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ABSTRACT 
Differential cross sections were measured for ir -carbon 

scattering at 69.5 Mev and 87.5 Mev and v- -oxygen scattering 
at 87.5 Mev from 20° to 125° extending the technique of Baker, 
Rainwater, and Williams1. Elastic and 5 and 10 Mev inelastic 
cross sections were obtained. The energy resolution was 
sufficient to measure pure elastic cross sections. The modi­
fied Kisslinger optical model equation was used to fit the 
elastic cross section data. A x2 analysis for the 69.5 Mev 
carbon data gave a nuclear radius parameter, r○ = 1.05 ± 0.03 
fermis and a fall-off parameter, t = 1.16 ± 0.07 fermis. 
These parameters give good fits to the other data as well. 
An energy dependence in the strength parameters for carbon 
is observed in qualitative agreement with prediction. A 
modification to the equation by Kroll does not give as close 
a fit to the data. 
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I. INTRODUCTION 

Measurements have been made, with the use of scin­
tillation counters, of the angular distributions of π- mesons 
scattered from carbon at 69.5 Mev and 8/7.5 Mev and from 
oxygen at 87.5 Mev. The experimental work is an extension 
of that of Baker, Rainwater, and Williams (BRW), in which 
the scattering of 80 Mev π- mesons from Li, C, Al, and Cu 
was measured. In their experiment, scattered pion energy was 
determined from the range of pions stopped in a counter. 
This technique afforded considerable improvement in energy 
resolution over that obtained previously with counters2-4 

and cloud chambers5-7. The present experiment employed four 
such counters in succession, the "multicounter", to increase 
the data taking rate. The energy resolution in either ex­
periment was sufficient to separate out pure elastic scat­
tering from all inelastic scattering for carbon and oxygen. 
In the case of lithium, BRW employ the electron8 and proton9 

scattering data to argue that the contribution of scattering 
from the first excited state to the measured elastic scat­
tering is small. No other levels contribute. 

Recent experiments have been performed by Kane10, π+  

-carbon scattering at 31.5 Mev;and Fujii, 150 Mev π- scat­
tering from C, Al, Cu, and Pb. Kane measured total pion 
energy by means of pulse height in a scintillation counter 
with an (absolute) energy resolution comparable to our own 
and observed backward (105° to 145°) elastic scattering cross 
sections of approximately 7 mb/ster. Fujii measured quasi-
elastic scattering into a 15 Mev interval by means of total 
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energy determination in a Cerenkov counter and observed 
for carbon 1 mb/ster elastic scattering for θ 70°. 
This is significantly less scattering at large angles than 
we observe at 70-90 Mev; namely 2-5 mb/ster. The differ­
ence may well be due to the energy dependence of the ir-nucleu 
interaction. 

Baker, Byfield and Rainwater12 (BBR) have fit optical 
model calculations to the data of BRW. The optical potential 
used was a modification of the one of Kisslinger13. It 
removes an obviously non-physical divergence in the unmodified 
form. The potential includes a term in the gradient of the 
nuclear density which arises from the important p wave contri­
bution to the elemental π-nucleon scattering in the nucleus. 
Hence, the predictions are particularly sensitive to the 
nuclear edge thickness. The model gives good fits to the 
data at all angles and for nuclear radii consistent with the 
results of electron scattering14. The IBM 650 program of 
BBR has been used to fit the data of this experiment. 

Kroll15 has derived a modification of the Kisslinger 
theory which attempts to distinguish properly between the 
average and effective meson fields in the vicinity of a 
nucleon as is done in the Lorentz-Lorenz classical theory 
for electromagnetic waves in matter. 

The mathematical form of his potential is intermediate 
between the unmodified form and the form of BBR. Considerable 
attempts have been made to fit Kroll's equation to the 
present data and the 80 Mev carbon data of BRW with less 
success than is afforded by the modified Kisslinger equation. 

These models are discussed in Sections V and VI. 
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II. EXPERIMENTAL ARRANGEMENT 

A. Detection Apparatus 
The π- meson beam used in this experiment was produced 

by the 380 Mev Nevis Synchrocyclotron The mesons were 
focused and deflected into the detection apparatus by means 
of a series of magnetic lenses as indicated in Fig. 1. 

The detection apparatus was laid out as shown in Fig. 2. 
Counter dimensions are listed in Table I All counters were 
plastic scintillators and each was viewed by two RCA 1P21 
photomultiplier tubes whose outputs were added. Counters 1, 
2, and 3 make up the incoming beam telescope. Counter 3, 
which was 3/4" x 3", determined the target size used. The 
angular spread and the intensity of the part of the beam 
used were dependent on the position of counter 1 relative 
to counters 2 and 3. A compromise position, which gained con­
siderable intensity without losing much angular resolution, 
was obtained with D, = 25". The carbon target used was 
0.500 inches thick, the distance for a 5 Mev loss of energy 
by an 80 Mev pion by ionization. The oxygen target was a 
container of water with thickness 0.750 inches, the distance 
for a 5 Mev loss in water. The container was a light alum­
inum frame with 0.003 inch aluminum windows. 3/8 inch thick 
slabs of Styrofoam were glued to the windows to maintain 
uniform target thickness. Thus, the total thickness of mater­
ial in the beam was 5% by weight of the target thickness. 
The hydrogen contamination to the elastic scattering was 
negligible (to be discussed in Section III). The remaining 
counters and absorbers formed the scattered beam telescope. 
Counters 4 and 5 detected pions of all energies scattered 
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through angle θ. Counter 5 defined the solid angle and 
the linear angle subtended by the scattered beam telescope. 
The distance D5 was varied from 40 in. at small values of 
θ to 12 in. at large angles - all other distances in the 
scattered beam telescope remained fixed - to obtain maxi­
mum counting rate consistent with good angular resolution. 
The copper absorber slowed the pions so that most stopped 
in the "multicounter", counters 6 to 10, where pion energy 
was measured. The shield prevented all pions scattered in 
counter 3 from reaching the multicounter, except for 0 < 30° 
where it could be only partially effective. 

The scattering stand used was the one described in 
BRW. The scattered beam telescope was mounted on an arm 
which rotated in a vertical plane. The absorber was mounted 
on a four positioned rotating wheel. The target was always 
kept in a transmission type geometry and rotated as the arm 
did to maintain Ø = 1/2θ. By this means, all π's scattered 
through θ traversed the same distance in the target thus 
maintaining energy resolution. The use of a transmission 
type geometry for the target prevents measurements for 
θ 125°. The scattering arm and the absorber wheel were 
operated remotely from the data recording site along with 
the target in-out control. 

The multicounter - counters 6,7,8,9, and 10, and the 
copper shims between them - was used to measure simultaneously 
four points on the differential range curve of the scattered 
beam by counting stoppings in counters 6,7,8, and 9. It was 
set up as follows: In the straight ahead beam with the target 
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out, the absorber thickness, T, was adjusted so that the 
rate in counter 9 was maximized. This was done by adjusting 
T such that if R(T) is the rate for T, then R(T + 1/8 in.) = R(T - 1/8 in.) 
≈ 0.4 R(T). We say that tne beam was "centered" 
on counter 9. The shim and counter thicknesses were such that 
an increase in T by an amount equivalent to a 5, 10, or 15 Mev 
loss of energy by an incident π would center the beam on 
counter 8, 7, or 6, respectively. The stopping power of a 
shim was ~ 2/3 the stopping power of a scintillator. As dis­
cussed below, the portion of the scattered beam wnich was 
detected was considered in the analysis to consist of 4 beams 
whose mean energies upon leaving the target were the elastic 
energy E, ; E,-5; E,-10; and Eel-15 Mev. Because of the 
way the multicounter was set up, these 4 beams were always 
centered respectively on counters 9,8,7, and 6. Each of these 
beams contributed counts to each of the counters because of 
the non-zero energy resolution of the system. Therefore, 
the efficiency of the counters was calibrated in the straight 
ahead beam for 4 different absorber thicknesses corresponding 
to the 4 beams. That is, the thicknesses were such that the 
straight ahead beam was centered in turn on each counter. 
Changing the absorber thickness is essentially equivalent 
to changing the mean energy of the incident beam without 
changing the energy distribution about the mean or the spatial 
distribution. Fig.  shows the response of the multicounter 
to a beam centered on counter 9 (Curve I) and on counter 6 
(Curve II). The counting rate is in relative units, the 
counters having been adjusted for equal peak efficiencies. 
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From these curves it is seen that the measured energy 
spread is ± 4 Mev. This includes both the inherent spread 
of the beam as well as the spread introduced by the measuring 
process. 

An alternate approach is to plot the range curve in 
a given counter for varying absorber thickness. Fig. 3B 
shows such a range curve for counter 9 with a beam energy of 
72 Mev at the exit of counter 3. The overall energy spread 
measured in this way is also 8 Mev for either energy beam. 
Several additional points were taken to show the small 
relative efficiency in the tails of the distribution. 

A stopped pion in a given counter was identified both 
by the extra large light pulse it produced and by the absence 
of a pulse in the following counter. A stopped pion pro­
duces a large light pulse because of its high specific 
ionization and because of the energy released in the star 
it produces. Anticoincidences 6-7', 7-8', 8-9', and 9-10' 
were made at the multicounter in the addition circuits 
shown in Fig. 4. The attenuated anode pulse (coincidence) 
of a counter was added to the pulse from the last dynode of 
the following counter (anticoincidence). In order that only 
large light pulses be detected, the coincidence circuits 
involving the multicounter pulses were operated on the knee 
of the high voltage plateau. To meet the stringent stability 
requirements, a well-regulated high voltage supply was used 
for the multicounter - stable to within 0.3 volt at 1400 volts -
which together with the rest of the stable electronics proved 
very adequate. The multicounter was calibrated every 24 hours 
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and the drift was not sufficient to change the calculated 
cross sections by a statistically significant amount. 

The contributions to the overall energy spread from the 
measuring process include range straggling, stars produced 
in flight, large angle scattering in the multicounter, and 
the energy interval corresponding to each counter. The tight 
geometry after counter 5 and the graduated sizes of counters 
6 to 10, tended to minimize the effect Of the large angle 
scattering; the other effects were necessarily present. At 
any event, the calibration of the multicounter, which measured 
the overall effective spread, is all that is required in order 
to reduce the raw data. The individual contributions to the 
final spread need not be known since these were present both 
in the calibration and in the data taking runs. Most important, 
the overall spread is small enough to make feasible the separ­
ation of the elastic from the inelastic scattering for carbon 
and oxygen. 

B. Electronics 
The block diagram of the electronics layout is shown 

in Fig. 5. The coincidence circuits were all Garwin type. 
Each counter pulse was amplified by a Hewlett-Packard ampli­
fier, type 460A, which fed the fast coincidence circuits. 
The latter circuitry was all in the experimental area. It 
was necessary only to clip the counter pulses of high rate, 
counters 1,2, and 3. The 1-2-3 coincidence then had a re­
solving time of 6 mµsec. Its accidental rate at the maxi­
mum coincidence rate of 11,000 counts/sec was 1%. A 1-2-3-4-5 
coincidence was made largely for use as a monitor. Coinci-
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dences with multicounter pulses were 4-5-6-7', 4-5-7-8', 
4-5-8-9', 4-5-9-10'. The resolving time for the latter 5 
coincidences was 15 mµsec. The accidental rate in the multi-
counter coincidences was nil for θ ≥ 35°. However, it was 
found that the singles and coincidence rates in the scattered 
beam telescope were increased at small θ because these 
counters then intercepted part of the raw beam. The beam 
intensity was reduced at these angles so as to make the 
accidentals rate negligible. 

The pulses from these 6 coincidence circuits were sent 
to the laboratory building to the EFP60 discriminator and 
pulse shaping circuits. See Fig. 6. The stability of these 
circuits was the prime reason for the stability of the system. 
The control grid (discriminator) voltage to the EFP60 was 
stabilized by the cathode follower feed back loop. The 
shaped pulse width was 80 mµsec and the dead time between 
pulses was 20 mµsec. These times, as well as the pulse 
height, remained essentially the same up to rates of 2 x 106 

pulses/sec. Four slow coincidences were made after the 
EFP60 circuits: 123-12345-4567', 123-12345-4578', etc. 
Each of the 4 outputs was sent to two 200 kilocycle scalers 
in parallel as a precaution against scaler breakdown. The 
shaped 1-2-3 and 1-2-3-4-5 pulses were also sent to fast 
amplifiers and then to 10 megacycle Hewlett-Packard scalers 
which in turn went to 200 kilocycle scalers. The only signi­
ficant dead time in the system was introduced in the 1-2-3 
coincidence. The dead time correction was found to be 6% 
at a 1-2-3 rate of 10,000 counts/sec and to vary linearly 
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with rate. A suitable correction is made to the cross 
sections. 

. Beams 
The meson beam was focused by the following means. 

See Fig. 1. The vertical source size for π mesons at the 
cyclotron target is 0.8 in. as determined by a radiogram 
of the cyclotron target. The cyclotron fringing field pro­
duces vertical focusing of the emerging beam so that verti-
cally there is an apparent source which is ~ 2 in. high at 
the point labeled V.S. Horizontally the beam is less 
coherent so that the air core quadrupole, Q1, which focuses 
vertically to increase beam intensity, does not act to 
decrease intensity by its horizontal defocusing action. 
The bending magnet, B, was shaped to focus vertically but 
not horizontally. There was then a vertical image at V.I. 
The quadrupole pair, Q2 and Q3, were horizontally and vertically 
focusing respectively. The horizontal source for the quad­
rupole pair may be considered to be the exit of Q1. The 
currents in Q2 and Q3 were adjusted to produce an image, 
both vertical and horizontal, at the target T. Helium 
filled polyethylene bags were used to cut down air scattering. 
Their overall effect cannot be stated, but a 25% increase in 
beam intensity was observed when the bag, external to the 
shielding wall, was put in place. 

The image height measured was 0.8 in. full width at 
half maximum. The horizontal size was estimated to be 
~ 6 in. on the basis of a comparison of counting rate to 
total π flux out of B. The angular spread vertically in 
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each beam used - after counter 3 - was 4.5° full width at 
half maximum. 

The lower energy beam was obtained by changing the 
radial and azimuthal positions of the cyclotron target from 
the positions for the 87.5 Mev beam. This lowered by 10 Mev 
the mean energy of the π beam which emerged from the shielding 
wall. The remaining 8 Mev decrease to 69.5 Mev was obtained 
by placing lithium and polyethylene absorber in front of 
counter 1. The 1-2-3 counting rates for the 2 beams were 
9000/sec at 87.5 Mev and 3000/sec at 69.5 Mev. The reduction 
in rate was due entirely to multiple scattering in the 
additional absorber. These rates include the µ and e con­
taminations which total 10-15%. It is not necessary to know 
this contamination precisely since these particles were not 
counted in the calibration runs because of their range, and 
they were not present in the scattered beams. 

The energy spread in the beam was decreased by placing 
iron shielding at points 1 and 2 in Fig. 1 since higher 
energy π's follow a direction tilted with respect to the 
shielding wall hole. The quoted energy is the energy of 
a π at the center of the target for θ - 0°. To determine 
the beam energy precisely, the absorber was adjusted so 
that the peak of the full energy beam stopped in counter 9. 
The beam energy was then changed slightly by adjusting the 
azimuthal position of the cyclotron target. The three 
central points of the range curve in Fig. 3B were a sensi­
tive test of whether the beam was centered on counter 9. 
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III. EXPERIMENTAL PROCEDURE 

The equivalent copper thickness of the target was 
measured for each of the three differential cross section 
curves during the initial calibration of the multicounter. 
These thicknesses - for normal beam incidence - were the 
following: 1) For carbon, 0.118 in. and 2) for water plus 
target holder, 0.125 in. 

The thickness of the copper absorber was altered for 
each value of 0 so that the beam of elastically scattered 
π mesons was centered on counter 9. Consequently, beams of 
inelastically scattered pions of energies 5, 10, and 15 Mev 
less than the beam of elastically scattered pions were 
centered on counters 8, 7, and 6 respectively. During the 
earlier runs, the elastic beam was centered on counter 8. 
At the smaller angles where inelastic scattering is small, 
a check was made that the scattered beam was indeed centered 
properly since then counters 7 and 9 had approximately the 
same counting rate. However, less information could be 
obtained this way and once the system was checked out, the 
elastic beam was again centered on counter 9. 

The energy of the elastically scattered π emanating from 
the target is a function of θ for two reasons: nuclear recoil 
and the change in ionization loss of the π due to the increased 
slant distance traversed in the target by the π with increasing 
θ. The two effects are of comparable magnitude for the target 
thicknesses used. Plotted in Fig. 7 is Eπ (0°) - Eπ (θ) vs θ 
for the three cases and for hydrogen in the water. The proper 
copper thickness was calculated accurately, accounting for the 
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change of relative ionization with energy, and the copper 
plates were specially ground to give an overall error in 
absorber thickness of < 0.005 in of copper or < 0.2 Mev. 

The analysis of the data for differential cross sections follows the lines described in BRW. Because of the non-zero energy spread of the beam and the non-zero energy resolution width of the detector, the elastic and inelastic cross sections must be unfolded from the, experimental data. One treats the scattered beam as being made up of an elastically scattered beam and three inelastically scattered beams of mean energies 5, 10 and 15 Mev less than the energy of the elastically scattered beam. Each of these beams contributes to the count in each of the counters of the multicounter. The inelastic beams do not actually coincide in mean energy with the energies chosen since they are pions which leave the nuclei in excited final states. The result of the un­folding process is a well determined elastic cross section and inelastic cross sections which give a good indication of scattering from the low lying excited levels of the nucleus. Both carbon and oxygen are well suited to this method as a large separation in energy exists between the ground state and the first excited state, 4.43 Mev for carbon and 6.07 Mev for oxygen. Table II lists the energies of the first several excited levels of carbon and oxygen taken from AJzenberg and Lauritsen16. 

The method of unfolding is t e following: n9 is the 
total number of elastically scattered pions; n8 the total 
number in the 5 Mev inelastic beam; n7 the number in the 
10 Mev inelastic beam; and n6 the number in the 15 Mev 



-14-
inelastic beam. The efficiency matrix element Aij.. is the 
probability of a count in counter i if there is one meson in 
beam j. For example, A89 is the relative probability for a 
count in counter 8 due to an elastic beam of one meson. 
Table III is a typical efficiency matrix for the 69.5 Mev 
beam. The experimentally observed count in counter i, 
corrected for background is 

ni' 
9 

A
i j

 n
j ( i - 6 - 9 ) . 

∑ 

A
i j

 n
j ( i - 6 - 9 ) . 

j - 6 

A
i j

 n
j ( i - 6 - 9 ) . 

Then nj -
9 

( A - 1 ) j i ni
' ( j - 6 - 9 ) . 

∑ 
( A - 1 ) j i ni

' ( j - 6 - 9 ) . 

i - 6 

( A - 1 ) j i ni
' ( j - 6 - 9 ) . 

nj will include the effect of all beams which are centered 
between counters j-1 and j+1, except for n6 which includes 
the effect of all beams lower in energy than E7. π9 is 
pure elastic since the scattered beam from the first excited 
state is almost centered on counter 8 for carbon and is 
centered between counters 8 and 7 for oxygen. 

The statistical error in nj. is due to the errors in 
ni' and in A. However, since the errors in ni' dominate 
strongly, the errors in A are neglected. The error in nj 
is given by 

1 

9 

}2 

δnj-
[ (a - 1 ) j i ] 2 (δni

' 

}2 i = 6 }2 

δni' is the statistical error in ni including the effect of 
background. 
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Consideration has been given to the errors which might 

be introduced by the unfolding process. This is discussed 
in Appendix I. From these nj, the elastic and three inelas­
tic cross sections with errors were calculated on Nevis's 
IBM 650 computer. At the small angles, it was possible to 
combine the counts of counters 9 and 8 to measure elastic 
cross sections without unfolding, since at angles θ ≤ 55° 
the inelastic scattering was negligible. By this means, 
errors on the small angle data were reduced. This is 
justified by the extended runs taken at 40° which showed 
inelastic cross sections that were effectively zero, and 
by the general trend in inelastic scattering observed at 
larger θ. Furthermore, the two methods gave the same 
result at small angles. 

There are several small corrections which must be made 
to these cross sections: 

1. π decay in flight. The system was always calibrated 
with (D5) min = 10 in. Runs were taken varying D5 between 
40 in. and 12 in. One must then correct for all π decays 
occuring between (D5)min and D5. The maximum correction 
is 7% for D5 = 40 in. One must consider the effect of the 
decay muons from the pions scattered toward the general region 
of counter 5. It was determined from an extended range curve 
that the multicounter did count some muons stopping in it. 
Hence, it would count some of these decay muons. However, 
each counter in the multicounter could count no more than 
1/16 of all muons passing through counter 5 since the energy 
spread of these muons was ~ 80 Mev. This is < 1% of the 
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total π rate. 

2. Angular spread. The angular spread of the beam 
incident on the target was measured to be 4.5° full width 
at 1/2 maximum for both beams. With the target in, the 
multiple scattering raised the spread to 5.5° for either 
target. The linear angular width of counter 5 was folded 
in quadrature with the beam spread (target in) to give the 
errors on the angles. This angular width varied from 6.2° 
to 9.3°. The simplest way to account for the angular spread 
is to fold it into the theoretical cross section curves 
which are fit to the data. A gaussian distribution in angle 
was assumed for the weighting factor. For the curves which 
were fit by eye to the data, the effect of the angular 
spread was almost entirely negligible. The x2 fit by machine, 
being more sensitive, required this correction. 

3. Change of calibration with θ. The energy of the 
scattered beam decreases with θ. The copper absorber was 
decreased correspondingly so that the elastic beam was always 
centered on counter 9. However, each counter thickness 
corresponded to a larger energy interval since the specific 
ionization was increased. Effectively, the efficiency of 
the whole multlcounter increases with θ. The increase is 
3.5% at θ = 120°. 

4. Hydrogen contamination. The π- scattering from 
hydrogen in the water must be accounted for only at the 
smallest angles in the oxygen scattering. From Fig. 7 
it is seen that the energy loss of a π scattered from a 
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proton increases much faster with increased θ than for a π 
scattered from oxygen. A correction < 2% is made to the 
measured elastic count for 20° ≤ 0 ≤ 30°. At θ = 35°, this 
beam is centered between counters 7 and 8 for an elastic 
beam centered on 9, and for θ > 65°, it is centered in the 
absorber. Thus, except for n6, the unfolded count for 
θ≥ 70° is the same as it would be were there no hydrogen. 

IV. EXPERIMENTAL RESULTS 
Differential cross sections are listed in Tables IV, V, 

and VI for carbon at 69.5 Mev, and 87.5 Mev, and oxygen at 
87.5 Mev, respectively. Included in each table are elastic 
and 5 and 10 Mev inelastic cross sections with their statis­
tical errors. The angular spread for each nominal θ is that 
calculated from the measured angular spread in the beam, 
including multiple scattering in the target, and angular 
acceptance of the beam defining counter 5. Only unfolded 
cross sections which are considered meaningful are listed 
so that small angle inelastic scattering is not included. 
See Appendix I. The small angle elastic cross sections, 
θ ≤ 55°, are, in fact, the non-unfolded ones. These results 
are shown graphically in Fig. 8, 9, and 10. Fig. 11 is the 
80 Mev π- -carbon scattering data of BRW. Theoretical fits 
to the elastic scattering curves are discussed in Sections V 
and VI. 

A qualitative comparison of the three carbon curves 
shows a similarity in the behavior of the 5 and 10 Mev 
inelastic scattering. That is, there is a general increase 
in the inelastic scattering in the region between 70° and 125°. 



-18-
The ratio of inelastic to elastic scattering cross section 
increases from 0.1 in the vicinity of 70° to > 1 at the 
largest angles. 

The oxygen inelastic scattering shows a similar behavior 
at large angles although the statistical accuracy is not as 
good and the trend is less clear cut. It is evident that at 
the largest angles the inelastic scattering outweighs the 
elastic to the point of masking the second minimum in the 
elastic scattering curve. One, therefore, cannot tell the 
value of the elastic scattering in this region; but following 
the arguments of Appendix I again, one can say that the 
inelastic scattering is several times the elastic. Hence, 
the elastic cross sections are 1 mb/ster. It is seen that 
without significant improvement in energy resolution, one 
will not be able to see clearly the elastic scattering at 
larger angles. 

In BRW, the 5 Mev inelastic scattering is consistently 
greater than the 10 Mev inelastic although the data for all 
but the 110° scattering are consistent with equal cross 
sections. In our 69.5 Mev data, the 10 Mev cross sections 
are also, for the most part, lower than the 5 Mev inelastic; 
but the 87.5 Mev carbon data show the two cross sections 
to be the same within the statistical uncertainties at the 
larger angles and the 5 Mev scattering to be larger on the 
average between 70° and 90°. Points which are missing 
entirely including their error flags are those which unfolded 
to negative values. 
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The oxygen data show an indication of a more complex 

behavior. On the average, 5 Mev scattering predominates 
over 10 Mev at the largest angles while the reverse is true 
between 70° and 95° where the uncertainties are very large. 
Since 10 Mev scattering has contributions from all levels 
between 6 Mev and 13.7 Mev (See Table II) while 5 Mev scat­
tering has contributions only from those between 6 Mev and 
10 Mev, it appears that at the largest angles, the measured 
average scattering from the lowest levels, 6.06-7.12 Mev, 
is significantly greater than from the next several levels, 
8-14 Mev. 

V. OPTICAL MODEL CALCULATIONS 
A. Modified Kisslinger Equation Calculations 
Calculations of the modified Kisslinger optical model 

equation discussed in BBR were fit to the data. These were 
performed on the IBM 650 using the program discussed in 
that paper. 

The wave equation for the meson, including the pion 
nucleus interaction term, U ψ, is 

V2ψ + k o
2 ψ = 

(2E-VC )VC 
ψ + U ψ (V-1) V2ψ + k o

2 ψ = 
c 2 h 2 ψ + U ψ (V-1) 

Vc is the coulomb potential. The radial equation for angular 
momentum l is 
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The modification from the original Kisslinger theory arises 
in replacing 1 by ( l - C p F ) . 1 + pF by ( l - C p F ) . The following definitions 
apply: k○ is the meson momentum in the laboratory system. 
F(r) is the nuclear density function normalized to F(0) = 1. 
Cp and s are given by 

 = -
4πρ  [ Z Kcm fp + N Kcm fN (V-3) 

P 
s 

p 
s 

= -
kkcm

2 [ A 
(V-3) 

P 
s 

where ρ○ is the nuclear density at r = 0 in nucleons/cm3 ; 
' kcm is the π momentum in the center of mass system of the 
π and a single nucleon when the nucleon is at rest in the 
laboratory system; A, Z, N are nucleon, proton, and neutron 
numbers respectively; fp and fN are linear combinations of 
forward coherent scattering amplitudes for π- - P and 
π- - N scattering relative to the pion-nucleon center of 
mass system, and the subscripts s and p designate that 
these amplitudes are all s or all p wave. 

The parameters p and s can, in general, be expected 
to be momentum dependent. This is clearly so because of the 
momentum dependence of the π-nucleon phase shifts as well 
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as the explicit dependence in V-3. These two effects tend 
to cancel for p at π energies far enough below the resonance 
at ~ 193 Mev because of the approximate cubic dependence on 
momentum of the predominant phase shift, δ33. Cp and s 
were calculated for several values of the incoming pion 
energy, using the equation of Chew and Low17 for the momentum 
dependence of the δ33 phase shift and the linear expressions 
for δ1 and δ3. The other 3 phase shifts are set equal to 
zero. The validity of these forms is discussed Orear 
A Fermi type nuclear density distribution was used (Equa­
tion V-4 below) with r = 1.05f and a - 0.25f. The calcu­
lated nuclear parameters are listed in Table VII. 

In fitting the calculated cross sections to the data, 
p and s (which are complex) and the nuclear size parameters 
r○ and t, are varied to produce good fits. It will be 
expected that the best fit p and s values may agree only 
roughly with the predicted values because of approximations 
involved in the formulation of the theory, r○ and t are 
defined in the usual way: If R is the radius of the nucleus, 
i.e., the distance from the center to the point where the 
nuclear density is 1/2 the central density, then r○ = R/A1/3. 
t is the distance for the nuclear density to fall from 
0.9 x central density to 0.1 x central density. The cubic 
form, V-5, gives a best fit to the 80 Mev carbon data in 
BRW for r○ = 1.08f and d = 2.of, while the best fit curve 
for V-4 was for r○ = 1.08f and a = 0.25f. These two calcu­
lated cross section curves are essentially identical. The 
values of t corresponding to these values for d and a are 
1.2f and l.lf, respectively. This difference is not 
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considered to be significant since the definition of t is 
somewhat arbitrary and a slight change in the definition 
would give a different ratio of the true values of t. Fig. 12 
shows a comparison of the two density functions for the same 
value of  , 1.08f, and for d = 2.Of and a = 0.25f. 

In the calculations of BBR, the nuclear density function 
was of the commonly used form 

F = 1 (V-4) F = r-R (V-4) F = 
1 + ea 

(V-4) 

It was later noted that a more convenient form for compu­
tation was the following function for which both F and 
are continuous. 

dF tation was the following function for which both F and 
are continuous. 

dr 

F = 1 r < (R-d/2) 

F = 1/2 - 3/2 (r-R) + 2 (r-R) 3 
(R-d/2) ≤ r ≤(R+d/2) (V-5) F = 1/2 - 3/2 (d) + 2 d 3 (R-d/2) ≤ r ≤(R+d/2) (V-5) 

F - 0 r > R+d/2) 
The fall-off parameter for this form is t = 0.60d and the 
radius for F - 1/2 is R. For form V-4, the radius for 
F - 1/2 is R and the fall-off is t - 4.4a. The calculated 
cross sections were adjusted to include the effect of angular 
spread in the measuring process. The effect of the angular 
folding was very small but tended slightly to fill in the 
first minimum in the region of 70° and to shift it to a 
larger angle. 

For fitting to the data by eye, the goodness of fit is 
not changed by including the angular folding. In the case 
of 69.5 Mev scattering from carbon, a more extensive study 
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was made for the best fit. In this more sensitive test, it 
becomes necessary to use the angular folding since the 
position of the minimum is important in determining the 
nuclear radius R. Fig. 13, 14, and 15 show the elastic cross 
section data - with the resolution corrected theoretical 
curves which give the best fits superimposed - for 69.5 Mev 
carbon, 87.5 Mev carbon, and 87.5 Mev oxygen scattering. 
Fig. 16 is the 80 Mev data of BRW with the calculation of 
BBR. 

B. Calculation of Best Fit and 
Standard Deviation of Nuclear Parameters 

For the 69.5  carbon data, a x2 analysis was per­
formed to determine the parameters giving the best fit to 
the data. The procedure is as follows: 

x
2(x

i) =  ∑ δj
 -2 [ G (xi ; θj) - dσ ( θ j ) ] 

2 
(V-6) x

2(x
i) =  ∑ [ dΩ ] 

2 
(V-6) x

2(x
i) =  

J [ dΩ ] 
2 

(V-6) 

dσ 
dΩ 

(θj) is the measured cross section at θ; and δj is the 
standard deviation in dσ 

dΩ 
xi represents a particular set 

of nuclear parameters: r0, t, Re(Cp), Im(Cp), Re(Cs),S 
Im(Cs). G(Xi; θj) is the calculated cross section for this 
set of parameters at θj. The parameters which give the 
best fit, i, are the ones which give rise to the minimum x2 Because of the length of time involved in calculating G for 
a given set of parameters, the following approach was taken. 
First a best fit to the data was found judging the fit by 
eye. The parameters for this fit are xi○. This was not 
difficult to obtain since xi○ are not very different from 
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the parameters for the 80 Mev carbon fit. Now it is assumed 
that i lies close to xio and that χ2 (xi) can be expanded 
in a power series about xi

o. If the series is terminated 
at the quadratic terms, we have the following form: 

χ2 = 
6 

aijyiyj + 
6 

bii + , (V-7) χ2 = 
Σ 

aijyiyj + 
Σ 

bii + , (V-7) χ2 = 
i,j=1 

aijyiyj + 
i-1 

bii + , (V-7) 

where yi = xi - xi
o. 

There are a total of 28 independent coefficients in this 
form which are determined by calculating G for 28 sets of 
xi, judiciously chosen so that χ2 never be so large that 
higher order terms become important. 

Equation V-7 is a paraboloid in seven dimensions and the minimum value of χ2 is at the point where 

d 
dyi 

χ2 = 
6 

2a
ij yj

 + bi = 0, for 1 ≤ i ≤ 6. χ2 = 
Σ 

2a
ij yj

 + bi = 0, for 1 ≤ i ≤ 6. χ2 = 
j-1 

2a
ij yj

 + bi = 0, for 1 ≤ i ≤ 6. 

The solution of these six simultaneous linear equations 
gives yi

o, and i = yio + xi
o. The value of χ2 ( i) can 

be compared to the value obtained by first calculating 
G ( i; θ) and then χ2. That these two values of χ2 agree 
very well is a check on the method. 

The purpose of this analysis was not primarily to find i. The values one gets are not far from what one gets 
fitting to the data by eye. Rather, the primary hope was 
to show that the values of the parameters required to fit 
the modified Kisslinger equation to the data are well deter-
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mined, that the standard deviations for i are small. For 
the quadratic form assumed for x2, the standard deviation 
for the parameter xk is 

σk -
(a-1)

kk ] 
1 

σk -
[ (a-1)

kk ] 2 

where a~ is the inverse matrix to aij 
[The above formula has an interesting geometrical inter­
pretation. It can be shown that σ, is the maximum value 
of | xk - k|on the ellipsoid x2 = X2 min + 1. It must be 
remembered that this is true only for the quadratic form 
for x2.] 

The minimum x2 expected on the basis of statistical 
theory for 22 points and 6 parameters is 16+6. The mini-
mum x2 obtained from the analysis was 16.9 and the x 
obtained from G (x.; 0) was also 16.9. This shows excellent 
consistency. 

The values of i. together with σi are listed in Table VIII 
along with the best fit parameters for the 87.5 Mev carbon 
and the 87.5 Mev oxygen scattering, and the 80 Mev carbon 
data of BRW. 

C. Kroll Equation Calculations 
The Kroll equation is a refinement of the unmodified 
Kisslinger equation which leads to the radial equation 
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scattering amplitude in this approximation is of the form 

Ø( ) - t • A • f ( ). (VI-1) 

is the momentum transfer (q = 2k sin θ/2), *\* 

k is pion momentum, t is the scattering amplitude from 
the "average" nucleon, and f ( ) is the nuclear form factor. 
In the quantitative application of this form, the scattering 
amplitude must be evaluated at the kinetic energy appropriate 
to the interior of the nucleus and account taken of the 
nucleon Fermi momentum, and of the fact that the scattering 
is elastic with respect to the nucleus as a whole. (See 
reference 3.) In this qualitative discussion these refine­
ments are neglected. 

For scattering at energies well below the (3/2, 3/2) 
resonance 

t - sK2 + pk2 cos θ (VI-2) 
where  K and p are nearly constant with pion momentum, k. Csk2 gives the s-wave, and Pk2 cos θ, the p-wave contribution to the scattering. (Spin flip terms are omitted from t as not contributing to the coherent scattering.) For most of the small angle region except close to the first minimum, Ø( ) increases as k does, since at these energies the p-wave term dominates and t increases with  faster than f(q) decreases. At small angles, the dependence of f( ) on atomic number A is slow compared to the explicit term A, so Ø increases with A. The diffraction pattern is determined for the most part by f( ). Since f depends approximately on qR α qA 1/3, an increase in either  or A 

shifts the pattern, in particular the minima, to smaller 
angles. 
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Fig. 17 shows the best fits to the three sets of carbon 
data superimposed for ease of comparison. In the small 
angle region, there is a small but significant increase in 
cross section between the 69.5 Mev data and the 87.5 Mev data. 
The 80 Mev data cannot be distinguished from the 87.5 Mev 
data in this region but the difference will be small in any 
case. There is no clear cut shift in position of the first 
dip at ~ 70 70 with energy, but the second dip shows the 
expected regularity. The data do not fully show the second 
dip but can be said to support and be entirely consistent 
with the shift in this dip. 

In the sequence Li, C, 0, Al, Cu, the cross sections 
at small angles show a consistent increase with A at small 
angles - for 0 > 35 Coulomb interference becomes negli­
gible. Also, the first and second diffraction dips occur 
at successively smaller angles. For Li, the second dip is 
not seen but it is obvious that it must appear at a larger 
angle than for  if it occurs at all at this energy. As 
with C, the second dip in  is not fully seen, but the data 
are consistent with an appearance at the proper place. 
It must be noted, also, that the Al and Cu data included 
unknown amounts of inelastic scattering. This contribution 
is probably small for angles below the first dip. 
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B. Optical Model Theory 

Earlier attempts 4-6,11,20 have been made to fit an 
optical model differential equation to the data of π-nucleus 
scattering using a complex square well potential of the 
form V + i W. In the optical theory of Watson and Francis21,22' 
for uniform nuclear matter, the potential is proportional to 
the product of the nuclear density and the coherent forward 
scattering amplitude for π scattering from the "average" 
nucleon. From the optical theorem, then, W is proportional 
to the total cross section for π-nucleon scattering. Modi­
fications should then be made to W to include the increase 
due to pion absorption by deuteron pairs and the decrease 
due to the Pauli principle, i.e., elimination of already 
occupied phase space for the recoil nucleon. For a finite 
nucleus, and especially for light nuclei whose diameters are 
of the order of a pion wavelength, the scattered wave 
becomes spread out to large angles and is therefore sensi­
tive to the π—nucleon scattering amplitude in other than 
the forward direction. An optical potential of the form 

(V + i W) p ( ) (VI-3) 
where ρ is nucleon density, implies isotropic scattering 
from an individual scatterer, for a finite nucleus. This 
is clearly not the case for π-nucleon scattering since 
the p-wave term dominates at'these energies. The early 
attempts were successful in fitting the scattering data 
in the small angle region only, and the fits were obtained 
using values of ro ≈ 1.4 fermis. BBR attempted to fit the 
BRW data using VI-3 but the minima predicted were consis-
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tently too deep and the best fits to the small angle data 
again gave ro ≈ 1.4 fermis. Roughly speaking and with 
reference to the Born approximation again, the larger radius 
arises because the fall-off in the small angle region is 
provided wholely by the nuclear form factor whereas actually 
some is provided by the decrease in |t | which passes 
through a minimum near 70° . To obtain this more rapid rate 
of decrease in f( ), one must choose a larger nuclear radius. 

Neglecting the Coulomb interaction, the Kisslinger 
theory uses the wave equation 

v2ψ + ko
2ψ = U ψ - c s k o

2 F ψ - C p • F V ψ• (VI-4) 

In principle, as discussed by BBR, Csko2 is roughly independent of - ψ/ψ = k2 eff, the square of the effective momentum. For low k2 eff, one also has p effectively independent 

of k2 e f f ' and, in the unmodified Kisslinger theory, one makes it strictly independent of k2 eff. In fact, the p-wave interaction passes through resonance at ~ 193 Mev where Re(Cp) → 0. Thus, as k2 eff approaches this region, 

Re(Cp ) → 0. The term pV • F ψ involves a part pFv2ψ 

which is combined with the kinetic energy term ψ. Rearrang­
ing the equation, one gets 

2 ψ + ko
2ψ - U'ψ = 

[ ( C s + C p ) k 0
2 F ψ - C p F • V ψ/] 

(VI-5) 2 ψ + ko
2ψ - U'ψ = 

1 + CpF 
(VI-5) 

This gives a "feedback" denominator term (1 + CpF). If the 
value of Cp appropriate to ψ/ψ = -ko2 is used, the real 

part of CpF tends to be negative inside the nucleus so 
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Re(l + CpF) is negative and the effective sign of the apparent 
interaction actually reverses as F goes to 0. However, as 
one gradually "turns on" the (1 + pF) denominator term 
(gradually changes it from unity), the value of |V2 ψ/ψ| 
increases and this implies a decreased [Re(Cp )j. The feed­
back cannot give a sign reversal, since as ψ/ψ approaches 
its value corresponding to the ( 3 / 2 , 3/2) resonance, 
|Re(Cp)[→ 0, if the detailed behavior of  on ψ/ψ is 
used properly. This suggest the following: 

1) The apparent "blow up" effect of (1 +  F) reversing 
the sign of U is not real. The standard modification of 
the Kisslinger theory which we have adopted tries to take 
this qualitative feature into account by the arbitrary feature 
of replacing (1 +  F)-1 by (1 -  F). The simplification 
is retained of using a value of  , which is independent of ψ/ψ for a given nucleus and  . 

2) Since \ ψ/ψ|> ko2 within the nucleus, it is proper 
to use a value of (fixed) Cp and Cs appropriate to some higher 
effective kinetic energy within the nucleus, rather than the 
values for ko2. This implies a smaller |Re(Cp)| and a larger 
|Im(Cp)|. Our best fitting p differs from that implied from 
pion-nucleon scattering at ko2 exactly in this manner. Since 
it is difficult to evaluate this effect precisely, we are 
forced to regard Cp and s as adjustable parameters determined 
only roughly by pion nucleon scattering. 

3) For low ko2, the ratio - 2 ψ/ko
2 ψ can be larger with­

out having ψ/ψ reach the (3/2, 3/2) resonance region. Thus, 
larger |Re(Cp)| is permitted than for larger ko2 where a 
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smaller ratio of - ψ/ko2ψ is permitted. We, in fact, find 
a best match p for 69.5 Mev with |Re(Cp)| significantly 
larger than for 87.5 Mev. 

A more precise treatment of VI-5 or of the corresponding 
Kroll equation would involve determining, at each radius 
point, a self-consistent set of values for p and s which, 
when inserted in the right side, lead to a predicted ψ/ψ 

consistent with this choice of p and Cs. The dependence 
of Cp and Cs for pion—(average) nucleón scattering is shown 
in Table VII. 

The optical wave equation of Kroll is a refinement of 
the Kisslinger theory which in its mathematical form lies 
intermediate between the unmodified form and the modified 
one of BBR. In relating the optical properties of a dielec­
tric medium to those of the individual constituents, a 
distinction is made between the average electric field at a 
scatterer and the effective field. (Lorentz-Lorenz theory.) 
A similar distinction may be made in π-nucleus scattering. 
Kroll's potential attempts to take account of this difference. 
Whereas the modified Kisslinger theory is obtained by re­
placing (1 + pF)-1 by (1 - pF), Kroll's equation is nearly 
what would result by using (1 + 2/3  pF)- 1 (1 - 1/3 pF) 
which also reduces, but does not necessarily overcome, the 
tendency of the interaction to diverge. 

Since Kroll's modification of the Kisslinger equation 
does not take account of the divergence features discussed 
above, and since his equation is intermediate in form 
between the modified and unmodified Kisslinger equations, 
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the modified equation may be regarded as an approximation 
for the Kroll equation as well. 

C. Nuclear Parameters 
The simpler discussion in terms of the Born approxi­

mation, while descriptive of the gross features of the 
elastic scattering data, does not account for them quanti­
tatively. The exact solution of the optical model equation, 
as has been seen, is capable of giving excellent agreement 
with the data when the parameters  and  are treated 
phenomenologically. 

A comparison of Tables VII and VIII shows that Re(C ) 
for best fit indeed corresponds to that predicted for higher 
kinetic energy (~140 Mev). Im (Cp), Re(Cs), and Im (s) have 
the expected signs but are different in magnitude from what 
would be expected from an inspection of Table VII setting 
E ~140 Mev. The values of Im (Cp) and Im (s) are apt to be 
strongly influenced by effects (virtual deuteron type absorp­
tion and Pauli principle effects) not present in ordinary 
pion nucleon scattering. Breuckner (private discussions) 
has suggested that it might even be appropriate to lump the 
absorption contribution of p in the s type terms. Thus 
it is difficult to decide just what values of lm (cp) and Im(Cs) 
would be favored a priori. The Re(Cs)term is larger than 

S 
predicted but is still much smaller than |Re(Cp)|. It is 
interesting to point out that the usual (older) optical model 
results by setting p = 0 and only using a term of the form 
s (which also includes the effect of p-wave scattering). 
Thus the fact that the favored value of [Re(Cp)[ is appreciably 



-34-greater than |Re(Cs)| may be interpreted as indicating t importance of including the VF • ψ type terms which are characteristic of the p-wave elementary scattering proceop. The value of Re(Cs)is found to increase with decreasing ko2 in such a way as to maintain the expected energy independence of s ko2 on ko2 . A comment should be made on the expect change in Re(s)for a given Ko2 due to the higher effectIt k2 inside the nucleus. Although s in Table VII decrease with k2, the tabulated values should be multiplied by (k2/ko2) to evaluate s ko2 inside the nucleus. Thus the expected 

s inside the nucleus is that for the outside ko2, if no 
further complications are present. 
The modified Kisslinger equation is also seen to fit 
all values of data for different nuclei (Li, , o) with 
essentially the same p and s for a given energy independent 
of A. 

The radius and fall-off parameters, ro and t, given by 
this model, are consistently the same for all the data which 
have been fit. Furthermore, the least squares analysis of 
the 69.5 Mev data shows that the best fitting values for 
our particular wave equation have been determined with good 
precision. The errors arise only from the statistical errors 
in the experiment. The radius determinera here is with the radius determined by electron scattering14, value of which is ro - 1.07f. The fall-off parameter, t, 
obtained from electron and proton scattering is ­
in the region 2.0 - 2.5f while the one in this is 1.16f, roughly 1/2 the above value. 1 4 
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has calculated a 13% difference between t for proton center 
of mass and t for charge. If the pion interacts principally 
with the bare nucleon the disagreement is reduced, but the 
inability of the model to predict a larger t indicates a 
shortcoming in the form of the wave equation. The modifi­
cations which should, in principle, be made to the wave 
equation have been discussed in VI-B. 
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APPENDIX I 

The Unfolding Process 
The unfolding process replaces beams scattered from 

excited levels by beams whose mean energies are 5, 10, and 
15 Mev below the mean energy of the elastic beam. For 
example, the beam scattered from the 7.65 Mev level in 
carbon is replaced by beams whose energies are 5 and 10 Mev 
below the elastic beam energy. Suppose1, that all scattering 
is from one level whose energy is (d1 + a) Mev above the 
ground state. See. Fig. A-1. d1, d2, and d3 are the 
separations between the mean energies of the beams which 
would be centered on the 4 counters. They are not neces­
sarily equal but are almost so. They are also almost equal 
to 5 Mev. It is also assumed that the resolution function 
for counter i is exp{-pi [E-Ei]} where the counters may 
have different decay constants, pi. E is the mean energy 
of a beam, and Ei is the mean energy of the beam centered 
on counter i. See Fig. 3-B. The counting rate in each 
counter will be 

n6' = FN6e -p6(d1+d2-a = N6 [F7'e 6d
1 + F8'e -p6(d1+d2)] (A-l) 

n7' = FN7e -p7(d2-a) = N7 [F7' + F8'e -p7d2] (A-2) 

n8' = FN8e-p8a = N8 [F7'e-p8d2 +f'8 +] A-3) 

n9' = FN9e-p9(d3+a)=N9[F7'e-p9(d2+d3) +F8'e -p9d3](A-4) 
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F is the total number of pions in the beam; Ni is the 

efficiency of counter i for a beam centered on it: F7i and 
F8' are the equivalent beams, centered on counters 7 and 8, 
which replace F. In order to show that the unfolding process 
is correct, one need only show that the above four equations 
in the two unknowns, F7' and f8', are compatible. 

In the ideal case, d1 = d2 = d3, all pi. are equal and 
Ni are equal. In this case, (A-l) and (A-2) are related 
by a multiplicative constant as are (A-3) and (A-4). Thus 
there are effectively two equations in two unknowns, and 

F
7
' = sinh pa (A-5) F

7
' = , sinh pd 

(A-5) 

F
8
, = 

sinh p(d-a) (A-6) F
8
, = sinh pd 

(A-6) 

Since (A-l) through (A-4) are linear equations, in the ideal 
case it is always possible to apply this procedure to several 
randomly placed beams simultaneously. 

In the following, various deviations from the ideal 
case are considered: 

1. The resolution function is not exactly of the 
exponential form. The central portion approximates it 
closely, but the tails are significantly larger. This is 
the region where efficiency is less than 10% peak effi­
ciency. In order that a tail of a strong beam produce a 
large error (greater than 20%) in a nearby weak beam, the 
former must be at least 3 times as strong as the weak one. 
For larger factors, deviations in the central portions will 
be significant. At the same time, the statistical error 
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for the smaller cross section is increasing so it is clear 
to see the regions where this effect is important. At the 
largest angles in the oxygen scattering the large inelastic 
cross sections mask the elastic. At small angles in all the 
curves, the elastic masks the inelastic. The method is most 
reliable for obtaining both elastic and inelastic for carbon 
between 70° and 125° and for oxygen between 70° and 110°. 
At the smaller angles, the elastic cross section is well 
determined. 

2. The peak efficiencies Ni. were not equal. This con­
tributes no error as can be seen from the following. The 
efficiency matrix is A. If this were altered to produce 
equal peak efficiencies, the efficiency matrix would then be 

A' - CA, where  is a matrix whose elements are Cij = cj. But 
the experimentally observed counting rate would be 

9 

ni
" 

∑ 
c i j nj

' Thus 

j - 6 

= C = A' =• CA and 

= (A') -1 =A-1 . 

3. If the only deviation from the ideal case is that 
d1, d2 and d3 are unequal, there is no error introduced. 
For if the pi are all equal, (A-l) and (A-2) are related by 
a constant multiplier as are (A-3) and (A-4) as in the ideal 
case. This would also be true if P9 = P 8, P7

 = P6. This 
latter condition is very close to the case for the multi-
counter as used. 
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4. Suppose d1 = d2 = d3 but that p9 = p8 + ε98 and 

P6 = p7 + ε67. Then (A-1) through (A-4) are not consistent 
but one can solve for F7' and F8' using any of the following 
pairs of equations; (A-1) and (A-3), (A-1) and (A-4), 
(A-2) and (A-3), and (A-2) and (A-4). Experimentally 
|ε98[ < 0.1 p9 and |ε 6 7| < 0.1 P6. Then the various solu tions 

of F7' agree within 10%, and for F8' within 10% also. 
This is less than the statistical error on these numbers. 
(The elastic count does not involve such a problem since it 
is always centered on a counter.) 
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Table I. 
Counter dimensions 

Counter Height Width Thickness 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

2 " 
1-1/4 
3/4 
2-1/2 
2 
4-1/2 
5 
5-1/2 
6 
6-1/2 

4" 
4 
3 
7 
6 
8 
8-1/2 
9 
9-1/2 
10 

1/4" 
1/4 
1/4 
1/4 
1/4 
3/8 
3/8 
3/8 
3/8 
3/8 
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Table II. 
Levels of excitation energy less than 

15 Mev in Carbon and Oxygen 
(From Ajzenberg and Lauritzen) 

Carbon Oxygen 
4.43 Mev 
7.65 
9.61 
10.8 
11.1 
11.74 
12.76 
13.3 
14.16 
15.09 

6.06 Mev 
6.14 
6.91 
7.12 
8.6 
9.58 
9.84 
10.36 
11.10 
11.25 
11.51 
11.62 
12.43 
12.51 
12.95 
13.09 
13.24 
13.65 
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Table III. 
Typical efficiency matrix for 69.5 MeV beam 

% of incident beam counted 

Counter 
Counter 
in which 
beam is centered 

 7 8 9 

6 

7 

8 

9 

27.03 

11.27 

2.75 

1.81 

10.01 

31.72 

12.62 

3.40 

2.41 

9.31 

27.74 

9.24 

1.44 

2.41 

9.54 

30.15 
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Table IV. 
69.5 Mev Carbon Cross Sections 

e Elastic 
5 Mev 

Inelastic 
10 Mev 

Inelastic 

20 ± 3.1° 
25±3.1° 
30 ± 3.1° 
35 ± 3.1° 
40 ± 3.1° 
45 ± 4.0° 
50 ± 4.0° 
55 ± 4.0° 
60 ± 4.0° 
65 ± 4.0° 
70 ± 4.7° 
75 ± 4.7° 
80 ± 4.7° 
85 ± 4.7° 
90 ± 4.7° 
95 ± 4.7° 
100 ± 4.7° 
105 ± 4.7° 
110 ± 4.7° 
115 ± 4.7° 
120 ± 4.7° 
125 ± 4.7° 

147. ± 16. 
93. ± 9. 
79.1 ± 6.6 
50.5 ± 4.7 
41.5 ± 3.5 
26.9 ± 2.0 
14.9 ± 1.2 
8.9 ± 1.0 
5.08 ± 0.56 
4.15 ± 0.33 
3.21 ± 0.25 
4.06 ± 0.31 
4.48 ± 0.71 
4.89 ± 0.50 
5.07 ± 0.83 
5.23 ± 0.32 
5.34 ± 0.62 
4.38 ± 0.53 
4.91 ± 0.58 
3.37 ± 0.48 
3.16 ± 0.47 
2.16 ± 0.44 

0.58 ± 0.56 

* 

* 

0.66 ± 0.68 
0.76 ± 0.45 

* 

1.04 ± 0.32 
1.81 ± 0.65 
1.58 ± 0.58 
2.35 ± 0.65 
2.68 ± 0.60 
3.39 ± 0.61 
3.70 ± 0.64 

0.31 ± 0.48 
0.12 ± 0.29 
0.44 ± 0.25 
0.41 ± 0.25 

* 

* 

1.22 ± 0.29 
0.53 ± 0.54 
1.39 ± 0.52 
1.44 ± 0.58 
1.61 ± 0.56 
1.54 ± 0.57 
3.18 ± 0.63 

*Unfolds to negative cross sections 
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Table V. 
87.5 Mev Carbon Cross Sections 

e Elastic 
5 Mev 

Inelastic 
10 Mev 

Inelastic 

25 ± 2.8° 109.2 ±10.6 
30 ± 2.8° 86.0 ± 6.1 
35 ± 2.8° 68.4 ± 4.9 
40 ± 2.8° 39.8 ± 1.8 
45 ± 3.8° 29.0 ± 2.6 
50 ± 3.8° 15.0 ± 1.0 
55 ± 3.8° 7.79 ± 0.51 
60 ± 3.8° 5.80 ± 0.49 0.53 ± 0.48 0.24 ± 0.38 
65 ± 3.8° 4.18 ± 0.34 0.45 ± 0.33 0.08 ± 0.27 
70 ± 3.8° 3.46 ± 0.29 0.07 ± 0.30 0.39 ± 0.27 
75 ± 4.5° 3.63 ± 0.26 0.05 ± 0.25 0.32 ± 0.21 
80 ± 4.5° 4.07 ± 0.44 0.19 ± 0.37 0.24 ± 0.31 
85 ± 4.5° 3.57 ± 0.51 0.73 ± 0.47 0.36 ± 0.38 
90 ± 4.5° 3.30 ± 0.30 0.96 ± 0.32 0.65 ± 0.28 
95 ± 4.5° 2.78 ± 0.40 1.01 ± 0.42 1.07 ± 0.39 
100 ±4.5° 2.60 ± 0.31 1.53 ± 0.37 1.72 ± 0.36 
105 ±4.5° 1.72 ± 0.26 1.67 ± 0.33 1.77 ± 0.33 
110 ± 4.5° 1.16 ± 0.23 1.97 ± 0.33 2.08 ± 0.34 
115 ± 4.5° 0.80 ± 0.29 2.38 ± 0.49 2.07 ± 0.50 
120 ±4.5° 0.90 ± 0.28 2.03 ± 0.47 2.66 ± 0.51 
125 ±4.5° 0.61 ± 0.26 2.41 ± 0.45 2.25 ± 0.47 
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Table VI. 
87.5 Mev Oxygen Cross Sections 

θ Elastic 
5 Mev 

Inelastic 
10 Mev 

Inelastic 

20 ± 2.8° 230. ± 11. 
25 ± 2.8° 162. ± 9. 
30 ± 2.8° 110. ± 8. 
35 ± 2.8° 75.3 ± 4.3 
40 ± 2.8° 54.1 ± 2.5 
45 ± 3.8° 27.2 ± 2.2 
50 ± 3.8° 17.1 ± 0.9 
55 ± 3.8° 8.4 ± 0.7 
60 ± 3.8° 5.8 ± 1.1 0.97 ± 0.99 1.10 ± 0.86 
65 ± 3.8° 4.23 ± 0.71 0.56 ± 0.62 1.00 ± 0.51 
70 ± 3.8° 4.42 ± 0.60 0.37 ± 0.57 0.35 ± 0.90 
75 ± 4.5° 4.15 ± 0.62 * 1.10 ± 0.33 
80 ± 4.5° 3.21 ± 0.88 0.05 ± 0.81 1.48 ± 0.58 
85 ± 4.5° 3.07 ± 0.55 0.78 ± 0.45 2.05 ± 0.41 
90 ± 4.5° 2.29 ± 0.42 1.58 ± 0.47 * 

95 ± 4.5° 2.44 ± 0.46 0.20 ± 0.44 2.61 ± 0.44 
100 ± 4.5° 0.59 ± 0.33 2.10 ± 0.48 1.44 ±0.72 
105 ± 4.5° * 2.14 ± 0.35 2.41 ± 0.30 
110 ± 4.5° 0.29 ± 0.32 2.79 ± 0.47 2.56 ± 0.76 
115 ± 4.5° * 2.69 ± 0.38 2.62 ± 0.34 
120 ±4.5° 0.25 ± 0.32 2.54 ± 0.46 1.44 ± 0.87 

130 ± 4.5° 0.09 ± 0.45 3.93 ± 0.82 2.55 ± 0.86 

*Unfolds to negative cross sections 
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Table VII. 
Strength Parameters vs. PiØn Energy 

Pion 
Kinetic 
Energy 
(Lab) c p C s Element 

70 -1.83 - 0.38i 0.093 - 0.097i Carbon 
80 -1.88 - 0.52i 0.081 - 0.089i 
87.5 -1.88 - 0.62i 0.073 - 0.085i 
100 -1.86 - 0.84i 0.063 - 0.078i 
130 -1.55 - 1.53i 0.046 - 0.065i 
160 -0.47 - 2.01i 0.036 - 0.057i 

70 -1.86 - 0.39i 0.095 - 0.098i Oxygen 
80 -1.91 - 0.53i 0.082 - 0.091i 
87.5 -1.91 - 0.63i 0.074 - 0.086i 
100 -1.89 - 0.85i 0.064 - 0.079i 
130 -1.58 - 1.55i 0.047 - 0.066i 
160 -0.48 - 2.05i 0.037 - 0.058i 
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Table VIII. 
Nuclear Parameters for Best Fit to Data 

69.5 Mev Carbon 
ro = 1.053 ± 0.020 fermis 

t =1.16 ±0.07 fermis 
p = (-1.395 ± 0.036) + i(-0.063 ± 0.010) 
Cs = (0.451 ± 0.003) + i(-0.145 ± 0.018) 

80 Mev Carbon (from BRW) 
ro - 1.08 f 

t - 1.2 f 
p - 1.1 - 0.li 

s = + 0.35 - 0.15i 

87.5 Mev Carbon 
ro = 1.08 f 
t = 1.2 f 
p = -1.1 - 0.15i 
Cs = + 0.35 - 0.15i 

87.5 Mev Oxygen 
ro = 1.08 f 
t = 1.2 f 
p = -1.05 - 0.10i 
 s = + 0.40 - 0.15i 
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