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ABSTRACT

The discovery of the Higgs boson at the Large Hadron Collider (LHC) in 2012
marked a significant milestone in particle physics. Since then, extensive investigations have
been carried out to unravel the properties of the Higgs boson and understand its
interactions with other fundamental particles.

Monte Carlo simulations play an important role in studies of particle physics. They
generate theoretical predictions and can be compared with experimental data to test our
understanding of physics.

In this dissertation, the anomalous Higgs boson coupling to vector bosons was
implemented in VBFNLO for Higgs boson plus three jets via VBF at the next-to-leading
order (NLO) accuracy. I present results for a number of collider observables that are
sensitive to the CP structure, whether in different CP scenarios and in the Standard Model.
I also investigate the effects of NLO multijet merging and NLO QCD corrections matched

to a parton shower on selected observables through the framework provided by HERWIG 7.
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CHAPTER 1
INTRODUCTION

The quest to unravel the fundamental mysteries of the universe has captivated the
human intellect for centuries. In this pursuit, particle physicists have made groundbreaking
discoveries that have significantly advanced our understanding of the fundamental building
blocks of matter and the forces that govern their interactions. The Standard Model
(SM) [6-8] of particle physics was developed in the seventies in the past century, has
successfully explained most of the experimental results and also precisely predicted a
variety of phenomena in particle physics [9]. Among these remarkable discoveries, the
identification and subsequent verification of the Higgs boson have emerged as one of the
most pivotal achievements in recent years. The Higgs boson was proposed by Peter
Higgs [10] and Frangois Englert [11] in 1964, providing a mechanism to explain the origin
of mass and the spontaneous breaking of electroweak symmetry. On 4 July 2012, both
ATLAS and CMS experiments at CERN’s Large Hadron Collider (LHC) announced they
had each observed a new particle in the mass region around 125 GeV- 126 GeV [12,13]. In
the following year, after analyzing two and a half times more data, physicists confirmed
that the new particle discovered was the Higgs boson [14]. In the current measurement of
the Higgs boson production by ATLAS Run 2 [3], the VBF cross section is measured with
a precision of 12%, and the gluon fusion process is measured with a precision of 7%. The
other production processes include WH, ZH, ttH, and tH have also been observed. The
results are shown on the left of Fig. 1.1. The branching fractions of the different Higgs
boson decay modes are measured with a precision ranging from 10% to 12%, and the
results are shown in Fig. 1.1 (right). The results of the current measurements are
compatible with the predictions of the SM.

While the present measurements on properties of the Higgs boson exhibit
compatibility with the predictions of the SM [15], the precision of the experiment is not

sufficient to exclude the possibility of anomalous couplings, which leaves room for new



physics (NP) resulting in modified Higgs couplings with the SM particles. For example, the
SM does not explain the baryon asymmetry problem. It refers to a reasonable assumption
that matter and antimatter were initially present in equal quantities during the early
stages of the universe [16]. However, our everyday experience solely involves interactions
with matter, not antimatter [17]. The baryon asymmetry problem leads to the study of CP
violation [18]. Higgs boson production through vector boson fusion (VBF) is an ideal
process to test CP violations. In the case of CP symmetry conservation, the behavior
patterns of detected jets and leptons remain unchanged when particles are exchanged with
their antiparticles and their flight directions are reversed. Conversely, if CP symmetry is
violated, particles and antiparticles should behave differently.

The anomalous Higgs boson coupling via VBF can be derived from the effective
field theory approach and the corresponding anomalous couplings have been implemented
in VBFNLO [19-22], which is a Monte Carlo program, at the next-to-leading order (NLO)
quantum chromodynamics (QCD) accuracy [23]. The NLO matched parton shower effects
for VBF have been investigated in Ref. [24] by implementing the Higgs Characterisation
(HC) model [25] in FEYNRULES [26,27] and passed to MADGRAPH5_AMC@NLO framework [27].
In order to study the higher-order effects and multiplicities of jets, one needs to calculate
the matrix elements for the Higgs boson plus three jets at NLO accuracy. In this
dissertation, anomalous Higgs couplings for HV'V (V = W, Z) vertex are studied and
implemented in the Monte Carlo program, VBFNLO, for Higgs production plus three jets at
NLO. The general-purpose Monte Carlo event generator, HERWIG 7 [28-31] which is
interfaced with VBFNLO as one of the matrix element providers via the Binoth one-loop
accord [32,33] provided the numerical computation tool for this study. By utilizing the
matching and merging framework provided by the HERWIG 7, the phenomenological results
are presented for Higgs boson production in SM and anomalous couplings via the VBF.

The layout of this dissertation is the following: Chapter 2 sets the stage for

theoretical background, introduces the model-building ingredients of the SM, and gives the



general description of NLO QCD calculations on parton-level at hadron colliders, including
the Catani-Seymour subtraction method [34] using in the NLO calculation. Chapter 3
discussed the merged and matched framework in HERWIG 7 and contains results from

Ref. [35]. In Chapter 4, the HV'V anomalous couplings and technical details of the
implementation in VBFNLO are presented. Subsequently, the discussion of the validation and
numerical checks of the code is performed in Chapter 5. Chapter 6 is devoted to the
phenomenological study of the Higgs boson plus two jets using the matching and merging

framework. Finally, Chapter 7 closes with a conclusion and future study of this

dissertation.
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Figure 1.1: Cross sections for different Higgs boson production processes (left) and branching
fractions for different Higgs boson decay modes (right). The lower panels show the ratios
of the measured values to their SM predictions. The vertical bar on each point shows the
68% confidence interval. The vertical bar on each point shows the 68% confidence interval.
Figure from Ref. [3].



CHAPTER 2
THE THEORETICAL BACKGROUND

This chapter presents a short overview of the theoretical basis of the dissertation. I
start with a brief introduction of the SM decomposed into its two interaction sectors:
Electroweak and QCD. Much of this chapter’s notation is taken from the book " The Black
Book of Quantum Chromodynamics" [36] by Frank Krauss, Joey Huston, and John
Campbell, which I highly recommend. After that, the calculation of leading order (LO)
and NLO and the related concepts are introduced. A brief discussion of the

Catani-Seymour subtraction method [34] is appended.

2.1 The Standard Model

The Standard Model of particle physics is a remarkable theoretical framework that
describes the fundamental building blocks of the universe and the forces that govern their
interactions. It provides a comprehensive understanding of the subatomic world by
unifying three of the four known fundamental forces: the electromagnetic force, the weak
nuclear force, and the strong nuclear force. The construction of the SM relies on the gauge
invariance and can be described with the gauge symmetry groups
SU(3). x SU(2), x U(1)y [7,8,37], where the SU(3).. is the gauge group of Quantum
Chromodynamics (QCD) which is, and SU(2), x U(1)y the gauge group of electroweak
(EW) interactions. Besides the Higgs boson, the particle content of the SM can be split into
gauge bosons, mediating the interactions, and fermions, which make up the matter content

of the SM and themselves are divided into color-charged quarks and colorless leptons.

2.1.1 The Standard Model Before Electroweak Symmetry Breaking

The electromagnetic and weak interactions between quarks and leptons are
described by the Glashow-Weinberg-Salam electroweak theory [7,8,37], which is a
Yang-Mills theory [38] based on the symmetry group SU(2);, x U(1)y. The matter field

has three generations of left-handed and right-handed chiral fermions, carry spin % and

4



with the field components, ¥ r = %(1 F v5)1. The quantum number conserved
corresponding to SU(2)y, is weak isospin T3. The electric charge () can be computed from
the weak quantum numbers according to

Q=T+, (2.1)

where Y is the weak hypercharge quantum number associated with gauge group U(1)y.
The fermions with right-handed chirality are in doublets, while the fermions with

left-handed chirality are in singlets,

Ve v V.
Lg,)z - ) L(LQ,)z = g ) L(L?),Z - )

€ L,l M L,’i T L,Z

o _ | ¥ @ _|°¢ @ _ !

C«?L7 = ) QL, = 5 L, - )

d S b

Ly Ly Ly

u%,)z = URi, Ug)z = CR,i ug,)l = tR,i;
dg%l,)z = dR,’i) dg-%)l = SR,’ia dg,)z = bR,i;
le = €R,i» lg,)z = KUR, lgi)l = TR, (22)

where 7 represents the color charge in the fundamental representations, and the number
superscript represents different generations of fermions. The assignment of the quantum
numbers to the fermions is shown in Tab. 1, for the fermions of the first generation, which

second and third generation fermions have identical quantum numbers [39-41].



Table 1: The electroweak quantum numbers for the first generation fermions.

31 Y | Q
ver | 5 |—1] 0
er | —3 | —1|—1
o é1 % g1
dp | =5 | 3 |3
er | 0 | —2] 1
UR 0 % %
a0 =31

The gauge invariant derivatives on the fermions are given by

Y

D, Lm = (8 —l—zgs G“éag —Hgg W“(LJ —l—zgl B 6ZJ5Q5>QLJﬂ

: l] a Y
D uRz = <8u+z G, —1—291 B 513)“1%]

; z] a Y
DdRZ:<((9M—|—zg G, —|—zgl B0, >d

Y

D LLa = ((’L—Hgs aﬁW“—i—zgl B (5a5>Lg5
D8 = (8, + 01 B, )1, (2.3)

where 7 and j is the color indices, o and 3 are weak isospin indices. The A are Gell-Mann
matrices, which are explicitly shown in Eq. 2.46. o are the Pauli matrices which are
explicitly shown in Eq. 2.5. Here g,,g2, and g; are the coupling constant of SU(3)¢,
SU(2)r, and U(1)y, respectively. The gauge field indicates there are eight gluons G7., three
weak isospin bosons W, and the weak hypercharge B,,. The gauge field B, corresponds to

U(1)y group with generator Y. For SU(2);, group, there are three gauge field W, with the



generators 7,, where a = 1,2, 3. The generators 7, are given by half of the Pauli matrices,

1
Ta = 50-&7 (24)
01 0 — 1 0
01 = ; 09 = ) 03 = 9 (2 5)
1 0 1 0 0 —1

and the commutation relation is given by,

[Uay Ub] = 'L.Eabco-c- (26)

Here €4, is the completely anti-symmetric Levi-Civita symbol.

The SM Lagrangian without mass terms for fermions and gauge bosons is given by

ESM - £matter + L:gauge (27)
where
3
Cosster = Y | Q) PQY + iy ) + dy By + LPPLY + L DI, (28)
I=1
1 a a,uy 1 a a,pv 1 a puy
Eguage - _ZG'U'VG - ZWNVW - ZBHVB (29)

The field strength tensors are given by,

G, = 0,G% — 9,G + igs [ GG, (2.10)
Wi, = 0We — 9,W! + goe™ W) GS, (2.11)
B,, = 9,B, — 0,B,. (2.12)

This Lagrangian is invariant under the local SU(3)¢ x SU(2), x U(1)y gauge

transformations but violates the gauge invariance if one adds the mass term of form m?2A2.



For example,

2 1
B,B" — B,B" = BB B"0,0 + ?@9)(8“9) + B,B" (2.13)

In addition, if one includes explicitly a mass term ma for fermions in Lagrangian, for

example [40],

1 1
—meee = —m.e 5(1 —5) + 5(1 +75)|e = —me(€rer + €rer) (2.14)

is not invariant under the weak isospin symmetry transformation since ey, is a member of
an SU(2)r, doublet but eg is a member of a singlet. The Feynman rules for gauge bosons

interacting with fermions are shown in Fig. 2.1, where the chirality 7 = +.

f2

1
N —iegl/hflyf‘i(l +1ys)

f1

Figure 2.1: qqV vertex for fermions and gauge bosons.

In the following sections, I will briefly sketch the spontaneous symmetry breaking
and the Higgs mechanism, which solve the problem of gauge invariant mass generation in

an elegant way.



2.1.2 Spontaneous Symmetry Breaking

Consider the Lagrangian,
ﬁ—_la 2—1“+1A4 2
5(0u0)” = (GO + 1207, (2.15)

where \ is a constant and A > 0 [42]. The £ is invariant under the transformation ¢ — —¢.
If one plots the graph of potential V(¢) = 1p2¢* + 1A¢*, there will be two possibilities :
> 0and p? < 0. If 4® < 0, the Lagrangian has the wrong sign for the mass term. Unlike

the case in which 2 > 0, the potential has two minima that satisfies [42],

v

55 = O’ 2% =0, (2.16)

where

Omin = TV, (2.17)

and v =(/—p?/X. In this case, the minimum energy is not at ¢ = 0. It corresponds to

¢ =wv or ¢ = —v. One could rewrite ¢(z) as

é(x) = v + (), (2.18)

where 7(z) represents the quantum fluctuations about this minimum. Substituting into

Lagrangian equation (2.15),
1 1
L= 5(8“77)2 — \v? — dop? — 1)\774 + const. (2.19)

so the mass term is m, =v2Av? =/—2p? and the higher order terms of 1 represent the
interaction of the couplings [42]. The way to "generate' mass through the field is known as

"spontaneous symmetry breaking."



2.1.3 The Higgs Mechanism

Let’s first introduce a complex scalar ® = (¢+, ¢°)7, which is coupled to the

SU(2)r, x U(1) through the gauge invariant derivative D, ®g. The D,®3 reads [36]
. 035 o« . .Y
D, @5 = (0,00p + 2927WM + g1 EBM(SQB)(I)B, (2.20)
where a and 3 labels weak isospin of the doublet ®. The quantum numbers of this doublet,

®, are:

1 1
T3=4—, Y =-. 2.21
3 27 9 ( )

Then there are two new terms added to the Lagrangian in Eq. 2.7:

Ly = (D,®) (D"®) + 12dTd — \(DTD)?, (2.22)
Lur =~ QY buj, — 11 QY 0} — L1, (223)

where £y describes the Yukawa interactions with fermions. Here p? and A are real
numbers, and f!/ are arbitrary matrices in generation space. For p? < 0, a vacuum

expectation value v will be developed by the neutral component of the field ®,

(®)) = . (2.24)

For simplicity, by choosing the unitary gauge, the Higgs doublet then becomes,

0
(I)unitary - U(f)‘b = . (225)
vin(z)

V2

10



The set of transformations is introduced as

(x wir') —ve & wir]r©+ - ave)re.

i==+,3 i=%+,3 g2
B, = By,
v, =U(§) Yy,
Uy =U(E) k. (2.26)

It is clear that the Higgs potential is invariant under such transformation, and the phase

will be canceled out,
(B1D) — (d10) = DTUT(E)U()D = (OTD). (2.27)

Therefore, after the transformation, the Higgs potential reads,

2\v?
2

A
Lipot = — n* — \on® — 1774 + const, (2.28)

where the 7 is the Higgs field. While this field gives the mass term of

myg = vV 2\ (2.29)
The kinematic Lagrangian reads,
1 1
Ly = 5(0um)(9"n), (2.30)
1

Ly = mi W, WHH + 5m’gZMZ“, (2.31)

L AL 2.32
1—7(n+v77) “ +2T)2(77+U77)u : (2.32)

11



The new gauge filed A, and Z,, for photon and Z boson is given by

A, =sin QWWi’ + cosOw B,

(2.33)

Z, = cos QWWS —sin 0w B, (2.34)

It can be shown that the photon is massless, and the mass of W and Z gauge bosons is

And the weak mixing angle is

v
my = 5\/g%+g%. (236)
tan Oy = 21, (2.37)
g2
mw g2
cos by = = . 2.38
b omg VIt + 93 23

The Feynman rule for HV'V vertex is shown in Fig. 2.2, where V represents vector bosons,

W and Z.

VvV

M?
— ZI_Vg?“"
v

Figure 2.2: Feynman rules for HV'V vertex.

After applying the transformation to the Yukawa interaction, as shown in Eq. 2.26,

12



the fields become

_|_
ur = TR ) ) e

The arbitrary mass matrices fI7, %4, Which are denoted as M for simplicity, can be

diagonalized using the bi-unitary transformation,
Mying = STMT, (2.40)

where S and T' are unitary matrices and Mgj,s is diagonal with non-zero eigenvalues. Then

the mass term can be diagonalized through
YrMyr = (YrS)(STMT)(T r) = ¥, Magtn (2.41)
The unitary transformation will rotate the right-handed quarks to their mass eigenstates,
Vi VR = VR A T T = Ve Sty = Oyl (2.42)

This also applies to the left-handed fermions for neutral interactions, but there is relic
dependence in the charged current, which is expressed in terms of the

Cabibbo-Kobayashi-Maskawa (CKM) matrix,

ugytdy, = WEAS) g Sapndit = wfy vt (2.43)

u
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where the absolute value of the CKM matrix read [4]

Via Vas Vi 0.97435 + 0.0001  0.22500 = 0.0006  0.00369 = 0.0001
VA =1 vy Ve Vi | = | 0.22486 £ 0.00067 0.97349 & 0.00016  0.04182+0:00085
Via Vis Vi 0.00857*000rs  0.04110%56607  0.999118% 556003

(2.44)

In the VBFNLO, the CKM matrix is taken to be diagonal in the calculations.

2.1.4 Quantum Chromodynamics

Quantum Chromodynamics is the gauge field theory that describes the strong
interactions of colored quarks and gluons. It obeys the SU(3) non-abelian gauge
invariance, in which SU(3) is the special unitary group in 3 dimensions, and all elements
are the set of unitary 3 x 3 matrices with determinant equal to one [4,36,43,44]. The QCD
Lagrangian is given by

_ 1 ,
L= quya(w“@jéab — gsv“thAg — My0ap)Vgp — ZFﬁ,FA“ , (2.45)
q

where 7 are the Dirac vy matrices, ¢, , are quark-filed spinors for quark with flavor ¢ and
mass m,. The color index a runs from 1 to 3, also denoted as red, green, blue, and green,
which are carried by quarks. The anti-quarks carry the anti-color quantum numbers. The
sum over ¢ in Lagrangian runs over the different quark flavors. The AE corresponds to the

gluon fields with color index C runs from 1 to 8. t& denoted as eight generators of the

14



SU(3) group and proportional to Hermitian and traceless Gell-Mann matrices A%,

010 0 —i 0 1 0 0 00 1

AM=110 0[;A=]|i 0 0]:A3=|0 -1 0, =10 0 0f,
000 0 0 0 0 0 0 100
00 —i 000 00 0 10 0

A=[00 0], 2%=1]0 0 1|, A7=[0 0 —i ,As=;§01 0
i 00 010 0 i 0 00 —2

Here A also satisfies the commutation relation,

A4, Ag| = ifapcAc.

The fapc are the structure constants of SU(3) and given by

f123 = 17
1
f147 = f165 - f246 = f257 = f345 = f376 = 57
V3
f458 = f678 = 7

The quantity gs is the QCD coupling constant. The filed tensor F ;3, is
ny = 0,A% — 8,,14;? — gSfABCAfAf.
Some useful color algebra relations are,

tfbtaAb = CFOac,
facpfeep = Cadag,

tfbt?b = TroaB,

15

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)
(2.51)

(2.52)



where

NZ-1 4
= = — 2-
Oy = Ne =3, (2.54)
1
Tp= 3. (2.55)

Here C'f is the Casimir color factor associated with gluon emission from a quark, Cy is the
color factor associated with gluon emission from a gluon, Ty is the color factor associated
with a gluon split to quark anti-quark pair. The Feynman rule for gluon interaction with

quarks is shown in Fig. 2.3, where a, b, and ¢ are color indices.

C

gt

Figure 2.3: Feynman rules for gluon interacts with quarks.

When making predictions in the framework of QCD, the observables are expressed
in terms of the renormalized coupling a,(u% ~ Q?), where ug is the renormalization scale
introduced during the renormalization process. The coupling satisfies the following

equation [4],
o da

,uRd—Z = B(as) = —(boa? + bra® + byat + - -+), (2.56)
MR
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where

33 — 2n;
b = =1,
127
- 17C% — n;Tr(10C4 +6Cr) 153 — 19n;
L= 2472 - 2472
2857 — X, 4 7 .
2 12873 (2.57)

Here by is denoted as the 1-loop S function coefficient, b, is the 2-loop [ function
coefficient, and b3 is the 3-loop 3 function coefficient. The ny is the number of quark
flavors, which is 6 in the SM. The value of strong coupling is usually specified by giving the

reference scale 9%, then to the first order accuracy [36],

0, (@) = as(Q?) L (2.58)

1+ boOés(QZ) In %

The negative sign of the Eq. 2.56, combined with by > 0, is the origin of the asymptotic
freedom [45,46], which the strong coupling increases with increasing distance or decreasing
scale and decreases with the decreasing distance or increasing scale. As Q% — oo, a, goes
to zero, which means that quarks and gluons almost interact as free particles for high
energy. In the other direction, as Q? — 0, a,, goes to infinity. One could write the solution

involving another scale A,

5 A7 - L&ln[ln (Q%/A?)]

Oés(:U’R) - B() In % 68 In (QQ/A2> (259)

where A =~ 250 GeV is called the QCD scale. A standard choice is ugr = My, the strong
coupling is o &~ 0.118 [4]. A summary plot of measurements of oy as a function of @ is

shown in Fig. 2.4 [4].

17



133 T
i T decay (N’LO) = ]
i low Q2 cont. (N3LO) o~ |
03 B HERA jets (NNLO) —=— ]
Tt Heavy Quarkonia (NNLO)
e’e” jets/shapes (NNLO+res) i ]
pp/pp (jets NLO) F=—
025 F EW precision fit (N>LO) +e— 7]
pp (top, NNLQO) ——
< o02f
& L
0.15 |
0.1
F =ay(Mz%) =0.1179 = 0.0009
005- " i gl " g aaal L aa gl
1 10 100 1000
August 2021 Q[GeV]

Figure 2.4: Summary of measurements of o, as a function of the energy scale Q. NNLO rep-
resents next-to-next-to-leading order, NNLO+res represents NNLO matched to a resummed
calculation, and N3LO represents next-to-NNLO. Figure taken from Ref. [4].

2.2 Factorization Formula for QCD Cross Sections
Many processes of interest involve large invariant momentum transfer that can be
described using the factorization formula. Cross sections for a scattering subprocess of n

body final state at hadron colliders can be computed in collinear factorization

through [36,47]

Ohyha—n dx,dzy, / Jasn (%as or) fons (20, pir) AGap—n (fr, piR) (2.60)

dxqdxy /dq)n faymy (Tas 107 fo s (o, pir)

1
X 27§|Mab—>n|2(q)n; HF, ,UR) )

18



where f, (2, 1) denote the parton distribution functions (PDFs). At the leading order
they represent the probability for resolving a parton of flavor ¢ with momentum fraction x
in the parent hadron h at the factorization scale pp [48]. Here parton a and b are taken as
massless particles. &4,_., is the parton-level cross section for initial partons a and b product
final state n. It depends on the momenta given by the final-state phase space &,
factorization scale pr and renormalization scale pug. The |May_sn|*(Pn; pir, pir) is
amplitude squared, which can be evaluated as a square of sum over sub-amplitudes
corresponding to subprocesses [49]. d®,, is the differential phase space element over the n
final-state particles,

n d4pZ
2m4

@m0 — m) )8 (pa 1o — S )O(E), (2:61)

where p, and p, are the initial-state momenta [49].

The LO is only reliable for the shape of distributions due to large higher-order
corrections. An accurate simulation often requires at least the NLO calculation. A cross
section calculated at NLO depends on three parts, the LO or Born part, virtual

corrections, and real emissions [36]. At NLO,

1
UELNLO) = Z/o dxadl'bfa/hl (xayﬂF)fb/h2 (mbhuF) /dﬁé\{,i%(ﬂF,MR)
ab

= /dq)zs {Bn(q)&,UFa,UR) + Vn(q’B;MFMR)]

+ /d@RRn(CbR;,U,F,/,LR) (262)
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where

Bn(¢6a HE, :uR) = Z|M£Lb)(q>87 h) HF, ﬂR>|2
3
Va(@s; i, pir) = 2> Re| MO (g, s pp, pir) M (@, hi pir, )|
3

Rn(qDRv HE, /*LR> = QZ’M;b—tll)(q)Ra h7 M, /LR) |2
h

For phase space elements,

1

dPp = dxodzy fosn, (Ta, tr) foyn (T, /LF)Ed‘I’n

1
dPr = dma/dxb/fa//hl (xa/, MF)fb//hg (xb/, NF)qu)n
albl

(2m)3(pt — m?)(2m)'6" (o + 11— 2 i) O(E)

24

(2.63)

(2.64)

To analyze the experimental data from the hadron collider, it would be beneficial to

measure the distributions of final-state quarks and gluons. Unfortunately, due to the

confinement of color charge, these particles are not the final-state particles of the reaction.

Instead, the final-state particles are colorless. The jet provides a tool to study the footprint

of the hadron collisions and should have the following event properties [50]:

o It is well-defined and can be easily measured from the hadronic final state.

o The order-by-order calculations in perturbation theory are easy to compute from the

partonic final state.

o It is important to closely correlate the distributions of the final state quarks and

gluons.

A precise algorithmic jet definition, or called jet algorithm will need to classify the jet final

state of a collision and reconstruct its total momentum [49]. Many algorithms have been

developed to satisfy the requirement of theoretical calculations and experiments. For a
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thorough review of jet algorithms, see Ref. [36].

A jet observables in a given m-patron configuration and in all m + 1-parton
configurations should have the same value [34]. If the function FJ* gives the value of a
certain jet observable in terms of the momenta of the n final-state partons, then it should
have

Frtt s (2.65)

The Born-level cross section do? can be written in terms of jet defining function F}m) as
do® = dOU™|M,,|>F™ (2.66)

where d®(™ is the phase space of m-parton final state, and M,, is the matrix element.

Then the real emission do’ is

do® = do | M, [PFITY. (2.67)

2.3 The Dipole Subtraction Method

In the calculation of the NLO cross section, one obstacle is the occurrence of
divergences. There are many ways to solve this problem. This section will introduce one
widely used method in Monte Carlo event generator, which is called the Catani-Seymour

subtraction method [34]. For a typical NLO jet cross section, one can write
o =ol0 4 oNO, (2.68)

The LO cross section can be computed by integrating exclusive born level cross section do®

over the phase space

o0 :/ do®. (2.69)
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Then consider the exclusive cross section do® with m + 1 partons in the final state. Adding
the one-loop correction do¥" to the process with m partons in the final state, it can be

written as

oNLO = /daNLO :/ daR+/ doV" . (2.70)
m+1 m

In the above equation, phase space integral over dot and do" is individually divergent in
four-dimensional space-time d = 4. When combined in Eq. 2.70, their sum becomes finite.
To perform numerical integration of the phase space, it is necessary to regulate the
divergences of do® and do" separately. By employing dimensional regularization, in which
the integrations are carried out in d = 4 — 2¢ dimensions, the divergences are replaced by
double poles, 1/e? (soft and collinear), as well as single poles, 1/¢ (soft, collinear, or
ultraviolet). Ultraviolet divergences in do¥" can be absorbed into coupling constants
through the renormalization procedure. The general idea of the subtraction method is to
use the identity

do™0 = |do® — do?| + do? + doV (2.71)

where do? is a proper approximation of do™ which must have the same pointwise singular
behavior in d dimensions as do*. do” is a local counterterm for do®. Now introducing the

phase space integration,

oNEO — / [daR - daﬂ +/ do? +/ do, (2.72)
m+1 m+1 m

where the first term on the right side of Eq. 2.72 can be integrated numerically in the limit
e — 0.

Now, all singularities converge to the last two terms on the right-hand side of
Eq. 2.72. One can compute the integration of do* over the one-parton subspace

analytically and combine those singularities with those in do"’, and then the divergences
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will be canceled. The final structure of the calculation is as follows:

oo — /m+1 {dJR - dO’A] + /m {dav +/ldcr’4] . (2.73)

The symbolic factorization formulae of the Catani-Seymour method for the
arbitrary process is

do* = > do® @ dViipoe, (2.74)

dipoles

where do? denotes an appropriate color and spin projection of the born-level exclusive
cross section. The symbol ® denotes properly defined phase space convolutions and sums
over color and spin indices. The dipole factors dVgipole are independent of the process and
should match the singular behavior of do®. As the m + 1 parton state in do® approaches
the soft and/or collinear region, the dipole factor in do# approaches the same region with
an equivalent probability to that of dof*. Then one can map the m + 1 parton phase space

to an m parton phase space times a single-parton phase space. Thus,

/m Lot = Y /m do? @ /1 AViiipote = /m [do” 1] (2.75)

dipoles

where the universal factor I is defined as

=Y /1 AVigipoe. (2.76)

dipoles

The dipole factor I contains the 1/¢ and 1/€* poles with equal value and opposite signs as
in the doV'. After canceling all divergences, one can take the limit ¢ — 0 and perform the
integration analytically in four space-time dimensions. Here are the two contributions,

oNEOIm+1} and oNLO{™} are separately finite and integrable. The final structure is as
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follows,

oNLO _ GNLO{m+1} 4 [ NLO {m} (2.77)
- / [(daR) - ( Y doP® dvdipolc) + / do" + do® ® I
m+l = dipoles =0 m =

The Catani-Seymour method provides the general formalism to calculate the NLO QCD
corrections. The Higgs boson production via VBF is calculated in Ref. [51]. The NLO
QCD corrections to Higgs boson production in association with three jets via vector boson

fusion were calculated and implemented in VBFNLO in Ref. [22].
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CHAPTER 3
MATCHING AND MERGING

In this Chapter, based on Ref. [35], we perform our first investigation into the NLO
predictions for electroweak Higgs production that has been merged with a dipole shower
using the full set of tree-level and one-loop matrix elements available via the HJets matrix
element library. The Ref. [35] was published in: Chen, Tinghua, Terrance M. Figy, and
Simon Pléatzer. "NLO multijet merging for Higgs production beyond the VBF
approximation." The European Physical Journal C 82, no. 8 (2022): 704. All equations

and figures are taken from Ref. [35].

3.1 The Matching in Herwig 7

Matching parton showers to next-to-leading order QCD has become the de-facto
standard for reliable simulations at hadron colliders. The term "matching" refers to a
methodology that subtracts the expansion of the parton shower to O(as) from the
fixed-order NLO calculation, thereby ensuring that the resulting distribution after
showering accurately represents NLO effects to O(ay). Regarding scale setting within the
matching algorithms applied in HERWIG 7, a comprehensive discussion can be found in the
Ref. [52] with various options, all of which are applicable to the HERWIG 7 parton showers
as documented in Ref. [30,53,54]. In the current investigation, we have adopted the default
setting known as the "resummation profile." This particular choice features a narrowly
smeared step function towards the hard scale, ensuring that it does not introduce
spuriously small variations.

The HERWIG 7 framework offers a comprehensive platform for interfacing external
matrix element providers, such as HJets [55-58] and VBFNLQ 3, with the Matchbox
module [30]. The Matchbox module enables the assembly of fully differential
next-to-leading order (NLO) cross sections from these external matrix elements. Through
the Matchbox module HERWIG 7 is able to match NLO matrix elements to both the

angular ordered [54] and dipole showers [30, 53] using either a subtractive
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(MC@QNLO-type [59]) matching algorithm or a multiplicative (Powheg-type [60]) matching
algorithm. In this chapter, our primary focus lies on the dipole shower matched via the
subtractive matching paradigm. This choice is motivated by the objective of employing
merging algorithms of different jet multiplicities, which, inside of HERWIG 7 are currently
only available with the dipole shower algorithm. A detailed discussion on differences
between shower algorithms and matching schemes has extensively been discussed in [61] in

the context of Higgs production via VBF.

3.2 The Unitary Merging Algorithm

As opposed to matching, merging algorithms do facilitate the combination of several
jet multiplicities with the parton shower. At leading order, stability with respect to the
resolution which separates hard jet production from parton shower radiation is achieved by
carefully crafting this resolution to be compatible with the shower phase space and order.
No spurious logarithms of the merging scale are then expected to arise since the shower is
considered to be a good approximation to tree-level real emission matrix elements in the
transition region. This is not true anymore at NLO, and a new paradigm of merging needs
to be employed which is correcting for the lack of perturbative information contained in the
parton shower. These unitarized merging algorithms preserve certain features of inclusive
cross sections [62-64], and thus generate approximate NNLO contributions which are
required for a stable merging. The full implementation of the unitary merging algorithm
used by HERwIG 7 was described in Ref. [65], and does not enforce the reproduction of
inclusive cross sections exactly, but only subtracts contributions which are classified as
logarithmically enhanced if they are accessible by a possible parton shower history. The
process is otherwise considered to contribute a new, hard jet configuration from which the
parton shower is evolving in a vetoed manner such as not to double count contributions
both in real emission as well as virtual and unresolved corrections. At the same time, this
approach allows the merging algorithm to deal with processes that involve jets already at

the level of the hard process. In our studies, the merging scale p, is smeared according to
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Eq. (40), ps = pc - (1 4+ (2-r—1)-9) of Ref. [65] . The central merging scale is set as

pc = 25 GeV with 6 = 0.1 for results investigating the impact of varying the factorization
and renormalization scales. We use the CMW scheme [65,66] for the merged simulations
with the modified strong coupling set to a’s(q) = as(k,(¢)) where k; = exp(—K,/bo),

K, = CA<‘15; — (157r2> — SNF, and by = 11 — 2/3Np.

3.3 Simulation Results

In this section, I will present the matching and merging simulation results by using
HERWIG 7. The matrix elements used in this study were provided via the external matrix
element providers: HJets 1.2 for full calculation and VBFNLO 3 for VBF approximation.
The HJets 1.2 module [55-58] provides tree-level matrix elements for 2 — h + 2, 3,4
partons and one-loop matrix elements for 2 — h + 2, 3 partons for electroweak Higgs boson
production in association with jets. The color algebra is computed by the library
ColorFull [67] and the one-loop integrals are performed based on the tensor loop integral
reduction methods described in Ref. [68]. The matrix elements programmed in VBFNLO
3.0.0 beta 5 [19-22] were used to compute tree-level and one-loop matrix elements in the
VBF approximation via the Binoth one-loop accord [32,33].

The merging calculation performed in this section includes: h(2*,3*,4) , h(2*,3) ,
h(2,3), h(2*,3,4), and h(2,3,4). The matching process includes h(3*) @ PS and
h(2*) @ PS . The input parameters for the Monte Carlo event generator are described in
Ref. [35], and in Chapter 6.

In the context of electroweak Higgs boson production, the fundamental process at
the Born level is described by pp — hjj, where the tree-level 2 — h + 2 partonic matrix
elements (MEs) are denoted as h(2). To account for additional partonic multiplicities in a
leading-order merged setup, we incorporate tree-level MEs accordingly. Specifically, we
represent the merging of MEs involving n partons as h(2,3,4,...,n) with n > 2. This
notation represents the inclusion of tree-level MEs for partonic processes with h + 2, h + 3,

h + 4, and up to h + n partons.
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In simulations involving the merging of higher-order matrix elements, we introduce
an additional x symbol to indicate each multiplicity n as n*. This notation signifies that, in
addition to the tree-level MEs, the one-loop correction is included. For instance, the
notation h(2*,3,4) represents the production of a Higgs boson with up to 2 additional
partonic emissions, where one-loop MEs are applied for the h + 2 parton processes. The
special case of h(2*,3) corresponds to the "matching through merging" limit within the
merging approach implemented in HERWIG 7, which achieves the same level of accuracy as
NLO matching. A detailed discussion on merging can be found in the previous section for
more details. In scenarios where applying subtractive matching to connect an NLO
calculation with a dipole parton shower, the NLO matched setup is denoted for pp — hjj
as h(2*) @ PS and pp — hjjj as h(3*) @ PS.

Fig. 3.1 and Fig. 3.2 show results for the splitting scales \/dy and v/d3 of the k7 jet
algorithm [69,70]. The splitting scales are resolution scales v/dj of the kr jet algorithm at
which the event switches from £ jet event to a £+ 1 jet event. The Fig. 3.1 presents results
for the merged setup h(2*,3*,4) with the central merging scale pc set to the following
values: 15,25,35 GeV. In the transition region between the h + n parton MEs and the
h + (n + 1) parton MEs near v/d,, ~ 25 GeV, there is 10% variation for n = 2, 3. Fig. 3.2
shows results comparing the merged setups and matched setups against the merged setup
h(2*,3*,4). The matched results h(2*) @ PS and matching by merging setup h(2*,3) have
a similar pattern after \/dy ~ 125 GeV and v/ds ~ 125 GeV. The matched results
h(2*) @ PS and h(3*) @ PS complement each other to some extent. The generation cut of
10 GeV on transverse momentum for the h(3*) @ PS leads to a suppression around
Vdy = 10 GeV and v/d3 ~ 10 GeV. Furthermore, the matched h(3*) @ PS result is missing
the h 4+ 2 jet events. The merged calculation is clearly reproduced by the matched ones in
the regions where the respective jet multiplicity is resolved and the fixed order, hard jet
multiplicity, provides a reliable prediction. However, the merged description is able to

interpolate in between the different multiplicities.
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Figure 3.1: Comparison plots for v/dy (top) and v/d3 (bottom). The theory band in orange
results from varying the merging scale for the prediction of h(2*,3*,4).
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Here the renormalization scale to be ur = £gpo and the factorization scale to be
ur = Eppo with &g and &g denoting the scale factors. The error bands shown in the figures
are due to the variation of the renormalization and factorization scale factors £ and &g
with £ = &g =1/2,1 and 2.

Fig. 3.3 and Fig. 3.4 show cross sections binned according to the exclusive number
of identified jets Njes and the exclusive number of identified gap jets ijg for INCL
selection cuts and TIGHT selection cuts. In the ratio plots, all results are divided by the
result of the merged setup h(2*,3*,4). The matched setup h(2*) @ PS when compared to
the h(2*,3*,4) agrees up until two identified jets and 0 identified gap jets. Further the
h(2*) @ PS result appears to underestimate the theoretical errors. As shown in the bottom
plot of Fig. 3.3 and Fig. 3.4, the merged setups using the HJets MEs are compared against
VBFNLO MEs using TIGHT selection cuts. The reference in ratio plots is the prediction
using the HJets MEs. There is a good agreement for the binned cross section in the
exclusive number of jets up to 4 jets and for the binned cross section in the number of
exclusive gap jets up to 2 gap jets. The hard sub-processes using VBFNLO and HJets MEs
are assigned different colour flows in the large- N, limit, since the full calculation takes into
account all contributing topologies. Since the dipole shower evolution is intimately
connected to the hard sub-process colour flow, different hard sub-process colour flows result
in different shower histories. The TIGHT selection cuts essentially allow extra jets in the
gap between the leading two jets. Both h + 3 and h + 4 parton events allow for extra jets in
the gap between the jets even after the strict TIGHT selection cuts. One should note that

the rate is quite small in these higher multiplicity bins.
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Figure 3.3: Exclusive number of jets with INCL (top) and TIGHT (bottom) selection cuts
for the predictions of h(2*,3* 4), h(2*,3,4), h(2,3,4), h(2%,3), h(2,3), h(3*)@PS, and
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in the figures are theory error bands due to the variation of the factorization and renormal-
ization scales.
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Define the quantity named rapidity, which is denoted with y,

1 E Z:Z
= —1In 1
4 2 (E—pz>’ (3:1)

where F is the energy of particles, and p, is the momentum of particles in the z-axis. The

transverse momentum, py is defined by

pr =\/p% + p2, (3.2)

where p, and p, are the momentum component for z-axis and y-axis. Another useful

quantity is the invariant mass for two jets, defined as

My jo = \V (pjl +pj2>27 (33>

where p;, and pj, are the four-momentum of the first leading jet and the second leading jet.
In Fig. 3.5, the distributions in the rapidity difference of the leading two jets Ay;,;, and the
invariant mass of the leading two jets mj;,;, are shown. There is good agreement between
the matched setup h(2*) @ PS and merged setups h(2*,3*,4), h(2*,3,4) and h(2*,3) with
the exception of a region between 100 GeV and 150 GeV in the invariant mass of leading
two jets which is no more that 10%. The leading order merged setups h(2,3,4) and h(2,3)
deviate as expected.
Shown in the top row of Fig. 3.6 using INCL selection cuts are the kinematic

distributions in the transverse momentum of third leading jet pr ;, and the centrality of the

third jet zj, defined as

o yjl +yj2

* yJB‘

Zf =2 3.4
7 |ij1j2| ( )

For the transverse momentum and the centrality of the third jet, the matched setup
h(2*) @ PS when compared to h(2*,3*,4) deviate by up to 20%. This feature is shared by

the matching by merging setups h(2*,3). It is quite obvious that relying on the parton
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shower alone without including the h 4 4 parton hard scattering matrix elements fails to
describe the higher jet multiplicities beyond 2. In the bottom plot of Fig. 3.6 using LOOSE
selection cuts there are deviations between predictions based on VBFNLO MEs and the
HJets MEs the largest deviations when using NLO MEs. All predictions deviate at the
level 40% around zj, = 0. This is the result of the missing s-channel contributions in the
VBFNLQ predictions.

The kinematic distributions for transverse momentum of the Higgs boson plus two
leading jets prpj,j, from matched and merged setups are presented in Fig. 3.7. The pr p;,j,

is defined by

PT.hjija = (ph +pj1 +pj2>T7 (35)

where py, pj,, pj, label the momentum of the Higgs boson, the momentum of the first
leading jet and the momentum of the second leading jet. The subscript T" represents the
transverse component of the momentum sum. The distributions in pr;j,;, shows an
enhancement when comparing NLO matched result h(2*) @ PS to the NLO merged
h(2*,3*,4) result. The theory error is underestimated by the NLO matched

h(2*) @ PS predictions. The matching by merging setups h(2,3) and h(2*,3) follow a
similar pattern to the h(2*) @ PS setup. When comparing merged setups using the HJets
MEs against the VBFNLO MEs for the LOOSE selection cuts, the deviations show in the tail
of the prp;,j, distribution. This suggests that applying an overall K factor to predictions

using LO merged setup may not describe the physics very well.
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Figure 3.5: Shown is the distribution of 2 jets observables with INCL selection cuts: rapidity
gap Ayj,j, (top) and invariant mass m;, ;, (bottom) of the two tagging jets. The prediction is
h(2*,3*,4), h(2*,3,4), h(2,3,4), h(2*,3), h(2,3), h(3*) @ PS, and h(2*) @ PS with h(2*,3*,4)
being the reference in the ratio plots. Shown in the figures are theory error bands due to the
variation of the factorization and renormalization scales.
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Figure 3.7: Shown are distributions for the transverse momentum of the Higgs boson plus two
leading jets system prp;,;,- The top plot show predictions h(2*,3*,4), h(2*,3,4), h(2,3,4),
h(2*,3), h(2,3), h(3*)PPS, and h(2*)@PS are compared to the h(2*,3* 4) prediction
(INCL selection cuts). The bottom plot compares the merged setups using VBFNLO MEs
against the setups using HJets MEs for LOOSE selection cuts. Shown in the figures are
theory error bands due to the variation of the factorization and renormalization scales.
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CHAPTER 4
ELEMENTS OF CALCULATIONS

In this chapter, first, I will introduce the generalized tensor structure of the HV'V
vertex and then follow with the introduction of the parameterization that VBFNLO
supported. The helicity amplitude formalism will be introduced and the leading order
calculation will be shown as an example. I will present the code structure of VBFNLO and
the subroutines I developed for Higgs boson anomalous coupling associated with three jets
at NLO in order to perform the anomalous coupling effect for Higgs boson production via

VBF using the merging and matching framework in HERWIG 7.

4.1 Anomalous Couplings

Vector boson fusion at the LHC can provide key information on the strength and
structure of the Higgs couplings to the vector bosons. In VBFNLO, the general tensor
structure of the HV'V vertex can be written as the following equation in the massless

quark limit [23,71]

le((hv CI2) = al(Qla Q2) g + az(Ch, CJQ) [Ch - qag"” — qé‘ql”] + a3<Q17 Q2) 5””'00611;;6]20 ) (4-1)

where €"7? is the totally antisymmetric Levi-Civita tensor with convention eg193 = 1. In
the above equation, the constant a; represents the SM HV'V couplings with ay = a3 = 0,
while the constant as and a3 could represent the new physics. ¢; and ¢y are the four
momenta of the intermediate weak bosons (W, Z).

The anomalous coupling terms as and ag can be derived from the effective

Lagrangian and can be written as the following equation:

g o i
- e + — v le] —+ —ur
,Ceff - T%HW/U/W K _'_T&)HWMVW s +
ohi7? Ty
€< HZ, 7" +=*-HZ,, 7" . 4.2
25, A T N, (42)
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Here the subscript e or o represents the CP-even or CP-odd nature of the individual
operators. In this dissertation, I will neglect possible contributions from H~v and HvZ
couplings which can appear in SU(2) x U(1) invariant formulations [72,73] and have only
focused on the HZZ and HWW contributions.

In general, a; from Eq. 4.1 are also called the form factors. It can be derived from

the effective Lagrangian of Eq. 4.2,

2 2
as(q1, q2) = e AL az(q1, ) = A gt (4.3)

for the HWW vertex, and

2 2
a2(Q1>CJ2) A5 ggzz ) ((h Q2) As gsliZZ (4-4)

for the HZZ vertex. The VBFNLO code supports form factors in general form:

M? M?
¢ — M? g5 — M*

ai(Qla C]2) = ai(0> 0) (4-5)

When the transferred momentum y/—¢? is smaller than mass scale M, the anomalous

coupling effects could probe for NP. On the other hand, when the momentum carried by

the virtual gauge boson reaches the mass scale, the anomalous couplings are suppressed.
For the anomalous couplings, VBFNLO also supports the parameterization used by L3

collaboration [74], which the Lagrangian [23,75] is

Lerr = gy HAW A" + QS)ZWAWZ“(?VH + gg)ZWHAWZ’“’

+ QS)ZZZWZ“&/H + gg)ZZHZ Z" 4 gHWWHw+ W, (4.6)
+ giw (WEWH O H + W, WED H) + Gigpy HA,, A™ (4.7)
+ Gy HAWZ" + Guzz HZuWZ" + Giyw HWEW™. (4.8)
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where X, = 0,X, —0,X,,, and the corresponding fields for photon, Z, W and Higgs boson
denoted as A, Z,, W, and H. Since I have focused on the HWW and HZZ vertex in this
study, I will exclusively present the anomalous couplings related to the HWW and HZZ

vertex below. The CP-even couplings [20,76-78] are

gg)ZZ = M(Agf cos 20y + Ak, tan® Oy, (4.9)
Qg)zz = 2mWZin€W(d cos® Oy + dp sin® Oyy), (4.10)
Fiww = S%Agf, (4.11)
G = sine:Vde' (4.12)

The parameters d, dg, Ag¥ and Ax., can be set as input in anom_HVV.dat. The CP-odd

couplings [20] are

~(1) € ~ 2

=——(Kk,tan" 0 4.13
9uzz Ty sin Oy (/4;7 an” Oy ), ( )

~(2 e 5 5.

gg{)ZZ — m(d cos? Oy + dp sin® Oy ), (4.14)
Fivw = 0, (4.15)
~(2) € d 4.16
9aww sin Oy gy ( . )

The CP-odd part has a similar form as the CP-even part. All the parameters d, dg, and Ry

are the input values in anom_HVV.dat but there is no §Z. These can be related to the form
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factors in Eq. 4.1 as follows:

% = ~2(2017,, + gi1yz)
2
= _mWS;QW(d cos’ O + dpsing  +Ag{ cos20y + A, tan’ Oy), (4.17)
HZZ ~(2) ~(1) 2e 7 2 T2 - 2
a3 =220y + Ouyy) = ————(dcos® Oy + dpsing  +rK, tan” Oy ), (4.18)
myy sin Oy w
2e
ay™™ = 229w + ginww) =~ (d + cos’ by Ag{), (4.19)
myy sin Oy
9 3

AW = 25y = ——— ——d (4.20)

my sin Oy

The third parameterization which VBFNLO supported is described in Ref. [20,73,79],

the effective Lagrangian is

Lopr = fVLQWOWW + fifoBB + figow + f—iog + CP-odd part (4.21)
A§ A§ A§ A§

where the operator O is defined in dimension 6. The above Lagrangian can be written as

emw sin? Oy sin Oy

sin Oy A2 2

(fBB + fWW)HA;LVAHV +

— — rAoY
Lers 20050W<fw fB)ALZ"0"H

+ tan Oy (sin? Oy fpp — cos® Ow fww )HA,, A"

+ m(COS2 GWfW + sin2 HWfB)ZWZ“GVH
1

© 2cos? O

1
+ ifW(WJVW’f + W, W0 H — fwwHW,,W¥| 4 CP-odd part. (4.22)

(sin* Oy fzp + cos* Ow fww)H Z,, 2"
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Here are the parameters in Eq. 4.13-4.16 can be related as

2

mé _miy
d= _T‘;VfWW7 dB = A2 tan ewaB, (423)
6
2 2
Any = SxaUn+ fw). Agr = T/gfw, (4.24)
~ m2, - ~ 2
d= —%fww, dB = Ty tan tgwaB, (425)
A2 A2
2
o My
foy = 2—/{2@ (4.26)

The form factor a; is given by the following equations,

2em 1
HZZ __ w 2 2 )
ay A S [cos Ow fww + (tan Oy — sin QW)fBB — §fw 2tan o ——fBl,
(4.27)
aHZZ:—%mW{cos29 fi +(tan26’ —sin%@ )fBB—lf —;fg
3 A2 sin Oy WIww W W 2! T otan 0y Bl
(4.28)
2em 1
HWW w
_ _ - 4.29
@2 ~ AZsin Oy (fWW 2fW>’ (4.29)
2em ~
HWW w
_ W 4.
sy AZsin 6y fww, (4.30)

Again, in the above formulas, only the terms involving in HWW and H ZZ vertex is shown.

4.2 Leading Order Calculation

The calculation of the SM Higgs boson plus jets production has been implemented
in VBFNLO by Prof. Terrance Figy [5,22]. For the generic process of Higgs boson plus three
jets,

q(p1) + Q(ps) — a(p2) + Q(pa) + g(q) + H(P), (4.31)

the born amplitude can be decomposed into two color structures: the gluon emission off

the 21 quark line Mp 9 and the gluon emission off the 43 quark line Mp 43, as shown in
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q(p1) p q(p2) q(p1) q(p2)
_____ H(P) ----- H(@P)
Q(ps) , Qlps) Q(ps) Qpy)
v
q(p1) q(p2) q(p1) q(p2)
----- H(P) -=--- H(P)
Q(p3) Q(pa) Q(pa) ;?7 Q(pa)

Figure 4.1: Feynman diagrams for HjjjQLO, which the gluon emits from 21 quark line (top
row) and emits from 43 quark line (bottom row). The straight line represents quark, the
wavy line represents gauge boson (W, Z), the dotted line represents the Higgs boson, and
the curly line represents gluon. The black dot represents the HV'V vertex.

Fig. 4.1,

a

M p(prit, pata, P3is, Paia; @, @) = b5, 0isisMp o1 + 17,5, 0ii, M B a3 (4.32)
Here the index a is the color index for gluon, 71, i, i3, 74 is the color index for the external

quarks, which has the momenta pq, pa, p3, ps. Also,

MB,21 = MB,21(p27 qul§P47p3) = M%,m@u (4-33)

Mpas = Mpas(pa, ¢, D3, P2, 1) = M%Asem (4.34)

where ¢, is the polarization vector of the external gluon. The momentum of the gluon is
represented by ¢. Here p; is incoming and p, is outgoing and the momenta flow is chosen

to point in the direction of the arrow in all diagrams. On the other hand, all boson
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momenta (g for gluons, k; for vector bosons where i = 1,2) are chosen to be outgoing.

To calculate the color sub-amplitude which is shown in the top row of Fig. 4.1, one
could cut the diagram into two parts: the upper part which contains the 21 quark line with
gluon emission and attach the vector boson V; with the momentum k£, the lower part
which contains the 43 quark line and attaches the vector boson V5 with momentum k.
Both upper parts and lower parts can be calculated separately by applying the Feynman
rules in Fig. 2.1 and Fig. 2.3 and then applying the Feynman rules for HV'V vertex in

Fig. 2.2 (for SM case). The upper part reads

(e + %)

M = —e(p)get g 51y Py LI M) WD up ) Dy (),

(p2 + k)2 (p +q)

(4.35)
where k; = p; — ¢ — p2, and the chirality projector is P; = (1 + 775). The ;/2 I,f/ 1)2 and
((fé:qg denotes the quark propagators. The vector boson propagator is

Lt kK —m? <0
22 14
Dy(g®) ={ "™ (4.36)
Ty K- my >0
The lower part is
%,21,lower = q/)(p‘l)g"r;ﬂlf?) Y T3w(p3>DV2(k§)7 (437)

where ky = p3 — ps. Then combine the M5, ..., and M’ o) 15, Dy applying the SM

HVV Feyman rule, ¢*', the final results reads,

(o +H)

Bor = € gL gl B g vy g (p2) [V Py (D2 + 1{51)27
), A P 1 (p0) 1 (Da) 1 Pry ¥ (p3) Dy (KF) D, (K3), (4.38)

(p2 + q)?

Similarly, for the gluon emission off the 43 quark line that is shown as the bottom row of
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Feynman diagrams in Fig. 4.1, the sub-amplitude can be written as

(o +He)

%’43 = nggbflg¥f4f3gvagS@E(p4) I:/YVPTB AT

(pa + k2)?
(m+dqd)

o P b () (p2) Pr b (p1) Dy, (K2) Dy, (2), (4.39)

where k1 = p; — pa, ko =p3 —q — p4.
4.3 The Helicity Amplitude Method

In VBFNLO, the LO matrix element can be calculated by using the helicity amplitude
formalism [80]. Physical particles in a process may have momenta with opposite signs to
those in the corresponding Feynman diagrams. I will use the same notation as in Ref. [80],
which denotes the physical momenta as p, and then momentum flow in Feynman diagrams
is p; = S;p;, with S; = 4 for quarks and S; = — for antiquarks. In helicity amplitude
method, four component Dirac spinors 1(p,a) (= u(p, o) or v(p,d)) can be expressed by

two-component Weyl spinors 4,

%[ = - ; 15 = <w17 wi)a (44())

where

(P, 0)x = 0wz (P)X -5 (D). (4.41)

46



The & is the helicity of the fermion with p* = (E, py, by, p-), and x5 (p) is the normalized

helicity eigenspinor denote as,

o (p) = 2Ipl(p] + )2 | PP (1.42)
Pz + 1Dy
- (5) = 2IBI(Bl + 72 | TP (4.43)
Bl +52)
where
wy(p) = [E + |p|]"/? (4.44)

Then both u and v spinors in the massless fermions limit that w_(p) vanishes can be

expressed as

V(P,7)+ = S0p+\ 2Ex, (D), (4.45)

in which ¢ = So. For the helicity eigenstates, the shorthand notation corresponding to

external fermion leg 7 is

1) = Xo: (P2),

(il = X, (0)- (4.46)

The emission of a vector boson V with momentum k and polarization vector e*, attached

to the external fermion i, is described by

1

|k7l> - (171 - %)—m(?é)m‘xoi (ﬁl)ma

(i, k| = x5, (00) (@) (1 + K)o, (o + R

(4.47)
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Then the color sub-amplitude Mg 21 jower (See Eq. 4.37) can be written as

MB 21 lower — _ego' Viafs 5453 04032 \/ p4p3DV2 <4|3> F1j21,y’7 (448)
where
Fy = —egyt73815300,0, Dy, (K3), (4.49)

and the upper part of the color sub-amplitude (see Eq. 4.35') can be written as

M 21,upper = —€9595, " 525180,0,2y/ D39) D (k) [(2] (£ 11, 1) + (2, K| (£)or 1))

= Fzea1,, (4.50)

where

F2 == —€gsg;/1f2f15251(50201DV2(k‘%). (451)

Then apply the HV'V vertex in SM, the final expression for color sub-amplitude

(see the top row of Fig. 4.1) is
MB,21 = F39W/€21,uj21,u' (4'52)
where
Fs = guvvFiFa = € g.9mvv 90> 907 925151530030, 005 Dy (K1) Dy (K3) (4.53)

For the anomalous couplings, apply the generalized tensor structure in Eq. 4.1, the

'Here I include the gluon polarization vector e,.
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CP-even contribution for color sub-amplitude is

v/ v .
MB,QLeven = F3(k1k29 - kg k’l )621,yj21,y/

= F3(kikag” a1 vjor — a1 kS a1 kY (4.54)
and the CP-odd contribution for color sub-amplitude is
M a1.oda = Fse” Pk pkagear yjor - (4.55)

The Mp 43 (see the bottom row of Fig. 4.1) can be calculated in a similar way, the upper
part is

M a3 upper = —€Gud?71.8251 00,0, 20/ P3P D, (K1) (2|1) = Fojag o, (4.56)

and the lower part is

MB,43,lower - _egsg¥f4f354s3504032\/ pﬂﬁgDVQ(kg)KZl’ (fé)va |k2’ 3> + <47 k2| (7{)03 |3>]

= Fieqs,. (4.57)
The final expression for color sub-amplitude Mg 43 (in SM) is
MB,Ql = Fsgwlj43,u€43,u/, (4-58)
and for CP-even and CP-odd contributions,

MB43.cven = Fs(k1k29wlj43,u€43,w - j43,uk‘5643,wkf,) (4.59)

MB,43,odd = FSEVVIPUklpk20j4371/643,1/’- (4-60)
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4.4 Implementation in VBFNLO

VBFNLO is a Monte Carlo program designed to accurately simulate various processes
in particle physics [21,81,82], which not only includes VBF process but also for single and
double vector boson production with two jets, and the production of double and triple
vector bosons along with a jet, all computed at the NLO precision. VBFNLO also contains
the calculation of LO cross sections with an additional jet. Additionally, the program
supports the simulation of CP-even and CP-odd VBF Higgs boson production with two
jets at NLO QCD accuracy. The program also allows for the specification of arbitrary cuts
and offers various scale choices. It supports the utilization of any available parton
distribution function (PDF) set through the LHAPDF [83] library. The code was written in
FORTRAN. To program the anomalous Higgs boson couplings associated with three jets, the
following files are related to the calculation: qghqq.F, qqh2q2g_me.F, qqgh4q_me.F,
hjjja.F, and Tmunu.F. Here the file hjjja.F calculates the anomalous couplings at LO |,
qqh2q2g_me.F and qgh4q_me.F calculates the real emission part, qghqq.F calculate the
matrix elements at born level and finite virtual correction, Tmunu.F is used to calculate the
common factor involved in the calculation, i.e. vector boson propagators in Eq. 4.36. The
source code of these subroutines are available in the GitHub repository: Anomalous Higgs
Boson Couplings. In the following subsections, I will first introduce how to use built-in
subroutines to compute the LO matrix element in the SM case. Then I will introduce the
subroutine I developed to calculate the matrix element with anomalous couplings for LO,

real emission, and virtual correction.

4.4.1 LO Calculation

For the external quarks in helicity eigenstates, one needs to calculate the bra or ket
vectors, which is a shorthand notation for two-component spinors. The following
subroutine is used:

® pszOm(nf,pf, Slg/n’(l)7 ’QD)
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https://github.com/tinghuagithub/Anomalous-Higgs-Boson-Couplings

In this subroutine, the input will be n¢, which is the number of fermions that bra or ket
vectors to be calculated; pf’, which contains the momenta of the quarks; sign(i), which

indicates whether particle 7 is a quark or anti-quark. It will return to a complex array
containing a ket or bra vector respective to incoming or outgoing quarks. To attach the

gluon to the quark line, it is possible to use the subroutine bra2r or ket2r:
d bar27’(<pl| 7Chrealup?7 Sigma@ qu7 €v, <p’L + Q| ) (p’L + q)'u)u

° ketzr(|pl> 7Chrea’lvsz7 Sigmaa qV7 €, ‘pl - Q> ) (pz - Q)M)J

Here chreal indicates whether one component of (p| or |p) is real. sigma is the helicity of
the quark. ¢" is the momentum of the gluon, and ¢, is the polarization vector of the gloun.
The subroutines will return to new kets or bras that attach the gluon to the quark line
with new momentum. After calculating the bras and kets, then one can calculate the

current for the quark line, using the subroutine curr6:
* curr(sz’gmax, <p1’ 7p¢7 ‘pj> 7p?7j5ipj)a

. curT6(SingliCa <pl + q’ ) (pl + q)M’ ’pj> 7p‘/jl7j;lfipj>7

where sigmaz is the maximum value of the helicity for the current, (k;| and |k;) should be
the output of pisOm with the momenta p! and p;‘ , respectively. The output, j;jb_pj, is current
for quark line 21 without the gluon emission. In order to calculate the current with the
gluon attached, the (ps| needs to be replaced by (ps + ¢|, which is the output from bra2r.
Now all the building blocks for the calculation of the LO matrix elements are
gathered. Then we can construct the matrix element by calculating the contraction of the
current. For example, if we want to contract the current of the upper line eb; to the lower

line 75, in the SM case, it can be written as

L ovo 0 -0 1 .1 2 .92 3 -3
Guv€21]21 = €21J21 — €21J21 — €21J21 — €21]21- (4.61)
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Then one can multiply the couplings involved in the process, guvy, ¥/, gV % ¢y, and
the propagator for vector boson Dy, (k?), Dy, (k3) to compute the matrix element.

To implement the anomalous couplings, besides the SM case, both CP-even and
CP-odd terms in Eq. 4.1 should be calculated. This subroutine needs to modify the HV'V
vertex (the black dot in Fig. 4.1) and use the new tensor structure to evaluate the matrix
element. Two existing subroutines have already been programmed, contract_CPE and

contract_CPO, can contract the current i.e., 5, and j5; for CP-even and CP-odd cases.
o contract_CPE(J\T1J2, J1, Jo, k1, k2),
J COntrathCPO(J]_TQJQ,Jl,JQ,kl,kQ).

Here the input will be the current J; for the upper part, J, for the lower part, k; for the
momentum of the intermediate vector boson V; connected to the 21 quark line, and k5 for
the momentum of the intermediate vector boson V5 connect to the 43 quark line.
contract__CPFE will return to the value for the CP-even term in Eq. 4.1, J;71J>. And the
subroutine contract CPO will return to the value for the CP-odd term in Eq. 4.1, J115Js.
I have developed a new subroutine, hjjja, to evaluate the born amplitude with anomalous

Higgs boson couplings.

° hjjja(ng, Juz, Eo, E43ap217p437p21,gap43,ga
DV217 DV437 DVQl,g’ DV43,97 Mglv MZS)

The input will be the momentum entering the HV'V vertex (i.e., pa1 4, Pa3), the propagator
of the gauge boson (i.e. Dy, ,, Dv,;), and the calculated current for two quark lines (i.e.
Es1, Ja1). After execution, the subroutine will return to the sum of the matrix element for
CP-even and CP-odd cases.

The code anomHiggs.F is programmed to read in the user input value for the
anomalous couplings of HWW and HZZ from anom_HVV.dat and then use the Eq. 4.3 and
Eq. 4.4 to calculate the numerical values for anomalous couplings. Besides the contraction

of the current and the HWW and HZZ couplings, all the other building blocks are the
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same as the SM case, so it is straightforward to modify the code snippet and implement
the anomalous couplings under the current framework for the LO matrix element. To
conclude the program structure for H;jjQLQO, first one needs to use psi0Om subroutine to
define the external quarks, then use bra2c or ket2c to attach the gluon emission to one of
the external quark legs. The next step is to use curr6 to calculate the quark current with
the emission of the gluon (i.e., the upper part shown in Fig. 4.2), and also the quark
current without the gluon emission (i.e., the lower part shown in Fig. 4.2). By applying the
contract_CPE and/or contract_CPO to the quark current already calculated in the
previous step, and multiply couplings and vector boson propagators (i.e., gyvy, gy s and
Dy (k?)), the color subamplitude is constructed. In Fig 4.2, all the construction subroutines

are labeled in different colors and use different rectangles to demonstrate the calculations.

4.4.2 Real Emission

In order to construct the NLO calculation for the Higgs boson plus three jets
(Hjjj@QNLO), one also needs to implement the anomalous Higgs boson couplings to the
real emission part. The real emission subroutine in VBFNLO was originally developed by
Prof. Terrance Figy [5,51] for SM and was modified by Dr. Michael Rauch to improve the
efficiency of the calculation. There are two files programmed for the real emission:
qgh4q_me.F and qgqh2q2g_me.F, where qqh4q_me.F calculate the matrix element squared
for four quarks in the final state and qqh2q2g_me.F calculate the matrix element squared
for two quarks and two gluons in the final state. Since there are some common factors
during the evaluation of the matrix elements, such as couplings and the propagators for
vector bosons, I have created the following subroutines in Tmunu.F to calculate the

anomalous part of the matrix element:
o contract_TmnZZ(Jy, Jo, ki, ke, JNT JoZ),

o contract_TmnWW (Jy, Jo, k1, ko, T JoW).
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contract CPE

contract CPO

Figure 4.2: This figure shows the construction of the HjjjQLO with anomalous couplings,
where the curly line represents gluon and the dotted line represents Higgs boson.

The subroutine contract_TmnZZ contracts the current using the generalized tensor
structure in Eq. 4.1 and multiplies by the corresponding Z boson propagators. The input
value would be the current J;, Jo, and the momentum of Z boson k; and k5. The structure
of subroutine contract TmnWW is similar to contract TmnZZ, which uses the HWW
anomalous couplings and the propagators for W boson.

For the subprocess to have two gluons and two quarks in the final state, the current
is categorized into three categories: the current of the quark line attached to one gluon as
shown in Fig. 4.3; and the current of quark line attached with two gluons as shown in

Fig. 4.4; one intermediate gluon attach the quark line and emits to gluons as shown in
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Figure 4.3: Feynman diagrams for the real emission of Hjjj@QN LO process that an external
gluon attached to both quark lines. The straight line represents quark, the wavy line rep-
resents gauge boson (W, Z), the dotted line represents the Higgs boson, and the curly line
represents gluon. The black dot represents the HV'V vertex.

Fig. 4.5. For Fig 4.3, I did not label the gluon with different letters. In the subroutine, two
gluons have different polarization vectors, which means there could be six Feynman
diagrams to consider. Fig. 4.4 and Fig. 4.5 only show Feynman diagrams for one
possibility, which gluons are emitted from the upper quark line, another possibility would
be the gluon emitted from the lower line. These currents can be evaluated using the
subroutine curr6 with the corresponding inputs. There are six combinations for the current
contraction, and each one needs to be programmed for the anomalous part.

For the subprocess to have four quarks in the final state, there are two types of
current, one is the quark line without radiation, another is the quark line attached to the

intermediate gluon and the two quarks in the final state. To contract the current, there are
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four combinations: radiation from the upper line, radiation from the lower line, and the
interchange of the quark index between the initial and final states. By applying the
subroutine contract_TmnZZ and contract_TmnWW, the contribution of the anomalous

part can be computed and added to the SM matrix elements as Eq. 4.1.

3 B

Figure 4.4: Feynman diagrams for the real emission of Hjj7@QN LO process that two external
gluons attached to one quark line.

Figure 4.5: Feynman diagrams for the real emission of HjjjQN LO process that two gluons
emission from the same quark line. The straight line represents quark, the wavy line rep-
resents gauge boson (W, Z), the dotted line represents the Higgs boson, and the curly line
represents gluon. The black dot represents the HV'V vertex.
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q(p1) > 3 qp2) 1) g > 4(p2)

V(g2) 8(1) g(q1) V(g2)

Figure 4.6: Example Feynman diagrams for the progress ¢q¢ — Vg. The straight line rep-
resents quark, the wavy line represents gauge boson (W, Z), and the curly line represents
gluon. The black dot represents the HV'V vertex. A complete set of Feynman diagrams can
be found in Ref. [5].

4.4.3 Virtual Correction

The subroutine coeff.F is been used to calculate the virtual correction.

® boa?lineivg (wb 7#27 P1, D2, Z.Siga 6#7 Ja q1, 492, MBa Mbox)

The subroutine needs the momenta p; and py, and their spinor ¢); and 1)5; the momenta of
the vector boson ¢, and the corresponding quark line current J. Furthermore, the
momenta of gluon ¢; and its polarization vector €*, and the helicity isig of the quark line
has to be given to the subroutine to compute the matrix element of the virtual correction
M. Compared to the SM case, there are two input needs to be modified, current J and
M. In the calculation of the CP-even contribution, I have created subroutines

contract CPEJ1 and contract CPEJ2 to calculate the current J for the boxline

subroutine:
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o contract_ CPEJ1(Jy, J{', p1, p2)
o contract_ CPEJ2 (Jy, J§, p1, po)

Similarly to the born level amplitude calculation, there are two parts for the virtual
correction, ./\/l‘{,2 . and ./\/l‘(,43. Since the position of the input variable is a one-to-one
mapping to the values, it is important to write two separate subroutines for each
calculation. contract_CPEJ1 is used for My, and contract_CPEJ2 is used for My, . For

the CP-odd contribution, I used the existing subroutine epscrr.
o epscrr(D*, A%, B? CP)

It will return to the value for the current as the input for the boxline subroutine.
Additionally, the born amplitude can be evaluated by using contract CPFE and

contract _CPO subroutine.
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CHAPTER 5
TESTS AND COMPARISONS

In this chapter, I will perform different validation checks on the code and show the
results. For Higgs boson production associated with three jets at LO, I compare it to the
tested Higgs boson production with two jets and add an additional jet. The dipole
subtraction check is used for the real part and the gauge invariance test is used for the
virtual part. The last check will be the relation between real emissions and virtual

corrections.

5.1 LO Check

In order to confirm the born-level matrix elements are programming correctly, one
needs to test the results for the calculation of Hjjj@QLO. In VBFNLO, the feature to add
one LO additional jet is used for this test. Since the anomalous couplings for Higgs plus
two jets at NLO have been implemented and examined [23], T can compare the cross
section for Higgs plus three jets at LO to the Higgs plus two jets with one additional LO
jet. The results are shown in Tab. 2.

Table 2: This table shows the cross section for the Higgs boson plus two jets with additional
LO jets and the Higgs boson plus three jets at LO.

LO OCP—even [fb] OCP—odd [fb] OCP—mized [fb]
HjjQLO + jet 670.39519 4 0.20182 | 512.86790 &= 0.14043 | 1183.48762+0.34811
Hjj5QLO 670.35567 4 0.20059 | 512.88934 £ 0.14028 | 1183.4222740.34675

In this test, the parameters for the anomalous couplings are set for three different

cases: giWW = glZZ — (.5 for CP-even case; gilWW = gllZZ — (.5 for CP-odd case;
gAWW = gl 27 — qHWW — gH2Z — () 5 for CP-mixed case, and all other parameters equals

zero. As shown in Tab. 2, each column compares the results of the cross section with the
Monte Carlo error between the HjjjQLO and HjjQLO with one additional jet. All
results show that the Hjj7@QLO cross section agrees with the cross section for Hj7QLO
with one additional jet within the Monte Carlo error. This indicates that the

implementation at the Born-level is validated.
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5.2 Dipole Subtraction Check

Since dipole subtraction is used to perform numerical calculations involved in the
NLO calculation, one can compare the matrix elements square for the real emission and the
subtraction term. In the formalism of Catani and Seymour subtraction method, the
subtraction terms do? act as local counter terms. Thus, they have to exactly cancel the real
emission contribution in the singular regions. This property of the subtracted dipoles has
been tested numerically for the real emission of the Hjj7@QN LO after the implementation
of anomalous coupling. In order to confirm the cancellation of collinear singularities, the
comparison is made for the individual phase points by taking the ratio of subtraction term
and real emission matrix elements squared, |M|*/ ’MrealP. The subroutine written by
Michael Raunch was used to make this dipole subtraction check. The |Mgp|?/|Moea]? is
plotted over the scalar products between the momentum of the quark momentum p; where
t=1,2,3,4 and the gluon momentum p; where j = 5,6. From the plots, most points were
around the line |[Mp|?/|Myea|* = 1. As p; - p; — 0, the subtraction terms can cancel the
real emission contributions resulting in a ratio of real emission cross section divided by

dipole cross sections of one. This shows that the dipole method works.
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Figure 5.1: Ratio of the real emission matrix element and the subtraction dipoles, in the
limits p; - ps — 0 (left panel) and py - p5s — 0 (right panel).
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5.3 Gauge Invariance Check for Virtual Correction

The virtual contributions can be tested using the property of gauge invariance. For
a single diagram, it is not gauge invariant by itself, but the sum of all diagrams
contributing to the matrix element is gauge invariant. The Ward identity [84,85] can be
used to test the implementation of the virtual corrections. A solid proof of the Ward
identity can be found in Ref. [86]. The virtual matrix element M.,;,; will be vanished if one

replaced the polarization vector €, to the momentum p,,,

QLMZirt — pMMzirt (5.1)

This test was programmed to check two parts of virtual correction, MY, and M},
individually. The original debug code was developed by Prof. Terrance Figy. The
histogram was made by taking the ratio of M3, to the matrix element My and M}, to
the matrix element Mys for about 500,000 data points. Fig. 5.5 shows the results of the
gauge check. On the right panel shows the check for the MY, /Ms; and the right panel
shows the check for M};/My3. From these two histograms, it shows that most of the data
points were around 107!2, and this indicated that gauge invariance was satisfied for the

virtual correction.
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Figure 5.5: Gauge check for virtual corrections.
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5.4 Relation Between Real Emission and Virtual Correction

In this section, I will use the properties based on the subtraction method, which is

possible to integrate real emission and virtual corrections proportional to the born term.

There are two constants that are important to Higgs plus three jets production process:

Coirt AN Creq;. The sum of these two constants, cg,,, should be fixed,

Csum = Cuirt + Creal =

2

3

T 8+ 272 13
3 2

, 29

=7 - —.

2

(5.2)

By varying the c¢,;+ and ¢,.q to different values but keeping the c,,, fixed, the NLO

cross section should stay the same. The results are shown in Tab. 3. In order to testify the

CP-even anomalous couplings, I used the parameter which gZWW = ¢gllZ?Z — (.5 for

CP-even case, gEiWW = gl2Z — (.5 for CP-odd case, and

HWW HZZ

_ HWW HZZ
9se = Jse

= g5 = g5, 7 = 0.5 for CP-mixed case. All other parameters not

specified are zero.

After giving two constants, c,; and ¢, for a different value, the total cross

section for NLO results is agreed within the numerical error of the Monte Carlo event

generator. This confirms that the finite part of the virtual corrections and the real

emissions are correct.

Table 3: This table shows the NLO cross section for the Higgs boson plus three jets in three
different CP scenarios. Given the different constant c,;; and c,.q;, their sum cg,,, is fixed.

Coirt Creal Csum OCP—even [fb] OCP—odd [fb] OCP—miz [fb]
= -8 w15 72— 2 | 595.843508+ | 280.345733+ | 884.456846+
7.609827 1.502138 10.910300
14 -z -1 72— 2 | 602.168175% | 278.451237+ | 877.085241+
7.367263 1.502102 10.064846
—6 -1 72— 2 [592.121609=+ | 282.803803=+ | 893.547709=+
6.532743 1.208810 6.771830
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CHAPTER 6
PHENOMENOLOGY

After developing the anomalous Higgs boson couplings associated with three jets, I
can perform the simulation of merged and matched setup in VBF using the HERWIG 7. In
this chapter, starting with the introduction to HERWIG 7 and input parameters, three
selection cuts will be defined. Then the results of CP-sensitive observables will be
presented for merged and matched setup. I will show the results of different CP scenarios
and compare the distribution of CP-sensitive observables for h(2*,3*,4) , h(2*,3) ,

h(2*) @ PS , and NLO fixed order calculation. Finally, I will look at the comparison of SM

results and three different CP scenarios.

6.1 Introduction

A hadron collider has a special axis called the beam axis. The beam axis is parallel
to the incoming particles. Usually, the beam axis is chosen to be the z-axis. It is often
convenient to describe the four-momentum of a particle by their energy and polar angle
and azimuthal angle ¢, where 6 represents the angle of the particle with respect to the
z-axis, @ is the angle around the beam axis [87].

The energies and momenta of incoming particles are known for particle physics
experiments, but the energies and momentum fractions of the respective constituents that
interact are not known in advance. The relative motion can be understood as a boost of
the constituent system with respect to the lab or beam system. If the constituents move in
parallel to the incoming particles, this implies that the overall momentum of the colliding
constituents along the beam axis is essentially unknown. It is thus convenient to construct
a quantity with good transformation properties under boosts along the beam axis such as
rapidity y, transverse momentum py, and invariant mass my, ;, [87].

HERWIG 7 [88] is a multi-purpose particle physics event generator. The current
version is HERWIG 7.2.3, which is used in this research. It provides all the different

simulation steps, such as hard process generation, parton shower, hadronization and
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multiple parton interactions (MPI). In this dissertation, I did not include the hadronization
and MPI in the simulation. Detailed information and tutorials can be obtained from the
website: https://herwig.hepforge.org/. The description of computation and
documentation can be found in the HERWIG 7.0 release note [88].

LHC-Matchbox.in [89] is the input file of the HERWIG 7 event generator. It is
already structured in a way that guides the user through the choices for the hard
processes [90]. A few "beam parameters" have been modified in this study: beam energy,
settings for VBF approximation, selection of the process, selection of matrix element, and
shower selection. The usage and a brief guide will be shown in Appendix. Also, the
estimated running time for matched and merged setup on the HPC will be discussed in
Appendix.

When the HERWIG 7 event generator generates events, a yoda file containing data is
generated. Rivet [91] makes plots from the yoda file through the code "rivet-mkhtml". Tt
has many options of plots such as ratio plots, legends, titles, labels, etc. Throughout this
dissertation, Rivet 2.7.2 was used to make plots. All analyses of Higgs production have

been performed by Rivet .

6.2 General Monte Carlo Input Parameters

To examine the results of the anomalous coupling for the Higgs boson in different
scenarios, the HERWIG 7 input parameters are set up in the HJets-settings.in file. The
settings used are the same as in Ref. [35]. The mass and widths of Z° and W gauge

bosons are fixed to

my = 91.1876 GeV, Ty = 2.4952 GeV, (6.1)

M, = 80.385 GeV, Dy = 2.085 GeV. (6.2)

The Fermi constant is Gr = 1.16637 x 107> GeV 2 and the G, scheme is used to derive

the electromagnetic coupling constant and the weak mixing angle via Standard Model
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tree-level relations. The Higgs boson mass is set to my = 125.7 GeV.

For renormalization and factorization scales, the following scale is used:

1 1
Mo = iHT,jets = 2 Z Pry, (6-3)

i€jets

where pp; is the transverse momentum of the i-th jet. In order to ensure the infrared safety
of the scale choice, the anti-kr jet clustering [92] was used with R = 0.4 in the inclusive
mode. The recombination method is E-scheme and requires each jet to have pr; > 5 GeV.
The collider energy /s = 13 TeV is used for all simulations. The parton distribution
function is PDFALHC15_nnlo_100_pdfas [93] in all simulations with LHAPDF6 [83]. To be
consistent with PDFALHC15 nnlo_100_pdfas settings, the strong coupling constant was
chosen as as(Mz) = 0.118 and used the five active flavors in the settings.

In order to optimize our analysis and ensure accurate results, there is a set of
selection cuts applied for the hard processes involving jets before proceeding with the
subsequent parton shower simulation. However, the selection cut at the event generation
level is weaker than the analysis cut to ensure enough margin for the study. While in
principle a cut may not be necessary for the lowest-order process involving two jets, the
cuts are still employed for efficient reasons. On the other hand, other processes of the
VBF/VBS kind do require the implementation of generation cuts even at the NLO for the
lowest-order process.

To reconstruct jets from the final-state partons, the anti-k; algorithm as described
in the reference [92] and utilize the fastjet library [94]. In the inclusive mode, the jet
radius parameter is R = 0.4 and adopts the E-scheme for the recombination method. The
minimum transverse momentum required for all jets is set to 10 GeV, and the jet rapidity
is constrained within |y;| < 5. In scenarios where the lowest final-state parton multiplicity

is two partons, such as h(2*,3) or h(2*) @ PS , it requires a minimum of two jets.
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6.3 Event Selection Cuts

The analysis utilizes the MC analysis toolkit Rivet 2.7.2 [95] to analyze all
simulated events. A specific analysis named MC_H2JETS has been developed within the
Rivet framework, which implements three event selection criteria: inclusive cuts (INCL),
tight cuts (TIGHT), and loose cuts (LOOSE).

To combine partons into jets, the anti-k; algorithm [92] is employed with a radius
parameter of R = 0.4 in the inclusive mode. The recombination of partons into jets follows
the E-scheme. Valid jets are required to satisfy certain conditions regarding their

transverse momentum pr; and rapidity y;. These conditions are as follows:

prj > 25 GeV, |yj| < 4.5. (64)

The jets are ordered from largest to smallest in jet transverse momentum and labeled jets
as jr with £ = 1,2, 3... being an index. For INCL selection cuts, it requires at least two jets
in the event. For the LOOSE selection cuts, there is an additional selection criterion has
been included,

Mo > 200 GeV, ijle > 1, (65)

where m;, j, is the invariant mass of the leading two jets. Ay, ;, is the rapidity separation
of the two hardest jets defined as Ay, j, = |yj, — yj,|. For the TIGHT selection cuts, the

following additional selection criterion is included,

My > 600 GeV, ijle > 45, Yir  Yjp < 0. (66)

6.4 CP Sensitive Observables

The anomalous HV'V couplings will affect the distribution of the Higgs boson
production through VBF at LHC. The CP structure of the HV'V vertex can be revealed by

studying the azimuthal angle between two jets. In general, the azimuthal angle between
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the two hardest jets is defined as

|Adjig| = |04 — Qs (6.7)

The shape of 1/odo/|A¢,, j,| is sensitive to the CP structure [23,71]. As shown in
Fig. 6.1 (top), I plot the distribution of |A¢;, ;,| for h(2*) @ PS for three cases: pure
CP-even, pure CP-odd, and the CP-mixed. For the plots in this section, the anomalous

couplings are:

o pure CP-even: giWW = ¢ll2% — (.5,
o pure CP-odd: giWW = gH2Z — ()5,

o CP-mixed: giWW = glHWW — gl22 — ¢H2Z — ()5,

For all three CP scenarios, it is set that no SM contribution, i.e., a; = 0 in Eq. 4.1, and

A = 480. The color legends for these distribution plots are red lines for the CP-mixed case,
blue lines for the purely CP-even case, green lines for the purely CP-odd case, and orange
lines for the SM case. The plots are made against the SM scenario so that the reference in
each ratio plot is the SM results, and the distributions are normalized to compare three
scenarios of anomalous couplings. The error bars shown in the figures are the Monte Carlo
error. For purely CP-even couplings, the cross section is suppressed at 90 degrees, while for
purely CP-odd couplings, the cross section is suppressed at 0 and 180 degrees. From the
ratio plot in Fig. 6.1 (top), it is clear that purely CP-odd couplings have a peak at 90
degrees while purely CP-even couplings have a dip. The plot range is set from 0 to 7 since
it calculated the absolute value of A¢;, ;,. When both CP-even and CP-odd couplings of
the same strength are present, i.e., in the CP-mixed case, the dips cancel out and result in
a distribution without the characteristic curve. For the merged setup h(2*,3) and
h(2*,3*,4) , there is a similar pattern shown in Fig. 6.2 and Fig. 6.3, in which the

CP-mixed distribution lost the sinusoidal shape. However, the distribution of |A¢;, ;,| can
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still be useful when compared to purely CP-even and CP-odd anomalous couplings.

Since Eq. 6.7 takes the absolute value of the difference between ¢;, and ¢,,, it lost
information contained in the sign of the azimuthal angle between the tagging jets. It may
initially appear challenging to define this sign unambiguously in pp collisions because the
azimuthal angle changes sign when viewed from the opposite beam direction. However, one
must consider the correlation of the tagging jets with the two distinct beam directions.
When defining Ag;,;, as the azimuthal angle of the "away" jet minus the azimuthal angle
of the "toward" jet, exchanging the two beam directions preserves the sign of A¢;,;, [23].

A¢j,j, 1s define as

¢j1 - ¢j2? Yir = Yjo
Adjj, = (6.8)
¢j2 - ¢j17 Yjr < Yjo

In order to make A¢;, j, € [~7, 7], Ad;,;, also satisfies

A¢jfjb + 2m, A¢jfjb < -7
A¢jfjb = (6'9)
A¢jfjb — 27T, A(bjfjb >T

For the normalized four-momenta of the proton beams such as b, and b_, while p, and p_
represent the four-momenta of the tagging jets. p, points into the same detector

hemisphere as b, and p_ points the opposite detector hemisphere. Then

€vpo0 D027 = 2pr 1 pr — sin(éy — ¢-)

= 2pT,+pT,— sin Agbjsz; (610)

provides the sign of A¢; ;, and it is a parity-odd observable. The definition in Eq. 6.10 is
invariant under the interchange (b,,py) — (b_,p_).

The distribution of Ag;,;, with TIGHT selection cuts are shown in the bottom row
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of Fig. 6.1 for h(2*) @ PS , Fig. 6.2 for h(2*,3) , and Fig. 6.3 for h(2*,3*,4) with three
scenarios of purely anomalous couplings and the SM case. In the case of mixed CP-even
and CP-odd couplings, the positions of the maxima shift to 7 and the minima at ?jf. The
observed shift in the Ag;,;, distribution further indicates the loss of information in the
mixed CP case. Specifically, when folding the Ag;,;, distribution at Ag; ;, = 0, the
positions of the dips do not align, resulting in the characteristic curve as shown in Fig. 6.1.
Both the h(2*,3) and h(2*,3*,4) share similar features as h(2*) @ PS , when including the

sign information of Ag;,;,, the CP-mixed case shift positions of dips.
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Figure 6.1: The distribution for of |A¢;,j,| (top) and A¢;,j, (bottom) for matched setup
h(2*) @ PS using TIGHT selection cuts.
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Figure 6.3: The distribution for of [Ad;,;,| (top) and Agj,;, (bottom) for merged setup
h(2*,3*,4) using TIGHT selection cuts.
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While in Fig. 6.1-6.3, I have shown that the CP structure of the Higgs boson vertex
can be discerned by investigating the azimuthal angle between the two jets, the CP

structure can also be studied through a modified azimuthal angle ¢, [96] between ¢, and gj.

Define ¢, as

¢2 = A(qajnqbl_); (611)

where

Ga = Z Pj, b = Z by, (6-12)

je{jets:y;j<yn} je{jetsy; >yn}

Here divide the observable jets into two groups by rapidity of Higgs boson, making the jets
separated from the Higgs boson direction. q,; and q,; are the transverse component of
the q, and qp. Since there is rapidity and invariant mass cuts in the TIGHT selection cuts,
the observable ¢, should show a similar distribution as Ad;,j, .

The distribution of the ¢, is shown in Fig. 6.4-6.6 for h(2*) @ PS ,h(2%,3) , and
h(2*,3*,4) with TIGHT selection cuts. It can be seen that the ¢, results share a number of
key features compared to the distribution of Ag;, ;. The three anomalous coupling
scenarios are distinguishable by the shape of the observable ¢, distribution. Again, even
have the same strength as the CP-even and CP-odd couplings, the CP-mixed case still

presents a characteristic curve with a shift of 7 compared to the CP-even or CP-odd case.
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6.5 Comparison Between Matching and Merging Results

As pointed out at the beginning of this chapter, both merging and matching
frameworks in HERWIG 7 were used in the calculation of Higgs production with anomalous
couplings. The difference between the merged setup and matched setup is shown in the
following figures, where the merged setups are h(2*,3*,4) and h(2*,3) , the matched setup
h(2*) @ PS , and the fixed NLO h(2*) calculation. Let’s start with the invariant mass
distribution of the two leading jets in Fig. 6.7 for the four merged and matched setups,
where the INCL and LOOSE selection cuts are applied. The mj, ;, distribution of
h(2*) @ PS and h(2*) are deviated 10% and 15% from h(2*,3*,4) at the beginning of the
Fig. 6.7 with INCL cuts. When mj,;, > 300 GeV, the merged setup and the matched setup
have agreement. After applying the LOOSE cut, as shown at the bottom of Fig. 6.7,
merged and matched setups only have the differences due to the Monte Carlo error when
mj,;, > 300 GeV. Fig. 6.8 presents the distribution of Ay; ;, with INCL and TIGHT

selection cuts. The ratio plot uses h(2*,3*,4) as the reference. It can be seen that h(2*)
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and h(2*) @ PS are deviated 10% at the Ay;,;, € [0,1]. The h(2*,3) deviates 2% from the
h(2*,3*,4) setups in the same region. After applying the TIGHT cuts, the fixed order
calculation h(2*) deviates at the tail of the Ay;,;, due to the Monte Carlo error. All other
setups have an agreement.

In Fig. 6.9, I have shown the distribution of |Agj;,;,| and the signed version
azimuthal angle difference between the tagging jets, A¢; ;, for CP-mixed case. It can be
observed that the fixed order calculation and matched setup agree with the merged setup
h(2%,3*,4) for distribution of [A¢;,;,|. However, for the distribution of A¢; ;,,

h(2*) @ PS and h(2*) shows 15% difference at —% and 2¢. For CP-even couplings,

h(2*) @ PS deviates 20% at the dip of the distribution for |A¢,, ;,| in Fig. 6.10 and fixed
order calculation h(2*) shows 20% difference at the w/2. At the bottom plot of Fig. 6.10,
h(2*) @ PS deviate at —7/2 and 7/2 for the quantity of 20% from the h(2*,3*,4) . The
distribution of [Agj, ;,| and A¢;,;, with CP-odd coupling is shown in Fig. 6.11. After
applying the TIGHT selection cuts, the matched setup h(2*) @ PS is smaller than the
merged setup h(2*,3*,4) for 15% at |A¢;,5,| = 0 and |A¢;,;,| = 0. Also, the

h(2*) @ PS deviates from h(2*,3*,4) setups at A¢;,;, = —m, Ag;,;, =0, and A¢; ;, = 7 for
15% in the bottom plot of Fig. 6.11. Fig. 6.12 and Fig. 6.13 present the distribution of ¢,
for the CP-mixed, CP-even, and CP-odd anomalous couplings. Again, matched setup
h(2*) @ PS and fixed order calculation differ at the dips of the distribution as excepted and

also observed in the distribution of Ag;,;,.
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Figure 6.10: The distribution of |Ag¢j,j,| (top) and Ag;,;, (bottom) for CP-even anomalous
couplings with TIGHT cuts.
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Figure 6.11: The distribution of |A¢;,j,| (top) and Ag;,;, (bottom) for CP-odd anomalous
couplings with TIGHT cuts.
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Figure 6.12: The distribution of ¢y for CP-mixed anomalous couplings with TIGHT cuts.

6.6 Comparison Between Anomalous Couplings and SM

This section collects key results for the comparison between the three scenarios of
anomalous couplings: CP-even, CP-odd, and CP-mixed, to SM prediction. The kinematic
observables shown in the plots are the rapidity gap between two leading jets, the hardest
jet rapidity distribution, and the distribution of the transverse momentum for the first
leading jet. Let’s first consider the distribution of the Ayj, ;, for A(2*) @ PS . In Fig. 6.14,
all cases with anomalous couplings show different behavior compared to the SM case. For
the distribution of the rapidity gap (see Fig. 6.14 and Fig. 6.15), the CP structure shows a
different pattern as compared to the SM distribution. At the bottom plot of Fig. 6.14, the
rapidity distribution of the first leading jet displays the fact that in the case of anomalous
couplings, the jets are more central than in the SM case. The same glaring difference
appears in the h(2*,3* 4) setups as shown in Fig.6.15, which offer a tool to discriminate
about different parity assignments. Fig. 6.16 shows the normalized transverse momentum
distribution of the first leading jet pr;,, it can be seen that three CP scenarios start to
deviate from SM at pr; = 20 GeV. The plots have also shown that the distribution of

transverse momentum can not sufficiently distinguish between different CP structures.
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CHAPTER 6
CONCLUSIONS AND OUTLOOK

Although the anomalous Higgs couplings via VBF has already available in VBFNLO,
in order to present results using the matching and merging framework provided by
HERWIG 7, I have implemented the anomalous coupling for Higgs plus three jets
production. The programs are written in Fortran and implemented into the VBFNLO in a
numerically stable way. I have applied a dedicated system of checks and balances to verify
this implementation. Checks include verification against available automated matrix
elements implemented in VBFNLO for LO, dipole subtraction check for real emission, and
gauge test for virtual correction relying on the Ward identity. I have reviewed the Standard
Model and the calculation for the NLO cross section in Chapter 2. In addition, I also
briefly introduced the Catani-Seymour subtraction method which is used in the NLO
calculation for Higgs plus three jets production. In Chapter 3, matched and merged setups
for Higs boson plus two jets are discussed and the results on the numerical calculations are
presented using HJets and VBFNLO via HERWIG 7

The detailed implementation of the design of numerical building blocks for LO, real
emission, and virtual correction are discussed in Chapter 4. I also introduced the helicity
amplitude method and demonstrated the calculation of Hjjj@QLO. In order to program
the generalized tensor structure and combine it into the existing Higgs boson plus three
jets subroutines, I have created several subroutines to calculate the CP-even or CP-odd
structure for all parts of the NLO cross section.

All parts of the code have been carefully checked. In particular, LO cross sections
and distributions have been compared with the already checked results and take advantage
of the feature in VBFNLO that adds additional LO jets. Furthermore, Ward identity tests for
the virtual contributions have been implemented and the cancellation of divergences in the
real emission against the counter-terms, as given by the subtraction method has been

checked.
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The phenomenology results are presented in Chapter 6. The Monte Carlo event
generator HERWIG 7 is used to generate the events for fixed order calculation h(2*),
matched setup h(2*) @ PS , merged setup h(2*,3) , and h(2*,3*,4) . The generated events
are analyzed by Rivet to create the yoda file and make plots. Several observables can be
studied to extract the CP structure of the HV'V vertex, and I have shown the distribution
of these observables in different CP scenarios. 1 have compared the predictions for Higgs
plus two jets in matched and merged framework via HERWIG 7 and find that for all
anomalous coupling cases, for two jet observables Ay;, ;, and m;, ;, there is a deviation up
to 10% between matched setup and merged setup when only applied INCL cuts. While
after applying the TIGHT cuts, the merged setups h(2*,3*,4) and matched setups
h(2*) @ PS are in good agreement. For CP-sensitive observables, the deviation between
matched setup and the merged setup occurs in the dips of the distribution. The fixed order
calculation h(2*) deviates up to 20% compared with the merged setup in all three CP
scenarios.

The source code I developed in this dissertation will become online at GitHub 2 and
is suitable for merging into VBFNLO. It provides a computational tool for both
experimentalists and theorists to investigate possible CP violation searches via VBF Higgs
boson production. The tools and techniques I presented are for the study of Higgs boson
couples to W or Z bosons. The Higgs boson anomalous coupling that has not been studied
in this dissertation is the Higgs boson couples to v and/or Z boson. Another development
one can make anomalous Higgs boson coupling implementation to the full calculation of

Higgs boson production provided by HJets [55-58|.

Zhttps://github.com /tinghuagithub/Anomalous-Higgs-Boson-Couplings
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The Herwig 7 Usage Example
To use HERWIG 7 to generate the event for a specific process, first need to activate

the HERWIG environment by
$ source /where/herwig/install/bin/activate

The HERWIG 7 needs to read the input files through the "build" step, and it can be

parallelized by providing n integration jobs through
$ Hewrig build --maxjobs=n LHC-H-Merging.in

After this, a .run file will be created, but subprocess integration has been postponed to the

next step, which can then be run via:
$ Hewrig integrate --jobid=k LHC-H-Merging.run
where n € [0,n — 1]. To integrate all n jobs using

$ for k in {0..n-1};\

do (./Herwig integrate --jobid=$k LHC-H-Merging.run &); done

Then parallel event generation can be performed by using a number of jobs with different

random seeds,
$ Herwig run --seed=426738 LHC-H-Merging.run

After the generation of events is finished, there will be a yoda file (i.e.,
LHC-H-Merging.yoda). One can merge yoda files with different random seeds to improve

statistics via
$ yodamerge -o LHC-final.yoda LHC-1.yoda LHC-2.yoda
where LHC-final.yoda is the output after merging, LHC-H-Merging-1.yoda and

LHC-H-Merging-2.yoda are intermediate yoda file with different random seeds.
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The LHC-Matchbox.in file and LHC-H-Merging. in file is used as the input file for
HERWIG 7 event generator. In this study, LHC-Matchbox. in is used as the input for h(2*)
fixed order calculation and h(2*) @ PS , while the LHC-H-Merging. in is used for the
merged setup, i.e. h(2*,3) and h(2*,3*,4) . An example input file LHC-H-Merging. in for
the calculation of h(2*,3*,4) at 13 TeV is shown in the following. All the input files used
in this dissertation and the VBFNLO code I developed are in the GitHub repository:
"Anomalous Higgs Boson Couplings".

HERWIG 7 adds a new feature to help reduce the running time for merged setup by
dividing the event generation process into chunks. Using this feature, for example, I can set
up 5 chunks for the h(2*,3*,4) process and then run event generation jobs in parallel based
on different chunks. This can reduce the running time for a single event generation run.
Then I can add the chunk results to get the final results. For the estimation of the running
time on HPC (based on the single CPU core and 2 GB memory) of the merged setup
h(2*,3*,4) , it takes about 5 hours to generate 1,000,000 events. In order to have good
statistics for h(2*,3*,4) runs, I have generated 8,000,000 events for 250 individual runs
with different random seeds for each chunk. And I divided the event generation into 10
chunks. For the merged setup h(2*,3) , it takes about 3.5 hours to generate 1,000,000
events. I have executed 200 parallel runs, each generating 10,000, 000 events, and divided
the process into 5 chunks. For the matched setup h(2*) @ PS , the running time for one
million events is about 1.5 hours, and I execute 200 runs with 10,000,000 events for each
run.

In order to use the VBFNLO for matrix elements and read input for parameters for
anomalous couplings, anom_HVV.dat is also needed in the working directory. An example of
setting CP-even and CP-odd couplings is shown below. In this example, I only show one
part of the file, which is the parameterization I used in the dissertation, and the complete

file can be found on GitHub. I used the first parameterization, and set

HWW _ HZZ _  _HWW _ _HZZ __
95e = Jse = G50 = G50 = 0.5.
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------------------------------ set anomalous HVV couplings

—————————————————————————————— Parametrisation: Phys. Lett.

PARAMETR1
lon(=.true.
LAMBDAS
G5E_HWW
G5E_HZZ
G5E_HGG
G5E_HGZ
G50_HWW
G50_HZZ
G50_HGG

G50_HGZ

.true.

or off(=.
480.0d0
0.

0.

5d0

5d0

.0d0

.0do0

.5d0

.5d0

.0do

.0d0

switch for this parametrisation;

false.)

Ilambdab

gbe_hww, CP-even
gbe_hzz
gbe_hgg
gbe_hgz
gbo_hww, CP-odd
gbo_hzz
goo_hgg

gbo_hgz
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