: Chen, Tinghua, Terrance M. Figy, and

Simon Plätzer. "NLO multijet merging for Higgs production beyond the VBF

approximation." The European Physical Journal C 82, no. 8 (2022): 704. All equations

and figures are taken from Ref. [35].

3.1 The Matching in Herwig 7
Matching parton showers to next-to-leading order QCD has become the de-facto

standard for reliable simulations at hadron colliders. The term "matching" refers to a

methodology that subtracts the expansion of the parton shower to O(αs) from the

fixed-order NLO calculation, thereby ensuring that the resulting distribution after

showering accurately represents NLO effects to O(αs). Regarding scale setting within the

matching algorithms applied in Herwig 7, a comprehensive discussion can be found in the

Ref. [52] with various options, all of which are applicable to the Herwig 7 parton showers

as documented in Ref. [30,53,54]. In the current investigation, we have adopted the default

setting known as the "resummation profile." This particular choice features a narrowly

smeared step function towards the hard scale, ensuring that it does not introduce

spuriously small variations.

The Herwig 7 framework offers a comprehensive platform for interfacing external

matrix element providers, such as HJets [55–58] and VBFNLO 3, with the Matchbox

module [30]. The Matchbox module enables the assembly of fully differential

next-to-leading order (NLO) cross sections from these external matrix elements. Through

the Matchbox module Herwig 7 is able to match NLO matrix elements to both the

angular ordered [54] and dipole showers [30,53] using either a subtractive
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(MC@NLO-type [59]) matching algorithm or a multiplicative (Powheg-type [60]) matching

algorithm. In this chapter, our primary focus lies on the dipole shower matched via the

subtractive matching paradigm. This choice is motivated by the objective of employing

merging algorithms of different jet multiplicities, which, inside of Herwig 7 are currently

only available with the dipole shower algorithm. A detailed discussion on differences

between shower algorithms and matching schemes has extensively been discussed in [61] in

the context of Higgs production via VBF.

3.2 The Unitary Merging Algorithm
As opposed to matching, merging algorithms do facilitate the combination of several

jet multiplicities with the parton shower. At leading order, stability with respect to the

resolution which separates hard jet production from parton shower radiation is achieved by

carefully crafting this resolution to be compatible with the shower phase space and order.

No spurious logarithms of the merging scale are then expected to arise since the shower is

considered to be a good approximation to tree-level real emission matrix elements in the

transition region. This is not true anymore at NLO, and a new paradigm of merging needs

to be employed which is correcting for the lack of perturbative information contained in the

parton shower. These unitarized merging algorithms preserve certain features of inclusive

cross sections [62–64], and thus generate approximate NNLO contributions which are

required for a stable merging. The full implementation of the unitary merging algorithm

used by Herwig 7 was described in Ref. [65], and does not enforce the reproduction of

inclusive cross sections exactly, but only subtracts contributions which are classified as

logarithmically enhanced if they are accessible by a possible parton shower history. The

process is otherwise considered to contribute a new, hard jet configuration from which the

parton shower is evolving in a vetoed manner such as not to double count contributions

both in real emission as well as virtual and unresolved corrections. At the same time, this

approach allows the merging algorithm to deal with processes that involve jets already at

the level of the hard process. In our studies, the merging scale ρs is smeared according to
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Eq. (40), ρs = ρC · (1 + (2 · r − 1) · δ) of Ref. [65] . The central merging scale is set as

ρC = 25 GeV with δ = 0.1 for results investigating the impact of varying the factorization

and renormalization scales. We use the CMW scheme [65,66] for the merged simulations

with the modified strong coupling set to α′
S(q) = αS(kg(q)) where kg = exp(−Kg/b0),

Kg = CA

(
67
18 − 1

6π
2
)

− 5
9NF , and b0 = 11 − 2/3NF .

3.3 Simulation Results
In this section, I will present the matching and merging simulation results by using

Herwig 7. The matrix elements used in this study were provided via the external matrix

element providers: HJets 1.2 for full calculation and VBFNLO 3 for VBF approximation.

The HJets 1.2 module [55–58] provides tree-level matrix elements for 2 → h+ 2, 3, 4

partons and one-loop matrix elements for 2 → h+ 2, 3 partons for electroweak Higgs boson

production in association with jets. The color algebra is computed by the library

ColorFull [67] and the one-loop integrals are performed based on the tensor loop integral

reduction methods described in Ref. [68]. The matrix elements programmed in VBFNLO

3.0.0 beta 5 [19–22] were used to compute tree-level and one-loop matrix elements in the

VBF approximation via the Binoth one-loop accord [32,33].

The merging calculation performed in this section includes: h(2⋆, 3⋆, 4) , h(2⋆, 3) ,

h(2, 3), h(2⋆, 3, 4), and h(2, 3, 4). The matching process includes h(3⋆)⊕PS and

h(2⋆)⊕PS . The input parameters for the Monte Carlo event generator are described in

Ref. [35], and in Chapter 6.

In the context of electroweak Higgs boson production, the fundamental process at

the Born level is described by pp → hjj, where the tree-level 2 → h+ 2 partonic matrix

elements (MEs) are denoted as h(2). To account for additional partonic multiplicities in a

leading-order merged setup, we incorporate tree-level MEs accordingly. Specifically, we

represent the merging of MEs involving n partons as h(2, 3, 4, . . . , n) with n ≥ 2. This

notation represents the inclusion of tree-level MEs for partonic processes with h+ 2, h+ 3,

h+ 4, and up to h+ n partons.
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In simulations involving the merging of higher-order matrix elements, we introduce

an additional ⋆ symbol to indicate each multiplicity n as n⋆. This notation signifies that, in

addition to the tree-level MEs, the one-loop correction is included. For instance, the

notation h(2⋆, 3, 4) represents the production of a Higgs boson with up to 2 additional

partonic emissions, where one-loop MEs are applied for the h+ 2 parton processes. The

special case of h(2⋆, 3) corresponds to the "matching through merging" limit within the

merging approach implemented in Herwig 7, which achieves the same level of accuracy as

NLO matching. A detailed discussion on merging can be found in the previous section for

more details. In scenarios where applying subtractive matching to connect an NLO

calculation with a dipole parton shower, the NLO matched setup is denoted for pp → hjj

as h(2⋆)⊕PS and pp → hjjj as h(3⋆)⊕PS.

Fig. 3.1 and Fig. 3.2 show results for the splitting scales
√
d2 and

√
d3 of the kT jet

algorithm [69,70]. The splitting scales are resolution scales
√
dk of the kT jet algorithm at

which the event switches from k jet event to a k + 1 jet event. The Fig. 3.1 presents results

for the merged setup h(2⋆, 3⋆, 4) with the central merging scale ρC set to the following

values: 15, 25, 35 GeV. In the transition region between the h+ n parton MEs and the

h+ (n+ 1) parton MEs near
√
dn ≈ 25 GeV, there is 10% variation for n = 2, 3. Fig. 3.2

shows results comparing the merged setups and matched setups against the merged setup

h(2⋆, 3⋆, 4). The matched results h(2⋆)⊕PS and matching by merging setup h(2⋆, 3) have

a similar pattern after
√
d2 ≈ 125 GeV and

√
d3 ≈ 125 GeV. The matched results

h(2⋆)⊕PS and h(3⋆)⊕PS complement each other to some extent. The generation cut of

10 GeV on transverse momentum for the h(3⋆)⊕PS leads to a suppression around
√
d2 ≈ 10 GeV and

√
d3 ≈ 10 GeV. Furthermore, the matched h(3⋆)⊕PS result is missing

the h+ 2 jet events. The merged calculation is clearly reproduced by the matched ones in

the regions where the respective jet multiplicity is resolved and the fixed order, hard jet

multiplicity, provides a reliable prediction. However, the merged description is able to

interpolate in between the different multiplicities.
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Figure 3.1: Comparison plots for
√
d2 (top) and

√
d3 (bottom). The theory band in orange

results from varying the merging scale for the prediction of h(2⋆, 3⋆, 4).
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Figure 3.2: Comparison plots for
√
d2 (top) and

√
d3 (bottom) for predictions of h(2⋆, 3⋆, 4),

h(2⋆, 3, 4), h(2, 3, 4), h(2⋆, 3), h(2, 3), h(3⋆)⊕PS, and h(2⋆)⊕PS with h(2⋆, 3⋆, 4) being the
reference in the ratio plots. 30



Here the renormalization scale to be µR = ξRµ0 and the factorization scale to be

µF = ξFµ0 with ξF and ξR denoting the scale factors. The error bands shown in the figures

are due to the variation of the renormalization and factorization scale factors ξF and ξR

with ξF = ξR = 1/2, 1 and 2.

Fig. 3.3 and Fig. 3.4 show cross sections binned according to the exclusive number

of identified jets Njets and the exclusive number of identified gap jets Ngap
jets for INCL

selection cuts and TIGHT selection cuts. In the ratio plots, all results are divided by the

result of the merged setup h(2⋆, 3⋆, 4). The matched setup h(2⋆)⊕PS when compared to

the h(2⋆, 3⋆, 4) agrees up until two identified jets and 0 identified gap jets. Further the

h(2⋆)⊕PS result appears to underestimate the theoretical errors. As shown in the bottom

plot of Fig. 3.3 and Fig. 3.4, the merged setups using the HJets MEs are compared against

VBFNLO MEs using TIGHT selection cuts. The reference in ratio plots is the prediction

using the HJets MEs. There is a good agreement for the binned cross section in the

exclusive number of jets up to 4 jets and for the binned cross section in the number of

exclusive gap jets up to 2 gap jets. The hard sub-processes using VBFNLO and HJets MEs

are assigned different colour flows in the large-Nc limit, since the full calculation takes into

account all contributing topologies. Since the dipole shower evolution is intimately

connected to the hard sub-process colour flow, different hard sub-process colour flows result

in different shower histories. The TIGHT selection cuts essentially allow extra jets in the

gap between the leading two jets. Both h+ 3 and h+ 4 parton events allow for extra jets in

the gap between the jets even after the strict TIGHT selection cuts. One should note that

the rate is quite small in these higher multiplicity bins.
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Figure 3.3: Exclusive number of jets with INCL (top) and TIGHT (bottom) selection cuts
for the predictions of h(2⋆, 3⋆, 4), h(2⋆, 3, 4), h(2, 3, 4), h(2⋆, 3), h(2, 3), h(3⋆)⊕PS, and
h(2⋆)⊕PS. h(2⋆, 3⋆, 4) is the reference in the ratio plots for the top plot. In the bot-
tom plot, setups using VBFNLO MEs are compared against setups using HJets MEs. Shown
in the figures are theory error bands due to the variation of the factorization and renormal-
ization scales.
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Figure 3.4: Exclusive number of gap jets with INCL (top) and TIGHT (bottom) selection
cuts for the predictions of h(2⋆, 3⋆, 4), h(2⋆, 3, 4), h(2, 3, 4), h(2⋆, 3), h(2, 3), h(3⋆)⊕PS, and
h(2⋆)⊕PS. h(2⋆, 3⋆, 4) is the reference in the ratio plots for the top plot. In the bottom
plot, setups using VBFNLO MEs are compared against setups using HJets MEs. Shown in the
figures are theory error bands due to the variation of the factorization and renormalization
scales.
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Define the quantity named rapidity, which is denoted with y,

y = 1
2 ln

(
E + pz

E − pz

)
, (3.1)

where E is the energy of particles, and pz is the momentum of particles in the z-axis. The

transverse momentum, pT is defined by

pT =
√
p2

x + p2
y, (3.2)

where px and py are the momentum component for x-axis and y-axis. Another useful

quantity is the invariant mass for two jets, defined as

mj1j2 =
√

(pj1 + pj2)2, (3.3)

where pj1 and pj2 are the four-momentum of the first leading jet and the second leading jet.

In Fig. 3.5, the distributions in the rapidity difference of the leading two jets ∆yj1j2 and the

invariant mass of the leading two jets mj1j2 are shown. There is good agreement between

the matched setup h(2⋆)⊕PS and merged setups h(2⋆, 3⋆, 4), h(2⋆, 3, 4) and h(2⋆, 3) with

the exception of a region between 100 GeV and 150 GeV in the invariant mass of leading

two jets which is no more that 10%. The leading order merged setups h(2, 3, 4) and h(2, 3)

deviate as expected.

Shown in the top row of Fig. 3.6 using INCL selection cuts are the kinematic

distributions in the transverse momentum of third leading jet pT,j3 and the centrality of the

third jet z∗
j3 defined as

z∗
j3 =

yj3 − yj1 +yj2
2

|∆yj1j2 |
. (3.4)

For the transverse momentum and the centrality of the third jet, the matched setup

h(2⋆)⊕PS when compared to h(2⋆, 3⋆, 4) deviate by up to 20%. This feature is shared by

the matching by merging setups h(2⋆, 3). It is quite obvious that relying on the parton
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shower alone without including the h+ 4 parton hard scattering matrix elements fails to

describe the higher jet multiplicities beyond 2. In the bottom plot of Fig. 3.6 using LOOSE

selection cuts there are deviations between predictions based on VBFNLO MEs and the

HJets MEs the largest deviations when using NLO MEs. All predictions deviate at the

level 40% around zj3 = 0. This is the result of the missing s-channel contributions in the

VBFNLO predictions.

The kinematic distributions for transverse momentum of the Higgs boson plus two

leading jets pT,hj1j2 from matched and merged setups are presented in Fig. 3.7. The pT,hj1j2

is defined by

pT,hj1j2 =
(
ph + pj1 + pj2

)
T
, (3.5)

where ph, pj1 , pj2 label the momentum of the Higgs boson, the momentum of the first

leading jet and the momentum of the second leading jet. The subscript T represents the

transverse component of the momentum sum. The distributions in pT,hj1j2 shows an

enhancement when comparing NLO matched result h(2⋆)⊕PS to the NLO merged

h(2⋆, 3⋆, 4) result. The theory error is underestimated by the NLO matched

h(2⋆)⊕PS predictions. The matching by merging setups h(2, 3) and h(2⋆, 3) follow a

similar pattern to the h(2⋆)⊕PS setup. When comparing merged setups using the HJets

MEs against the VBFNLO MEs for the LOOSE selection cuts, the deviations show in the tail

of the pT,hj1j2 distribution. This suggests that applying an overall K factor to predictions

using LO merged setup may not describe the physics very well.
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Figure 3.5: Shown is the distribution of 2 jets observables with INCL selection cuts: rapidity
gap ∆yj1j2 (top) and invariant mass mj1j2 (bottom) of the two tagging jets. The prediction is
h(2⋆, 3⋆, 4), h(2⋆, 3, 4), h(2, 3, 4), h(2⋆, 3), h(2, 3), h(3⋆)⊕PS, and h(2⋆)⊕PS with h(2⋆, 3⋆, 4)
being the reference in the ratio plots. Shown in the figures are theory error bands due to the
variation of the factorization and renormalization scales.
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Figure 3.7: Shown are distributions for the transverse momentum of the Higgs boson plus two
leading jets system pT,hj1j2 . The top plot show predictions h(2⋆, 3⋆, 4), h(2⋆, 3, 4), h(2, 3, 4),
h(2⋆, 3), h(2, 3), h(3⋆)⊕PS, and h(2⋆)⊕PS are compared to the h(2⋆, 3⋆, 4) prediction
(INCL selection cuts). The bottom plot compares the merged setups using VBFNLO MEs
against the setups using HJets MEs for LOOSE selection cuts. Shown in the figures are
theory error bands due to the variation of the factorization and renormalization scales.
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CHAPTER 4
ELEMENTS OF CALCULATIONS

In this chapter, first, I will introduce the generalized tensor structure of the HV V

vertex and then follow with the introduction of the parameterization that VBFNLO

supported. The helicity amplitude formalism will be introduced and the leading order

calculation will be shown as an example. I will present the code structure of VBFNLO and

the subroutines I developed for Higgs boson anomalous coupling associated with three jets

at NLO in order to perform the anomalous coupling effect for Higgs boson production via

VBF using the merging and matching framework in Herwig 7.

4.1 Anomalous Couplings
Vector boson fusion at the LHC can provide key information on the strength and

structure of the Higgs couplings to the vector bosons. In VBFNLO, the general tensor

structure of the HV V vertex can be written as the following equation in the massless

quark limit [23,71]

T µν(q1, q2) = a1(q1, q2) gµν + a2(q1, q2) [q1 · q2g
µν − qµ

2 q
ν
1 ] + a3(q1, q2) εµνρσq1ρq2σ , (4.1)

where εµνρσ is the totally antisymmetric Levi-Civita tensor with convention ε0123 = 1. In

the above equation, the constant a1 represents the SM HV V couplings with a2 = a3 = 0,

while the constant a2 and a3 could represent the new physics. q1 and q2 are the four

momenta of the intermediate weak bosons (W , Z).

The anomalous coupling terms a2 and a3 can be derived from the effective

Lagrangian and can be written as the following equation:

Leff = gHW W
5e

Λ5e

HW+
µνW

−µν + gHW W
5o

Λ5o

HW̃+
µνW

−µν +

gHZZ
5e

2Λ5e

HZµνZ
µν + gHZZ

5o

2Λ5o

HZ̃µνZ
µν . (4.2)
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Here the subscript e or o represents the CP-even or CP-odd nature of the individual

operators. In this dissertation, I will neglect possible contributions from Hγγ and HγZ

couplings which can appear in SU(2) × U(1) invariant formulations [72, 73] and have only

focused on the HZZ and HWW contributions.

In general, ai from Eq. 4.1 are also called the form factors. It can be derived from

the effective Lagrangian of Eq. 4.2,

a2(q1, q2) = − 2
Λ5e

gHW W
5e , a3(q1, q2) = 2

Λ5o

gHW W
5o (4.3)

for the HWW vertex, and

a2(q1, q2) = − 2
Λ5e

gHZZ
5e , a3(q1, q2) = 2

Λ5o

gHZZ
5o (4.4)

for the HZZ vertex. The VBFNLO code supports form factors in general form:

ai(q1, q2) = ai(0, 0) M2

q2
1 −M2

M2

q2
2 −M2 . (4.5)

When the transferred momentum
√

−q2
i is smaller than mass scale M , the anomalous

coupling effects could probe for NP. On the other hand, when the momentum carried by

the virtual gauge boson reaches the mass scale, the anomalous couplings are suppressed.

For the anomalous couplings, VBFNLO also supports the parameterization used by L3

collaboration [74], which the Lagrangian [23,75] is

Leff = gHγγHAµνA
µν + g

(1)
HZγAµνZ

µ∂νH + g
(2)
HZγHAµνZ

µν

+ g
(1)
HZZZµνZ

µ∂νH + g
(2)
HZZHZµνZ

µν + g
(2)
HW WHW

+
µνW

µν
− , (4.6)

+ g
(1)
HW W (W+

µνW
µ
−∂

νH +W−
µνW

µ
+∂

νH) + g̃Hγγ HÃµνA
µν (4.7)

+ g̃HZγ HÃµνZ
µν + g̃HZZ HZ̃µνZ

µν + g̃
(2)
HW W HW̃+

µνW
µν
− . (4.8)
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where Xµν = ∂µXν − ∂νXµ, and the corresponding fields for photon, Z, W and Higgs boson

denoted as Aµ, Zµ, Wµ and H. Since I have focused on the HWW and HZZ vertex in this

study, I will exclusively present the anomalous couplings related to the HWW and HZZ

vertex below. The CP-even couplings [20,76–78] are

g
(1)
HZZ = e

mW sin θW

(∆gZ
1 cos 2θW + ∆κγ tan2 θW ), (4.9)

g
(2)
HZZ = e

2mW sin θW

(d cos2 θW + dB sin2 θW ), (4.10)

g
(1)
HW W = emW

sin θWm2
Z

∆gZ
1 , (4.11)

g
(2)
HW W = e

sin θWmW

d. (4.12)

The parameters d, dB, ∆gZ
1 and ∆κγ can be set as input in anom_HVV.dat. The CP-odd

couplings [20] are

g̃
(1)
HZZ = e

mW sin θW

(κ̃γ tan2 θW ), (4.13)

g̃
(2)
HZZ = e

2mW sin θW

(d̃ cos2 θW + d̃B sin2 θW ), (4.14)

g̃
(1)
HW W = 0, (4.15)

g̃
(2)
HW W = e

sin θWmW

d̃. (4.16)

The CP-odd part has a similar form as the CP-even part. All the parameters d̃, d̃B, and κ̃γ

are the input values in anom_HVV.dat but there is no g̃Z
1 . These can be related to the form
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factors in Eq. 4.1 as follows:

aHZZ
2 = −2(2g(2)

HZZ + g
(1)
HZZ)

= − 2e
mW sin θW

(d cos2 θW + dB sin2
θW

+∆gZ
1 cos 2θW + ∆κγ tan2 θW ), (4.17)

aHZZ
3 = 2(2g̃(2)

HZZ + g̃
(1)
HZZ) = 2e

mW sin θW

(d̃ cos2 θW + d̃B sin2
θW

+κ̃γ tan2 θW ), (4.18)

aHW W
2 = −2(2g(2)

HW W + g
(1)
HW W ) = − 2e

mW sin θW

(d+ cos2 θW ∆gZ
1 ), (4.19)

aHW W
3 = 2g̃(2)

HW W = 2e
mW sin θW

d̃. (4.20)

The third parameterization which VBFNLO supported is described in Ref. [20,73,79],

the effective Lagrangian is

Leff = fW W

Λ2
6

OW W + fBB

Λ2
6

OBB + fW

Λ2
6

OW + fB

Λ2
6
OB + CP-odd part (4.21)

where the operator O is defined in dimension 6. The above Lagrangian can be written as

Leff = emW

sin θW Λ2
6

[
− sin2 θW

2 (fBB + fW W )HAµνA
µν + sin θW

2 cos θW

(fW − fB)AµνZ
µ∂νH

+ tan θW (sin2 θWfBB − cos2 θWfW W )HAµνA
µν

+ 1
2 cos2 θW

(cos2 θWfW + sin2 θWfB)ZµνZ
µ∂νH

− 1
2 cos2 θW

(sin4 θWfBB + cos4 θWfW W )HZµνZ
µν

+ 1
2fW (W+

µνW
µ
− +W−

µνW
µ
+)∂νH − fW WHW

+
µνW

µ
−

]
+ CP-odd part. (4.22)
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Here are the parameters in Eq. 4.13-4.16 can be related as

d = −m2
W

Λ2
6
fW W , dB = −m2

W

Λ2
6

tan2 θWfBB, (4.23)

∆κγ = m2
W

2Λ2
6
(fB + fW ), ∆gZ

1 = m2
W

2Λ2
6
fW , (4.24)

d̃ = −m2
W

Λ2
6
f̃W W , d̃B = −m2

W

Λ2
6

tan2 θW f̃BB, (4.25)

κ̃γ = m2
W

2Λ2
6
f̃B (4.26)

The form factor ai is given by the following equations,

aHZZ
2 = 2emW

Λ2
6 sin θW

[
cos2 θWfW W +

(
tan2 θW − sin2 θW

)
fBB − 1

2fW − 1
2 tan2 θW

fB

]
,

(4.27)

aHZZ
3 = − 2emW

Λ2
6 sin θW

[
cos2 θW f̃W W +

(
tan2 θW − sin2 θW

)
f̃BB − 1

2fW − 1
2 tan2 θW

f̃B

]
,

(4.28)

aHW W
2 = 2emW

Λ2
6 sin θW

(
fW W − 1

2fW

)
, (4.29)

aHW W
2 = − 2emW

Λ2
6 sin θW

f̃W W , (4.30)

Again, in the above formulas, only the terms involving in HWW and HZZ vertex is shown.

4.2 Leading Order Calculation
The calculation of the SM Higgs boson plus jets production has been implemented

in VBFNLO by Prof. Terrance Figy [5, 22]. For the generic process of Higgs boson plus three

jets,

q(p1) +Q(p3) → q(p2) +Q(p4) + g(q) +H(P ), (4.31)

the born amplitude can be decomposed into two color structures: the gluon emission off

the 21 quark line MB,21 and the gluon emission off the 43 quark line MB,43, as shown in
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Figure 4.1: Feynman diagrams for Hjjj@LO, which the gluon emits from 21 quark line (top
row) and emits from 43 quark line (bottom row). The straight line represents quark, the
wavy line represents gauge boson (W,Z), the dotted line represents the Higgs boson, and
the curly line represents gluon. The black dot represents the HV V vertex.

Fig. 4.1,

MB(p1i1, p2i2, p3i3, p4i4, q, a) = tai2i1δi4i3MB,21 + tai4i3δi2i1MB,43. (4.32)

Here the index a is the color index for gluon, i1, i2, i3, i4 is the color index for the external

quarks, which has the momenta p1, p2, p3, p4. Also,

MB,21 = MB,21(p2, q, p1; p4, p3) = Mµ
B,21ϵµ, (4.33)

MB,43 = MB,43(p4, q, p3; p2, p1) = Mµ
B,43ϵµ, (4.34)

where ϵµ is the polarization vector of the external gluon. The momentum of the gluon is

represented by q. Here p1 is incoming and p2 is outgoing and the momenta flow is chosen

to point in the direction of the arrow in all diagrams. On the other hand, all boson
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momenta (q for gluons, ki for vector bosons where i = 1, 2) are chosen to be outgoing.

To calculate the color sub-amplitude which is shown in the top row of Fig. 4.1, one

could cut the diagram into two parts: the upper part which contains the 21 quark line with

gluon emission and attach the vector boson V1 with the momentum k1, the lower part

which contains the 43 quark line and attaches the vector boson V2 with momentum k2.

Both upper parts and lower parts can be calculated separately by applying the Feynman

rules in Fig. 2.1 and Fig. 2.3 and then applying the Feynman rules for HV V vertex in

Fig. 2.2 (for SM case). The upper part reads

Mµ
B,21,upper = −eψ̄(p2)gsγ

µgV f2f1
τ1 [γνPτ1

( /p2 + /k1)
(p2 + k1)2γ

µ + γµ
( /p2 + /q)
(p2 + q)2γ

νPτ1 ]ψ(p1)DV1(k2
1),

(4.35)

where k1 = p1 − q − p2, and the chirality projector is Pτ = 1
2(1 + τγ5). The ( /p2+ /k1)

(p2+k1)2 and
( /p2+/q)
(p2+q)2 denotes the quark propagators. The vector boson propagator is

DV (q2) =


1

k2−m2
V
, k2 −m2

V < 0

1
k2−m2+imV ΓV

, k2 −m2
V > 0

(4.36)

The lower part is

Mµ
B,21,lower = −eψ̄(p4)gV f4f3

τ3 γν′
Pτ3ψ(p3)DV2(k2

2), (4.37)

where k2 = p3 − p4. Then combine the Mµ
B,21,upper and Mµ

B,21,lower by applying the SM

HV V Feyman rule, gνν′ , the final results reads,

Mµ
B,21 = e2gV f2f1

τ1 gV f4f3
τ3 gHV V gsψ̄(p2)[γνPτ1

( /p2 + /k1)
(p2 + k1)2γ

µ

+ γµ
( /p2 + /q)
(p2 + q)2γ

νPτ1 ]ψ(p1)ψ̄(p4)γνPτ3ψ(p3)DV1(k2
1)DV2(k2

2), (4.38)

Similarly, for the gluon emission off the 43 quark line that is shown as the bottom row of
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Feynman diagrams in Fig. 4.1, the sub-amplitude can be written as

Mµ
B,43 = e2gV f2f1

τ1 gV f4f3
τ3 gHV V gsψ̄(p4)[γνPτ3

( /p4 + /k2)
(p4 + k2)2γ

µ

+ γµ
( /p4 + /q)
(p4 + q)2γ

νPτ3 ]ψ(p3)ψ̄(p2)Pτ1ψ(p1)DV1(k2
1)DV2(k2

2), (4.39)

where k1 = p1 − p2, k2 = p3 − q − p4.

4.3 The Helicity Amplitude Method
In VBFNLO, the LO matrix element can be calculated by using the helicity amplitude

formalism [80]. Physical particles in a process may have momenta with opposite signs to

those in the corresponding Feynman diagrams. I will use the same notation as in Ref. [80],

which denotes the physical momenta as p̄, and then momentum flow in Feynman diagrams

is pi = Sip̄i, with Si = + for quarks and Si = − for antiquarks. In helicity amplitude

method, four component Dirac spinors ψ(p̄, σ̄) (= u(p̄, σ̄) or v(p̄, σ̄)) can be expressed by

two-component Weyl spinors ψ±,

ψ± =

ψ−

ψ+

 , ψ̄ = (ψ†
+, ψ

†
−), (4.40)

where

u(p̄, σ̄)± = ω±σ̄(p̄)χσ̄(p̄),

v(p̄, σ̄)± = ±σ̄ω∓σ̄(p̄)χ−σ̄(p̄). (4.41)
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The σ̄ is the helicity of the fermion with p̄µ = (Ē, p̄x, p̄y, p̄z), and χσ̄(p̄) is the normalized

helicity eigenspinor denote as,

χ+(p̄) = [2|p̄|(|p̄| + p̄z)]−1/2

|p̄| + p̄z)

p̄x + ip̄y

 , (4.42)

χ−(p̄) = [2|p̄|(|p̄| + p̄z)]−1/2

−p̄x + ip̄y

|p̄| + p̄z)

 , (4.43)

where

ω±(p̄) = [Ē ± |p̄|]1/2 (4.44)

Then both u and v spinors in the massless fermions limit that ω−(p̄) vanishes can be

expressed as

ψ(p̄, σ̄)± = Sδσ,±

√
2Ēχσ(p̄), (4.45)

in which σ = Sσ̄. For the helicity eigenstates, the shorthand notation corresponding to

external fermion leg i is

|i⟩ = χσi
(p̄i),

⟨i| = χ†
σi

(p̄i). (4.46)

The emission of a vector boson V with momentum k and polarization vector eµ, attached

to the external fermion i, is described by

|k, i⟩ = (/pi − /ki)−σi
(/e)σi

χσi
(p̄i)

1
(pi − k)2 ,

⟨i, k| = χ†
σi

(p̄i)(/e)σi
(/pi + /k)−σi

1
(pi + k)2 (4.47)
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Then the color sub-amplitude MB,21,lower (see Eq. 4.37) can be written as

MB,21,lower = −egV f4f3
σ3 S4S3δσ4σ32

√
p̄0

4p̄
0
3DV2(k2

2) ⟨4|3⟩ = F1j21,ν′ , (4.48)

where

F1 = −egV f4f3
σ3 S4S3δσ4σ3DV2(k2

2), (4.49)

and the upper part of the color sub-amplitude (see Eq. 4.351) can be written as

MB,21,upper = −egsg
V f2f1
σ1 S2S1δσ2σ12

√
p̄0

2p̄
0
1DV1(k2

1)[⟨2| (/ϵ)σ1 |k1, 1⟩ + ⟨2, k1| (/ϵ)σ1 |1⟩]

= F2e21,ν , (4.50)

where

F2 = −egsg
V f2f1
σ1 S2S1δσ2σ1DV2(k2

1). (4.51)

Then apply the HV V vertex in SM, the final expression for color sub-amplitude

(see the top row of Fig. 4.1) is

MB,21 = F3g
νν′
e21,νj21,ν′ (4.52)

where

F3 = gHV V F1F2 = e2gsgHV V g
V f2f1
σ1 gV f4f3

σ3 S2S1S4S3δσ2σ1δσ4σ3DV1(k2
1)DV2(k2

2) (4.53)

For the anomalous couplings, apply the generalized tensor structure in Eq. 4.1, the
1Here I include the gluon polarization vector ϵν .
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CP-even contribution for color sub-amplitude is

MB,21,even = F3(k1k2g
νν′ − kν

2k
ν′

1 )e21,νj21,ν′

= F3(k1k2g
νν′
e21,νj21,ν′ − e21,νk

ν
2j21,ν′kν′

1 ) (4.54)

and the CP-odd contribution for color sub-amplitude is

MB,21,odd = F3ε
νν′ρσk1ρk2σe21,νj21,ν′ . (4.55)

The MB,43 (see the bottom row of Fig. 4.1) can be calculated in a similar way, the upper

part is

MB,43,upper = −egV f2f1
σ1 S2S1δσ2σ12

√
p̄0

2p̄
0
1DV1(k2

1) ⟨2|1⟩ = F2j43,ν , (4.56)

and the lower part is

MB,43,lower = −egsg
V f4f3
σ3 S4S3δσ4σ32

√
p̄0

4p̄
0
3DV2(k2

2)[⟨4| (/ϵ)σ3 |k2, 3⟩ + ⟨4, k2| (/ϵ)σ3 |3⟩]

= F1e43,ν′ . (4.57)

The final expression for color sub-amplitude MB,43 (in SM) is

MB,21 = F3g
νν′
j43,νe43,ν′ , (4.58)

and for CP-even and CP-odd contributions,

MB,43,even = F3(k1k2g
νν′
j43,νe43,ν′ − j43,νk

ν
2e43,ν′kν′

1 ) (4.59)

MB,43,odd = F3ε
νν′ρσk1ρk2σj43,νe43,ν′ . (4.60)
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4.4 Implementation in VBFNLO

VBFNLO is a Monte Carlo program designed to accurately simulate various processes

in particle physics [21,81,82], which not only includes VBF process but also for single and

double vector boson production with two jets, and the production of double and triple

vector bosons along with a jet, all computed at the NLO precision. VBFNLO also contains

the calculation of LO cross sections with an additional jet. Additionally, the program

supports the simulation of CP-even and CP-odd VBF Higgs boson production with two

jets at NLO QCD accuracy. The program also allows for the specification of arbitrary cuts

and offers various scale choices. It supports the utilization of any available parton

distribution function (PDF) set through the LHAPDF [83] library. The code was written in

FORTRAN. To program the anomalous Higgs boson couplings associated with three jets, the

following files are related to the calculation: qqhqq.F, qqh2q2g_me.F, qqh4q_me.F,

hjjja.F, and Tmunu.F. Here the file hjjja.F calculates the anomalous couplings at LO ,

qqh2q2g_me.F and qqh4q_me.F calculates the real emission part, qqhqq.F calculate the

matrix elements at born level and finite virtual correction, Tmunu.F is used to calculate the

common factor involved in the calculation, i.e. vector boson propagators in Eq. 4.36. The

source code of these subroutines are available in the GitHub repository: Anomalous Higgs

Boson Couplings. In the following subsections, I will first introduce how to use built-in

subroutines to compute the LO matrix element in the SM case. Then I will introduce the

subroutine I developed to calculate the matrix element with anomalous couplings for LO,

real emission, and virtual correction.

4.4.1 LO Calculation

For the external quarks in helicity eigenstates, one needs to calculate the bra or ket

vectors, which is a shorthand notation for two-component spinors. The following

subroutine is used:

• psi0m(nf , p
µ
i , sign(i), ψ).
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In this subroutine, the input will be nf , which is the number of fermions that bra or ket

vectors to be calculated; pµ
i , which contains the momenta of the quarks; sign(i), which

indicates whether particle i is a quark or anti-quark. It will return to a complex array ψ

containing a ket or bra vector respective to incoming or outgoing quarks. To attach the

gluon to the quark line, it is possible to use the subroutine bra2r or ket2r:

• bar2r(⟨pi| , chreal, pµ
i , sigma, q

ν , ϵν , ⟨pi + q| , (pi + q)µ),

• ket2r(|pi⟩ , chreal, pµ
i , sigma, q

ν , ϵν , |pi − q⟩ , (pi − q)µ),

Here chreal indicates whether one component of ⟨p| or |p⟩ is real. sigma is the helicity of

the quark. qµ is the momentum of the gluon, and ϵµ is the polarization vector of the gloun.

The subroutines will return to new kets or bras that attach the gluon to the quark line

with new momentum. After calculating the bras and kets, then one can calculate the

current for the quark line, using the subroutine curr6:

• curr(sigmax, ⟨pi| , pµ
i , |pj⟩ , pµ

j , j
µ
pipj

),

• curr6(sigmax, ⟨pi + q| , (pi + q)µ, |pj⟩ , pµ
j , j

µ
pipj

),

where sigmax is the maximum value of the helicity for the current, ⟨ki| and |kj⟩ should be

the output of pis0m with the momenta pµ
i and pµ

j , respectively. The output, jµ
pipj

, is current

for quark line 21 without the gluon emission. In order to calculate the current with the

gluon attached, the ⟨p2| needs to be replaced by ⟨p2 + q|, which is the output from bra2r.

Now all the building blocks for the calculation of the LO matrix elements are

gathered. Then we can construct the matrix element by calculating the contraction of the

current. For example, if we want to contract the current of the upper line eµ
21 to the lower

line jν
21, in the SM case, it can be written as

gµνe
µ
21j

ν
21 = e0

21j
0
21 − e1

21j
1
21 − e2

21j
2
21 − e3

21j
3
21. (4.61)

51



Then one can multiply the couplings involved in the process, gHV V , g
V f1f2 , gV f3f4 , gs, and

the propagator for vector boson DV1(k2
1), DV2(k2

2) to compute the matrix element.

To implement the anomalous couplings, besides the SM case, both CP-even and

CP-odd terms in Eq. 4.1 should be calculated. This subroutine needs to modify the HV V

vertex (the black dot in Fig. 4.1) and use the new tensor structure to evaluate the matrix

element. Two existing subroutines have already been programmed, contract_CPE and

contract_CPO, can contract the current i.e., eµ
21 and jν

21 for CP-even and CP-odd cases.

• contract_CPE(J1T1J2, J1, J2, k1, k2),

• contract_CPO(J1T2J2, J1, J2, k1, k2).

Here the input will be the current J1 for the upper part, J2 for the lower part, k1 for the

momentum of the intermediate vector boson V1 connected to the 21 quark line, and k2 for

the momentum of the intermediate vector boson V2 connect to the 43 quark line.

contract_CPE will return to the value for the CP-even term in Eq. 4.1, J1T1J2. And the

subroutine contract_CPO will return to the value for the CP-odd term in Eq. 4.1, J1T2J2.

I have developed a new subroutine, hjjja, to evaluate the born amplitude with anomalous

Higgs boson couplings.

• hjjja(J21, J43, E21, E43, p21, p43, p21,g, p43,g,

DV21 , DV43 , DV21,g , DV43,g ,M
µ
21,M

µ
43)

The input will be the momentum entering the HV V vertex (i.e., p21,g, p43), the propagator

of the gauge boson (i.e. DV21,g , DV43), and the calculated current for two quark lines (i.e.

E21, J21). After execution, the subroutine will return to the sum of the matrix element for

CP-even and CP-odd cases.

The code anomHiggs.F is programmed to read in the user input value for the

anomalous couplings of HWW and HZZ from anom_HVV.dat and then use the Eq. 4.3 and

Eq. 4.4 to calculate the numerical values for anomalous couplings. Besides the contraction

of the current and the HWW and HZZ couplings, all the other building blocks are the
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same as the SM case, so it is straightforward to modify the code snippet and implement

the anomalous couplings under the current framework for the LO matrix element. To

conclude the program structure for Hjjj@LO, first one needs to use psi0m subroutine to

define the external quarks, then use bra2c or ket2c to attach the gluon emission to one of

the external quark legs. The next step is to use curr6 to calculate the quark current with

the emission of the gluon (i.e., the upper part shown in Fig. 4.2), and also the quark

current without the gluon emission (i.e., the lower part shown in Fig. 4.2). By applying the

contract_CPE and/or contract_CPO to the quark current already calculated in the

previous step, and multiply couplings and vector boson propagators (i.e., gHV V , gV ff and

DV (k2)), the color subamplitude is constructed. In Fig 4.2, all the construction subroutines

are labeled in different colors and use different rectangles to demonstrate the calculations.

4.4.2 Real Emission

In order to construct the NLO calculation for the Higgs boson plus three jets

(Hjjj@NLO), one also needs to implement the anomalous Higgs boson couplings to the

real emission part. The real emission subroutine in VBFNLO was originally developed by

Prof. Terrance Figy [5, 51] for SM and was modified by Dr. Michael Rauch to improve the

efficiency of the calculation. There are two files programmed for the real emission:

qqh4q_me.F and qqh2q2g_me.F, where qqh4q_me.F calculate the matrix element squared

for four quarks in the final state and qqh2q2g_me.F calculate the matrix element squared

for two quarks and two gluons in the final state. Since there are some common factors

during the evaluation of the matrix elements, such as couplings and the propagators for

vector bosons, I have created the following subroutines in Tmunu.F to calculate the

anomalous part of the matrix element:

• contract_TmnZZ (J1, J2, k1, k2, J1TJ2Z),

• contract_TmnWW (J1, J2, k1, k2, J1TJ2W ).
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Figure 4.2: This figure shows the construction of the Hjjj@LO with anomalous couplings,
where the curly line represents gluon and the dotted line represents Higgs boson.

The subroutine contract_TmnZZ contracts the current using the generalized tensor

structure in Eq. 4.1 and multiplies by the corresponding Z boson propagators. The input

value would be the current J1, J2, and the momentum of Z boson k1 and k2. The structure

of subroutine contract_TmnWW is similar to contract_TmnZZ, which uses the HWW

anomalous couplings and the propagators for W boson.

For the subprocess to have two gluons and two quarks in the final state, the current

is categorized into three categories: the current of the quark line attached to one gluon as

shown in Fig. 4.3; and the current of quark line attached with two gluons as shown in

Fig. 4.4; one intermediate gluon attach the quark line and emits to gluons as shown in
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Figure 4.3: Feynman diagrams for the real emission of Hjjj@NLO process that an external
gluon attached to both quark lines. The straight line represents quark, the wavy line rep-
resents gauge boson (W,Z), the dotted line represents the Higgs boson, and the curly line
represents gluon. The black dot represents the HV V vertex.

Fig. 4.5. For Fig 4.3, I did not label the gluon with different letters. In the subroutine, two

gluons have different polarization vectors, which means there could be six Feynman

diagrams to consider. Fig. 4.4 and Fig. 4.5 only show Feynman diagrams for one

possibility, which gluons are emitted from the upper quark line, another possibility would

be the gluon emitted from the lower line. These currents can be evaluated using the

subroutine curr6 with the corresponding inputs. There are six combinations for the current

contraction, and each one needs to be programmed for the anomalous part.

For the subprocess to have four quarks in the final state, there are two types of

current, one is the quark line without radiation, another is the quark line attached to the

intermediate gluon and the two quarks in the final state. To contract the current, there are
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four combinations: radiation from the upper line, radiation from the lower line, and the

interchange of the quark index between the initial and final states. By applying the

subroutine contract_TmnZZ and contract_TmnWW, the contribution of the anomalous

part can be computed and added to the SM matrix elements as Eq. 4.1.

Figure 4.4: Feynman diagrams for the real emission of Hjjj@NLO process that two external
gluons attached to one quark line.

Figure 4.5: Feynman diagrams for the real emission of Hjjj@NLO process that two gluons
emission from the same quark line. The straight line represents quark, the wavy line rep-
resents gauge boson (W,Z), the dotted line represents the Higgs boson, and the curly line
represents gluon. The black dot represents the HV V vertex.
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Figure 4.6: Example Feynman diagrams for the progress qq̄ → V g. The straight line rep-
resents quark, the wavy line represents gauge boson (W,Z), and the curly line represents
gluon. The black dot represents the HV V vertex. A complete set of Feynman diagrams can
be found in Ref. [5].

4.4.3 Virtual Correction

The subroutine coeff.F is been used to calculate the virtual correction.

• boxline_vg (ψ1, ψ2, p1, p2, isig, ϵ
µ, J, q1, q2,MB,Mbox)

The subroutine needs the momenta p1 and p2, and their spinor ψ1 and ψ2; the momenta of

the vector boson q2, and the corresponding quark line current J . Furthermore, the

momenta of gluon q1 and its polarization vector ϵµ, and the helicity isig of the quark line

has to be given to the subroutine to compute the matrix element of the virtual correction

Mbox. Compared to the SM case, there are two input needs to be modified, current J and

MB. In the calculation of the CP-even contribution, I have created subroutines

contract_CPEJ1 and contract_CPEJ2 to calculate the current J for the boxline

subroutine:
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• contract_CPEJ1(J1, J
µ
1 , p1, p2)

• contract_CPEJ2 (J2, J
µ
2 , p1, p2)

Similarly to the born level amplitude calculation, there are two parts for the virtual

correction, Mµ
V21 and Mµ

V43 . Since the position of the input variable is a one-to-one

mapping to the values, it is important to write two separate subroutines for each

calculation. contract_CPEJ1 is used for Mµ
V21 and contract_CPEJ2 is used for Mµ

V43 . For

the CP-odd contribution, I used the existing subroutine epscrr.

• epscrr(Dµ, Aα, Bβ, Cρ)

It will return to the value for the current as the input for the boxline subroutine.

Additionally, the born amplitude can be evaluated by using contract_CPE and

contract_CPO subroutine.
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CHAPTER 5
TESTS AND COMPARISONS

In this chapter, I will perform different validation checks on the code and show the

results. For Higgs boson production associated with three jets at LO, I compare it to the

tested Higgs boson production with two jets and add an additional jet. The dipole

subtraction check is used for the real part and the gauge invariance test is used for the

virtual part. The last check will be the relation between real emissions and virtual

corrections.

5.1 LO Check
In order to confirm the born-level matrix elements are programming correctly, one

needs to test the results for the calculation of Hjjj@LO. In VBFNLO, the feature to add

one LO additional jet is used for this test. Since the anomalous couplings for Higgs plus

two jets at NLO have been implemented and examined [23], I can compare the cross

section for Higgs plus three jets at LO to the Higgs plus two jets with one additional LO

jet. The results are shown in Tab. 2.

Table 2: This table shows the cross section for the Higgs boson plus two jets with additional
LO jets and the Higgs boson plus three jets at LO.

LO σCP −even[fb] σCP −odd[fb] σCP −mixed [fb]
Hjj@LO + jet 670.39519 ± 0.20182 512.86790 ± 0.14043 1183.48762±0.34811
Hjjj@LO 670.35567 ± 0.20059 512.88934 ± 0.14028 1183.42227±0.34675

In this test, the parameters for the anomalous couplings are set for three different

cases: gHW W
5e = gHZZ

5e = 0.5 for CP-even case; gHW W
5o = gHZZ

5o = 0.5 for CP-odd case;

gHW W
5e = gHZZ

5e = gHW W
5o = gHZZ

5o = 0.5 for CP-mixed case, and all other parameters equals

zero. As shown in Tab. 2, each column compares the results of the cross section with the

Monte Carlo error between the Hjjj@LO and Hjj@LO with one additional jet. All

results show that the Hjjj@LO cross section agrees with the cross section for Hjj@LO

with one additional jet within the Monte Carlo error. This indicates that the

implementation at the Born-level is validated.
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5.2 Dipole Subtraction Check
Since dipole subtraction is used to perform numerical calculations involved in the

NLO calculation, one can compare the matrix elements square for the real emission and the

subtraction term. In the formalism of Catani and Seymour subtraction method, the

subtraction terms dσA act as local counter terms. Thus, they have to exactly cancel the real

emission contribution in the singular regions. This property of the subtracted dipoles has

been tested numerically for the real emission of the Hjjj@NLO after the implementation

of anomalous coupling. In order to confirm the cancellation of collinear singularities, the

comparison is made for the individual phase points by taking the ratio of subtraction term

and real emission matrix elements squared, |Msub|2/|Mreal|2. The subroutine written by

Michael Raunch was used to make this dipole subtraction check. The |Msub|2/|Mreal|2 is

plotted over the scalar products between the momentum of the quark momentum pi where

i = 1, 2, 3, 4 and the gluon momentum pj where j = 5, 6. From the plots, most points were

around the line |Msub|2/|Mreal|2 = 1. As pi · pj → 0, the subtraction terms can cancel the

real emission contributions resulting in a ratio of real emission cross section divided by

dipole cross sections of one. This shows that the dipole method works.
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Figure 5.1: Ratio of the real emission matrix element and the subtraction dipoles, in the
limits p1 · p5 → 0 (left panel) and p2 · p5 → 0 (right panel).
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Figure 5.2: Ratio of the real emission matrix element and the subtraction dipoles, in the
limits p3 · p5 → 0 (left panel) and p4 · p5 → 0 (right panel).
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Figure 5.3: Ratio of the real emission matrix element and the subtraction dipoles, in the
limits p1 · p6 → 0 (left panel) and p2 · p6 → 0 (right panel).
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Figure 5.4: Ratio of the real emission matrix element and the subtraction dipoles, in the
limits p3 · p6 → 0 (left panel) and p4 · p6 → 0 (right panel).
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5.3 Gauge Invariance Check for Virtual Correction
The virtual contributions can be tested using the property of gauge invariance. For

a single diagram, it is not gauge invariant by itself, but the sum of all diagrams

contributing to the matrix element is gauge invariant. The Ward identity [84,85] can be

used to test the implementation of the virtual corrections. A solid proof of the Ward

identity can be found in Ref. [86]. The virtual matrix element Mvirt will be vanished if one

replaced the polarization vector ϵµ to the momentum pµ,

ϵµMµ
virt → pµMµ

virt (5.1)

This test was programmed to check two parts of virtual correction, MV
21 and MV

43

individually. The original debug code was developed by Prof. Terrance Figy. The

histogram was made by taking the ratio of MV
21 to the matrix element M21 and MV

43 to

the matrix element M43 for about 500,000 data points. Fig. 5.5 shows the results of the

gauge check. On the right panel shows the check for the MV
21/M21 and the right panel

shows the check for MV
43/M43. From these two histograms, it shows that most of the data

points were around 10−12, and this indicated that gauge invariance was satisfied for the

virtual correction.

Figure 5.5: Gauge check for virtual corrections.
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5.4 Relation Between Real Emission and Virtual Correction
In this section, I will use the properties based on the subtraction method, which is

possible to integrate real emission and virtual corrections proportional to the born term.

There are two constants that are important to Higgs plus three jets production process:

cvirt and creal. The sum of these two constants, csum, should be fixed,

csum = cvirt + creal = π2

3 − 8 + 2π2

3 − 13
2 = π2 − 29

2 . (5.2)

By varying the cvirt and creal to different values but keeping the csum fixed, the NLO

cross section should stay the same. The results are shown in Tab. 3. In order to testify the

CP-even anomalous couplings, I used the parameter which gHW W
5e = gHZZ

5e = 0.5 for

CP-even case, gHW W
5o = gHZZ

5o = 0.5 for CP-odd case, and

gHW W
5e = gHZZ

5e = gHW W
5o = gHZZ

5o = 0.5 for CP-mixed case. All other parameters not

specified are zero.

After giving two constants, cvirt and creal, for a different value, the total cross

section for NLO results is agreed within the numerical error of the Monte Carlo event

generator. This confirms that the finite part of the virtual corrections and the real

emissions are correct.

Table 3: This table shows the NLO cross section for the Higgs boson plus three jets in three
different CP scenarios. Given the different constant cvirt and creal, their sum csum is fixed.

cvirt creal csum σCP −even [fb] σCP −odd [fb] σCP −mix [fb]
π2

3 − 8 2π2

3 − 13
2 π2 − 29

2 595.843598±
7.609827

280.345733±
1.502138

884.456846±
10.910300

4π2

3 − 14 −π2

3 − 1
2 π2 − 29

2 602.168175±
7.367263

278.451237±
1.502102

877.085241±
10.064846

−6 π2 − 17
2 π2 − 29

2 592.121609±
6.532743

282.803893±
1.208810

893.547709±
6.771830
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CHAPTER 6
PHENOMENOLOGY

After developing the anomalous Higgs boson couplings associated with three jets, I

can perform the simulation of merged and matched setup in VBF using the Herwig 7. In

this chapter, starting with the introduction to Herwig 7 and input parameters, three

selection cuts will be defined. Then the results of CP-sensitive observables will be

presented for merged and matched setup. I will show the results of different CP scenarios

and compare the distribution of CP-sensitive observables for h(2⋆, 3⋆, 4) , h(2⋆, 3) ,

h(2⋆)⊕PS , and NLO fixed order calculation. Finally, I will look at the comparison of SM

results and three different CP scenarios.

6.1 Introduction
A hadron collider has a special axis called the beam axis. The beam axis is parallel

to the incoming particles. Usually, the beam axis is chosen to be the z-axis. It is often

convenient to describe the four-momentum of a particle by their energy and polar angle θ

and azimuthal angle ϕ, where θ represents the angle of the particle with respect to the

z-axis, φ is the angle around the beam axis [87].

The energies and momenta of incoming particles are known for particle physics

experiments, but the energies and momentum fractions of the respective constituents that

interact are not known in advance. The relative motion can be understood as a boost of

the constituent system with respect to the lab or beam system. If the constituents move in

parallel to the incoming particles, this implies that the overall momentum of the colliding

constituents along the beam axis is essentially unknown. It is thus convenient to construct

a quantity with good transformation properties under boosts along the beam axis such as

rapidity y, transverse momentum pT , and invariant mass mj1j2 [87].

Herwig 7 [88] is a multi-purpose particle physics event generator. The current

version is Herwig 7.2.3, which is used in this research. It provides all the different

simulation steps, such as hard process generation, parton shower, hadronization and
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multiple parton interactions (MPI). In this dissertation, I did not include the hadronization

and MPI in the simulation. Detailed information and tutorials can be obtained from the

website: https://herwig.hepforge.org/. The description of computation and

documentation can be found in the Herwig 7.0 release note [88].

LHC-Matchbox.in [89] is the input file of the Herwig 7 event generator. It is

already structured in a way that guides the user through the choices for the hard

processes [90]. A few "beam parameters" have been modified in this study: beam energy,

settings for VBF approximation, selection of the process, selection of matrix element, and

shower selection. The usage and a brief guide will be shown in Appendix. Also, the

estimated running time for matched and merged setup on the HPC will be discussed in

Appendix.

When the Herwig 7 event generator generates events, a yoda file containing data is

generated. Rivet [91] makes plots from the yoda file through the code "rivet-mkhtml". It

has many options of plots such as ratio plots, legends, titles, labels, etc. Throughout this

dissertation, Rivet 2.7.2 was used to make plots. All analyses of Higgs production have

been performed by Rivet .

6.2 General Monte Carlo Input Parameters
To examine the results of the anomalous coupling for the Higgs boson in different

scenarios, the Herwig 7 input parameters are set up in the HJets-settings.in file. The

settings used are the same as in Ref. [35]. The mass and widths of Z0 and W± gauge

bosons are fixed to

mZ = 91.1876 GeV, ΓZ = 2.4952 GeV, (6.1)

mw = 80.385 GeV, ΓW = 2.085 GeV. (6.2)

The Fermi constant is GF = 1.16637 × 10−5 GeV−2 and the Gµ scheme is used to derive

the electromagnetic coupling constant and the weak mixing angle via Standard Model
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tree-level relations. The Higgs boson mass is set to mH = 125.7 GeV.

For renormalization and factorization scales, the following scale is used:

µ0 = 1
2HT,jets = 1

2
∑

i∈jets
pT,i, (6.3)

where pT,i is the transverse momentum of the i-th jet. In order to ensure the infrared safety

of the scale choice, the anti-kT jet clustering [92] was used with R = 0.4 in the inclusive

mode. The recombination method is E-scheme and requires each jet to have pT,i > 5 GeV.

The collider energy
√
s = 13 TeV is used for all simulations. The parton distribution

function is PDF4LHC15_nnlo_100_pdfas [93] in all simulations with LHAPDF6 [83]. To be

consistent with PDF4LHC15_nnlo_100_pdfas settings, the strong coupling constant was

chosen as αs(MZ) = 0.118 and used the five active flavors in the settings.

In order to optimize our analysis and ensure accurate results, there is a set of

selection cuts applied for the hard processes involving jets before proceeding with the

subsequent parton shower simulation. However, the selection cut at the event generation

level is weaker than the analysis cut to ensure enough margin for the study. While in

principle a cut may not be necessary for the lowest-order process involving two jets, the

cuts are still employed for efficient reasons. On the other hand, other processes of the

VBF/VBS kind do require the implementation of generation cuts even at the NLO for the

lowest-order process.

To reconstruct jets from the final-state partons, the anti-kt algorithm as described

in the reference [92] and utilize the fastjet library [94]. In the inclusive mode, the jet

radius parameter is R = 0.4 and adopts the E-scheme for the recombination method. The

minimum transverse momentum required for all jets is set to 10 GeV, and the jet rapidity

is constrained within |yj| ≤ 5. In scenarios where the lowest final-state parton multiplicity

is two partons, such as h(2∗, 3) or h(2⋆)⊕PS , it requires a minimum of two jets.
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6.3 Event Selection Cuts
The analysis utilizes the MC analysis toolkit Rivet 2.7.2 [95] to analyze all

simulated events. A specific analysis named MC_H2JETS has been developed within the

Rivet framework, which implements three event selection criteria: inclusive cuts (INCL),

tight cuts (TIGHT), and loose cuts (LOOSE).

To combine partons into jets, the anti-kt algorithm [92] is employed with a radius

parameter of R = 0.4 in the inclusive mode. The recombination of partons into jets follows

the E-scheme. Valid jets are required to satisfy certain conditions regarding their

transverse momentum pT,j and rapidity yj. These conditions are as follows:

pT,j > 25 GeV, |yj| ≤ 4.5. (6.4)

The jets are ordered from largest to smallest in jet transverse momentum and labeled jets

as jk with k = 1, 2, 3... being an index. For INCL selection cuts, it requires at least two jets

in the event. For the LOOSE selection cuts, there is an additional selection criterion has

been included,

mj1j2 > 200 GeV, ∆yj1j2 > 1, (6.5)

where mj1j2 is the invariant mass of the leading two jets. ∆yj1j2 is the rapidity separation

of the two hardest jets defined as ∆yj1j2 = |yj1 − yj2 |. For the TIGHT selection cuts, the

following additional selection criterion is included,

mj1j2 > 600 GeV, ∆yj1j2 > 4.5, yj1 · yj2 < 0. (6.6)

6.4 CP Sensitive Observables
The anomalous HV V couplings will affect the distribution of the Higgs boson

production through VBF at LHC. The CP structure of the HV V vertex can be revealed by

studying the azimuthal angle between two jets. In general, the azimuthal angle between
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the two hardest jets is defined as

|∆ϕj1j2 | = |ϕj1 − ϕj2 | (6.7)

The shape of 1/σdσ/|∆ϕj1j2| is sensitive to the CP structure [23,71]. As shown in

Fig. 6.1 (top), I plot the distribution of |∆ϕj1j2| for h(2⋆)⊕PS for three cases: pure

CP-even, pure CP-odd, and the CP-mixed. For the plots in this section, the anomalous

couplings are:

• pure CP-even: gHW W
5e = gHZZ

5e = 0.5,

• pure CP-odd: gHW W
5o = gHZZ

5o = 0.5,

• CP-mixed: gHW W
5e = gHW W

5o = gHZZ
5e = gHZZ

5o = 0.5.

For all three CP scenarios, it is set that no SM contribution, i.e., a1 = 0 in Eq. 4.1, and

Λ = 480. The color legends for these distribution plots are red lines for the CP-mixed case,

blue lines for the purely CP-even case, green lines for the purely CP-odd case, and orange

lines for the SM case. The plots are made against the SM scenario so that the reference in

each ratio plot is the SM results, and the distributions are normalized to compare three

scenarios of anomalous couplings. The error bars shown in the figures are the Monte Carlo

error. For purely CP-even couplings, the cross section is suppressed at 90 degrees, while for

purely CP-odd couplings, the cross section is suppressed at 0 and 180 degrees. From the

ratio plot in Fig. 6.1 (top), it is clear that purely CP-odd couplings have a peak at 90

degrees while purely CP-even couplings have a dip. The plot range is set from 0 to π since

it calculated the absolute value of ∆ϕj1j2 . When both CP-even and CP-odd couplings of

the same strength are present, i.e., in the CP-mixed case, the dips cancel out and result in

a distribution without the characteristic curve. For the merged setup h(2⋆, 3) and

h(2⋆, 3⋆, 4) , there is a similar pattern shown in Fig. 6.2 and Fig. 6.3, in which the

CP-mixed distribution lost the sinusoidal shape. However, the distribution of |∆ϕj1j2| can
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still be useful when compared to purely CP-even and CP-odd anomalous couplings.

Since Eq. 6.7 takes the absolute value of the difference between ϕj1 and ϕj2 , it lost

information contained in the sign of the azimuthal angle between the tagging jets. It may

initially appear challenging to define this sign unambiguously in pp collisions because the

azimuthal angle changes sign when viewed from the opposite beam direction. However, one

must consider the correlation of the tagging jets with the two distinct beam directions.

When defining ∆ϕjf jb
as the azimuthal angle of the "away" jet minus the azimuthal angle

of the "toward" jet, exchanging the two beam directions preserves the sign of ∆ϕjf jb
[23].

∆ϕjf jb
is define as

∆ϕjf jb
=


ϕj1 − ϕj2 , yj1 > yj2

ϕj2 − ϕj1 , yj1 < yj2

(6.8)

In order to make ∆ϕjf jb
∈ [−π, π], ∆ϕjf jb

also satisfies

∆ϕjf jb
=


∆ϕjf jb

+ 2π, ∆ϕjf jb
< −π

∆ϕjf jb
− 2π, ∆ϕjf jb

> π

(6.9)

For the normalized four-momenta of the proton beams such as b+ and b−, while p+ and p−

represent the four-momenta of the tagging jets. p+ points into the same detector

hemisphere as b+ and p− points the opposite detector hemisphere. Then

ϵµνρσb
µ
+p

ν
+b

ρ
−p

σ
− = 2pT,+pT,− sin(ϕ+ − ϕ−)

= 2pT,+pT,− sin ∆ϕjf jb
(6.10)

provides the sign of ∆ϕjf jb
and it is a parity-odd observable. The definition in Eq. 6.10 is

invariant under the interchange (b+, p+) → (b−, p−).

The distribution of ∆ϕjf jb
with TIGHT selection cuts are shown in the bottom row
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of Fig. 6.1 for h(2⋆)⊕PS , Fig. 6.2 for h(2⋆, 3) , and Fig. 6.3 for h(2⋆, 3⋆, 4) with three

scenarios of purely anomalous couplings and the SM case. In the case of mixed CP-even

and CP-odd couplings, the positions of the maxima shift to π
4 and the minima at 3π

4 . The

observed shift in the ∆ϕjf jb
distribution further indicates the loss of information in the

mixed CP case. Specifically, when folding the ∆ϕjf jb
distribution at ∆ϕjf jb

= 0, the

positions of the dips do not align, resulting in the characteristic curve as shown in Fig. 6.1.

Both the h(2⋆, 3) and h(2⋆, 3⋆, 4) share similar features as h(2⋆)⊕PS , when including the

sign information of ∆ϕjf jb
, the CP-mixed case shift positions of dips.
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Figure 6.1: The distribution for of |∆ϕj1j2| (top) and ∆ϕjf jb
(bottom) for matched setup

h(2⋆)⊕PS using TIGHT selection cuts.
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Figure 6.2: The distribution for of |∆ϕj1j2| (top) and ∆ϕjf jb
(bottom) for merged setup

h(2⋆, 3) using TIGHT selection cuts.
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Figure 6.3: The distribution for of |∆ϕj1j2| (top) and ∆ϕjf jb
(bottom) for merged setup

h(2⋆, 3⋆, 4) using TIGHT selection cuts.
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While in Fig. 6.1-6.3, I have shown that the CP structure of the Higgs boson vertex

can be discerned by investigating the azimuthal angle between the two jets, the CP

structure can also be studied through a modified azimuthal angle ϕ2 [96] between qa and qb.

Define ϕ2 as

ϕ2 = ∠(qa⊥,qb⊥), (6.11)

where

qa =
∑

j∈{jets:yj<yh}
pj, qb =

∑
j∈{jets:yj>yh}

pj, (6.12)

Here divide the observable jets into two groups by rapidity of Higgs boson, making the jets

separated from the Higgs boson direction. qa⊥ and qb⊥ are the transverse component of

the qa and qb. Since there is rapidity and invariant mass cuts in the TIGHT selection cuts,

the observable ϕ2 should show a similar distribution as ∆ϕjf jb
.

The distribution of the ϕ2 is shown in Fig. 6.4-6.6 for h(2⋆)⊕PS ,h(2⋆, 3) , and

h(2⋆, 3⋆, 4) with TIGHT selection cuts. It can be seen that the ϕ2 results share a number of

key features compared to the distribution of ∆ϕjf jb
. The three anomalous coupling

scenarios are distinguishable by the shape of the observable ϕ2 distribution. Again, even

have the same strength as the CP-even and CP-odd couplings, the CP-mixed case still

presents a characteristic curve with a shift of π
4 compared to the CP-even or CP-odd case.
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Figure 6.4: Distributions of ϕ2 for h(2⋆)⊕PS using TIGHT cuts.
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Figure 6.5: Distributions of ϕ2 for h(2⋆, 3) using TIGHT cuts.

78



Herwig 7.2.3
VBFNLO 3.0.0

CP-mixed
CP-even
CP-odd

SM

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

h(2*,3*,4)

1/
σ

d
σ

/
d

φ
2

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

φ2

R
at

io

Figure 6.6: Distributions of ϕ2 for merged setup h(2⋆, 3⋆, 4) using TIGHT selection cuts.

6.5 Comparison Between Matching and Merging Results
As pointed out at the beginning of this chapter, both merging and matching

frameworks in Herwig 7 were used in the calculation of Higgs production with anomalous

couplings. The difference between the merged setup and matched setup is shown in the

following figures, where the merged setups are h(2⋆, 3⋆, 4) and h(2⋆, 3) , the matched setup

h(2⋆)⊕PS , and the fixed NLO h(2⋆) calculation. Let’s start with the invariant mass

distribution of the two leading jets in Fig. 6.7 for the four merged and matched setups,

where the INCL and LOOSE selection cuts are applied. The mj1j2 distribution of

h(2⋆)⊕PS and h(2⋆) are deviated 10% and 15% from h(2⋆, 3⋆, 4) at the beginning of the

Fig. 6.7 with INCL cuts. When mj1j2 > 300 GeV, the merged setup and the matched setup

have agreement. After applying the LOOSE cut, as shown at the bottom of Fig. 6.7,

merged and matched setups only have the differences due to the Monte Carlo error when

mj1j2 > 300 GeV. Fig. 6.8 presents the distribution of ∆yj1j2 with INCL and TIGHT

selection cuts. The ratio plot uses h(2⋆, 3⋆, 4) as the reference. It can be seen that h(2⋆)
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and h(2⋆)⊕PS are deviated 10% at the ∆yj1j2 ∈ [0, 1]. The h(2⋆, 3) deviates 2% from the

h(2⋆, 3⋆, 4) setups in the same region. After applying the TIGHT cuts, the fixed order

calculation h(2⋆) deviates at the tail of the ∆yj1j2 due to the Monte Carlo error. All other

setups have an agreement.

In Fig. 6.9, I have shown the distribution of |∆ϕj1j2| and the signed version

azimuthal angle difference between the tagging jets, ∆ϕjf jb
for CP-mixed case. It can be

observed that the fixed order calculation and matched setup agree with the merged setup

h(2⋆, 3⋆, 4) for distribution of |∆ϕj1j2|. However, for the distribution of ∆ϕjf jb
,

h(2⋆)⊕PS and h(2⋆) shows 15% difference at −π
4 and 3π

4 . For CP-even couplings,

h(2⋆)⊕PS deviates 20% at the dip of the distribution for |∆ϕj1j2| in Fig. 6.10 and fixed

order calculation h(2⋆) shows 20% difference at the π/2. At the bottom plot of Fig. 6.10,

h(2⋆)⊕PS deviate at −π/2 and π/2 for the quantity of 20% from the h(2⋆, 3⋆, 4) . The

distribution of |∆ϕj1j2| and ∆ϕjf jb
with CP-odd coupling is shown in Fig. 6.11. After

applying the TIGHT selection cuts, the matched setup h(2⋆)⊕PS is smaller than the

merged setup h(2⋆, 3⋆, 4) for 15% at |∆ϕj1j2 | = 0 and |∆ϕj1j2| = 0. Also, the

h(2⋆)⊕PS deviates from h(2⋆, 3⋆, 4) setups at ∆ϕjf jb
= −π, ∆ϕjf jb

= 0, and ∆ϕj1j2 = π for

15% in the bottom plot of Fig. 6.11. Fig. 6.12 and Fig. 6.13 present the distribution of ϕ2

for the CP-mixed, CP-even, and CP-odd anomalous couplings. Again, matched setup

h(2⋆)⊕PS and fixed order calculation differ at the dips of the distribution as excepted and

also observed in the distribution of ∆ϕjf jb
.

80



Herwig 7.2.3
VBFNLO 3.0.0

h(2*,3*,4)
h(2*,3)

h(2*) ⊕ PS
h(2*)-FO10−3

CP-mixed

d
σ

/
d

m
j 1

j 2
(p

b/
G

eV
)

0 200 400 600 800 1.0 · 103
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

mj1 j2 (GeV)

R
at

io

Herwig 7.2.3
VBFNLO 3.0.0

h(2*,3*,4)
h(2*,3)

h(2*) ⊕ PS
h(2*)-FO10−3

CP-mixed

d
σ

/
d

m
j 1

j 2
(p

b/
G

eV
)

0 200 400 600 800 1.0 · 103
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

mj1 j2 (GeV)

R
at

io

Figure 6.7: The distribution of mj1j2 with INCL cuts (top) and LOOSE cuts (bottom) for
CP-mixed anomalous couplings. The ratio plot compared h(2⋆, 3⋆, 4) , h(2⋆, 3) , h(2⋆)⊕PS ,
and h(2⋆) fixed order for NLO calculation, with the merged setup h(2⋆, 3⋆, 4) as the reference.
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Figure 6.8: The distribution of ∆yj1j2 with INCL cuts (top) and TIGHT cuts (bottom) for
CP-mixed anomalous couplings. The ratio plot compared h(2⋆, 3⋆, 4) , h(2⋆, 3) , h(2⋆)⊕PS ,
and h(2⋆) fixed order for NLO calculation, with the merged setup h(2⋆, 3⋆, 4) as the reference.
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Figure 6.9: The distribution of |∆ϕj1j2| (top) and ∆ϕjf jb
(bottom) for CP-mixed anomalous

couplings with TIGHT cuts.
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Figure 6.10: The distribution of |∆ϕj1j2| (top) and ∆ϕjf jb
(bottom) for CP-even anomalous

couplings with TIGHT cuts.
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Figure 6.11: The distribution of |∆ϕj1j2| (top) and ∆ϕjf jb
(bottom) for CP-odd anomalous

couplings with TIGHT cuts.
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Figure 6.12: The distribution of ϕ2 for CP-mixed anomalous couplings with TIGHT cuts.

6.6 Comparison Between Anomalous Couplings and SM
This section collects key results for the comparison between the three scenarios of

anomalous couplings: CP-even, CP-odd, and CP-mixed, to SM prediction. The kinematic

observables shown in the plots are the rapidity gap between two leading jets, the hardest

jet rapidity distribution, and the distribution of the transverse momentum for the first

leading jet. Let’s first consider the distribution of the ∆yj1j2 for h(2⋆)⊕PS . In Fig. 6.14,

all cases with anomalous couplings show different behavior compared to the SM case. For

the distribution of the rapidity gap (see Fig. 6.14 and Fig. 6.15), the CP structure shows a

different pattern as compared to the SM distribution. At the bottom plot of Fig. 6.14, the

rapidity distribution of the first leading jet displays the fact that in the case of anomalous

couplings, the jets are more central than in the SM case. The same glaring difference

appears in the h(2⋆, 3⋆, 4) setups as shown in Fig.6.15, which offer a tool to discriminate

about different parity assignments. Fig. 6.16 shows the normalized transverse momentum

distribution of the first leading jet pT,j1 , it can be seen that three CP scenarios start to

deviate from SM at pT,j1 = 20 GeV. The plots have also shown that the distribution of

transverse momentum can not sufficiently distinguish between different CP structures.
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Figure 6.13: The distribution of ϕ2 for CP-even (top) and CP-odd (bottom) anomalous
couplings with TIGHT cuts.
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Figure 6.14: The distribution of ∆yj1j2 (top) and yj1 (bottom) for h(2⋆)⊕PS with INCL
cuts.
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Figure 6.15: The distribution of ∆yj1j2 (top) and yj1 (bottom) for h(2⋆, 3⋆, 4) with INCL
cuts.
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Figure 6.16: The distribution of PT,j1 for h(2⋆)⊕PS (top) and h(2⋆, 3⋆, 4) (bottom) with
INCL cuts.
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CHAPTER 6
CONCLUSIONS AND OUTLOOK

Although the anomalous Higgs couplings via VBF has already available in VBFNLO,

in order to present results using the matching and merging framework provided by

Herwig 7, I have implemented the anomalous coupling for Higgs plus three jets

production. The programs are written in Fortran and implemented into the VBFNLO in a

numerically stable way. I have applied a dedicated system of checks and balances to verify

this implementation. Checks include verification against available automated matrix

elements implemented in VBFNLO for LO, dipole subtraction check for real emission, and

gauge test for virtual correction relying on the Ward identity. I have reviewed the Standard

Model and the calculation for the NLO cross section in Chapter 2. In addition, I also

briefly introduced the Catani-Seymour subtraction method which is used in the NLO

calculation for Higgs plus three jets production. In Chapter 3, matched and merged setups

for Higs boson plus two jets are discussed and the results on the numerical calculations are

presented using HJets and VBFNLO via Herwig 7.

The detailed implementation of the design of numerical building blocks for LO, real

emission, and virtual correction are discussed in Chapter 4. I also introduced the helicity

amplitude method and demonstrated the calculation of Hjjj@LO. In order to program

the generalized tensor structure and combine it into the existing Higgs boson plus three

jets subroutines, I have created several subroutines to calculate the CP-even or CP-odd

structure for all parts of the NLO cross section.

All parts of the code have been carefully checked. In particular, LO cross sections

and distributions have been compared with the already checked results and take advantage

of the feature in VBFNLO that adds additional LO jets. Furthermore, Ward identity tests for

the virtual contributions have been implemented and the cancellation of divergences in the

real emission against the counter-terms, as given by the subtraction method has been

checked.
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The phenomenology results are presented in Chapter 6. The Monte Carlo event

generator Herwig 7 is used to generate the events for fixed order calculation h(2⋆),

matched setup h(2⋆)⊕PS , merged setup h(2⋆, 3) , and h(2⋆, 3⋆, 4) . The generated events

are analyzed by Rivet to create the yoda file and make plots. Several observables can be

studied to extract the CP structure of the HV V vertex, and I have shown the distribution

of these observables in different CP scenarios. I have compared the predictions for Higgs

plus two jets in matched and merged framework via Herwig 7 and find that for all

anomalous coupling cases, for two jet observables ∆yj1j2 and mj1j2 there is a deviation up

to 10% between matched setup and merged setup when only applied INCL cuts. While

after applying the TIGHT cuts, the merged setups h(2⋆, 3⋆, 4) and matched setups

h(2⋆)⊕PS are in good agreement. For CP-sensitive observables, the deviation between

matched setup and the merged setup occurs in the dips of the distribution. The fixed order

calculation h(2⋆) deviates up to 20% compared with the merged setup in all three CP

scenarios.

The source code I developed in this dissertation will become online at GitHub 2 and

is suitable for merging into VBFNLO. It provides a computational tool for both

experimentalists and theorists to investigate possible CP violation searches via VBF Higgs

boson production. The tools and techniques I presented are for the study of Higgs boson

couples to W or Z bosons. The Higgs boson anomalous coupling that has not been studied

in this dissertation is the Higgs boson couples to γ and/or Z boson. Another development

one can make anomalous Higgs boson coupling implementation to the full calculation of

Higgs boson production provided by HJets [55–58].

2https://github.com/tinghuagithub/Anomalous-Higgs-Boson-Couplings
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APPENDIX

The Herwig 7 Usage Example
To use Herwig 7 to generate the event for a specific process, first need to activate

the Herwig environment by

$ source /where/herwig/ install /bin/ activate

The Herwig 7 needs to read the input files through the "build" step, and it can be

parallelized by providing n integration jobs through

$ Hewrig build --maxjobs =n LHC -H- Merging .in

After this, a .run file will be created, but subprocess integration has been postponed to the

next step, which can then be run via:

$ Hewrig integrate --jobid=k LHC -H- Merging .run

where n ∈ [0, n− 1]. To integrate all n jobs using

$ for k in {0..n -1};\

do (./ Herwig integrate --jobid=$k LHC -H- Merging .run &); done

Then parallel event generation can be performed by using a number of jobs with different

random seeds,

$ Herwig run --seed =426738 LHC -H- Merging .run

After the generation of events is finished, there will be a yoda file (i.e.,

LHC-H-Merging.yoda). One can merge yoda files with different random seeds to improve

statistics via

$ yodamerge -o LHC -final.yoda LHC -1. yoda LHC -2. yoda

where LHC-final.yoda is the output after merging, LHC-H-Merging-1.yoda and

LHC-H-Merging-2.yoda are intermediate yoda file with different random seeds.
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The LHC-Matchbox.in file and LHC-H-Merging.in file is used as the input file for

Herwig 7 event generator. In this study, LHC-Matchbox.in is used as the input for h(2⋆)

fixed order calculation and h(2⋆)⊕PS , while the LHC-H-Merging.in is used for the

merged setup, i.e. h(2⋆, 3) and h(2⋆, 3⋆, 4) . An example input file LHC-H-Merging.in for

the calculation of h(2⋆, 3⋆, 4) at 13 TeV is shown in the following. All the input files used

in this dissertation and the VBFNLO code I developed are in the GitHub repository:

"Anomalous Higgs Boson Couplings".

Herwig 7 adds a new feature to help reduce the running time for merged setup by

dividing the event generation process into chunks. Using this feature, for example, I can set

up 5 chunks for the h(2⋆, 3⋆, 4) process and then run event generation jobs in parallel based

on different chunks. This can reduce the running time for a single event generation run.

Then I can add the chunk results to get the final results. For the estimation of the running

time on HPC (based on the single CPU core and 2 GB memory) of the merged setup

h(2⋆, 3⋆, 4) , it takes about 5 hours to generate 1, 000, 000 events. In order to have good

statistics for h(2⋆, 3⋆, 4) runs, I have generated 8, 000, 000 events for 250 individual runs

with different random seeds for each chunk. And I divided the event generation into 10

chunks. For the merged setup h(2⋆, 3) , it takes about 3.5 hours to generate 1, 000, 000

events. I have executed 200 parallel runs, each generating 10, 000, 000 events, and divided

the process into 5 chunks. For the matched setup h(2⋆)⊕PS , the running time for one

million events is about 1.5 hours, and I execute 200 runs with 10, 000, 000 events for each

run.

In order to use the VBFNLO for matrix elements and read input for parameters for

anomalous couplings, anom_HVV.dat is also needed in the working directory. An example of

setting CP-even and CP-odd couplings is shown below. In this example, I only show one

part of the file, which is the parameterization I used in the dissertation, and the complete

file can be found on GitHub. I used the first parameterization, and set

gHW W
5e = gHZZ

5e = gHW W
5o = gHZZ

5o = 0.5.
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------------------------------set anomalous HVV couplings

------------------------------Parametrisation: Phys. Lett. B591, 297

PARAMETR1 = .true. ! switch for this parametrisation;

!on(=.true.) or off(=.false.)

LAMBDA5 = 480.0d0 !lambda5

G5E_HWW = 0.5d0 ! g5e_hww, CP-even

G5E_HZZ = 0.5d0 ! g5e_hzz

G5E_HGG = 0.0d0 ! g5e_hgg

G5E_HGZ = 0.0d0 ! g5e_hgz

G5O_HWW = 0.5d0 ! g5o_hww, CP-odd

G5O_HZZ = 0.5d0 ! g5o_hzz

G5O_HGG = 0.0d0 ! g5o_hgg

G5O_HGZ = 0.0d0 ! g5o_hgz
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