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Abstract

Here we report progress toward the measurement of a permanent electric dipole moment

(EDM) in hyperpolarized liquid 129Xe which violates invariance under both parity and time

reversal. The standard model (SM) predicts atomic EDMs well beyond current experi-

mental limits while many natural extensions to the SM predict EDMs within the expected

sensitivity of current experiments. Hence the search for a non-zero EDM is viewed as an

ideal test for new physics.

Liquid 129Xe is an attractive medium in which to perform such a search because it has

a high number density and a high electric field breakdown strength. For experimentally

realizable parameters it should be possible to achieve a sensitivity of ∼ 10−32 e-cm for

one day of integration, several orders of magnitude beyond current experimental limits on

EDMs.

In preparation for performing a search for an EDM in liquid xenon, we have conducted a

thorough experimental and theoretical investigation of the spin dynamics of hyperpolarized

liquid 129Xe. In a highly polarized liquid magnetic dipolar interactions can strongly influence

spin precession. For small tip angles of the magnetization away from the holding field, the

system is insensitive to perturbations, leading to extended free induction decays. For large

tip angles the system develops a dynamical instability so that spin precession due to a

small magnetic field gradient is amplified exponentially relative to the non-interacting case.

In principle, this amplification can be quite large, leading to enhanced sensitivity of spin

precession measurements when noise in the detection system is much greater than spin-

projection noise.
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Experimentally, we have achieved amplification of spin precession due to a small applied

field gradient by a factor of 9.5 relative to the non-interacting case in the large tip angle

regime. Considerable improvement is expected with further optimization of high order

gradients. In the small tip angle regime we have realized an extension of the free induction

decay by up to a factor of 100 compared to the non-interacting case. We discuss how these

two different regimes can be used in a search for an EDM in liquid xenon and analyze the

expected sources of systematic effects.
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Chapter 1

Introduction

1.1 Overview

The motivation for this work is to conduct a search for a T , P odd permanent electric

dipole moment (EDM) in liquid 129Xe. By the CPT theorem a non-zero EDM also violates

invariance under CP , the combined symmetry of charge and parity. The standard model

predicts EDMs many orders of magnitude beyond current experimental limits, and hence

a non-zero EDM is an unambiguous signal for new physics, the interpretation of which is

unclouded by difficult standard model calculations.

In the proposed experiment, two SQUID (superconducting quantum interference device)

magnetometers will detect the precession of the spins in a sample with a common magnetic

field divided into two regions of opposing electric fields, as illustrated in Fig. 1.1. The

signature of an EDM would be a shift in the Larmor precession frequencies of spin polarized

nuclei in regions of opposing electric field. Since the SQUID magnetometers preferentially

detect the magnetization in either half of the cell, this would show up as a growing phase

difference between the two SQUID signals.

To perform such a search, a thorough understanding of the dynamics of a hyperpolarized

liquid in a low magnetic field environment in the presence of long range magnetic dipolar

interactions is crucial. We find that there are two dramatically distinct regimes depending

1
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Figure 1.1: Schematic of the proposed experiment. Two SQUID magnetometers detect the
oscillating magnetic field generated by the precessing spins.

on the tip angle of the magnetization with respect to the holding field. For small tip angles

we find that the system is remarkably insensitive to perturbations such as applied field

gradients or initial magnetization inhomogeneities, an effect known as spectral clustering.

In the large tip angle regime, the system develops a dynamical instability and gradients

of the magnetization grow exponentially in response to a very small linear applied field

gradient.

In the context of a search for an EDM, the latter behavior is very exciting because gra-

dients of the magnetization would be amplified exponentially in response to the interaction

of a non-zero EDM with an applied electric field gradient. Rather than having to wait a

long time for spin precession due to the electric field to grow large enough to be measured

by the SQUIDs, dipolar interactions amplify it exponentially, raising it above the noise level

of the SQUID detectors. The possibility of performing a search for an EDM in the small

tip angle regime is also discussed.
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This work is organized as follows: This chapter presents background on the physics

behind atomic electric dipole moments, the experimental techniques we employ and sum-

marizes the most striking features of long range dipolar interactions. Chapter 2 discusses

in depth our particular experimental setup. Chapter 3 presents a detailed discussion of

the methods we developed to model the aforementioned non-linear effects arising from long

range dipolar interactions. We compare our experimental results to theory in Chapter 4. In

Chapter 5 we discuss two different schemes for performing an EDM experiment and their

expected sensitivity. We also estimate the expected sources of systematic effects. Finally,

in Chapter 6 we conclude by summarizing our findings.

1.2 Motivating the search for an Electric Dipole Moment

The search for a permanent electric dipole moment, proportional to the spin vector of a

spin 1/2 particle or nucleus,

d = d
s
s
, (1.1)

has long been hailed as an ideal search for new physics. The possibility of a non-zero

permanent electric dipole moment of a spin 1/2 particle was first proposed by Ramsey

and Purcell [1]. Prior to this work, permanent electric dipole moments were generally

assumed to be zero on the basis that the laws of physics should be invariant under parity.

It is straightforward to show that Eq. 1.1 violates parity: the electric dipole operator

d =
∫

rρ(r)d3r is odd under parity, while the spin is an axial vector, even under parity.

An experimental search for a neutron EDM was reported in Ref. [2], setting a limit of

dn < 5× 10−20 e−cm. The experimental limit on the neutron EDM has been improved by

a spectacular 6 orders of magnitude since this first measurement. The current limit on the

neutron EDM and several other systems of interest are summarized in Table 1.1.

Parity non-conservation, first observed through β decay of the 60Co nucleus [7] and

later in a number of other atomic systems, was instrumental in developing the vector-axial

vector nature of weak interactions. Following the observation of parity violation, Landau[8]

pointed out that a permanent electric dipole moment also violates time reversal invariance,
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System Limit (e-cm) Reference
199Hg 2× 10−28 [3]
129Xe 4× 10−27 [4]

neutron 6.3× 10−26 [5]
electron 1.6× 10−27 [6]

Table 1.1: Current best limits on the electric dipole moments of 199Hg, 129Xe, neutron and
the electron.

at the time thought to be a good symmetry. The discovery of CP violation (the combined

symmetries of charge and parity) in the K0 system[9] brought about renewed interest in the

search for a permanent EDM, because a violation of CP implies a violation of time reversal

symmetry by the CPT theorem.

The argument that an EDM violates time reversal symmetry is similar to that given

above for parity. The electric dipole moment operator d is even under T while the spin s is

odd under T . If there were another degree of freedom so that d could be either parallel or

antiparallel to the spin s the existence of a non-zero EDM would not violate T . However

there is considerable evidence that no such degeneracy exists. For example, the atomic and

nuclear shell models clearly exclude such a possibility for electrons and nucleons. Hence we

conclude the T violating nature of Eq. 1.1 for d 6= 0. For a more general discussion of time

reversal invariance, the reader is urged to consult Ref. [10].

CP violation in the K0 meson is well accounted for in the standard model through a

complex phase in the CKM matrix. Standard model physics however predicts very small

electric dipole moments, far beyond current experimental sensitivity. Exact calculations of

EDMs in the standard model are difficult because contributions to EDMs occur at the three

loop level. Based on dimensional analysis, estimates for the electron and neutron EDM in

the standard model are de = 10−40 e-cm and dn = 10−32−10−31 e-cm[11] respectively. Thus

the search for a permanent electric dipole moment is still hailed as an unambiguous test of

CP violation beyond the standard model.

The search for CP violation outside the standard model is phenomenologically motivated

by the observed baryon asymmetry of the universe. We look around and all we see is

matter, no antimatter. A good thing too, as they have a tendency to annihilate each
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other on contact! To account for this, baryogenesis requires (1) a departure from thermal

equilibrium (2) a baryon number nonconserving process and (3) CP violation.[12] The

standard model possesses all three features, however most of the literature indicates that

CP violation arising from a single phase in the CKM matrix is insufficient to account for

the observed baryon asymmetry of our Universe [13, 14, 15]. Recently, however, there

has been a suggestion that the CKM phase is sufficient to account for baryogenesis if the

Yukawa couplings between quarks and the Higgs were large prior to nucleosynthesis[16].

For a comprehensive review of baryogenisis, see Ref. [17].

While there are a large number of possible extensions to the standard model that vio-

late CP and naturally generate large electric dipole moments, the most cherished among

theorists is supersymmetry, a symmetry between bosonic and fermionic degrees of freedom.

For every fermion, there is a supersymmetric scaler partner the “sfermion”, and for every

gauge boson there is a ferimonic partner, the “gaugino.” Supersymmetry was originally

motivated to explain the mass spectrum of the known particles. From measurements of

the properties of the electroweak interactions, it is known that the Higgs mass must be on

the order of m≈
H100GeV. However coupling between the Higgs and the fermions generate

corrections to the mass of the Higgs. The largest of these is due to coupling with the top

quark, depending quadratically on the cutoff momentum beyond which point new physics

such as string theory enters into the problem. Assuming the cutoff is at the Planck scale,

for the top quark these corrections can be up to 30 orders of magnitude larger than the

desired value m2
H ≈ −(100GeV)2. This requires a great deal of fine tuning of the bare

Higgs mass. Since all the quarks and leptons, as well as the electroweak gauge bosons Z0

and W± owe their mass to coupling with the Higgs, they become sensitive to the cutoff

scale. Conveniently, the contributions to the Higgs mass from the fermions can be exactly

cancelled by similar contributions from their superpartners. Supersymmetry also provides

a mechanism for unifying the electroweak and strong interactions, as well as a candidate for

dark matter (the lightest supersymmetric partner) and is required by string theory. Despite

a great deal of effort, there has been no evidence of SUSY at particle accelerators and cur-
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rent limits on EDMs place serious constraints on the minimally supersymmetric standard

model (MSSM). Weinberg discusses supersymmetry in detail in Ref. [18]

1.3 General features of EDM experiments

The Hamiltonian of a spin 1/2 particle possessing both electric and magnetic dipole moments

in a combined electric and magnetic field is

H = −
(

µ
s
s
·B + d

s
s
·E

)
. (1.2)

Thus, the atoms precess around the combined electric and magnetic fields (assuming both

the fields are either parallel or antiparallel to each other) with a frequency

hν = 2µB ± 2dE (1.3)

In principle, all that is required to search for an electric dipole moment is to look for a

shift in the Larmor precession frequency associated with the application of the electric

field. Comagnetometers are typically used to distinguish between frequency shifts due to

fluctuations in the magnetic field and a true EDM signal.

Electric dipole moment experiments are naturally divided into three categories: the

search for a neutron EDM, electron EDM or the EDM of a diamagnetic atom. In the

MSSM, the EDM of each of these particles results from a linear combination of several

different CP violating phases, and hence, to fully constrain the MSSM it is important to

perform experiments in each of these systems.

Limits on the neutron EDM place constraints on CP violation primarily in the hadronic

sector. In particular, the neutron EDM can arise from either the CP violating θ term in

the QCD lagrangian, or directly from the chromoelectric dipole moments of the quarks (a

chromoelectric dipole moment is similar to a regular EDM, though instead of interacting

with an electromagnetic field it interacts with the color field).

Experiments in paramagnetic atoms with an unpaired electron directly yield information

about the EDM of the electron. From a theoretical standpoint, the EDM of the electron
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is an attractive quantity to work with because there are no QCD uncertainties involved in

constraining the minimally supersymmetric standard model. In experiments with param-

agnetic atoms, it is favorable to use heavy atoms because relativistic effects enhance the

atomic EDM relative to the bare electron EDM and for thallium this enhancement factor

is approximately 600. Paramagnetic atoms also receive an EDM contribution from a hy-

pothetical CP violating electron-nucleon interaction which mixes states of opposite parity.

Such an interaction is important in certain multi-Higgs theories.

Heavy polar molecules can also be used to perform a search for an electron EDM,

and have the advantage that the internal electric field of the molecule can be quite large,

on the order of 109 V/cm. Hence, a small externally applied electric field can be used

to polarize the molecules, reducing systematic effects such as leakage currents, while the

electrons feel a very large molecular electric field. Dave DeMille and coworkers are currently

conducting such an experiment in lead oxide with an expected sensitivity on the order of

10−29 − 10−30 ecm.[19]

Diamagnetic atoms are sensitive to a number of sources of CP violation. The biggest

contribution to the EDM in diamagnetic atoms occurs in the hadronic sector from either

the θ term in the QCD lagrangian or the chromo-electric dipole moments of the quarks.

Falk et al. [20] recently pointed out that because of various computational and theoretical

uncertainties, the extraction of limits on CP violating phases is more reliable in diamagnetic

atoms than in the neutron. Like paramagnetic atoms, diamagnetic atoms also receive

an EDM contribution from a semi-leptonic weak current. Finally, despite the fact that

diamagnetic atoms have a closed electron shell, the bare EDM of an electron can also

induce an atomic EDM by mixing states of opposite parity. This effect is fairly small since

it occurs at 2nd order in perturbation theory, in conjunction with the magnetic field of the

nucleus.

From the viewpoint of simply placing the tightest limit on the electric dipole moment of

anything, experiments in diamagnetic atoms are attractive because the gyromagnetic ratios

are roughly a factor of 2000 smaller than for paramagnetic atoms, and therefore, noise due to
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magnetic field fluctuations is reduced considerably. Despite the greatly reduced sensitivity

to the electron EDM, the spectacular sensitivity of the mercury experiment allows it to

approach the limit of the more direct measurement in thallium[6].

1.4 Mechanisms generating an Atomic EDM

Atomic EDMs can be induced by several mechanisms[21]: 1) A P , T odd electron-nucleon

interaction. 2) A P , T odd nuclear moment arising from either an EDM of a valence nucleon

or a CP odd nucleon-nucleon interaction. 3) Intrinsic EDM of an electron. There is an

extensive body of literature on this subject, and hence I will only give a very brief review

here, focussing on mechanisms specific to diamagnetic atoms. The reader is urged to consult

Refs. [11] and [21] for a more complete reviews. After discussing these model independent

mechanisms for generating an atomic EDM, we briefly discuss several of the more popular

models of CP violation beyond the standard model.

1.4.1 Electron-Nucleon interaction

A CP violating interaction between the electrons and nucleons generates an atomic EDM

by mixing states of opposite parity. In general there are three four-fermion operators that

violate P and T , [11]

H = CSP
GF√

2
N̄Nēiγ5e + CT

GF√
2

1
2
εµνκλN̄σµνNēσκλe + CPS

GF√
2
N̄iγ5Nēe (1.4)

where GF is the Fermi constant. While Eq. 1.4 assumes the interaction is between a nucleon

and an electron, the same form also applies to CP violating nucleon-nucleon interactions

and we will address this latter contribution in the next section. The first term in Eq. 1.4

is a scalar-pseudoscalar interaction, the second is a tensor interaction and the third is a

pseudoscalar-scalar interaction. In the approximation that the nucleus is infinitely massive,

the pseudoscalar-scalar interaction does not contribute. For paramagnetic atoms with non-

zero ground state electronic angular momentum, either of the scalar-pseudoscalar or tensor

terms can mix states of opposite parity to induce an atomic EDM. For diamagnetic atoms
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with zero electron angular momentum, the tensor term mixes states of opposite parity,

directly inducing an atomic EDM. Using the Hartree-Fock method to calculate the atomic

wavefunctions, Ref. [22] showed that the atomic EDM induced by the tensor term is

dXe = CT × 5.2× 10−21 e−cm (1.5)

dHg = CT × 2.0× 10−20 e−cm. (1.6)

The scalar-pseudoscalar term along with the hyperfine interaction generates an atomic

EDM at second order in perturbation theory, reducing the sensitivity to this interaction

in diamagnetic atoms. The result of the Hartree-Fock calculation of the induced atomic

EDM is

dXe = CSP × 5.6× 10−23 e−cm (1.7)

dHg = CSP × 5.9× 10−22 e−cm. (1.8)

[21, 22] The current limit on the mercury EDM [3] sets the tightest constraints on these

parameters CT < 1 × 10−8 and CSP < 3 × 10−7. Thus, the sensitivity of a measurement

of the 129Xe EDM must exceed the sensitivity of the 199Hg measurement by a factor of

4 and 10 respectively to improve on the current limits of CT and CSP respectively. The

effective interaction in Eq. 1.4 can be generated by the exchange of a Higgs boson in certain

multi-Higgs models.

1.4.2 Hadronic CP violation

The best limits on CP violation in the hadronic sector can be derived from limits on diamag-

netic atoms, and hence we will devote considerable attention to this problem. Unfortunately,

to access the CP violating phases in physics beyond the standard model requires a complex

series of calculations. Naively, one would expect that because the diamagnetic atoms of in-

terest, 199Hg and 129Xe, have nuclear spin I = 1/2, an atomic EDM simply corresponds to

the EDM of the nucleus. However this is not the case, as was first pointed out by Schiff.[27]

Consider an atom with a nucleus of negligible size and a nonzero electric dipole moment
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in an externally applied electric field. In a stationary state, the electrons must rearrange

themselves so that the total electric field at the nucleus must be zero to prevent the nucleus

from flying off into the middle of nowhere. Hence it is not possible to directly measure

the electric dipole moment of the nucleus. Fortunately, finite size effects prevent complete

shielding of the nucleus from the electric field. To illustrate, suppose a valence neutron had

a nonzero electric dipole moment. The electric field is zero at the center of charge of the

nucleus, however, the electric field need not be zero at the valence neutron. Taking into

account the screening effects of the electrons, the first nonzero CP odd nuclear moment

that can generate an atomic EDM is known as the Schiff moment, which is essentially a

difference in the distribution of charge and electric dipole moment in the nucleus. We first

discuss at some length the Schiff moment and its contribution to atomic EDMs and then

address how the Schiff moment arises from the effective nucleon-nucleon interaction.

Schiff moment and atomic EDMs

The electrostatic potential produced by the nuclear charge density is [29]

φ(R) =
∫

eρ(r)
| R− r |d

3r +
1
Z

(d · ∇)
∫

ρ(r)
| R− r |d

3r (1.9)

where ρ(r) is the nuclear charge density, normalized so that
∫

ρ(r)d3r = Z and d =
∫

erρ(r)d3r is the electric dipole moment of the nucleus. The first term here is the usual

electrostatic potential, the second is the result of screening by the electron cloud. There

are several typographical errors in the derivation given by Spevak et al. [29]. To clarify, we

go through a complete derivation here.

Ignoring spin-spin and spin-orbit coupling, the Hamiltonian of an atom in an externally

applied electric field is

H =
∑

i

[Ki − eφ0(Ri) + eRi ·E0] +
∑

j>k

e2

| Rj −Rk | − d ·E0 (1.10)

where Ki and Ri are the kinetic energy and coordinate of the ith electron and

φ0(Ri) = e

∫
ρ(r)

| Ri − r |d
3r (1.11)



11

is the usual electrostatic nuclear potential. The third term in brackets in Eq. 1.10 is the

interaction −pel · H of the electric dipole moment of the atomic electrons (note that we

are not concerned with the intrinsic dipole moment of the electron here) with the applied

electric field. Since the electron charge is negative pel = −eRi, yielding the correct sign in

Eq. 1.10.

With insight from Spevak et al. we add to the Hamiltonian an auxiliary potential

V = d ·E0 − 1
Z

d ·
∑

i

∇iφ0(Ri). (1.12)

The addition of V to the Hamiltonian leaves the energy levels unchanged, because as we

now show, 〈V 〉 = 0. First note that

i

h̄

[∑

i

pi,H

]
= −e

∑

i

∇iφ0(Ri) + ZeE0 (1.13)

where we have used the well know relation [pi, f(R)] = −ih̄∇f(R) and the fact that, by

symmetry the total momentum operator commutes with the electron interaction term. Also

note that 〈n | [∑i pi,H] | n〉 = En〈n |
∑

i pi | n〉−En〈n |
∑

i pi | n〉 = 0, and hence, making

use of Eq. 1.13 〈∑

i

∇iφ0(Ri)

〉
= ZE0. (1.14)

Finally, we arrive at

〈V 〉 = d ·E0 − 1
Z

d · ZE0 = 0. (1.15)

Thus the addition of V to the Hamiltonian leaves the energy levels unchanged. The modified

Hamiltonian is then

H̃ = H + V =
∑

i

[Ki − eφ(Ri) + eRiE0] +
∑

j>k

e2

| Rj −Rk | (1.16)

where φ(R) is given by Eq. 1.9. Note that H̃ does not directly contain the interaction

d ·E0.

Focusing on the T , P odd terms in a multipole expansion of φ(R), we see that the dipole

term of the first is cancelled by the monopole term of the second

−
∫

e

(
r∇ 1

R

)
ρ(r)d3r +

1
Z

d · ∇ 1
R

∫
ρ(r)d3r = 0. (1.17)
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The first nonzero T , P odd term can be written in terms of a vector S and a rank 3 tensor

after separation of the trace

φ(3) = φ
(3)
Schiff + φ

(3)
octupole

φ
(3)
Schiff = 4πS∇δ(R) (1.18)

φ
(3)
octupole = −1

6
Qαβγ∇α∇β∇γ

1
R

where

S =
1
10

(∫
eρ(r)r2d3r− 5

3
d

1
Z

∫
ρ(r)r2d3r

)
(1.19)

is the Schiff moment and Qαβγ is the electric octupole moment. Note that here we adopt the

convention used by Flambaum, Dzuba and coworkers with a factor of 4π appearing explicitly

in the definition of φSchiff . Some other authors absorb this in the definition of the Schiff

moment. The Schiff moment can be thought of as a charge distribution that produces a

constant electric field inside the nucleus.[30] When electrons penetrate the nucleus, states

of opposite parity are mixed, generating an atomic EDM. Recently there has been some

interest in the nuclear electric octupole moment for its potential to enhance the nuclear

Schiff moment [29, 31, 32], in heavier nuclei such as 223,225Ra or 223Rn. In Ref. [32] the

enhancement factor is estimated to be on the order of 102−103 compared to 199Hg or 129Xe.

The electric dipole moment of the atom is

Dz = −e〈ψ̃ | rz | ψ̃〉 (1.20)

where ψ̃ is the atomic wave function perturbed by the potential 1.18

| ψ̃〉 =| k1〉+
∑

k2

| k2〉〈k1 | φ(3) | k2〉
Ek1 −Ek2

. (1.21)

Here | k1〉 is the unperturbed atomic ground state and {| k2〉} is the set of opposite parity

states. Thus, to lowest order

Dz = −2e
∑

k2

〈k1 | rz | k2〉〈k1 | −eφ(3) | k2〉
Ek1 − Ek2

. (1.22)

The nuclear electric octupole cannot directly generate an atomic EDM because of simple

selection rules. The triangle rule for addition of angular momenta dictates that 〈k1 | rz | k2〉
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Atom EDM (units are 10−17[S/e-fm3]e cm)
Xe 0.38
Rn 3.3
Hg -2.8
Ra -8.5
Pu -11

Table 1.2: Values of atomic EDMs induced by the nuclear Schiff moment for a variety of
atoms. From Ref. [34]

or 〈k1 | φ
(3)
Schiff | k2〉 can only have nonzero values if | J1 − J2 |≤ 1 ≤ J1 + J2 while

〈k1 | φ(3)
octupole | k2〉 can be nonzero if | J1 − J2 |≤ 3 ≤ J1 + J2. Hence only the p-orbitals get

mixed with the J = 0 ground state by the Schiff moment, and the octupole moment cannot

contribute to mixing of the J = 0 state with any other states. A similar argument holds

for the T , P violating magnetic quadrupole moment, preventing it from contributing to an

atomic electric dipole moment.

Dzuba et. al. [34] carried out a series of detailed Hartree-Fock calculations to evaluate

Eq. 1.22 for a variety of atoms. The results are summarized in Table 1.2. Generally the

heavier atoms have larger electric dipole moments because relativistic effects enhance the

wavefunction near the origin.

From the Schiff moment to nucleon-nucleon interactions

The Schiff moment can be generated by either an intrinsic dipole moment of a valence

nucleon or by CP odd interactions between nucleons. It was shown by Sushkov et al.

[33] that the contribution to the Schiff moment from the nucleon-nucleon interaction is

approximately a factor of 60 larger than the contribution from a valence nucleon and hence

we focus on the nucleon-nucleon interaction.

In the non-relativistic limit the potential between nucleons can be treated as a contact

interaction [33]

W =
G√
2

1
2mp

(ηabσa − ηbaσb · ∇aδ
3(ra − rb)

+η′ab[σa × σb]{(pa − pb), δ3(ra − rb)}). (1.23)
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129Xe 131Xe 199Hg 201Hg 203,205Tl
1.75ηnp -2.6ηnp -1.4ηnp 2.4ηnp 1.2ηpp − 1.4ηpn

Table 1.3: Values of the nuclear Schiff moment S/(e−fm3)×108 induced by CP odd nucleon-
nucleon coupling. These calculations were reported in Ref. [35] and used the nuclear shell
model and Woods-Saxon potential.

Here mp is the mass of the proton. The above potential generates T, P odd nuclear mo-

ments in the usual fashion, mixing states of opposite parity with the nuclear ground state.

Flambaum et al. [35] report the results of calculations of the nuclear Schiff moment in-

duced by the interaction 1.23 in the nuclear shell model using wavefunctions and Greens

functions for the standard Woods-Saxon potential U(r) = −V
1+exp (r−R)/a where V = 52 MeV,

R = 1.25A1/3 fm is the nuclear radius and a = 0.52 fm is the distance over which the nu-

clear density falls off. Contributions to the Schiff moment from virtual excitations of paired

nucleons are comparable to the contribution from excited states of the valence nucleon. The

results of these calculations are summarized in Table 1.3. The first four atoms are primarily

sensitive to ηnp because the valence nucleon is a neutron and generates excitations of the

internal protons. From the values in Tables 1.2 and 1.3 we see that to improve on limits of

CP violation in the hadronic sector, the sensitivity of an experiment in xenon must exceed

that of mercury by a factor of approximately 6.

The potential in Eq. 1.23 is an effective interaction that is dominated by the exchange

of a pion because it is the lightest of the mesons, generating the longest range interactions.

The effective interaction constant ηnp written in terms of the CP violating nucleon-pion

coupling constant ḡπNN is

ηnp =
√

2
GF

ḡπNNg

m2
π

(1.24)

where g is the strong coupling constant and mπ is the pion mass. The CP odd coupling

constant ḡπNN can arise from either a CP odd term in the QCD lagrangian or from the

chromo-electric dipole moments of the quarks that appear in supersymmetric theories. We

will briefly address both of these contributions shortly.
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1.4.3 Electron EDM

An atomic EDM in diamagnetic atoms can also be generated by the intrinsic EDM of

the electron, despite the fact that these atoms zero electronic angular momentum. Two

effects lead to a contribution from the electron EDM to the atomic EDM in high order

perturbation theory: the interaction of the electron EDM with the magnetic field of the

nucleus and the interaction of the electron EDM with the coulomb field of the nucleus

in conjunction with the hyperfine interaction.[11] A detailed Hartree-Fock calculation [26]

reports that an electron EDM would induce an atomic EDM in xenon dXe = −0.8×10−3de.

Hence, to improve on the electron EDM measurement performed in thallium and reported

in Ref. [6], a measurement in xenon will require a sensitivity at the level of ∼ 10−30 e-cm.

1.4.4 Models of CP violation

Our discussion up till now has focused on model independent parameters that are valid for

any model of CP violation. A detailed discussion of possible CP violating extensions to

the standard model is beyond the scope of this work, so we will briefly survey several of the

more popular theories. A more thorough review can be found in Ref. [23].

Strong CP problem

In quantum chromodynamics, there is a CP violating term in the Lagrangian

Lθ = −θQCD
αs

8π
G̃a

µνG
a
µν . (1.25)

This interaction gives rise to the CP odd pion-nucleon coupling. In Ref. [36] it was shown

that ḡπNN ≈ −0.027θQCD. The limit on the mercury EDM [3] currently sets the tightest

constraints on this phase, θQCD < 1.5× 10−10.

The smallness of this parameter is of great concern to theorists when a priori it is of

order unity. One possible solution to this problem is the introduction of the Peccei-Quinn

symmetry [37], named after its authors, which would render the θQCD term harmless. The

breaking of the PQ symmetry introduces a new, near massless pseudoscalar particle known
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Figure 1.2: Generic contribution to the EDM of fermions in the minimally supersymmetric
standard model.[23]

as the axion.[38, 39] Thus far there has been no experimental evidence for the existence of

the axion.

Minimally supersymmetric standard model

The CP odd nucleon-nucleon coupling constant arises in the MSSM due to non-zero quark

chromo-EDMs, resulting in [20]

ηnp =
1

4πGF

3gπppm
2
0

fπm2
π

(d̃d − d̃u − 0.012d̃s) (1.26)

where gπpp is the CP conserving vertex in the exchange of the pion and fπ is the pion form

factor. Note that this differs by a factor of 4π from the expression derived in Ref. [20]

because those authors absorb a factor of 4π into the definition of the Schiff moment. The

mercury EDM measurement [3] sets a limit

e | d̃d − d̃u − 0.012d̃s |< 7× 10−27ecm (1.27)

EDMs of fermions arise from the exchange of a supersymmetric partner at the one loop

level, as shown in Fig. 1.2 The chromo-EDMs of quarks couple to the color field rather than

the electromagnetic, so the external photon line is replaced with a gluon. In the MSSM,

there are two phases that arise in the breaking of supersymmetry, θA and θµ.[20] Diagrams

such as that shown in Fig. 1.2 lead to chromo-EDMs of the form

d̃q ∝ mq

M2
SUSY

sinφ. (1.28)
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Figure 1.3: Limits on the two CP violating phases in the MSSM, assuming a supersymmetric
mass scale of 500GeV. Calculations performed by Maxim Pospelov, updated from work
published in Ref [20] to include the recent limits on the mercury EDM.

Limits on d(199Hg), de and dn place severe constraints on the two phases θA and θµ. Fig.

1.3 shows calculations, updated by Maxim Pospelov from Ref [20], to include the most

recent results in mercury assuming a supersymmetric mass scale of 500 GeV. We see that

for this scale, the phases must be constrained to O(10−2), requiring significant fine tuning,

when a priori these phases are of order unity. To reconcile SUSY with existing EDM limits

requires a great deal of fine tuning of the phases, or an increase of the supersymmetric

masses. However, increasing the mass of the supersymmetric partners much beyond the

TeV level makes SUSY less viable as a mechanism for suppressing the gauge hierarchy

problem discussed earlier. Another possible solution recently considered is the suppression

of electric dipole moments due to cancellation between various contributions.[41] Taking

into account of only the constraints from the neutron and electron allow cancellations in

certain regions of parameter space, however when the results of mercury are taken into

account this idea has been largely disproved by the work of Falk et al.
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1.5 Why liquid Xe?

Given that 129Xe is less sensitive to CP violating interactions than 199Hg, why is it desirable

to perform a search for an EDM in the former system? For N uncorrelated atoms, the

fundamental limit to the precision with which one can measure the precession frequency is

δω = 1/
√

NT2τ (1.29)

where τ is the total measurement time, assumed to be long compared to the transverse

relaxtion time T2. Beyond this limit, quantum fluctuations will influence the outcome of a

measurement. Thus, assuming that the spins can be measured very efficiently, a figure of

merit for an EDM experiment is

δd =
h̄

4E
√

NT2τ
(1.30)

where E is the electric field strength, T2 is the transverse relaxation time and τ is the

measurement time. Liquid xenon has a high electric field breakdown strength (∼ 400

kV/cm)[44], large number density (∼ 1022 cm−3), and a long transverse relaxation time

∼ 1300 s (our measurements of T2 are discussed below), dominated by the spin rotation

interaction [45, 46] making it a near ideal medium in which to search for an EDM. Inserting

these numbers into Eq. 1.30 we see that spin-projection noise limits a measurement of an

EDM in this system to ≈ 10−36 e cm for one day of integration, far beyond any current

experimental limit on EDMs.

While the shot noise limit is a useful figure of merit for determining the best possible

performance of an experiment, it is not really representative of the expected sensitivity.

Issues such as magnetic field noise and the sensitivity of the detection system will limit the

performance well before quantum fluctuations. Large quantities of hyperpolarized xenon

can be readily produced using the method of spin exchange optical pumping (see below

and Ref. [47]), creating large magnetic fields that can be efficiently detected with SQUID

magnetometers. The magnetic field from a 1 cm diameter sphere filled with 5% polarized

xenon in natural abundance a distance 1.5 cm from the center of the cell is about 200 µG.

Commercially available low Tc SQUID magnetometers can achieve a sensitivities at the
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level of 2 × 10−5 µG/
√

Hz, yielding signal to noise ratio SNR = 107
√

Hz. Assuming that

a measurement of the spins is made for the duration of their coherence time T2, and then

repeated for a total measurement time τ , the precession frequency can be determined with

an accuracy

δν =
1

T2SNR
√

τ
. (1.31)

Thus, neglecting other sources of noise such as drifts in the ambient magnetic fields, in

principle it is possible resolve frequency shifts at the level of δν = 2.6 × 10−13 Hz in one

day of integration. Relating electric dipole moments to frequency shifts via Eq. 1.2 we find

δd =
hδν

2E
= 2.6× 10−32 e cm. (1.32)

Hence, despite the slightly reduced sensitivity to sources of CP violation, it is expected that

the improved precision will set new limits on CP violating parameters. This simple analysis

ignores many practical issues such as the magnetic field noise created by the magnetic shields

and more importantly non-linear effects due to long range dipolar interactions.

It should be noted that there have been several prior EDM experiments in xenon. The

first, performed at the University of Washington [43] used an optically pumped rubidium

vapor to detect the precession of the xenon atoms and set a limit on dXe = (−0.3± 1.1)×
10−26 e−cm. The second, performed at the University of Michigan, set a new limit dXe =

(−0.7 ± 3.3(stat) ± 0.1(sys)) × 10−27 e−cm using a spin exchange pumped 3He and 129Xe

comagnetometer.[4].

1.6 Spin-exchange optical pumping

To achieve the high nuclear polarization mentioned in the previous section, we use the

standard method of spin exchange optical pumping, where angular momentum is trans-

ferred from an optically pumped alkali vapor to the nuclei of a noble gas via spin-exchange

collisions. Hyperpolarized noble gases produced in this fashion have found a wide range

of applications, from studies of the neutron structure function [48], medical imaging of

lungs[49], to a variety of other tests of fundamental symmetries [50, 51, 52]. The physics
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Figure 1.4: Optical pumping of the ground state of an alkali metal atomic vapor.

involved in this process has been discussed in detail in the literature, so I will merely give

a brief overview. A more complete review may be found in Ref. [53].

Optical pumping of the alkali vapor is accomplished by illuminating the cell with cir-

cularly polarized light tuned to the wavelength of a transition from the ground state to an

excited state of the alkali atom. As illustrated in Fig. 1.4, selection rules dictate that only

transitions with ∆m = +1 are allowed for right circularly polarized light [54]. Because high

power lasers are commercially available in the region around the 794.7 nm D1 transition of

Rb, Rb is a common choice for many spin exchange optical pumping experiments.

If an atom in the excited state were to make a transition to the ground state by emitting

a photon, the stray photon could be absorbed by an atom already in the optically pumped

state, a problem known as radiation trapping. [55] To avoid this problem, a small amount

of N2 is generally included in the gas mixture to collisionally quench the excited state. For

the production of large amounts of polarized xenon, as in our application, it is typical to

include a high pressure buffer gas such as 4He or N2 to pressure broaden the absorption

line, facilitating the absorption of the broadband emission spectrum of high power diode

lasers. Given these conditions, absorption of the circularly polarized light optically pumps

one of the ground state zeeman sublevels, as in Fig. 1.4.
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Figure 1.5: Processes through which spin angular momentum is transferred from alkali
metal atoms to noble gas nuclei (Figure adopted from Ref [53]). A) Spin exchange through
formation of a van der Walls molecule by interacting with a third body. Third body need
not necessarily be N2. B) Binary spin exchange, dominant for the high pressure conditions
suitable for high volume production of polarized xenon gas.

The mean photon absorption rate per atom is

〈δΓ〉 = (1− 2〈Sz〉)Rp (1.33)

where Rp is the absorption rate and depends on the spectral profile of the light and the line

shape of the atomic transition. Assuming that there is rapid collisional mixing between the

excited state Zeeman sublevels, on average, each atom has -1/2 unit of angular momentum

before pumping and 0 units of angular momentum afterwards, as illustrated in Fig. 1.4.

Hence the total angular momentum of the atom grows as

d〈Fz〉
dt

= Rp(1/2− 〈Sz〉). (1.34)

Spin exchange between the alkali-metal vapor and the noble-gas atom during a collision

can be described by the perturbation,

V1(R) = γ(R)N · S + Ab(R)Ib · S (1.35)
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where R is the internuclear separation. The first term, called the spin-orbit or spin-rotation

interaction, causes relaxation due to exchange of alkali metal electron spin S with relative

orbital angular momentum N between alkali and noble gas atoms. The second term is

responsible for exchange of angular momentum between alkali electron spin and noble gas

nuclear spin Ib. As illustrated in Fig. 1.5, there are two mechanisms that can generate spin

exchange between alkali-metal and noble-gas atoms: binary collisions and the formation of

van der Walls molecules via the interaction with a third body. However, at high pressures

suitable for absorbing intense, broadband, circularly polarized laser light, the contribution

to spin exchange through formation of van der Walls molecules is suppressed due to rapid

break up of the molecules with buffer gas atoms [56]. Spin-exchange and relaxation rates

Γ = nσv̄ can be calculated from first order time-dependent perturbation theory, where n is

the alkali number density, σ is the cross section and v̄ is the average thermal velocity of the

atoms.[57] The results of these calculations are summarized in Fig. 1.6.

Assuming an alkali-metal spin temperature distribution [60] and noble gas nuclear spin

of 1/2 as in 3He or 129Xe the evolution of angular momentum as a result of collisions can

be described by

d〈Fz〉
dt

= −Γa(γ)〈Sz〉 − Γa(Ab)[〈Sz〉 − 〈Ibz〉] (1.36)

d〈Ibz〉
dt

= Γb(Ab)[〈Sz〉 − 〈Ibz〉]− Γ̄〈Ibz〉 (1.37)

where the alkali-metal spin relaxation rate is Γa(γ) = [A]v̄σSD, the spin exchange rate is

Γb(Ab) = [A]v̄σSE . Γ̄ is the noble gas spin relaxation rate which includes relaxation due

to spin conserving and nonconserving collisions with the alkali-metal vapor as well as other

sources of relaxation such as collisions with the cell walls.

For noble gas atoms with nuclear spin Ib = 1/2, the efficiency of the transfer of photonic

angular momentum to nuclear spin is given by [61]

η =
Γa(Ab)

2(Γ̄ + Γa(Ab))
(1.38)

where Γ̄ represents the sum of all alkali metal relaxation processes. Based on the values of

cross sections given in Fig. 1.6, the efficiency ranges from η = 0.04 for Rb-Xe to η = 0.38
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Figure 1.6: Summary of spin-exchange and spin-destruction cross sections for alkali-metal
noble-gas atom collisions, figure adopted from Ref. [53].

for K-He.

1.7 SQUID magnetometers

Until the recent development of spin-exchange relaxation free atomic magnetometry[62],

SQUID magnetometers have been unparalleled in sensitivity to small magnetic fields. In

conventional NMR experiments, the signal is proportional to B2, where one power of B

comes from the fact that the polarization is proportional to the magnetic field, and the

second comes from the fact that for inductive detection, the signal is proportional to the

time derivative of the flux through the pickup coil. SQUID magnetometers, in contrast,

are sensitive to the flux Φ through a pickup loop, rather than dΦ/dt, eliminating the latter

penalty associated with low field NMR (using hyperpolarized xenon eliminates the former

penalty). Typical low Tc SQUID magnetometers achieve sensitivities on the order of 1 −
2×10−5 µG/

√
Hz. High Tc SQUIDs are about an order of magnitude less sensitive. For the

work discussed here, we use two high Tc SQUID magnetometers manufactured by Tristan

Technologies.

A schematic of a typical SQUID magnetometer is shown in Fig. 1.7 a). The flux through

a superconducting loop is conserved, regardless of a change in the external field. Hence a
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Figure 1.7: a) Schematic of a SQUID magnetometer, showing SQUID, pickup coil, feed-
back/modulation coil and flux locked loop. b) Voltage across SQUID loop as a function of
flux. b)

change in the external field cutting the pickup coil induces a supercurrent to flow through

the pickup and input coil, which is inductively coupled to the SQUID loop. In an idealized

SQUID, the critical current through the Josephson junctions is an oscillating function of the

flux through the SQUID loop. In practical devices, the SQUID loop is biased with a small

DC current, in which case the voltage across the loop is an approximately sinusoidal function

of the flux through the loop with period of one flux quantum Φ0 = hc/2e, as shown Fig.

1.7b). To achieve a linear response to the magnetic field, most DC SQUID magnetometers

operate in feedback mode. A small RF current is driven through the feedback coil located

on top of the SQUID loop, inducing a small RF flux in the SQUID loop. A flux locked loop

monitors the first harmonic of this signal to detect a peak on the flux vs voltage curve. To

remain locked to the same peak, the flux locked loop sends a small dc current through the

coil, thereby keeping the total flux through the SQUID loop constant, regardless of changes

in the external field. A change in the magnetic field is then directly proportional to the

feedback current. For a comprehensive review of SQUIDs and their applications, see Refs.

[63, 64].

1.8 Measurement of the transverse relaxation time

In preparation for a search for an electric dipole moment, the first thing we did was to

measure the transverse relaxation time of liquid xenon. These measurements were published
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in Ref. [73] and I only briefly discuss them here. The longitudinal spin relaxation time T1 of

liquid 129Xe was investigated in work reported in Refs. [46, 65]; at 180 K it is about 30 min.

Spin relaxation in liquid 129Xe is dominated by spin-rotation interactions and an estimate

of T1 from the chemical shift of 129Xe [45] is in good agreement with the experiment. In a

liquid one would expect that the correlation time τc of the spin-rotation interaction would

be very short, and in the regime of motional narrowing (ω ¿ 1/τc) T2 should be equal to T1.

However, existence of long-lived Xe Van der Waals molecules [66, 67] could result in shorter

values of T2. In previous studies of the transverse relaxation in liquid 129Xe [68, 69] measured

values of T2 were no longer than several seconds. During the course of our investigations, we

realized that a thorough understanding of long range dipolar interactions would be crucial

to performing an EDM search in liquid xenon.

Our measurements were performed using 129Xe polarized by spin-exchange optical pump-

ing [47]. A schematic of the apparatus is shown in Figure 1.8. A mixture of 2% Xe (in

natural abundance), 2% N2, and 96% 4He flowed at a pressure of 3 atm through an optical

pumping cell containing Rb vapor at 155◦C. The Rb was optically pumped by a 40 W diode

laser array whose spectrum was narrowed using an etalon.[70] Polarized 129Xe gas froze out

of the mixture as it passed through a cold trap (77 K) in a magnetic field of 1.5 kG, where

it had a longitudinal spin relaxation time of several hours. After 40 min of accumulation,

approximately 7 g of Xe ice was collected in the cold trap. The trap was then warmed and

Xe gas flowed through glass tubing to a 1.3 cm dia. spherical glass cell, where it liquefied

at a temperature of 180 K maintained by a mixture of acetone ice and liquid.

The NMR measurements were performed in a magnetic field of 32 G (ω = 2π×37.5 kHz).

To eliminate radiation damping effects the NMR coil was connected to a high impedance

amplifier without using a resonant circuit. The gradients of the external magnetic field were

reduced to about 0.1 mG/cm by first-order gradient coils, so that the free induction decay

time due to dephasing of the spins was T ∗2 = 2 − 3 sec. The timing of the RF pulses was

controlled by an NMR pulser PC card [71], while the phases of the pulses were set with

high precision using a DSP function generator that was controlled through serial interface
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Figure 1.8: Schematic of the apparatus used to produce large quantities of hyperpolarized
liquid xenon and the NMR spectrometer used to measure T2 with the method of spin
echoes. The coils used to produce a 32 G field were arranged so that there were two regions
of uniform magnetic field.

commands also generated by the pulser card. Our measurements of T1 were in agreement

with those reported in Ref. [65].

To suppress spin dephasing due to residual external magnetic field gradients we used a

standard CPMG spin-echo pulse sequence [72]. It consisted of a π/2 pulse followed by a

train of π pulses at times τ , 3τ , 5τ , ... whose phases were shifted by 90◦ from the phase of

the π/2 pulse. The duration of the π pulses was about 1 msec. Typical values of τ were 30

to 100 msec, much shorter than T ∗2 . The decay of the magnetization due to spin diffusion

between π pulses was negligible.

The spin-echo technique does not prevent spin dephasing due to gradients created by the

dipolar fields, since these gradients are reversed by π pulses together with the magnetization.

For a uniform 129Xe polarization in a spherical cell the dipolar field seen by 129Xe atoms

adds up to zero. However, in the presence of a small gradient of the external magnetic

field the magnetization of 129Xe will develop a helix which in turn produces a gradient of

the magnetic field, resulting in exponential growth of the magnetization gradients for a π/2

pulse. When the gradients of the magnetization become large enough, the decay of the

average transverse magnetization becomes highly non-exponential as shown by the solid

circles in Figure 1.9.
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Figure 1.9: Spin-echo envelope for CPMG sequence with τ = 100 msec, dHEz/dx = 1.4
mG/cm and the π pulse intentionally shortened by 3% (solid circles); with τ = 30 msec
and gradients reduced to about 0.1 mG/cm (open circles). An exponential fit to the latter
gives T2 = 1290 sec (solid line). Fits to the initial and final decay of the data shown with
solid circles also give similar values of T2.

Figure 1.9 also shows the spin-echo envelope for a CPMG sequence with a smaller M0 and

a shorter π pulse spacing τ . In this case the transverse magnetization decayed exponentially,

with a time constant T2 = 1290 sec. Lower magnetization reduces the strength of the dipolar

interactions and the shorter spacing between π pulses can suppress the instability due to

dipolar interactions by causing a slow rotation around the x axis in the rotating frame. This

effect is discussed further in Ref. [73]. In other data sets we obtained values of T2 up to

1360 sec. Most systematic effects would decrease the value of T2 and we cannot exclude the

possibility of an additional relaxation rate on the order of 1/T2−1/T1 = 2×10−4 sec−1. For

example, it could be due to partial transverse spin relaxation on the walls of the cell. Note

that if the walls of the cell were completely depolarizing, it would give a diffusion-limited

relaxation rate of 1 × 10−3 sec−1. Thus, our data are also consistent with intrinsic T2 for

liquid 129Xe equal to T1 = 1800 sec.
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1.9 Dynamical instabilities and spin precession

Observation of spin-precession signals forms the basis of such prevalent experimental tech-

niques as NMR and EPR. It is also used in searches for physics beyond the standard model

[3, 6, 51, 74] and sensitive magnetometery [62]. Hence, there is significant interest in the

development of general techniques for increasing the sensitivity of spin-precession measure-

ments. Several methods for reducing spin-projection noise using quantum nondemolition

measurements have been explored [75, 76], and it has been shown that in some cases they can

lead to improvements in sensitivity [77, 78]. Here we demonstrate a different technique that

increases the sensitivity by amplifying the spin-precession signal rather than reducing the

noise. The amplification technique is based on the exponential growth of the spin-precession

angle in systems with a dynamic instability caused by collective spin interactions. Such in-

stabilities can be caused by a variety of interactions, such as, dipolar magnetic fields in

a nuclear-spin-polarized liquid as discussed here, or electron-spin-polarized gas [79], spin-

exchange collisions in an alkali-metal vapor [80], or mixtures of alkali-metal and noble-gas

atoms [50]. This amplification technique can be used in a search for a permanent elec-

tric dipole moment in liquid 129Xe. It is also likely to find applications in a variety of

other systems with strong dipolar interactions, such as cold atomic gases [81] and polar

molecules[82].

Consider first an ensemble of noninteracting spins with a gyromagnetic ratio γ initially

polarized in the x direction and precessing in a small magnetic field Bz . The spin-precession

signal

〈Sy〉 = γ〈Sx〉Bzt (1.39)

grows linearly in time for γBzt ¿ 1 . The measurement time tm is usually limited by

spin-relaxation processes and determines, together with the precision of spin measurements

δ〈Sy〉, the sensitivity to the magnetic field

δBz =
δ〈Sy〉

γ〈Sx〉tm (1.40)

or any other interaction coupling to the spins.
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In the presence of a dynamic instability, the initial spin precession away from a point of

unstable equilibrium can be generally written as 〈Sy〉 = 〈Sx〉Bz sinhβt, where β is a growth

rate characterizing the strength of spin interactions. The measurement uncertainty is now

given by

δBz =
δ〈Sy〉

〈Sx〉 sinhβtm
. (1.41)

Hence, for the same uncertainty in the measurement of δ〈Sy〉, the sensitivity to Bz is im-

proved by a factor of G = sinh(βtm)/(βtm). It will be shown that quantum (as well as

nonquantum) fluctuations of 〈Sy〉 are also amplified, so this technique cannot be used to

increase the sensitivity in measurements limited by the spin-projection noise. However, the

majority of experiments are not limited by quantum fluctuations. For a small number of

spins the detector sensitivity is usually insufficient to measure the spin-projection noise of

N1/2 spins, while for a large number of particles the dynamic range of the measurement

system is often insufficient to measure a signal with a fractional uncertainty of N−1/2. Am-

plifying the spin-precession signal before detection reduces the requirements for both the

sensitivity and the dynamic range of the measurement system. Optical methods allow ef-

ficient detection of electron spins and some nuclear spins [3] in atoms or molecules with

convenient optical transitions. However, for the majority of nuclei, optical detection meth-

ods are not practical and magnetic detection, using, for example, magnetic resonance force

microscopy, has not yet reached the sensitivity where it is limited by the spin-projection

noise [83, 84]. Therefore, nonlinear amplification can lead to particularly large improve-

ments in precision measurements relying on nuclear spin precession.

Here we use long-range magnetic dipolar interactions between nuclear spins that lead

to exponential amplification of spin precession due to a magnetic field gradient. It has also

been shown that long-range dipolar fields in conjunction with radiation damping due to

coupling with an NMR coil lead to an increased sensitivity to initial conditions and chaos

[85]. To amplify a small spin-precession signal above detector noise it is important that the

dynamic instability involves only spin interactions since instabilities caused by the feedback

from the detection system would couple the detector noise, such as the Johnson noise of



30

the NMR coil, back to the spins. We measure spin precession using SQUID magnetometers

that do not have a significant backreaction on the spins and show that under well controlled

experimental conditions the dynamic instability due to collective spin interactions can be

used to amplify small spin-precession signals in a predictable way.

1.10 Dipolar interactions

Most experimental work on dipolar interactions has been carried out in liquids using the

conventional NMR techniques sensitive to the total magnetization of the sample to look

at the behavior of the free induction decay signals [87, 88, 89] or spin echo trains [73].

As discussed above and in Ref. [88], it has been found that following a 90◦ RF pulse in

a uniform magnetic field the magnetization develops a dynamic instability leading to an

abrupt decay of the NMR signal. On the other hand, for small tip angles the NMR signal

often persists longer than one would expect in the absence of magnetic dipolar interactions.

In particular, it was found that in U shaped samples the NMR spectrum develops a series of

sharp lines [88, 90] when one would naively expect a broad spectral profile due to magnetic

field gradients created by dipolar fields.

For most of the analysis and data in this work, we assume nominally spherical geometry

and small perturbations from uniform polarization. For the moment we also assume that

deviations of the applied field from perfect homogeneity are dominated by linear gradients in

the longitudinal direction H = (H0 + gz)ẑ. We look for perturbations of the magnetization

with a linear gradient in the longitudinal direction

M(t) = M0 + M0{mx(t),my(t),mz(t)} z

R
. (1.42)

We are primarily sensitive to the gradient of the y component of the magnetization (see

Fig. 1.10). Including the dipolar field due to the above magnetization profile in the Bloch

equation leads to the following solution for my following a pulse that tips the magnetization

into the x direction of the rotating frame by an angle α:

my(t) = −γgRM0

β
sin(α) sinh(βt),
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H = (H0+gz)z

Figure 1.10: Top panel: SQUID signals following a π/2 pulse in a small magnetic field gra-
dient. Bottom panel: phase difference between the two SQUID signals (circles) fit to linear
model (solid line) and expected phase deviation neglecting dipolar interactions (diamonds).
Inset shows the Relative orientation of SQUIDs and magnetization. The magnetic field is
in the z direction.

β =
4
√

2π

15
M0γ (1− 3 cos(2α))1/2 . (1.43)

(See Chapter 3 for a detailed derivation). Here β is proportional to the strength of the long-

range dipolar interactions. Thus, for α < 35◦ the linear magnetization gradients oscillate

at a frequency ωlin = iβ while for α > 35◦ they grow exponentially, consistent with earlier

results [91, 92].

Fig. 1.10 shows the SQUID signals and the phase difference between the two signals,

directly proportional to the gradient my (this is discussed further in Chapter 3) following

a π/2 pulse. The phase difference grows exponentially and is well described by the linear

model, as indicated by the agreement between the circles and the solid line in the bottom

panel, until the phase difference becomes large. The top panel of Fig. 1.11 shows the

SQUID signals (solid and dashed lines) following a small tip angle pulse (β imaginary) in

the presence of a large gradient. Note that the free induction decay is extended substantially
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Figure 1.11: Top panel: SQUID signal envelopes (solid and dashed lines) following a small
tip angle pulse in the presence of a large magnetic field gradient. The dash-dot line shows
the expected signal neglecting dipolar interactions. Bottom panel: phase difference between
the two SQUID signals

compared to the non-interacting case, given by the dash-dot line. The bottom panel of Fig.

1.11 shows the phase difference between the two SQUID signals. As predicted by the

linear model, in the small tip angle regime, the gradient my, and thus the phase difference

oscillate. The frequency and amplitude of phase oscillations are in good agreement with

the predictions of the linear model.

The large tip angle behavior predicted by the linear model immediately presents us with

a very attractive way to measure very small applied magnetic (or electric) field gradients.

For α = 90◦ the solution for the y component of the magnetization gradient becomes

my(t) = −γgR

β
sinh(βt),

β =
8
√

2π

15
M0γ. (1.44)
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The gradient of the y component of the magnetization thus grows exponentially with a time

constant β. For magnetization distributions well described by the linear model, the phase

difference in the SQUID signals is directly proportional to the gradient of the y component of

the magnetization ∆φ = ζmy(t) where ζ depends on the relative geometry between the cell

and the SQUID pickup coils. Thus comparing the interacting case with the noninteracting

case where the phase difference in the SQUID signals is ∆φNI = ζγgRt, we see that the

phase difference is amplified by a gain factor

G =
sinhβt

βt
. (1.45)

In principle this can be quite large. For M0 = 100µG (we regularly reach M0 = 400µG),

β = 1.75 s−1, and at 5 seconds G = 360. Rather than having to wait a long time for the

effects of a small gradient to grow large enough to measure with relatively noisy SQUID

magnetometers, as in linear spin precession, nonlinear effects from dipolar interactions am-

plify the effects of small magnetic field gradients until they are large enough to be easily

measured.



Chapter 2

Experimental Setup

2.1 Overview

An overview of the experiment may be found in Fig. 2.1. Hyperpolarized xenon gas is

produced outside the magnetic shields via spin exchange in an optically pumped rubidium

vapor cell and stored in solid form at high magnetic field in a LN2 cold trap. When the trap

is warmed, polarized gas flows through a copper or glass tube to condense in a spherical

cell inside the magnetic shields. A set of coils allow control of all three components of the

magnetic field, linear gradients of the magnetic field and some higher order gradients. The

cell sits inside a narrow, vacuum insulated, double wall tube through which we flow nitrogen

vapor to maintain a temperature of 173K. Two high Tc SQUID magnetometers adjacent

to the cell, oriented at 45 and 135 degrees to the magnetic field, monitor the oscillating

magnetic field created by the precessing magnetization. As discussed in the introduction,

gradients of the magnetization in the longitudinal direction show up as a phase difference

in the two SQUID signals.

2.2 Production of Hyperpolarized Liquid 129Xe

Hyperpolarized 129Xe was produced using the standard method of spin exchange optical

pumping [47] where collisions between xenon atoms with an optically pumped Rb vapor

34
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transfers optical angular momentum to the Xe nuclei. A brief review of this method may

be found in the introduction, or for a more complete review of the physics behind spin

exchange optical pumping, see Ref. [53].

A gas mixture of 3% Xe (natural abundance), 7% N2 and 90% He flowed through

a purifier and the optical pumping cell containing Rb vapor. The cell temperature was

monitored via a non-magnetic thermocouple. We maintained the temperature at 155◦ C by

flowing air first through a heater controlled by an Omega temperature processor and then

through the oven containing the optical pumping cell. A set of 4 coils, arranged so that

gradients of the magnetic field up to 4th order were cancelled, generated a magnetic field of

approximately 40 G in the region of the Rb cell. We polarized the Rb vapor by illuminating

the cell with circularly polarized light from a 120 watt diode laser array (kindly donated

by Amersham Nycomed corporation) tuned to the 795 nm D1 transition, which propagated

in the direction of the magnetic field. The Rb vapor was optically thick on resonance, and

about 50% of the broadband radiation was absorbed. As discussed in the introduction,

the Rb ground state angular momentum is transferred to the xenon nuclei through spin

exchange. For spin-exchange cross sections, refer to Chapter 1, Fig 1.6.

To optimize the polarization, we monitored the xenon NMR signal in the optical pump-

ing cell with a resonant LC circuit tuned to the Larmor precession frequency located on

top of the optical pumping cell. We used a pulse sequence generator to flip an RF switch

between “listening” and “pulsing” modes, similar to the right side of Fig. 1.8. In the

former, the NMR LC circuit was connected to a preamp (gain of 5000) and in the latter,

the LC circuit was connected to a function generator tuned within 100 Hz of the Larmor

precession frequency of the xenon nuclei. The output of the preamp is multiplied with a

reference signal by an RF mixer and the high frequency components were filtered out to

yield a signal at the difference frequency between resonance and reference. Typical signals

were on the order of 70 mV. To calibrate the spectrometer, we placed a small coil through

which we ran a known current to generate an oscillating dipole moment and analyzed the

resulting signal in the spectrometer. We found that the typical polarization in the cell was
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around 5%, with an error of about a factor of 2 due to geometry.

The polarized gas mixture flowed out of the optical pumping cell, through a cold trap

immersed in liquid nitrogen in a 2kG field, where the xenon froze out of the mixture and

the buffer gas leaves the system. In a sufficiently large field (B > 600 G) and for temper-

atures below 120 K, the longitudinal relaxation time of frozen xenon is several hours [93],

dominated by modulation of the spin-rotation interaction via phonons. At temperatures

above 120 K, modulation of the dipole-dipole interaction via vacancy diffusion dominates

the relaxation process, substantially reducing the relaxation time. We operated at 77 K, and

hence, little polarization was lost during storage. After approximately 25 minutes of flowing

at a rate of 1.2 liters per minute, we have accumulated enough solid xenon to fill the liquid

xenon cell inside the magnetic shields. The remainder of the He and N2 is evacuated from

the system. As the relaxation time of the frozen xenon is shorter at higher temperatures,

we endeavored to warm the cell as quickly as possible to minimize the amount of time the

frozen xenon spends at high temperatures. To facilitate this, we minimized the volume of

the cold trap, isolating it from the liquid xenon cell through a series of valves. This process

increased the rate at which the pressure and the heat conductivity of the xenon vapor rises.

When the pressure reaches the triple point, the valve to the xenon cell was opened, while

continuing to heat the cold trap with the heat gun. We attempt to maintain the pressure at

about 100 psi while the xenon is condensing in the cell. We have achieved polarizations in

the liquid phase of about 3% (about 400 µG). In more detailed studies of the freezing and

thawing process, Brian Patton in the Happer group has found that for fields in the neigh-

borhood of 2kG, up to 80% of the polarization is retained during the freezing and thawing

process. If the calibrations in the optical pumping cell are to be believed, the entire transfer

of xenon from optical pumping cell to liquid xenon cell is quite efficient.

2.3 Magnetic Shields and Coil

To reduce the magnetic field noise from external sources, we performed our measurements

inside a set of 5 layer, cylindrical, high µ metal magnetic shields manufactured by Amuneal



38

Shield number length (inches) radius (inches)
1 48 24
2 40 22
3 34 20
4 30 18
5 28 16

Table 2.1: Physical dimensions of magnetic shields

with a shielding factor of approximately 500000. The dimensions of our shields may be found

in Table 2.1. A titanium support structure kept the shields in a concentric configuration and

allowed minor adjustments of the location of the magnetic field windings with respect to the

inner shield. Titanium was chosen because it has a similar coefficient of thermal expansion

as high µ metal, reducing thermal stress in the magnetic shields and the associated magnetic

field drifts. We chose to apply the holding magnetic field in the horizontal plane because

most of the 60 Hz magnetic field noise is in the vertical direction from power lines running

along the walls. Further, the holding field of about 10 mG is applied transverse to the axis

of the shields, in the x direction of the lab frame, as the transverse shielding factor is about

twice that of the longitudinal shielding factor. High µ metal shields have been extensively

used in similar applications; a general discussion may be found in Ref. [94].

Control of the magnetic field was accomplished via a set of coils wound around a 12 inch

diameter G10 cylinder. The homogeneous field in the transverse directions were created by

a set of windings, shown in Figure 2.2a), which approximate a sinusoidal or cosinusoidal

distribution of current for which, inside an infinitely long cylinder the magnetization is

perfectly uniform. For reference, the angular coordinates of the wires in the first quadrant

for producing a magnetic field in the x direction are 14.8352, 25.842, 33.5574, 39.9445,

45.573, 50.7036, 55.4819, 60.0, 64.3208, 68.4899, 72.5424, 76.5066, 80.406, 84.2609, 88.0898.

The field along the symmetry axis of the shields was created by a simple solenoidal coil,

each turn being spaced 1.27 cm apart. Care was taken to cancel the axial component of the

current by making each turn a complete circle, connected to the next by a short piece of

wire. The return current traced the short segments back. Using a Mathematica notebook,

we numerically integrate the contribution to the relevant component of the magnetic field
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Figure 2.2: a) Coil to produce homogeneous magnetic field in x direction. b) Results of
numerical calculations of the magnetic field from the coil shown in a). c) Results of numerical
calculations for the simple solenoidal coil creating a magnetic field in the z direction.

from a series of straight wires and arcs, neglecting image currents in the magnetic shields.

The results of these calculations are shown in Fig 2.2b) and c). Our numerical integrations

indicate that the magnetic field should be uniform to about 3 parts in 105 over the region

of the cell. For an infinitely long solenoid it would be possible to take into account image

currents. Our coil has a fairly small aspect ratio and thus we neglect image currents,

resulting in a difference between calibration and calculation of about 30%.

The actual calibrations of the magnetic field, determined by using a flux gate mag-

netometer are 0.89 mG/mA and 0.84 mG/mA for the transverse and longitudinal fields

respectively, differing from the calculated calibrations due to the image currents in the

magnetic shields. These calibrations are subject to change slightly depending on the num-

ber of shields in place. Ambient magnetic field gradients were on the order of 5 µG/cm.

We will discuss the effects of magnetic field inhomogeneities in more detail later.

An ultra low noise current source [95] with a power spectral density of 10−20 A2/Hz

supplied about 10 mA to the “X” transverse coil. A mercury battery is used as a voltage
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Figure 2.3: Schematic of the windings used to create gradients of the x component of the
magnetic field

reference to bias the gates of a pair of FETs and a feedback circuit used to keep the drain-

source voltage constant. We use an analog output card to directly supply oscillating current

to the “Y” and “Z” coils, 90 degrees out of phase with each other, generating a true rotating

field to tip the spins into the transverse direction

A set of three extra coils depicted in Fig. 2.3 allowed control of the gradients ∂Bx/∂x, ∂Bx/∂y, ∂Bx/∂y.

As the magnitude of the magnetic field associated with these gradient coils is substantially

smaller than the homogeneous fields we worried less about the stability of the current source

and used a simple op-amp circuit as a voltage source referenced to the output of the analog

output card in the computer, allowing computer control of the magnetic field gradients.

The calibrations were 0.44 mG/cm/mA for dBx/dx and dBx/dy and 0.41 mG/cm/mA for

dBx/dz.

A third set of three coils, topologically equivalent to Helmholtz coils, provide some
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Figure 2.4: Measurements of the magnetic field inside the magnetic shields along the x
direction. Top panels are unshimmed, bottom panels show the field with corrections using
the three first order gradient coils and one of the second order gradient coils.

control of 2nd order gradients of Bx. Unfortunately, these coils each produce gradients

∂2Bx/∂x2,∂2Bx/∂y2 and ∂2Bx/∂z2 and are not orthogonal in 2nd order gradient space.

Hence it is difficult to fully zero all second order gradients with reasonably small currents.

However it is possible to substantially reduce the second order gradient ∂2Bx/∂x2 with a

single coil at small cost to the other 2nd order gradients. Numerical simulations generally

indicate that gradients of the magnetization grow faster in response to longitudinal gradients

of the applied field than transverse gradients of the applied field, so this is an acceptable

state of affairs. Fig 2.4 shows measurements of the magnetic field made by oscillating a three

axis flux gate magnetometer back and forth along the x direction. To obtain information

about the first order gradients ∂Bx/∂y and ∂Bx/∂z, one can use the fact that ∇×B = 0.

Use of the second order gradient coil reduces ∂2Bx/∂x2 by a factor of greater than 5.

Without correction there is a variation in the longitudinal direction by about a part in 104.

2.4 SQUIDS, dewar and cell

We used high Tc SQUID magnetometers manufactured by Tristan Technologies. Our

SQUID magnetometers had a noise level of about 2 × 10−3µG/
√

Hz at 10 Hz. Shown

in Fig. 2.5 is a power spectrum of our SQUID magnetometers. Tristan rates these at about

3 × 10−4µG/
√

Hz. We suspect that the poor performance is related to RF pickup in the

cables connecting the SQUID to the flux locking loop.

As an entertaining aside, out of the box, the SQUID magnetometers connected to the
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Figure 2.5: Noise spectrum of our SQUID magnetomters.

flux locking loop via a very aesthetically pleasing brass connector. Unknown to us when

we started working with these magnetometers, brass is quite magnetic, and in our setup

these connectors were creating magnetic field gradients on the order of 50-100 µG/cm at

the xenon cell, wreaking havoc on the xenon spin precession, especially for large tip angles.

We finally realized this by wiggling one SQUID relative to the other. Removing the brass

connectors greatly improved our data. Unfortunately, this required the use of homemade

cables which could be responsible for the larger levels of noise shown in Fig. 2.5.

As we shall discuss in more detail later, the action of the feedback loop to keep the

flux through the SQUID constant is a potential source of noise in the measurement of an

EDM. To keep the flux through the SQUID constant the feedback coil generates a small

magnetic field, and because it is necessarily relatively close to the sample, this field is quite

inhomogeneous. Fig. 2.6 shows the phase deviation (solid line) of the xenon NMR signal

relative to its average frequency and the DC value of the SQUID signal (dashed line) during

the free induction decay following a small angle pulse. When the SQUID loses lock and

jumps between flux quanta, the current through the feedback loop abruptly changes causing

a jump in the magnetic field. The magnetic field is proportional to the derivative of the
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Figure 2.6: Phase of xenon spin precession (solid line) and DC SQUID signal (dashed line).
The dashed line is the DC SQUID signal. When the SQUIDs jump to a new lock, there is
is a kink in the phase of the xenon spin precession.

phase B = 1
γ

dφ
dt so a discontinuity in the magnetic field corresponds to a discontinuity in the

slope of the phase deviation. From the data shown here, we determine that the SQUID

creates an average magnetic field over the cell of about 〈Bsq〉V = 0.37µG/Volt or using the

calibration of the SQUIDs 〈Bsq〉V = 0.37 µG/V
7.4 µG/V = 0.05 µG/µG.

The feedback coil is several mm in diameter compared to its distance from the center

of the cell of ∼ 1.5 cm and hence we approximate it as a dipole. Referring to Fig. 2.1, it is

oriented parallel to the y axis, rotated by 45◦ relative to the x axis, msq = msq√
2

(x̂ + ẑ). To

find the magnitude of the dipole moment, we numerically average the ẑ component of the

magnetic field it generates over the cell to find for R = 0.5 cm and the SQUIDs a distance

rsq = 1.5 cm from the center of the cell

msq =
〈
B(sq)

z

〉
V
× 1.2 (cm3) (2.1)

so that msq ≈ 0.44 µerg/G/Volt. The calibrations of our SQUIDs are approximately 7.4

µG/Volt on high gain so msq = ηδB where η = 0.059µerg/G/µG and δBsq is the average

magnetic field through the pickup loop. A dipole magnetic moment oriented at 45◦ relative

to the magnetic field and a distance rsq = 1.5 cm from the center of the cell generates an
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average gradient of the ẑ component of the magnetic field

〈g(sq)〉V =
1
V

∫

V

dBsq
z

dz
dV = 0.6(cm−4)msq. (2.2)

We thus see that a fluctuation of the output of the SQUID generates an average gradient

across the cell.

g(sq) = 0.044(cm−1)δBsq. (2.3)

In Chapter 5 we discuss a modification on the standard SQUID magnetometer that can

suppress this effect.

A side view of the dewar, SQUIDs, cell and all the mounting hardware is shown in Fig

2.7. The dewar, constructed of glass by H.S. Martin, is topologically equivalent to a donut.

The outer walls are silvered to improve the boil off time of the N2, with the exception of a

thin strip through which an image of the cell can be projected onto a CCD camera. The

inner column is also double walled and vacuum insulated but lacks the silvering to reduce

magnetic noise due to Johnson currents, and to allow optical access to the cell. To keep

the liquid xenon cell at 173 K, cold nitrogen vapor flows down through the inside of the

inner column. Temperature gradients can be applied by a jet of nitrogen flowing up through

the bottom of the dewar. The dewar is held rigidly between two 1/4” G10 plates attached

together via four 3/8” G10 rods. The SQUIDs are mounted to the upper of these two

plates via 3/8” G10 rods. The dewar and SQUID assembly is held between two additional

G10 plates via 1/4” × 20 nylon screws which provide both vertical adjustment and apply

pressure to the G10 cylinder so that the assembly cannot move with respect to the windings

on the cylinder.

The cell has its own mount so that it can be easily inserted into the dewar without

disassembling the magnetic shields. A photo of the assembly is shown in Fig. 2.8. A G10

plug through which nitrogen vapor flows to control the cell temperature, forms a seal with

the inner column of the dewar and holds the cell stem with a nylon set screw. The G10

plug is connected to an aluminum block that sits outside the shields via two 1/4” aluminum

rods.
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Figure 2.7: View of SQUIDs, dewar and cell from the side. All materials are G10 except
for the dewar. Not shown are the input and output ports for liquid nitrogen

Our early cells were simple blown glass constructions, courtesy of our expert glass blower,

Mike Souza. After some time we realized that despite Mike Souza’s great skill, these cells

were not spherical enough. The effects of cell deformations are briefly discussed in the

next two chapters. To remedy this problem, we switched to cells constructed from two

hemispherical lenses (manufactured by Mindrum Precision Inc.), one with a 1 mm hole,

and a piece of 1mm capillary tubing joined to a larger diameter (3 mm ID) piece of pyrex

tubing glued together with Norland NOA 88 UV curing cement. Inside the cell was a 25µm

thick octagonal silicon membrane, cut from a larger wafer of silicon using a diamond dicing

saw. Glued to the membrane was a thin glass wire. To construct the cell, we used the

following procedure:

1. All pieces were washed in a bath of acetone in an ultrasonic cleaner.

2. Glass tube/capillary piece was mounted in cell holder.

3. Lens with hole was glued to capillary (short cure 5-10m).

4. Glass wire was glued to silicon membrane and inserted into the long glass tube.
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Figure 2.8: Photo of cell and mount.

5. Vacuum feedthru for turning glass rod was attached.

6. Second hemisphere glued to the first.

7. Assembly was cured for 12 hours under the UV lamp.

8. Apparatus was connected to the vacuum system and baked out for several days at

180◦C.

The last step was important to ensure long relaxation times as the pumping speed through

the thin capillary was quite small. Without baking out the cell, contamination (probably

residual water on the walls of the cell) reduced the relaxation time to approximately 800

seconds. We determined the exact distance from the cell to the SQUIDs by measuring the

signal that a known current flowing in a calibration loop attached to the cell induces in the

SQUIDs.

In older cells which were made of blown glass we characterized the degree of sphericity of

inner cell walls by submerging them in mineral oil which has approximately the same index

of refraction as glass, so only the inner surface of the cell reflects light. We reflected a laser

from the cell as it was rotated around its center. Any deviations of the cell inner surface

from the spherical shape result in motion of the laser beam. Using a beam position monitor

we measured the displacement of the beam and characterized the shape of the cell in terms

of spherical harmonics. Simple calculations show that for small deviations from spherical

shape the l = 2 terms generate a homogenous magnetic field and l = 3 terms generate a

first order magnetic field gradient. In general, these magnetic fields and gradients rotate

together with the magnetization, so their effects are not trivial, though in a few cases there
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are simple solutions. We briefly discuss these effects in the next two chapters.

2.5 SQUID feedback for spin control

To reduce uncertainties in the tip angle, we suppressed residual unwanted transverse com-

ponents of the magnetization by employing a feedback scheme which generated a magnetic

field π/2 out of phase with the precessing magnetization. Depending on the sign of the

phase shift this either tips the magnetization towards or away from the z direction. The

output of one of the SQUID magnetometers was connected to the “Y” coil. The plane of

the SQUID pickup coils were parallel to the y axis of the lab frame and hence this did

not directly introduce any extra signal in the SQUID magnetometers. In this way it was

possible to completely remove the homogeneous part of the transverse component of the

magnetization. By using the difference between the two SQUID signals and feeding this

back into the appropriate gradient coils it should be possible to reduce residual gradients

of the transverse components of the magnetization.



Chapter 3

Theoretical understanding of long

range dipolar interactions

3.1 Introduction

In this chapter, we explore a variety of analytical and numerical models to understand

the effects of long range magnetic dipolar interactions. Much of this work was previously

reported in Refs. [73, 101, 96, 97]. The theoretical basis for treatment of distant dipolar

fields has been well-established. They can be modelled classically as a sum of the fields

produced by the magnetic dipoles of individual spins [98]. A full quantum-mechanical

treatment is also possible by following the evolution of a density matrix representing all

spins in the sample [99]. It has been shown that the two approaches are equivalent under

most conditions [98, 99, 100]. Detailed analysis of dipolar interactions is complicated, in

spite of their formal simplicity, because they cause non-linear and non-local effects which

are sensitive to the geometry of the sample and the boundary conditions. Other than the

results discussed here only a small number of analytic results have been obtained so far,

including linear stability analysis for a uniform magnetization distribution [91, 92].

Numerical modelling of dipolar interactions in real space is computationally intensive

because of their non-local nature and the only results obtained previously were performed

48
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on a small number of discrete spins [91]. It has been shown that the dipolar field can be

represented by a local function of the magnetization in Fourier space [102] and efficient

computational techniques using Fast Fourier Transforms have been developed [103].

Here we use classical Bloch equation formalism to describe the behavior of the mag-

netization. Xenon has two nonzero spin isotopes: 129Xe (I = 1/2, 26%) and 131Xe(I =

3/2, 21%). Local electric field gradients from neighboring atoms interact strongly with the

electric quadrupole moment of the latter leading to rapid spin relaxation and hence we may

ignore effects of the I = 3/2 isotope. The modified Bloch equations are

∂M
∂t

= γM× (Bext + Bd) + D∇2M

− Mxx̂ + Myŷ
T2

− Mzẑ
T1

(3.1)

where Bext is the external magnetic field, Bd is the dipolar field, D is the coefficient of

diffusion, and T1 and T2 are the longitudinal and transverse relaxation times. For evolution

of the system on short time scales (10-20 seconds) the first term dominates for parameters

describing our experiment. At time scales on the order of several hundred seconds, diffusion

and relaxation become important. Typically included in Eq. (3.1) is the field created by a

resonant RF pickup coil leading to radiation damping. Because SQUID magnetometers do

not rely on a resonant circuit, this term is absent here. The feedback coil in the SQUID

magnetometer can create substantial magnetic fields (we discuss a method for suppressing

these unwanted fields in chapter 5), however these fields are in phase with the precessing

magnetization and thus we do not consider them here as they do not have a substantial effect

on the transverse component of the magnetization. In Chapter 5 we will discuss this issue

further. A full treatment would also include the effects of convection due to temperature

gradients, however, we find that for a sufficiently small convection occurs on time scales slow

compared to dipolar interactions, and under these conditions, our experimental results agree

well with the predictions of Eq. 3.1. Presumably, for an inverted temperature gradient,

where the cell is warmer on the top, convection will not occur at all.

In addition to the simplifications mentioned above, for most of what follows, we assume

a spherical cell for which, in the absence of applied magnetic field gradients or initial mag-
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netization inhomogeneities, the dipolar field seen by the spins is equal to zero. We only

briefly address the magnetic field due to various cell deformations and discuss experimen-

tally some of these effects in the next chapter. Finally, in most models we use the rotating

wave approximation where we ignore fields that rotate in the opposite direction relative to

the magnetization, which is generally very accurate in high field NMR experiments. How-

ever, in our low-field experiments the accuracy of this approximation is not obvious, since

the magnetic field of 10 mG along the z direction is only 10-100 times greater than the

dipolar magnetic fields. To understand possible deviations from this approximation, we

have also performed simulations in the lab frame. This also permits the study of the effects

of transverse gradients.

The chapter is organized as follows: In Section 3.2 we discuss the “linear model” where

we consider the evolution in the presence of a longitudinal linear magnetic field gradient

H = (H0 + gz)ẑ and keep terms of the magnetization linear in z. In Section 3.3 we discuss

a series of analytical and numerical models that can address the effects of higher order

magnetic field and magnetization gradients. In Section 3.4 we discuss the solution to these

models for a variety of different parameters.

3.2 Linear Model

We are primarily interested in the first order longitudinal gradient of the magnetic field g,

H = (H0 + gz)ẑ. Assuming azimuthal symmetry of the magnetization, it may be expanded

in a Taylor series

M(r, t) = M0

∑

i,k

m(i,k)(t)
zi(x2 + y2)k

Ri+2k
. (3.2)

The motivation behind such an expansion is discussed further in the Appendix. When

only a small linear gradient is present, for small deviations of the sample from uniformity,

the magnetization will be well described by a linear profile m(1,0)z/R. This case has a

particularly simple analytic solution that describes many of the features of our data and

provides substantial insight into the dynamics of the magnetization. Therefore we will
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elaborate in detail on this “linear model”.

The magnetic field created by a magnetized sample in a current free region may be

found from the magnetic potential Hd = −∇ΦM [104], where the magnetic potential is

ΦM (x) = − 1
4π

∫

V

∇ ·M(x′)
| x− x′ | d3x′ +

1
4π

∫

S

n′ ·M(x′)
| x− x′ | da′. (3.3)

The magnetic field felt by the spins is B = Hext +Hd +4π/3M. The final term differs from

the classical result 4πM, because of the Pauli exclusion principle: Two fermions cannot

occupy the same position in space, so the δ function part of the classical dipolar field does

not contribute. Expanding the denominator in the integral in terms of spherical harmonics

[104]
1

|r− r′| =
∞∑

l=0

m=l∑

m=−l

4π

2l + 1
rl
<

rl+1
>

Ylm(θ, ϕ)Y ∗
lm(θ′, ϕ′) (3.4)

we can write

ΦM =
∞∑

l=0

φ
(s)
l + φ

(v)
l (3.5)

where

φ
(s)
l =

4π

2l + 1
rl

Rl+1

l∑

m=−l

Ylm(θ, φ)
∫

S
n̂′ ·M(x′)Y ∗

lm(θ′, φ′) (3.6)

and

φ
(v)
l =

4π

2l + 1

l∑

m=−l

Ylm(θ, φ)
( ∫

Ω
dΩ

∫ r

0

r′l

rl+1
∇′ ·M(x′)Y ∗

lm(θ′, φ′)r′2dr′

+
∫

Ω
dΩ

∫ R

r

rl

r′l+1
∇′ ·M(x′)Y ∗

lm(θ′, φ′)r′2dr′
)

(3.7)

are the terms arising from the surface and volume integration respectively. For a magneti-

zation profile well described by linear gradients, the nonzero terms, in cartesian coordinates

are,

φ
(s)
0 =

4πR

3
M0m

(1,0)
z (t)

φ
(s)
1 =

4π

3
M0 sin(α)x +

4π

3
M0 cos(α)z

φ
(s)
2 =

4π

5R
M0

[
m(1,0)

x (t)xz + m(1,0)
y (t)yz

+m(1,0)
z (t)z2 −m(1,0)

z (t)(x2 + y2 + z2)/3
]

φ
(v)
0 =

2π

3R
M0m

(1,0)
z (t)

[
3R2 − x2 − y2 − z2

]
(3.8)
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Ignoring terms with any transverse dependence because they average to zero in the rotating

frame one finds that

Bd = Hd + 4π/3M =
8πM0z

15R
{mx,my,−2mz} . (3.9)

The time evolution of the magnetization is determined using the Bloch equations dM/dt =

γM × B, neglecting diffusion and spin relaxation. We assume an initial uniform magne-

tization M0 along the ẑ axis and consider the evolution after an RF pulse that tips it by

an angle α into the x̂ direction of the rotating frame. Keeping only terms linear in z, the

Bloch equations are

dm
(1,0)
x (t)
dt

= −8πγ

15
M0 cos(α)m(1,0)

y (t)

dm
(1,0)
y (t)
dt

= γ

(
16π

15
m(1,0)

z (t)− gR

)
M0 sin(α)

+γ
8π

15
M0 cos(α)m(1,0)

x (t)

dm
(1,0)
z (t)
dt

=
8πγ

15
M0 cos(α)m(1,0)

y (t) (3.10)

The solution to these coupled first order differential equations takes the simple form

m(1,0)
x (t) =

4gRπ

15β2
M0γ

2 sin(2α) (−1 + cosh(βt)) , (3.11)

m(1,0)
y (t) = −γgR

β
sin(α) sinh(βt), (3.12)

m(1,0)
z (t) = −16gRπ

15β2
M0γ

2 sin2(α) sinh2(βt/2) (3.13)

(3.14)

where

β =
4
√

2π

15
M0γ (1− 3 cos(2α))1/2 . (3.15)

Here β is proportional to the strength of the long-range dipolar interactions. For α < 35◦

beta is imaginary and the linear gradients oscillate at a frequency ωlin = iβ while for

α > 35◦ β is real and the gradients grow exponentially. These results are consistent with

the conclusions of a linear stability analysis carried out by Jeener [91, 92]: spectral clustering

for small tip angles and dynamic instability for large tip angles. In the case of large tip
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angles we will find it convenient to compare the evolution of m
(1,0)
y (t) in the interacting case

to the evolution in the non-interacting case. The latter is simply the limit of Eq. 3.12 as

β → 0, m
(1,0)
y,NI(t) = γgRt. Hence we define a gain parameter

G =
m

(1,0)
y

m
(1,0)
y,NI

=
sinh(βt)

βt
. (3.16)

Thus we see that in the large tip angle regime, the gradient m
(1,0)
y grows exponentially

relative to the noninteracting case.

For completeness we present the solution for nonzero initial gradients of the magnetiza-

tion my(0) = δmy and mz(0) = δmz. The solution to Eqns. 3.10 with α = π/2 and g = 0

takes the form

my(t) = δmy cosh(βt) + δmz

√
2 sinh(βt) (3.17)

mz(t) = δmy sinh(βt)/
√

2 + δmz cosh(βt). (3.18)

where β = 8π
√

2
15 γM0. Initial magnetization inhomogeneities grow at the same rate as

inhomogeneities arising from applied field gradients. This represents a source of noise in an

EDM measurement and will be discussed further in Chapter 5.

The signal in each SQUID is a convolution of the spatial configuration of the magnetiza-

tion with the sensitivity of the SQUIDs to sources of magnetic fields. For our geometry the

SQUIDs are preferentially sensitive to the magnetization on either side of the xy plane, so

that for small gradients of the magnetization in the longitudinal direction, the phase differ-

ence in the SQUIDs is directly proportional to the first order gradient of the magnetization.

For a 90◦ tip angle, the phase difference between the SQUIDs is

∆φ = ξm(1,0)
y = ξ

γgR

β
sinh(βt), (3.19)

where ξ is a numerical factor that depends on geometry and for our setup is about 0.5. This

can be calculated using the method described in Section 3.3.6.
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3.3 Higher Order Models

Our experimental measurements of the oscillation frequency ωlin = iβ and the exponential

growth time constant were in good agreement with these predictions for gR/M0 ¿ 1.

However, the linear model failed to account for several features of the data, such as the

observed asymmetry in the SQUID signals or the decay of the gradient oscillations in Fig.

1.11, nor did it accurately predict the frequency of the gradient oscillations when gR/M0 ≈
1.[101] Furthermore, by definition, the linear model cannot take into account the effect of

higher order magnetization or applied field gradients. To perform an EDM experiment in

the large tip angle regime it is important to understand the effects of higher order gradients,

for, as we shall see shortly, high order gradients of the magnetization also grow exponentially

in response to any small high order applied field gradient.

In this section we discuss three distinct numerical techniques developed to address these

issues and the effects of spin diffusion. The first is based on a direct calculation of the

magnetic field produced by a lattice of spins and employs several techniques to improve

its computational efficiency. This calculation is performed both with and without making

the rotating wave approximation (RWA), since for some of our data the holding magnetic

field is comparable to the magnetization, unlike high field NMR experiments. This method

also simplifies the treatment of transverse magnetic field gradients. The second method

is an extension of the Fourier transform technique [103] where methods are introduced to

eliminate the artifacts caused by periodicity assumed in Fourier transforms and distortions

on sharp boundaries of the cell. The linear model described in the previous section is also

extended in a Taylor series expansion of the magnetization to include up to 40 terms in the

expansion. The solutions to these models are compared in Section 3.4, demonstrating good

agreement with each other.

3.3.1 Numerical problems in modelling of dipolar interaction

The simplest possible general numerical model of dipolar interactions involves a discrete

lattice of spins and direct summation of their magnetic fields [91]. However, since the
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interaction is non-local, the time of such calculations grows as N6, where N is the number

of grid points in each dimension. To speed up the calculation we use the symmetry of the

magnetization and the dipolar field for purely longitudinal magnetic field gradients. We

find that grids with N ≤ 40 in the rotating frame, and N ≤ 20 in the lab frame can be

analyzed in a reasonable time on a modern PC. We find however that the solution converges

fairly quickly and grids with N ≥ 10 give accurate results. We also developed a method for

reducing the effect of the grid edges, which is very important for small size grids.

Two other methods that are more computationally efficient are also considered here.

One, discussed previously in Ref. [103], transforms the magnetization into the Fourier

space, where the magnetic field B̃(k) is a local function of M̃(k), reducing the computation

time to N3logN . We discuss a method to reduce edge effects and the “ghost” cells that

result from the periodicity of the Fourier transform

We further develop the model based on the Taylor series expansion of the magnetization

discussed above. The dipolar magnetic fields created by each term in the expansion can

be calculated analytically. We obtain a system of non-linear ordinary differential equations

for the coefficients of the Taylor expansion, which can be easily solved numerically. This

method is very computationally efficient but has a limited range of convergence for large

magnetic field gradients and is non-trivial to adapt to other geometries.

3.3.2 Discrete lattice of spins in the rotating frame

In the rotating frame, the only part of the dipolar field that survives averaging over the

Zeeman interaction with the holding field is [105]

Bd(r) =
∫

V

1− 3 cos θrr′

2|r− r′|3 [3Mz(r′)ẑ −M(r′)]dr′ (3.20)

where cos θrr′ = (z − z′)/|r − r′|. Here we consider evolution only in the presence of mag-

netic field configurations with azimuthal symmetry and it seems natural to use a cylindrical

coordinate system, reducing the number of space dimensions from 3 to 2. However, we

found that at small scales the dipolar magnetic field from a uniform magnetization distri-

bution does not average to zero in a cylindrical coordinate system. For example, while the
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contribution to the magnetic field from equal dipoles positioned at (0,a,0), (0,-a,0), (a,0,0),

(-a,0,0), (0,0,a), and (0,0,-a) adds up to zero at the center (0,0,0), this is not the case

for other spin lattice arrangements. Therefore, we find that only in Cartesian grids with

uniform positioning of dipoles the 1/r3 singularity in the integral is exactly cancelled by

contributions from all dipoles located on neighboring lattice sites.

However, this cancellation breaks down near the boundary and, if no measures are taken,

the edge magnetic fields will be large and can affect the evolution of all dipoles, propagating

inside the volume. To cancel edge effects we make use of the fact that the dipolar magnetic

field inside a sphere of uniform magnetization M(r) is zero

∫

V

1− 3 cos2 θrr′

2|r− r′|3 M(r)dr′ = 0 (3.21)

and hence

Bdz(r) =
∫

V
dr′

1− 3 cos2 θrr′

|r− r′|3 Mz(r′)

=
∫

V
dr′

1− 3 cos2 θrr′

|r− r′|3 [Mz(r′)−Mz(r)] (3.22)

and similar equations for Bdx and Bdy components. After this subtraction the edge effects

become much smaller, proportional to a∇M, where a is the grid spacing rather than to the

large uniform component M0, allowing calculations with smaller grids.

It is important to note that the average magnetic field produced by any configuration

of magnetization in a spherical cell is zero. For concreteness, we examine the average of the

z component of the dipolar magnetic field:

〈Bdz〉 =
1

4πR3/3

∫

V
d3r

∫

V
d3r′

Mz(r′)(1− 3 cos2 θrr′)
| r− r′ |3 . (3.23)

Reversing the order of integration we have

〈Bdz〉 =
1

4πR3/3

∫

V
d3r′

∫

V
d3r

Mz(r′)(1− 3 cos2 θrr′)
| r− r′ |3 = 0. (3.24)

by Eq. 3.21. This means that for spherical geometry, magnetization gradients will not

produce an average precession frequency shift, an important point for an EDM experiment



57

r
1
=(i,j,k) r2=(N-1-i,j,k)

r
3
=(N-1-j,i,k)

r4=(N-1-j,N-1-i,k)

r5=(N-1-i,N-1-j,k)
r6=(i,N-1-j,k)

r7=(j,N-1-i,k)

r8=(j,i,k)

r
1
'=(i',j',k)

0 5 10 15 20 25 30 35

N Gridpoints

d
B

x
/d

z
d
B

z
/d

z

1.85

1.80

1.75

1.70

1.65

-3.2

-3.3

-3.4

-3.5

-3.6

-3.7

a) b)

Figure 3.1: a) Schematic showing the 8-fold symmetry of the grid model configuration in
the rotating frame. b) Numerically calculated magnetic field gradients per unit gradient
of magnetization as a function of the number of grid points N in each dimension. The
solid line represents the analytic result 8π/15 and −16π/15 for transverse and longitudinal
gradients respectively.

performed in the small tip angle regime. The scheme for performing an EDM measurement

in this regime is discussed further in Chapter 5.

To test the accuracy of the dipolar field calculated with the grid method we compare the

results with the analytical solution for a linear gradient of the magnetization, M = mz/R,

for which the dipolar magnetic field is given by Eq. 3.9. In Figure 3.1b) we plot the

numerically calculated gradient of the magnetic field near the origin produced by a linear

gradient of the magnetization (m(1,0)
x ,m

(1,0)
z = 1), as a function of the number of grid points.

Solid lines in the top and bottom panels of this figure are 8π/15 and −16π/15. We find

that for N = 15 the gradient calculated by the grid method agrees with the analytic result

to better than one percent.

Several steps may be taken to increase the speed of evaluation of the magnetic field. By

calculating an array of the dipolar weighting factors

w(|r− r′|) =
1− 3 cos2 θrr′

2|r− r′| (3.25)

in advance, instead of for each new configuration of the magnetization, we realize an im-

provement in speed by a factor of approximately 6 in our code. One can realize another
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factor of 64 improvement by taking advantage of the azimuthal symmetry of the magneti-

zation and the dipolar fields in the rotating frame for purely longitudinal gradients. Figure

3.1a) shows a slice of the numerical grid. Because of azimuthal symmetry,

M(r1) = M(r2) = .... = M(r8) (3.26)

and thus

B(r1) = B(r2) = .... = B(r8) (3.27)

Hence we need only calculate the magnetic field in the shaded piece of the pie, yielding a

factor of 8 in speed. Furthermore, because of Eq. (3.26), the contribution to B(r′1) from

dipoles located at ri, i = 1...8 may be written

8∑

i=1

M(ri)w(|r′1 − ri|) = M(r1)
8∑

i=1

w(|r′1 − ri|) (3.28)

reducing the number of multiplication operations by a factor of 8. In addition, the above

sum of w factors can be calculated before the start of iterations, but because it depends

separately on r1 and r′1 instead of only their difference, the memory requirements (∼ N6/64)

are significant for grids larger than about 40. Calculating the RHS of Eq. (3.28) from the

stored values of w(|r − r′|) each time it is needed yields a factor of 3-4 increase in speed

instead of a factor of 8.

The largest computational cost is the evaluation of the derivative dM/dt. We use a

3rd order predictor-corrector algorithm for solving the differential equation to minimize the

number of derivative evaluations [106]. In the small tip angle regime, we find that approxi-

mately 35 time steps per period of gradient oscillation are needed to ensure convergence of

the solution.

The subtraction procedure discussed above reduces the error in the calculation of the

magnetic field at the edge of the cell from aM0 to a∂M
∂z . We find that this is satisfactory

in the small tip angle regime, where the system is inherently stable to small perturbations

such as edge effects. However, in the large tip angle regime, small perturbations due to

edge effects rapidly grow and spread inward, as a result of dynamical instability. To further
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Figure 3.2: Evolution of My for a 90◦ tip angle, with subtraction of a linear gradient of
the magnetization (dashed red) and without (solid black). In the latter case, edge effects
propagate inward causing the magnetization to crumple prematurely.

improve the accuracy of our numerical solutions, we employ a second subtraction procedure

which reduces the errors from truncation effects at the boundary of the cell by reducing the

gradient of M. Since the contribution to the magnetic field from a linear gradient of the

magnetization can be calculated analytically, we fit a linear profile to the magnetization and

subtract it before calculating the dipolar field numerically. We then add the contribution

from a linear profile to the magnetic field analytically and add the linear profile back to the

magnetization. The utility of this procedure is shown in Fig. 3.2 where we compare the

solutions to My with (dashed line) and without (solid line) the subtraction procedure for a

90◦ tip angle.

3.3.3 Discrete lattice of spins in the lab frame

This model does not rely on the rotating wave approximation, and hence may be used to

test the validity of such assumptions for magnetization comparable to the static Bz field.
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Further, it allows us to easily explore the effects of transverse magnetic field gradients,

which are crucial to understanding the behavior of the magnetization following a 90◦ pulse

[73].

The model in the lab frame is identical to the rotating frame model except that the

dipolar field takes the following form:

Bd(r) =
∑

r′ 6=r

3n(n ·M′(r′))−M′(r′)
|r− r′|3 dr′ (3.29)

where n = (r− r′)/|r− r′| and to cancel edge effects, we make the substitution

M′(r′) = M(r′)−M(r), (3.30)

as discussed in the previous section.

In this method we cannot make use of azimuthal symmetry of the magnetization dis-

tribution and have to significantly reduce the step size of the time evolution to follow the

Larmor precession frequency of the spins. However, the calculations can still be performed

in a reasonable time (< 24 h on a 1 GHz Pentium 4) for sufficiently large grids to obtain

results in agreement with other models.

3.3.4 Fourier transform technique.

Deville et al. [102] noted that the integral operator in Eq. (3.20) is a convolution that can

be expressed as a local product in Fourier space:

Bd(k) = 2π/3
[
k̂ · ẑ− 1

]
{3Mz(k)ẑ−M(k)} (3.31)

Following Ref. 16 we transform the magnetization distribution into Fourier space using an

FFT, calculate the dipolar magnetic field using Eq. (3.31), transform the field back into real

space and advance the magnetization according to Eq. (3.1) using the predictor-corrector

algorithm discussed above. The numerical model is run on a grid of N3 points where N is

a power of 2. We typically run the model with N=64 or 128.

Here we investigate evolution of magnetization profiles with large average values, which

are not represented accurately by a discrete Fourier transform on a finite grid. Repeated
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Fourier transforms can introduce two types of artifacts: distortions at cell boundaries where

the magnetization abruptly drops to zero and spurious magnetic fields from “ghost” cells

that appear due to implicit periodicity of the Fourier transform. In our calculations the

magnetization can be represented to first order by a combination of a constant term and a

linear gradient in the ẑ direction. Since the dipolar field (3.20) is linear in the magnetization,

we can separate the effects of linear magnetization gradients from higher order deviations.

Prior to calculating the Fourier transform we subtract from the magnetization profile a

constant and linear gradient terms. The remaining magnetization distribution is much

smaller and close to zero near the edges, which reduces both the edge and ghost cell effects.

To further reduce “ghost” cell effects we use a cell radius R that is smaller than the total

grid size N , typically by about 10 points. After calculating the dipolar field created by this

distribution in Fourier space we add the magnetic fields created by the linear magnetization

gradient using Eq. (3.9).

We also consider the effects of diffusion in this model. Since ∇2M is a local operator

there is no speed advantage in calculating it in Fourier space where the boundary conditions

cannot be easily applied. To calculate the diffusion contribution in the presence of the

boundary conditions we first calculate ∇M, then set n · ∇Mi = 0 on the boundary points

and then take another derivative to obtain ∇2Mi.

3.3.5 Analytical expansion of magnetization

The dipolar interactions can be calculated in a numerically efficient way by expanding the

magnetization into a set of basis functions and calculating analytically the dipolar field

produced by each of them. In the absence of diffusion the basis functions do not need to

satisfy any boundary conditions on the surface. As discussed further in the Appendix, it is

convenient to use a Taylor series

M = M0

∑

α,β

mαβ(t)zαρ2β/Rα+2β (3.32)

where ρ =
√

x2 + y2 which is applicable for an azimuthally-symmetric distribution that

develops in the presence of longitudinal magnetic field gradients. Then one can symbolically
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evaluate the dipolar field integrals for each term and write the dipolar field as

Bd,i =
∑

n,m,n′,m′
mnm

i (t)bn′m′
nm,iz

n′ρ2m′
/Rn′+2m′

. (3.33)

where bn′m′
nm,i are constant coefficients whose evaluation is discussed in the Appendix. It is

convenient to note that because of Eq. 3.20

bn′m′
nm,x = bn′m′

nm,y = (−1/2)bn′m′
nm,z = bn′m′

nm . (3.34)

After obtaining all coefficients bn′m′
nm , for n + 2m < 40 and n′ + 2m′ < 40, the expansion for

the magnetization and dipolar magnetic field are inserted into the Bloch equations:

∑

αβ

dmαβ
i

dt
zαρ2β/Rα+2β = εijkγ

∑
rs

mrs
j zrρ2s/Rr+2s ×

∑

n′m′

[
gn′m′

δk3 +
∑
nm

mnm
k bn′m′

nm,k

]
× (3.35)

zn′ρ2m′
/Rn′+2m′

where gn′m′
are the coefficients in the Taylor expansion of of the z component of the exter-

nally applied magnetic field. Equating coefficients of equal powers of zαρ2β for n′ = α− r,

m′ = β − s we arrive at the following set of coupled differential equations

dmαβ
i (t)
dt

= γ
∑

n,m,r,s

mrs
j (t)(bα−r,β−s

nm,k mnm
k (t) + gα−r,β−s)εijk. (3.36)

one for each basis function zαρ2β and each vector index. We numerically solve this large

set of equations using either Mathematica or a homegrown differential equation solver in

FORTRAN.

The case n = 1 and m = 0 is discussed at length in Section 3.2, The expansion n+2m ≤ 4

was also investigated in Ref [101]. This model could explain an asymmetry in the signals

between the two SQUIDs, discussed further in Chapter 4, but the significance of the higher

order terms grew rapidly so that only one or two periods of oscillation could be followed

in the small tip angle regime. Including higher-order gradients, up to z40, improves the

accuracy of the solution and allows us to observe the evolution for many oscillations. In

addition, the extra terms in the series rapidly improve the convergence to the behavior
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predicted by the linear model when gR/M0 ¿ 1. However, we find that the solution

eventually diverges due to rapid growth of highest-order terms. While the Taylor series

expansion is conceptually simple and allows us to obtain the coupling coefficients bkl
nm in

closed form, it is not necessarily an ideal basis for this problem when gR/M0 ≈ 1 and is

somewhat akin to expanding sin(x) in a Taylor series. Increasing the number of terms in

the expansion merely delays the onset of the divergence.

3.3.6 Extraction of data from numerical calculations

In order to compare the results of our calculations with the experiment it is necessary

to accurately model the measurement of the magnetization gradients using two SQUID

detectors. The inset of Fig. 2.1 shows a schematic of the relative orientation between

the SQUID detectors, cell, magnetization and applied field. The signal in each SQUID

is proportional to the flux through a square pickup coil. To calculate the amount of flux

going through the pick-up coils we use the equality of mutual inductances and integrate the

magnetic field produced by a current flowing through the pick-up coil over the volume of the

cell. This technique is convenient because the magnetic field produced by a square loop of

current can be calculated in closed form, rather than numerically calculating the magnetic

field produced by a complicated magnetization distribution. The magnetic flux through the

SQUID pickup coil due to a dipole m = IdAd/c where Id is the effective current flowing

through a loop of area Ad can be written

Φc = LId (3.37)

where L is the mutual inductance between the SQUID pickup coil and the dipole moment.

Likewise, the flux through the dipole from a current Ic flowing through the pickup coil

can be written Φd = LIc = Bc · Ad. Thus we can express the mutual inductance as

L = Bc ·Ad/Ic = Bc
Ic
· mc

Id
and write the total flux through the SQUID pickup coil

Φc = c

∫

V

Bc(r) ·M(r)
Ic

d3r. (3.38)
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The magnetization in the lab frame, written in terms of the rotating frame components is

Mlab = (Mx cosωt−My sinωt, Mx sinωt + My cosωt,Mz). (3.39)

Inserting Eq. 3.39 into Eq. 3.38 we see that the flux through each SQUID can be separated

into AC and DC components. The AC flux in each SQUID has in-phase and out-of-phase

components Φ(i)
in and Φ(i)

out given by

Φ(i)
in =

∫

V
(Mx(r)B(i)

x (r) + My(r)B(i)
y (r))d3r (3.40)

Φ(i)
out =

∫

V
(Mx(r)B(i)

y (r)−My(r)B(i)
x (r))d3r (3.41)

(3.42)

where B(i)(r) is the magnetic field produced by each SQUID pick-up coil with one unit of

current flowing through it. The amplitude of the total AC signal Φ(i)
tot is

Φ(i)
tot =

√
Φ(i) 2

in + Φ(i) 2
out (3.43)

while the phase difference between the SQUID signals is given by

∆φ = arctan(Φ(1)
out/Φ(1)

in )− arctan(Φ(2)
out/Φ(2)

in ). (3.44)

We now address the linearity of the phase difference between the SQUID signals and

the first order gradients of the magnetization. Assume that the magnetization configuration

can be well described by M = M0{1, my
z
R ,mz

z
R} and that my,mz ¿ 1. Referring to the

coordinate system in the inset of Fig. 2.1, we note that the y component of the magnetic

field B
(i)
y produced by either pickup loop is asymmetric with respect to y. Since the above

magnetization distribution is symmetric with respect to the y coordinate, the second term in

Eq. 3.40 and the first term in Eq. 3.41 are both zero. Therefore, since my ¿ 1, Φ(i)
out ¿ Φ(i)

in

and we can approximate Eq. 3.44 as

∆φ =
Φ(1)

out − Φ(2)
out

Φin
(3.45)

where by symmetry, Φ(1)
in = Φ(2)

in = Φin =
∫
V M0B

(i)
x (r)d3r, independent of my. Referring

again to the coordinate system in Fig. 2.1 we focus on the magnetic field Bx produced by
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the SQUID pickup coils. Note that the x and y dependence of this component is identical

for each pickup coil, while the z dependence of Bx has the opposite sign for each coil. Thus

to first order in a Taylor expansion we can write B
(1)
x = p + qxx + qyy + qzz + ... and

B
(2)
x = p + qx + qyy − qzz... Hence Eq. 3.41 becomes

Φ(i)
out = −my

∫

V

z

R
(p + qxx + qyy ± qzz)d3r. (3.46)

On taking the difference between the two phases in Eq. 3.46 the only term that survives

is the term proportional to qz. Hence, for small gradients of the magnetization, the phase

difference is,

∆φ = 2
my

Φin

∫

V

qzz
2

R
d3r = ξmy, (3.47)

directly proportional to the magnetization. The dimensionless parameter ξ depends purely

on geometry and for our setup, ξ ' 0.5. To verify these conclusions, we numerically calculate

the phase difference between the SQUID signals as a function of my and plot the results in

Fig. 3.3. We see that for my < 0.3, the phase difference is proportional to the gradient my.

3.4 Discussion of Simulations

Since the linear model suggests that the behavior in the small tip angle regime, (α < 35◦),

is radically different from the large tip angle regime, we will discuss these two different areas

of parameter space separately.

3.4.1 Small tip angles

Parameters of the Bloch equations

Our simulations depend on five parameters: the magnitude of the applied gradient g in

G/cm, the magnetization density M in G, the radius of the cell R in cm, the diffusion

constant D in cm2/s and the tip angle α in radians. To understand the short term behavior

(<20 sec) after the initial tipping pulse we can neglect the effects of diffusion and relaxation.
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Figure 3.3: The solid line shows the numerically calculated phase difference between SQUID
signals as a function of the gradient my and the dashed line shows a linear fit to the the
region for which my < 0.3

We find that for small tip angles and gR/M0 ¿ 1 the phase oscillations are accurately

described by a sin(ωt) function and their frequency can be determined unambiguously. For

gR/M0 ≈ 1 the oscillations are not quite sinusoidal, as shown in Figure 3.5. Even in that

case we find that by performing a non-linear fit we can find the frequency of oscillations with

a systematic uncertainty of less than 1-2% if the fitting range is greater than 2 oscillation

periods.

It is not initially clear that the RWA is sufficiently accurate, since the ratio of dipolar

fields to applied DC magnetic field can exceed 1/10. To check the validity of the RWA,

we examine the frequency of phase oscillations as a function of the magnetization. We find

that for M0 ≤ B0/10 the changes in the frequency of the oscillations is only a few tenths of

a percent, and hence the RWA is valid in our regime.

Within the RWA scaling arguments allow us to reduce the number of independent pa-

rameters by two for the short term behavior of the system. We use the tip angle and relative
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Figure 3.4: The ratio of frequency of phase oscillations to the predictions of the linear model
obtained with different methods as a function of gR/M for a small tip angle of 0.05 rad.

gradient gR/M0 as the two dimensionless parameters that define a family of solutions.

Short term evolution of the phase oscillations

To explore the effects of magnetization gradients higher than first order for small tip angles

at large gR/M0 we compare the frequency of simulated or experimental oscillations to the

frequency of oscillations of the linear model given by ω = iβ. Since the linear model suggests

that the frequency of the phase oscillations depends on the tip angle α only quadratically

for small α, we set α to a small value α = 0.05 and investigate the oscillation frequency as

a function of gR/M0 as shown in Figure 3.4. For small gradients, gR/M0 ¿ 1, all models

agree with the linear model to within a couple tenths of a percent, except for the grid model

in the lab frame which has a constant offset because it uses a relatively small number of

grid points.

The case in which gR/M0 ≈ 1 is the most problematic because higher order gradients

become important. The ratio of the second to first order gradient grows linearly with

gR/M0, m2/m1 ≈ 2 × gR/M0, indicating the importance of higher order gradients of the

magnetization at large gR/M0. It is interesting to superimpose the solutions of the grid,
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Fourier and analytic expansion models for this case. In Fig. 3.5 we show solutions from

all models for gR/M0 = 1. A close agreement for the first period of oscillation provides

a verification of the correctness of our codes. Observed deviation for later times is due to

numerical accuracy of implemented methods. We checked that as the number of terms in the

Taylor expansion grows the numerical results are virtually unchanged until the point where

the Taylor expansion breaks. Similarly, for the grid models we also find close agreement

for N = 25 and N = 41 and the results of the Fourier model are unchanged for N = 64 or

128. Decreasing the time step by a factor of two produces imperceptible change in any of

the models.

In Figure 3.6 we show the dependence of frequency on the tip angle for gR/M0 = 0.2.

The predictions of our models agree well with the linear model for small tip angles, but

some deviation is observed for larger tip angles. The linear model predicts that the gradi-

ents should oscillate for tip angles smaller than 35◦ ≈ 0.6 rad and grow exponentially for

larger angles. However, in each of the higher order numerical models, the solution becomes

unstable for tip angles greater than about 0.3 radians. Experimental observations indicate

that instability can occur for tip angles as small as 0.15 rad. The tip angle corresponding

to the onset of the instability is approximately inversely proportional to the magnetization.

We leave a more detailed exploration of the onset of instability with respect to the tip angle

for another study.

Long term evolution of the phase oscillations.

For time scales on the order of many hundreds of seconds diffusion and relaxation become

relevant. In the limit of small tip angles and small gR/M0, the magnetization profile is

dominated by an oscillating first order gradient in the ẑ direction of the ŷ and ẑ components

of the magnetization. The longitudinal relaxation time in our experiment is close to T1 =

1800 seconds measured in other experiments, indicating that depolarization on the cell walls

is very small. In the presence of diffusion and the non-relaxing cell walls, the boundary

condition is dM/dr|r=R = 0, essentially “rounding off” the linear gradient at the cell walls.
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Figure 3.5: Comparison of the phase oscillations from all models for gR/M = 1 and tip
angle α = 0.05 rad. The models agree closely for the first period of oscillation, but start
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Figure 3.6: The dependence of the frequency of the phase oscillations obtained with different
models compared with the prediction of the linear model as a function of the tip angle with
gR/M0 = 0.2 and M0 = 100µG.
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We solve the diffusion equation in the presence of an oscillating magnetization gradient

using Laplace transform method and expanding the magnetization in terms of spherical

Bessel functions and spherical harmonics. The length scale for the distortion of the linear

magnetization gradient is given by lD =
√

D/ωlin and for our experimental conditions

lD ∼ 3 × 10−3cm. Thus, only a very thin layer near the surface of the cell is affected by

diffusion. The magnetic dipolar fields created by this distortion result in the decay of the

phase oscillations.

The modelling of the diffusion effects is very numerically demanding. We are interested

in the solution of the problem in the regime lD ¿ R. On the other hand, to accurately

describe the effects of diffusion on a discrete grid we need the grid spacing to be much smaller

than lD. These requirements result in an inequality R À lD À R/N which cannot be easily

satisfied unless N is large. We performed the calculations using the Fourier method with

N = 128 and using artificially increased values of the diffusion constant so both inequalities

are approximately satisfied. We found that the rate for the decay of the phase oscillations

τ−1 scales approximately with D/R2. Numerically, we obtain τ−1 ∼ 7D/R2. This can be

compared with the decay rate τ−1
1 = 4.33D/R2 of the first diffusion eigenmode with l = 1

spherical harmonic, which corresponds to an approximately linear magnetization gradient.

The measurements of the diffusion constant of liquid Xe are also somewhat uncertain,

with numbers ranging from D = 2× 10−5 cm2/ sec to D = 4× 10−5 cm2/ sec, [46, 107, 108]

at our temperature. We estimate that the decay of the phase oscillations due to diffusion

has a time constant τ ∼ 2000 seconds with a factor of 2 uncertainty.

3.4.2 Large tip angles

As discussed in the introduction and earlier in the chapter, the large tip angle regime is

particularly interesting for an EDM experiment. At large tip angles, the magnetization

develops a dynamical instability, such that the response to any perturbation[91] grows

exponentially. If the perturbation is a purely linear longitudinal magnetic field gradient,

the instability leads to exponential growth of the linear gradients of the magnetization. In
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principle, this can lead to enormous gains in the sensitivity to a small magnetic field gradient.

For a magnetization of 100 µG, β = 1.75 s−1 so that the gain parameter G = sinh(βt)/βt)

is 360 at 5 seconds. Since the timescale we are concerned with in this regime is so short,

we do not consider the effects of diffusion or relaxation.

This almost seems too good to be true. Is it really possible to realize such spectacular

amplification of first order gradients? In particular, will the growth of high order gradients

spoil this amplification? In brief, the answer is yes, high order gradients will certainly

have an impact on the amplification of first order longitudinal gradients, however, it is still

possible to realize substantial improvements in sensitivity.

We first examine the full solution to the numerical models in the presence of an applied

linear longitudinal gradient as well as other additional transverse or other higher order

gradients. Since our goal is to achieve very high sensitivity to a small first order longitudinal

magnetic field gradient g, we generally assume that it is smaller than other gradients that are

not measured directly. We find that the presence of transverse gradients and higher order

longitudinal gradients as well as initial magnetization inhomogeneities cause an abrupt non-

linear decay of the overall magnetization. The time tc until the collapse of the magnetization,

which depends on the size of the inhomogeneities relative to M0, limits the achievable gain

to sinh(βtc)/βtc. Inhomogeneities of the applied field symmetric with respect to the z

direction, such as transverse linear gradients or second order longitudinal gradients, do not

change the evolution of ∆φ, which remains proportional to g before the collapse of the

magnetization, as shown in Figs. 3.7, 3.8, and 3.9. Thus, despite the rapid growth of higher

order gradients, we find that it is still possible to achieve substantial gains in sensitivity to

a small first order longitudinal gradient.

Higher order z-odd longitudinal gradients do generate a phase difference as shown

(Fig. 3.10b). In this figure the squares represent the evolution of the phase difference in the

presence of small linear longitudinal gradient g as well as a larger third order longitudinal

gradient g3. The squares represent the phase difference for evolution in the presence of a

third order gradient g3 and g = 0. The triangles represent the difference of these two, which
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Figure 3.7: Results of simulations for M0 = 100 µG,a small longitudinal field gradient
g‖ = 0.1µG/cm and a series of relatively large transverse g⊥ = 0, 2, 4, 6, 8, 10µG/cm.
(black,red,green,dark blue,purple,light blue respectively). Despite the presence of substan-
tially larger transverse gradients, a small longitudinal gradient leads to the exponential
growth of the phase difference between the SQUIDs as predicted by Eq.3.12 until the over-
all SQUID signal begins to decay. Inset is the gain when the signal reaches 90% of its initial
value as a function of g⊥R/M0
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Figure 3.9: Impact of second order transverse gradients on growth of phase difference and
signal. Inset is the gain function for longitudinal linear gradients at the time of the collapse
of the signal
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Figure 3.10: Numerical simulations of the SQUID signal (left axis) and the phase difference
between SQUIDs (right axis) for M0 = 100µG and a small longitudinal field gradient
g = 0.1µG/cm (solid lines). a) An additional larger transverse gradient g⊥ = 2µG/cm
(dashed line) or a second order longitudinal gradient g2 = 1µG/cm2 (dash-dot) do not affect
the phase difference until the SQUID signal begins to decay. b): Effects of an additional
third order longitudinal gradient g3 = 0.8 µG/cm3 (squares). Stars show the phase evolution
in the presence of g3 but for g = 0. The difference between the phase for g = 0.1µG/cm
and g = 0 (triangles) follows the solid line corresponding to the pure linear gradient g
until the magnetization begins to collapse. Hence, the third order gradient generates a
background phase signal that can be subtracted if one is looking for a small change in g
between successive measurements.

evolves as predicted by the linear model. Hence, the contributions of different magnetic field

gradients to the phase difference add linearly as long as m(i,k) ¿ 1 and the effects of higher

order odd gradients can be subtracted if they remain constant. This subtraction breaks

down when the gradients of the magnetization become large, however until that time, the

phase difference can be used as an accurate measure of the applied gradient g.

To understand the growth of high order magnetization gradients it is instructive to

examine the analytic expansion in first order perturbation theory, where we assume all

magnetization gradients are small and we neglect the coupling between high order gradients.
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λ
∑

ij uij
k ziρ2j

0 0.488603
3.35103 1.09255 z
−2.73628 0.904082− 1.99895 ρ2 − 0.522501 z2

5.12987 0.660289− 0.42662 ρ2 − 2.4482 z2

−0.545181 2.3645 z − 5.87619 ρ2 z − 1.5997 z3

6.13023 2.79958 z − 1.75235 ρ2 z − 5.36412 z3

Table 3.1: Eigenvalues and eigenmodes of the magnetic field operator in cylindrical coordi-
nates.

In this case Mx = M0 is constant and Eq. 3.36 reduces to

dmµν
y (t)
dt

= −γM0

∑

ij

bµν
ij mij

z (t)

dmµν
z (t)
dt

= −1
2
γM0

∑

ij

bµν
ij mij

y (t) (3.48)

For convenience, we assume that M0 and γ are both 1. A magnetization gradient mij

generates magnetic field gradients only of equal or lower order, bµν
ij = 0 for µ + 2ν > i + 2j.

Hence if we include only (and all) terms in the Taylor expansion such that µ + 2ν ≤ Nmax,

the system is closed in the sense that if we start with some configuration of the magnetization

with terms limited by µ + 2ν ≤ Nmax, the system evolves within this subspace.

We now write Eqns. 3.48 in matrix form

d

dt




mµν
y

mµν
z


 =




0 −bµν
ij

−bµν
ij /2 0







mij
y

mij
z


 (3.49)

It is straightforward to show that the eigenvalues of the magnetic field operator in Eq. 3.49

are β±k = ±λk/
√

2 and the eigenvectors are {uij
k ,±uij

k /
√

2} where λk and uk are the eigen-

values and eigenvectors of −bµν
ij , −buk = λkuk. We obtain the eigenvectors uk and λk using

Mathematica. For reference, we present the eigenvalues λ and the functions
∑

ij uij
k ziρ2j

for Nmax = 3 in Table 3.1. With the exception of the two lowest order eigenmodes

which correspond to uniform or purely linear gradients of the magnetization, the eigen-

modes are complicated combinations of the basis functions of the Taylor expansion znρ2m

for n + 2m ≤ Nmax. Before proceeding we note that with the appropriate normalization,
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Figure 3.11: Maximum eigenvalue of the time evolution operator as a function of the max-
imum order of the Taylor expansion.

the functions
∑

ij uij
k ziρ2j are orthonormal when integrated over the unit sphere:

∫

V
uij

k ziρ2junm
l znρ2md3x = δkl. (3.50)

This fact can be verified numerically. Presumably, a better choice of basis functions would

elucidate this result, however we will leave this for a later discussion.

In Fig. 3.11 we plot the maximum eigenvalue βmax, corresponding to the fastest growing

mode, as a function of the maximum order of the Taylor expansion. For Nmax = 1 corre-

sponding to only linear terms in the Taylor expansion, we naturally recover the growth rate

given by the linear model 8π
√

2/15 for M0 = γ = 1. We see that the growth rate of higher

order gradients seems to approach an asymptote about 2.5 times greater than the growth

rate of linear gradients.

Given the orthogonality condition 3.50, the time evolution of the system is particularly

simple if we express the magnetization as a sum of the eigenmodes of the system

M =
∑

k

a±k(t)v±k (3.51)
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where

v±k = (ŷ + ẑ/
√

2)
∑

ij

uij
k ziρ2j . (3.52)

Here we neglect the x component of the magnetization because it is unchanged in this

perturbative analysis. In this basis, the Bloch equations are simply

da±k(t)
dt

= β±ka±k(t) (3.53)

If the initial condition is

M(t = 0) =
∑

±k

a±k(0)v±k (3.54)

the magnetization at a later time is simply

M(t) =
∑

±k

a±k(0)eβ±ktv±k. (3.55)

To make connection with experimental observables, we note that the SQUID signal is

approximately equal to the first moment of the y component of the magnetization p =
∫
V zMy(t)d3x. Inserting the solution 3.55 into the expression for p

p(t) =
∫

V
z


∑

±j

a±j(0)eβ±jt(v±j)y


 d3x (3.56)

Since z is proportional to v±1 which are orthogonal to all other v±k, the only terms that

contribute are the lowest order terms v±1:

p(t) =
∑

±1

a±1(0)eβ±1t
∫

V
z(v±1)yd

3x. (3.57)

This is an interesting result. Regardless of the initial condition of the magnetization, the

first moment of the magnetization will always grow with a time constant β±1 given by the

linear model.

Until now we have neglected any driving term such as an applied gradient of the magnetic

field and addressed the behavior of the magnetization for some initial condition specified

by Eq. 3.54. It should be noted that the solution for an applied gradient can obtained by

supplying initial conditions on the derivatives

a±k

dt

∣∣∣
t=0

= g±k (3.58)
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where g±k are the coefficients in a Taylor expansion of the applied magnetic field in terms

of the basis functions 3.52. The solution to Eq. 3.53 is

a±k(t) =
g±k

β±k
eβ±kt. (3.59)

Hence we conclude that the first moment of the magnetization also grows exponentially

in response to the first moment of the applied field with a time constant β±1. To recover

the equations for the growth of gradients in response to a linear longitudinal applied field

gradient given in Section 3.2, we note that a purely longitudinal linear field gradient is a

linear combination of v+1 and v−1.

The SQUID signal is not exactly proportional to the first moment because the difference

between the magnetic fields generated by the SQUID signals is not exactly a linear function

of z. It turns out that it is a pretty good approximation for our geometry though. As

discussed previously, the phase difference between the two SQUID signals is proportional

to ∫

V
MyB

SQUID
x d3x. (3.60)

In Fig. 3.12 we plot the numerically calculated contribution to the phase difference from

each eigenmode
∫
V vk,yB

SQUID
x as a function of the order of the eigenmode, the maximum

of n + 2m in the Taylor expansion. It is apparent that first eigenmode corresponding to

linear gradients of the magnetization generates a phase difference 35 times greater than the

next z-odd eigenmode. So, until the next z-odd mode becomes many times greater than

the first eigenmode, the phase difference between the SQUID signals will grow with a time

constant given by the linear model β = M0γ8π
√

2/15. With a clever choice of geometry it

may be possible to completely suppress the SQUID sensitivity to the higher order modes.

A final point to make is that Eq. 3.60 is linear in the magnetization. If one is looking for

a modulation of the SQUID phase difference in response to an oscillating linear gradient

in the presence of other gradients, as long as the other gradients remain constant, their

contribution to the SQUID phase difference may be subtracted off. This is in aggreement

with the results of the full solutions of the numerical models discussed previously.
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Figure 3.12: Magnitude of phase difference due to various eigenmodes as a function of the
order of the eigenmode

Hence, the phase difference ∆φ can be used to measure a very small linear gradient

g in the presence of larger inhomogeneities as long as all magnetic field and magnetiza-

tion inhomogeneities are much smaller than M0. The ultimate sensitivity is limited by

the fluctuations of the gradients between successive measurements. In addition to the

fluctuations of g, which is the quantity being measured, the phase difference will be af-

fected by the fluctuations in the initial magnetization gradients m
(1,0)
y and m

(1,0)
z and, to a

smaller degree, higher order z-odd gradients of the magnetic field and the magnetization.

In particular, fluctuations of m
(1,0)
y and m

(1,0)
z , either due to spin-projection noise or exper-

imental imperfections, set a limit on the magnetic field gradient sensitivity on the order of

δg = 8
√

2πM0δm
(1,0)
y /15R and similar for δm

(1,0)
z . Thus to achieve high gains in sensitiv-

ity to a small longitudinal linear magnetic field gradient, it will be necessary to reduce all

magnetic field gradients and ensure that the initial magnetization of 129Xe is uniform. The

implications of the dynamic instability at large tip angles to the measurement of an EDM

are discussed further in Chapter 5.
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3.5 Cell deformations

Our studies did not focus on the effects of cell deformations, as this is not an easy parameter

to vary experimentally, and hence we will discuss this only briefly. Treating the effects of

cell deformations with the grid models that calculate the magnetic field directly is difficult

because the subtraction procedure discussed in Section 3.3.2 cannot be employed for a non-

spherical cell. Without the subtraction procedure, edge effects rapidly propagate inward,

destroying the solution. The Fourier model seems to have less susceptibility to edge effects.

However, the magnetic fields created by small deformations for a uniform polarization can

be calculated analytically, and for certain types of deformations, the effects of the dipolar

fields are easy to analyze.

We characterize cell deformations in terms of linear combinations of spherical harmonics

Slm(θ, φ) = 1
2i(Ylm(θ, φ) ± Yl−m(θ, φ)) since they form a complete basis on the surface of

a sphere. The magnetic field can be calculated using Eq. 3.3. We assume here that the

magnetization is uniform, and hence the first term may be neglected. We parameterize

the surface as R(θ, φ) = R(1 + εSlm(θ, φ)). To calculate the magnetic field, we expand the

integrand in the last term of Eq. 3.3 to first order in ε. We find that l = 1 deformations

due not generate any magnetic field, as this corresponds to a simple offset of the spherical

cell from the origin. l = 2 deformations generate only homogeneous magnetic fields. It is

straightforward to show that for a S2,0 deformation, the magnetic field is

B20 = 2ε
π√
5
{−Mx,−My, 2Mz}. (3.61)

This produces a frequency shift δω = 6γεπMz√
5

. All other quadrupolar deformations produce

magnetic fields that average to zero in the rotating frame and hence produce no frequency

shifts.

l = 3 deformations generate only linear gradients of the magnetic field. For example,

the magnetic field in the rotating frame generated by an l = 3,m = 0 deformation is

B30 = εM0
z

R

√
π

7
{−6 sin α, 0, 9 cos α}. (3.62)
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Neglecting the effects of other gradients of the magnetization, this will generate a small

gradient of the y component of the magnetization

dm
(1,0)
y

dt
= 15γε

√
5
7
M0 sinα cosα (3.63)

Conveniently, this is zero for α = π/2 and to first order in small parameters, does not have

an effect on the evolution of the gradients. For small tip angles, it will slightly modify the

oscillation frequency of the gradients.

3.6 Conclusions

We have developed several new numerical tools to study the effects of long range dipolar

fields. Most useful for other applications are: (1) A method for compensating for edge effects

in a spherical geometry due to the finite grid size and the use of the azimuthal symmetry of

the problem, decreasing computation time by up to a factor of 64 in a direct evaluation of

the dipolar field. (2) A subtraction procedure in the Fourier method that both compensates

for edge effects as well as reducing the effects of ghost cells.

Using these numerical tools we have developed four different models to explore the spin

dynamics of a spherical cell of hyperpolarized liquid xenon. We verify using the lab frame

model that the rotating wave approximation is valid even when the dipolar fields are only

a factor of 10 smaller than the applied magnetic field.

In the small tip angle regime, the numerical models agree with the linear model to better

than 1 percent in the frequency of phase oscillations for gR/M0 ¿ 1. For gR/M0 ≈ 1 the

numerical models show that higher order gradients become important and their predictions

deviate slightly from the linear model.

In the large tip angle regime, the numerical models are in agreement with the linear

model on the exponential growth of linear gradients of the magnetization in response to a

linear applied field gradient as long as high order gradients of the magnetization are small.

The numerical models also indicate that high order gradients of the magnetization grow

exponentially in response to high order gradients of the magnetic field. Gradients that
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are even with respect to z cause an eventual collapse of the signal, ultimately limiting the

achievable gain, but as long as the gradients are small compared to the magnetization,

the phase difference can be used to measure the longitudinal gradient. High order, z odd

gradients do generate a phase difference, however if such gradients remain constant, their

effects can be subtracted from the phase difference to yield a measurement of the applied

gradient.



Chapter 4

Experimental results and

comparison with theory

In this chapter, I present our experimental results and compare them to the predictions

of our models. As in the previous chapter, I discuss the data separately for the small and

large tip angle regimes, as the behavior is dramatically different. We find good agreement,

qualitatively and quantitatively, between theory and experiment.

For small tip angles we find that the magnetization gradients oscillate coherently, extend-

ing the free induction decay time by up to a factor of 100 compared to the non-interacting

case, even for gR/M > 1. The frequency of the phase oscillations is in agreement with that

predicted by the linear model within the accuracy to which we can measure significant pa-

rameters. The relaxation time of the phase oscillations scales approximately inversely with

the magnetization and was over 1000 seconds for some data sets at high magnetization.

We attribute this trend to the competing timescales associated with spectral narrowing and

convection due to temperature gradients. The overall decay of the NMR signal following a

small pulse, T ∗2 , is affected by the degree of sphericity of the cell and the strength of the

magnetic field gradient across the cell relative to the magnetization of 129Xe. When all

applied magnetic field gradients have been properly minimized we realized free induction

decay times in excess of 1000 seconds.

83
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Figure 4.1: Longitudinal relaxation of hyperpolarized xenon in a low field environment.

In the large tip angle regime, we find that the phase difference between the two SQUID

signals grows exponentially with a time constant predicted by the linear model. As dis-

cussed in the previous chapter, as long as all gradients of the magnetization remain small,

m
(i,j)
y ¿ 1, the phase difference is directly proportional to the linear longitudinal applied

field gradient g, and therefore can be used to obtain a measurement of g. Since the phase

difference grows exponentially in response to a small applied field gradient rather than lin-

early, we realize enhanced sensitivity to a small applied field gradient. Experimentally we

have achieved amplification of small spin precession by a factor of up to 9.5 relative to the

non-interacting case, limited by the time until collapse of the NMR signal.

4.1 Small tip angle regime

4.1.1 Longitudinal relaxation

All of the small tip angle data presented here was taken with cells that had no silicon

membrane inside. We first verify that in the ultra low field environment, the longitudinal
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relaxation time is still quite long. Fig 4.1 shows the longitudinal magnetization determined

from the magnitude of the AC SQUID signal following a series of small angle pulses. For

this data we find T1 = 1650 seconds, close to the value obtained in other measurements at

high magnetic field.[46, 65]

4.1.2 Transverse relaxation

The subject of the transverse relaxation time is substantially complicated by the presence

of dipolar interactions. As discussed in the introduction, we verified using the method of

spin echoes that the intrinsic transverse relaxation time is quite long, T2 ≥ 1300 s. When

the magnetic field gradients are much smaller than the magnetization, spectral narrowing

in the small tip angle regime reduces or eliminates the need to apply refocusing pulses. In

our ultra-low field shielded environment, this condition is satisfied and for some data sets,

we realized very long free induction decay times. Fig. 4.2 shows the oscillating transverse

components of the magnetization following a 2◦ pulse, and for this data we find a free

induction decay time T ∗2 = 1080 s. The abrupt collapse of the signal was due to the

deliberate application of a negative feedback from the output of the SQUIDs

We find that deviations of the cell from the spherical shape have a large effect on the

transverse relaxation time T ∗2 as shown in Figure 4.3. For large deviations of the cell from

the spherical shape the transverse relaxation time is determined by magnetic field gradients

created by the magnetization and the relaxation time increases as the magnetization decays.

To illustrate this regime we plot the product M0T
∗
2 , which remains constant for a range

of M0 values in cells made from blown glass. On the other hand for machined glass cells

we find that M0T
∗
2 is approximately proportional to M0, indicating that the transverse

relaxation time is determined by gradients of the ambient magnetic field and the intrinsic

transverse relaxation time of liquid 129Xe.
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Figure 4.2: Free induction decay following a small tip angle pulse.
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Figure 4.3: Deviations from spherical geometry have an effect on the transverse relaxation
time T ∗2 . The blown glass cell with a capillary stem is less spherical near the stem than the
thin stem cell because the capillary has thick walls that distort the shape of the cell.
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Figure 4.4: Transverse magnetization following an 8.7◦ tipping pulse. After a short time,
the signal collapses due to some instability.

4.1.3 Dynamical instability

Though the linear model predicts that the system is stable for tip angles smaller than 35◦,

we find experimentally that an instability can arise for substantially smaller tip angles. To

illustrate, in Fig. 4.4 we show data for a tip angle of 8.7◦ where the signal collapses after

a short time. For smaller magnetizations, the angle at which the system became unstable

tended to increase. We did not study the onset of this instability sufficiently to draw any

general conclusions. Our models qualitatively reproduce this behavior for evolution in the

presence of a small linear magnetic field gradient, though the instability seems to occur at

tip angles closer to 15◦. We suspect that the coupling of higher order gradients to each

other is responsible for this behavior.

4.1.4 Frequency stability

For an electric dipole moment measurement in the small tip angle regime (this is discussed

further in Chapter 5), a near uniform electric field would be applied to the entire sample.
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Figure 4.5: Frequency of FID following a series of small angle pulses. The dashed line is a
linear fit to the data, resulting in a drift of about 1.5 nG/s

Thus, an EDM signal would be a shift in the average precession frequency, rather than a

shift in the difference of the precession frequencies between either half of the cell. Since

there would be no differential measurement, the frequency stability is of crucial importance.

To investigate the frequency stability, we apply a series of small angle pulses and plot the

precession frequency in Fig. 4.5. After the first two pulses, there appears to be a simple

linear drift in the precession frequency, corresponding to a magnetic field drift of about

1.5 nG/s. The question then arises as to whether this drift is due to ambient magnetic

field drifts or to dipolar magnetic fields. As discussed in Chapter 3, for a spherical cell,

regardless of the magnetization profile, the average magnetic field in the cell is zero, and

thus the frequency shift cannot arise from magnetization inhomogeneities. This does not

rule out dipolar magnetic fields due to deformations of the cell. However as the frequency

shift profile is dominated by a linear component, rather than a decaying exponential, we

conclude that the largest source of frequency shifts must be due to real drifts of the magnetic

field. A large source of possible drifts of the ambient magnetic field is due to changes in

the temperature of the magnetic shields. Our experimental setup was not optimized for
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Figure 4.6: Magnetic field drift detected by SQUID magnetometers.

thermal stability (for example, the tubes that filled the dewar with liquid nitrogen were

poorly insulated), and thus such an effect is highly probable.

To directly measure magnetic field drifts, we monitored the DC SQUID signal following

the filling of the dewar with LN2 when there was no xenon in the system, and plot the

results in Fig. 4.6. These measurements should be taken with a grain of salt, as SQUID

magnetometers have a substantial amount of 1/f drift. However, one would expect that

drift in the two SQUID magnetometers would be uncorrelated. The drift in both SQUID

signals is monotonic and has a similar slope of about 0.7 nG/s after the initial filling. If

we attribute the drift to actual magnetic field drifts of the longitudinal component of the

magnetic field, to compare to the magnetic field drift obtained from the xenon frequency

shift, we must multiply this by a factor of
√

2 as the SQUID magnetometers are oriented at

45◦ relative to the main field. This yields a drift of Bz of about 1 nG/s, close to the drift

obtained from the xenon precession frequency shift. It should be noted that this data was

taken on the day following the data shown in Fig. 4.5 was taken, and is only representative

of the frequency shift one might expect. These measurements indicate that good thermal
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Figure 4.7: A SQUID signal (top panel) and the phase difference between two SQUIDs
(bottom panel) for M = 249µG, gR = 72µG, and a tip angle of 0.0205 rad. The phase
oscillations decay very slowly compared to older data at lower magnetizations shown in the
introduction and discussed in Ref. [101].

insulation of the magnetic shields will be very important.

4.1.5 Phase oscillations

We determine the phase difference between the two AC SQUID signals by using the following

simple algorithm. Suppose each signal is represented by

Si(t) = Ai(t) sin(ω0t + φi(t)). (4.1)

We assume that changes in the amplitude and the relative phase are much slower than the

Larmor precession frequency. We form two products of the signals, one with a relative phase

shift of π/2 between them

f(t) = S1(t)S2(t + π/2ω0)

= A1(t)A2(t)/2×

[sin∆φ(t) + sin(2ω0t + φ1(t) + φ2(t))]

g(t) = S1(t)S2(t) (4.2)
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= A1(t)A2(t)/2×

[cos∆φ(t)− cos(2ω0t + φ1(t) + φ2(t))].

After digitally filtering out the high frequency components of the two products and taking

the ratio, one obtains the difference in phase

tan∆φ(t) =
lowpass(f(t))
lowpass(g(t))

(4.3)

Figure 4.7 shows the SQUID NMR signal after a small tip angle pulse and the phase

oscillations obtained in this manner. T ∗2 is about 320 seconds, a factor of about 60 longer

than what one would expect neglecting dipolar interactions. We fit the phase oscillations

to the functional form Ae−t/τ sin(ωt + φ) to obtain the frequency of the phase oscillations

ω and relaxation time of the phase oscillations τ . The high frequency modulations in the

amplitude of the SQUID signal occur at the same frequency as the phase oscillations and

are due to a slight reduction of the signal when the magnetization gradients are large.

In Figure 4.8 we plot the ratio of the phase oscillation frequency to the predictions of

the linear model for both simulation and experiment without any free parameters. The

frequency of phase oscillations is determined by a fit to several periods in both experiment

and simulation as explained above. The scatter in the experimental data is probably due

to small changes in the calibration of the magnetization due to relative motion of the

SQUID and the cells caused by thermal stresses in the G10 plate to which the SQUIDs

are attached. At low values of gR/M0 the experimental data agree very well with the

results of numerical calculations. The frequency is also in agreement with the results of

the linear model (ω/ωlin = 1). At high values of gR/M0 we find a systematic deviation

of the experimentally measured frequency from the numerical results. The results of the

numerical calculations also have a systematic error of 1-2% because the phase oscillations

are not perfectly sinusoidal. We also find that in this regime the frequency of the oscillations

is very sensitive to other experimental parameters. For example, in our earlier study [101]

with smaller values of M0 and τ we found substantially larger increase in the frequency of

the oscillations at large gR/M0.
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Figure 4.8: Measurements of the frequency of phase oscillations (squares) and the results
of numerical simulations (solid line) plotted as a ratio to the predictions of the linear model
as a function of the magnetization. Tip angles are small for all experimental data, α ≤ 0.12
rad.

Our numerical simulations also approximately reproduce the aharmonicity of the phase

oscillations for large values of gR/M0. To analyze these effects quantitatively we perform

an FFT on the phase oscillation signals for both experimental data and simulation taking

care that there is an integral number of periods in the sample to be transformed. The

resulting spectrum is shown in Figure 4.9. The vertical scale of the simulation FFT has been

adjusted to compensate for slight differences in the magnetization between the simulation

and experimental data. The spectra of phase oscillations for both simulation and data

exhibit a single narrow peak at ω = ωlin for small gR/M0. For large gR/M0, two extra

peaks appear to the right of the main peak at approximately ω = 3ωlin/2 and ω = 2ωlin

in both simulation and experiment. These extra peaks are due to the different rates of

oscillation of higher order gradients that mix in a non-trivial way.

In Figure 4.10 we show the observed relaxation time τ of the phase oscillations as a

function of the magnetization. At low magnetization our data are consistent with earlier
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Figure 4.10: Relaxation time of phase oscillations as a function of the magnetization. Data
were taken at gR = 66µG and tip angles ranging from 0.0205 to 0.123 rad. Arrows indicate
data sets where the value of τ was too long to measure accurately.
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results [101], but for higher magnetization (M0 > 100µG) we observe much longer values

of τ . In some data sets the decay time is even too long to be measured reliably. For

large magnetization the values of τ are consistent with our estimates of relaxation due to

diffusion on the order of 2000 sec. At low magnetization we believe the oscillations are

more readily affected by convection effects. This behavior can be explained by the following

scaling argument. When the frequency of phase oscillations is large (high magnetization)

compared to the rate of convection, the magnetization will be transported through the cell

adiabatically and follow the coherent behavior predicted by the dipolar interactions. At low

magnetization, the frequency of phase oscillations is comparable to the rate of transport due

to thermal gradients and the magnetization cannot follow the oscillations due to the dipolar

fields hence smearing out the magnetization gradients. The scatter in the relaxation time

data could be due to initial magnetization inhomogeneities or different convection patterns

due to slight temperature gradients.

To explore the effects of temperature gradients, we deliberately applied a large temper-

ature gradient (approximately 15 K/cm) by warming the bottom of the cell with a jet of

warm nitrogen vapor flowing through a small teflon tube. We found that large temperature

gradients can induce convection currents which significantly affect the evolution of the phase

oscillations. To illustrate, in Fig 4.11 we show the evolution of the phase oscillations after

applying a small tip angle pulse. At ∼ 50 sec we turned on the jet of nitrogen. Once the

temperature gradients were established, the phase oscillations rapidly decayed.

4.2 Large tip angle regime

In the large tip angle regime, we first verified that the phase difference between the two

SQUID signals grows exponentially with a time constant determined by the linear model.

For the data shown in Fig. 1.10, the applied gradient was g = 8.4± 1µG/cm the magneti-

zation is 42 ± 2µG, yielding, via Eq. 3.15 β = 0.74 ± 0.04 sec−1 for α = π/2. Fitting the



95

0 50 100 150 200 250

Time (s)

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

∆φ
(r

ad
)

N2 flow on at t = 50 s

Figure 4.11: Demonstration of the effects of temperature gradients on the evolution of the
phase oscillations. For this data, M0 = 60µG, α = 4.7◦ and g = 88µG/cm.

phase difference to Eq. 3.19

∆(φ) = ξm(1,0)
y = ξ

γgR

β
sinh(βt), (4.4)

allowing both the gradient g and β to vary, we find g = 8.0µG and β = 0.75 sec−1.

For the rest of the data presented here, the cell was divided by a 25 µm silicon membrane.

This membrane served to inhibit convection due to small residual temperature gradients

and provided the ability to mix the sample by rotating the membrane, as discussed in

Chapter 2. Our algorithm for taking data was slightly different in the large tip angle

regime. Following a π/2 pulse, the magnetization will rapidly collapse under the influence

of its own dipolar magnetic fields. In order to make multiple measurements on a single

sample of polarized xenon, data was taken with the following simple protocol: 1) A π/2

pulse was applied, tipping the magnetization into the x direction of the rotating frame. 2)

The magnetization evolved under the influence of its own dipolar fields, and in real time

we recorded the amplitude and the phase difference between the two SQUID signals. 3)

When the NMR signal dropped to 90% of its initial value, a second π/2 pulse, 180◦ out
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Figure 4.12: Top panel: SQUID NMR signal following a π/2 pulse. After the signal drops
to 90% of its initial value a second pulse is applied to realign the magnetization with the
longitudinal direction. Bottom panel: Phase difference between the SQUID signals.

of phase with the first was applied to realign the magnetization with the holding field.

Small residual transverse components of the magnetization were then damped using the

method described in Chapter 2. 4) We then oscillated the silicon membrane to mix the

magnetization, returning the magnetization to its original homogeneous state.

In the top panel of Fig. 4.12 we plot one of the SQUID signals and the phase difference

between the two SQUID signals in the bottom panel. To determine the phase in real time,

we fit one period of each SQUID signal to ai sin(ω0t + φi), varying only the amplitude

and phase. The gradient g is determined by fitting the resulting phase difference to Eq.

4.4 where now the only free parameter is g; β = 8π
15 γM0 was determined from the initial

amplitude of the NMR signal. The dash-dot line is a linear fit to the first half second of

data, demonstrating that in the non-interacting case, the phase difference was barely above

the noise level of the detection system. The gain over the non interacting system by the

time the signal drops to 90% of its initial value was 9.5.

The numerical simulations discussed in the previous chapter indicate that the gain is

likely limited by high order gradients of the magnetic field. According to the inset of
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Figure 4.13: Top panel: Measurement of an oscillating gradient. Stars show the applied
gradient and squares show the gradient measured using non-linear spin precession. Bot-
tom panel: Amplification achieved using non-linear spin precession relative to the non-
interacting case. The gain drops when the sample is not mixed in the shaded region

Fig. 3.8, the gain appears to scale roughly as (gzzR
2/M0)−1. For M0 = 40µG, and a

second order gradient of 1 µG/cm2, which cannot be excluded based on our mapping of

the magnetic field, gzzR
2/M0 = 0.00625. Extrapolating the numerically calculated gain

function to gzzR
2/M0 = 0.00625 yields a gain of 8.8, roughly consistent with our data.

The presence of a large higher order gradient would explain why the phase difference for

the data shown in Fig. 4.12 is still relatively small (though 10 times larger than in the

non-interacting case!) by the time the signal starts to collapse. The collapse of the NMR

signal is due to large high order gradients of the magnetization that do not generate a large

phase difference in the SQUID signals.

By applying a series of double pulses we made repeated measurements of the magnetic

field gradient. In the top panel of Fig. 4.13 we show data where the applied longitudinal

gradient is oscillated with peak-to-peak amplitude of 2µG/cm between each set of pulses.

The stars represent the applied gradient and the squares represent the gradient measured

by using non-linear spin precession. There is a strong correlation between the applied

and measured gradient, indicating that non-linear spin precession faithfully reproduces the

applied gradient.
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The bottom panel of Fig. 4.13 shows the gain parameter for the same data set. We

associate the rising gain at the beginning of the data set with a smearing out of initial

magnetization inhomogeneities by diffusion. For the 5th and 6th points, the sample was not

mixed and correspondingly, the gain parameter dropped. Resuming the mixing improved

the gain parameter.

In the top panel of Fig. 4.14 we show the difference between the applied field gradient and

the gradient measured using non-linear spin precession. There are several possible reasons

for the differences between the measured and applied gradient in Fig. 4.13. The most

obvious is that the ambient magnetic field gradient is drifting due to thermal fluctuations

of the magnetic shields. Interpreting the noise in the measured gradient in this fashion, we

see that fluctuations of the magnetic field gradients occur at the level of 0.5µG/cm.

Another likely source of the deviation of the measured gradient from the applied gradient

are initial gradients of the magnetization, δm
(1,0)
y and δm

(1,0)
z . Interpreting the fluctuations

of the measured gradient as due entirely to the fluctuations of the initial gradients, we can

obtain an estimate of the initial homogeneity of the sample based on Eqs. 3.12 and 3.17.

We plot this in the bottom panel of Fig. 4.14, and thus we can set a limit on the size of the

initial gradients of the magnetization at the level of 0.5%. Since these fluctuations start out

smaller and seem to grow larger as time grows on, it may simply be that gradients from the

previous trial have not been completely erased through the mixing process. One possibility

for obtaining a more uniformly polarized sample would be to turn the membrane sideways

so that the magnetic field is parallel to the plane of the membrane to allow diffusion and

convection to mix the sample. However, as discussed earlier, the relaxation of the first order

gradient of the magnetization due to diffusion occurs at timescales on the order of 1000’s

of seconds. Utilizing diffusion to smooth out gradients would thus take so long as to negate

any benefits of spin precession amplification. Active mixing will be necessary.

A third source of noise in the measurements presented in Fig. 4.13 is that due to

currents in the feedback coil of the SQUID magnetometers. If the SQUID magnetometers

lock to a point such that the average signal (directly proportional to the current in the
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Figure 4.14: Top panel: difference between the measured magnetic field and the applied
magnetic field gradient. Bottom panel: extraction of residual magnetization gradients
δmy, δmz based on Eq. 5.15 and the differences between the measured and applied gradi-
ents.

feedback coil) is nonzero, there will be a DC gradient in the longitudinal direction. In

Fig. 4.15 we plot the average gradient across the cell due to the SQUIDs determined

from the average SQUID signals and the calibrations in Chapter 2. The magnitude of the

gradients due to the SQUIDs is consistent with the magnitude of the measured fluctuations.

There also appears to be some (admittedly rough) correlation between the gradients due

to the SQUIDs and the measured gradients. In light of the other sources of noise, perfect

correlation cannot be expected. We briefly discuss a modification of the typical SQUID

magnetometer configuration that will help to suppress the back reaction of the SQUIDs on

the spins in Chapter 5.

Finally convection due to residual temperature gradients could effect the outcome of

a measurement. While the presence of the membrane should largely inhibit convection

across the cell, convection in either half of the cell could have an influence on the non-

linear evolution of the spins. As in the small tip angle regime, the effects of convection will

become more important when the time scale of dipolar interactions becomes comparable

to the time scale associated with convection at low magnetization. We do not have a clear
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Figure 4.15: Stars represent the difference between the gradient measured with xenon and
the applied gradient. There appears to be some (rough) correlation between gradients due to
the DC offset of the SQUID magnetometers (squares) and the fluctuations of the measured
magnetic field gradient

understanding of these effects yet, but it seems plausible that convection could lead to a

smearing out of the gradients, which would reduce the measured gradient relative to the

applied gradient. The amplitude of the measured gradient in Fig. 4.13 appears to be slightly

reduced towards the end of the data set where the magnetization and hence the time scale

associated with dipolar interactions is smaller.

4.3 Summary

In the small tip angle regime we have observed coherent oscillations of the magnetization

gradients corresponding to spectral narrowing by up to a factor of 100. Using the Fourier

model we have estimated the effects of diffusion and found that they are consistent with the

longest values of τ obtained. We believe that convection generated by residual temperature

gradients also plays an important role in the decay of the phase oscillations especially at

low magnetization. We have also shown experimentally that deviations of the sample from

perfectly spherical have a substantial effect on the transverse relaxation time.

In the large tip angle regime, we have shown that the phase difference between the two
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SQUID signals grows exponentially, and under sufficiently well controlled conditions, the

phase difference can be used to measure the first order longitudinal magnetic field gradient.

This results in improved sensitivity to magnetic field gradients. Our data is in agreement

with numerical models to the extent that we can determine high order gradients of the

magnetic field. Experimentally we have achieved a gain over the non-interacting case by

a factor of almost 10. Our setup was not optimized for magnetic field stability and we

anticipate substantial improvements in the gain function with further optimization.



Chapter 5

Prospects for an EDM experiment

In this chapter, we will evaluate the feasibility of an EDM experiment in liquid xenon. We

will estimate the expected statistical sensitivity from a measurement based on non-linear

spin precession in the large tip angle regime and compare it to estimates in the small tip

angle regime. We will also examine likely sources of systematic effects and methods for

suppressing them in the two different regimes.

5.1 Statistical Sensitivity - Large Tip Angle Regime

An EDM produces a shift in the precession frequency

∆ω = 4dE/h̄. (5.1)

between either half of the cell. For an EDM of 10−29 ecm in an electric field of 50 kV/cm this

is ∆ω = 3× 10−9 rad/s. The difference in precession frequency between spins separated by

a distance ∆z in a magnetic field gradient g is ∆ω = g∆zγ and hence we relate the effects

of spurious magnetic field gradients to electric dipole moments by

d =
h̄g∆zγ

4E
. (5.2)

Thus for a baseline ∆z = R = 0.5 cm, a sensitivity to an EDM of δd = 10−29 e-cm

corresponds to a magnetic field gradient sensitivity of δg = 8.3× 10−7 µG/cm.

102
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5.1.1 Single shot sensitivity

We first determine the accuracy with which we can measure the gradient from a single

measurement taking advantage of non-linear spin precession. The precessing magnetization

generates an oscillating signal in the SQUID magnetometers. If we transform into the

rotating frame by use of a lock in detection scheme (experimentally, this can be accomplished

by multiplying the signal with a reference signal of near the same frequency and filtering

out the resulting high frequency component), the in phase signal is Ax = BM , the average

of the magnetic field produced by the sample at the SQUID pickup coil. The out of phase

signal Ay is nominally zero, but can only be constrained to within the noise of the SQUID

magnetometer, hence δAy = δB for unit bandwidth. The accuracy with which we can

determine the phase of the precession during measurement time ∆t is then

σφ =
δAy

Ax
=

δB

BM

√
∆t

. (5.3)

Here we assume that the signal does not decay substantially over the course of these mea-

surements so that BM and consequently σφ are constant. As derived in Section 3.2, under

the influence of dipolar interactions and a small gradient g, the phase difference between

the two SQUID signals takes the form

∆φ = a sinh(βt) (5.4)

where a = ξγgR/β. A measurement of the gradient is then determined by a fit to the

difference in phase of the two SQUID signals to the curve a sinh(βt) with a as the only free

parameter; β is determined from the initial amplitude of the NMR signal. Since this fit is

linear in sinh(βt), the precision with which we can determine a is σa =
(

1
2

d2S
da2

)−1/2
where

S =
∑

i

(
∆φi − a sinh(βti)

σ∆φ

)2

. (5.5)

Here σ∆φ =
√

2σφ since the errors in the phases of the individual SQUID signals add

quadratically to determine the error in the phase difference between the two signals and

each measurement ∆φi is taken at multiples of ∆t. Doing a bit of algebra, we obtain

d2S

da2
=

1
σ2

φ

∑

i

sinh2(βti) (5.6)
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=
1
σ2

φ

1
∆t

∫ tc

0
sinh2(2βt)dt (5.7)

=
1
σ2

φ

1
∆t

(
− tc

2
+

sinh(βtc)
4β

)
. (5.8)

And finally, we arrive at

σa =
σφ2

√
2β
√

∆t√−2βtc + sinh(2βtc)
. (5.9)

The amplitude a = ξγgR/β so that the precision with which we can determine g is

σg =
δB

BMξγR

2
√

2β3/2

√−2βtc + sinh(2βtc)
, (5.10)

where we have made use of Eq. 5.3. In the limit βtc À 1 this becomes

σg =
δB

BMξγR

4β3/2

eβtc
. (5.11)

As a check, we take the limit β → 0 to obtain the sensitivity in the noninteracting case

yielding

σ(NI)
g =

δB

BMξγR

√
6

t
3/2
c

(5.12)

which can be obtained through other means.

For a sample with 1% polarization, the magnetization is M0 = 0.01 × 0.25 × nµxe =

136µG, where the factor of 0.25 takes into account the natural abundance of 129Xe, n =

1.4× 1022/cm3 is the number density of liquid xenon and the nuclear magnetic moment is

µxe = 0.77× µN = 3.88× 10−24 erg/G. This corresponds to β = 8π
√

2
15 γM0 = 2.37 s−1. We

choose this value of the polarization because we found it difficult to control the non-linear

evolution of the spins for higher magnetization. It is possible that with further optimization

it would be easier to control the non-linear evolution of the sample at higher magnetization.

The magnetic moment of the entire sample is

m =
4π

3
R3M = 9.46× 10−5 erg/G (5.13)

for a cell of radius R = 0.55 cm. The magnetic field detected by the SQUID (refer to the

inset of Fig. 2.1 for a coordinate system) is the projection of the magnetic field produced

by the sample onto the vector normal to the SQUID pickup coil

BM = n̂ ·Bm = n̂ · 3(n̂ ·m)n̂−m
r3

, (5.14)
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Figure 5.1: Single shot sensitivity to an EDM in a 50 kV electric field as a function of the
time over which we can make a measurement (i.e. until the signal collapses due to ambient
magnetic field gradients). The solid and dashed lines show the sensitivity using nonlinear
spin precession given by Eqs. 5.2 and 5.10 for high and low Tc SQUIDs, respectively. For
comparison, the dash-dot and dotted lines show the sensitivity for the case of linear spin
precession given by Eqs. 5.2 and 5.12 for high and low Tc SQUIDs.

where r is the distance from the center of the SQUIDs to the center of the cell. For SQUIDs

oriented at ±45◦ to the ẑ axis, this reduces to BM =
√

2m/r3 = 39.6µG for r = 1.5cm.

For high Tc SQUID magnetometers, the sensitivity under optimal conditions is about

δB = 2 × 10−4 µG/
√

Hz, and for low Tc SQUIDs it is possible to realize a sensitivity of

δB = 2 × 10−5 µG/
√

Hz. In Fig. 5.1 we show the sensitivity to an EDM that can be

obtained in a single measurement. This plot assumes an electric field of 50 kV/cm. For

the case of high Tc SQUIDs and a collapse time tc = 2 s corresponding to a dimensionless

gain parameter G = sinh(βtc)/βtc = 11, we achieve a single shot sensitivity δd = 4.2×10−27

e-cm. To achieve sensitivity at the level of 10−29 e-cm requires the average of 173000 such

measurements, or about 4 days assuming there is no dead time. If the ambient magnetic

field gradients can be made sufficiently small so that the collapse time is extended to 3

seconds (G = 77), we achieve a single shot sensitivity of 3.8 × 10−28 e-cm, requiring only
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about 1500 measurements or 4500 seconds to achieve the same sensitivity. For comparison,

in the non-interacting case, single shot measurements of 3 seconds would require a total

of 81 days to achieve sensitivity at the level of 10−29 e-cm. Non-linear spin precession

amplification appears very attractive under ideal conditions!

In principle, the use of non-linear spin precession amplification allows sensitive mea-

surements to be made without the use of sensitive detectors. However it is likely that a

real EDM experiment will use low Tc SQUID detectors, which would allow a factor of 10

improvement in single shot sensitivity, reducing the total integration time by a factor of

100.

5.1.2 Sources of noise

The above estimates assume that the ambient magnetic field gradients are perfectly constant

and fluctuations of the measured gradient in a single shot measurement are due solely to

noise in the SQUID magnetometers. There are of course a number of other possible sources

of noise. We summarize many of these possible sources of noise in Fig. 5.2. The solid line

represents the resolution capabilities based solely on the signal to noise ratio of high Tc

SQUIDs for non-linear precession. The dashed lines represent various sources of noise as

discussed below.

Magnetization gradient noise

We expect the biggest source of noise to be fluctuations in the homogeneity of the sample.

Equating the solution for non-zero initial gradients Eq. 3.17 with the solution for a small

applied gradient Eq. 3.12, we find that noise in the initial magnetization inhomogeneities

generate noise in the measured gradient at the level of

δg = ξ
(δmy +

√
2δmz)M0

R

8π
√

2
15

. (5.15)

The maximum acceptable level of initial inhomogeneities is determined by asking what

degree of inhomogeneity would generate noise that could be measured in a single shot based

on non-linear spin precession. Assuming we can achieve a gain G = 20 for a measurement
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Figure 5.2: Dashed lines represent various sources of noise. a) represents the noise due
to fluctuations of initial gradients of the magnetization at the level of a part in 106. b)
represents fluctuations of the gradient due to magnetic noise generated by the SQUID
magnetometers. c) represents the gradient noise due to Johnson currents and thermal
drifts of the magnetic shields. d) shows the gradient noise due to coupling of the drifts in
the homogenous part of the field with the SQUID magnetometers. The solid lines represent
the sensitivity of a single shot measurement of the magnetic field gradient for non-linear
spin precession.

time of 2.3 seconds and M0 = 136 µG, using high Tc SQUIDs, the single shot measurement

sensitivity is 1.8× 10−27 e-cm, corresponding to magnetization inhomogeneities at the level

of 0.5 × 10−6. This level of noise is represented by the flat line, curve a), in Fig. 5.2,

requiring about 32400 measurements or ∼ 1 day of integration to achieve a sensitivity

of 10−29 ecm. Realizing such initial magnetization uniformity is expected to be a major

challenge. Achieving homogeneity better than this will not improve the measurement if

other factors, such as the time until collapse of the signal or ambient magnetic field gradient

noise, are limiting the sensitivity.

Is it possible to achieve such uniformity? For the parameters that describe our experi-

ment, dipolar magnetic fields generate very small forces in the fluid compared to the force
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exerted by the mixing membrane, and hence we treat the magnetization as a passive prop-

erty of the fluid, one that does not influence its motion. Since the mixing process does not

generate rotations of the magnetization, the three components of the magnetization may be

treated as independent scalar fields. The decay of gradients of a passive scalar in a turbulent

flow is a long standing problem of considerable interest. For example, the pharmaceutical

industry would be interested in achieving a high degree of uniformity of chemicals in mixing

tanks. For a recent review of this problem see, Ref. [110]. In the case of periodic velocity

flows in two dimensional systems with low Reynolds number, persistent scalar patterns have

been observed in the concentration of the passive scalar, while for higher Reynolds numbers,

the probability distribution function for the variance of the scalar decays exponentially.[111]

As a starting point, we estimate the time required to achieve the desired level of uni-

formity based on Taylor’s theory of scalar transport in turbulent flow, where the effective

diffusion constant at length scales of the cell radius R is

Deff = δuR. (5.16)

If we assume that the membrane is oscillated back and forth with an angular velocity

Ω = ±2π × 3 Hz the variation in the velocity at R/2 is δu = 2Ω(R/2) = 9.42 cm/s,

yielding an effective diffusion constant Deff = 4.71 cm2/ sec. The Reynolds number is

R = δuR/ν = 2770 where ν = 0.0015 cm2/ sec is the dynamic viscosity of liquid xenon.

Flow becomes unstable for Reynolds numbers in the range of 10 to 100 and turbulence is

fully developed (with eddies at all length scales) for Reynolds numbers over 2000.[113] As

discussed in Chapter 3, the decay time of the first diffusion eigenmode with l = 1 spherical

harmonic, corresponding approximately to a first order gradient, is τ = (4.33D/R2)−1 =

0.012 sec, requiring very little time to smear out first order gradients to the level of 10−6

relative to their initial value. This is admittedly a very crude estimate, and does not have

much to say about the smearing out of small scale inhomogeneities.

Numerical calculations were reported in Ref. [112] on the effectiveness of mixing in

stirred tanks at moderate Reynolds numbers of ∼ 100. These calculations demonstrate that

the striation thickness of adjacent portions of a fluid steadily decreases with the number
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of revolutions of the agitator, indicating that large scale inhomogeneities will be rapidly

transferred to small spatial scales where molecular diffusion rapidly leads to uniformity. All

of the above arguments indicate that it should be possible to achieve a high degree of spatial

homogeneity.

Magnetic field noise from the shields

We first consider noise due to Johnson currents in the magnetic shields. Such currents pro-

duce magnetic fields and magnetic field gradients that are flat in frequency space. Based on

work in Ref. [109] we estimate the fluctuations of the magnetic field δHJohnson = 10−4 µG

and δgJohnson = 10−5 µG/cm. These estimates are in agreement with measurements per-

formed in a similar set of magnetic shields.[62] The homogenous component of this noise

will not directly effect our measurements (however, through coupling to the SQUIDs it can

generate gradient noise, as discussed below). Magnetic field gradient noise due to Johnson

currents will limit the sensitivity to an EDM at the level of about δd = 1.2 × 10−28 e-cm,

requiring only about 100 measurements to reach 10−29 e-cm.

In addition to Johnson noise, magnetic shields typically have 1/f noise due to, for exam-

ple, slow variations of the temperature causing small mechanical stresses. These effects will

have to be measured more carefully, but for now we estimate a drift of the homogeneous

component of the magnetic field of δHshields = 5× 10−5 µG−Hz and drift of the magnetic

field gradient δgshields = 0.5 × 10−5 µG−Hz. The sum of the gradient noise generated by

Johnson currents and thermal drifts of the magnetic shields is represented by the curve c)

in Fig. 5.2.

Noise associated with SQUID magnetometers

The SQUID magnetometers can produce fluctuations of the magnetic field gradients in two

ways. Noise in the output of the SQUIDs corresponds directly to noise in the current through

the feedback coil. Tristan’s high Tc SQUIDs have a sensitivity of δB = 2 × 10−4 µG/
√

Hz

and a 1/f knee at 10 Hz. In Chapter 2 we saw that the output of the SQUIDs generates
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magnetic field gradients at the level of

g(sq) = 0.044(cm−1)Bsq. (5.17)

Hence, for the noise figures given above, the SQUID magnetometers generate noise at the

level of

δg = 8.8× 10−6 µG/
√

Hz + 8.8× 10−5 µGHz (5.18)

This source of noise, in EDM units is represented by curve b) in Fig. 5.2. It should be

noted that this is not a fundamental source of noise, and could be reduced considerably by

using low-Tc SQUID magnetometers with better low frequency noise characteristics.

Magnetic fields from the feedback coil due to compensation for drifts of the ambient

homogenous magnetic field can also generate magnetic field gradient noise. Noise generated

via this mechanism is represented by curve d) in Fig. 5.2, where we have used the above

noise figures for the homogeneous field and Eq. 5.17.

5.2 Leakage and charging currents

5.2.1 Leakage currents

One of the most obvious sources of systematic effects are magnetic fields associated with a

small current leaking across the insulating parts of the cell. Typical resistivities of pyrex or

fused silica at room temperatures are on the order of 1014 to 1017 Ω-cm. The resistivity of

insulators generally increases as the temperature decreases, so we take ρ = 1017 Ω-cm as a

conservative estimate. Typically, the effects of leakage currents are estimated by assuming

the worst (and rather unlikely): a helical path of current around the cell wall, from one

electrode to the other. Current flowing in a straight path from one electrode to another

would produce only magnetic fields transverse to the main field, creating frequency shifts

only quadratic in the leakage current and are considered no further. The thinnest part of

our cells across which current could flow is t = 1 mm, and the radius is R = 0.5 cm so we

estimate conservatively the cross section to be a = 2 × 2πRt = 0.628 cm2. The length of
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the path around which current would flow is approximately l = 2πR = 3.14 cm and hence

the resistance of the helical path is estimated to be Rh = ρl/a = 5× 1017 Ω. For an electric

field E = 50kV/cm, we need to apply approximately 25 kV to the electrodes. This would

result in a leakage current Ileak = 5 × 10−14 Amps. The magnetic field in the center of a

loop of current is

Bleak = µ0I/2R = 6.3× 10−14 G. (5.19)

The Larmor precession frequency associated with this field is ωleak = γBleak = 4.6× 10−10

rad/s, corresponding to an EDM dleak = h̄ωleak/2E = 3 × 10−30e-cm, well beyond our

expected sensitivity for a first generation experiment.

This analysis may well be overly simplified. Leakage currents on the surface of the cell

walls tend to be larger than in the bulk [11] and will have to be directly monitored. Leakage

currents through the liquid xenon will also have to be considered. However, it is unlikely

that such currents would tend to be azimuthal in nature.

5.2.2 Charging currents

The concern with charging currents is that they could generate magnetic fields large enough

so that the spins would not be able to follow the local magnetic field adiabatically as the

electric field is reversed. In this case, even when the transient magnetic field decayed to

zero, the magnetization could be left in some non-uniform initial state. As a crude estimate

of the currents required to charge the electrodes, we approximate the cell as a parallel plate

capacitor of area A = 1 cm2 and spacing d = 0.5 cm. For a potential of 25 kV between

the electrodes, the charge on each electrode is approximately Q = −V Aε0/d ≈ 4 × 10−9

Coulombs. For electric field reversal time of 1 second, the current is Icharge = 8×10−9 Amps

in the longitudinal direction resulting in an azimuthal field of about 10−8 G. If we assume

that it takes 0.1 seconds for the charging current to reach the above value, the derivative of

the azimuthal magnetic field is on the order of dH1(t)/dt = 10−7 G/sec. The condition to be

met in order for the spins to adiabatically follow the magnetic field is dH1(t)/dt
H0

¿ γH0. For

holding fields of 10 mG, this condition is easily met. To verify this, the Bloch equations were
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Figure 5.3: Electrodes and electric field configuration. Curved electrodes inside the cell will
generate a radial component of the electric field which can lead to large v ×E/c fields.

solved numerically for a small pulse of transverse magnetic field. The transverse excitations

of the magnetization following the pulse were less than one part in 1012.

5.3 Quadrupolar effects

129Xe owes its long spin coherence time to the fact that the nucleus is spin 1/2 and possesses

no electric quadrupole moment. An electric quadrupole moment interacts with electric field

gradients and could potentially cause spurious frequency shifts. Happily, there are no such

effects to contend with in this system. It should be noted that 131Xe has a natural abundance

of 21% and a nuclear spin I = 3/2 and thus can interact with electric field gradients. This

should not be an issue, as the polarization of 131Xe is very small on account of its fast

relaxation. Furthermore, the precession frequency is a factor of 3 smaller than 129Xe and

hence it should not be difficult to filter any such effects out of the signal.

5.4 Motional fields

5.4.1 The v×E/c effect

If the electrodes are outside of the cell and there is a small amount of mobile charge on

the inside of the cell, the charge carriers will arrange themselves in such a way as to reduce

the electric field inside the cell. Therefore, EDM experiments are typically performed with
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the electrodes directly inside the cell so that there is no ambiguity as to the size of the

electric field inside the sample. One possible configuration is shown in Fig. 5.3. The curved

electrodes generate a large radial component of the electric field, in addition to the desired

longitudinal field. Consider a particle with a large azimuthal velocity component, traversing

the cell on the path shown in the right side of Fig. 5.3. In the rest frame of the particle,

the magnetic field is

B′ = γ(B− v ×E/c)− γ2

γ + 1
v(v ·B)/c2. (5.20)

To lowest order in v, the particle experiences a magnetic field

Bv×E = (ρ̂vφEz − ẑvφEρ)/c. (5.21)

Two effects must be considered here, both linear in E. The second term is responsible for the

standard v×E/c effect. Using a 2 dimensional electrostatics program, we find for an angle

C = π/4 an average radial field of approximately 1kV/cm. For a velocity of 10−3cm/s and a

radial field of 1 kV/cm, the z component of Eq. 5.21 field is about 10−7 µG. To compare this

to the signal from an EDM in units of magnetic field, we compare 4dEz to γh̄gR. An EDM

of 10−29 e-cm corresponds to a gradient of about 8 × 10−7µ G/cm. Hence, the azimuthal

component of the fluid motion must be highly suppressed to avoid such systematic effects.

The first term in Eq. 5.21 by itself cannot produce a shift in the precession frequency

linear in E. However, as was recently pointed out, [114] in conjunction with gradients of

the magnetic field, the first term can lead to a shift in the precession frequency linear in E.

The analysis in Ref. [115] can be directly applied to our geometry. A small (unavoidable)

gradient of the longitudinal component of the applied magnetic field gives rise to a small

gradient of the radial component of the magnetic field in the radial direction: B = (B0 +

gz)ẑ + aρρ̂ where (a = g/2). By transforming into the frame rotating with the trajectory

of the particle, it is straightforward to show that for v/R ¿ γB0, the combination of the

radial gradient of the magnetic field and the first term in Eq. 5.21 leads to a magnetic field

δB = −av2
φEz

γcB2
0

or δg = − av2
φEz

γcRB2
0

. (5.22)
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Note that this is suppressed by a factor of av/B2
0 relative to the standard v × E/c effect.

For a = 0.1µG/cm, vφ = 10−3 cm/s, E = 50 kV/cm, and B0 = 104µG, this evaluates to

δg = 1.5× 10−15 µG/cm, far beyond the projected sensitivity of the experiment in the near

term. This effect is known as the geometric effect and was a significant issue in the search

for an electron EDM in thallium [6] because the velocity was about a factor 107 greater.

A possible method for reducing the standard v × E/c effect is to simply reduce the

size of the radial component of the electric field by finding a different configuration for

the electrodes. One possibility is that shown in Fig. 5.4. The electrodes would be three

conductive parallel plates. In between the electrodes would be a dielectric material with

a dielectric constant similar to that of liquid xenon. Liquid xenon would fill a spherical

cavity centered between the outer electrodes. The inner electrode would have a hole cut

out for the cavity. As before, there would be a circular membrane inside the cavity, in

electrical contact with the middle parallel plate. As discussed above, this configuration

is less desirable in that there would be some ambiguity as to the size of the electric field

due to charge mobility on the inner surface of the cell. The electric field could potentially

be measured via the Kerr effect, an induced birefringence due to the polarizability of the

medium. The Kerr effect has been observed previously in xenon [116]. Another alternative

is to choose an angle C in Fig. 5.3 such that the radial component of the field, averaged

over the cell is 0.

5.4.2 Motional effect quadratic in E

We now discuss an effect due to motional fields that is quadratic in E. If the electric field

reversal is not perfect this could lead to a false EDM signal. It turns out that this effect is

quite small, but for the sake of pedagogy, we will derive it in some detail here. Consider

a spin 1/2 particle moving in a circle where the local magnetic field traces out a cone. As

the spin moves, each component of the spinor picks up an extra phase. Here we are not

concerned with radial components of the applied magnetic field as they do not reverse with

electric field reversals as does the radial component of the motional field 5.21. In the case
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Figure 5.4: Possible configuration for electrodes to improve magnetic field homogeneity. In
between electrodes would be a material with a similar dielectric constant

of motion described above, ignoring the small contribution to the longitudinal component

of the field, the total magnetic field is

H0ẑ +
Ezvφ

c
ρ̂. (5.23)

Thus, the local magnetic field forms an angle θ with the z axis where

tan θ =
Ezvφ

B0c
. (5.24)

Following Ref. [118], we define a set of basis vectors that are local eigenvectors of the

Hamiltonian −µs/s ·B(x)

u+ =




cos(θ/2)

sin(θ/2)eiφ


 , u− =



− sin(θ/2)e−iφ

cos(θ/2)


 (5.25)

where Hu+ = E+u+ and Hu− = E−u−. Separating the evolution of the wavefunction due
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to the local hamiltonian and due to geometrical effects, we write

ψ = a+(t)u+ exp
{
− i

h̄

∫ t

0
E+(τ)dτ

}
+ a−(t)u− exp

{
− i

h̄

∫ t

0
E−(τ)dτ

}
. (5.26)

Substituting this into the Schrodinger equation Hψ = ih̄dψ/dt we obtain

( ˙a+u+ + a+u̇+)e
−i
h̄

∫ t

0
E+(τ)dt + ( ˙a−u− + a−u̇−)e

−i
h̄

∫ t

0
E−(τ)dt = 0. (5.27)

Multiplying by u+†, we arrive at

˙a+ + a+iφ̇ sin2(θ/2) = 0 (5.28)

which has the solution

a+(t) = a+(0)eiφ̇ sin2(θ/2)t. (5.29)

In a similar manner, we find

a−(t) = a−(0)e−iφ̇ sin2(θ/2)t. (5.30)

Conveniently, the solid angle subtended by the magnetic field in a complete circuit is Ω =

4π sin2(θ/2), so that each component acquires an extra phase mΩ. Thus in a complete

circuit described above, the difference in phase between each component is simply Ω, yielding

a frequency shift

∆ω = Ω/T = 4π sin2(θ/2)/T ≈ π

T

(
Evφ

B0c

)2

(5.31)

where T is the time required to make a complete circuit. This is quadratic in the electric

field and is only an issue if the electric field reversals are asymmetric. However, any possible

shift is very small: for an electric field of 50 kV/cm, a characteristic azimuthal velocity of

10−3cm/sec we find a frequency shift on the order of 2 × 10−22Hz, far too small to cause

any systematic error in the measurement of an EDM.

5.5 Sources of fluid motion

Since it appears that a major source of systematic effects are due to the motion of the fluid

in the cell, we now consider how such motion could arise, and how long it will take for

viscous effects to damp the fluid flow.
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5.5.1 Motion due to mixing

The most obvious source of motion is the mixing process. The motion of the fluid during

and following mixing is non trivial to account for because of the complicated geometry.

Ideally, during the mixing process the fluid motion should be turbulent to help insure

uniformity. Here we will estimate the time required for viscous effects to damp the motion

of the fluid after it has slowed down into the laminar flow regime. Ignoring the presence of

the membrane we can obtain some analytical results for the time required for the fluid to

slow to a halt. We assume for the sake of simplification that for t < 0, the entire spherical

cell is being rotated at constant angular velocity Ω0 about its vertical diameter. At t = 0,

the containing vessel is halted and we ask what the decay time of the fluid is. Assuming

that the velocity profile is purely azimuthal, v = vφ̂ and symmetric about the vertical axis,

we note that v · ∇v = 0 since ∂v/∂φ = 0. We also note that the assumption of azimuthal

symmetry implies that the ∇p = 0 and hence the Navier-Stokes equation becomes

∂v
∂t

= ν∇2v. (5.32)

If we postulate a velocity profile v = ∇×fΩ0e
−t/T it is easy to show that Eq. 5.32 reduces

to

∇2f
1

νT
f = 0. (5.33)

The solution to this is f = a
r sin kr, where k = 1√

νT
leading to

v = −Ω0 × r̂
(
− a

r2
sin kr +

ak

r
cos kr

)
. (5.34)

We determine k by the boundary condition for t > 0 v(r = R) = 0 arriving at the condition

tan kR − kR = 0 The first zero of this equation occurs at kR = 4.49 and hence the decay

time for the slowest mode is

T =
R2

4.492ν
. (5.35)

For a cell with R = 0.5 cm and the kinematic viscosity of xenon ν = 0.0015 cm2s, T = 7.5 s.

To determine how long we must wait between measurements, we assume that the ve-

locity flow during the mixing process is turbulent and that it rapidly approaches laminar
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flow following the mixing. The conditions for turbulent flow depend on the geometry, but

generally occur if the Reynolds number R = Ω0R
2/ν is greater than about 1000, so that

for our model system, the flow is laminar for Ω0 < 6 rad/s. The maximum of the slowest

decaying velocity profile occurs at about r = R/2 for which the velocity is v = rΩ = 1.5

cm/s and hence we must wait about 7 e-folding times or about 50 s to reach a velocity of

10−3 cm/s. Having to wait this long negates any benefits we might hope to reap from using

spin precession amplification, as slow drifts in the shields will become large.

Fortunately, these estimates are an absolute worst case scenario. The presence of the

membrane will slow the flow down and decrease the damping time. As a rough estimate

of the damping time of the fluid motion in the presence of the membrane, we proceed as

follows. We assume that following mixing, the fluid motion is largely confined to either half

of the cell and characterize the dimension of either half of the cell as that corresponding to

a sphere with half the volume of the entire cell so that R′ = R
21/3 . For our dimensions and

according to Eq. 5.35 T = 5.2 s and hence we must wait about 36 seconds for the velocity

to reach the desired level of 10−3 cm/s. It should be noted that this is merely an estimate

and assumes geometry similar to the original calculation. Measurements will have to be

performed to obtain more realistic estimates.

5.5.2 Flow due to convection

Another possible source of fluid motion is convection due to residual temperature gradients.

In general, convection will occur if there is a negative temperature gradient such that the

Rayleigh number R is greater than some critical value Rcr. For a sphere with a temperature

gradient dT/dz in the vertical direction, the Rayleigh number is

R =
dT

dz

β′gR4

νχ
(5.36)

where β′ is the coefficient of thermal expansion, ν = η/ρ is the kinematic viscosity, λ is the

thermal conductivity cp is the heat capacity at constant pressure and χ = λ/ρcp.

The critical Rayleigh number depends on the geometry. For a long right circular cylinder

with a negative temperature gradient dT/dz in the vertical direction, Rcr = 216.[113]
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While approximating a sphere as a long right circular cylinder is not terribly accurate, it

gives an order of magnitude estimate on the allowable temperature gradient. From data

compiled in Ref. [119] we find for liquid xenon at approximately 170 K, β′ = 0.0023K−1,

ν = 0.0015 cm2/s, λ = 7000 erg/(cm sK), ρ = 2.907 g/cm3, and cp = 3.5 × 106 erg/(gK).

For these parameters, β′gh3/νχ = 2.2 × 106 K−1. For these numbers β′gR4

νχ = 140000 and

hence, the biggest negative temperature gradient allowable is dT/dzmax = 0.0015 K/cm. In

principle this is not really a problem as we can always insure that the cell is warmer on the

top than the bottom.

Since there is no buoyancy in the horizontal direction (x̂ for concreteness), a constant

temperature gradient in the transverse direction will lead to an equilibrium density config-

uration ρ(x)/ρ0 = 1 + β′dT/dx. At present, the applied magnetic field is in the horizontal

direction and hence fluctuating temperature gradients in the horizontal direction will gen-

erate fluctuating magnetization gradients also in the horizontal direction. Thus to achieve a

density profile uniform to one part in 106 will require temperature uniformity in the trans-

verse direction at the level of 4.3 × 10−4 K. For such temperature uniformity it would be

well advised to use a material with as high a conductivity as possible, such as sapphire, also

convenient for its excellent electrical properties.

5.5.3 Membrane Flexing

The requirement that the membrane be able to rotate necessitates that it be held somewhat

loosely and from only one point, or at most two diametrically opposed points. A concern

is that the membrane may flex under application of the strong electric field, causing fluid

motion or asymmetries of the electric field. To understand these effects, we first calculate

the forces on the membrane for a potential difference of 25 kV between the outer electrodes

and the silicon membrane using a 2D numerical electrostatic analysis program (Maxwell by

Ansoft). In these calculations, the cell is 10 mm in diameter and the HV membrane is 8

mm in diameter. The angle defining the edges of the ground planes is 50◦ relative to the

symmetry axis (see Fig. 5.3 for geometry). These calculations indicate that the electrostatic
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force is approximately linear over a region several mm in width about the symmetry plane,

with an effective spring constant kE = 0.017 N/mm.

We now estimate the degree to which the electrostatic forces will deform the high voltage

electrode. For simplicity, we consider a rod of thickness a, width b, and length l, supported

by one end. The restoring force due to a deflection x of the unsupported end is

F =
xMa3b

4l3
= −k1(x− x0) (5.37)

where M is Young’s modulus and x0 is the equilibrium point when there is no electric field.

For silicon, M = 1.3× 1011 Pa. This is somewhat of a simplification, as our membrane has

a circular profile with radius R = 0.5 cm and is thinner near the support point, however it

will allow us to make an order of magnitude estimate. It is easy to show that for k < kE , the

symmetry plane is a point of unstable equilibrium and the membrane will find equilibrium

only by smashing into the nearest ground electrode or until the spring constant of the

material becomes nonlinear. For k > kE the membrane will find a new equilibrium at

x = −x0k/(kE − k), moving a distance ∆x = x − x0 = −x0(1 + k/(kE − k) from its

equilibrium point when the electric field is 0. We take l = 2R, b = R and a = 25 µm to find

the restoring spring constant k1 = Ma3b/4l3 = 0.0051 N/mm, insufficient to balance the

electrostatic force.

The spring constant for a similar bar supported by two ends is k2 = 4Ma3b/l3 =

0.081 N/mm, sufficient to balance the electrostatic forces, so that 1 + k/(kE − k) =

0.27mm/mm. For an initial offset of 0.1 mm, the membrane will move an additional 0.027

mm. So, if the potential across the electrodes is swept at a rate of 10 kV/s, from -25 kV

to +25 kV there will result motion of the fluid with a characteristic velocity of about 0.01

mm/s, large enough to cause substantial v × E/c fields. However, assuming near perfect

symmetry, motion due to flexing of the membrane will be in the form of a radial flow

pattern, rather than azimuthal, and in principle should not cause substantial systematic

effects. Furthermore, the electric field reversals will presumably take place following the

mixing procedure, so that the motion considered here will be given time to decay along

with the motion induced by mixing.
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5.5.4 Non-linear dielectric effect

We consider a final source of fluid motion, the non-linear dielectric effect, which is essentially

a change in the density of the dielectric with the application of an electric field. A change

in the density would cause residual amounts of xenon in the stem to get sucked into the

cell, causing motion of the sample in the strong electric field. In the event that the electric

field strength is asymmetric, this effect could also generate magnetization gradients. There

is some disagreement in the literature about the magnitude of the non-linear dielectric

effect[120, 121]. The discrepancy is likely due to deformation of the parallel plates used

to form the capacitors. Here we interpret these values as an upper limit on the change of

the dielectric constant dK/dE2 < 2× 10−19. To find the change in density we employ the

Clausius-Mossotti relationship which relates the atomic polarizability α to the dielectric

constant K

α =
3ε0
ρ

K − 1
K + 2

(5.38)

The atomic polarizability can be found in the CRC and is α = 4.4 × 10−40 C−m2/V and

the dielectric constant of xenon is about 1.5 [121]. The variation of the density with respect

to the electric field is then

dρ

dE2
=

dρ

dK

dK

dE2
=

3ε0
α

3
(K + 2)2

dK

dE2
= 2.9× 109m−3m2/V2. (5.39)

For an applied electric field E = 50kV/cm we find that the density changes by ∆ρ =

7.2×1016 cm−3 or ∆ρ/ρ = 5×10−6. Let us assume that the cell is 1 cm in diameter, with a

volume V = 0.52 cm3, and that the stem, 1 mm in a diameter with cross section A = 0.0314

cm2 is filled with liquid xenon. As the electric field is applied, a total of ∆N = V ∆ρ atoms

flow into the cell. The flux of atoms through the stem is then

F =
∆N

A∆t
= vρ (5.40)

where ∆t is the time required to sweep the electric field and v is the fluid velocity. We find

that for a sweep time of ∆t = 1 s, the fluid velocity through the stem is v ≈ 8× 10−5 cm/s,

too small to cause any serious systematic effects.
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It should be noted that density changes associated with the electric field could lead

to systematic effects by directly generating magnetization gradients if the electric field is

asymmetric between either half of the cell. For a large asymmetry of 10% out of 50 kV/cm,

the change in density is

∆ρ =
dρ

dE2
2E∆E = 1.45× 1016 cm−3 (5.41)

or about 1 part in 106. Before the π/2 pulse, this would be a gradient of Mz in the ẑ

direction, however the π/2 pulse, transforms this into a gradient of Mx in the ẑ direction,

which does not in first order affect our measurement of g. Coupling to an applied gradient

however could generate gradients of My at the level of g∆ρ/ρ, introducing a false EDM

signal. Hence if g∆ρ/ρ < 8.3 × 10−7 µG/cm, this effect should not be a serious source of

systematic errors at the level of 10−29 e-cm. Operating in feedback mode, the longitudinal

gradient g will be much smaller than 0.83µG, and hence this effect should not be an issue.

5.5.5 Measuring the velocity?

It would be helpful to have a method of measuring the velocity of the fluid without disturbing

its flow to confirm that it is below the desired level of about 10−3 cm/s. One possible method

employs the Fizeau effect [122] where the propagation velocity of light changes in a moving

medium. It can be shown that the wave number is

k =
ωn

c
+

vω

c2

(
1− n

d(nω)
dω

)
(5.42)

for propagation in the direction of the motion of the fluid. Shifts in the phase of the light

are given by ∆φ = kL where L is the length of the path. The index of refraction is about 1.4

[124] and varies slowly over the the visible spectrum and hence the last term in parenthesis is

about 2. Thus we find that the minimum resolvable velocity using this method is δv = δφc2

Lω .

For an interferometer sensitivity of 10−3 rad/
√

Hz we can thus detect velocities on the order

of about 3 m/s, unfortunately not sensitive enough for our requirements.

An alternative is to construct a mock EDM cell with µm size polystyrene spheres sus-

pended in a fluid. One can then measure the velocity of the beads by detecting the Rayleigh
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scattered radiation from the beads, as demonstrated in Ref. [123]. This of course has the

disadvantage that it cannot be used to measure the velocity in the actual EDM cell, how-

ever, it will allow the determination of a characteristic decay time for the motion following

the mixing procedure. It can be shown that the frequency shift of the Rayleigh scattered

light is

∆ν = −2ν0 sin2(θ/2)
nv

c
(5.43)

where the direction of motion of the particle and the propagation of the light are assumed

to be parallel and θ is the angle that the scattered radiation forms with the incident light.

For incident He-Ne radiation ν0 ≈ 2× 1015 Hz, and for θ = 30◦, the frequency shift of the

scattered radiation is about 12 Hz for a particle velocity of 10−3 cm/s. This shift could be

measured by mixing the scattered and incident radiation together and detecting the beat

frequency with a photodiode. It may also be possible to simply use the atoms of the fluid

as scattering centers, allowing a direct measurement of the velocity in the real EDM cell.

5.6 Alternative: Small tip angle regime?

Here we examine the possibility of performing an EDM search in the regime of small tip

angles. A brief sketch of the geometry involved in this variation of the experiment is

shown in Fig. 5.5. Electrically isolated conducting films in opposite hemispheres create a

roughly uniform electric field. A low Tc SQUID magnetometer whose normal is oriented

at 90◦ relative to the magnetic field detects the oscillating field created by the precessing

magnetization. Spectral narrowing prevents the growth gradients of the magnetization

due to the interaction of an EDM with an electric field gradient, in contrast with the large

tip angle regime. Hence a search for an EDM in the low tip angle regime would rely on

detecting a shift in the average precession frequency, rather than a reversal of the difference

of the precession frequency associated with electric field reversals. This represents a major

drawback because noise of the homogeneous component of the electric field introduces noise

into the EDM signal, rather than noise of the gradient of the magnetic field which is typically

suppressed by about a factor of 10 in conventional magnetic shields. To distinguish between
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Figure 5.5: Sketch of the geometry for an EDM experiment performed in the small tip angle
regime.

magnetic field noise and an frequency shifts due to an EDM, we would employ a second

SQUID that would act as a comagnetometer, sensitive to Hz. The pickup coils for the second

SQUID are shown as dashed lines in Fig. 5.5 where the three coils are connected in series

and the inner coil has the opposite sense relative to the outer coils. This configuration

would be useful to reduce the signal in the comagnetometer due to the decaying xenon

polarization, but retain sensitivity to drifts in the applied field Hz. Another drawback is

that spin precession due to the interaction of an EDM with an electric field would grow

linearly in time rather than exponentially, necessitating the use of low-noise low Tc SQUID

magnetometers.

There are, however, several features that make this scheme attractive. A major source

of noise in the large tip angle regime, initial magnetization gradients, are no longer an

issue in the small tip angle regime, because as noted in Chapter 3, for a spherical cell,

the average dipolar field inside the cell is always zero, regardless of the magnetization

configuration. This eliminates the requirement that the sample be mixed in between electric

field reversals. A major systematic effect is expected to be due to v×E/c fields. Removing
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the requirement that the sample be mixed in between measurements removes the biggest

source of fluid motion, reducing this systematic effect. Furthermore, there would be less dead

time associated with letting the fluid come to rest inside the cell. Less dead time in between

measurements reduces the 1/f noise associated with the magnetic shields. The construction

of the cell would also be simplified, because there would be no need to have a thin membrane

inside the cell. Finally, as noted above, the small tip angle regime necessitates the use of

low Tc SQUIDs, but the presence of liquid helium facilitates the use of superconducting

shielding which would reduce magnetic field fluctuations considerably.

5.6.1 Initial sensitivity estimate

We have found that an instability arises for tip angles substantially less than the 35◦ pre-

dicted by the linear model. We did not study this in depth but suspect that it is due to

the coupling of higher order gradients with each other. We have generally found that the

magnetization is stable for tip angles less than about 8◦. There is probably considerable

opportunity to increase this figure, by optimization of higher order gradients and initial

magnetization inhomogeneities, but for these initial estimates, we will assume a tip angle

of 8◦. The amplitude of the oscillating magnetic field produced by the sample at the center

of the SQUID located a distance r from the center of the cell of radius R is

BM =
2m⊥
r3

=
8πR3M0 sinα

3r3
(5.44)

For the sake of concreteness we assume a magnetization M0 = 300 µG, easily experimentally

realizable, R = 0.5 cm, r = 1.5 cm, yielding BM = 13µG. Here we assume low Tc SQUID

magnetometers with a sensitivity of δB = 2× 10−5 µG/
√

Hz. For times short compared to

the transverse relaxation time, we can measure the angular precession frequency with an

accuracy

δω =
δB

BM t3/2
= 1.5× 10−6Hz−1/2t−3/2 (5.45)

assuming that the measurement process does not have a strong back reaction on the spins

(we will address this shortly). We plot this sensitivity (solid line) as a function of mea-
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Figure 5.6: Estimates of sensitivity and sources of noise for an EDM experiment using spec-
tral narrowing rather than non-linear spin precession amplification. Line a) represents the
ability to measure frequency shifts based on the signal to noise ratio and improves as t−3/2

for measurement times short compared to T ∗2 . Line b) takes into account the extra noise in
the SQUID magnetometers associated with the magnetic shields. Curve c) represents the
noise in the precession frequency due to Johnson currents and 1/f noise associated with the
magnetic shields. Curve d) represents our ability to subtract off magnetic field drifts with
the use of a second low Tc SQUID magnetometer. Curve e) represents the back reaction of
the SQUIDs on the precession of the spins, as discussed in the the section titled “Out of
phase noise”. For large enough times, this back reaction limits the sensitivity to scale as
t−1/2.

surement time for a single measurement on a log-log scale as a function of time in Fig.

5.6.

The preceding analysis does not take into account magnetic field noise associated with

the shields in the direction normal to the SQUID pickup coil; at 10 Hz we estimate this to

be primarily Johnson noise with an amplitude of about 10−4 µG. Taking into account this

noise we realize a sensitivity represented by the dash-dot line in Fig 5.6.

Using a single low Tc SQUID magnetometer in the small tip angle regime, a single shot

measurement should achieve a sensitivity given by the intersection of curves b) and c) in Fig.

5.6, 7 × 10−27 e-cm for 3 seconds of integration. To reach the level of 10−29 e-cm requires
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about 490000 measurements, or about 17 days of total integration time. Introducing a

second SQUID magnetometer, we can subtract off small variations in the magnetic field. A

single shot measurement could then achieve a sensitivity given by the intersection of curves

b) and d) in Fig. 5.6, 2× 10−27 e-cm in about 6 seconds of measurement, requiring about

3 days of integration to reach the desired sensitivity of 10−29 e-cm.

5.6.2 Back reaction of SQUIDs on spins

As discussed above, the feedback loop used to keep the flux through the SQUID constant

creates its own magnetic fields. This can have two different effects on the spin precession: 1)

in phase magnetic fields proportional to Mz cause a slow rotation of Mz into the ŷ direction

of the rotating frame resulting in a frequency shift and 2) out of phase magnetic field noise

from the SQUID can create noise in the precession angle φ.

Frequency shifts associated with coupling to SQUIDs

The magnetic moment of the SQUID feedback coil is proportional to the average magnetic

field over the pickup coil msq = −ηBM , where we found in Chapter 2 that for our SQUIDs

η = 0.06 erg/G/G = 0.06 cm3. The average magnetic field over the pickup coil due to the

sample is BM = 24πR3M0
3r3 sinα cosωt and the average magnetic field across the cell due to

the dipole moment of the feedback coil is 〈Blab
sq 〉 = −2msq

r3 . Thus the average magnetic field

in the cell created by the SQUID feedback loop is

〈Blab
sq 〉 =

2msq

r3
= −2ηBM

r3
= −η

16πR3

3r6
M0 sinα cos(ωt)x̂ (5.46)

In the rotating frame the magnetic field is simply half this value

〈Brot
sq 〉 = −η

8πR3

3r6
M0 sinαx̂. (5.47)

This magnetic field rotates the ẑ component of the magnetization into the ŷ direction of

the rotating frame, essentially creating a small frequency shift. The rate of change of My

is given by one of Bloch’s equations

dMy

dt
= γMzBx = γηM2

0 cosα sinα
8πR3

3r6
. (5.48)
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This corresponds to a shift in the precession frequency

∆ω =
1

Mx

dMy

dt
= γηM0 cosα

8πR3

3r6
. (5.49)

For M0 = 300µ G and α = 8◦, ∆ω = 0.0126 s−1. In principle this should not be a problem

in the measurement of an EDM because it scales linearly with the magnetization rather

than linearly with the electric field. However, in conjunction with effects quadratic in the

electric field this can give rise to a substantial systematic effect. We will discuss this shortly.

Out of phase noise

We now address the noise in the spin precession angle due to out of phase noise from the

SQUID magnetometers. Noise in the SQUID magnetometers corresponds to noise in the

current of the feedback loop and thus noise of the magnetic moment of the feedback loop

δmsq = ηδB. The average magnetic field across the cell in the x̂ direction of the rotating

frame is 〈δBrot
sq 〉 = ηδB/r3. This generates noise in the y component of the magnetization

by rotating Mz into the ŷ direction

δMy = γηδB/r3M0 cosα (5.50)

The noise in the phase is then

δφ = δMy/Mx =
γηδB

r3 tanα

√
t. (5.51)

This results in noise in the precession frequency

δω = δφ/t =
γηδB

r3
√

t tanα
. (5.52)

For low Tc SQUID magnetometers with sensitivity δB = 2 × 10−5 µG/
√

Hz we find δω =

3.1× 10−8 t−1/2. This level of noise is represented by the curve e) in Fig 5.6. For relatively

short measurement times this is not a limiting source of noise. It should be noted that

these noise figures assume the geometry used in our current SQUIDs. In Section 5.7 we

discuss a method for reducing this source of noise with a novel new SQUID magnetometer

configuration.
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5.6.3 Systematic effects

Motional effects

The standard v×E/c is still expected to be a major systematic effect. As mentioned above,

the most obvious source of fluid motion, mixing, is eliminated, so this effect is expected to

be greatly reduced.

Frequency shifts due to dipolar fields

Frequency shifts due to dipolar fields can only arise from deformations of the cell and not

magnetization inhomogeneities. For an azimuthally symmetric quadrupolar deformation

characterized by R = R(1+ εS20(θ, φ)) (the functions Slm are linear combinations of spher-

ical harmonics discussed in Chapter 3), the resulting frequency shift is

δω =
6γεπMz√

5
(5.53)

For ε = 10−3 and Mz = 300 µG this is 5.9× 10−3 rad/sec. In conjunction with the longitu-

dinal relaxation of the magnetization, this will cause an exponentially decaying frequency

shift. In principle, this is not a problem as this drift could be well characterized and sub-

tracted.

Along with density changes due to the non-linear dielectric effect, frequency shifts due

to deformations of the cell are a source of systematic effects. As discussed above, for electric

field reversals that have an asymmetry of 10% at 50 kV, the upper limit on density shifts

is about a part in 106, yielding a frequency shift upon reversal of the electric field at the

level of 5.9× 10−9 rad/sec, slightly larger than the frequency shift expected for an EDM at

the level of 10−29e cm. It should be noted that this assumes the upper limit for the density

shifts due to the non-linear dielectric effect. At any rate, it should be possible to insure

that electric field reversals are symmetric to better than 10%.
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SQUID back reaction and the nonlinear dielectric effect

One systematic effect not present in the large tip angle regime is due to the back reaction of

the SQUIDs on the sample in conjunction with shifts in the density of the sample quadratic

in the electric field. The magnetization scales linearly with the density and the frequency

shift given by Eq. 5.49 scales linearly with the magnetization and thus small asymmetries

in the electric field reversal could lead to asymmetries in the magnetization. Additionally,

the relaxation depends on the density, potentially leading to small frequency shifts. We

take both of these into account by writing M = M0(1 + δρ/ρ)e−
t

T1
(1+δρ/ρ). Inserting this

in Eq. 5.49 and expanding, keeping only terms linear in δρ/ρ we find

∆ω = γηM0 cosα
8πR3

3r6
[1− t/T1 +

δρ

ρ
(1− 2t/T1)]. (5.54)

We ignore the first two terms, as they correspond to the magnetization and its monotonic,

exponential decay. Furthermore, we assume that the measurement time is short compared

to T1 so that the second term in parenthesis is small compared to the first. Using Eq. 5.41,

an electric field of 50 kV and an asymmetry upon reversal of the electric field of 1% we

realize a frequency shift of δω = 0.0126 rad/s × 10−7 = 2.1× 10−9. This corresponds to an

EDM of just under 10−29 e-cm and hence the electric field reversals must be symmetric to

1% in this scheme. These frequency shifts could be eliminated by moving the feedback coil

far from the sample, as discussed in the next section.

5.6.4 Small tip angle summary

We estimate that it should be possible to achieve a sensitivity of 10−29 e-cm in about 3 days

of integration in the small tip angle regime, about a factor of
√

3 less sensitive than our

estimates for the large tip angle regime. However, the experimental challenges are substan-

tially different and may prove easier to overcome. One advantage is the elimination of the

strict requirement that the sample be mixed in between each electric field reversal, reducing

systematic effects due to motion of the fluid, namely the v × E/c effect. Furthermore, as

discussed in Chapter 3, gradients of the magnetization do not introduce any noise into the
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EDM signal through unwanted frequency shifts. In contrast, initial magnetization gradients

in the large tip angle regime will likely be completely random, appearing as an additional

source of noise. Frequency shifts due to deformations of the cell are possible, however any

such shift will be proportional to the magnetization and decay exponentially. Such shifts

could be well characterized and subtracted accordingly. The major disadvantage of per-

forming the experiment in the small tip angle regime is the requirement that we use low Tc

SQUIDs, however the low temperatures would also allow the use of superconducting shields

which would reduce the magnetic field noise considerably.

5.7 A new configuration for SQUID magnetometers

To the best of the author’s knowledge, most SQUID magnetometers are constructed as

depicted by the schematic in Fig. 1.7, where the feedback coil couples directly to the

SQUID loop. This is convenient for the sake of compactness, however there are two problems

associated with this configuration. 1) Since the flux through the input coil is conserved,

the action of the feedback coil induces a supercurrent in the input coil and pickup coil

which can influence the evolution of the spins, even if the feedback coil, input coil and

SQUID are separated from the pickup coil by a great distance. 2) Even in open loop

mode, the pickup coil will have some back reaction on the spins because the flux through

the pickup coil is conserved. The precessing spins induce an AC flux in the pickup coil

and to conserve the total flux through the pickup coil, an AC supercurrent flows through

the pickup coil, generating an AC magnetic field. This field is in phase with the precessing

magnetization which can lead to a small frequency shift if there is a longitudinal component

of the magnetization, as discussed in previous sections.

To eliminate both of these problems we propose a modification of the standard SQUID

magnetometer, depicted in Fig. 5.7. As in the standard SQUID magnetometer, feedback

keeps the flux through the SQUID constant. The flux through the pickup coil is Φp =

LpIp = nΦ0, where Lp is the inductance of the pickup coil, Ip is the supercurrent in the

pickup coil Φ0 is the flux quantum. The flux through the SQUID is ΦS = MIp where M
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Figure 5.7: Modification of the standard SQUID magnetometer that eliminates any back
reaction of the SQUID magnetometer on the spins. Both the feedback coil/coupling coil
pair and the SQUID/input coil pair would have their own superconducting shields to isolate
them from each other and the pickup coil.

is the mutual inductance between the SQUID and the input coil and of course the current

flowing through the input coil and the pickup coil is the same. The action of the feedback

coil is to keep the flux through the SQUID loop constant which means that the current Ip

through input coil and pickup coil is kept constant, eliminating both problems mentioned

above.



Chapter 6

Conclusions

In preparation for performing a search for an electric dipole moment in liquid xenon, we have

performed a detailed series of experimental and theoretical studies of long range dipolar

interactions in a hyperpolarized liquid. In liquid state NMR experiments the time scale

associated with diffusion τdif ∼ R2/D, where R is the characteristic size of the sample and

D is the coefficient of diffusion, can be much longer than the timescale associated with

magnetic field inhomogeneities τinh = (γ∆B)−1, so that there is no motional narrowing of

the applied field. For a sufficiently polarized sample, the time scale associated with dipolar

fields τd ∼ (γM)−1 can be much shorter than either transverse relaxation time or τdif .

Under these conditions, dipolar interaction dictate the spin dynamics of the system.

The behavior of a spin polarized liquid interacting via long range dipolar interactions

exhibits a remarkable bifurcation dependent on the tip angle away from the magnetic field.

For “small” tip angles, the magnetization is incredibly stable with respect to perturba-

tions. In the absence of dipolar interactions and in the presence of a very large applied

field gradient, one would expect the magnetization to wind itself up into a very tight helical

pattern, causing a rapid collapse of the overall NMR signal. Instead, we observe both exper-

imentally and through our various models, that the free induction decay time is extended

considerably, up to a factor of 100 relative to the non-interacting case in some data sets.

Rather than growing linearly in response to a gradient of the applied field, gradients of the

133
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magnetization oscillate coherently, preventing the collapse of the NMR signal. For applied

gradients in the longitudinal direction, the gradients of the magnetization are also in the

longitudinal direction and generate an oscillating phase difference between the two SQUID

signals. For a small ratio of the applied gradients to the magnetization gR/M , the oscilla-

tions of the phase difference are quite sinusoidal, in both the data and the simulations. For

large gR/M , the phase oscillations become somewhat irregular due to the growth of higher

order gradients. The irregularities in the data can be reproduced by the high order models.

The dominant mechanism contributing to the decay of the phase oscillations appears to be

convection due to small residual thermal gradients. Diffusion plays a very small role in the

decay of the phase oscillations.

In the large tip angle regime, dipolar interactions generate a dynamical instability lead-

ing to non-linear evolution of the spins. In general, gradients of the magnetization grow

exponentially in response to any gradient of the applied magnetic field. In the context of

an EDM experiment, we are particularly interested in the response to a linear, longitudinal

gradient of the applied field. We have shown that, compared to the non-interacting case, the

first order gradients of the magnetization are amplified exponentially with a time constant

that can be less than one second for easily achieved parameters. As long as all gradients

of the magnetic field and the magnetization are small compared to the magnetization, the

phase difference between the SQUID signals can be used to faithfully reproduce the applied

field gradient.

6.1 Schemes for measuring an EDM

Given the behavior reviewed above, there are two possible scenarios for conducting a search

for search for an EDM.

6.1.1 Large tip angle regime

The dynamical instability that appears at large tip angles presents a very attractive method

for measuring an electric dipole moment. Dipolar interactions would amplify spin precession
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due to the very small interaction of an electric dipole moment with an electric field gradient,

raising it above the noise level of the detectors. This means that measurements can be

performed on a much faster time scale, so that the electric field can be reversed more rapidly,

thereby avoiding some of the 1/f noise associated with thermal drifts of the magnetic shields.

Furthermore, this amplification mechanism reduces both the requirements on the dynamic

range and the sensitivity of the SQUID magnetometers.

Precise estimates of the sensitivity based on this method are given in Chapter 5, but

to reiterate, for a sample of liquid xenon 1 cm in diameter, with a polarization of 1%

(M0 = 136 µG), high Tc SQUID detectors and a collapse time of about 2.3 seconds yielding

amplification by a factor of approximately 20 relative to the non-interacting case, a single

shot measurement can yield a sensitivity to an EDM at the level of about 1.8× 10−27 e-cm.

To achieve a sensitivity of 10−29 e cm, this requires about 32400 such measurements, or for

100% duty cycle about 1 day of integration.

We expect that the biggest sources of noise are initial magnetization gradients. Initial

gradients of the magnetization grow exponentially, introducing significant noise into the

measurement. For the above parameters, initial magnetization gradients at the level of

5 × 10−7 generate noise at the level of about 1.8 × 10−27 e cm, on par with the single shot

sensitivity. Based on measurements in a similar set of magnetic shields, we estimate the

magnetic field gradient noise at the level of 2−3×10−27 e cm at time scales of several seconds.

Hence, achieving higher sensitivity in a single shot measurement or further reducing initial

magnetization gradients does not lead to substantial improvements in sensitivity to an EDM.

The large tip angle regime presents several other technical challenges. To achieve such

high initial homogeneity will require active mechanical mixing, introducing a large source

of fluid motion. In the presence of any transverse electric fields, motion of the fluid can

generate large v × E/c magnetic fields, a serious source of systematic effects. To reduce

ambiguity in the size of the electric field, it is desirable to have the electrodes on the inside

of the cell which generate large radial fields, exacerbating this effect. Other sources of fluid

motion are considered in Chapter 5. In-situ measurement of the fluid motion at the level of
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10−3 cm/s appears difficult, however, it should be possible to characterize the fluid motion

at this level in a mock cell by monitoring the frequency of Rayleigh scattered light from

entrained micron sized scattering centers.

6.1.2 Small tip angle regime

Several features of the behavior in the small tip angle regime make it attractive for an

EDM experiment. (1) Spectral narrowing allows for long measurement times. (2) Less

care will have to be taken to minimize ambient field gradients. (3) The membrane in the

center of the cell will be eliminated, greatly simplifying the construction of the cell. (4)

There will be no need to mix the sample following each electric field reversal, reducing a

major source of fluid motion in the cell. (5) A major source of noise in the large tip angle

regime is the fluctuation of initial magnetization gradients. As noted in Chapter 3, for a

spherical cell, regardless of the magnetization configuration, the average magnetic field in

the cell is always zero. Hence, magnetization gradients do not introduce any frequency

shifts. Frequency shifts can arise from a uniformly polarized sample in a cell that deviates

from perfect sphericity. These frequency shifts will decay along with the magnetization and

hence it should be possible to subtract them if the electric field is reversed on time scales

much shorter than the relaxation time.

A major concern in the small tip angle regime is that the large longitudinal component

of the magnetization can generate large frequency shifts, because of deformations of the cell

or through coupling to the SQUID detectors via the feedback coil. A shift in the density of

the sample associated with the electric field is a potential source of systematic errors not

present in the large tip angle scheme.

By using two low Tc SQUIDs, one to monitor the nuclear spin precession and one acting

as a comagnetometer, as discussed in Chapter 5, it should be possible to realize a sensitivity

of 10−29 e cm in about 3 days of integration. Ultimately this scheme cannot be as sensitive

as the large tip angle scheme because the signal to noise ratio is smaller. Furthermore, the

baseline of the gradiometer in the large tip angle regime is only about 0.5 cm. In the small
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tip angle regime, the baseline formed by the comagnetometer SQUID and the sample is

unlikely to be as small, and thus magnetic noise from the magnetic shields will limit the

sensitivity.

6.2 Low Tc SQUIDs and superconducting shields

Regardless of which scheme is used to carry out an EDM experiment it is likely that low

Tc SQUIDs will be employed. The drawback of low Tc SQUIDs is that they require the

use of liquid helium and sophisticated dewars. However, the advantages of using low Tc

SQUIDs are many. Most obviously, they have noise characteristics approximately a factor

of 10 better than high Tc SQUIDs. Niobium is the most commonly used superconducting

material at low temperatures which allows greater flexibility in the design and construction

of the pickup coil as niobium is flexible and easy to work with. This point is especially

noteworthy as the main difference in the construction of the experiment for the small and

large tip angle regimes are the configuration of the SQUID pickup coils. Sheets of niobium

or lead could also be used to form a superconducting shield, for which there are no Johnson

currents generating magnetic field noise.

6.3 Novel magnetic resonance imaging techniques

An interesting practical application of these types of dynamical instabilities due to dipolar

interactions may be found in the field of magnetic resonance imaging. In a 9 T magnet,

the thermal polarization of protons is about 3 × 10−5 and for a proton density of about

6×1022 cm−3, this yields a characteristic time scale τd = (γM)−1 ≈ 1.5 sec. The relaxation

time in tissue varies, but can be as high as several seconds and thus dipolar interactions

can influence spin precession in tissues. It has recently been shown that the combined

effects of dipolar fields and radiation damping generate a dynamical instability leading to

chaotic behavior, enhanced sensitivity to initial conditions and improved magnetic resonance

imaging contrast.[86, 85] The effects discussed in this work do not require radiation damping
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and offer another tool for certain types of imaging experiments.

One such possibility is the following: Magnetic source MRI is a technique that detects the

response of proton spins to magnetic fields generated by small currents in the sample. It has

recently been shown that this technique can be used to detect the magnetic fields generated

by neuronal activity.[129] With an appropriate pulse sequence, dipolar interactions may

lead to enhanced sensitivity these small magnetic fields. Other applications include the

enhanced detection of small magnetization or magnetic field inhomogeneities due to different

longitudinal relaxation times or chemical shifts in a tumor could produce exponential growth

of magnetization gradients.

6.4 Spin precession and dynamical instabilities

It is worth reiterating some of the points made in the introduction about the sensitivity of

spin precession measurements. In numerous experiments, particularly those based on the

detection of nuclear spin, the sensitivity of the measurement is limited by the detectors,

rather than spin-projection noise. In such cases, substantial improvements in sensitivity

can be realized by using dynamical instabilities generated by collective particle interactions

to amplify spin precession to a level detectable by sensors of finite sensitivity. In the studies

reported here, long range dipolar interactions are responsible for the dynamical instability.

Other types of particle interactions have also been shown to generate dynamical instabilities

such as spin-exchange between alkali-metal atoms or between alkali-metal and noble-gas

atoms. Further study of these types of dynamical instabilities could lead to enhancements

in sensitivity of spin precession measurements in other systems.



Chapter 7

Appendix

7.1 Analytical expansion using a Taylor series.

In this method we expand the magnetization into a series of basis functions

M(r, t) =
∑
n

mi(t)fi(r), (7.1)

calculate the dipolar field produced by each basis function in terms of other functions in

the same basis,

Bdip(r)(fi) =
∑

j

bi
jfj(r), (7.2)

and substitute the result into Eq. (3.1). Assuming that products of the basis functions

can be expanded into sums over basis functions, the Bloch equations can be reduced to a

set coupled ordinary differential equations for the expansion coefficients mi, which can be

easily solved numerically.

The basis function fi(r) have to satisfy the following requirements:

1. For magnetization given by fi(r) the resulting dipolar field should be expressible as a

sum of fj(r).

2. A product of fi(r)fj(r) should be expressible as a sum of fk(r).

3. If diffusion is neglected the functions fi(r) do not need to satisfy any boundary con-

ditions other than being finite at the origin.
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4. The functions fi(r) do not need to be orthogonal over any interval, however the

coefficients mi and bi
j should fall sufficiently fast with i because the series has to be

truncated at a finite i.

5. If the magnetization and the gradient are initially symmetric around the z axis, the

functions fi(r) can be cylindrically symmetric as well.

One simple set of basis functions that satisfies all conditions above is a power expansion

in z and ρ = (x2 + y2)1/2. Another advantage of this basis is that it trivially reduces to

the linear model with a single z term. Here we set R = 1 and consider z and ρ to be

dimensionless. To decide which terms need to be included in the expansion, consider how

the higher order terms appear during time evolution of the Bloch equations. Initially, only

Bext has a gradient in the z direction. That causes M to develop a linear gradient in the z

direction. To next order a z2 term appears on the right hand side of Eq. (3.1). If z2 term

is included in the expansion of M it generates Bdip with terms z2 and ρ2. That in turn

generated such terms as z3, z4, zρ2, z2ρ2 and so on. Only even powers of ρ appear in the

expansion.

To calculate the dipolar fields created by the magnetization in the form fnm = zn(x2 +

y2)m it is convenient to introduce the scalar magnetic potential [104],

Φ = −
∫

V

∇′ ·M(r
′
)

|r− r′ | dV ′ +
∮

S

n
′ ·M(r

′
)

|r− r′ | dS′ (7.3)

H = −∇Φ (7.4)

B = H +
4π

3
M (7.5)

In the rotating frame it is sufficient to calculate only the potential due to Mz component

of magnetization, as can be seen from Eq. (3.20). The dipolar integral from the other two

components can be trivially found by replacing in the final result Mz with Mx (My), chang-

ing Bz to Bx (By), and multiplying by −1/2. The scalar potential from the ẑ component

of the magnetization is

Φz = −
∫

V

1
|r− r′|

∂Mz(r
′)

∂z′
dV ′ (7.6)
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+
∮

S

n̂′z ·Mz(r
′)

|r− r′| dS′ = Φsz + Φvz (7.7)

(7.8)

with Mz = rn+2m cosn(θ) sin2m(θ)

We make use of the well-known expansion

1
|r− r′| = 4π

∞∑

l=0

l∑

q=−l

1
2l + 1

rl
<

rl+1
>

Y ∗
lq(θ

′, ϕ′)Ylq(θ, ϕ) (7.9)

to write

Φsz =
∞∑

l=0

l∑

q=−l

4πYlq(θ, ϕ)rl

(2l + 1)
×

∫

4π
cosn+1 θ′ sin2m θ′Ylq(θ′,−ϕ′)dΩ′ (7.10)

and

Φvz = −
∞∑

l=0

l∑

q=−l

4πYlq(θ, ϕ)
(2l + 1)

×
∫

4π
n cosn−1 θ′ sin2m θ′Ylq(θ′,−ϕ′)dΩ′ ×


 1

rl+1

r∫

r′=0

r′n+2m+l+1dr′ + rl

1∫

r′=r

r′n+2m−ldr′



(7.11)

The radial integration involves only powers of r and can be done easily. Keeping only q = 0

terms because of azimuthal symmetry we can rewrite the potential

Φsz =
∑

l

4πYl0(θ, 0)rl

(2l + 1)
I1(n + 1,m, l) (7.12)

and

Φvz = −4πn
∑

l

Yl0(θ, 0)
(2l + 1)

I1(n− 1,m, l)

×
(

rn+2m+1

(l + 2 + n + 2m)
− (rn+2m+1 − rl)

(n + 2m− l + 1)

)
(7.13)

where

I1(n,m, l) =
∫

4π
cosn θ′ sin2m θ′Yl0(θ′,−ϕ′)dΩ′ (7.14)
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The angular integration can also be done analytically resulting in:

I1(n,m, l) = 2
√

(2l + 1)π ×
m∑

j=0

Cm
j (−1)j (n + 2j)!

(n + 2j + l + 1)!!(n + 2j − l)!!

(7.15)

for n + l even and l ≤ n + 2m + 1 and 0 otherwise, where Cm
j

m!
(m−j)! j! are the binomial

coefficients. We evaluate these expressions to obtain numerical coefficients for the expansion

of the magnetic potential, Eqs. (7.12,7.13). The potential Φz is differentiated with respect

to z to obtain the magnetic field Bz(fnm) which is expressed as an expansion in terms of

the basis functions,

Bz(fnm) =
∑

n′,m′
bnm
n′m′fn′m′ (7.16)

In the derivation, the following identities are useful

(1− t2)ntk =
n∑

m=0

Cn
m(−1)mtk+2m (7.17)

Pn(z) =
1
2n

n/2∑

k=0

(−1)kCn
k C2n−2k

n zn−2k (7.18)

and

∂(rl cosm θ)
∂z

=
∂

∂z

(l−m)/2∑

k=0

C
(l−m)/2
k z2k+mρl−m−2k

=
(l−m)/2∑

k=0

(2k + m)C(l−m)/2
k z2k+m−1ρl−m−2k. (7.19)

7.2 Magnetic field due to square pickup coil

Conveniently, the magnetic field due to a square loop of unit current has a closed form. We

use this expression frequently to calculate the signal in the SQUID magnetometers. It may

be easier to calculate it directly, but for completeness we include it here. For a loop with

sides of length a in the xy plane, the magnetic field for one unit of current in gaussian units

is
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Bx =
1
c

( 2
√

2z(a+2y)√
a2−2a(x−y)+2(x2+y2+z2)

+ 2
√

2z(a−2y)√
a2−2a(x+y)+2(x2+y2+z2)

(a− 2x)2 + 4z2

+

2
√

2z(a−2y)√
a2+2a(x−y)+2(x2+y2+z2)

+ 2
√

2z(a+2y)√
a2+2a(x+y)+2(x2+y2+z2)

(a + 2x)2 + 4z2

)
(7.20)

By =
1
c

( 2
√

2z(a+2x)√
a2+2a(x−y)+2(x2+y2+z2)

+ 2
√

2z(a−2x)√
a2−2a(x+y)+2(x2+y2+z2)

(a− 2y)2 + 4z2

+

2
√

2z(a−2x)√
a2−2a(x−y)+2(x2+y2+z2)

+ 2
√

2z(a+2x)√
a2+2a(x+y)+2(x2+y2+z2)

(a + 2x)2 + 4z2

)
(7.21)

cBz =
√

2(a− 2y)
(a− 2y)2 + 4z2

(
a + 2x√

a2 + 2a(x− y) + 2(x2 + y2 + z2)

+
a− 2x√

a2 − 2a(x + y) + 2(x2 + y2 + z2)

)

+
√

2(a− 2x)
(a + 2x)2 + 4z2

(
a + 2y√

a2 − 2a(x− y) + 2(x2 + y2 + z2)

+
a− 2y√

a2 + 2a(x + y) + 2(x2 + y2 + z2)

)

+
√

2(a + 2y)
(a− 2y)2 + 4z2

(
a− 2x√

a2 − 2a(x− y) + 2(x2 + y2 + z2)

+
a + 2x√

a2 − 2a(x + y) + 2(x2 + y2 + z2)

)

+
√

2(a + 2x)
(a + 2x)2 + 4z2

(
a− 2y√

a2 + 2a(x− y) + 2(x2 + y2 + z2)

+
a + 2y√

a2 + 2a(x + y) + 2(x2 + y2 + z2)

)

7.3 Quantum non-demolition measurements of spin preces-

sion using SQUID magnetometers

The principles of quantum mechanics require that a measurement of a system must perturb

its quantum mechanical state. However, in some cases it is possible to set up a quantum
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Figure 7.1: Schematic of idealized SQUID-spin coupling configuration.

non-demolition measurement that does not yield complete information about the system,

but does not strongly the influence the quantity of interest. In Ref. [78], QND measurements

using off resonant light were discussed in the context of atomic magnetometry. We discuss

here using SQUID magnetometers for performing quantum non-demolition measurements

on spins. The general form of this discussion is similar to that found in Ref. [78].

Consider performing measurements on a system of spins using the setup shown in Fig.

7.1. We assume that a spherical sample of N atoms with gyromagnetic ratio γ with total

magnetic moment m = Hγh̄/2 is initially polarized in the x̂ direction and is positioned in

the center of the pickup coil. For convenience and concreteness, we assume the pickup coil

is a solenoid of length a with N1 turns per unit length, with the symmetry axis oriented

along the y direction as shown in Fig. 7.1. The flux induced in the SQUID magnetometer

is proportional to my and hence a measurement of this flux yields no information about

mx or mz. Fluctuations of the current in the SQUID generate small fluctuations in the y

component of the magnetic field B1y by coupling to the pickup coil via the input coil. This

generates noise in mz by rotating the large component mx into the z direction, but does

not affect my. More formally, the interaction of the particles spin with the detection system

is HI = γh̄
2 σyB1y which trivially commutes with σy. Therefore my = Nγh̄

2 〈σy〉 is a constant

of the motion in the presence of the detection system, yielding a quantum non-demolition

measurement.

We now ask how well we can determine Bz by measuring the rotation of the spin into
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the ŷ direction with the SQUID. The magnetic field is determined by Bz = φ
γτ where φ

is the spin precession angle and τ is the measurement time. The accuracy with which we

can measure the spin precession angle is δφ = δmy/mx. For this analysis, we assume that

measurements are made on a time scale short compared to the intrinsic relaxation time.

We first note that, as discussed in Refs. [125, 126, 127] the minimum detectable energy

change in a SQUID is

δE =
δΦ2

2Lsq
=

δI2Lsq

2
= 16kbT

√
LsqC. (7.22)

where C is the Josephson junction shunt capacitance, Lsq is the inductance of the SQUID

and δΦ is the power spectral density of the flux through the SQUID loop. For temperatures

such that kbT ¿ h̄/
√

LsqC quantum fluctuations limit the sensitivity to

δE > h̄/2. (7.23)

In this analysis we will assume our SQUIDs are operating in this regime, and hence the

minimum detectable flux through the SQUID for unit bandwidth is

δΦsq =
√

h̄Lsq. (7.24)

We can also interpret this as quantum fluctuations of the current in the SQUID

δIsq =

√
h̄

Lsq
. (7.25)

A change in the flux through the pickup coil Φ1 generates a current I through the pickup

coil and input coil

Φ1 = I(L1 + L2). (7.26)

If we express the mutual inductance between SQUID and pickup coil as M = k
√

L2Lsq,

then a change in the flux through the pickup coil leads to a flux in the SQUID

Φsq = MI = k

√
L2Lsq

L1 + L2
. (7.27)

For optimal coupling, L2 = L1 and

Φsq =
k

2

√
Lsq

L1
Φ1 (7.28)
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We can use the law of mutual inductance, discussed in Chapter 3, to find the flux induced

in the pickup coil by the y component of the magnetic moment. Neglecting edge effects,

we approximate the magnetic field produced by the solenoid as constant over the sample

B1y = µ0N1I. Hence, the flux through the pickup coil due to my is

Φ1 = myµ0N1. (7.29)

Inserting this into Eq. 7.28 the flux through the SQUID is

Φsq = my
kµ0N1

2

√
Lsq

L1
(7.30)

Using Eq. 7.24 we find the sensitivity to my

δmy =
2

kµ0N1

√
h̄L1. (7.31)

Finally, the sensitivity to a small magnetic field Bz for measurement time τ is

δBsq
z =

1
γτ

δmy/
√

τ

mx
(7.32)

=
4

γ2τ3/2µ0kNN1

√
L1

h̄
(7.33)

In addition to directly limiting the sensitivity with which the rotation angle can be

determined, the magnetic field generated by quantum fluctuations in the SQUID produces

relaxation of the sample by causing spin flips. The perturbation acting on the spins, aver-

aged over the sample volume is

HI =
γh̄

2
σyδB1y. (7.34)

Here δB1y is the magnetic field produced by fluctuating currents in the pickup coil. If we

assume all the spins are initially in the state |↑x〉 the probability per unit time of making a

transition to the |↓x〉 state is given by the well known formula

W+→− =
2π

h̄
| 〈↑x| HI |↓x〉 |2 1

h̄
f(ω) (7.35)

where f(ω) = Γ2/4h̄2

(ω−ω0)2+Γ2/4h̄2 is the density of states, Γ = h̄/T2 is the width of the transition

and
∫

f(ω)dω = 1. The matrix element is

〈↑x| HI |↓x〉 = −i
γh̄

2
δB1y. (7.36)
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We assume that fluctuations in the SQUID current δIsq are gaussian, and since δB1y is pro-

portional to δIsq, it is easy to integrate Eq. 7.35 over frequency to find the total probability

for a transition |↑x〉 →|↓x〉
Wtot =

π

2
(δB1yγ)2. (7.37)

To find δB1y we note that the flux through the input coil due to fluctuations of the

current in the SQUID loop δI is

δΦ2 = MδIsq = k
√

L2LsqδIsq = δI(L2 + L1) (7.38)

and therefore the current I through the input and pickup coil, assuming L2 = L1, is

δI =
k

2

√
h̄

L1
. (7.39)

Hence, the pickup coil generates a magnetic field at the sample

δB1y =
µ0kN1

2

√
h̄

L1
(7.40)

Inserting this into Eq. 7.37 we find

Wtot =
π

2
h̄

L1

(
µ0kN1γ

2

)2

(7.41)

This stimulated spin transition rate produces relaxation of the polarization at a rate

ΓSQUID = 2Wtot so that mx(t) = mx(0)e−2Wtott. Furthermore, it produces a random walk

of the ŷ component of the magnetization. The total number of atoms that undergo a

stimulated transition during measurement time τ is Ns = NWtotτ and hence

δmatom
y = γh̄/2

√
NWtotτ

=
γ2kµ0N1

4

√
Nτπh̄3

2L1
(7.42)

leading to an uncertainty in the determination of the magnetic field

δBatom
z =

1
γτ

δmatom
y

mx

=
µ0kN1

2

√
πh̄

2L1Nτ
(7.43)
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Neglecting edge effects, the inductance of the coil is L1 = µ0πR2
1N

2
1 a. Adding the two

contributions 7.32 and 7.43 to the noise of the magnetic field measurement in quadrature,

we find

δBtot
z =

√
16π

h̄N2γ4µ0τ3
ζ +

hµ0

8Nτ
ζ−1 (7.44)

where ζ = aR2
1/k2. Optimizing Eq. 7.44 with respect to ζ, we find

ζopt =
h̄γ2µτ

8

√
N

2π
(7.45)

and

δBz,opt =
23/4π1/4

γτN3/4
. (7.46)

Note that the volume of the sample is V = aπR2
1 = πζ/k. For N = 1022 xenon atoms,

Eq. 7.45 evaluates to ζopt = 3.6 × 10−9 m3. Assuming the coupling between the SQUID

and input coil is near unity, this means the sample must be compressed to approximately

10 mm3.

As pointed out in Ref. [78], if one includes intrinsic relaxation processes with rate Γrel,

one finds that for measurement times T such that T À (NΓrel)−1, the sensitivity becomes

δBz =
√

Γrel

γ
√

NT
. (7.47)

This is the result for a conventional shot noise limited magnetometer and holds irrespective

of the detection system.

7.4 Some useful properties of liquid xenon

Table 7.1 summarizes some useful properties of liquid xenon.
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Property value
gyromagnetic ratio γ = 1177 Hz/G

density [n] = 1.4× 1022cm−3, ρ = 2.907 g/cm3

freezing point 163 K
coefficient of thermal expansion β′ = 0.0023K−1

dynamic viscosity ν = 0.0015 cm2/ sec
coefficient of diffusion D = 2× 10−5 cm2/ sec

index of refraction n = 1.4
dielectric constant K = 1.5

atomic polarizability α = 4.4× 10−40C−m2/V
129Xe natural abundance 26%

thermal conductivity λ = 7000 erg/(cm-s-K)
heat capacity cp = 3.5× 106 erg/(g-K)

Table 7.1: Properties of liquid xenon.
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