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Lay summary

Cosmology is the study of the origin and evolution of the Universe as a whole.

Although a seemly daunting question to ask, we now have a pretty good

understanding about the history of the Universe thanks to profound theoretical

insights and breathtaking observational evidence. The Universe started from

a Big Bang about 13.8 billion years ago. At its early times, the Universe

was extremely hot, dense, and uniform with only tiny fluctuations generated

by quantum interactions. This is supported by the detection of the Cosmic

microwave background radiation (CMB), the afterglow of the Big Bang. Then, the

Universe expanded and cooled, while those fluctuations grew under the attraction

of gravity, eventually becoming the large-scale structures of the Universe. When

the temperature became sufficiently low, stars and galaxies formed within these

structures, leading to the observable Universe today. There are three main

contents of the Universe. The particles that make up the surrounding materials

such as ourselves, baryons, only takes up 5% of the total content. The rest of the

Universe is dark. Observations of distant supernovae suggest that the expansion

of the Universe is accelerating, yielding 70% of the content to be the repulsive

dark energy. Studies of galaxy rotation curves and clusters of galaxies require

that as much as 80% of the total matter is dark matter, a particle beyond our

current knowledge that only interacts gravitationally.

The success of this ΛCDM model in explaining a spectrum of independent

observations is in fact a slightly awkward case. We do not know anything

about dark energy and dark matter! Dark energy is supposed to arise from

vacuum. Similar to boiling water, the vacuum is actually full of ‘bubbles’ of

particle-antiparticle pairs that are instantaneously created and annihilated. The

resultant vacuum energy, according to quantum theory calculations, is 100 orders

of magnitude larger than what is required by the cosmological model. On the

other hand, the search for dark matter has been carried out extensively by particle
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physicists but to no avail. It is thus speculated that our understanding of the

cosmological model is not complete, and alternative models have been proposed,

for example, modifications to the theory of gravity. These models, although

designed to reproduce the observed cosmos today, often alter the formation and

evolution history of the large-scale structures. The focus of this thesis is to test

the theory of cosmic structure formation using large galaxy surveys.

One of the probes of structure formation is redshift-space distortions. Very much

analogous to the case where one can infer the speed of an ambulance by the

pitch change of the siren, the recession speed of a galaxy due to the expansion

of the Universe can be inferred by the frequency change of its emitted light, or

the redshift. We can convert the redshifts into distances, hence study the large-

scale structures by the spatial distribution of the galaxies. However, this is not

entirely correct, because galaxies can have additional velocities, called peculiar

velocities. This additional component distorts the observed spatial distribution.

On large scales (at least 1000 times the size of the milky way), peculiar velocities

are directly related to the growth rate of large-scale structures: galaxies fall

into the gravitational potential generated by these structures. In Chapter 2,

I use this effect to measure the growth rate using the GAMA survey [168], and

show that it is consistent with the consensus cosmology. Specifically, I showcase

the consistency of this measurement using different types of galaxies and galaxy

groups.

Structure formation also generates specific features on the CMB. One such feature

is gravitational lensing, the bending of light due to gravity. The effect is a

small distortion of the CMB image, in a way similar to looking at it through

an uneven glass. Another feature, the Integrated Sachs-Wolfe (ISW) effect, is

present at recent epoch when dark energy started to dominate. In this effect,

the gravitational potential generated by large-scale structures evolves with time,

causing a net change in the CMB photon energy via gravitational redshift. These

small imprints can be measured statistically by cross-correlation of the galaxy

density and the CMB, thus providing a test for the ΛCDM model. In Chapter 5,

I carry out this measurement using galaxies from the DESI Legacy Survey [68]

and the CMB maps from the Planck Collaboration [226, 228]. While I find an ISW

signal consistent with theoretical expectation, the lensing signal is significantly

lower. In combination with other lensing results, this points to a possible tension

within the ΛCDM paradigm.

Superstructures, the most dense and empty regions of the Universe, are also
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fascinating objects for studying structure formation. Recently, a number of works

on supervoids claim an excess ISW signal that is several times the prediction of

the standard model. Such discrepancy, if real, can be a compelling evidence

for non-standard dark energy. To test these claims, I construct a catalogue of

superclusters and supervoids using the DESI Legacy Survey, and measure the

stacked CMB lensing and ISW signals at centres of these superstructures. In

Chapter 6, I show that, by comparison with a cosmological simulation, no excess

ISW signal is observed. The claimed signal is thus likely overestimated due to

selection and statistical fluctuation, often referred to as the look-elsewhere effect.

The interesting tension between the lensing measurements and the CMB shown

in this work and other literature will need more evidence to be resolved. Luckily,

a number of next generation galaxy surveys are underway, including DESI, LSST,

Euclid, and the CMB Stage 4 experiments. These high precision experiments,

covering large sky area and reaching incredible depth, will soon open up an

unprecedented view of the Universe that would allow us to further test and fill in

the missing pieces for the cosmological model.
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Abstract

The distribution of galaxies in the Universe is not random: rather, galaxies cluster

in a structured way. The formation and growth of these large-scale structures

(LSS) provides powerful dynamical probes for cosmology. This thesis explores

two of these probes, namely redshift-space distortion (RSD) and the imprints of

LSS on the Cosmic Microwave Background (CMB). Using galaxy surveys, I test

the theory of structure growth in the context of the ΛCDM cosmological model.

RSD probes the velocity field of LSS, which is influenced by the growth of matter

fluctuations. I use the galaxy and group catalogues in GAMA survey to test

the robustness of RSD in recovering unbiased growth rate fσ8 with different

tracers. Specifically, galaxies are split into red and blue subsamples, and groups

are divided into three stellar mass bins. The 2D group-galaxy cross-correlation

function between these subsamples are interpreted by a linear model and a small-

scale Finger of God convolution. Given an appropriate minimum fitting scale, I

show that the subsamples give consistent growth rate, fσ8 = 0.25± 0.15, also in

agreement with the Planck 2018 results.

The imprints of LSS on the CMB correspond to the effects of weak gravitational

lensing and the Integrated Sachs-Wolfe (ISW) effect. I measure these effects using

the public DESI Legacy Survey, exploiting its large sky coverage and substantial

depth for tomographic studies. After careful selection of galaxies and correction

for various systematic effects, I assign photometric redshifts to galaxies based on

g − r, r − z, and z −W1 colours, and construct four tomographic redshift bins

in 0 < z < 0.8. The photo-z errors are accounted for using the galaxy auto- and

cross-correlations between these redshift bins.

Having a clean galaxy sample, I measure the cross-correlation C` between the

galaxy density fields and the Planck CMB temperature and lensing convergence

maps. The amplitudes of these measurements relative to the ΛCDM prediction

iv



using the fiducial Planck 2018 best-fit cosmology are Aκ = 0.901 ± 0.026 and

AISW = 0.98 ± 0.35. While the ISW result is consistent with the fiducial

cosmology, the CMB lensing result is noticeably lower. This low amplitude is

interpreted in terms of a lower Ωm in combination with the total CMB lensing

constraints.

Finally, to address the excess stacked ISW signal from supervoids claimed in

literature, I construct a superstructure catalogue using the four tomographic bins

in the DESI Legacy Survey, and measure their stacked CMB lensing and ISW

signals. The results are compared to the ΛCDM prediction from a mock catalogue

that is based on N -body simulations and carefully matched to the data. I find a

similar discrepancy in the lensing amplitude as in the cross-correlation scenario.

Here, it is mainly contributed by density peaks at the higher redshift end. I

also show that the detection of ISW signal from superstructure stacking is only

mild, but is consistent with the ΛCDM prediction with a 95% upper limit of

AISW = 1.51 using the full sample. Testing a range of superstructure subsamples,

I demonstrate that the claimed excess signal may be due to look-elsewhere effect.
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Chapter 1

Background in Cosmology

Cosmology is perhaps the scientific field that concerns the biggest subject of all:

the Universe. During the past century or so, we have established a decent model to

describe of how the Universe has begun and evolved to what it looks like today.

In this Chapter, I will give a brief introduction to the standard cosmological

model and set up the background necessary for the rest of the thesis. I will

start with a brief overview of General Relativity, the fundamental framework

use in cosmology, in Section 1.1. Then, with a few general assumptions, we will

see that the evolution of the Universe on large scales is well described by the

Friedmann-Robertson-Walker (FRW) metric with a time-dependent expansion

factor in Section 1.2. As we go to smaller scales, these assumptions break down,

allowing structures to form in the Universe. I will describe in Section 1.3 how

these small perturbations grow and evolve under gravity before they collapse

to form haloes and galaxies, and how these structures can be related to the

observables in modern cosmological studies. This altogether establishes the

standard ΛCDM model, which allows us to describe the Universe quite precisely

with only seven parameters. However, the model has two unknown contents that

are suggested by its name, dark energy (Λ) and cold dark matter (CDM), and they

happen to make up most of the Universe. A few main cosmological probes are

listed in Section 1.4, providing almost consistent constraints on these parameters.

Interestingly, tension between some of these parameter has also started to emerge,

as I will briefly discuss in Section 1.5. Finally, I will mention the statistical tools

used in cosmological analysis in Section 1.6, before ending this Chapter by giving

a brief outline for this thesis in Section 1.7.
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1.1 The Framework of General Relativity

General Relativity is one of the greatest discoveries in physics, because it

introduces the important notion that the Nature should be described in a frame-

independent, or covariant way. Tracing back to the Michelson–Morley experiment

in 1887, it was the discovery of constant speed of light in the vacuum that has

deepened the thought of relative motion and given rise to Special Relativity.

Later on, based the Equivalence Principle, which states that the inertial mass is

the same as the gravitational mass, Einstein was able to include gravity into the

framework and formulated General Relativity. This has revolutionised our view

of physics profoundly ever since. The idea was summed up concisely by physicist

John Wheeler: “Space-time tells matter how to move; matter tells space-time how

to curve”.

Given the coordinate xµ, where µ = 0, 1, 2, 3, the line element ds of the space-time

is given by

ds2 = gµνdx
µdxν , (1.1)

where gµν is the metric. The metric signature adopted in this thesis is

(+,−,−,−). The equation of motion is given by the geodesic equation:

ẍµ + Γµνλẋ
ν ẋλ = 0, (1.2)

where the dot denotes derivatives with respect to the affine parameter, and the

affine connection, Γµνλ, is a function of the metric and its derivatives:

Γµνλ =
gµα

2
(∂λgνα + ∂νgλα − ∂αgνλ). (1.3)

A special case is the flat Minkowski metric ηµν = (1,−1,−1,−1), where Γµνλ = 0,

and Eq. 1.2 gives the usual linear motion. In general, however, the space-time

can be curved. The curvature is manifested in the non-vanishing Riemann tensor

arising from parallel transportation of a vector. Consider parallel transportation

around a parallelogram with sides aµ and bµ for a vector V µ. The change between

the original and transported vector is given by:

δV µ = Rµ
νληV

νaλbη, (1.4)
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where the Riemann tensor is given by

Rµ
σαβ = ∂αΓµσβ − ∂βΓµσα + ΓµανΓ

ν
σβ − ΓµβνΓ

ν
σα. (1.5)

Notice that the Riemann tensor involves the second derivative of the metric and

is therefore a measure of the curvature of the space-time. The Riemann tensor

has a number of symmetries, and among them the Bianchi Identity allows one to

get:

∇νR
ν
µ =

1

2
∇µR, (1.6)

where Rµν = Rα
µνα is the Ricci tensor, and R = Rµ

µ is the Ricci scalar. Eq. 1.6

can be rearranged to give the Einstein tensor,

Gµν = Rµν − 1

2
gµνR, (1.7)

such that the covariant divergence ∇µG
µν = 0.

The source of the space time is given by the energy-momentum tensor, T µν .

The conservation of energy and momentum requires that ∂µT
µν = 0 in the local

frame. Covariance requires that this equation holds generally, i.e., ∇µT
µν = 0.

Therefore, to link the curvature of the space-time with its source, the simplest

approach is to have Gµν proportional to T µν . In Newtonian limit, this constant

can be computed and one arrives at the Einstein’s field equation:

Gµν = −8πG

c4
Tµν . (1.8)

In principle, nothing stops us from adding other terms into this equation as long

as they have vanishing covariant divergence. The simplest such term is the metric

tensor multiplied by an arbitrary constant Λ:

Gµν + Λgµν = −8πG

c4
Tµν . (1.9)

We shall see in the next Section that this is the cosmological constant.

More complicated terms can also be added to this equation. In fact the above

equation can be derived from the Einstein-Hilbert action:

S =

∫ [
c4

16πG
(R− 2Λ) + LM

]√
−g d4x, (1.10)

where LM is the Lagrangian for the source fields, by requiring δS = 0 given a
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change of the metric δgµν . Theories that involve additional terms in the square

bracket in the action are generally referred to as modified gravity theories. For

example, one class of terms is functions of the Ricci scalar, f(R), called the f(R)

gravity. These theories lead to exotic physical effects that may provide alternative

solution to dark energy and dark matter, or have the potential to resolve the

tension in the cosmological parameters. A thorough review of modified gravity

theories can be found in [51]. For now, we shall assume standard GR and carry

on with Eq. 1.9 for the cosmological model.

1.2 Cosmological model

1.2.1 Homogeneity and isotropy assumptions

The cosmological model is constructed based on the cosmological principle: on

large scales, the Universe is homogeneous and isotropic, i.e., the universe looks

the same at all locations and in all directions. This is a fair assumption, because

observations of distant galaxies do not suggest that our location in the Universe

is special, nor any particular direction is preferred. It also implies that the same

physical laws are valid everywhere in the Universe. Based on these assumptions,

one may write down a metric that has the following properties: (1) the metric

is spatially symmetric; (2) it can only be a function of time; and (3) it must

have the same geometry everywhere. The resultant cosmological metric is the

Friedmann-Robertson-Walker (FRW) metric, which takes the form:

c2dτ 2 = c2dt2 −R2(t)

[
dr2

1− kr2
+ r2 sin2 θdφ2 + r2dθ2

]
, (1.11)

where the evolution of the space is characterised by the arbitrary function

R(t), and the curvature is characterised by the constant k, with k = −1, 0, 1

corresponding to closed, flat, and open universe respectively. It is common to

define the scale factor a(t) ≡ R(t)/R(t = t0), such that a = 1 at today.

The Universe is assumed to be filled with perfect fluid, where the density ρ and

pressure p are functions of time only. The energy-momentum tensor takes the

covariant form,

Tµν =
(
ρ+

p

c2

)
uµuν + pgµν , (1.12)

where uµ is the 4-momentum of the fluid. It is interesting to note that, one can
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interpret the cosmological constant term in Eq. 1.9 as an energy density with

negative pressure, and whose equation of state yields

w =
p

ρc2
= −1. (1.13)

Therefore, Λ is often referred to as dark energy. Solving Eq. 1.9 in the rest frame

of the fluid, we arrive at the Friedmann equations:

H2 =
8πGρ

3
− kc2

a2
+

Λc2

3
, (1.14)

ä

a
= −4πG

3

(
ρ+

3p

c2

)
+

Λc2

3
, (1.15)

where

H ≡ ȧ

a
(1.16)

is the Hubble parameter, and dot denotes derivative with respect to t.

These equations immediately suggest that the Universe is in general not static.

The fate of the Universe, whether it expands or collapses, depends on the matter

content of the Universe and its curvature. Combining Eq. 1.14 and 1.15, one gets

ρ̇+ 3
ȧ

a

(
ρ+

p

c2

)
= 0. (1.17)

This allows us to compute the time dependence of the content of the universe

given its equation of state, and solve for the evolution of the scale factor. There

are three types of content below.

• Matter (dust): This includes all non-relativistic baryons and dark matter.

Because these particles are non-relativistic, their sound speed c2
s = δp/δρ is

much smaller than the speed of light. Thus, the pressure can be neglected,

i.e. w = 0. This implies that ρm ∝ a−3, i.e., the density decreases with the

expansion of space. In a matter dominated Universe, Eq. 1.14 shows that

a ∝ t2/3, and Eq. 1.15 gives ä < 0. This implies that the universe starts

from a singularity, or Big Bang, and expands with deceleration.

• Radiation: This includes photon and relativistic neutrinos. The equation

of state for radiation is w = 1/3, and this shows that ρ ∝ a−4. This

dependence can also be understood physically from the expansion of

the space as well as the ‘redshifting’ of the photon energy E = h/λ.

Substituting this into Eq. 1.14 and 1.15 again gives a ∝ t1/2 and ä < 0
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in a radiation dominated universe.

• Dark energy: The dark energy equation of state in Eq. 1.13 means that

this energy density is a constant, as indicated in the Λ term in Eq. 1.14. In

a dark energy dominated universe, a ∝ exp(
√

Λc2/3 t), i.e., the universe

expands exponentially. We shall see that observations from supernova

suggest that the Universe is expanding and accelerating. This is one of

the strong evidences that Λ is nonzero.

The real Universe is a mixture of these contents. To make comparison between

different species, it is convenient to define the critical density of the Universe

today with k = Λ = 0:

ρc ≡
3H2

0

8πG
≈ 1.88× 10−26h2 kg m−3, (1.18)

which is about 5 hydrogen atoms per cubic meter, and use the fractional density

Ωi = ρi/ρc (usually defined at today with explicit a dependence). H0 is

usually written in unit 100h kms−1Mpc−1, where h is a parameter of order unity.

Eq.(1.14) can then be recast into:

H2 = H2
0

[
ΩΛ + Ωma

−3 + Ωra
−4 − (Ω− 1)a−2

]
. (1.19)

Here, ΩΛ is the fractional dark energy density, Ωm = Ωb + ΩDM is the fractional

matter density consisting of baryonic matter and dark matter, Ωr is the fractional

radiation density, and Ω = ΩΛ+Ωm+Ωr. The last term corresponds to curvature:

the open, flat, and closed universe corresponds to Ω > 1, Ω = 1, and Ω < 1

respectively.

Given the dependence of the scale factor on each species, assuming no fine tuning

of Ωi and negligible curvature, the very early universe is dominated by radiation,

and then by matter, before it is completely taken over by dark energy. An

important time scale is the matter-radiation equality at

aeq =
Ωr

Ωm

=
4.2× 10−5

Ωmh2
. (1.20)

As we shall see near the end of this Chapter, these parameters have been

accurately determined by various cosmological observations. To the lowest

significant digit, a cosmological model with h = 0.7, Ω = 1, ΩΛ = 0.7, Ωm = 0.3,
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Ωb = 0.05, ΩDM = 0.25, and negligible Ωr provides a good description of these

observations. Given the measured density parameters above, it is perhaps a

surprise to find that dark energy has only become dominant today1. These

parameters suggest that the Universe is spatially flat and is expanding with

acceleration. It is also interesting that the matter content is dominated by the

unknown (cold) dark matter, which is about five times the amount of the normal

baryonic matter. The standard model of cosmology is therefore referred to as the

ΛCDM model.

1.2.2 Redshift and distance measures

In an expanding universe, the physical coordinate r expands with the scale factor.

It is convenient to define the comoving coordinate x, where r = a(t)x, meaning

that x does not change as the Universe evolves. The velocity due to expansion

for a physical distance r is given by v = ṙ = H(t)r. This apparent motion is

referred to as the Hubble flow.

Due to the Hubble flow, galaxies appear to move away from us. Their radial

velocity can be directly measured from the redshift of the galaxy characteristic

emission lines:

z ≡ λo − λe
λe

, (1.21)

where λo is the wavelength observed and λe is the wavelength emitted. The

change in the wavelength is given by the Doppler effect for a small increment in

distance: dλ = λ dv/c = λH(t)dr/c. Now the time of propagation is given by

dt = dr/c, thus dλ/λ = da/a. This integrates to

λo
λe

=
ao
ae
. (1.22)

Therefore, one can relate the redshift and the scale factor via

z + 1 =
1

a
, (1.23)

where the observed time is set to today.

With these tools, we can determine the distance to observed galaxies. In the local

1This has lead to the question of ‘Why now?’
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Universe, the distance can be approximated by the Hubble law:

d = v/H0. (1.24)

For more distant objects, H(t) can no longer be approximated as a constant and

one needs the following integral to compute the comoving distance:

χ(z) =

∫ t

t0

c dt′

a(t′)
=

∫ z

0

c dz′

H(z′)
. (1.25)

It should be noted that this distance determined redshifts may not correspond to

the true distance – as we shall see later, the redshift can also have a component

arising from the galaxy peculiar velocity. This additional velocity actually encodes

important cosmological information.

There are two other useful distance measures. The angular diameter distance is

given by

DA(z) =

√
R2π

Ω
, (1.26)

where R is the radius of the source observed, and Ω is the solid angle subtended.

Since the proper size of the source is given by its comoving size multiplied by the

scale factor, we find that DA(z) = χ(z)/(1 + z). The other one is the luminosity

distance

DL(z) =

√
L

4πS
, (1.27)

where L is the luminosity of the source at frequency, and S is its measured flux.

The photon energy is redshifted, and the arrival time is dilated, so that the the

measured flux S = S0/(1 + z)2. Therefore, the luminosity distance is related to

the comoving distance via DL(z) = χ(z)(1 + z).

1.2.3 Recombination

One of the greatest success of the cosmological model is the prediction of a

relic radiation background from recombination, an important epoch during the

evolution of the Universe. In the very early universe, photons are constantly

scattering off protons and electrons. While hydrogen atoms can be formed,

they are also constantly ionised by these high energy photons. As the universe

expands, the temperature drops as T ∝ 1/a, and the number density of ionised

(electrons and protons) and neutral components (hydrogen) also drops with
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ni ∝ T 3/2 exp(µi −mic
2/kBT ) in thermal equilibrium, where µi is the chemical

potential. When the reaction rate is lower than the expansion rate, the Universe

becomes neutral. Computation of the ionised fraction of the universe suggest that

this happens at z ∼ 1000. From around this time, a photon rarely interacts with

the neutral hydrogen and is able to propagate freely. This is often referred to as

last scattering or recombination. This afterglow of the Big Bang reaches us from

every direction in the form of a background radiation. Due to constant scattering,

these photons have a perfect black body spectrum with a temperature redshifted

with time: T0 = T (z)/(1 + z) ∼ 3K, corresponding to microwave frequencies. It

is the earliest radiation that we could detect – the Universe is electromagnetically

opaque before this era due to the photon scattering2.

This Cosmic Microwave Background (CMB) was first predicted by G. Gamow and

first observed by Penzias & Wilson [216]. This provided a strong evidence for Big

Bang. Subsequently, it is measured by a series of satellite missions. The Cosmic

Background Explorer (COBE) measured CMB to high precision and confirmed

that the spectrum is a perfect black body with a temperature of T = 2.73K. Later

on, the measurements from Wilkinson Microwave Anisotropy Probe (WMAP)

allowed determination of cosmological parameters to percent level precision via

the study of CMB anisotropies, and stated the era of ‘precision cosmology’. This

was succeeded by the Planck mission, and along with the polarisation data, has

provided one of the tightest constraints on our current cosmological model today

(see Section 1.4.2). More recently, higher precision CMB experiments are carried

out as well as being planned, such as SPT, ACT, and CMB-S4.

1.2.4 Inflation

The CMB is extremely uniform across the whole sky with fluctuations of only

one part in 105. The comoving particle horizon, which defines the size of causal

interaction at the time of recombination is given by

χph(z) =

∫ tCMB

0

c dt

a(z)
. (1.28)

Assume a matter dominated Universe, χph ∼ 180h−1 Mpc, corresponding to an

angular size of only ∼ 1◦ on the sky – most of the last scattering surface was not

2Most of our current observations are based on electromagnetic waves, which cannot probe
the epoch before recombination. However, gravitational waves can propagate through this early
era, and is considered a potential future probe for the very early universe before recombination.
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causally connected. How is the CMB so uniform across the whole sky?

This is referred to as the horizon problem, and inflation is proposed as a solution.

The idea is that there is a period where the scale factor grows exponentially,

a(t) ∝ exp(Ht) just like the vacuum dominated case. This allows a small patch of

the sky to rapidly grow large enough to cover the whole observable universe today.

However, inflation needs to end at some point, or otherwise the Universe today

would be completely empty. Such mechanism can be generated by a dynamical

scalar field with Lagrangian:

L =
1

2
∂µφ∂µφ− V (φ), (1.29)

where V (φ) is the potential. One can work out the energy-momentum tensor T µν

of the field from Noether’s theorem, and read off the density and pressure:

ρφ =
1

2
φ̇2 + V (φ), (1.30)

pφ =
1

2
φ̇2 − V (φ). (1.31)

In this equations, I have assumed that φ = φ(t) is homogeneous and thus ignored

the terms involving gradients of φ. This is fine because as the space expands

exponentially, any small spatial perturbations are quickly damped away. We

recognise that the equation of state is now

w =
1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

, (1.32)

and requiring φ̇2 � V (φ) gives the vacuum w = −1, which generates the

exponential growth. We expect that the potential during the inflation era would

be flat until the end of the inflation. The equation of motion is given by

φ̈+ 3Hφ̇+ V ′(φ) = 0, (1.33)

where V ′ = dV/dφ. In order to keep φ̇ small, we also require that the first term

in the above equation is negligible. Together, these conditions are referred to as

the slow-roll approximation, and can be recasted into the two Hubble slow-roll
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parameters3:

ε ≡ Ḣ

H2
∼ φ̇2

V (φ)
, (1.34)

η ≡ − φ̈

Hφ̇
. (1.35)

After expanding for about 60 e-folds or so, these parameter become O(1) and φ

is attracted to the minimum of the potential, hereby exiting the inflation epoch.

It is noticeable that inflation not only solves the horizon problem, but also

provides an explanation for the flatness problem. This problem refers to that,

given the measured curvature being almost zero at the current epoch, the initial

curvature must be finely tuned to be extremely small. From Eq. 1.19, the time

dependence of the curvature term is

1− Ω(z) =
H2

0

H2(z)a2(z)
(1− Ω). (1.36)

Thus, tracing back to the neutrino freeze-out time, for example, where a ∼ 10−10

and the Universe was radiation dominated, the curvature term has to be as

small as ∼ 10−15. This is solved by including the inflation epoch, because the

exponential expansion of the space essentially stretch out any initial curvature

and naturally result in a flat Universe as we observe today.

At the end of the inflation, the fluctuations in the scalar field δφ also provide

seeds for density fluctuations that later evolve into the large scale structures of

the Universe. We shall see in Section 1.3.2 that inflation is able to predict the

shape, or the spectral index of the initial power spectrum that matches well with

observation.

1.2.5 The dark sector

Dark Matter

The existence of dark matter has been demonstrated by a range of evidence from

astrophysical and cosmological observations. One set of evidence comes from the

observations of galaxy clusters. In 1933, Zwicky [318] showed that the velocity

3There are also potential slow-roll parameters, which control the flatness of the potential.
These two sets of slow-roll parameters are equivalent in the limit ε→ 0 and η → 0.
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dispersion of galaxies in the Coma cluster is much larger than the escape velocity

given the total mass of the cluster estimated from its luminous components. This

indicates that there must be a much larger gravitational potential that hold these

galaxies together. X-ray observations of clusters show high gas temperature from

clusters of galaxies, indicating high thermal pressure which has to be balance out

by the gravitational potential. Again, this gravitational potential is much larger

than expected from luminous matter and gas. Furthermore, massive clusters

bend the light from distant background galaxies, resulting in strong gravitational

lensing effect. The distorted image, often looking like a ring or symmetric arcs,

provides a direct determination of the mass of the lens. The three independent

cluster mass estimation turns out to agree well, showing that about 80% of the

total mass is invisible (see [10] for a thorough review).

Another set of evidence comes from the measurements of the rotational curves

of spiral galaxies. According to Newtonian mechanics, the rotational velocity at

radius R from the disk centre enclosing a mass M is given by

v2(R) =
GM(R)

R
. (1.37)

The rotational velocity can be measured from the Doppler effect of luminous

tracers such as stars and HI gas in the disk of these galaxies, and the total visible

mass can also be estimated from empirical relations such as the mass-to-light

ratio. If the galaxy is composed solely of visible matter, then most of its mass

will be concentrated within the size of the disk, beyond which the rotational

curve would drop as a function of R. In 1978, Rubin et al. [246] showed that the

measured rotational curve of spiral galaxies actually flattens, indicating that the

enclosed mass is much larger. Such an effect is also measured in the Milky Way.

It is now known that most galaxies are surrounded by dark matter haloes.

Big Bang nucleosynthesis (BBN) also provides strong evidence for dark matter.

The early Universe has high temperature which allows particles to be constantly

created and annihilated. As the Universe expands (and temperature drops as T ∝
1/a), the rate of interaction eventually falls below the Hubble parameter, and the

species ‘freeze out’, i.e., the comoving number density becomes conserved. The

primordial abundance of elements, especially that of helium (He4) and deuterium

(D), determined from e.g. metal poor intergalactic gas, is a good indicator of the

thermal history since the Big Bang. The basic idea is the following. Neutrons

and protons are in equilibrium in the early Universe through the interaction
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with electrons and neutrinos. This is no longer true at kBT ∼ 1MeV when

the electron neutrino decouples, and neutrons decay into proton only. Neutrons

and protons can also combine to form deuterium through p + n → D + γ. As

the temperature continues to drop, not enough energetic photons are around to

reverse the process, and the deuteriums begin to form helium 2D → He4. At

the end of this process, the free neutrons and protons (and electrons) are almost

all in the form of hydrogen (H) and He4. Elements heavier than He4 are hard

to be produced primordially from two colliding He4 or H atoms due to unstable

nuclei and low number density. The abundance of these elements are sensitive

to the baryon-to-photon ratio, which is directly proportional to Ωb, since the

photon number density can be derived from the Cosmic Microwave Background

(CMB). Measurements of these elements show that Ωb ≈ 0.04, indicating that

only Ωb/Ωm ∼ 20% of total matter is made up of baryonic matter. For a thorough

review on BBN see [293].

Finally, various cosmological probes are sensitive to Ωb. For example, the Baryon

Acoustic Oscillations (BAO) – the sound horizon of the coupled baryon-photon

fluctuations, and the relative amplitude of the acoustic peaks of the CMB

anisotropy can be used to constraint Ωb. We will leave detailed discussion of

these probes to Section 1.4.

Before leaving this topic, I would like to briefly mention possible candidates

for dark matter. For a while, neutrinos had been considered a very probable

candidate due to their small cross-section to interact with the other Standard

Model particles. However, there are two problems with neutrinos being dark

matter. Firstly, their abundance can be computed from the corresponding photon

number density as determined from the CMB temperature:

Ωνh
2 =

∑
mν

91.5eV
. (1.38)

Neutrino oscillation experiments give constraints on the squared mass difference

of the three neutrino species, which are of order ∼ 10−3 − 10−5eV, and the

upper bound of electron neutrino from particle physics experiment is about 2eV.

Together, this means that Ων . 0.12 (taking h ∼ 0.7), and so the neutrino

fraction is not large enough to account for all of the dark matter. Another

problem is that given the small mass, neutrinos have substantial thermal velocity,

a phenomenon called free streaming. This prevents them from clustering on

small scales. Thus, they would suppress the growth of small structures in the
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universe, and this is in contrast to what we observe, for example, from the galaxy

power spectrum. In fact, all hot dark matter like neutrinos can be ruled out,

and this is why we often refer to the name cold dark matter. Another promising

candidate is Weakly Interacting Massive Particles (WIMP). These particles could

arise from extensions of the Standard Model motivated by the Hierarchy Problem,

with a mass scale of mX ∼ 100GeV − 10TeV. Using the cross-section of weak

interactions, their abundance can be computed, and it turns out that the relic

density is comparable to that of CDM, ΩX ∼ 0.3. This is often referred to

as the ‘WIMP miracle’. However, the search for WIMPs, along with other

Supersymmetry particles, has not shown any convincing detections. Finally, well

motivated from particle physics to solve the strong CP problem, QCD axions are

also considered a candidate for dark matter. In contrast to WIMPs, they are very

light particles with a mass ma ∼ 10−3eV(1010GeV/fa), where fa is the Peccei-

Quinn scale and is a free parameter [212]. To obtain a relic density comparable

to observation, Ωah
2 ∼ 1011GeV/fa, the axion mass would be of order . 10−5eV,

yielding fa & 1012GeV. This is referred to as the ‘axion window’. It is noticeable,

however, that the natural scale of fa is ∼ 1016 − 1018GeV from String Theory.

Other types of axions (or axion-like particles) are proposed that have desired dark

matter properties but do not solve the CP problem (e.g. fuzzy dark matter). The

search for this particle, along with its related physical effects, are also ongoing,

and has not provided convincing evidence of its existence yet. A review on the

dark matter candidate can be found in e.g. [83].

Dark Energy

We now know from cosmological observations that the dark energy density

parameter, ΩΛ is about 0.7. Given the critical density ρc = 3H2
0/(8πG), the

vacuum energy density is of the order (10−12GeV)4 in natural units. This has

raised the question of fine-tuning of the vacuum energy and the smallness of

the cosmological constant. From Quantum Mechanics, we know that the zero-

point energy of massless field is given by E = 〈0|H|0〉 = ~ω/2. This has been

experimentally verified, for example, in Casimir effect [155] and X-ray diffraction

of lattice [315]. Therefore, the total energy density of the vacuum is given by

integrating the equation in phase space,

ρvacc
2 =

4π~
(2π)3

∫ ∞
0

ω3 dω. (1.39)
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This expression clearly diverges. One could introduce a UV cutoff, Λ, as the

upper limit, by arguing that there is a minimum scale in the space, i.e., a

lattice. A natural scale to assume is the Planck scale, Λ =
√
~c/(8πG), above

which quantum gravity would need to be considered, and is beyond our current

understanding with the Standard Model. In this case we get a total vacuum

energy of order (1018GeV)4 – some 120 orders of magnitude difference between

this naive prediction and the measured value. Of course, this naive computation

needs to be taken cautiously. Firstly, it is unknown if this expression actually

breaks down at much smaller energy scales, since QFT has only been tested up

to the QCD scale. Secondly, we will need to consider all types of particles in

the standard model and their interactions, rather than the single massless scalar

field case. Thirdly, it is a common practice in QFT that such divergence can

be avoided by renormalisation of the theory, and the observables turn out to be

finite. After all, the observable is sensitive the the change of the energy, rather

than its absolute value. In this sense, the vacuum energy can be ‘renormalised’

to any value. However, it is unsatisfactory that the choice of this ‘free’ parameter

has to be finely tuned across many orders of magnitudes to be so small. This is

often referred to as the cosmological constant problem.

One solution is that the cosmological constant is generated by other dynamical

(scalar) fields, for example, in a scenario similar to the inflation field. This in

general allows some evolution of the dark energy equation of state, i.e., w = w(t),

which can alter the evolution of large scale structures and their formation, and

is a key aspect for the design of modern galaxy surveys to clarify. The evolution

of w can be tested through two kinds of methods, geometrical and dynamical

probes. The former refers to the precise measurements of the cosmic distance

scale. Recall that for arbitrary w, considering k = Λ = 0, Eq.(1.14) and (1.15)

together give dρ/da = −3(1 + w)ρ/a. This means that the dark energy density

equation has the dependence

ρ ∝ e
∫
−3(1+w)d ln a. (1.40)

Therefore, the Hubble equation is then modified to

H2(a) = H2
0

[
ΩΛe

∫
−3(1+w)d ln a + Ωma

−3 + Ωra
−4 − (Ω− 1)a−2

]
. (1.41)

It is then clear that, by Eq.(1.25), non-trivial dependence of w on time can affect

the comoving distance measure. Thus, geometric probes such as BAO are able to
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test these effects. A complication is that such measurements also depend on the

value of the matter density Ωm, and to get tight constraints on w, we will also

need high precision measurements in Ωm. The dynamical probe the dark energy

equation of state is through the growth of structures. As will be explained later,

the density fluctuation is governed by the following equation:

δ̈ + 2Hδ̇ = 4πGρ0δ.

This is a wave equation with a ‘drag’ term induced by the Hubble expansion.

Therefore, the growth rate of large scale structures are also sensitive to the specific

form of the dark energy equation of state.

1.3 Structure formation

The very existence of galaxies and stars shows that the homogeneity assumption

of the Universe is not valid on small scales. It is also revealed in galaxy surveys

that the distribution of galaxies is inhomogeneous and anisotropic, such as shown

in Fig. 1.1. We can model these structures by introducing small perturbations

to the density (and the metric) in the early Universe, and evolve them to the

present. This is described in Section 1.3.1 as the linear perturbation theory. The

two-point statistics of the density fluctuations are introduced in Section 1.3.2,

namely the power spectrum and the correlation function. In Section 1.3.3, I

will also discuss an important observational effect in the measured correlation

function: redshift space distortions. Eventually, the small perturbations grow to

O(1), and the perturbation theory breaks down. To account for non-linearity,

the theoretical approach is to expand to higher order. The advantage of this

method is that it does not involve additional parameters – non-linearities are

computed from first principles. However, computation becomes complicated

quickly before one can approach much smaller scales. An alternative approach

is phenomenological models that are tested against N -body simulations, such as

the halo model introduced in Section 1.3.4. It states that when the local density

exceeds some critical value, the matter within the overdense region should collapse

under gravity and form a gravitationally bound structure, or haloes. The large

and small scales can then be described by the statistical distribution of different

haloes and a single halo profile respectively. The connection between galaxies

and haloes is discussed briefly in Section 1.3.5. Finally, there are also empirical
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Figure 1.1 The Solan Digital Sky Survey (SDSS) map of the Universe. Each
dot is a galaxy; the colour is the g − r colour of that galaxy. Credit:
M. Blanton and SDSS.

approaches towards the non-linear scales via parameterised models that explicitly

match observations. These various approaches have been applied intensively in

cosmological studies, and conveniently, there are many numerical packages that

can generate non-linear matter power spectrum based on empirical fitting formula

with different cosmological parameters, e.g. the Halofit [276, 282], and CAMB

[163].

1.3.1 The linear perturbation theory

The density field ρ(x, t) fluctuates around a homogeneous mean background

density ρ̄(t). The density fluctuation is defined as

δ(x, t) =
ρ(x, t)− ρ̄(t)

ρ̄(t)
, (1.42)
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where δ > 0 corresponds to overdensity, and −1 ≤ δ < 0 refers to underdensity

compared to the background. The linear assumption, |δ| � 1, is valid in two

scenarios. Firstly, given that the CMB fluctuations are very much Gaussian

and of order 10−5, this assumption should hold in the early Universe. Secondly,

it should be valid on very large comoving scales � 100h−1 Mpc, regardless of

epoch, because the homogeneous and isotropic assumption holds well even up

to today. In these linear regimes, one can compute the equation of motion to

first order in δ. In the following text, I will adopt the Newtonian limit where

the gravitational field is weak, and when perturbation is much smaller than the

horizon scale. This provides an intuitive way to work out the dynamics of the

perturbation. The full relativistic treatment is more complicated and involves

introducing perturbations to the metric and the energy momentum tensor (for

details, see e.g., [301]). In this more rigorous approach, perturbations beyond

scalar modes are in principle present: the vector perturbations correspond to

the vorticity field, and the tensor perturbations produce small gravitational

waves. The effect of vector perturbations corresponding to vorticity can be safely

neglected, because they dissipate quickly with the expansion of the universe. The

tensor perturbations are in fact predicted by inflation, but it has not yet been

observed. For the following analysis, we shall ignore the tensor modes, and quote

results from the relativistic approach directly when needed.

We adopt the non-relativistic fluid approximation. There are three equations

that govern the dynamics of density.

• Continuity equation:
∂ρ

∂t
= −∇r · (ρU), (1.43)

where U is the velocity field of the fluid. The derivative ∇ and the partial

time derivative are with respect to the proper distance r.

• Euler equation (or conservation of momentum):(
∂

∂t
+ U · ∇r

)
U = −∇rp

ρ
−∇rΦ. (1.44)

• Poisson equation:

∇2
rΦ = 4πGρ− Λ. (1.45)

Since Λ domination only happens at late times, we will ignore its

contribution for the following discussion.
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To distinguish the dynamics from Hubble expansion, we solve these equations

in the comoving coordinates x where r = a(t)x. The velocity then is given by

U = ṙ = Hr + v, where the first term corresponds to the Hubble flow, and the

second term is the peculiar velocity. The zeroth order equations are solved by the

background cosmological model, e.g., Eq. 1.17. The first order equations can be

rearranged into:

δ̈ + 2Hδ̇ − c2
s

a2
∇2
xδ = 4πGρ̄δ, (1.46)

where c2
s = δp/δρ is the sound speed of the fluid, and the derivative is with

respect to the comoving coordinates, ∇x. This is essentially a wave equation with

a friction term given by the expansion of the background universe, and a driving

term given by the competing effect of pressure and gravity. In Fourier space,

Eq. 1.46 becomes δ̈k + 2Hδ̇k + (c2
s/a

2)(k2 − k2
J)δk = 0, where k is the comoving

wave vector, and kJ =
√

4πGρ̄/cs is the Jeans scale. Below the Jeans scale

(k > kJ), pressure dominates, and the density perturbation has an oscillatory

solution, also referred to as acoustic waves. Above the Jeans scale (k < kJ),

gravity dominates and the density evolves with time according to a power law.

In the case of cold dark matter and baryonic matter after decoupling, the pressure

term can be ignored, and Eq. 1.46 only involves time derivatives of δ. Thus, one

can separate the temporal and spatial dependences of the density perturbation,

i.e. δ(x, t) = D(t)δ0(x). During matter domination, a ∝ t2/3, and we find a

growing solution D+(t) ∝ a and a decaying solution D−(t) ∝ t−1; the latter

quickly becomes negligible. It is commonly adopted that D+(t0) = 1, and

δ(x, t) = D+(t)δ0(x). (1.47)

In radiation dominated era, D+(t) ∝ t ∝ a2 from relativistic computations (for

more detail, see e.g., [204]). From here on, we will drop the ‘+’ on the growth

factor D+(z) as we will only consider the growing mode.

The peculiar velocity field

The peculiar velocity v can also be solved from Eq. 1.43-1.45. In the linear regime

and using comoving coordinates, the Eq. 1.44 with negligible pressure becomes

∂v

∂t
+Hv = −∇xΦ

a
, (1.48)
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where Φ is the Newtonian potential which satisfies the linearised Poisson equation.

It is convenient to define the comoving velocity u such that v = au, and Eq. 1.48

becomes ∂u/∂t + 2Hu = −∇xΦ/a
2. We can now drop the subscript x on the

spatial derivative as we work consistently in comoving space. The inhomogeneous

solution, where the RHS of the equation is set to zero, yields a decaying function

with |u| ∝ 1/a2. This soon becomes negligible. The homogeneous solution yields

that u is along the direction of the potential gradient and thus can be expressed

as a gradient of a scalar convergence θ, i.e., u = ∇θ.

The comoving peculiar velocity is related to the density perturbation via the

linearised continuity equation:

∂δ

∂t
+∇ · u = 0. (1.49)

Substituting Eq. 1.47 we find that in Fourier space,

ũ = −iHfδk
k

k2
. (1.50)

where

f ≡ ∂ lnD

∂ ln a
≈ Ωγ

m (1.51)

is the growth rate of the density perturbation. In the last expression, the power

is γ ≈ 0.55 in GR [152, 299]. Conveniently, the peculiar velocity is completely

determined by the density field in the linear regime. Thus, by measuring galaxy

peculiar velocities, one can constrain the growth rate of the large scale structures.

It is an important parameter for testing theories of gravity on cosmological scales,

as will be discussed in more detail Section 1.3.3.

1.3.2 Descriptive statistics

Correlation function

The n-point functions are defined as

ξn(x1,x2, ...xn) = 〈δ(x1)δ(x2)...δ(xn)〉, (1.52)
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where the bracket represents ensemble average4. If δ is a Gaussian random field,

the 2-point function will be able to capture all statistical features. This is a

good approximation in the early universe, for example, for the CMB analysis,

because the CMB fluctuations are extremely close to Gaussian distributed. For

the local universe, the n = 2 case is also most commonly adopted for its simplicity

to model and convenience to construct an estimator for observational purposes;

both modelling and observation get hugely complicated even at the bispectrum

(n = 3) level, not to mention higher order statistics. However, it should be

noted that as structures grow, the distribution of δ deviates significantly from

Gaussian; it is more appropriately described by a lognormal distribution at low

redshifts [55, 56]. Non-linearity also induces coupling between different scales,

making the evolution of the density perturbation difficult to model. Thus, there

are many efforts towards trying to capture these non-Gaussian properties beyond

the 2-point functions, for example, using 1-point function (PDF of the density

field) and 3-point functions, e.g.[96, 259, 274, 294]. In this thesis, we will focus

on 2-point statistics only,

The 2-point function can be related to the excess probability of finding a pair of

galaxies at positions x1,2 each in a volume dV with a mean number density n̄:

P = (n̄ dV )2 [1 + ξ(x1,x2)] , (1.53)

when compared to a random distribution, where ξ = 0. Assuming isotropy

(since there is no preferred direction for the inhomogeneity), ξ(x1,x2) = ξ(r),

where r = |x1 − x2|. This definition is used to construct estimators for the

correlation function, and the average is taken over many such galaxy pairs. The

ensemble average in Eq. 1.52 is replace by an average over volume (or galaxy pairs)

here because we assume the ergodic hypothesis, which states that the statistical

properties at different parts of the universe are the same. One of the commonly

used estimators is the Davis-Peebles estimator [63]:

ξ(r) =
DD

DR
− 1. (1.54)

Here D denotes data and R denotes random points in the same volume. A

quantity like DR is the number of data and random pairs separated by distance r,

normalised by the number of data and randoms in the volume. This is to account

4The ensemble average refers to averaging over many such samples. Ideally, this requires
averaging over many realisations of the universe at positions x1, ...xn. However, as we shall see
below, due to the homogeneity of the universe, this average can be performed spatially instead.
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for the fact that normally the number of random points used is much larger

than data points in order to reduce noise. Another commonly used estimator

is the Landy-Szalay estimator [156], which has the improvement of better noise

suppression compared to Eq. 1.54:

ξ(r) =
DD − 2DR +RR

RR
. (1.55)

In actual observations, the correlation function is not isotropic due to the peculiar

velocities of galaxies along the line of sight, as we will soon discuss in Section 1.3.3.

To reduce the anisotropic effect, it is often useful to measure the projected

correlation function

wp(rp) =

∫ ∞
−∞

ξ(rp, π) dπ, (1.56)

where (rp, π) are the separation of the pair perpendicular and parallel to the line

of sight, and r2 = r2
p + π2. With this, one can then invert the relation to find the

isotropic 3D correlation function via the inverse Abel transform:

ξ(r) = − 1

π

∫ ∞
r

dwp(y)

dy

dy√
y2 − r2

. (1.57)

It should be emphasised that these expressions assume a distant observer, and

there is no selection as a function of distance (or redshifts).

In some cases, the distance to individual galaxy is not well determined (e.g., in a

photometric survey), and the clustering is measured via the angular correlation

function, wp(θ), which counts galaxy pairs given an angular separation θ. This

is related, but not to be confused with the above expressions that count pairs in

3D. In the case of angular correlation functions, the interpretation of the signal

also requires the overall redshift distribution N(z) of the galaxy sample.

Power spectrum

The power spectrum is the 2-point correlation function in Fourier space. In

the linear regime, each Fourier mode of the perturbation evolves independently,

making the power spectrum convenient for theoretical computations. Assuming

zero curvature, the density perturbation can be decomposed into plane waves,
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δ(x) =
∑
δk exp(ik · x), and the Fourier coefficients are given by

δk =
1

(2π)3

∫
δ(x)e−ik·x d3x. (1.58)

In the continuum limit, the power spectrum is defined as:

〈δkδ∗k′〉 =
1

(2π)3
P (k)δ3(k− k′), (1.59)

where δ3(k − k′) is the Dirac delta function and k ≡ |k|. In the linear regime,

according to Eq. 1.47, the temporal and spatial dependence of the power spectrum

are separable, i.e. P (k, z) = D2(z)P0(k), where P0(k) is the power spectrum at

z = 0. The power spectrum and the 2-point function is linked by the 3D Fourier

transform. Integrating out the solid angle, the isotropic correlation function can

be expressed as

ξ(r) =
4π

(2π)3

∫ ∞
0

P (k)
sin(kr)

kr
k2dk. (1.60)

The total variance of the field is given by integrating over the full phase space,

〈δ2〉 =
1

2π2

∫
P (k)k2 dk =

∫
∆2(k)d ln k, (1.61)

where

∆2(k) ≡ P (k)k3

2π2
(1.62)

is the dimensionless power spectrum. This integral is divergent at large k given

the shape of the power spectrum: as we shall see shortly, the small scale power

is approximately ∝ k−3 in linear theory, and non-linearities further enhance the

power. Thus, the variance is usually defined with a smoothing at some scale R:

σ2
R(z) =

1

2π2

∫ ∞
0

P (k, z)|W̃ (Rk)|2k2dk, (1.63)

where W̃ (kR) is the Fourier transform of the smoothing function. It is common

to adopt the spherical top-hat filter:

W (r) =

(4πR3/3)−1, if r ≤ R,

0, otherwise.

In this case, σR simply tells us the rms overdensity enclosed in a sphere of radius

R. It is conventional to use R = 8h−1Mpc with z = 0 to define the normalisation
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of the power spectrum, σ8, which has a measured value of about 0.8. There is a

subtlety that the σ8 parameter is often quoted as the linear extrapolation with

the linear growth factor D(t). In general, however, the variance σ2
R would also

include the non-linear scale, and thus has a different definition.

Shape of the matter power spectrum

The linear matter power spectrum can be written as

P (k, z) = D2(z)AknsT 2(k), (1.64)

where A ∝ σ2
8 is the normalisation amplitude, ns is the spectral index, which

characterise the initial power spectrum, and T (k) is the transfer function, which

encodes the deviation from the initial power law due to the growth of structure.

I will give a qualitative description of the last two terms in Eq. 1.64 below.

The power law form comes from the argument that the power spectrum has to

be featureless due to the lack of a characteristic scale in the early universe. The

corresponding functional form is a power law. The power index is postulated

to be ns = 1 because then the fluctuation of gravitational potential is constant,

which is expected in as a result of scale invariance [115, 215]. This is known as

the Harrison-Peebles-Zel’dovich spectrum. Such a constant potential fluctuation

is also predicted by inflationary models, via introducing perturbations to the

scalar field δφ. It can be shown (see e.g. [204]) that the initial power actually

deviates from unity by a small amount which is related to the slow-roll parameters

(Eq. 1.34 and 1.35):

1− n = 6ε− 2η. (1.65)

Indeed the measured ns is slightly lower than unity. This small deviation is called

the tilt of the power spectrum, and can be used to constrain inflationary models.

The transfer function T (k) captures deviation from the initial power law. The

main effect is the suppression of the growth of matter fluctuation at radiation

domination due to pressure. This is reflected in a scaled dependent way via

the horizon size of the perturbation. Given the size of the horizon χH(z),

perturbation modes that are smaller than the horizon, i.e. k > 1/χH , are in

causal contact, thus often called modes that have entered the horizon. Large

scale modes with k < 1/χH , on the other hand, are unaffected by physical

interactions such as pressure or free streaming. On sub-horizon scales, during
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radiation domination, the matter fluctuation eases to grow. This can be seen

qualitatively from Eq. 1.46: ignoring the pressure term for dark matter, δ varies

on the characteristic expansion time scale ∼ 1/H. Thus, the RHS of the equation

is ∼ H2δ ∼ (8πG/3)ρrδ � 4πGρmδ, much larger than the LHS, i.e. the gravity

term is negligible. We ignore the contribution of radiation density on the LHS,

because it oscillates fast with baryons. Well within the horizon, radiation can

be treated as a uniform background field. This means that a perturbation mode

which grows ∝ a2 during the radiation dominated era (a < aeq) will stop growing

once it enters the horizon, and start to grow again ∝ a when matter dominates

(a > aeq). Compared to modes that enter the horizon during matter domination,

their amplitude is suppressed by a factor of (aenter/aeq)
2. One can show that the

horizon scale at radiation domination is given by χH ∼ 1/k ∝ a, and defining

the horizon scale at matter-radiation equality as χeq ∼ 1/keq, we can see that the

power at k > keq is suppressed by 1/k2. This is referred to as the Mészáros effect.

Therefore, qualitatively, the transfer function is

T (k) ≈

1, if k � keq,

k−2, if k � keq.

The full transfer function can be computed numerically. The exact transition scale

depends on keq, which in turn depends on the matter density Ωm. Therefore, the

shape of the power spectrum provides a constraint on Ωm.

Acoustic Oscillations

Although only a small portion of the total matter density, baryons also leave

distinct features on the matter power spectrum via Baryon Acoustic Oscillations

(BAO). At very early times, baryons and photons are tightly coupled due to the

constant Compton scattering, and they can be treated as coupled relativistic fluid

until recombination at z ≈ 1000. As we saw in Eq. 1.46, the pressure term in

the density perturbation gives rise to acoustic oscillations of the perturbation

with a sound speed of cs, at scales smaller than the Jeans scale. For radiation,

the sound speed is c/
√

35, thus the sound horizon – the maximum distance of a

sound wave could travel in a given epoch – is roughly 1/
√

3 of the horizon scale.

This oscillation can be solved exactly in radiation dominated era using relativistic

5For the baryon-photon fluid, there is a slight deviation because while the pressure is
supported by photons, the density is a sum of photon and baryon. The deviation is proportional
to Ωb/Ωr � 1 at early epochs, so we ignore it here.
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perturbation theory. One finds that the potential evolves as

Φk(τ) = 3Φk(0)
sinx− x cosx

x3
, x ≡ kcτ√

3
. (1.66)

Here, τ is the conformal time, where dt = adτ , and cτ = χH is the comoving

horizon. Thus, on the sub-sound-horizon scale, x � 1, the potential oscillates

with a decaying amplitude ∝ 1/τ 2 ∝ 1/a2. On super-sound-horizon scale, x� 1

and the potential tends to a constant. This oscillatory behaviour of the photon-

baryon fluid leaves an imprint on the CMB, referred to as the acoustic peaks, and

they are used to provide some of the most precise constraints on the cosmological

parameters (see Section 1.4.2).

After reaching the drag epoch at z ∼ 500, the photon pressure can no longer

support baryons from collapsing under gravity, and the baryonic matter co-evolve

with dark matter with a similar spatial distribution. This can be solved by the

following coupled equations ignoring pressure:

δ̈b + 2Hδ̇b = 4πG
∑
b,c

ρ̄iδi, (1.67)

δ̈c + 2Hδ̇c = 4πG
∑
b,c

ρ̄iδi. (1.68)

The solutions to these equations suggest that δb and δc tend to the same after

large enough time. This oscillatory feature from baryons before decoupling, often

referred to as the BAO wiggles, thus also leave an imprint on the total matter

power spectrum, with an amplitude proportional to Ωb/Ωc ∼ 20%.

In configuration space, this oscillatory feature corresponds to a bump with a

characteristic scale of the sound horizon at the time of recombination in the 2-

point correlation function. The location of this bump corresponds to the sound

horizon at recombination (or the drag epoch, to be more rigorous), which is the

largest wavelength of the acoustic oscillation. This is given by [12, 16]

ds =

∫ adrag

0

cs da

a2H(a)
∼ 147 Mpc

(
Ωbh

2

0.0224

)−0.13(
Ωmh

2

0.1424

)−0.26

, (1.69)

where adrag is the redshift at the drag epoch, and the sound speed cs of the

photon-baryon fluid is given by cs = (c/
√

3)/
√

1 + (3/4)(Ωb(z)/Ωγ(z)). Here we

use the full expression for cs because at later times as the correction from Ωb/Ωγ

becomes relevant given that the current measurements from galaxy surveys are
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up to percent level. The BAO is another pillar of the cosmological probes, and

it provides tight constraints on the matter density and the Hubble parameter H0

(see Section 1.4.3).

1.3.3 Redshift-space distortion

The measured correlation function from observations relies on the determination

of the distance to galaxies, which in turn depends on their redshifts. As mentioned

above, due to peculiar velocity, the measured redshift of a galaxy would have an

additional contribution from the Doppler effect of the peculiar velocity via

1 + zobs ≈ (1 + zH)(1 + |v|µ/c), (1.70)

where µ is the cosine of the angle between the peculiar velocity and the line of

sight, and |v| � c. Because the comoving distance to galaxies are determined

from redshift via Eq. 1.25, the radial distance to the galaxies are ‘distorted’ by

the peculiar velocity. This results in a measured galaxy 2-point function that is

anisotropic, referred to as the Redshift-space distortion (RSD) effect.

The mapping between real and redshift space and its effect on the power spectrum

was quantified by [137] with the notion of the displacement field. Subsequently,

the effect was discussed by [86, 111, 164, 178] including configuration space. Let

the true position in real space be denoted by superscript r, and the observed

position in redshift space by s. Mass conservation yields (1 + δr) d3xr = (1 +

δs) d3xs. The redshift space position differs from the real space position by xs =

xr + d, where d = v/aH is the comoving displacement field. In Fourier space,

the mapping is given by:

1 + δsk =

∫
(1 + δr) eik·xs

∣∣∣∣∂xr∂xs

∣∣∣∣ d3xs,

where to first order, the Jacobian is given by |∂xs/∂xr|−1 ≈ (1−∇r · d).

Since the effect is only along the line of sight, we can replace ∇r · d by ∂dy/∂y,

where y is the coordinate along the line of sight. We will also adopt the distant

observer assumption, where yr ≈ ys. From Eq. 1.50, the Fourier transform of the

displacement is dk = −if(δk/k)k̂, and the component along the line of sight is

dy = |dk|µ, where µ = ky/k is the cosine of the angle between the wave vector

and the line of sight. Altogether, this gives δsk = δrk (1 + fµ2). Thus, the power
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spectrum in redshift space, P s, is then related to that in real space, P r, by

P s(k, µ) = (1 + fµ2)2P r(k). (1.71)

I emphasise that this is valid only for distant observers, where the radial vectors

pointing to the pair of galaxies are assumed to be parallel. This is a good

approximation for galaxy surveys with a pencil-beam like survey geometry, such

as the GAMA fields studied in Chapter 2. In general, however, this assumption

breaks down for galaxy pairs that are widely separated, and one need to account

for the wide angle effect, see e.g. [26, 45, 176, 233, 310].

For the galaxy power spectrum, Pg(k) = b2
gP (k), Eq. 1.71 becomes P s

g (k, µ) =

(bg + fµ2)2P r(k), since the velocity is assumed to be unbiased given that it

responds directly to the matter distribution. It it thus useful to define the

distortion parameter β ≡ f/b such that:

P s
g (k, µ) = (1 + βµ2)2P r

g (k). (1.72)

Given the dependence of µ in Eq. 1.71, the power spectrum can be expanded into

multipoles of Legendre polynomials L`(k), where ` = 0, 2, 4. The quadrupole-to-

monopole ratio directly measures the distortion parameter [54].

In configuration space, the 2-point correlation function in redshift space can be

expressed in terms of multipoles [111]:

ξs(r, µ) = ξ0(r)L0(µ) + ξ2(r)L2(µ) + ξ4(r)L4(µ), (1.73)

where ξ` is given by real space isotropic correlation function ξ(r) and its higher

moments:

ξ0 =

(
1 +

2

3
f +

1

5
f 2

)
ξ(r), (1.74)

ξ2 =

(
4

3
f +

4

7
f 2

)
[ξ(r)− ξ̄(r)], (1.75)

ξ4 =
8

35
f 2

[
ξ(r) +

5

2
ξ̄(r)− 7

2
¯̄ξ(r)

]
, (1.76)
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with

ξ̄(r) = 3r−3

∫ r

0

ξ(s)s2ds, (1.77)

¯̄ξ(r) = 5r−5

∫ r

0

ξ(s)s4ds. (1.78)

In practice, higher order (even) multipoles are present due to non-linear scale

effects (e.g. the Finger of God effect which will be introduced shortly), and the

multipoles also deviate from the linear expression Eq. 1.74-1.76. Odd multipoles

can also be non-zero – although at a much smaller amplitude – due to relativistic

effects such as lensing and gravitational redshift [27, 35, 305]. However, at the

cost of losing some information, it is still a common practice to compress the full

degree of freedom of the 2D ξs(r, µ) into the lowest few even multipoles via:

ξobs` =
2`+ 1

2

∫ 1

−1

ξs(r, µ)L`(µ) dµ. (1.79)

1.3.4 Nonlinear growth

Spherical collapse

Linear perturbation breaks down at late times, when δ ∼ O(1). Furthermore,

the fluid approximation becomes invalid when the density becomes too large

and shell crossing happens. To study the density evolution beyond linearity,

N -body simulations are usually employed, where a huge system of collisionless

dark matter particles are placed initially with a Gaussian distribution, and then

evolved under gravity with a background cosmology. The spherical collapse model

[103, 213] provides an intuitive picture that explains well the observations from

these N -body simulations. In this picture, we consider a patch of overdensity

with mass M(< ri) enclosed within some radius ri initially. The patch would

expand slightly slower than the background expansion rate due to gravity, while

this will lead to more enhanced overdensity. At some point, if the overdensity

is sufficiently large, the patch would break away from the background expansion

and collapse under gravity. A thorough review on non-linear growth and halo

model can be found in [58].

In the following text, I will assume spherical symmetry. Extensions to non-
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spherical models were first discussed in [186], and more details could be found

in e.g. [214]. I will also assume a matter dominated universe with Ωm = 1 and

negligible pressure. The inclusion of dark energy is discussed in e.g. [174, 301].

The spherical model works given that the initial density of the sphere is larger

than the dark energy density, which is true until the recent epoch. According to

Birkhoff Theorem, the dynamics of a spherical mass distribution can be described

by the homogenous and isotropic FRW metric. Thus, Eq.1.15 applies and the

proper radius of the overdense sphere enclosing mass M satisfies the equation of

motion:

r̈ = −GM
r2

. (1.80)

The equation has the parametric solution

r = A(1− cos θ), (1.81)

t = B(θ − sin θ), (1.82)

where A3/B2 = GM .

Linear theory is recovered close to t = 0. Expansion in small θ gives r(t) in the

linear regime:

r ≈ A

2

(
6t

B

)2/3
[

1− 1

20

(
6t

B

)2/3
]
. (1.83)

The leading order term is r ∝ a(t) ∝ t2/3, consistent as found in Section 1.2.1.

The second term implies an overdensity

δL ≈ 3

20

(
6t

B

)2/3

, (1.84)

which is also what we found in Section 1.3.1.

As the sphere continues to expand, it soon reaches two critical phases. The first

phase is at θ = π, where a maximum radius r = 2A is reached at time t = πB,

known as the turnaround. At this point, the linearly extrapolated density of the

sphere is δL ≈ 1.06, i.e., linear theory already fails at this time. Past this point,

the radius begins to shrink. The second phase is at θ = 2π, where r = 0 and

t = 2πB, i.e. the sphere now collapse into a singularity. By the time of collapse,

the linearly extrapolated overdensity is

δc ≡ δL(θ = 2π) =
3

20
(12π)2/3 ≈ 1.69, (1.85)
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whereas the actual overdensity of the sphere is

1 + δ =
r3
L

r3
= 18π2 ≈ 178. (1.86)

In a real physical situation, an overdense sphere rarely collapses to a singularity

because this would require perfectly spherical orbits and no fluctuations in the

density or gravitational potential. Rather, the sphere would virialise and reach

equilibrium. According to Virial Theorem this happens when the potential energy

of the sphere is twice its kinetic energy at θ = 3π/2. The spherical collapse model

thus says that a region with an extrapolated linear density δ > δc would collapse

and form a virialised region with an actual density that is ∼ 2006 times the

background density ρc (Eq. 1.18). These collapsed regions are called dark matter

haloes.

Halo mass function

Based on spherical collapse, Press & Schechter [232] proposed a model for the

number density of dark matter haloes in a given mass range and redshift. In this

model, the probability to find the overdensity between δ and δ + dδ in a sphere

of radius R at redshift z is given by a Gaussian distribution:

P (> R, z) dδ =
1√

2πσR(z)
exp

(
− δ2

2σ2
R(z)

)
dδ, (1.87)

where σR(z) is given by Eq.(1.63). This parameter is often quoted as a function

of mass enclosed by the radius, M = 4πρmR
3/3. In Eq. 1.87, I have used

> R because the variance is calculated by ‘blurring’ out structures smaller than

the scale R, thus only haloes larger than this scale would contribute to the

probability. We also notice that σR would be a decreasing function of R or M – a

larger smoothing would reduce the variance of the perturbation. The fraction of

collapsed matter at redshift z with radius > R is then given by integrating this

function from δc

F (R, z) =

∫ ∞
δc

P (R, z) dδ =
1

2
erf

(
ν(R, z)√

2

)
, (1.88)

6It is common to use ρ = 200ρc to define the virialised mass, often referred to as M200,
although some literature adopt ρ = 178ρc at the time of collapse.
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where the peak height ν is given by

ν ≡ δc
σR(z)

. (1.89)

This expression receives a factor of two correction [32, 77, 209]. A qualitative

explanation is that at fixed redshift, when ν → 0 corresponding to the low mass

end, we expect that all matter would have collapsed, thus F → 1.

The number density of haloes at redshift z with mass larger than M can then

be calculated, which is simply given by n(M, z) = 2(ρm/M)F (M, z). It is more

commonly expressed as the differential number density per logarithmic mass bin,

or known as the halo mass function:

dn(M, z)

d lnM
=

√
2

π

ρcΩm

M

d lnσ−1
M

d lnM
νe−ν

2/2. (1.90)

Adopting the power spectrum in the form Eq. 1.64 with ns = 1, theM dependence

of the variance is:

σ2
M ∝

∫ ∞
0

|T (k)|2|f(kR(M))|2k3dk. (1.91)

For large mass, the integral is dominated by small k, for which T (k)→ 1. Then

by a simple change of variable, σ2
M ∝ R−4 ∝M−4/3. For low mass, the integral is

dominated by large k, where T (k) falls as ln k/k2 [127], so the overall behaviour

is σ2
M ∝ logR. Therefore, Eq.(1.90) falls roughly as a power law of M at small

mass, and exponentially at large M . This behaviour is in general agreement with

observations [279] and numerical simulations, although deviations are reported

in [102, 132, 159], and generalised forms are proposed, for example, the Sheth-

Tormen mass function [266].

Nevertheless, this model has a few implications. Firstly, it implies that structures

are formed in a hierarchical manner: lower mass objects form first, and larger

mass objects are formed later via mass accumulation or merging between different

haloes. Another implication is that the number density of haloes is cosmology

dependent. Specifically, the shape at the high mass end, corresponding to

clusters and superclusters, is highly sensitive for parameters such as Ωm. Thus,

cluster counts are used to constrain cosmology, e.g. [2, 17], although a range of

observational systematics such as mass calibration and sample completeness can

greatly complicate the analysis.
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Halo profile

The mass distribution inside a dark matter halo can be extracted from N -body

simulations. It was first shown in [193] that the profile has a universal form even

across different simulations, which can be fitted by the following Navarro-Frenk-

White (NFW) profile:

ρ(r) =
ρ∗

(r/r∗)(1 + r/r∗)2
, (1.92)

where ρ∗ and r∗ are free parameters. When r � r∗, ρ decays as ∝ 1/r3 and the

total mass enclosed diverges logarithmically; when r � r∗, the density diverges as

1/r. This behaviour at r → 0 is referred to as cuspy. The halo mass profile can be

inferred from the profile of galaxies and galaxy clusters, although interpretations

should be taken with care. In the case of galaxies, baryonic effects are important

near the galaxy centre, and observations have suggested a core rather than cusp

in the centre. The profiles measured from galaxy clusters, on the other hand,

show good agreement with the NFW profile [166]. This is often referred to as the

core-cusp problem.

The NFW profile is often expressed in terms of the virial radius r200, which

corresponds to the radius within which the mean density is 200 times the critical

density ρc(z), and the concentration parameter, defined as

c ≡ r200

r∗
. (1.93)

The NFW profile deviates from simulations at small scales, where it underesti-

mates the actual density, and the true relation should be much steeper [91]. A

number of profiles are subsequently proposed to capture this trend, e.g. [194, 195],

and a commonly adopted profile is [194]:

ln

(
ρα
ρ−2

)
= − 2

α

[(
r

r−2

)α
− 1

]
, (1.94)

where α is a free parameter and r−2 is a characteristic radius at which the slope

of the profile d ln ρ/d ln r = −2. This fitting formula can capture a variety of

trends with different α.
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Halo bias

The statistical distributions of dark matter haloes are different from those of the

matter density field – haloes only form at peaks of the density field. Thus, the

density fluctuations measured from haloes δh are biased compared to δ. This

difference is captured by the bias parameter which can depend on the halo mass

and redshift,

δh = b(M, z)δ. (1.95)

Notice that this is only true for linear scales. On small scales, the bias can take

the non-linear form [148].

In the spherical collapse model, overdense regions, given a smoothing scale of

R, with δR > δc collapse to form haloes. However, objects that reside in large-

scale overdensity collapse sooner than in large-scale underdensity. This can be

understood in the picture of peak-background split, where we split the density

perturbation into large and small scale components, δ = δL + δS. In the absence

of δL, the region would collapse if δS > δc. With a slightly positive δL, the

region could collapse with δS < δc, and vice versa for a slightly negatively δL.

This is equivalent to modulating δc for the large scale modes. Let F (> ν) be the

cumulative collapsed fraction as in Eq. 1.88, and G = −dF/d ln ν be the collapsed

fraction between ln ν and ln ν+d ln ν. Given a small change ε in δc, the collapsed

fraction changes to ∆G = −(∂G/∂δc)ε = −(dG/d ln ν)ε/δc, the negative sign

because ε < 0 corresponds to a lower threshold, thus higher collapsed fraction.

The Lagrangian bias is bLε = ∆G/G, and thus the bias is given by

b(ν) = 1 + bL = 1− 1

δc

d lnG

d ln ν
. (1.96)

For the Press-Schechter formula, the bias has a simple form [53, 182]

b(ν) = 1 +
ν2 − 1

δc
. (1.97)

The bias increase monotonically as a function of halo mass at fixed redshift given

Eq. 1.89. It tends to a constant as ν → 0, and rises steeply at large ν. At

fixed mass, the bias also rises with redshift. Because of the deviation of the

mass function predicted from the Press-Schechter formula from simulations, often

empirical formula are used (e.g., [205, 267, 289]). An example of the halo bias-

halo mass relation adopting the empirical formula in [205] is shown in Fig. 1.2 at
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Figure 1.2 Halo bias as a function of halo mass calculated from fitting formula
given in Peacock [205].

z = 0.

Given a distribution of halo masses, f(M), the mean halo bias of the sample can

be computed via

〈b〉 =

∫
f(M) b(ν) dM. (1.98)

If f(M) is the halo mass function, then the above integral gives 〈b〉 = 1.

1.3.5 From dark matter to galaxies

Dark matter haloes are not directly measurable. In practice, we could only

observe luminous matter, i.e., galaxies. Because galaxies reside in dark matter

haloes, we expect the galaxy density fluctuation, δg, to be also biased compared

to the underlying matter fluctuation δg = bg δ, similar to the haloes [302]. Again,

this relation holds only on large linear scales [136], and the galaxy bias in non-

linear regime can be more complicated (see discussion in [66]). On linear scales,

we can measure the galaxy bias in surveys by measuring the power spectrum

or correlation function, and compare it with the theoretical prediction, i.e.

Pg(k) = b2
g P (k) and ξg(r) = b2

g ξ(r).

Observations show that galaxy bias has a strong dependence on galaxy luminosity.

The measurements from SDSS survey [311] showed that the dependence resembles

the mass dependence of the halo bias, implying that the galaxy luminosity

is strongly correlated with the halo mass. [311] further showed that at fixed

35



luminosity, the galaxy bias also depends on the galaxy colour, which also strongly

correlate with the age of the galaxy. The fact that red galaxies have a larger bias,

or are more clustered than blue galaxies implies that red galaxies are preferentially

found in higher mass haloes. Moreover, the clustering of red galaxies on small

scales, in the 1-halo regime, is further enhanced, i.e., the galaxy bias is also scale-

dependent in this case. This can be explained by that large haloes would contain

a central galaxy that is likely blue, and one or more satellite galaxies that are

likely red. We shall come back to the colour dependence in Chapter 2.

The complex dependence of galaxy bias on galaxy properties originates from the

physics of galaxy formation and evolution, for which a more detailed discussion

would perhaps yield the length a whole thesis. A thorough review is given

by [300]. In short, the different galaxy properties are a collaborative result of

various baryonic processes, e.g. star formation, merging, and feedback from

supernovae and AGN, which are also related to the formation and merging

of the underlying dark matter haloes. The aim of studying the galaxy-halo

connection is to quantify statistically the relation between galaxy and halo

properties. Empirical methods include abundance matching [296], i.e., matching

galaxy properties such as stellar mass to the halo mass by rank and studying

the stellar mass to halo mass ratio (SHMR), halo occupation distribution (HOD)

[210], i.e., specifying the probability of finding a number of galaxies given the

halo mass, and conditional luminosity function [309], i.e., specifying the galaxy

luminosity function given the halo mass. These methods can also be applied to

dark-matter-only simulations to produce realistic mock galaxy catalogues. With

the aid of hydrodynamical simulations and semi-analytic models, these baryonic

processes can also be studied in detail (see [278] for a thorough review). Due

to the complicated nature to predict galaxy bias, it is usually treated as a free

parameter, or relevant parameters in the galaxy properties are marginalised over

in cosmological studies.

1.4 Current cosmological constraints

1.4.1 The distance ladder

We have seen in Section 1.2.2 that the distance-redshift relation is cosmology

dependent. By measuring the distances and redshifts to galaxies independently,
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one can determine the current expansion rate, the Hubble constant H0, as well

as constrain the density parameters. The earliest distance-redshift relation is

measured at z ∼ 0 from extragalactic nebulae [128, 275], and the results showed

a linear relation between the radial velocity and the distance of these nebulae. The

slope of this relation is gives H0 according to Eq. 1.24. This was a direct evidence

for the expansion of the Universe. To obtain more accurate measurements, one

needs to extend this relation to higher redshifts, because the local relation can

be affected by large peculiar velocities. While redshifts can be obtained from

spectroscopic or photometric observations, the direct determination of distances

are more difficult. This is achieved via the distance ladder: the cosmic distances

are calibrated against a set of local galaxies.

The first part of the ladder extends up to the Large Magellanic Cloud (LMC),

about 50 kpc away. Its distance can be most precisely determined via the

illuminated ring from the explosion of Supernova 1987A. The inclination of the

ring can be determined from its ellipticity (since the ring is expected to be almost

circular), and the size of the ring can be estimated via the time delay of the

illumination between the close and far part of the ring. These together determines

the physical size of the ring, which can then be turned into a radial distance given

the apparent angular size. Another precise distance determination to the LMC

is using eclipsing binaries for late-type stars [222]. For these stars, the angular

size can be determined using accurately calibrated relation between their surface

brightness and colour. This angular diameter distance can then be compared to

the dimension obtained from spectroscopic or photometric data. These methods

give the distance to LMC up to 2%.

The next part of the ladder comes from the calibrated period-luminosity relation

of Cepheids – a type of highly luminous pulsating stars. The distance can be

extracted from the luminosity L given the observed flux or apparent magnitude

(Eq. 1.27). This relation is calibrated accurately to few percent level using a

large sample of Cepheids found in galaxies with known distance, such as LMC

and NGC 4258 (at a distance of ∼ 7 Mpc). Due to the high luminosity, Cepheids

can be observed at large distance, thus extending the distance-redshift relation

to higher redshifts.

The furthest part of the ladder consists of the light curves of Supernova Type

Ia (SNe Ia). SNe Ia are explosions of white dwarfs – stars at the end of their

evolution that are highly compact and supported by electron degeneracy pressure

only. White dwarfs explode when if their masses exceed the Chandrasekhar limit,
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about 1.4M�. It is expected then that all SNe Ia undergo similar physical process,

thus their maximum luminosity and light curve would be the same. However,

this is not entire true as pointed out in [112, 221] – there is a (correlated) scatter

observed in maximum luminosity and the shape of the light curve. Fortunately

this can be carefully calibrated [88, 220, 241]. Due to their high luminosity, SNe

Ia can be observed to as far as z ∼ 1. At this scale, the local Hubble law is not

valid and one needs the full expression of H(z) (Eq. 1.14) which depends on the

density parameters. The high redshift SNe Ia measurements preferred Ωm ∼ 0.3

and ΩΛ ∼ 0.7, thus provided a direct piece of evidence for a non-zero dark energy

and the accelerated expansion of the Universe [219, 242]. Fig. 1.3 shows a recent

compilation of the distance ladder measurements of the distance-redshift relation

in [243].

More recent measurements on the Hubble parameter from the distance ladder

yields a precision of 2%. [244] reported H0 = 74.03 ± 1.42 km/s/Mpc from

70 Cepheids observed by the Hubble Space Telescope. We shall see that this

highly precise result obtain from the low redshift universe is in tension with that

measured from the early universe in Section 1.5.

1.4.2 CMB anisotropy

We have mentioned in Section 1.2.4 that the CMB is not isotropic – there are

fluctuations at the order of 10µK. The primary CMB fluctuations originates

from the photon-baryon interaction up to the recombination epoch, and can

be understood at roughly three scales. Since the CMB fluctuations are usually

analysed in spherical harmonic space (the analogue of Fourier transform on a

sphere), I will quote the angular scales θ on the CMB in terms of the spherical

harmonic wave number ` ∼ π/θ. The horizon scale χH corresponds to θ ∼ 1◦ on

the CMB sky, or ` ∼ 100.

At superhorizon scales, i.e., structures on the CMB with length scales L > χH ,

photons and baryons only interact gravitationally through the Sachs-Wolfe effect:

photons propagating from a high density region to a low density region are

gravitationally redshifted, and vice versa. Therefore, the fluctuations in the

photon frequency corresponds to those in the matter density, and the temperature

power spectrum would have the same shape as the matter power spectrum at

` . 100. Below the sound horizon at recombination, L . χs = χH/
√

3, baryons

and photons behave like coupled fluid and the density fluctuations oscillate, as
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Figure 10. from A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CONSTANT 
null 2016 APJ 826 56 doi:10.3847/0004-637X/826/1/56
http://dx.doi.org/10.3847/0004-637X/826/1/56
© 2016. The American Astronomical Society. All rights reserved.

Figure 1.3 The distance ladder adopted from Riess et al. [243]. The x-axis
shows calibrated distance which are used to calibrate the distance
indicators on the y-axis via absolute magnitude M or Hubble
parameter H0.
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mentioned in Section 1.3.2. The wavelength that can experience a full oscillation

at this epoch is the sound horizon, and subsequent smaller wavelengths are

present at integer multiples of the corresponding frequency. These waves are

shown as acoustic peaks on the CMB power spectrum, with the first peak located

around ` ∼ 200. Although we have assumed Ωm = 1 in this case, in general,

the location of the peak is (most) sensitive to the curvature parameter Ω. The

precise determination of the peak positions in combination with CMB lensing
7 thus put a tight constraint on the curvature 1 − Ω = −0.0027+0.0039

−0.0038 [123],

suggesting that the Universe is very close to flat. Lastly, recombination did not

happen instantaneously – the last scattering surface has a finite width of ∆z ∼ 80

due to the finite mean free path of the photons. This scale θ ∼ 5′, or ` ∼ 2500, is

the smallest scale where anisotropic structures can be resolved. At small scales,

photon diffusion also causes Silk damping [270], which damps the acoustic peaks

exponentially at small scales. A thorough review of the CMB features can be

found in [126].

The CMB temperature power spectrum (TT ) is shown in Fig. 1.4, where the

data points are measured by the Planck satellite [227]. The above features are

clearly present, and the agreement between data and theory is remarkable. The

cosmological dependence of these features gives the tightest parameter constraints

so far: Ωch
2 = 0.120 ± 0.001, Ωbh

2 = 0.0224 ± 0.0001, ns = 0.965 ± 0.004,

H0 = 67.4±0.5 km s−1 Mpc−1 and σ8 = 0.811±0.006. In addition, the CMB power

spectrum in combination with other cosmological probes also provide constraints

on the optical depth of reionisation, the dark energy equation of stats, relativistic

effective degree of freedom, and upper limit of neutrino mass.

There are additional CMB probes. For example, the polarisation of the CMB

photons is measured by Planck. Its auto power spectrum (EE) and the cross

power spectrum with temperature (TE) show excellent agreement with the best-

fit model determined from TT only [227]. Secondary CMB fluctuations are also

be explored: these are the perturbations to the CMB photons due to large

scale structures and ionised gas from the recombination epoch to today. Such

effects include CMB lensing, Integrated Sachs-Wolfe (ISW) effect, and Sunyaev-

Zel’dovich (SZ) effect. The former two will be discussed in more detail in

Chapter 3. A general discussion of the CMB anisotropy and its measurements

can be found in [256].

7Without lensing, the curvature parameter is degenerate with other parameters such as ΩΛ

and h, as discussed in detail in [73].
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Figure 1.4 Upper: The CMB temperature power spectrum adopted from Planck
Collaboration et al. [227]. The measured data are shown in red
dots and the best-fit theory is shown in blue. Lower: The residual
difference between data and best-fit theory.

1.4.3 BAO

The sound wave from the coupled baryon-photon plasma before recombination is

also visible in the correlation function ξ, as we saw in Section 1.3.2. This Baryon

Acoustic Oscillation (BAO) has a characteristic comoving scale ds ∼ 150 Mpc

(Eq. 1.69). The exact location of this peak at a given redshift provides a direct

measure for the geometry of the Universe. Therefore, BAO is also referred to as

the standard ruler.

BAO can be measured in the 3D galaxy correlation function using large redshift

surveys (e.g. [12, 75, 218, 320]). At the BAO scale, linear galaxy bias is

a good approximation, thus the shape of the matter power spectrum can be

measured. At a given redshift z, the scale transverse to the line-of-sight gives the

angular diameter distance DA(z), whereas the direction along the line-of-sight

gives the comoving separation cz/H(z). Thus, the result is usually presented as

the spherically averaged BAO scale

DV (z) =

(
D2
A(z)

cz

H(z)

)1/3

. (1.99)
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Fig. 2. from Detection of the Baryon Acoustic Peak in the LargeScale Correlation Function of SDSS Luminous Red Galaxies
Eisenstein et al. 2005 ApJ 633 560 doi:10.1086/466512
http://dx.doi.org/10.1086/466512
© 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A.

Figure 1.5 The measured correlation function of luminous red galaxies in
SDSS (black data points), adopted from Eisenstein et al. [75].
The solid lines of different colours show theoretical prediction with
different Ωmh

2: 0.12 (green), 0.13 (red), and 0.14 (blue), with other
parameters fixed. The magenta line shows a pure CDM prediction,
where the BAO peak is absent.

Fig. 1.5 shows one of the first measurements of the BAO from the SDSS luminous

red galaxies [75], where the feature is clearly visible and the BAO scale is

constrained up to 5%.

In principle, the peak position can be affect by the peculiar velocity of the

galaxies. Due to the large scale and low amplitude of the BAO peak, it is also

difficult to measure with high statistical significance in practice. Thus, it is a

common practice to use the reconstruction technique, where the measured galaxy

density fluctuation is ‘moved back’ according to the inferred peculiar velocity

from gravitational potential, allowing the original density field to be reconstructed

[76, 263]. The application to the SDSS DR7 data has improved the measurement

precision of DV from 3.5% to 1.9% [203]. The inferred distance-redshift relation

from the BAO measurements gives cosmological parameter constraints that
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Figure 1.6 The combined constraints on matter and dark energy density from
various different cosmological probes, adopted from the Supernova
Cosmology Project and Suzuki et al. [281]. Due to the different
degeneracy directions, the combination provides a tight constraints
on the two parameters.

are consistent with those obtained from the CMB probes [16, 320], providing

independent and strong evidence for the ΛCDM model.

The constraints on Ωm and ΩΛ from the probes that have been described so far

are shown in Fig. 1.6.

1.4.4 RSD

The afore mentioned distance ladder and BAO are geometric probes of the

Universe, i.e. they constrain cosmological parameters via determining a particular

scale. RSD, on the other hand, is a dynamical probe, where cosmological

information in velocities are used. As mentioned in Section 1.3.3, the measured

galaxy redshift consists of a component from Hubble flow and a component from

peculiar velocities. The radial distances determined from redshifts are ‘distorted’,

leading to an anisotropic 2-point correlation function.
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The RSD effect can be understood intuitively by considering the line-of-sight

peculiar velocity on two scales as follows. On linear scales, the Kaiser effect (see

Section 1.3.3) dominates. Taking a spherically symmetric distribution of galaxies

in a cluster, the galaxies have a infall velocity towards the centre of the cluster

due to gravity. A galaxy closer to us would then have a slightly lager redshift and

consequently a larger apparent distance due to the infall velocity, whereas a galaxy

further away would have the velocity pointing the opposite direction, giving

a smaller apparent distance. Therefore, the apparent pair separation shortens

along the radial direction, leading to a squashing effect along the line of sight in

the measured ξ(rp, π). On smaller scales, the ‘Fingers of God’ effect dominates

– these elongated filament-like structures are apparent in galaxy distributions

such as Fig. 1.1. Take the spherical cluster as an example, now focusing on

the inner virialised region, where galaxies have large velocity dispersions. These

velocities move the galaxies around over a large range in redshift space, increasing

significantly the pair separation, and giving rise to an elongated smearing effect at

small rp in ξ(rp, π). The two features can be observed clearly in the 2D anisotropic

correlation function measured from the 2dF Galaxy Redshift Survey [117, 211]

shown in Fig. 1.7.

Cosmological information is encoded in the peculiar velocity on the linear scale

through the growth rate f of the large scale structure (Eq. 1.51). To account

for galaxy bias, the measured distortion parameter is β = f/bg. Because galaxy

bias and the normalisation of the power spectrum is degenerate, such that bgσ8 =

const, the measurement can also be recast into constraint on f(z)σ8(z) at redshift

z. The dependence on z can be used to constrain the power γ in f ∼ Ωm
γ. A

deviation from γ ≈ 0.55 could indicate deviation from GR, such as modified

gravity [20, 84]. Recent constraints on fσ8 over a wide range of redshift have

a percent level precision and are consistent with the concordance cosmological

model (see Fig. 1.8). Interpreting the RSD measurements on smaller scales is

challenging – the main difficulties are accounting for the non-linearities in the

coupling of density and velocities as well as scale-dependent galaxy bias. However,

going into smaller scales have the advantage of a greatly improved signal-to-noise.

Thus, improved non-linear models have been considered in e.g. [133, 258, 283]. I

will introduce some of these models in Section 2.2.
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Figure 1.7 The measured 2D correlation function from the 2dF Galaxy Redshift
Survey, adopted from Hawkins et al. [117]. (σ, π) denotes the
directions perpendicular and parallel to the line of sight respectively.
The smooth dashed contour levels show the best-fit model.
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Figure 1.8 Constraints on the growth rate fσ8 from various redshift surveys
adopted from Dawson et al. [64]. The solid line with grey band shows
the ΛCDM prediction from the Planck 2015 parameters.
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1.4.5 Weak lensing

The light from distant galaxies can be deflected along its path by the gravitational

tidal fields generated by large scale structures. Thus, the image of an observed

galaxy can be distorted. In the presence of a large galaxy cluster, for example,

the background galaxy can be deformed into multiple ring-like images. The

deformation allows one to deduce the mass of the foreground lens. This

phenomenon is called strong lensing. The same can happen when the gravitational

field is weak, generated by the matter perturbations along the line of sight,

hence weak lensing. In this case, the photons are deflected multiple times with

tiny deflection angles, and the resultant distortions are only at percent level.

However, just as powerful as strong lensing, weak lensing allows us to infer

directly the projected matter fluctuation along the path of the photons without

the complication of galaxy bias. In order to measure this signal, however, one

needs not only excellent image quality, but also averaging over a large ensemble of

galaxies, because each galaxy would have an intrinsic shape that is in general not

circular. The measured distortion is called cosmic shear. For a detailed review

see [19].

The distortions of galaxies due to large scale structures are correlated: at higher

density peaks, the distortions are stronger. Thus, the shear correlation function

ξ+(θ), which measures the excess shear between pairs with respect to a random

distribution, has information on the matter power spectrum P (k). Through the

Poisson equation (Eq. 1.45), the potential is related to the density perturbation

via Φk = (3/2)H2
0 Ωm δk/k

2, thus the measurement is highly sensitive to the total

matter density Ωm and the total clustering σ8. The lensing kernel is a function of

distance, thus the distance-redshift relation gives additional dependence on Ωm.

In particular, the signal depends on the combination S8 = σ8(Ωm/0.3)q, where

q ≈ 0.5.

There are two major systematics in weak lensing. One is instrumental – the

point spread function (PSF) smears the image of the galaxies (it could easily

overwhelm the lensing signal) and needs to be corrected before one can extract

the galaxy shape parameters. The other one is of astronomical origin, called the

intrinsic alignment. Suppose the observed shear is given by an intrinsic term plus

the cosmic shear: εo = εi + γ. The shear correlation function has the following

components:

〈ε1oε2o〉 = 〈ε1i ε2i 〉+ 〈ε1i γ2〉+ 〈γ1ε2i 〉+ 〈γ1γ2〉, (1.100)
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Figure 1.9 The constraints in the parameter plane S8 = σ8(Ωm/0.3)0.5 and Ωm

from several weak lensing surveys and the Planck 2018 cosmological
result, adopted from Asgari et al. [15].

where the superscripts 1 and 2 denote the two galaxies in the pair, and 〈...〉
denotes the average over all such pairs. The first term corresponds to the

correlation between intrinsic shapes of the two galaxies. This term is contributed

by very nearby galaxies influenced by the same local gravitational tidal field. The

second and third term arise from pairs that are separated at different redshifts.

Because shear is sensitive to the projected tidal fields, γ1 of the galaxy at higher

redshift is affect by the tidal field at the lower redshift, which then correlates with

ε2i of the other galaxy. What we are interested in is the last term corresponding

purely to cosmic shear 〈γ1γ2〉. Although the first few terms are of lower order

compared to the last term, they need to be carefully accounted for to achieve high

precision and reliable results. Efforts in conducting such careful weak lensing

analysis include the Canada-France-Hawaii Lensing Survey (CFHTLenS; [139]),

the Kilo-Degree Survey (KiDS; [95, 121]), the Dark Energy Survey (DES; [291]),

and the Hyper Suprime-Cam (HSC; [108, 119]). The cosmological constraints

from these weak lensing experiments are summarised in Fig. 1.9, and the most

up-to-date S8 parameter is measured to be S8 = 0.759+0.024
−0.021 from the KiDS-1000

survey [15].

48



1.5 Beyond the standard model

It is impressive how various cosmological probes presented in Section 1.4 turned

out to provide consistent parameter constraints over the last few decades. This

has established the ΛCDM model as the standard cosmological model – any

proposal beyond this standard model has to also pass all of these independent

observational tests, which is truly non-trivial. On the other hand, with better

technology and larger telescopes, the constraints have reached a sufficiently high

precision that in recent years, two major tensions have emerged within the ΛCDM

paradigm.

The H0 tension: The measurements of the Hubble constant H0 from the early

and late universe disagree with each other. The late universe measurements,

favouring h ∼ 0.74, consists mainly of the distance ladder (see Section 1.4.1),

reaching a precision of 1 − 2%. Recently, measurements from strong lensing

time-delay (e.g., [29, 306]) also provide independent constraints with competitive

precision of 2.4%. The early universe measurements, preferring h ∼ 0.68, mainly

come from the CMB analysis by the Planck Collaboration (see Section 1.4.2) and

BAO (see Section 1.4.3) in combination with other probes such as BBN. As shown

in Fig. 1.10, the two sets of measurements are consistent within their own groups,

but are discrepant from each other at 4.4σ as claimed by [244]. This corresponds

to a ∼ 0.002 probability that this discrepancy is due to a statistical fluctuation.

It is noticeable that recently the detections of gravitational wave allow another

measure of the distance. If the electromagnetic counterpart of the gravitational

wave event can be identified, then one can measure H0, a method referred to

as gravitational-wave standard siren [1, 48, 257]. Currently, the constraints on

H0 provided by this method is rather wide, but within the next few years with

more detections of such events, it is expected that this independent method will

provide competitive constraints.

‘Lensing is low’: This is a tension in the Ωm − σ8 parameter plane between

several weak lensing measurements and the CMB results from the Planck

Collaboration. As can be seen from Fig. 1.9 (it shows the S8−Ωm plane instead),

while some surveys such as DES-Y1 and HSC-Y1 are consistent with Planck, the

recent KiDS-1000 and a combination of the lensing surveys (KV540+DES-Y1)

show a discrepancy at 3σ level [15]. Discussion regarding to the tension from

these measurements can be found in e.g. [134, 292]. We will come back to this

topic in Section 5.2.5.
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Figure 4. from Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger
Evidence for Physics beyond CDM
null 2019 APJ 876 85 doi:10.3847/1538-4357/ab1422
http://dx.doi.org/10.3847/1538-4357/ab1422
© 2019. The American Astronomical Society.

Figure 1.10 The measurements of the Hubble parameter H0 split by the early-
and late-universe probes adopted from Riess et al. [244]. The black
errors on the top shows several non-standard models which reduce
the 4.4σ tension between the early-universe (blue) and late-universe
(red) measurements.
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The origin of the these tensions is not yet clear. A first and conservative

explanation is systematic errors not accounted for by either one of or both groups

of experiments. There have been many efforts devoted to check the robustness of

these results from both sides, while none of the systematic errors investigated are

large enough to close the gap (e.g. [74, 122, 244]). A bolder step would be to seek

explanations beyond the standard ΛCDM model. For example, a few suggestions

to ease the Hubble tension are listed on top of Fig. 1.10: (a) A change in the

dark energy equation of state ∆w0, or time-dependent equation of state, ∆wa,

where the equation of state is modified to w(a) = w0 + a∆wa; (b) A change in

the effective number of relativistic species ∆Neff ; (c) A slightly open universe

∆Ωk < 0; (d) Dark matter interaction with a cross-section of σ; (e) Early dark

energy at redshift z = 104. A thorough review on possible extensions to the

ΛCDM model can be found in e.g., [187, 236].

1.6 Statistics

1.6.1 Bayesian inference

There are two main types of statistical inferences: frequentist and Bayesian. The

frequentist’s approach refers to obtaining the probability of an event by repeated

measurements. A simple example is flipping a coin – by flipping the coin many

times, the number of appearances of head and tail tends to the same, indicating

that the probability of getting either is 1/2. This method, however, does not work

well for small samples, and certainly does not work for cosmological inferences,

because there is only one observable universe. For this reason, Bayesian inference,

based on Bayes’ theorem, is widely adopted in cosmology. The Bayes’ theorem

states that, for two events A and B, the conditional probability of A given B

satisfies

P (A|B) =
P (A)P (B|A)

P (B)
. (1.101)

In the context of cosmological analysis, A and B correspond to model (M) and

data (D) respectively, where the model depends on a set of parameters θ. The

function P (M(θ)|D) is the posterior, which tells us the probability distribution

of the model parameters given the data, and it is what we are most interested

in. The function P (M(θ)) is the prior, indicating our a priori knowledge on the

parameters. For example, if a parameter is measured from other experiments to

51



be θ±∆θ, then a Gaussian prior can be used with mean and std of the measured

value. It is also common to adopt a flat or uniform prior, where no knowledge is

assumed at all for the parameter, except perhaps for a plausible (wide enough)

upper and lower bound. The function P (D|M(θ)) is proportional to the likelihood

L, which can be calculated from assessing the goodness of fit of the model to the

data. Let the observables be an N -dimensional vector y, and let ym be the value

of these observables obtained from the model. Defining v = y−ym, the likelihood

is given by

L =
1

(2π)N/2|C|1/2
e−vT C−1v/2, (1.102)

where C is the covariance matrix. The covariance matrix can be computed

analytically if Gaussian distribution is assumed. However, non-Gaussianity can

arise on small non-linear scales. In this case, the covariance can be estimated

from mock realisations. For M such realisations labelled by the superscript k,

the covariance is given by

Cij =
1

M − 1

M∑
k

(vki − v̄i)(vkj − v̄j), (1.103)

where v̄ is the mean of the realisations. It is noticeable that χ2 = vTC−1v.

Therefore, if C is not sensitive to change in model parameters, then lnL = const−
χ2/2, and so maximising the likelihood is the same as minimising the χ2. Finally,

P (D) is a probability that depends on the data only. Therefore, for parameter

inferences, it is irrelevant and can be simply treated as the normalisation of the

posterior.

1.6.2 Internal Sampling

A robust covariance matrix is thus essential for getting unbiased likelihood and

posterior distribution. As mentioned above, in the non-Gaussian case, estimating

an accurate covariance matrix usually requires running a large ensemble of

realisations, and it can be computationally expensive. An alternative route is

internal sampling, where subsamples of the data are used as realisations. The

advantage of internal sampling is that the covariance can be estimated in a

model-independent way. For more details on cosmological studies using internal

sampling, see e.g. [200] for galaxy 2-point functions and [90] for cosmic shear

correlation functions.
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A common method is Jackknife resampling, where the different parts of the data

are rejected to form subsamples (see [181] for a thorough review). For example, for

N independent data points drawn from some distribution, we reject one datapoint

each time, and form a set of subsamples each with N−1 points. The covariance of

the full data is then estimated by the covariance of these subsamples multiplied by

N − 1 to account for correlations between different subsamples. In cosmological

data, this method is usually applied at the field level – the survey region is

divided into equal area units. Then one unit is masked out in turn, while the

remaining N − 1 units are treated as data subsamples that are used for data

compression and analysis. The covariance matrix can then be estimated from

the final products of these subsamples. Notice that this method can be cosmic

variance limited, because the variations on the scale of the survey coverage or

larger are not captured.

The noise in the estimated covariance matrix from finite number of subsamples

can lead to singular determinant or biased likelihood and χ2. This can be treated

with eigenvalue decomposition. If the orthonormal eigenvectors of the covariance

matrix, ui, are used as a basis, then the χ2 is simply

χ2 =
N∑
i

a2
i λ
−1
i , (1.104)

where the λi’s are the eigenvalues of the covariance, and ai = v · ui are the

coordinates of v. Thus, small eigenvalues that correspond to singular modes will

dominate the χ2. One can then reject modes with λi < λc for some λc, such that

the sum in χ2 only runs through non-singular modes.

Another way to regulate the estimated covariance matrix is employing the

shrinkage estimator [230, 253]. In this method, the analytic covariance matrix

from theory, Cth, is combined with the estimated covariance matrix from internal

sampling, CIS, via C = αCth + (1 − α)CIS, with 0 < α < 1. Although the

analytic covariance matrix is noise-free, it is usually not applied directly to the

analysis because it can be biased. The covariance matrix obtained from internal

sampling, on the other hand, is unbiased but noisy. The parameter α can be

optimally chosen such that the estimated covariance is non-singular and has

minimum variance with respect to the true covariance.
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1.6.3 MCMC

In a low dimensional parameter space, the posterior can be computed by a grid

search in the prior space. However, when the number of parameter increases,

the computation soon becomes order ND, where N is the number of samples

taken in each parameter and D is the dimension. In this case, the posterior can

be efficiently computed using the Monte-Carlo Markov-Chain (MCMC) sampling

method [162]. A commonly implemented MCMC algorithm is the Metropolis-

Hastings algorithm. This method works by starting at a random point in the

parameter space, a associated with a likelihood L0. The algorithm then takes a

random step ∆a to arrive at a new point with likelihood L. If L > L0, the new

point, or candidate sample, is kept; otherwise, it is rejected with some probability

p < 1 given by the probability density ratio between the new and the old points.

In this way, the chain will not be trapped at minima, allowing full exploration of

the parameter space. The process is then repeated, generating a chain of points in

the parameter space that eventually converges to the maximum likelihood value.

The determination of the step size ∆a is crucial to the efficiency of the algorithm:

steps that are too large can easily miss the minimum, while steps that are too

small take a very long time to converge. The function that is used to optimise the

step size is called the proposal function. Adjacent points in the MCMC chain are

correlated, and it is common to keep points between every other or more points.

The initial points of the chain are also also disregarded because they likely to

be biased. This process is often referred to as burn in. The convergence of the

MCMC chain can be tested via the Gelman-Rubin test [37], which assesses the

variance between different chains and within the chains.

Marginalisation can be done straightforwardly with MCMC, because it generates

a set of points in the parameter space with density ρ(x) proportional to the PDF.

Thus, marginalisation with respect to one parameter corresponds to summing

over all points spanning that dimension, i.e., ρ(x) =
∑

i ρ(x, yi). Pseudo-

marginalisation is sometimes applied, where instead of taking the full distribution

along a dimension, the maximum likelihood value is taken. For example, for two

parameters x and y, the pseudo-marginalised PDF of x is approximated to be

ρ(x) =

∫
ρ(x, y) dy ∝ ρ (x, ymax(x)) . (1.105)
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1.7 Thesis outline

The aim of this chapter is to present a coherent background in cosmology and

its current status. I have briefly introduced how General Relativity provides the

appropriate formalism (so far) to describe space and time in Section 1.1. I then

showed, in Section 1.2, that a simple cosmological model based on homogeneity

and isotropy provides a good description of the observable Universe on large

scales as well as the expansion history since the Big Bang. In Section 1.3, we

have seen how, by introducing small inhomogeneities into the early Universe,

structures can grow and evolve on linear and non-linear scales, and how this can

be measured statistically using large galaxy surveys. In Section 1.4, I briefly

mentioned a few main cosmological probes and their constraints on the ΛCDM

model. In Section 1.5, we saw that with the shrinking error bars on the parameter,

tensions have emerged. Whether this is due to systematic errors or new physics

is currently unresolved, although future experiments may provide more insight

into these issues. Finally, Section 1.6 briefly summarised statistical tools that are

commonly adopted for cosmological parameter inference.

My work presented in the rest of this thesis fits into the big picture by further

testing the theory of structure formation using galaxy survey data. The work

contains two major parts. In the first part, I tested the RSD method using

different density tracers represented by different types of galaxies and galaxy

groups. In the second part, I measured the secondary CMB anisotropies arising

from CMB lensing and ISW effect via their correlation with nearby galaxy density

fields. The thesis is thus organised in the following way. In Chapter 2 I will

present my work on measuring and modelling the group-galaxy cross-correlation

using the GAMA survey. In Chapter 3 I will discuss in detail the CMB lensing

and ISW effect, and how these are related to the galaxy density fields. To conduct

such analysis, I processed data from the DESI Legacy Survey in order to produce

galaxy density maps in four tomographic redshift bins. This is described in

Chapter 4. The results of the cosmological analysis are presented in Chapter 5

& 6: Chapter 5 shows the angular cross-correlation between the CMB and galaxy

density maps, and Chapter 6 shows the stacked CMB signal from superstructures.

Finally, in Chapter 7, I give closing remarks and discuss possible future works.
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Chapter 2

Group-galaxy cross-correlations in

GAMA

2.1 Introduction

The large-scale structure in the galaxy distribution has a long history of providing

cosmological information. The first constituents of the inhomogeneous galaxy

density field to be identified were the rich clusters, which today we see as marking

the sites of exceptionally massive haloes of dark matter. Further down the halo

mass spectrum, we find less rich groups of galaxies, and below them systems like

the Local Group that are dominated by a single L∗ galaxy. All these systems have

been familiar constituents of the Universe since the first telescopic explorations of

the sky, but it took rather longer to appreciate that they were connected as part

of the cosmic web of voids & filaments (see e.g. [206] for some selective history).

In part, the history here showed a complex interaction of theory and observation,

since redshift surveys through the 1980s lacked the depth and sampling to reveal

the cosmic web with complete clarity. For a period, it was therefore a question

of asking whether the real Universe displayed the same structures that were

predicted in numerical simulations of structure formation in the Cold Dark Matter

model [33]. But since those times, there has been an increasing confidence that

galaxy groups are indeed particularly extreme nonlinear points in the general

field of cosmic density fluctuations, and this makes them interesting in two ways.

First of all, groups are readily identified in galaxy surveys, providing a relatively

robust dataset; secondly, their nonlinear nature makes them an informative probe
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of theory. Modelling nonlinear behaviour is by its nature challenging compared

to linear theory, but by studying structure formation further into the nonlinear

regime, we have the chance to test the robustness of our cosmological conclusions.

Our specific aim in this direction is to use galaxy groups as a probe of the

cosmological peculiar velocity field. Such deviations from uniform expansion

must exist through continuity, and density concentrations such as groups should

be associated with an average infall velocity in regions surrounding the groups.

The amplitude of these velocities depends in part on the strength of gravity on

cosmological scales, and the peculiar velocity field has thus increasingly been

seen as a means of probing the nature of gravity and testing alternative theories.

Although it is possible to probe peculiar velocities directly using absolute distance

indicators, the most powerful tool has been Redshift-space distortions (RSD).

These arise inevitably in the study of the 3D galaxy distribution because the

distances to galaxies observed on the sky are inferred from their redshifts, z, via

the standard relation:

d(z) =

∫ z

0

c dz′

H(z′)
. (2.1)

As we have seen in Chapter 1, this equation does not give the true distances,

because Doppler shifts from the peculiar velocities modify the observed redshift:

1 + z → (1 + z)(1 + vr/c), where vr is the radial component of the peculiar

velocity. If we then use the observed redshift as if it were a true indicator of

distance, we obtain a distribution of galaxies in ‘redshift space’ – in which the

apparent properties of galaxy clustering are distorted in an anisotropic way.

As a recap, these distortions have a character that depends on scale: outside

of large density concentrations, galaxies fall coherently together under gravity;

while inside of haloes, the orbital velocities are effectively randomised. RSD due

to coherent flows in the linear regime were first studied by Kaiser [137]. The

growth factor f is defined by:

f ≡ ∂ ln δ

∂ ln a
' Ωm(z)0.55, (2.2)

where a is the expansion factor, and Ωm is the matter fraction; the approximation

for f(Ωm) only applies for flat ΛCDM models in standard gravity [152]. In Fourier

space, and in the small-angle limit of a distant observer, the matter power spectra

in redshift space and in real space are related by:

P s
m(k, µ) = P r

m(k) (1 + fµ2)2, (2.3)
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where µ is the cosine of the angle between the wave-vector k and the line of sight.

This simple equation was highly influential from its first appearance, as it offered

the chance of measuring Ωm from measuring the RSD anisotropy. But eventually

goals shifted as Ωm became very well determined from other routes (especially

the CMB). Following [107], the modern view is therefore to emphasise that the

growth rate for a given density is also proportional to the strength of gravity, so

that RSD can be used as a test of theories of gravity.

RSD has been measured using various surveys to constrain cosmological param-

eters. For example, it was measured in the 2dFGRS survey using the dispersion

model for the FOG [117, 211], and in the SDSS survey using the Gaussian

streaming model [9, 238]. For the GAMA survey, Loveday et al. [170] had

measured pair-wise velocity dispersion to small scales with different luminosity.

The above studies had focused on galaxy auto-correlations.

The difficulty of modelling RSD is that truly linear modes are rare. In observation,

large scales are affected by cosmic variance due to the finite survey volume.

McDonald & Seljak [177] proposed the use of multiple tracers to beat cosmic

variance, although in practice the improvement is slight because the tracer density

has to be high enough such that the signal is not shot-noise dominated. Using

multiple galaxy tracers to measure growth rate has been done in e.g. Mohammad

et al. [185], who used blue galaxies for their reduced non-linearities, and Blake

et al. [31], who used different galaxy subsamples in the GAMA survey. To gain

more information, one needs to probe smaller scales, where the effect of non-

linearity can systematically bias the results [319]. One of the solutions is to

use galaxy groups to probe the velocity field. Due to the small random virial

velocity at the group centre, the coherent large-scale infall velocities of groups are

dominant down to intermediate and small scales. The the group auto-correlation

would thus have negligible FOG, ideal for the extraction of linear growth rate

[184, 202]. In practice, the group catalogue in GAMA is sparse and measurements

of the auto-correlation will have high statistical noise. The cross-correlation

between groups and galaxies can thus effectively improve the statistical power

as well as reduce the non-linear pairwise velocities at small scales. The aim

of the work in this Chapter is to test the robustness of RSD methods in the

intermediate scales using multiple tracers. By cross-correlating galaxies of red

and blue types, and groups in different mass bins, we examine the consistency

of the inferred cosmological results between the subsamples. We briefly review a

few RSD models in Section 2.2, and apply the extension of the Hamilton model in
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configuration space proposed by Mohammad et al. [184] for the GAMA sample.

The GAMA data set and its mocks are detailed in Section 2.3 and 2.4 respectively,

followed by Section 2.5 where we introduce the statistics for measuring the 2-

point function in the data. In Section 2.6 we present 2D-correlation function

measurements for sub-samples. In Section 2.7 we discuss modelling for galaxy-

group cross-correlation: the model is validated in Section 2.7.1 with the GAMA

mocks, and we present the fitting of GAMA data in Section 2.7.2. Finally, the

work is summarised in Section 2.8.

2.2 RSD models

2.2.1 The streaming model

An alternative description of RSD to the linear Kaiser model (see Section 1.3.3)

is the streaming model [63, 214], based on the definition that the two point

correlation function is the excess probability of finding a pair of galaxies within

a radius r compared to Poisson distribution. The probability of finding a pair of

galaxies at two locations x1 and x2 in real space is

dP = n̄2[1 + ξ(r)]d3x1d
3x2, (2.4)

where n̄ is the mean number density of the galaxies. In redshift space, this is

modified by a velocity distribution, P(v), which affects the line of sight component

of the coordinate by shifting the coordinate y with y − µv12(r), where v12 is the

scale-dependent pairwise velocity. Denoting redshift space coordinates as s, the

probability of finding a pair is

dP = n̄2[1 + ξ(r)]P
(
rπ − y −

y

r
v12(r)

)
dy d3s1d

3s2. (2.5)

The redshift space coordinates and the real space coordinates are related in the

following way

s‖ = rπ = y + v12/aH, (2.6)

s⊥ = rp, (2.7)

r =
√
y2 + r2

p. (2.8)
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This gives the relation between redshift and real space two-point functions,

1 + ξs(sp, sπ) =

∫
[1 + ξ(r)]P

(
rπ − y −

y

r
v12(r)

)
dy. (2.9)

One then needs to specify the velocity distribution P .

It was pointed out by Fisher [85] that in order for this model to be consistent with

the Kaiser description in the linear regime, P(v) needs to be a joint Gaussian

distribution of both velocity and density. The mean pairwise velocity is the

weighted average of the velocity difference for each pair by density 〈(v− v′)(1 +

δ)(1 + δ′)〉, and the dispersion is given by the second moment of the velocity

〈viv′j〉. This is referred to as the Gaussian Streaming Model (GSM). In the linear

theory limit

1 + ξs(s‖, s⊥) =

∫
[1 + ξ(r)]

1√
2πσ2

−
exp− [rπ − y − (y/r)v12(r)]2

2σ2
−(r)

dy. (2.10)

The pairwise velocity and dispersion can be computed in terms of the real space

correlation function. The radial pairwise velocity v12(r) can be computed by

solving the pair conservation equation [214]. In linear theory, the mean pairwise

velocity is

v12(r) = −2

3
aHrfξ̄(r), (2.11)

where ξ̄ is the volume averaged correlation function given by Eq. 1.77. It is shown

in [135] that the the higher order correction to the pairwise velocity can be solved

by perturbation theory. To first order:

v12(r) = −2

3
aHrfξ̃(r)[1 + νξ̃(r)], (2.12)

where

ξ̃(r) =
ξ̄(r)

1 + ξ(r)
. (2.13)

This gives a better description of the mean velocity in N-body simulations. In

principle, ν is a function of the logarithmic slope of the (leading order) two point

correlation function, which can also depend on scale. Moreover, ν is more sensitive

to the transition scale between the linear and non-linear regime.

The scale-dependent velocity dispersion, σ(r) in the linear regime takes a more

complicated form (see Eq.15 of [85]). [214] suggests that the full form would

depend on the three point function. The extension of σ(r) into quasilinear scales
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is therefore non-trivial [183]. [268] adopted a halo model description, and showed

good consistency down to scales r ∼ 0.1h−1 Mpc with N-body simulations.

2.2.2 Non-linear scales

On small scales, the velocity due to virialised motion becomes large and the linear

assumption breaks down. This is shown clearly by the Finger of God (FOG) effect

[131] at small separations perpendicular to the line of sight in the correlation

function in Fig. 1.7. The small-scale pairwise velocity distribution from N-

body simulations shows deviation from Gaussian, and is closer to an exponential

distribution with no strong scale dependence [265]. Following this, [208] proposed

the dispersion model, where in Fourier space, the large k modes of the anisotropic

power spectrum in Eq. 1.72 is damped by a Lorentzian function D(kµ) =

1/(1 + k2µ2σ2
12/2), and σ12 is a scale-independent free parameter characterising

FOG only. In configuration space, this is equivalent to a convolution along the

line of sight rπ with the exponential distribution:

D̃(rπ) =
1√
2σ12

exp
(
−
√

2H0rπ/σ12

)
. (2.14)

Furthermore, it is common to replace the linear power spectrum in Eq. 1.72 by

the non-linear one because the transverse direction unaffected by RSD should be

exactly the same as in real-space1. It is discussed in [30] that this rather simple

model is actually among the best-performing models when fitting down to small

scales of order 10h−1 Mpc. The parameter σ12 may be inferred by adopting a

HOD analysis [118, 238, 248]

There are multiple challenges in extending the analytical model to the non-linear

regime from first principles. Nonlinearities alter the small scale shape of the

matter power spectrum and correlate the density and velocity fluctuations. Thus,

they can introduce systematic bias in the inferred cosmological parameters [319].

The difference between the matter field and haloes is explored in [269, 288, 303].

Accounting for these effect requires higher order expansion in Perturbation

Theory as well as the inclusion of the velocity spectrum, Pθ(k), and the density-

velocity cross spectrum, Pδθ(k) (e.g. [133, 283]). Galaxy bias can also be nonlinear

and stochastic on small scales [65]. Furthermore, the approximate velocity

dispersion in equation 2.14 fails to fit auto-correlation data on the smallest scales

1Assuming no significant wide angle effects.
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[258]. More elaborate velocity distributions are proposed by e.g., [28, 237, 317]

based on simulations. In [317], for example, the velocity profile is characterised

by a 7-parameter joint PDF, P (vr, vt|r), of the velocity along and perpendicular

to the line of sight of the satellite galaxies with respect to the cluster centre.

2.2.3 Cross-correlation in redshift space

Linear model

The Hamilton model was extended to cross-correlation by Mohammad et al. [184].

Consider cross-correlation between groups and galaxies with galaxy bias denoted

by bgal and group bias by bgrp. It is also useful to define the relative bias, b12:

b12 ≡ bgal/bgrp. (2.15)

The cross power spectrum in redshift space is

P s
c (k, µ) = bgalbgrp(1 + βgalµ

2)(1 + b12βgalµ
2)P r(k), (2.16)

where βgal = f/bgal. In configuration space, equations 1.74 – 1.76 are modified to

ξ0,c(r) =
(

1 +
1

3
βgal(1 + b12) +

1

5
β2

galb12

)
ξc(r), (2.17)

ξ2,c(r) =
(2

3
βgal(1 + b12) +

4

7
β2

galb12

)
[ξc(r)− ξ̄c(r)], (2.18)

ξ4,c(r) =
8

35
β2

galb12

[
ξc(r) +

5

2
ξ̄c(r)−

7

2
¯̄ξc(r)

]
, (2.19)

where ξc(r) =
(
b2

gal/b12

)
ξ(r) and similarly for ξ̄c and ¯̄ξc.

The FOG term in the cross-correlation would be a convolution of the two velocity

dispersions. In case of a Gaussian dispersion, the velocity dispersion would be

σ2
12 = σ2

gal + σ2
grp. In case of the galaxy groups, we expect the dispersion to be

small, given that the group centre would correspond to the halo centre. In that

case, the total dispersion term would be close to that of galaxies. This model is

applied to the analysis in Section 2.7.
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One-halo and two-halo decomposition

A simple extension to the linear model is by separating the correlation function

into two components: the 1-halo term and the 2-halo term (e.g., [268]). The 2-halo

term takes the same form as the usual linear (or quasi-linear) RSD model, whereas

the 1-halo term is given by the halo model. The 1-halo term can be approximated

by a power law ξ1h = (r0/r)
α or take the NFW profile ξ1h = α/x(1 + x)2, where

x = r/r0. The FOG is modelled separately for each term, using exponential

profiles with velocity dispersion σ1h and σlin respectively. The model takes the

form:

ξsc = ξ1h(r |α, r0) ∗D(σ1h) +
b2

gal

b12

ξslin(r, µ) ∗D(σlin). (2.20)

Compared to the linear model, this 1- and 2-halo decomposition contains three

extra parameters α, r0, and σ1h. The extra degrees of freedom could thus

improve the model fitting at smaller scales. These 1-halo term parameters can

be constrained by fitting the projected cross-correlation function. In this model,

it has the form

wp(rp) =
b2

gal

b12

∫ [(r0

r

)α
+ ξlin(r)

]
drπ, (2.21)

where r2 = r2
p + r2

π.

2.3 The Galaxy And Mass Assembly (GAMA)

Survey

The Galaxy And Mass Assembly (GAMA DR2) spectroscopic survey [168],

conducted by the Anglo-Australian Telescope, contains around 300,000 galaxies

in five survey fields, with most galaxies concentrated at z ∼ 0.2. The three

main fields near the equator: G09, G12, and G15 are used here, each covering

an area of 12× 5 deg2. The survey has an extinction-corrected r-band flux limit

of r < 19.8. The overall redshift completeness of the equatorial region is 98.5%

above the magnitude limit. This high completeness, thanks to repeated visits of

each target in GAMA, is greatly advantageous for small scale galaxy and group

studies compared to much larger surveys such as BOSS: fibre collision can lead to

undercounts of close galaxy pairs and bias the measured galaxy 2-point correlation

function [104]. Fig. 2.1 shows the survey geometry of the three GAMA main fields

overlapped with a few other galaxy surveys.
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Figure 2.1 The pencil beam of the three main fields, G09, G12, and G15 of the
GAMA survey. The upper panel shows the RA and Dec of the three
fields in black, and the lower panel shows the radial depth of the field
in terms of redshift and lookback time. The figure is adopted from
Driver et al. [70].
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Galaxies are selected with the following criteria: redshift quality nQ ≥ 3, angular

completeness mask > 80%, and visual classification VIS CLASS = 0, 1, 255. The

random catalogue is generated by [82] from the actual GAMA galaxy catalogue

using a modified method following [52]. The idea of this method is to clone each

galaxy n times and distribute them randomly within the maximum volume Vmax

that the galaxy can be observed given the survey magnitude limits,

n = nclones
Vmax

Vmax,dc

, (2.22)

where nclones = 400 is the total number of randoms divided by data, and Vmax,dc is

the maximum volume weighted by overdensity ∆(z). This method is iterated until

∆(z) converges, and the redshift distribution of the resultant random catalogue

is smooth without large scale features (see Fig. 4 in [82]).

The official GAMA group catalogue (G3C) is constructed by Robotham et al.

[245]. Most of the groups are found within z . 0.35 (see Fig. 16 in [245]), thus

we impose a redshift cut 0.1 < z < 0.3 for the groups. The group catalogue is

derived using an anisotropic friends-of-friends (FoF) algorithm. The idea is to

link galaxies together if their separation is smaller than the linking length `FoF

that is related to the local overdensity. This linking length is defined separately

for the radial direction and the projected plane: the `FoF along the line of sight

is much larger than the transverse direction, accounting for the effect of galaxy

peculiar velocities (see an illustration in Fig. 2.2). The choice of `FoF is crucial for

groups found because a single group can be split into a few if `FoF is too small,

while several groups can merge if `FoF is too large. Thus, the free parameters

involved in determining `FoF are adjusted against an N -body mock catalogue

before they are applied to the actual data. To have consistently defined groups

in the GAMA mocks (see Section 2.4), we do not use the official G3C catalogue.

Instead, we apply a similar FoF group finder algorithm by Treyer et al. [290]

to both data and mocks. This algorithm has also been applied to GAMA and

other datasets [147, 172]. The main difference between the two algorithms is

the parameterisation of the two linking lengths, and a detailed description of the

algorithm and assessment of the group reconstruction quality can be found in the

Appendix of [290].

The redshift distribution of the galaxies and groups in the GAMA survey is

shown in Fig. 2.3. In addition to the above selections, we further split galaxies

and groups into subsamples. The number of selected galaxies and groups in each
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Figure 2.2 A schematic diagram of the Friends-of-friends (FoF) algorithm
applied to GAMA galaxies in order to construct the group catalogue.
The figure is adopted from Robotham et al. [245].
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Figure 2.3 Redshift distribution of the GAMA galaxies and groups. This work
uses the redshift range 0.1 < z < 0.3.

Table 2.1 Number of selected galaxies and groups from GAMA fields with
redshifts 0.1 < z < 0.3 and flux limit r < 19.8. Galaxies are split
into red and blue subsamples, and groups are split into three stellar
mass bins by 40%, 50%, and 10% by mass ranking from low to high.

Number of G09 G12 G15
Galaxies Blue 17,335 18,719 19,053

Red 20,584 22,155 21,141
Total 37,919 40,874 40,194

Groups LM 1,877 2,084 2,054
MM 2,347 2,606 2,569
HM 470 522 514
Total 4,694 5,212 5,137

GAMA field and for each subsample is summarised in Table 2.1. We describe the

selection in more detail below.

2.3.1 Galaxy colours: the red sequence and the blue cloud

In section 1.3.5, it is briefly mentioned that galaxy clustering is different for

red and blue galaxies, and it can be qualitatively explained by their association

with the dark matter haloes attributed to galaxy formation and evolution. The

bimodality in galaxy colour and magnitude distribution is well known. It is found

that galaxies are mainly concentrated in two regions in the colour-magnitude

plane: there is a high luminosity ‘red sequence’ and a lower luminosity ‘blue

cloud’. The galaxies in between are often referred to as the ‘green valley’.
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Galaxy colours are closely associated with the age and star formation history

of the galaxy. The luminous red galaxies tend to be older, with little or no star

formation going on, while the less luminous, blue galaxies generally are younger

with active star formation. It is also observed that the red population is rather

tightly confined in colour, whereas the blue cloud has a much bigger spread. This

trend can be explained by noting that the colour of old stellar populations do

not change much with their age. The spread of colour in the blue cloud, on the

other hand, suggests a range of stellar ages and different stages of star formation

activities.

It is then interesting to split the GAMA galaxies into two tracer samples: red

and blue, and study their two-point clustering with galaxy groups. To obtain

the galaxy colours, we use the extinction corrected SDSS magnitudes from the

TilingCatv46 DMU (Database Migration Assistant for Unicode). It is, however,

non-trivial to separate the two populations from a continuous distribution in

colour and magnitude, and elaborate approaches have been discussed in e.g. [286].

For the purpose of this study, we adopt a simple quadratic cut in the apparent

g − i colour versus redshift plane:

g − i = 6.220z2 + 1.383z + 0.831. (2.23)

The specific form of the cut comes from matching the red and blue fraction at

each redshift of GAMA data with the mocks, which is discussed in Section 2.4.

The upper panel of Fig. 2.4 shows the bimodal distribution in g− i colour and z

for the GAMA data and the cut. The overall fraction of the red or blue galaxies

is very close to 0.5, and it changes slightly with redshift: at the low redshift end,

the red and blue fractions are similar, while towards higher redshifts, the fraction

of red galaxies increases mildly until z ∼ 0.2, and the difference in red and blue

fraction becomes small at z ∼ 0.3. We create random catalogues for the red and

blue galaxy subsamples with matched redshift distribution.

2.3.2 Galaxy groups

Galaxy groups are assemblies of galaxies that are spatially close to each other, as

we have seen in the group finding algorithm, and are tracers for density peaks.

Compared to galaxy clusters, which typically have N & 50 members per cluster,

groups have fewer members and therefore probe lower mass haloes.
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Groups are accepted with group members ≥ 2, and the centre of the group is

determined by the most (more) massive member in stellar mass. The 2-member

systems make up 66% of the total groups in the GAMA data, but are likely to have

poor fidelity. Thus, we emphasise that having the same group finder algorithm

for the data and mocks is vital for these low-fidelity groups to be comparable.

There are several approaches for determining the group centre. The simplest

choice is to select the most massive member to be the central galaxy, and assume

that it overlaps with the halo centre. Other approaches include determining

a weighted centre by averaging over the positions of the group members, or

iteratively excluding members that are most distantly separated (see e.g. [245]).

The iterative centres are used in the G3C catalogue, and it is shown in [245] that

the agreement with using the brightest group galaxy (BCG) as group centre is 95%

for groups with N ≥ 5, and for 2 ≤ N ≤ 4, both BCG and iterative centres give

highly consistent results compared with the mock, and the BCG centres are only

degraded by about 3% compared to the iterative centres. The effects of different

group centre choices on the group-galaxy cross-correlation concern mainly the

1-halo regime at r ≤ 1h−1 Mpc, and the correlation functions converge on larger

scales [308].

The halo mass of GAMA groups is found to be tightly correlated with the group

total luminosity in Han et al. [113], where they used maximum-likelihood weak-

lensing analysis to determine the mass distribution of the GAMA groups with

background SDSS photometric galaxies. The halo mass of groups is related to

the r-band luminosity via:

Mh = Mp

(
Lgrp

L0

)α
, (2.24)

where

L0 = 2× 1011h−2L�,

log10(Mp/h
−1M�) = 13.48− 0.08± 0.12,

α = 1.08 + 0.01± 0.22.

In the expression of Mp and α, the three numbers refer for the best-fit value, bias,

and the error. The luminosity is computed from the apparent r-band magnitude:

−2.5 log(L/L�) = m−K(z)− 5 log(dL)− 25−M�, (2.25)

where K(z) the k-correction up to z = 0 (kcorr z00), dL is the luminosity
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distance, and M� = 4.67 is the r-band absolute magnitude of the sun. The

luminosity distance is expressed with unit h−1 Mpc so that the luminosity is

expressed with unit h−2L�. The total luminosity of the group is computed in

[245] by

LFoF = BLob

∫ −14

−30
10−0.4MrφGAMA(Mr) dMr∫Mr−lim

−30
10−0.4MrφGAMA(Mr) dMr

, (2.26)

where Lob is the total observed luminosity in rAB band, B = 1.04 is the correction

for median unbiased mean estimate for N ≥ 5 groups, and Mr−lim is the absolute

magnitude limit of the group depending on the redshift z. φGAMA is the luminosity

function defined in [245]. The luminosity function at the faint end for GAMA

galaxies is well approximated by φ ∝ L−1 exp(−L/L∗) [169]. Thus, we apply a

redshift-dependent correction factor β(z) = exp(z2/z2
∗) with z∗ = 0.33 to each

group instead, where z is the mean redshift of the group members. This correction

factor has been checked using the G3C groups to produce a consistent total

luminosity as TotFluxProxy.

The total stellar mass is another proxy for the total group mass. We use the

StellarMasses DMU from Taylor et al. [285], where stellar population synthesis

is used to model the optical photometry of the GAMA galaxies. Because the

modelling uses rest frame luminosities, which depends on distance, the stellar

mass is expressed in units of h−2M�
2. Furthermore, for each group, we correct the

total stellar mass by the same redshift dependent factor as the total luminosity.

The calibration of the total stellar mass and the halo mass from weak lensing of

the GAMA groups is shown in Fig. 2.5 for the official G3C groups (dashed line)

and the group catalogue used in this work (solid line). The contours show 95%,

50%, and 20% of the total sample, and are highly consistent between the two

group catalogues. We choose to divide groups into three stellar mass bins based

on percentiles: the Low Mass (LM) bin consists of the least massive 40% groups,

the Medium Mass (MM) bin corresponds to the middle 50%, and the High Mass

(HM) bin contains the most massive 10%. The signal-to-noise of from high mass

haloes is expected to be high, despite the low number in the HM bin.

2Notice that this is only approximately true, because the stellar mass to light ratio, M/L,
which is used obtain the stellar mass, depends on age and is therefore specific to the choice of
h. The stellar mass used here assumes h = 0.72.
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Figure 2.5 Upper panel: Correlation between the total stellar mass, corrected by
a factor exp(z2/z2

∗) and the halo mass from the calibration from [113]
for the GAMA groups with two or more members between redshifts
0.1 < z < 0.3. The contours denote 95%, 50%, and 20% of the
total sample. The solid lines show the groups used in this work
using the group finder algorithm in [290], and the dashed lines show
the the official G3C groups [245]. Lower panel: The same relation
for the mock catalogue. In this case, Mh is not estimated from the
luminosity, but directly taken as the arithmetic mean host halo mass
of the group member. The difference in the distribution indicates
that such estimator is not very reliable.
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2.4 The GAMA mock catalogue

There are two reasons for including mock catalogues: (1) to validate the

RSD models and assess the bias on the recovered growth rate, and (2)

to quantify the impact of cosmic variance via the construction of covari-

ance matrices. We used 26 realisations of a lightcone mock catalogue based

on the GALFORM semi-analytical galaxy formation [97]. The catalogue

exploits the Millennium Simulation with WMAP7 cosmology [105]: σ8 =

0.81, Ωm = 0.27, h = 0.70, and ns = 0.967. These mocks are queried

from the table GAMA v1...LC multi Gonzalez2014a from the Durham hosted

Virgo–Millennium Database1 [161]. For more details of the mock catalogue, see

[82]. By Eq. 1.51, the fiducial value of growth rate at the mean redshift of the

mocks, z = 0.195, is ffid = 0.593. The lightcone is constructed using the methods

in Merson et al. [179], where, given an observer, the galaxy is placed at the epoch

where it first enters the past lightcone of the observer. The galaxy trajectories

are interpolated between snapshots. Each mock covers the five GAMA fields with

the SDSS r-band apparent magnitude SDSS r obs app < 21, and z < 0.9.

We use galaxies in the G09, G12, and G15 fields and apply the same selection in

redshifts 0.1 < z < 0.3 and the apparent r-band magnitude cut SDSS r obs app <

19.8. We also apply the same survey mask generated using the random catalogue.

The masked areas are obtained by binning random galaxies in each field with an

average of ∼ 2000 counts in each bin. Pixels with counts smaller than five times

the Poisson noise are masked. The total masked area in the three fields is about

0.14 deg2. Because the mock redshift distribution is not matched exactly with

GAMA data and random (see Fig. 2.6), we create a random catalogue for these

mocks by down-sampling the random catalogue for the GAMA data, such that

the n(z) matches the mean of 25 mocks.

2.4.1 Matched galaxy colour subsample

The red and blue subsamples for the mean of the mocks are separated by the

empirical line given by

g − i = 0.46 + 3.2z, (2.27)

as shown in the lower panel of Fig. 2.4. The line is chosen to go through the

green valley of the mock galaxy g − i colour. The GAMA galaxies have a

73



0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.275 0.300
z

2000

2500

3000

3500

4000

4500

5000

C
ou

nt
s

Random (scaled)
GAMA
Mock mean

Figure 2.6 The mean redshift distribution of the 25 GAMA mocks (square)
is offset from that of the random sample (dotted line). A
random catalogue is created for the mocks to have matched redshift
distribution as the mock mean. The redshift distribution of the
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more concentrated red sequence overlapping with an extended blue population,

without a distinct green valley in between. On the contrary, the mocks have

a broader red population which is well separated from the blue population by

a green valley. Since the mock catalogues have more distinctive separation for

the two populations, we find the corresponding colour cut in the GAMA data

by matching red and blue fractions in the two catalogues for 20 redshift bins in

0.1 < z < 0.3. The cut is smoothed by fitting a second order polynomial, as

shown in the upper panel of Fig. 2.4.

The contamination of the red and blue sub-samples in the GAMA data resulting

from the colour cut is quantified in the following way: for each redshift bin, the

red and blue sub-samples are fitted by a double Gaussian. It is a reasonable

fit except for the green valley in the mocks, as shown in Fig. 2.7. Given

a colour cut, the contamination of the red sub-sample is defined as the area

under the blue Gaussian over the area under the red Gaussian, and similarly

for the contamination of the blue sub-sample. Clearly, GAMA data contain

a contaminated red sample and a pure blue sample. Therefore, we create a

contaminated red sub-sample using the mock catalogues by placing the mock

colour cut such that extra blue galaxies are included with the same level of

contamination as GAMA data. The contaminated red cut in the mocks (see
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Fig. 2.4) is smoothed by fitting a quadratic polynomial of the form

g − i = 2.43z2 + 1.55z + 0.388. (2.28)

2.4.2 Mock group catalogue

For mock groups, the stellar mass is computed by the sum of diskstellarmass

and bulgemass of all group members, and corrected by the same redshift-

dependent factor as the data. We do not estimate the group halo mass from

the same mass-luminosity relation in Eq. 2.24. Instead, we use the host halo

mass of the mock galaxy directly. Because some haloes contain more than one

galaxy, for each group, we test the largest, the arithmetic mean, and the median

halo mass of the group member, and find that they give similar results. We also

test using the sum of unique host haloes in the group. This increases the total

group halo mass in the lower mass end, but does not affect the higher mass end.

The stellar-halo mass relation of the groups using the total stellar mass and the

arithmetic mean host halo mass of the group members is shown in the lower panel

of Fig. 2.5. It is clear that the the mocks show a much large scatter in the Mh−M∗
plane and the slope is smaller compared to data, i.e., at fixed stellar mass, the

halo mass is larger. The total stellar mass of the mock groups are also smaller

by about 0.5 dex compared to data. The clear difference between data and the

mocks shows that estimating the halo mass from luminosity using Eq. 2.24 is not

very reliable. The luminosity is itself strongly correlated with stellar mass via

the luminosity-mass relation, thus the upper panel of Fig. 2.5 does not show the

true scatter of Mh at fixed M∗ faithfully (or vice versa).

The comparison between the group and the halo catalogue also reveals interesting

information. Across the mock realisations, the number of groups with two or

more members is of order 1.4× 104, and that of haloes is of order 8× 103. Haloes

containing one galaxy only are concentrated towards low Mh and low M∗, whereas

haloes containing two or more members have a minimum log(Mh/h
−1M�) ∼ 11.5.

Therefore, the extended lower mass end in the lower panel of Fig. 2.5 shows that

galaxies from different low mass haloes are identified in the same group. At

the high halo mass end, the excess of small stellar mass groups indicates that

the group finder breaks a small number of haloes with multiple galaxies into

several smaller groups. This observation again emphasises the importance of
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using a consistent group finder algorithm between the GAMA data and the mock

catalogues. The mock group catalogues are separated into three stellar mass bins

based on the 40%, 50%, and 10% percentiles as the data.

2.5 Measuring statistics

We measure the 2-point correlation function ξ of the groups and galaxies. For

two objects located at s1, s2, the line of sight is defined as l = (s1 + s2)/2. Their

separation is given by s = s1 − s2. The correlation function is then measured in

bins of the separation parallel and perpendicular to the line of sight:

π =
s · l
|l|

, rp =
√
s2 − π2. (2.29)

As mentioned above, the survey mask and redshift distribution n(z) are captured

by the random catalogue. For the red and blue subsamples, the random

n(z) is adjusted by the smoothed, redshift-dependent red and blue fraction

respectively. The group subsamples also have different n(z), with lower mass

groups concentrating at lower redshifts, and higher mass groups dominating at

higher redshifts. We do not try to fit their redshift distribution due to their small

sample sizes. Thus, the standard Landy-Szalay estimator, which requires random

catalogues for both groups and galaxies, is not applicable here. Instead, we use

the Davis-Peebles estimator:

ξ̂(rp, π) =
D1D2

D1R2

− 1, (2.30)

where subscript 1 denotes groups and 2 denotes galaxies in the above case.

To break the degeneracy of galaxy and group biases, we also measure the 2-point

function for the galaxy subsamples. In this case, we use the standard Landy-

Szalay estimator:

ξ̂(rp, π) =
DD −DR− 2DR

RR
. (2.31)

Although the latter is better at suppressing statistical noise, the two estimators

make negligible difference for our sample. Throughout the analysis, the size of

random galaxies used is 20 times that of data. The 2D correlation functions

are measured with a bin width of 1h−1 Mpc in both rp and π. We take |rp| <
40h−1 Mpc, where both positive and negative rp are counted in the same bin,
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because ξ is symmetric around the transverse direction. Along the line of sight, we

do not assume symmetry and take π = [−40, 40]h−1 Mpc instead, where positive

and negative π are counted in different bins. It is interesting to check the line of

sight symmetry because, as mentioned briefly in Section 1.3.3, additional effects

such as gravitational redshift could give rise to a non-vanishing dipole in the

cross-correlation function, leading to an asymmetry in the π direction.

For the convenience of model fitting, the information in the 2D correlation

function is then compressed into the projected correlation function wp with

integral limits of ±πmax:

wp(rp) =

∫ πmax

−πmax

ξ(rp, π)dπ, (2.32)

and multipoles ξ0 and ξ2:

ξ`(r) =
2`+ 1

2

∫ 1

−1

ξ(r, µ)P`(µ) dµ, ` = 0, 2, (2.33)

where µ = π/|s|. We ignore ξ4 because it is more sensitive to non-linearity.

For the integral limit in Eq. 1.56, πmax = 40h−1 Mpc, the wp is only weakly

dependent on RSD parameters. The multipoles are computed by interpolating

the 2D correlation function, and this is done consistently for both measurements

and the model.

2.5.1 Likelihoods

The constraints of model parameters are computed using Bayesian likelihoods.

The probability distribution of a set of parameters θ given the data D is

P (θ|D) =
P (D|θ)P (θ)

P (D)
, (2.34)

where P (D|θ) is proportional the likelihood L, P (θ) is the prior distribution of

the parameters, and P (D) is treated as a normalisation. The covariance matrix

is only weakly dependent on model parameters, allowing the approximation L ∝
exp(−χ2/2), where the χ2 is defined as

χ2 =
m∑
i,j

[x(ri)− y(ri)]C
−1
ij [x(rj)− y(rj)] (2.35)
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for a data vector x(r) and a model vector y(r) with m bins in separation r. Cij is

the covariance matrix. The degree of freedom of χ2-fitting is given by dof = m−p,
where p is the number of parameters. For each subsample (e.g. LM-red), the data

and mock vector includes both the group-galaxy cross-correlation and the auto-

correlation of the corresponding galaxy subsample. We use the python package

emcee3 to explore the parameter space with uniform priors.

For N independent mock realisations, the estimator for the covariance matrix is

Ĉij =
1

N − 1

N∑
k=1

[xk(ri)− 〈x(ri)〉][xk(rj)− 〈x(rj)〉]. (2.36)

The dimension of the covariance matrix needs to be smaller than N in order for it

to be invertible [284]. This justifies the compression of the 2D-correlation function

into wp and multipoles. Due to the small number of mocks, we apply Jackknife

re-sampling on the mocks by dividing each survey field 18 sub-regions, giving a

total of NJ = 54 Jackknife samples for each mock. The covariance matrix for

each mock sample is estimated using equation 2.36, with an extra factor (NJ −1)

to account for correlations between Jackknife samples. We then average over the

covariance matrices of the 25 mocks to obtain the final covariance matrix. It is

pointed out in Escoffier et al. [78] that this method can reduce the noise on the

covariance estimation, and fast approach the truth. However, it should be noted

that these mocks are not completely independent, since they are constructed

from the same simulation [97]. We compare the mean Jackknife errors with the

scatters between mock realisations and find that they are consistent, with the only

exception of the cross-correlations with blue samples, where the mean Jackknife

error is smaller than the scatter between mocks by about 10%, especially at scales

r < 10h−1 Mpc. The covariance matrix is computed for each of the correlation

configurations.

2.6 Cross-correlation measurements

In the following analysis, we will refer to the group subsamples as LM (low mass

bin), MM (medium mass bin), and HM (high mass bin), and the cross-correlation

between subsamples as e.g., LM-Red for low mass group cross-correlated with red

galaxy subsamples. We measure the cross-correlation of all groups and galaxies

3http://dfm.io/emcee/current/
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Figure 2.8 2D group-galaxy cross-correlation with all galaxies and groups (top
left), auto-correlation of all galaxies (top right), auto-correlation
of red galaxies (bottom left), and auto-correlation of blue galaxies
(bottom right) measured in GAMA (black solid lines) and the
mean of mocks (blue dashed lines). The contour levels are ξ =
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show the contaminated red galaxy subsample in the mocks. The bin
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(denoted as All), and those between the three group and two galaxy subsamples.

In addition, we also measure the galaxy auto-correlations for all, red, and blue

galaxies. This allows us to fit cross-correlation with the corresponding galaxy

auto-correlation simultaneously to break the degeneracy between bgal and b12. We

do not measure the auto-correlation for groups because it is tricky to construct

randoms that match the group catalogue; the cross-correlation conveniently

avoids this issue.

The measured 2D auto- and cross-correlations from GAMA and the mean of the

mocks are shown in Fig. 2.8 and Fig. 2.9. For subsamples involving red galaxies,

the mock results from the contaminated red sample is also shown in dotted purple

contours. The effect of including bluer galaxies in the red subsample reduces the

galaxy bias and the FOG slightly, resulting in a better agreement with data in

the Red auto case. The agreement between data and the mocks in each of these

measurement is well down to small scales (. 15h−1 Mpc). The only exception

is with the blue galaxy auto-correlation, where the mock results seem to give a

slightly smaller galaxy bias and the FOG. On larger scales, the agreement is not so

well possibly due to the large noise – there are fewer pairs on larger scales. Cosmic

variance also affects these large scales. In particular, the cross-correlation with

low mass groups (LM-Red and LM-Blue in Fig. 2.9) is excessive on these scales,

even higher than the MM and HM subsamples and resulting in poor agreement

between the data and mocks for ξ . 0.5. This is also reflected in the projected

correlation functions wp as we shall see later on. This could be due to cosmic

variance: there happen to be a spike in the distribution of GAMA galaxies at

0.1 < z < 0.2, where the low mass groups are concentrated. It could give rise to a

mismatch in the n(z) of GAMA with its random catalogue. After inspecting each

mock realisation, we believe that this signal is consistent with cosmic variance.

The upper panels in Fig. 2.8 show the group-galaxy cross-correlation and the

galaxy auto-correlation for the full sample, and while the cross-correlation has a

slightly higher amplitude, they show very similar trend. The lower panels in the

same figure shows the auto-correlations for the red and blue galaxy subsamples,

and their differences can be seen clearly. On large scales, the correlation function

is amplified for the red galaxies compared to the blue galaxies, yielding a larger

galaxy bias. This implies that red galaxies are preferentially associated with

massive haloes (e.g. [106]). On small scales, the FOG effect is more dominant in

the red galaxies than blue galaxies, showing a stronger non-linearity in the red

subsample. This is consistent with the observation that red galaxies are likely to

82



be satellites while blue galaxies are likely centrals.

Fig. 2.9 shows the cross-correlations between the group and galaxy subsamples.

The left and right panels show those involving red and blue galaxies, and

the difference between the two shows a similar trend as observed in the auto-

correlation case. The panels from top to bottom show low mass, medium mass,

and high mass groups. The amplitude of the correlation function on large scales

and the FOG on small scales increases significantly with increasing group mass.

This is expected because larger groups are likely found in higher density peaks,

and are strongly clustered with a higher bias. The virial velocities of galaxies on

small scales are also expected to be larger for larger groups, thus the strongly

increasing FOG with group mass.

Fig. 2.10 shows the projected correlation function wp (red), the monopole ξ0

(blue), and the quadrupole ξ2 (orange) for data (solid circles) and the mean of

mocks (open circles). For demonstration purposes, we have multiplied rp to the

projected correlation function, and r2 to the multipoles. The cross-correlation

is shown on the panel below its corresponding galaxy auto-correlation for each

subsample. The error bars on the data points are adopted from the averaged

Jackknife errors from the mocks. As we have seen from the 2D correlation

functions, the data and mocks match closely in most cases, especially on small

scales with r . 10h−1 Mpc. On scales r & 15h−1 Mpc the quadrupole of data

becomes larger than the mocks, and a rise in wp and monopole can also be seen at

r & 20h−1 Mpc, but the size of the errors suggests no clear deviation of the data

from the mocks. There is a more obvious difference in wp between the data and

mock in the LM cases, also seen clearly in the top panels in Fig. 2.9. Given that

the data points are strongly correlated, such difference is also not statistically

significant.

2.7 Model fitting

We adopt the linear RSD model in [184] with a non-linear power spectrum

generated by Halofit [276, 282]. We test a set of minimum fitting scales,

rmin = 2, 5, 10, 15, 20h−1 Mpc. We also include an extra parameter, the integral

constraint I, which is a small constant added to the 2D correlation function. It

accounts for the missing power from modes with wavelengths longer than the

survey scale. The non-linear power spectrum is taken at z = 0.195 with σ8 fixed
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Table 2.2 Range of the uniform priors of the RSD fitting parameters. For
growth rate, the usual constraint from RSD is fσ8, but we fix σ8 =
0.81 in this analysis.

Parameter Range
bgal [0.1, 2.5]
b12 [0.1, 2.5]
f [0, 2]
σa [km/s] [100, 800]
σc [km/s] [100, 800]
Ia [0, 0.1]
Ic [0, 0.1]

to the mock fiducial value 0.81. Although the shape of the non-linear power

spectrum at large k is sensitive to σ8, this dependence is weak for the analysis

here. Thus, we treat σ8 as an overall factor completely degenerate with the linear

biases. Fitting the auto- and cross-correlations together, there are in total seven

free parameters, namely bgal, b12, f , σa, σc, Ia and Ic. Due to the bin size in

the 2D correlation function, the model is insensitive to dispersions smaller than

100 kms−1. For the GAMA data, we run MCMC at the optimum minimum scale

for each subsample determined from mocks with uniform priors. The prior range

is shown in Table 2.2.

2.7.1 Fitting Mocks

We test the model on each mock realisation using wp, ξ0, and ξ2 shown in Fig. 2.10.

For each subsample, the galaxy auto-correlation (shown in the rows labeled with

‘Auto’ ) and the group-galaxy cross-correlation (shown in the rows labeled with

‘Cross’) are fitted simultaneously. For example, on the third row of Fig. 2.10, the

data points in each column show the same measured red galaxy auto-correlation,

but the best-fit models can be sightly different from simultaneously fitting the

cross-correlation in each column in the fourth row. The model (dashed lines)

provides a good fit for the mocks in most cases, and except for those cases

involving red galaxies, the fits are reasonable even down to r < rmin. Fig. 2.11

shows the constraints on the model parameters by taking the mean and the

standard deviation of the best-fit parameters from the mocks. The All sample

is shown in black circles, subsamples using LM, MM, and HM groups are shown

in square, triangle, and star markers, and subsamples involving red and blue

galaxies are shown in their respective colours. We also include the contaminated
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Figure 2.10 The projected correlation wp, the monopole ξ0, and the quadrupole
ξ2 of the seven sub-samples All, LMred, MMred, HMred, LMblue,
MMblue, HMblue measured from GAMA and the mean of the
mocks, as well as their best-fit models. The wp, ξ0, ξ2 are multiplied
by powers of r to amplify the dynamics on large scales. For each
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data are shown in filled circles with error bars, and the mock means
are shown in open circles. The solid and dashed lines are best-fit
models to the data and the mean of the mocks using the linear
model. All sub-samples involving blue galaxies, as well as the All
case, are fitted with rmin = 10h−1 Mpc, the LMred case fitted with
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red galaxy subsample here, labelled by ‘Red*’. The specific values of the best-fit

parameters and its 1σ errors are summarised in Tab. 2.3.

The top panel of Fig. 2.11 shows the constraints on the growth rate f . The

fiducial value with ±10% error is marked in the grey band. As expected, in all

cases the model recovers the fiducial growth rate at rmin ≥ 15h−1 Mpc, but the

fitting including small scales (rmin ≤ 5h−1 Mpc) are significantly biased. The

overall growth rate seems to be under-estimated by about 5 − 10%, but this is

much smaller than the statistical error. This means that the linear assumption

is recovered at these scales and the measurement of f is consistent from different

biased tracers. Comparison between the red and blue galaxy subsamples reveals

that cross-correlation with blue galaxies recovers the growth factor f better

than red galaxies. For the blue-galaxy cases, f is over-estimated at smallest

rmin = 2h−1 Mpc, but with rmin ≥ 10h−1 Mpc it is measured within 10% of the

fiducial value. For the MM-Red and HMred cases, the measured f is only within

10% of the fiducial value at rmin = 20h−1 Mpc, while for the LM-Red case this

is rmin = 15h−1 Mpc. The contaminated red galaxy sample gives less biased

measurements of f at small scales, and converges with the pure red sample at

rmin ≥ 15h−1 Mpc. This confirms that blue galaxies show smaller non-linearity

compared to red galaxies.

The second and the third panels show the group and galaxy biases, bgrp and

bgal. We see that this is determined consistently between different subsamples at

rmin ≥ 10h−1 Mpc. As observed in the 2D correlation functions, the group bias

increases with higher group masses, and the red galaxies have a larger galaxy bias

compared to the blue galaxies. The consistency between different subsamples and

the convergence of the bias values as a function of rmin at sufficiently large scales

indicate that linear bias model is a good approximation. The contaminated red

galaxy sample shows a smaller galaxy bias here, due to the mixing with blue

galaxies. The last two panels show the velocity dispersion, which determines the

extent of the FOG convolution, in the auto- and cross-correlations. The results

indicate an average velocity dispersion of ∼ 300 kms−1, consistent across different

subsamples. There is a slight hint that σa is larger for the red galaxies compared to

the blue galaxies, but it is not statistically significant. Beyond rmin = 10h−1 Mpc,

the uncertainty in the measured σa and σc increases rapidly as the model becomes

insensitive to the dispersion on large scales.

From this test, we choose to adopt rmin = 10h−1 Mpc for all subsamples

involving blue galaxies and the All case, rmin = 15h−1 Mpc for LM-Red, and
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Figure 2.11 The constraints on model parameters from fitting the mocks as a
function of the minimum fitting scale, rmin for all galaxies and
groups, and for the six subsamples split by galaxy colours and
group masses. In addition, we also include the contaminated red
subsample indicated by ‘Red*’. The values and error bars are from
the means and standard deviations of the 25 mocks. Data points at
each rmin are displaced by ±0.3h−1 Mpc for clarity. The top panel
shows the growth rate parameter, f , with the grey band marking
±10% regions around the fiducial value, f = 0.593. The middle
panel shows the group and galaxy biases. The bottom panel shows
the velocity dispersion for the auto- and cross-correlations.
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rmin = 20h−1 Mpc for MM-Red and HM-Red respectively for this linear model.

This choice is also taken in the best-fit models shown in Fig. 2.11.

2.7.2 Fitting GAMA

We then fit the data wp, ξ0, and ξ2 for the auto- and cross-correlation

simultaneously, shown in Fig. 2.10. The best-fit models are shown in solid

lines. In this case, we quote the best-fit parameters from rmin based on the

previous mock results and we use the mock covariance matrices. In all cases

except those with red galaxies, the model provides reasonable fit even down to

scales smaller than rmin. With the red subsamples, the model does not capture

the small scale behaviour of the quadrupole well in particular. In the LM cases,

the best-fit models give smaller galaxy biases in the red and blue subsamples

compared to MM and HM cases. Fig. 2.12-2.14 show the marginalised posteriors

for f , bgal, and b12 from MCMC sampling for the All, red-galaxy, and blue-galaxy

cases respectively. There is a degeneracy between f and bgal because the RSD

constraints the distortion parameter β = f/b. In Fig. 2.13 and 2.14, adding the

galaxy auto-correlations breaks the degeneracy between the group and galaxy

biases, and they provide distinction constraints on the b12 for groups in each

mass bin.

Fig. 2.15 shows the the best-fit (filled markers) and mean-fit (open markers)

parameters from MCMC fitting the GAMA data, taken at the optimal rmin for

each subsample. The specific parameter values for the best-fit case can be found

in Tab. 2.4. The symbols and colours are the as in Fig. 2.11. The error bars on the

best-fit parameters are taken from the std of the 26 mocks, whereas the error bars

on the mean-fit parameters are the 1σ deviation estimated from the marginalised

posterior from MCMC. The two sets of constraints show good consistency. The

growth rate is measured consistently across the six subsamples. The All case gives

a constraint fσ8 = 0.25± 0.15. The constraint from Planck with 68% limit from

TT, TE, EE+lowE+lensing is fσ8 = 0.47± 0.01 at the redshift z = 0.195 [227].

The mean value is lower than the Planck value, possibly due to the flattening

of the quadrupoles at scales r > 15h−1 Mpc, as shown in Fig. 2.10, but the

difference between the measurements is only 1.4σ. Therefore, they are consistent

measurements.

The middle panels in Fig. 2.15 show the measured galaxy and group biases.

For galaxy biases, the LM subsamples give a lower mean bias compared to the

88



Table 2.3 Mock measurements using the linear RSD model. The values are at
smallest rmin which gives f below 10% bias compared to the fiducial
value.
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Figure 2.12 The posterior distributions of the growth rate and biases of
the cross-correlation with all galaxies and all groups in GAMA,
marginalised over other parameters.
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other two mass bins. Combining the measurements from different groups bins

assuming independency, we find bgal = 1.32 ± 0.10 for the red-galaxy subsample

and bgal = 1.04 ± 0.04 for the blue-galaxy subsample. The mean galaxy bias

is bgal = 1.33 ± 0.08, closer to the red galaxy bias. Combining the red and

blue subsamples, the group biases for LM, MM, and HM bins are bgrp = 1.27 ±
0.10, 1.57 ± 0.08, 2.02 ± 0.15 respectively. The mean group bias is measured

to be bgrp = 1.53 ± 0.09. The galaxy biases for the red and blue galaxies are

consistent with other measurements using GAMA (e.g. [31]). The lower panels

show the measured velocity dispersions for the auto- and cross-correlations. The

results seem to suggest a consistent velocity dispersions between the auto- and

cross-correlations, and between different group masses, but there is a preference

of larger velocity dispersion in the red-galaxy subsamples than the blue ones.

Combing the measurements from σc with different mass bins, we find σc = 462±
99 kms−1, 217 ± 45 kms−1 for the red and blue subsamples respectively. The

mean velocity dispersion for the whole sample is σc = 245 ± 76 kms−1. These

velocities are also in good consistency with other measurements from GAMA

(e.g. [31, 170]).

Group bias from the Halo Model

Having a proxy for the halo mass for each group, we attempt to compute the

group bias in each mass bin. We compute this based on halo model mentioned

in Section 1.3.4. For a given halo mass M , we compute the corresponding peak

height ν as defined in Eq. 1.89 using the linear power spectrum at z = 0.195.

The bias is then computed by

b(ν) = 1− 1

δc

d lnG

d ln ν
, (2.37)

where δc = 1.686, G = −dF (ν)/d ln ν, and we adopt the fitting formula for F (ν)

in [205]:

F (ν) = (1 + aνb)−1 exp(−cν2) (2.38)

with (a, b, c) = (1.529, 0.704, 0.412). The group bias in a stellar mass bin is then

computed by

b̂grp =
N∑
i

f(M i
h) b(M

i
h)/M

i
h ∆ log(Mh), (2.39)
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Table 2.4 GAMA measurements using the linear model. The values are at
smallest rmin which gives f below 10% bias compared to the fiducial
value.

A
ll

L
M

re
d

L
M

b
lu

e
M

M
re

d
M

M
b
lu

e
H

M
re

d
H

M
b
lu

e
r m

in
10

15
1
0

2
0

10
20

10
χ̄

2
/
d
of

74
.7

/1
01

37
.4

/7
5

78
.2

/
10

1
19

.2
/
49

77
.0

/
10

1
3
3.

7
/4

9
74

.3
/
10

1
f

0.
32
±

0.
19

0.
39
±

0.
26

0.
4
4
±

0.
1
6

0.
2
3
±

0.
3
6

0.
2
8
±

0.
1
9

0.
3
5
±

0.
3
7

0.
3
1
±

0.
1
8

b g
a
l

1
.3

3
±

0
.0

8
1
.2

5
±

0
.1

4
0.

98
±

0.
06

1.
39
±

0.
20

1.
08
±

0.
07

1.
38
±

0.
21

1
.0

6
±

0.
06

b 1
2

0
.8

7
±

0
.0

2
1
.0

6
±

0
.1

7
0.

81
±

0.
05

0.
84
±

0.
10

0.
69
±

0.
03

0.
70
±

0.
09

0
.5

2
±

0.
03

σ
a

25
7
±

74
51

8
±

16
6

23
7
±

7
5

1
00

+
2
38

15
5
±

9
1

31
9
±

2
92

16
8
±

8
2

σ
c

24
5
±

76
54

0
±

11
9

27
8
±

8
1

2
12
±

24
9

18
7
±

8
4

37
2
±

2
50

17
7
±

9
0

I a
0.

01
1
±

0
.0

12
0.

01
4
±

0
.0

20
0
.0

00
+

0
.0

0
7

0
.0

00
+

0
.0

2
3

0.
0
00

+
0
.0

0
6

0.
00

0
+

0
.0

2
2

0.
00

0
+

0
.0

0
6

I c
0.

00
0

+
0
.0

14
0.

00
0

+
0
.0

31
0
.0

00
+

0
.0

2
0

0
.0

18
±

0.
02

6
0.

0
28
±

0.
01

3
0.

03
6
±

0.
02

9
0.

04
0
±

0.
01

6
b g

rp
1
.5

3
±

0
.0

9
1
.1

8
±

0
.2

2
1.

29
±

0.
11

1.
65
±

0.
23

1.
56
±

0.
09

1.
97
±

0.
30

2
.0

4
±

0.
17

94



Table 2.5 Group bias for the full sample, and for the LM, MM, and HM
stellar mass bins, computed from the fitting formula given in [205]
and measured from the 2-point correlation functions using the mocks
and the GAMA data. For the mock groups, the halo mass in each
stellar mass bin is based on the arithmetic mean host halo mass of
the member galaxies. For the data, the mass-luminosity relation in
[113] is used to compute the group halo mass, and the uncertainty of
this relation is included as a convolution to the halo mass distribution
in each stellar mass bin. The measured values is from combining the
red and blue subsamples in Tab. 2.3 and 2.4 assuming independency.

Groups bgrp (predicted) bgrp (measured)
Mocks All 1.13 1.42± 0.09

LM 0.96 1.20± 0.11
MM 1.16 1.46± 0.09
HM 1.70 2.04± 0.17

GAMA All 1.07 1.53± 0.09
LM 0.92 1.27± 0.10
MM 1.11 1.57± 0.08
HM 1.42 2.02± 0.15

where f(Mh) is the halo mass distribution in that stellar mass bin, and we take

N logarithmic bins in the corresponding halo mass range with width ∆ log(Mh).

Different halo mass definitions for groups in the mock catalogue results in biases

differing by < 10%, and we use the arithmetic mean host halo mass here. For

GAMA, we include the uncertainty in the halo mass from the uncertainties in the

parameters Mp and α from Eq. 2.24:

σlogMh
= σlogMp + σα log(Lgrp/L0), (2.40)

where σlogMp and σα are given in below Eq. 2.24. For each mass bin logM i
h, we

then convolve the number of objects by a Gaussian with σlogMh
. The predicted

and measured group biases (combining the red and blue galaxy subsamples in the

measured case) using mocks and GAMA data are summarised in Table 2.5.

We see that the predicted group bias are all smaller than the fitted values by

25% − 50%. The predicted bias can match the measured values if the mass is

increased by a factor of 2 − 3.5 from HM to LM bins for mocks, and 3 − 6 for

data. For mocks, if the sum of the halo mass from members in unique host

haloes is used as the group halo mass, then the group bias is increased to bgrp =

1.21, 1.03, 1.23, 1.80 for the All, LM, MM, and HM cases respectively. This is

closer to but still smaller than the measured bias values by about 1−2σ, especially

in the lower stellar mass bins. For data, increasing the dispersion in logMh by a
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factor of two only increases the bias in each bin by a few per cent. As indicated

by Fig. 2.5, Mh estimated from total luminosity may not represent the true halo

mass of the group. While the true scatter can be much larger, the mean slope

of M∗ as a function of Mh can also be smaller, indicating that at fixed M∗, the

mean halo mass can be larger, leading to a larger group bias.

2.8 Conclusion

In this work, we present measurements of the 2D cross-correlation function

ξ(rp, π) between groups and galaxies using the GAMA data in the redshift range

0.1 < z < 0.3. The groups are found using a FoF algorithm from [290], and are

subdivided into three stellar mass bins (LM: 40%, MM: 50%, and HM: 10%).

We calibrate the corresponding halo mass for the groups using the relation in

[113]. The galaxies are split into red and blue colours using a cut in the g − i vs

z plane. This altogether gives six cross-correlation subsamples. We use the 26

GAMA lightcone mocks from [82] for the purpose of testing the RSD models on

a series of minimum fitting scales rmin, and of constructing Jackknife covariance

matrices to capture the sample variance between the GAMA fields. There are

a few differences between the mocks and the GAMA data, including the mock

mean redshift distribution, the bimodal g − i colour distribution, and the total

stellar mass of the groups. We match them carefully with the data subsamples.

The measured 2D correlation functions show good consistency between the data

and the mocks down to scales rp, π ≤ 15h−1 Mpc. At larger scales, the correlation

functions are noise dominated. The measurements show distinct bias and FOG

features for subsamples involving different galaxy colours and group masses.

The linear RSD model in [184] is adopted for this work with a non-linear power

spectrum generated by Halofit [276, 282]. We fit the model to the projected

correlation wp and the multipoles ξ0, ξ2, and include the galaxy auto-correlation

for each cross-correlation subsample to break the degeneracy between the galaxy

and group bias. Applying the model to the mocks with σ8 fixed to the fiducial

value, we find that the growth rate f is recovered with negligible bias compared

to the variance between the mocks at minimum fitting scales of rmin = 10 −
20h−1 Mpc, depending on the subsample: the blue galaxy subsamples are more

linear, and can be fitted to smaller scales compared to the red galaxy subsamples.

Different subsamples also give consistent galaxy and group biases. The same

model is then applied to the GAMA data, fitted down to the optimal rmin for
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each subsample. We use MCMC sampling to marginalise over the biases, velocity

dispersions, and integral constraints, and recover consistent growth rates from

each subsample. The full sample gives a growth rate of fσ8 = 0.25 ± 0.15 at

mean redshift z = 0.195, consistent with the Planck value of fσ8 = 0.47 ± 0.01.

Using the halo mass of the groups, we attempt to predict the group bias from

the halo model. However, in both mocks and the data, we find that the bias

is underestimated by 25 − 50%. The discrepancy is partially alleviated in the

mock case by using the sum of the unique halo mass, rather than the arithmetic

mean halo mass of the group members. In data, the discrepancy suggests that

the estimated halo mass from total luminosity and its scatter at fixed stellar mass

is not very reliable.

The linear model adopted in this work is can only provide unbiased fitting results

at relatively large scales, where the signal-to-noise of the GAMA sample is limited.

Thus, an extension of this work will be to apply more sophisticated models, such

as the 1-halo and 2-halo decomposition mentioned in Section 2.2.3, that can

allow unbiased results at smaller scales. In principle, the much higher signal to

noise can lead to a much tighter constraint on fσ8, and the distinctive small

scale features for different subsamples can also be explored. Currently, another

limiting factor of this work is the relatively small sky coverage of GAMA, leading

to large noise at large pair separation. In the future, however, the same analysis

can be applied to larger datasets, such as the Bright Galaxy Sample in the Dark

Energy Spectroscopic Instrument (DESI) survey [175], where the linear model

may provide improved constraints on fσ8 from different tracer samples.
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Chapter 3

Cross-correlation of large scale

structures and the CMB

We now turn to another cosmological probe for the growth of structures: the

correlation between large scale structures and the CMB. Photons emitted from the

CMB are perturbed by the presence of gravitational potentials sourced by matter,

imprinting secondary features on the CMB that correlate with the foreground

matter overdensity. By measuring the density field in the local Universe through

galaxy surveys, one can pull out this correlation signal via cross-correlation or

stacking. Tomographic analysis can demonstrate further the evolution of this

correlation with the growth of structure, providing constraints on the cosmological

parameters Ωm and σ8. I will present in Chapter 5 and 6 the measurements of

this signal using the DESI Legacy Survey galaxies and the Planck 2018 CMB

maps. Before I talk about the practical details of the survey and measurements,

I will go through the theoretical background of these correlations in this Chapter.

The gravitational perturbations to the photon trajectory is discussed in Sec-

tion 3.1. The temporal effect (Section 3.1.1) is changes in the peak and troughs

of the CMB temperature fluctuations on relatively large scales, referred to as

the Integrated Sachs-Wolfe (ISW) effect. The spatial effect (Section 3.1.2) is

weak gravitational lensing, which distorts the CMB fluctuations and induces

non-Gaussianity that can be used to reconstruct the CMB lensing convergence

map. Then, in Section 3.2, I will show how these effects can be formulated into

predicting the angular cross-correlation in spherical harmonic space, C`, between

galaxy fields and the CMB. This serves as the theory section for Chapter 5.
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In Section 3.3, I will discuss how the ISW signal can be predicted from the

lensing convergence field in linear theory, and from the non-linear evolution of

the matter density field. This serves as the theory section for Chapter 6, where

we use a mock catalogue to predict the stacked CMB lensing and ISW signals

from superstructures.

3.1 Perturbation to the photon geodesic

In the Newtonian gauge, the perturbed FRW metric is given by [189]:

ds2 = −(1 + 2Ψ)dt2 + a(t)2(1− 2Φ)δijdx
idxj, (3.1)

where Ψ � 1 and Φ � 1 are two scalar potentials. The potential Φ satisfies

the Poisson equation (Eq. 1.45), whereas the gradient of the other potential,

∇Ψ, corresponds to the acceleration of non-relativistic particles. As we shall see

below, the deflection of relativistic particles always comes with the combination

Ψ + Φ. In the absence of anisotropic stress, the off-diagonal terms in T µν , the

two potentials are equal, i.e. Φ = Ψ. This is a result of the perturbed Einstein

equation (see e.g. [188]). In most cases, the anisotropic stress is negligible, but

it can arise in, e.g. neutrino free-streaming [171].

The photon geodesic equation is given by

d2xµ

dλ2
+ Γµνσ

dxν

dλ

dxσ

dλ
= 0. (3.2)

The goal is to obtain the first order perturbations arising from these potentials.

To do so, we first look at the unperturbed geodesic equation. Let the photon four

momentum be P µ = dxµ/dλ. It satisfies P µPµ = 0, so that

P 0 = a|P |. (3.3)

The time component of Eq. 3.2 is

dP 0

dλ
+ a

da

dt
|P |2 = 0. (3.4)

This can be rewritten as dP 0/dλ + d ln a/dλ(P 0) = 0, which gives the solution
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P 0 ∝ 1/a. Therefore, choosing the normalisation, we have

P µ = (1/a, 1/a2ei), Σie
i = 1. (3.5)

3.1.1 Temporal part: the ISW effect

We first look at the perturbation in the temporal component of Eq. 3.2. For a

more thorough discussion of the ISW effect and its derivation , see the notes by

[198], where the following derivation is based on. It is more convenient to work

with conformal time, where k0 = τ̇ , and the dot is the derivative with respect to

the affine parameter.

We start with Eq. 3.1 with conformal time dτ = dt/a:

ds2 = a(τ)2[−(1 + 2Ψ)dτ 2 + (1− 2Φ)δijdx
idxj]. (3.6)

We shall work with the scaled metric ĝµν = gµν/a
2 to simplify the computation.

Since the two metrics are conformal, the photon geodesic is the same. Notice

that the affine parameter in gµν is however not affine in ĝµν . We first find the

affine parameter in ĝµν . The following manipulations can be found in e.g. [49].

First, one can show that the Christoffel symbols for the two metrics are linked

via

Γµνρ = Γ̂µνρ + Ŝµνρ, (3.7)

where

Ŝµνρ =
1

a
[δµν ∂ρa+ δµρ∂νa− ĝνρ∂µa]. (3.8)

Let ρ and λ be the affine parameters of gµν and ĝµν respectively. The affine

parameters satisfy the geodesic equation

dxν

dρ
∇ν

(
dxµ

dρ

)
= 0, (3.9)

dxν

dλ
∇̂ν

(
dxµ

dλ

)
= 0, (3.10)

where ∇ is the covariant derivative. The two parameters can be linked by taking
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the derivative with respect to λ in gµν :

dxν

dλ
∇ν

(
dxµ

dλ

)
=
dxµ

dρ

dxν

dλ
∇ν

(
dρ

dλ

)
=
dxµ

dλ

d

dλ
ln

(
dρ

dλ

)
, (3.11)

where the second step used Eq. 3.9. Now substituting Eq. 3.7 into the left hand

side of the above equation, it becomes

dxν

dλ

[
∂ν

(
dxµ

dλ

)
+ Γ̂µνρ

dxρ

dλ
+ Ŝµνρ

dxρ

dλ

]
, (3.12)

The first two terms combine to give zero according to Eq. 3.10, leaving

Ŝµνρ
dxν

dλ

dxρ

dλ
=
dxµ

dλ

d

dλ
ln

(
dρ

dλ

)
. (3.13)

Substituting Eq. 3.8, one finds that the third term in Eq. 3.8 drops out because

of the null geodesic, getting:

2 ln a = ln

(
dρ

dλ

)
+ c, (3.14)

where c is a constant. Choosing it to be one, we have that dρ = a2dλ.

Let the photon four-momentum in the conformal metric ĝµν be k̂µ = dxµ/dλ.

Therefore, kµ = k̂µ/a2. The photon geodesic in Eq. 3.10 is given by

dk̂µ

dλ
+ Γ̂µνρk̂

ν k̂ρ = 0. (3.15)

The ISW effect concerns the perturbed photon energy, i.e., the µ = 0 term:

dk̂0

dλ
+ ∂τΨ (k̂0)2 + 2∂iΨ k̂0k̂i − ∂τΦ (k̂i)2 = 0. (3.16)

Now let k̂µ = k̂µ0 + δk̂µ. Since the potentials are of first order, at zeroth order,

k̂µ0 is constant, i.e., (1, ei), where ei is a unit vector. We have chosen such that

dλ = dτ . At first order, one can integrate Eq. 3.16. We recognise that

dΨ

dλ
= k̂ν∂νΨ, (3.17)

so that Eq. 3.16 at first order becomes

dδk̂0

dλ
= 2

dΨ

dλ
− (∂τΨ + ∂τΦ). (3.18)
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Let the emission time be τ∗ and receive time be τ0, the perturbed photon energy

is

δk̂0(τ0)− δk̂0(τ∗) = −2[Ψ(τ0)−Ψ(τ∗)] +

∫ τ0

τ∗

(∂τΨ + ∂τΦ) dτ. (3.19)

Thus, the perturbed photon four-momentum is kµ = a−2(1 + δk̂0, ei). Indeed,

one would expect that, in an expanding universe, the photon energy decreases as

a−2. The photon energy measured by the observer moving at velocity uµ, is

E = gµνk
µuν . (3.20)

Since the background fluid speed is small, the velocity vector to first order is

uµ = 1/a(1−Ψ, vi), with vi a first order quantity, such that gµνu
µuν = −1. This

gives the measured energy to first order,

E = −1

a
(1 + Ψ + a2δk0 − v · e). (3.21)

The measured photon energy decreases with a−1, which is related to the redshift.

The redshift is given by the ratio of energy emitted and received, i.e.,1 + z∗ =

E∗/E0 = (1/a∗)(1 + ∆), where

∆ = −a2δk0
∣∣τ0
τ∗
−Ψ

∣∣τ0
τ∗

+ v · e
∣∣τ0
τ∗
. (3.22)

Finally, the temperature is proportional to 1 + z, giving d lnT = d ln(1 + z).

Therefore,

δT

T

∣∣∣∣
τ0

=
δT

T

∣∣∣∣
τ∗

+
1

c2
[Ψ(τ0)−Ψ(τ∗)] +

v · e
c

∣∣∣∣τ0
τ∗

− 1

c2

∫ τ0

τ∗

(∂τΨ + ∂τΦ) dτ. (3.23)

In the above equation, we have restored the factors of speed of light, c. The

first term refers to the primordial temperature fluctuation at last scattering. The

second term refers to the gravitational redshift of the photon at today and last

scattering. The third term shows the Doppler effect of the observer. The last

term is the Integrated Sachs-Wolfe effect, depending on the time evolution of the

two potentials, and becomes significant as dark energy becomes dominant. In

linear perturbation theory, the potentials are related to the density fluctuation

directly through the Poisson equation

∇2Φ = 4πGρδ/a. (3.24)
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It is therefore correlated with the matter distribution at late times.

3.1.2 Spatial part: the CMB lensing convergence κ

The aim here is to compute the spatial perturbation of the photon geodesic in

the presence of Ψ and Φ. To put the result in a form which corresponds to the

observable, it is convenient to change the coordinate system to xi = r(θ1, θ2, 1) =

r
#»

θ , where the z direction points towards the source located far away, and the x

and y axis are aligned with the lens and source plane. We use the small angle

approximation here. In this case, we have dt = −a dr, the minus sign since the

origin is set to today. In the analysis, we would like to express the variable in

terms of the vector
#»

θ , which tells us how much the 2D image of the source is

changed by the perturbation.

The photon momentum is given by P µ = dxµ/dλ, where λ is the affine parameter;

it satisfies P µPµ = 0. Let the spatial part be p2 = gijP
iP j, then

−(P 0)2(1 + 2Ψ) + p2 = 0, (3.25)

and from Eq.3.5 we know that p ∝ 1/a. The spatial part of Eq. 3.2 to first order

is
d2xi

dλ2
+ Γi00

(
dt

dλ

)2

+ Γi0j
dt

dλ

dxj

dλ
+ Γijk

dxj

dλ

dxk

dλ
= 0, (3.26)

where the Christoffel symbols are:

Γi00 = a−2∂iΨ (3.27)

Γi0j = δij(H − Φ̇) (3.28)

Γijk = δimδjk∂mΦ− δik∂jΦ− δij∂kΦ. (3.29)

We rewrite Eq. 3.26 terms of derivatives with respect to r. We can write d/dλ =

(dt/dλ)(dr/dt)d/dr. In general we need to consider d/dλ = ∂/∂xµdxµ/dλ, but in

fact there is only one variable here, which is r because we have θi = θi(r). Notice

that θi are very small, so all terms containing the product of θi and the potentials

drop out. The last term is only contributes with j = k = 3. Combining with

Eq. 3.25, and with some cancellations, we get

d2(rθi)

dr2
= −δij∂j(Ψ + Φ). (3.30)
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One can now integrate the equation twice to get the source location, θis, in terms

of the imaged location, θim

θis = θim −
δij

r

∫ r

0

dr

∫ r′

0

dr′′∂j(Ψ + Φ). (3.31)

Reverse the integral order and change the limits of the r′ integral to [r′′, r], and

integrate over this variable to get the expression:

θis = θim − δij
∫ r

0

dr′′
r − r′′

r
∂j(Ψ + Φ). (3.32)

Define the distortion matrix as

Aij =
∂θis
∂θjm

= I + ξij. (3.33)

The matrix ξij is symmetric given the expression, and the three degrees of freedom

can be written as

ξ =

(
−κ− γ1 −γ2

−γ2 −κ+ γ1

)
, (3.34)

where the diagonal part proportional to the identity is the convergence or

magnification, κ, which changes the size of the image. The γi are referred to

as shear, and they change the shape of the image. Therefore we get

κ = −1

2
(ξ11 + ξ22) =

1

2

∫ r

0

dr′′∇2
2D(Ψ + Φ)

r′′(r − r′′)
r

, (3.35)

where the extra r′′ comes from converting the derivative of θ to the coordinate

derivative. The convergence is linked to the lensing potential.

In terms of CMB lensing, the source is at the last scattering surface, r = rLS.

The lensing potential, ψ, is defined such that the distorted displacement is given

by its gradient, ∆θ = ∇n̂ψ. From Eq. 3.32 we can write

ψ(n̂) = −
∫ rLS

0

dr
rLS − r
rrLS

(Ψ + Φ). (3.36)

In spherical harmonic space, then, one can write

κ(n̂) =
∑
`m

κ`mY`m(n̂), (3.37)
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and similarly for ψ. Recording that r2∇2Y`m = −`(` + 1)Y`m, the lensing

convergence and lensing potential thus has a simple relation

κ`m =
1

2
`(`+ 1)ψ`m. (3.38)

3.2 Angular cross-correlation C` between tracers

and CMB

To measure the lensing and ISW signals associated with a galaxy sample, the

galaxy auto-correlations (gg) and the cross-correlations with CMB lensing (gκ)

and with CMB temperature (gT ) are employed. The following theoretical

predictions for these quantities in the ΛCDM model are presented in spherical

harmonic space and follow the notation in Peacock & Bilicki [207]. In the rest of

this Chapter, we will assume Ψ = Φ.

The galaxy harmonic auto-correlation in the Limber–Kaiser approximation [138,

165] is given by

`(`+ 1)

2π
Cgg
` =

π

`

∫
b2∆2(k = `/r, z) p2(z)

H(z)

c
r dz, (3.39)

where b is galaxy bias, ∆2(k, z) is the dimensionless matter power spectrum

at redshift z (∆2(k, z) = k3Pδδ(k, z)/2π2), and p(z) is the redshift probability

distribution function:
∫
p(z) dz = 1. Note that the corresponding equation, (7),

in [207] is misprinted and lacks the factor `(` + 1)/2π. For the case of galaxy

cross-correlations between different tomographic slices, p2(z) → p1(z)p2(z) in

Eq. 3.39, where p1(z) and p2(z) are the redshift probability distributions of the

two slices. There are also different biases for the two slices, b2 → b1b2, although

for tomographic slices with a single sample selection, the bias is purely a function

of redshift. Note that the above theory ignores distortions from peculiar velocities

and treats redshift as an exact radial coordinate. This would not be correct for

shells with width ∼ 10h−1 Mpc, but is negligible for the much thicker shells that

we consider [199].

Similarly, the theoretical galaxy-lensing convergence cross power spectrum is

105



computed by

`(`+ 1)

2π
Cgκ
` =

π

`

∫
b∆2(k = `/r, z) p(z)K(r) r dz, (3.40)

where the lensing kernel is given by

K(r) =
3H2

0 Ωm

2c2a

r(rLS − r)
rLS

. (3.41)

Finally, the galaxy ISW cross-correlation is given by

`(`+ 1)

2π
CgT
` = TCMB

2π

c3

∫
b∆2

δΦ̇
(k = `/r, z)/k p(z) a dz. (3.42)

∆2
δΦ̇

(k, z) is the dimensionless matter-Φ̇ cross-power spectrum. In linear the-

ory, δ(t,x) = D(t)δ(0,x). In Fourier space, Eq. 3.24 becomes −k2Φ =

3/2H2
0 ΩmD(t)δ(k). Therefore, the time derivative of the potential can be

expressed as

Φ̇ =
3H2

0 Ωm

2k2

H(z)(1− fg(z))

a
D(z)δ(k), (3.43)

where fg ≡ d lnD/d ln a ' Ω0.55
m (z) is the growth rate [e.g. 5, 59, 93, 124, 225].

Thus,

∆2
δΦ̇

(k, z) =
3H2

0 Ωm

2k2

H(z) (1− fg(z))

a
∆2(k, z). (3.44)

N-body simulations have suggested that small deviations from linear theory for

CgT
` occur at ` & 50, and Eq. 3.42 becomes inaccurate [38, 39, 43, 57, 261, 277].

This can be alleviated by using the full nonlinear matter power spectrum in

Eq. 3.44, e.g. Halofit, while still assuming a linear coupling between the density

and velocity fields [39].

The above expressions for angular power spectra assume spatial flatness. The

Limber-Kaiser approximation is inaccurate at large scales [e.g. 125, 297]. The

agreement between the small angle approximation and the exact computation is

about 15% in power at ` = 10, but quickly improving to < 1% for ` > 30. In

practice these deviations are statistically negligible, as we exclude the largest-

scale modes with ` < 10 from our fitting, to allow for possible complications from

combining several surveys in the sky (see Chapter 4). Because of cosmic variance,

those very large-scale perturbations contain little statistical power. Note also that

in principle the bias parameter may depend on scale, although it should tend to

a constant in the linear limit as k → 0; in practice we do allow for this scale

dependence (see Section 5.1).
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In summary, combinations of Eqs 3.39, 3.40 & 3.42 can be used to predict

measurements from observations, and should in principle allow us to determine

both cosmological parameters and nuisance parameters such as galaxy bias and

uncertainties in the true redshift distribution of the galaxy samples. Most

directly, one can determine the amplitudes of the CMB lensing and ISW signals

associated with the late-time LSS galaxies, relative to the prediction of a fiducial

cosmological model.

3.3 Predicting stacked signal

Another way to measure these imprints of large scale structures on the CMB sky is

via stacking: the CMB maps are stacked at the locations of selected density peaks

and troughs. This is similar to measuring the angular cross-correlation function

in configuration space, w(θ). I will use this stacking technique in Chapter 6 to

study the CMB lensing and ISW signals around superstructures in the DESI

Legacy Survey. In this case, the modelling of this signal is non-trivial, because

we will need to model small scales and targeting on specific structures means we

cannot directly use the full distribution of δ. I will discuss below two possible

ways one can model this effect. Due to the complication, it is also common to use

mock galaxy samples and simulated CMB maps to predict the measured signals.

3.3.1 Non-linear density evolution

One can use the stacked density profile at the peaks or troughs to predict the

signal. This method applies to thin tomographic bins or 3D voids/clusters.

Taking voids as an example, the void profile is found by the void-galaxy cross-

correlation function, and the RSD effect can be alleviated by integrating along

the line of sight. Spherical symmetry is a good approximation for the average

void profile. Thus, one can use the inverse Abel transformation to obtain the

spherically symmetric 3D void profile, δv(r, z) centred at the mean redshift z of

the galaxy sample. One can then use non-linear density evolution and spherical

collapse to find the full evolution of the density profile. This can be done by

numerically solving (e.g. see Eq.11 in [295])

y′′ +

(
1

2
+

3

2
ΩΛ(t)

)
y′ +

Ωm(t)

2

(
y3 − 1

)
y = 0, (3.45)
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where the prime denotes derivative with respect to ln a, and y is related to δ via

ρm(t) = ρ̄m(t)y(t)−3. (3.46)

Alternatively, the mapping between linear and non-linear density can be approx-

imated, e.g. 1 + δNL = (1−D(t)δL/δc)
−δc from Eq.B1 in [154]. Then the density

can be evolved to different redshifts for each r. This density profile then allows

one to straightforwardly compute the lensing convergence by integrating along

the line of sight with the lensing kernel (Eq. 3.41).

For the ISW signal, one needs to compute the time derivative of the potential

Φ̇. The corresponding spherically symmetric gravitational field Φ(r, z) for the 3D

density fluctuation can computed for each redshift z by integrating the Poisson

equation:

Φ(r, z) = −3

2

H2
0 Ωm

a

[
1

r

∫ r

0

δ(r′, z)r′2dr′ +

∫ ∞
r

δ(r′, z)r′dr′
]
. (3.47)

The stacked ISW temperature at a given angular position n̂ is then obtained

through this integral

∆T (n̂) = −T0
2

c2

∫
∂Φ

∂z

∣∣∣
2D

(n̂, z) dz, (3.48)

where ∂Φ/∂z|2D(n̂, z) is a 2D slice at redshift z of the full 3D potential ∂Φ/∂z

generated at the void centre. In this way, the derivative of Φ is projected in space

and integrated in time.

3.3.2 Quasi-linear approach

Alternatively, one can also link the two observables – lensing and ISW effects –

by making the assumption that density and velocity are linearly coupled. This

should be true on linear scales where the ISW effect is most significant. Given

the lensing convergence κ map, the lensing potential ψ map can be computed in

spherical harmonic space using Eq. 3.38. The lensing potential is related to the

3D gravitational potential Φ via

ψ(n̂) = − 2

c2

∫
rLS − r
rLSr

Φ(n̂, r) dr, (3.49)
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where rLS is the comoving distance to the CMB. The ISW signal is related to the

time derivative of the gravitational potential via

∆T (n̂) = −T0
2

c2

∫
Φ̇(n̂, t) dt. (3.50)

From the Poisson equation ∇2Φ = (3/2)H2
0 Ωmδ/a, it follows that in linear theory,

∇2Φ̇ = −H(1− f)∇2Φ. Notice that the Φ̇ here is not fully linear – because the

3D potential Φ can have non-linear contributions, and the ‘linear’ assumption

here is only between the density and velocity coupling.

Given a thin shell centred around redshift z0 with edges [z0 −∆z, z0 + ∆z], one

can make the approximations

ψ(n̂, z0) ≈ − 2

c2

rLS − r0

rLSr0

c

H(z0)

∫ z0+∆z

z0−∆z

Φ(n̂, z) dz, (3.51)

∆T (n̂, z0) ≈ −T0
2

c2
a(z0) [1− f(z0)]

∫ z0+∆z

z0−∆z

Φ(n̂, z) dz. (3.52)

Combining these two equations we have

∆T (n̂, z0) ≈ T0a(z0) [1− f(z0)]
rLSr0

rLS − r0

H(z0)

c
ψ(n̂). (3.53)

This approach allows us to directly construct quasi-linear ISW signals from

lensing potentials. We will check the validity of this method in Chapter 6 using

simulations.
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Chapter 4

Galaxy data from the DESI Legacy

Imaging Survey

A major part of this thesis concerns the study of the correlation between large

scale structures and the CMB. The dataset used for mapping out the large

scale structures is the DESI Legacy Imaging Survey. Purposed for the Dark

Energy Spectroscopic Instrument (DESI) target selection, this public imaging

survey covers a vast sky area in both the north and south hemisphere, and

also reaches a substantial depth, down to g = 24.0, r = 23.4, and z = 22.5.

It is much deeper than alternative large-area imaging such as SDSS or Pan-

STARRS, thus is invaluable for tomographic cross-correlation studies. However,

as we shall see, some efforts are required to bring the dataset to a high

quality that can be used for cosmological studies. This chapter is devoted to

the procedure towards constructing reliable tomographic galaxy density maps.

These procedures include various survey selections, systematic corrections, and

photometric redshift assignments. Having set up the stage in this chapter, we will

discuss the galaxy clustering and their CMB correlations in detail in Chapter 5.

4.1 The DESI Legacy Imaging Survey

Altogether covering an area of 17,739 deg2, the DESI Legacy Imaging Survey [68]

is divided around Dec = 33◦ in J2000 coordinates, a combination of four different

projects observed using three different instruments on three different telescopes,
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namely, DECaLs, BASS, and MzLS.

DECaLS The Dark Energy Camera Legacy Survey (DECaLS) is observed using

the Dark Energy Camera (DECam; [87]) based on the 4m Blanco telescope at

the Cerro Tololo Inter-American Observatory, Chile. DECam has high sensitivity

in the wavelength range of 400 − 1000nm, which is optimal in obtaining the

photometry in grz bands. The overall survey area is about 9000 deg2, covering

regions with Dec ≤ 32◦ in the North Galactic Cap (NGC) and and Dec ≤ 34◦

in the South Galactic Cap (SGC). Part of the data is directly adopted from the

Dark Energy Survey (DES; [287]), which covers about 5000 deg2 area in the SGC.

BASS The Beijing-Arizona Sky Survey (BASS; [316]) is observed by the 90Prime

camera [304] at the prime focus of the Bok 2.3m telescope at Kitt Peak, Arizona.

The survey covers about 5000 deg2 in the NGC at Dec ≥ 32◦, and supplies the g

and r band photometry matched with DECaLS for the DESI Legacy Survey.

MzLS The Mayall z-band Legacy Survey (MzLS) is observed by the MOSAIC-3

camera [67] at the prime focus of the 4m Mayall telescope at Kitt Peak National

Observatory, Arizona. The imaging covers the same sky area as BASS. The

z-band filter is matched to the DECam filter bandpass.

We use the publicly available Data Release 81 (DR8) of the DESI Legacy Survey.

The sources are processed and extracted using Tractor2 [157], which in general

involves the following procedures. Firstly, the sky is subtracted on each CCD

iteratively, and its PSF is estimated. Then, using several weighted stacks of the

images, sources are detected above a 6σ-threshold. Finally, the Tractor models

the source with a set of parametric light profiles, producing a catalogue containing

source information such as positions, fluxes, and morphologies. In addition to the

three optical bands grz, for each optically observed source, the Legacy Survey

also include its mid-infrared photometry from the WISE [307] satellite. These

fluxes are centred at 3.4µm, 4.6µm, and 12µm, namely the W1, W2, and W3

bands. The WISE photometry is also measured using the Tractor algorithm

with ‘forced photometry’, i.e., forcing the location and shape of the model, since

WISE has a lower spatial resolution compared to the optical surveys.

1http://legacysurvey.org/dr8/
2https://github.com/dstndstn/tractor
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4.1.1 Galaxy selection

We apply the following selections and corrections to the DESI Legacy Survey

data at the catalogue level.

Firstly, the catalogue contains stars, galaxies, and quasars. For our purpose of

constructing tracers for the large scale structure, we would like to only select

galaxies. A convenient way to do so is by looking at the morphology types of the

source. There are six morphology types fitted by the Tractor algorithm (except

the last one), namely:

1. PSF: point sources;

2. REX: round exponential galaxies with a variable radius;

3. DEV: deVaucouleurs profiles for elliptical galaxies;

4. EXP: exponential profiles for spiral galaxies;

5. SER: Sersic profiles;

6. DUP: Gaia sources that are coincident with an extended source.

The majority of the sources are in the first four morphology types. The point

sources mainly contain stars and quasars. Objects of this type are thus excluded.

This is also confirmed by cross-matching galaxies from spectroscopic surveys to

the DESI Legacy Survey, where only a small fraction of galaxies are identified

as PSF objects. The resultant sources may still contain some stars and quasars.

This can be separated in the colour space. Since we also select objects implicitly

in the three dimensional colour space of g− r, r− z, and z−W1 via photometric

redshift assignment, the contamination is thus small.

Secondly, we require FLUX G|R|Z|W1> 0, i.e. fluxes in these four bands are

detected. Because of the shallower effective depth of the W2 and W3 bands, we

only make use of W1. This is to ensure successful determination of photometric

redshifts. Fluxes are corrected using MW TRANSMISSION G|R|Z|W1 for Galactic

extinction correction. These values are derived from the maps in [254] to account

for the dust absorption near the Galactic Plane. This largely removes the survey

depth dependence as a function of galactic coordinates. However, there are still

residual correlations, which we attempt to remove at the galaxy density map level

in Section 4.3.1.
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The survey does not have a uniform depth over the entire footprint. The main

difference in depth is between the deep DES region and the rest of the survey.

Magnitude cuts are applied with g < 24, r < 22, and W1 < 19.5, where all

magnitudes are computed by m = 22.5− 2.5 log10(flux). The cuts in g and r are

chosen as reasonable completeness limits from inspection of the number counts.

The cut in W1 further removes faint objects that are not well covered by the

calibration sample. We experimented with imposing a brighter cut, and found

that our main results were essentially unchanged if all limits were made 0.5 mag.

brighter.

Finally, Bitmasks3 are used to generate a survey completeness map, with the

following Bits masked:

• Bit 0: touches a pixel that is outside the primary region of a brick;

• Bit 1: touches a pixel within the locus of a bright star;

• Bit 5-7: masks in grz bands;

• Bit 11-13: touches a pixel within the locus of a medium bright star, large

galaxy, or globular cluster.

To convert the mask to appropriate resolution for this work, we generate large

number of randoms and bin them into a Healpix map [98] with Nside = 128,

corresponding to a pixel area of 0.2 deg2. The completeness map is obtained from

the ratio of the number of randoms in each Healpix pixel with and without

masking. The map is then upgraded to Nside = 1024 which is the resolution used

for most of our analyses. Fig. 4.1 shows the completeness map of the Legacy

Survey footprint.

4.2 Photometric redshifts

One of the key pieces of information needed for interpreting observations of CMB-

galaxy cross-correlations is the redshift distribution of the galaxy sample. A

variety of methods have been developed over many years to estimate either the

redshifts of individual galaxies or the redshift distribution of a galaxy sample

using broad band photometry (see Schmidt et al. 2020 for a review). Generally

3http://legacysurvey.org/dr8/bitmasks
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Figure 4.1 The completeness map of the DESI Legacy Survey. The higher
intensity denotes regions with higher completeness.

photo-z estimates are either template based (e.g. LePhare Arnouts et al.

1999; BPZ Beńıtez 2000; EAZY Brammer et al. 2008) or data-driven methods

(e.g. TPZ Carrasco Kind & Brunner 2013; SkyNet Graff et al. 2014; GPz

Almosallam et al. 2016; ANNZ2 Sadeh et al. 2016; METAPhoR Cavuoti et al.

2017; Delight Leistedt & Hogg 2017; CMN Graham et al. 2018; CHIPPR

Malz & Hogg 2020) . There have been several attempts to compare the accuracy

and precision of various photometric redshift methods [34, 120, 235, 249] with no

strong winner.

Our approach is direct and empirical, based on using observed spectroscopy to

assign a redshift to a given location in multi-colour space. In parallel with this

work, a public catalogue of photometric redshifts for the Legacy Survey was

made available by Zhou et al. [314]; Z20 hereafter. Although they used similar

spectroscopic calibration samples, their approach differs somewhat from ours,

being based on machine learning. The advantage of this is that we are able to

look in detail at the sensitivity of our results to the properties of the photometric

redshifts.
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4.2.1 Spectroscopic calibration samples

We use a number of spectroscopic surveys that overlap with the DESI Legacy

Survey footprint to calibrate photometric redshifts. These surveys and their

details are listed below.

GAMA DR2 The Galaxy and And Mass Assembly (GAMA) survey [168] is

a spectroscopic survey conducted by the Anglo-Australian Telescope, down to

r < 19.8 mag over a sky area of ∼ 286deg2. We select samples with z > 0.01

and redshift quality NQ≥ 3. The GAMA sample has been rejection sampled to

remove the dip in density around z = 0.23; this is known to represent a rare LSS

fluctuation, which we do not wish to imprint on our photo-z estimates.

BOSS DR12 The Baryon Oscillation Spectroscopic Survey (BOSS) [8] is part

of SDSS-III. The main sample consists of LOWZ (z . 0.4) and CMASS (0.4 <

z < 0.7) galaxy samples. The LOWZ sample has a set of colour-magnitude cuts

that are similar to Luminous Red Galaxies (LRG), whereas the CMASS sample

is selected with a bluer extension. We remove very low redshift samples with

z > 0.01.

eBOSS DR16 The extended BOSS survey [6] consists of three target classes:

LRG, ELG (Emission Line Galaxies), and QSO (Quasars). Since we aim to

remove quasars in our selected catalogue, we only use the LRG and ELG sample

for calibration. The LRG sample covers a mean redshift of 0.7, whereas the ELG

sample covers 0.7 < z < 1.1. We remove very low redshift samples with z > 0.01.

VIPERS DR2 The VIMOS Public Extragalactic Redshift Survey [260] is a

spectroscopic survey conducted by the Very Large Telescope (VLT) at the

European Southern Observatory (ESO). The survey covers an overall area of

∼ 23.5deg2, with a redshift overage of 0.5 < z < 1.2, and a magnitude limit of

i < 22.5. We select sources with z > 0.01, zflg≥ 3, and classFlg≥ 0.

DEEP2 DR2 The DEEP2 Redshift Survey [196] is a spectroscopic survey

conducted by the DEIMOS spectrograph on the Keck II telescope. The survey

has a limiting magnitude of RAB = 24.1, with redshifts extending to 1.4. We

select sources with z > 0.01 and flag ZQUALITY≥ 3. This survey is useful in

covering the high redshift tail of the DESI Legacy Survey sample.

In addition, we also include two photometric surveys for their highly accurate

photometric redshifts.
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COSMOS The Cosmic Evolution Survey [130] is a deep, wide area, multi-

wavelength survey. We use the COSMOS2015 photo-z catalogue [153], which has

an accuracy of 0.007 and less than 0.5% catastrophic failures. Since COSMOS is

much deeper than the DESI Legacy Survey, we choose sources with r MAG APER2

< 23 to match with the DECaLS sample. This is another survey which we use

to cover the high redshift tail of our selected galaxy sample.

DESY1A1 redMaGiC The Dark Energy Survey [47] is conducted using

DECam mounted at the Blanco 4m telescope. We use the Y1 redMaGiC

Catalogue, consisting of LRG samples in the photometric redshift range 0.15 <

z < 0.9. The photometric redshift has an uncertainty of 0.017(1 + z). We use

this sample as a ‘space filler’ as will be explained below.

Altogether, the calibration sample contains 1.26× 106 galaxies, roughly covering

the redshift range 0 < z < 1. The majority of these datasets overlap with

DECaLS, and galaxies in the calibration data sets are matched with DECaLs

objects based on their nearest neighbours using the python routine cKDTree

within a distance of 0.5◦.

4.2.2 Photo-z assignment in multi-dimensional colour space

The redshifts from the original calibration samples will be referred to as

‘spectroscopic’ or ‘true’ from this point onward, in order to make a distinction

with the inferred photometric redshifts. All calibration samples except DESY1A1

redMaGiC [47] are binned in 3-dimensional grids of g− r, r− z, and z−W1 with

a pixel width of about 0.03. The range of the colours are: −0.5 < g − r < 2.5,

−2 < r−z < 3, and −2 < z−W1 < 4. Pixels containing more than 5 objects from

the calibration samples are assigned the mean redshift of these objects. The DES

sample is processed in the same way to fill out pixels that are not calibrated in this

initial pass. We then apply this calibration to the full Legacy Survey: objects

that fall in pixels that lack a redshift calibration are excluded, thus selecting

objects that occupy the same colour space as our calibration sample. The assigned

photometric redshift is the mean redshift for the colour pixel, plus a random top-

hat dither of ±0.005 so that digitisation artefacts are not apparent in the N(z)

distributions. Fig. 4.2 compares the inferred photometric redshifts with the true

redshifts of all the calibration sample, and Fig. 4.3 shows the break down for

each sample including both DECaLS and BASS+MzLS. The general agreement

is good, with 68% of the sample having photometric redshifts within ±0.027 of
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Figure 4.2 Photometric redshifts inferred from g− r, r−z, and z−W1 colours,
versus the spectroscopic redshifts for the calibration samples. The
contour shows the 95% interval. The colour bar indicates the number
of galaxies in each pixel.

their spectroscopic redshifts. However, a small proportion of the objects with true

redshifts 0.2 < z < 0.4 are assigned photometric redshifts between 0.4 < z < 0.6.

The inferred redshifts are also underestimated beyond z = 0.9, as usual: this

estimation method means that 〈zspec〉 should be unbiased at given zphot, so that

a bias in 〈zphot〉 at given zspec is inevitable at the extremes of the distribution.

Photometric redshifts are assigned to 78.6% of the selected Legacy Survey objects,

yielding a primary sample of approximately 49 million galaxies (see Table 4.1 for

details). The lost 21.4% objects will lead to higher shot noise, but this is a

small price to pay for excluding objects where the photometric redshift cannot

be reliably calibrated. The redshift distribution of our final sample is shown in

Fig. 4.4 as solid line histogram.

We can compare this distribution with the corresponding N(z) for the public

Legacy Survey photometric redshifts made available by Z20; this is shown in

Fig. 4.4 as shaded histogram. The two distributions are generally in good

consistency with each other; both distributions show some weak features,

indicating that LSS in the calibrating samples has still propagated into the final

photo-zs to some extent. With broad tomographic bins, we expect that such
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Figure 4.3 The assigned photometric redshift and true redshift for each of the
spectroscopic samples used: GAMA, BOSS (CMASS in blue and
LOWZ in orange), eBOSS (LRG and ELG), VIPERS (field 1 and
4), DEEP2, COSMOS, and DES redMaGiC. All panels show the
calibration with DECaLS, except for the last panel, which shows the
calibration with BASS+MzLS.

structure will be unimportant, but it will be helpful to compare the results

from two rather different photo-z catalogues (see Section 4.2.4). We divide

our samples into four tomographic slices, illustrated by the grey dotted lines

in Fig. 4.4. The redshift ranges are: bin 0: 0 < z ≤ 0.3; bin 1: 0.3 < z ≤ 0.45;

bin 2: 0.45 < z ≤ 0.6; bin 3: 0.6 < z ≤ 0.8. Our photo-z data and

accompanying software can be accessed at https://gitlab.com/qianjunhang/

desi-legacy-survey-cross-correlations.

4.2.3 Photometric redshift error distribution

For the calibration sample, the distribution of δz ≡ zspec − zphot as a function of

zphot, can be well modelled by the modified Lorentzian function,

L(x) =
N

(1 + ((x− x0)/σ)2/2a)a
, (4.1)

where x0, σ, and a are parameters that control the mean. width, and fall-off of

the distribution, and N is the normalisation such that
∫ +∞
−∞ L(x) dx = 1. For

each of the tomographic bins, we fit σ and a, while x0 is fixed to zero. The

results for calibration sample is shown in Fig. 4.5, and their best-fit parameters
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Figure 4.4 Photometric redshift distribution of galaxies after selection, in the
DECALS (yellow) and BASS-MzLS (green) regions respectively. We
compare our photometric redshifts (shown as a solid line histogram)
with the corresponding redshifts from [314] (shown as a shaded
histogram). Grey dotted lines show our four tomographic redshift
bins in 0 < z ≤ 0.8.

are summarised in Table 4.1. The inferred true redshift distribution p(z) is then

estimated by convolution of the raw distribution with the Lorentzian function, as

shown in the black dashed line in Fig. 4.6. [252] have recently proposed a similar

approach to marginalising over photo-z errors while restricting themselves to the

case of Gaussian fields with an ad-hoc mixing matrix.

However, galaxies fainter than the calibration sample may not follow this δz

distribution exactly. There is an irreducible scatter that arises because galaxy

spectra are not universal in shape; but photometric measuring errors will

increase the scatter for fainter objects. As shown below in Section 5.1, we are

able to diagnose this using the galaxy cross-correlations between the different

tomographic redshift slices. The width of the error distribution controls the

degree of cross-correlation between the different tomographic slices, which is

observed to be larger than predicted when using the directly calibrated p(z)

parameters from Table 4.1. The largest discrepancy occurs in the cross-correlation

between redshift bin 1 and bin 2, which is almost double the predicted value.

We therefore model the true error distribution in the photometric redshifts by

allowing the tail a of each distribution to spread, while fixing the width σ to that
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Figure 4.5 The normalised histogram of δz ≡ zspec−zphot as a function of zphot

in four tomographic bins for the spectroscopic calibration sample.
From left to right, the distributions show bin 0 (blue), bin 1 (orange),
bin 2 (green), and bin 3 (red). The smooth solid lines on top of the
histograms show the best-fit error distribution in Eq. 4.1.
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Figure 4.6 Redshift distribution function, normalised such that for each redshift
bin

∫
p(z) dz = 1. The dotted lines show the raw photometric

redshift distribution with |∆z| < 0.05, the solid lines show the mean
distribution (see text for details) and their 1-σ deviation using the
2-bias model (see Section 5.1.2), and the dashed lines show the
distribution using parameters from spectroscopic calibration sample.
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Table 4.1 Summary of the four tomographic redshift slices. The first row shows
the number of galaxies in each redshift slice. The second row shows
the effective volume of the redshift slice. The third and forth rows
are parameters for the Lorentzian function (Eq. 4.1) fitted to redshift
errors in each redshift bin derived from the calibration data sets; and
the last two rows show the best-fit parameters derived empirically from
the cross-correlations between the different tomographic bins (noting
that σ is not varied in this exercise). The best-fit parameters refer to
our photo-z data clipped with |∆z| < 0.05.
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determined by the spectroscopic sample. We also allow a change in the mean x0

of each bin, while requiring the sum of the mean shifts in the four bins to be zero.

This results in 7 systematic nuisance parameters to marginalise over. We take

10 samples in each dimension of the 7-parameter space with appropriate upper

and lower bounds, and for each point in the grid, we compute the χ2 of the 10

galaxy auto- and cross-correlation between different redshift slices. The galaxy

bias parameters in each case are fixed at the lowest-χ2 values from the auto-

correlation (which we fit using the 2-bias model up to ` = 500). This is sufficient

given the size of the error bar in the auto-correlations: the galaxy bias is very

tightly constrained. Constraints on the cross-correlation amplitudes can then be

marginalised over the photo-z parameters, i.e., weighted by the likelihoods of

each set of parameters. The mean and 1-σ deviation of p(z) weighted by the

likelihoods of the p(z) parameters are shown in Fig. 4.6. We leave the detail of

this procedure to be discussed in Section 5.1.

4.2.4 Comparison with other photo-z

We present a detailed comparison between our photometric redshifts and those

of Z20 [314], including the impact of the different photo-z options on our

cosmological results. Firstly note that this comparison is only possible for the

78.6% of galaxies that lie in regions of multicolour space for which calibration

data exist. Z20 give photometric redshifts for additional galaxies, and these are

probably to be considered less reliable. Nevertheless, we can perform clustering

analyses that use all the Z20 data, or just their redshifts for the same set of

objects that we use, and this can give useful insight into the robustness of our

conclusions. Fig. 4.7 compares the two photo-z catalogues in detail. For the

objects in common, the median redshift difference is |∆z| = 0.023, and 68% of

objects agree in photometric redshift to within 0.038 . The difference distribution

has non-Gaussian tails, and we also therefore consider a ‘clipped’ selection where

we retain only objects where the two estimates agree to within |∆z| < 0.05

(indicated by the black dashed line in Fig. 4.7): this is about twice as large as

our photo-z 1-σ uncertainty, so the effect is to remove outlying objects in the

tails of the error distribution. This removes a further 23.4% of the sample, but

should provide a cleaner selection in the sense that object are more likely to lie

in their nominal tomographic bin. The cross-correlations between the different

bins confirm that this strategy is successful.
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Figure 4.7 Photometric redshifts inferred from g− r, r−z, and z−W1 colours,
versus that from Z20. The dotted lines mark |∆z| = 0.05 interval.
In the clipped sample, we only use objects inside the dashed line.

Table 4.2 Photo-z parameters for Z20, using spectroscopic calibration sample as
well as the best-fit values from the galaxy clustering analysis.

bin 0 bin 1 bin 2 bin 3
σspec 0.0075 0.0128 0.0150 0.0248
aspec 1.320 1.484 1.700 1.502
abfit 1.320 1.110 1.697 1.502
xbfit

0 0.000 0.0003 −0.0002 −0.0001

Furthermore, there is a slight offset in the mean of the two samples, shown

explicitly in the north and south part of the Legacy Survey in Fig. 4.8. We fit this

offset for the south and north part of the survey separately using a cubic spline.

Then we further create an ‘offset’ sample which has its redshifts corrected using

the spline for ∆z(z) to match with that of Z20. For this sample, the clipping of

|∆z| = 0.05 is applied after correcting for the offset, cutting 22.5% of the objects.

Fig. 4.9 compares the raw redshift distributions of this work and Z20 for the three

samples. The left panel shows the sample using redshifts inferred from g−r, r−z,

and z −W1 colours, the middle panel shows that from Z20, and the right panel

shows that from the offset sample. The two photo-z distributions are close in all

cases.

We find the photo-z convolution function parameters, (σspec, aspec), for the

Z20 samples using the same spectroscopic samples. We then follow the same

procedures to find the best-fit n(z). The parameters are summarised in Table 4.2
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Figure 4.8 Photometric redshifts inferred from g− r, r−z, and z−W1 colours,
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Figure 4.9 The raw redshift distribution binned using photo-z obtained in this
work (left), in Z20 (middle), and in this work with the correction
for the offset (right), after a clipping of |∆z| < 0.05. The solid line
shows the distribution of photo-z in this work, while the dashed line
shows that from Z20.
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4.3 Galaxy density maps

Galaxies in each tomographic slice are binned in Healpix maps with Nside =

1024. The density fluctuation, δ, in each pixel is then computed by

δ =
n

n̄
− 1, (4.2)

where n is number of galaxies in the pixel, and n̄ is the mean number of galaxies

per pixel. Due to the slight differences in the photometric passbands for DECam,

BASS, and MzLS, the surface density of the tomographic slices varies slightly,

between 2% and 5%, in the north and south regions. For our purpose here, we

compute δ for the north and south regions separately, and join the two regions

at Dec = 33◦.

The density maps are correlated with various systematics, including observa-

tional conditions, survey depth, stellar density, and Galactic extinction. Most

foreground contamination is captured by the completeness map. In addition, we

use the ALLWISE total density map as a proxy for stellar density. We find little

correlation with the E(B − V ) extinction map. The following corrections are

applied to the density map to remove possible systematics.

4.3.1 Systematic corrections

To obtain an unbiased mean density, we compute n̄ using pixels with completeness

> 0.95 and stellar number Nstar < 8.52 × 103 deg−2, about 70% of the

total unmasked pixels. The largest correlation with density comes from the

completeness map. The galaxy count in each pixel is corrected by n/w, where w

is the completeness in each pixel. Regions with w < 0.86 are masked, based on

the binned one-dimensional relation between the completeness and mean density

fluctuation in the bin, δ̄, such that the deviation of δ̄ from zero is smaller than

0.1. We also introduce a similar cut in stellar number at Nstar < 1.29 × 104

deg−2. The residual binned one-dimensional correlation between log10(Nstar) and

mean δ in the bins is below 5% for all bins except for the highest redshift bin at

the large stellar density end. We use 5th-order polynomials to fit for the residual

correlation for each bin as a function of log10(Nstar) and subtract the residual mean

density from the raw δ (see Fig. 4.10). The final corrected density maps are cross-

correlated with the completeness map and stellar density map in each bin. The
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Figure 4.10 The completeness weighted mean galaxy density fluctuation per
pixel in bins of various stellar number density from ALLWISE total
density map. The dashed lines show fitting of the relation using fifth
order polynomials.

resultant correlation is consistent with zero for the ` range used in the analysis

(see Fig. 4.11 and 4.12). The corrected density fluctuations in the four redshift

slices are shown in Fig. 4.13–4.16. For illustrative purpose, they are smoothed by

a Gaussian symmetric beam with σ = 20h−1 Mpc in comoving distance. We note

that the photometric variations and correlations with various foreground maps

for our sample are relatively small. This is driven by the magnitude cuts used in

our selection. [141] provides a more detailed analysis of photometric systematics

for a variety of galaxy samples.

To check the consistency between different survey regions: the BASS+MzLS,

Figure 4.11 The angular cross-correlation between galaxy density maps and the
completeness map. The blue dotted curves show the correlation
using raw density maps, the orange dashed curves show that using
completeness weighted maps, and the green points show that using
completeness weight and stellar number correction.
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Figure 4.12 Same as Fig. 4.11 but for the ALLWISE total density map. It cam
be seem clearly that the stellar correction is only effective on large
scales with ` < 50, and is most effective for the highest redshift bin.

0 < z 0.3

-0.5 0.5Figure 4.13 The density fluctuation map for bin 0, with 0 < z ≤ 0.3. For
illustrative purpose only, the map is smoothed by a Gaussian
symmetric beam with comoving scale of 20h−1 Mpc. This map is
made from the corresponding galaxy map via Eq. 4.2, and corrected
by completeness and stellar density.

127



0.3 < z 0.45

-0.5 0.5Figure 4.14 Same as Fig. 4.13 but for bin 1, with 0.3 < z ≤ 0.45.

0.45 < z 0.6

-0.5 0.5Figure 4.15 Same as Fig. 4.13 but for bin 2, with 0.45 < z ≤ 0.6.
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0.6 < z 0.8

-0.5 0.5
Figure 4.16 Same as Fig. 4.13 but for bin 3, with 0.6 < z ≤ 0.8.

DES footprint, and the DECsLS region (without DES), we look at the galaxy

auto-correlations from these three independent regions. We use the systematic-

corrected galaxy maps in the four redshift bins as well as the unbinned case. The

results are shown in Fig. 4.17. We see that the measurements from the three

regions are in good consistency with each other out to ` = 500 in the unbinned

case as well as split into four redshift bins. However, the auto-correlation from bin

3 in the DES and BASS+MzLS regions are different from the rest of the DECaLS.

The χ2 of the DES and BASS+MzLS regions against the best-fit model in bin

3 indicates about 2.5σ and 3.7σ inconsistency with `max = 500, whereas it is

fully consistent with the DECaLS region. This can be due to the relatively large

photo-z error at the high redshift tail. Because the number of galaxies in bin 3

accounts for only ∼ 15% of the total sample, its contribution for the clustering

in the combined case is relatively minor.
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Figure 4.17 The galaxy auto-correlations in four redshift bins and their cross-
correlations, measured from three separate parts of the DESI Legacy
Survey footprint: BASS+MzLS, DES, and DECaLS (without
DES). The unbinned case is presented at the bottom left.
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Chapter 5

Imprints of galaxy clustering on the

CMB from the DESI Legacy

Imaging Survey

In this Chapter, we will exploit galaxy samples from Chapter 4 to measure the

angular correlations between galaxy number density and the CMB. Observations

of CMB lensing have progressed hugely in recent years, with a full sky map of

lensing convergence delivered by Planck [223, 224, 228], and over 2100 deg2 by

ACTpol [61]. Here, we correlate the Planck lensing and temperature maps with

LSS traced by galaxies. A particular aim is to measure the ISW effect, which has

the attraction of providing an independent probe of dark energy. However, ISW

detections have been challenging because the signal is largest at low multipoles

where substantial cosmic variance is unavoidable; the effect has therefore been

detected with only modest significance [e.g. 93, 124, 225]. The uncertainty of

measurements for the redshift range beyond z > 0.5 is particularly large, with

some having null, or anti-correlations between LSS and the CMB [251]. This

regime is of particular interest as it may provide key evidence for distinguishing

ΛCDM from early dark energy or modified gravity models (e.g. Renk et al.

2017). Recent examples of this sort of work include [280] for the ISW effect

and [62, 69, 94, 149, 207, 272, 273] for CMB lensing. A particular goal for the

present study is to extend the redshift range of the tomographic measurements

from z <∼ 0.5 to z ' 1 using the Legacy Survey.

We will be especially interested in comparing the amplitudes of the CMB lensing
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and ISW signals with the predictions of the fiducial ΛCDM model, from Eqs 3.40

& 3.42. We use Halofit [276, 282] as implemented in CAMB [163] to model the

non-linear matter power spectrum. The procedure can be summarised as follows:

• Constrain linear galaxy biases with the galaxy auto- and cross-correlations from

the four redshift bins:

C
gigj
` = bibjC

δδ
` . (5.1)

Here, we allow the pdf of photo-zs to vary with nuisance parameters that will be

marginalised over.

• Measure the amplitude of the lensing and ISW signals Aκ and AISW defined as

Cgκ
` = AκbC

δκ
` ; CgT

` = AISWbC
δT
` , (5.2)

incorporating the constrained galaxy biases from the previous step.

The angular power C` is computed by converting a pixel map into its spherical

harmonics a`m in Healpy. For a masked map, we use the simplest pseudo-power

estimate Ĉ` = Cmasked
` /fsky. We have verified that inaccuracies in this estimate are

unimportant for this large sky coverage, especially given that we exclude ` < 10 as

further insurance against any residual large-scale systematics. We also impose an

upper cutoff: throughout the analysis, we use modes in the range 10 ≤ ` < 500.

The ` > 500 modes give very noisy measurements for cross-correlations between

LSS and CMB, and the S/N for the amplitude of the cross-correlation signal

has converged by this point. Linear bias is no longer a valid assumption beyond

about ` = 250, and we make allowance for scale-dependent bias as described in

Section 5.1.2. We use a Healpix resolution of Nside = 1024 for our analysis, and

have tested that using finer maps would not alter the results. We correct for the

pixel window function, although this is not a significant effect.

In the following analysis, we group every M = 10 `-modes together such that

〈C`〉group =
1

M

`′+M−1∑
`′

C`′ , `′ = M, 2M, ..., (5.3)

and ` is the median value in each case. A simple error bar on each grouped data

point can then be computed by

σ` =
1

fsky

√
〈C2

` 〉 − 〈C`〉2
M − 1

. (5.4)
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The fsky factor accounts for correlations between `-modes due to the masked sky.

We use 50 lognormal simulations to test the effect of sky mask and shot noise.

As an example, we show the results using bin 1 of our tomographic slice, and

we focus on modes with ` ≤ 300, because the mask would especially correlate

the low-` modes. The upper panel of Fig. 5.1 shows the comparison between the

mean C` of the simulated galaxy maps with or without mask and shot noise. We

see that the deviation is large at low-` but is only of order ≤ 5%, consistent within

the statistical error. The lower amplitude at lower multipoles in the measured

spectra compared to the input is likely caused by the survey mask. The bottom

panel of the same figure shows the error estimated on these modes in simulations

as well as the error on the actual data C`. The masked maps with shot noise show

a slightly larger error, but is consistent with the error estimated on the data. The

covariance matrix for Ĉ` ≡ `(`+1)C`/2π form the lognormal simulations is shown

in Fig. 5.2. We see that it for can be well approximated by a diagonal covariance

C = diag(σ2
` ).

The χ2 of a theoretical model is defined as

χ2 = dTC−1d, (5.5)

where the vector d has components d` = Cdata
` − Cth

` . The likelihood of a model

parameter set x is given by

L(x) =
e−χ

2(x)/2∫
e−χ2(x)/2 dnx

, (5.6)

where as usual we will take the likelihood to give the posterior on the parameters,

assuming uninformative uniform priors.

The theory vector Cth
` contains the predictions from Eqs 3.39, 3.40 & 3.42 and

We convert them to equivalent band power before comparing with data. It has

the following free parameters: θ = {Aκ, AISW, a
i, xi0}. ai and xi0 are nuisance

parameters to account for uncertainties for our photo-z calibration. We impose∑
i x

i
0 = 0, where the indices of the redshift bins are i = 0, 1, 2, 3, and so

there are 7 degrees of freedom for the nuisance parameters. Aκ and AISW are

the key parameters of interest, which characterise the amplitudes of the lensing

and ISW signals relative to the fiducial model, as discussed above. All other

cosmological parameters are fixed to the Planck 2018 cosmology, with ns = 0.965,

σ8 = 0.811, Ωm = 0.315, Ωb = 0.0493, and H0 = 67.4 [227]. The cross-correlation
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Figure 5.1 The effect of survey mask and shot noise on the measured angular
correlation C` demonstrated using lognormal simulations. As an
example, we show the galaxy auto-correlation for bin 1 here. The
upper panel shows the ratio of the mean C` from simulation compared
to the input best-fit theoretical power spectrum, with the full or
binned modes. The lower panel shows the errors on Ĉ` ≡ `(` +
1)C`/2π from different realisations as well as the those on the actual
data (red squares).
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Figure 5.2 The covariance matrix for bin 1 galaxy auto-correlation with `max =
300 from 50 lognormal simulations with mask and shot noise. The
covariance matrix has very small correlation on the off-diagonal, and
can be well approximated by using just the diagonal components.

measurements are made using the CMB temperature and lensing κ maps and

masks from the 2018 Planck data [226, 228]. Galaxy bias is a further nuisance

parameter, but this will be constrained from data.

5.1 Galaxy auto- and cross-correlation

We now present the auto- and cross-correlations from the different tomographic

bins. We will use the results to constrain galaxy bias and also to determine

the empirical form of the photo-z error distribution. The galaxy auto-power

requires shot noise to be subtracted. Given Ng galaxies in a redshift slice, the

shot noise spectrum is given by Cshot
` = 4πfsky/Ng. There is no correction to be

made to the cross-power between the different bins. However, we also consider

the cross-correlation between our data and that of Z20 and the computation of

shot noise is more complicated in that case, since it depends on the numbers of

galaxies that are in common to the two catalogues (which is non-zero even for

cross-correlation).

Data points with error bars in Fig. 5.3 show the 10 measured galaxy auto-

and cross-correlations for our data. The off-diagonals show the cross-correlation
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Figure 5.3 The galaxy auto-correlation Cgg` for each redshift slice (diagonal) and
cross-correlation coefficients between different slices (off-diagonal).
The last column shows the auto- and cross-correlations with the
unbinned case, with shot noise subtracted. Data is presented in
groups of 10 modes. The black solid line shows the theory with
the best-fit p(z) and redshift-dependent bias. The fitting of p(z)
is performed simultaneously for all the sub-sections except the last
column for modes in 10 < ` < 500, with a total DOF=49× 10− 7 =
483 and the total χ2 = 471. The break-down of χ2 is in each case is
shown on the top left corner of each sub-section.
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coefficients, defined as

rab =
Cab
`√
Ca
`C

b
`

, (5.7)

where a, b refers to different redshift slices. These are independent of galaxy bias.

In this procedure of finding photometric redshift errors, we use only the large-

scale modes with `max = 500 as discussed above. The cross-correlation coefficients

are flat over a large range of `, and is only dependent on the redshift distribution.

Specifically, using constraints from the 10 auto- and cross-correlations of galaxy

redshift bins, we compute χ2’s in the 7D nuisance parameter space [ai xi0] for

p(z). The fitting also excludes ` < 10 modes. We use a 2-bias model, detailed in

Section 5.1.2, to find the best-fit p(z).

5.1.1 Lensing magnification bias

Finally, we note that the use of cross-correlations in calibrating p(z) is potentially

problematic because of lensing. Even with perfect redshift selection, some

cross-correlation is expected between different tomographic slices because of

magnification bias: lensing by the nearer slice will imprint an image of its

density fluctuations on the more distant slice. Indeed, [149] argue strongly that

magnification bias should be allowed for in CMB lensing tomography. However,

we can see that such effects are unimportant here, as they should be largest for

widely separated bins, and where the bin has the largest count slope. This should

affect above all bin 3, with the highest mean redshift and the highest count slope

(the slopes in slices 0–3 are respectively s ≡ d log10N/dm = 0.19, 0.29, 0.41, 0.57).

But we see from Fig. 5.3 that bin 3 has no significant correlation with bins 0 and

1. The reason for our different conclusion regarding magnification bias is that our

photo-zs are calibrated using the colours of spectroscopic objects, whereas [149]

calibrated their photo-zs using the cross-clustering with a spectroscopic sample.

Magnification bias can affect that cross-correlation and hence the inferred p(z),

but it has no effect on the numbers of objects at a given colour.

5.1.2 Non-linear bias and bias evolution

The galaxy auto-power data beyond ` ' 250 cannot be fit well by a constant

bias. Specifically, the ratio between Cdata
` and CDM

` are roughly constant at small

and large `, with a transition at intermediate scales corresponding to roughly the
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transition between linear and non-linear scales. We allow for this by introducing

two bias parameters for the linear and non-linear regimes separately:

Cgg
` = b2

1C
lin
` + b2

2∆Cnl
` , (5.8)

where C lin
` and the nonlinear correction ∆Cnl

` are computed using the linear and

additional non-linear components of the CAMB power spectrum. This simple

model gives an excellent fit up to ` = 1000. The best-fit linear and non-

linear biases using the best-fit p(z) are shown in Table 5.3. We note that b2 is

systematically larger than b1, obeying the approximate relation b2−1 ' 1.9(b1−1).

In the marginalised case, to speed up the computation, we approximate the best-

fit biases by taking the ratio of the data with the linear and non-linear theory at

different scales using

b2
1,2 =

∑
`

w(`)
Cdata
`

Cth
`

, w(`) =
1/σ2

`∑
`(1/σ

2
` )
. (5.9)

The transition scales are different for each redshift slice. For bias fitting, a good

approximation is the scale at which the fraction of the nonlinear power becomes

comparable to the measurement error. This ranges between ` ∼ 100− 200 from

low to high redshift slices. The drawback of this approximation is that the

intermediate scales are hard to control, but it gives biases close to the lowest

χ2 value. In this case, the best-fit p(z) gives χ2 = 471 with DOF = 483. The

model parameters are shown in Table 4.1, and the convolved mean p(z) with

its 1σ deviation is shown in Fig. 4.6. The best-fit spectra are shown as black

solid lines in Fig. 5.3, with the galaxy biases and break-down of χ2 printed for

each case. The measured galaxy biases and their errors for each redshift slice

are shown in Table 5.3. We have checked that with `max = 500, the best-fit p(z)

model and the marginalised case give almost identical amplitude constraints on

the cross-correlation of CMB lensing and ISW effects. Therefore, in the following

analysis, we will carry out the modelling using the best-fit p(z).

The linear and non-linear biases evolve with redshift, with b1 increasing from 1.2

to 2.0 over redshift 0.2 to 0.7, although the trend is not quite monotonic (see

Fig. 5.4). This is consistent with the expectation for luminosity-limited galaxy

samples in which high-z galaxies are intrinsically brighter, thus those galaxies

tend to occupy more massive dark matter haloes. In general, such evolution can

be locally treated as a constant if the redshift bin is thin, or if the distribution
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Figure 5.4 Linear and non-linear bias parameters, b1 and b2 (Eq. 5.8), as
a function of mean redshift. The circles show minimum-χ2 bias
measured in 8 sub-bins, the stars and triangles show that measured
in 4 bins, and the solid lines show quadratic fits to the circles.

Table 5.1 The effective redshift and the perturbation to the quadratic fits of the
bias evolution.

Bin 0 1 2 3 unbinned
zeff 0.21 0.39 0.52 0.66 0.42
δb1 −0.010 0.098 −0.033 0.029 −0.005
δb2 −0.022 0.159 −0.056 −0.056 0.027

is symmetric. However, for bin 3, which has a tail towards higher redshifts, and

for an analysis of the unbinned sample, such an approximation breaks down, and

the full bias evolution needs to be included in the kernel. To determine the bias

evolution more precisely, we sub-divided each bin into two bins. We approximate

the redshift distribution of each sub-bin by convolution of the raw p(z) with

the best-fit photo-z error of that bin. Then for each sub-bin we fit linear and

non-linear biases as above. These measurements are consistent with the 4-bin

case. The biases as a function of the mean redshift in that bin can be fitted

by a quadratic function (see Fig. 5.4). We only use the increasing part of the

quadratic, and extrapolate the decreasing part beyond the function’s minimal

point by a constant. To match the auto-correlation amplitude, for each bin, we

introduce a small correction bi(z) = (1 + δbi)b
0
i (z), where i = 1, 2, b0

i (z) is the

fitted quadratic curve, and δbi � 1. We find δbi by iteration, shown in Table 5.1.

This model agrees with our measurements very well in general, as seen in Fig. 5.3,

with reasonable χ2/DOF overall and for most individual spectra. The auto-power
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for bin 1 has χ2 on the high side, but we were unable to identify any systematics

that could account for this (e.g. looking for discrepant sky sub-areas in the data).

In any case, the look-elsewhere effect is clearly relevant here, with 10 spectra to

consider. It is worth noting that χ2 is nominal for bin 3, even though this has the

largest volume and the lowest errors. Indeed, the precision of this bin and bin 2

is sufficient to show a clear signal from Baryon Acoustic Oscillations (BAO).

Overall, then, these cross-correlation results reassure us that the clustering of the

galaxy samples and the calibration of the underlying p(z) distributions is robust,

and that the samples are ready for the cross-correlation analysis with the CMB.

5.1.3 Marginalising photo-z parameters

We marginalise our photometric redshift parameters in the following way. We

look at 7 parameters: x0, x1, and x2 are defined as in Eq. 4.1 for bin 0, 1, and 2

respectively, whereas for bin 3, x3 = −x0− x1− x2. We also use fi = ai/a
spec
i for

the tail parameters. Wider tails mean smaller a, so we take the upper limit of f to

be 1, i.e., we assume that the scatter of faint objects always increase the tails. We

then run a grid search in the 7-dimensional parameter space, taking a 10 points in

each parameter with range listed in Tab. 5.2 to compute the χ2 of the 10 galaxy

auto- and cross-correlations. MCMC is not adopted in this case for two reasons.

Firstly, the prior range is hard to determine without a grid search, thus running

a MCMC may result in longer computational time for convergence. Secondly, we

would like to marginalise over these parameters, rather than interested in their

detailed posterior distribution. A grid search should suffice our purpose for this

analysis. As mentioned before, for each case, we fix the galaxy bias (linear and

non-linear) at the lowest χ2 values, and fit for modes 10 < ` < 500. Fig. 5.5

shows the likelihoods for this parameter search. The black lines on the diagonal

points indicate the mean parameter values. The mean and 1−σ of the convolved

redshift distribution p(z) weighted by the likelihoods in each tomographic slice

is shown in Fig. 4.6. We also propagate this likelihood to the computation of

Aκ and AISW. This is summarised in Table 5.3. It is clear that the marginalised

constraints are similar to that coming from the the best-fit p(z). Therefore, in

the following analysis including the unbinned case, we use the best-fit p(z) and

its set of galaxy biases.
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Figure 5.5 The likelihood for the 7 photometric redshift parameters fitted to the
10 galaxy auto- and cross-correlations between the four tomographic
bins. The likelihood is estimated based on a grid search with 10
points in each parameter. The black lines on the diagonal points
indicate the mean parameter values.
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Table 5.2 The range of the photo-z parameters used in fitting the 10 galaxy auto-
and cross-correlations. We take 10 uniform points in each parameter
to compute the likelihood. The f0 − f3 parameters controls the tail of
the photo-z error. fi = 1 indicates the same tail as the calibration
sample, while fi < 1 indicates a larger tail. The x0 − x2 parameters
control the shifts in the mean redshifts of bin 0 to 2, and the shift in
bin 3 is given by x3 = x0 + x1 + x2.

Parameter Range
f0 [0.7, 1]
f1 [0.7, 1]
f2 [0.7, 1]
f3 [0.5, 1]
x0 [−0.02, 0.01]
x1 [−0.01, 0.02]
x2 [−0.01, 0.01]

5.2 Cross-correlation with CMB

5.2.1 The Planck CMB maps

The Planck 2018 lensing and temperature maps are shown in Fig. 5.6 and 5.7.

In computing the galaxy-lensing cross-power signal, we encountered unexpected

practical issues. The Planck CMB lensing data are made available as spherical

harmonic coefficients, from which the required κ map can be obtained by using

the alm2map routine within the Healpy package. The maximum wavenumber is

2048 in the 2015 release and 4096 in the 2018 release. The 2015 map is already

dominated by small-scale noise, but the noise spectrum in the 2018 map displays

a nearly divergent spike at high `: Cκ
` increases from about 10−4 at ` = 3650 to

over unity at ` = 4096. This creates numerical problems in reconstructing the

map, so that e.g. making a map at Nside = 512 directly yields a different answer

to creating a map at 2048 and downgrading to 512. The spike at ` = 2048 can

be tamed by filtering the map, but a sufficiently large FWHM is required that

modes at ` < 100 would be affected. In practice, therefore, we chose to truncate

the data at ` = 2048, consistent with the 2015 data. With the adoption of a

standard resolution of Nside = 1024 for our analysis, the results were robust (and

only slightly different from Nside = 512).

A further issue concerned coordinate systems: the CMB maps are supplied

in galactic coordinates, whereas we constructed our galaxy maps in equatorial
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Figure 5.6 The Planck 2018 CMB lensing convergence κ map with `max = 2048.

coordinates. Facilities exist within Healpy for performing the rotation in a`m,

but we found that the rotation generated artefacts in the lensing auto-power Cκ
` ,

which we attribute to the extremely noisy nature of the lensing map, dominated

by fluctuations on the inter-pixel scale. After tests at a range of resolutions, we

are confident that this issue does not affect the regime of our measurements, out

to ` = 500.

5.2.2 Cross-correlation with the lensing convergence map

Fig. 5.8 shows the measured galaxy-κ cross-power, with the solid black lines

showing the theory using the best-fit p(z) and biases obtained from the galaxy

auto- and cross-correlations. The black lines are not fits to the data points. To

quantify the consistency between data and theory, we include a scaling factor for

the lensing amplitude, Aκ, such that Cth
` = AκbC

DM
` . In terms of the two bias

model, this is

Cth
` = Aκ

[
b1C

DM;lin
` + b2∆CDM;nl

`

]
. (5.10)

The constraints on Aκ as a function of maximum `-mode is shown in Fig. 5.9.

The coloured points show measurements from individual tomographic slices, the

black open circle shows the product of the four likelihoods, and the black solid

points show that from the unbinned case. The mean and 1-σ deviation for each

of these likelihoods are presented in Table 5.3.
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Figure 5.7 The Planck 2018 CMB temperature map. The map has been
smoothed by a Gaussian symmetric beam of FWHM= 5arcmin.
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Figure 5.8 The galaxy-lensing cross-correlation Cgκ` for each redshift slice and
the unbinned case. The solid lines are theory with the best-fit p(z)
and the same galaxy biases as in Fig. 5.3.
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Figure 5.9 The mean and 1-σ of Aκ likelihoods. Individual bins are shown in
blue (bin 0), purple (bin 1), pink (bin 2), and orange (bin 3) points,
while the product of the four bins is shown in black open circles.
The solid black points show the unbinned case, using the set of best-
fit p(z).

Our conclusion is that all of these options consistently yield Aκ close to 0.9, and

that the deviation from the fiducial Planck prediction is real. In order to report

an overall amplitude for Aκ, we need to combine the different redshift slices, which

we do in the simple approximation that the slices are independent. Because this

is not exact, we also consider an unbinned analysis in which all objects at z < 0.8

are combined; this gives closely consistent results to the outcome of averaging the

four slices. We adopt the mean of the unbinned measurements using the two sets

of photo-zs as our final result:

Aκ = 0.901± 0.026. (5.11)

This significant discrepancy with the fiducial model is one of the principal results

of this work. The implications are discussed in Section 5.2.5. A particularly

interesting point is that the overall amplitude of CMB lensing, dominated by

LSS at z ' 2, is nevertheless consistent with the fiducial model. What we will

show is that these two observations in combination require a matter density lower

than the fiducial value.
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Figure 5.10 The galaxy-temperature cross-correlation CgT` for each redshift
slice and unbinned case. The solid lines are the fiducial ΛCDM
predictions with the best-fit p(z) and the same galaxy biases as in
Fig. 5.3.

5.2.3 Cross-correlation with the temperature map

Fig. 5.10 shows the measurements of galaxy-temperature cross-correlations. The

signal is dominated by noise at ` > 50. The black solid line shows the theory

prediction using the best-fit p(z) and bias from galaxy auto-correlations. As with

the lensing case, we introduce an ISW amplitude AISW in order to compare theory

and data, such that Cth
` = AISWbC

DM
` . In the two bias case, it is

Cth
` = AISW

[
b1C

DM;lin
` + b2∆CDM;nl

`

]
. (5.12)

The likelihood for AISW is then computed for each set of p(z), then marginalised

over. The marginalised likelihood for AISW is almost identical with that of the

best-fit model, as shown in Table 5.3. Fig. 5.11 shows the likelihoods of AISW

for each redshift slice (coloured) and combined (black) in the marginalised (solid

line), mean parameter (circles), and best-fit (dotted line) model cases. The mean

and width of individual curve are presented in Table 5.3. The combined likelihood

shows a clear detection of the ISW signal, with AISW = 0.984± 0.349, excluding

zero at 2.8σ.

In contrast to the CMB lensing signal, the temperature cross-correlation is thus

in good agreement with the fiducial ΛCDM prediction of the ISW effect, although

the intrinsically greater cosmic variance on the ISW signal means that we cannot

exclude discrepancies at the same level as seen in the lensing signal. The overall

modest S/N also prevents strong statements about the signal as a function of

redshift, although AISW is positive and consistent with unity in all bins. The

lowest signal is seen in our highest-redshift bin, AISW = 0.18 ± 0.67, which is

interesting in the light of the report by [13] of a null signal at z = 0.68 using
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Figure 5.11 The mean and 1-σ of AISW likelihoods. Individual bins are shown
in blue (bin 0), purple (bin 1), pink (bin 2), and orange (bin 3)
points, while the product of the four bins is shown in black open
circles. The solid black points show the unbinned case, using the
set of best-fit p(z).

a combined VST+SDSS sample of LRGs: AISW = −0.89 ± 0.82. Our signal is

certainly closer to the fiducial AISW = 1 than to this result, but the lack of a clear

ISW signal in this bin remains.

5.2.4 Consistency checks

A tendency for the CMB lensing signal to lie below the fiducial model is seen

consistently in all tomographic bins. It is also a robust feature, which does not

alter with different treatments of the photometric redshifts. We summarise the

results of a number of options that we considered in Fig. 5.12. We can consider

our photometric redshifts or those of Z20; we can further restrict the Z20 sample

to objects in the calibratable region of multicolour space; we can clip the photo-

z catalogues to remove objects where the estimates are discrepant (we choose

a threshold of |∆z| = 0.05); we can adjust one of the photo-z catalogues to

remove any offset in 〈∆z〉 as a function of redshift; we can remove objects that

are placed in different tomographic bins by the two catalogues. All of these

options potentially alter the error distribution and hence the true p(z) of the

selection. The nuisance parameters governing these distributions were therefore

re-optimised using the galaxy cross-correlations in each case. The impact of some
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Table 5.3 The linear and non-linear bias and constraints on Aκ and AISW for
various cases at `max = 500. The first row shows the case where all
p(z) parameters are marginalized over. The second row shows the case
for best-fit p(z) parameters. The third and fourth rows show the cases
using the photo-z from [314] (Z20) and that with the applied offset.
The last row shows the case of using the AvERA model described in
[22].

Parameters bin0 bin1 bin2 bin3 combined Un-binned

Redshift 0 < z ≤ 0.3 0.3 < z ≤ 0.45 0.45 < z ≤ 0.6 0.6 < z ≤ 0.8 - 0 < z ≤ 0.8
Marginalized over p(z)

b1 1.25± 0.01 1.53± 0.02 1.54± 0.01 1.86± 0.02 - -

b2 1.27± 0.01 1.85± 0.03 1.82± 0.01 2.23± 0.02 - -

Ak 0.91± 0.05 0.82± 0.04 0.94± 0.04 0.90± 0.04 0.89± 0.02 -

AISW 0.52± 0.78 1.20± 0.63 1.48± 0.61 0.18± 0.67 0.91± 0.33 -

Best-fit p(z)
b1 1.25 1.56 1.53 1.83 - 1.43

b2 1.26 1.88 1.84 2.19 - 1.59

Ak 0.91± 0.05 0.80± 0.04 0.94± 0.04 0.91± 0.04 0.88± 0.02 0.91± 0.03

AISW 0.52± 0.75 1.17± 0.58 1.44± 0.52 0.18± 0.67 0.91± 0.33 0.99± 0.35

Zhou et. al.
b1 1.25 1.54 1.55 1.90 - 1.44

b2 1.26 1.87 1.90 2.21 - 1.62

Ak 0.91± 0.06 0.81± 0.04 0.93± 0.04 0.87± 0.04 0.87± 0.02 0.89± 0.03

AISW 0.50± 0.79 1.03± 0.59 1.37± 0.55 0.20± 0.63 0.82± 0.33 0.98± 0.35

Offset
b1 1.28 1.52 1.54 1.89 - 1.45

b2 1.30 1.86 1.87 2.20 - 1.64

Ak 0.89± 0.05 0.81± 0.04 0.93± 0.04 0.89± 0.04 0.87± 0.02 0.88± 0.03

AISW 0.45± 0.81 1.05± 0.58 1.32± 0.56 0.25± 0.46 0.83± 0.33 0.99± 0.35

AvERA model
b1 1.16 1.34 1.25 1.46 - 1.23

b2 1.11 1.50 1.45 1.75 - 1.33

Ak 0.97± 0.06 0.80± 0.04 0.91± 0.04 0.85± 0.04 0.87± 0.02 0.91± 0.03

AISW 0.24± 0.35 0.48± 0.25 0.55± 0.23 0.07± 0.24 0.35± 0.13 0.39± 0.14
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Figure 5.12 Measurements of Aκ and AISW for various data selections at
`max = 500 using the appropriate best-fit p(z) for each set. The
blue dashed line and band shows our default result, which is the
average of the first two data points in each column. These represent
a single unbinned analysis, as opposed to the average of the results
for the various tomographic shells. The ‘offset’ results refer to the
impact of the mean differences between our photo-zs and those of
Z20 (see Section 4.2.4).

of these different choices is shown in Fig. 5.12.

5.2.5 Implication of low Aκ

We first consider the simplest interpretation of our low Aκ amplitude for the

galaxy-CMB lensing cross correlation in terms of parameters within the ΛCDM

model. The lensing signal at low z has a direct linear dependence on the matter

density fluctuation, which is proportional to the mean density times the relative

fluctuation – i.e. to Ωmσ8. The cross-correlation is also proportional to galaxy

bias, but we have shown in Section 5.1 how that degree of freedom can be

determined separately by including the galaxy auto-correlation data. At non-zero

redshifts, the dependence on Ωm becomes nonlinear as this parameter influences

distances and evolution of density fluctuations. For our range of redshifts, the

empirical density dependence of the amplitude is as Ω0.78
m , so that our result for

Aκ produces the following constraint:

σ8Ω0.78
m = 0.297± 0.009. (5.13)
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The cosmology is fixed when determining bias parameters from galaxy clustering,

and these bias parameters are then used to constrain cosmology from cross-

correlations. This is acceptable, because the bias determined such that bσ8 is

matched to the overall amplitude of the measured galaxy clustering. The cross-

correlation amplitude depends on bσ2
8. Therefore, if we change the σ8 parameter

in fitting galaxy clustering (thus determining the corresponding bias parameters),

the change in the cross-correlation amplitude will only depend on the change in σ8.

The amplitude of galaxy clustering is not sensitive to changes in Ωm parameter,

and thus also does not affect the determination of the bias parameter.

It is interesting to note that total CMB lensing itself produces a constraint of a

similar form, but with a different density dependence:

σ8Ω0.25
m = 0.589± 0.020 (5.14)

[228]. A straightforward combination of these two results yields

Ωm = 0.275± 0.024; σ8 = 0.814± 0.042; (5.15)

the same normalisation as Planck , but a somewhat lower density.

It is interesting to compare these results with analogous constraints from weak

galaxy lensing. Here the dependence on density is intermediate in strength. The

constraints from the cosmic shear measurement of KiDS-1000 [15] and DES Y1

[291] are as follows:

σ8Ω0.5
m = 0.416+0.013

−0.011 KiDS− 1000 (5.16)

σ8Ω0.5
m = 0.428± 0.015 DES− Y1 (5.17)

which is in close consistency with what would be deduced from the CMB lensing

results: σ8Ω0.5
m = 0.427, as opposed to the fiducial 0.455. In combination, these

three lensing results then give a clear preference for a model with a rather lower

density than the Planck fiducial model, as illustrated in Fig. 5.13:

Ωm = 0.274± 0.024; σ8 = 0.804± 0.040. (5.18)

It can be noted that the KiDS-1000 papers preferred to interpret their results in

terms of a reduced σ8, but a shift purely in normalisation is disfavoured by the
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Figure 5.13 Comparison of constraints on the Ωm − σ8 plane; the contours
contain 68% and 95% of the total probability. Note the consistent
intersection of the three lensing-based results. The KiDS-1000 +
DES Y1 constraint are for cosmic shear only. We use a Gaussian
likelihood for DES Y1 and a skewed Gaussian using model 2 of [18]
for KiDS-1000 to account for their asymmetric errors. This figure
is produced by Shadab Alam, the author on the paper in which this
section was published. The figure is adopted here as to maintain
the clarity of discussion from that work.

total CMB lensing amplitude, quite apart from our current results.

The conflict of this result with Planck is marked: ∆χ2 = 12 on 2 degrees of

freedom, which represents a p value of 2×10−3. In these circumstances, we should

be cautious in accepting the formal combination of the above lensing result with

Planck , which is

Ωm = 0.296± 0.006; σ8 = 0.798± 0.006. (5.19)

In fact, this unimaginative compromise model is arguably not ridiculous: it lies

within the 95% confidence contours of both our combined lensing result and

Planck . The value of Ωm alone would represent a 2.7σ deviation from Planck ,
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but consistency in σ8 is better and there is no prior reason to be more concerned

about a deviation in one or other of these parameters. Nevertheless, agreement

this weak is asking a lot of bad luck: we may be fairly sure that systematics are

present, and the question is whether they lie in the data or in the theoretical

framework. From the point of view of the actual values of Ωm and σ8, ‘new

physics’ counts as just a further systematic on the same footing as data errors

[25], but these alternatives are hardly equal in their implications.

5.2.6 Discussion

Imperfections in data

The most conservative assumption is that there are indeed imperfections in the

data. If these were to lie on the lensing side, we would point the finger of suspicion

at photometric redshifts, which are a dominant source of potential bias. We have

discussed the reliability of the photo-zs used in this paper at some length, and a

huge effort has been invested in this topic by galaxy weak lensing groups – using

rather different data and methods to the approach taken here. On the CMB side,

the exemplary thoroughness of the Planck analysis makes one reluctant to suggest

any imperfection, but there are issues. Apart from the continuing puzzle of the

well-known large-scale anomalies, there is the fact that the Planck TTTEEE

data prefer an amplitude of CMB lensing that is higher than fiducial: Alens =

1.180± 0.065, which represents some form of internal inconsistency. These issues

were investigated in detail by [74], who argued that that the anomalies represented

no more than slightly unusual statistical fluctuations in the Planck dataset and

that there was no evidence of systematics at an important level. Where large-

scale properties of the CMB are concerned, cosmic variance dominates and the

many independent Planck maps can indeed give confidence that systematics are

negligible. But in the noise-dominated regime, where the best results require the

combination of all data subsets, residual systematics at the few-σ level are not so

easy to rule out. The Planck constraint on Ωm does depend significantly on the

high−` data, and so could be considered potentially less robust. We therefore

think it is plausible that the compromise solution with Ωm ' 0.296 may be close to

the truth. If we look at CMB constraints independent of Planck , ACT+WMAP

yields Ωm = 0.313 ± 0.016, which is easily consistent with 0.296; this work also

has Alens very close to unity [7].
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Implications for the Hubble parameter

A slightly reduced matter density would also have the advantage of reducing

the other tension that is currently the subject of much discussion: the Hubble

parameter. The most robust inference concerning H0 from the CMB comes

from the main acoustic scale, which can be taken empirically as measuring the

combination Ωmh
3 with negligible error [217]. If we use this as a basis for

rescaling the fiducial model, the compromise Ωm = 0.296 would require H0 '
69 km s−1Mpc−1. This 2% increase from the fiducial value is still significantly

below the direct determination of 74.03±1.42 [244], but again would only require

a modest level of systematics for consistency. Furthermore, taking seriously the

Ωm ' 0.274 from the combined lensing data would imply a completely consistent

H0 ' 71.

Consideration of variations in h prompts us to ask whether the predicted Aκ

depends on h. From Eq. 3.40, we can see that there is no explicit h dependence,

since h times comoving distance is a function of redshift and Ωm only. The scale

at which σ8 is determined is accessible to the range of ` under study, so changes

in power-spectrum shape arising from changes in h would be expected to have a

minor effect. In practice, we find Aκ ∝ h0.24, which is equivalent to a negligible

Ω0.08
m effect when considering variations with Ωmh

3 fixed.

It is undeniably depressing to be considering the possibility that one or more of

the leading current cosmological datasets could be reporting results that contain

systematic errors of close to 2σ, but equally we need to beware of too hastily

declaring the existence of new physics as soon as we see a minor statistical

discrepancy. Because there are in principle two distinct discrepancies, affecting

Ωm − σ8 and H0, a single new addition to the cosmological model that solved

both issues would demand to be taken seriously. But both the lensing and H0

discrepancies have existed in the literature for some while, and it is fair to say

that no compelling solution has emerged. Nevertheless, it is worth reviewing

some selected candidates.

Massive neutrinos

It is known that neutrinos make a non-zero contribution to the non-relativistic

density, with a summed mass of at least 0.06 eV (Ωνh
2 > 0.00064). Owing to

free streaming, the neutrino distribution is close to homogeneous on the scales of
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LSS, and therefore the lensing effect is reduced in two ways: the clumped mass is

only the CDM, with a density (1−fν)Ωm; this lower effective dark matter density

slows growth since last scattering, reducing σ8 today. At first sight, these effects

sound as if they have the potential to close the gap between lensing results and

Planck , but this is not so. Firstly note that we do not really need to be concerned

with growth suppression for the interpretation of the lensing results themselves,

since the lensing signal is directly proportional to the low-redshift normalisation.

Furthermore, the standard definition of σ8 (adopted by Planck and CAMB) is

that it is the rms fractional fluctuation in the total matter density. The fractional

fluctuation in the CDM density is thus σ8/(1 − fν), and this raised amplitude

compensates for the lower clumped density, so that the lensing signal for a given

Ωm and σ8 should be independent of the neutrino fraction. The only subtlety is

that the growth between z = 1− 2 and z = 0 will be slightly less than in ΛCDM

for the given Ωm. But this is a tiny effect: fg is about Ωm(z)0.6, so the relative fg

is (1−fν)0.6, so the mass fluctuations at z = 1−2 are higher by of order 1+0.6fν

than in ΛCDM for a given z = 0 normalisation, which is a negligible correction.

Therefore, all the dependence on neutrino fraction on the Ωm − σ8 plane comes

from Planck . Inspecting their chains, the effect is approximately σ8 ∝ (1− fν)2.2

and Ωm ∝ (1 − fν)
−2.5. Although the predicted normalisation is reduced, as

expected, the best-fit density rises and so the tension between primary CMB and

lensing is increased if there is a non-minimal neutrino fraction.

Modified gravity

A more effective modification of theory concerns the strength of gravity. To avoid

excessive complication, it is common to approach this in a form that includes two

linear parameters that modify the scalar potentials Ψ and Φ, which describe

fluctuations in the time and spatial parts of the metric. In the standard model,

Ψ = Φ and the potentials satisfy the Poisson equation. The most transparent

modification is to scale the forces for non-relativistic particles (from Ψ) and

photons (from Ψ + Φ) that result from a given mass fluctuation, δ, so that

∇2Ψ ∝ (1 + µ)δ and ∇2(Ψ + Φ) ∝ (1 + Σ)δ (e.g. Simpson et al. 2013). The

motivation for modified gravity comes from late-time accelerated expansion, and

therefore it is normally assumed that the modifications evolve as

(µ(z),Σ(z)) = (µ0,Σ0) ΩΛ(z), (5.20)
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so that modifications are unimportant at last scattering. Since ΛCDM seems

to describe the expansion history well, it is also assumed that the modifications

affect only perturbations. Thus the cosmological parameters inferred from the

CMB should be unaffected in this framework, and therefore modified gravity can

be used to close any gap between the predicted and observed lensing signal. There

is a degeneracy here: for Σ = 0 (normal lensing strength), we can appeal to µ < 0

to reduce the growth in fluctuations; alternatively, we can have normal growth

with µ = 0 and suppress the resulting lensing signal by appealing to Σ < 0. In

either of these solutions, it would be understandable that the total CMB lensing

signal is consistent with standard gravity, because it arises around z = 2, where

the modifications are only just switching on. To achieve Aκ ' 0.9 at z ' 0.5,

where ΩΛ = 0.4, we need either Σ0 = −0.25, or µ0 = −1.5. The large value for µ0

seems surprising at first sight, implying close to total suppression of LSS gravity

at the present epoch. This is partly a consequence of the µ ∝ ΩΛ(a) assumption,

and also because µ suppression of the strength of gravity only alters the growth

rate: to achieve significant reduction in δ at z ' 0.5 would require substantial

alteration to the growth rate at much higher redshifts, which is hard to achieve

in this model unless µ0 is large. Such a model can be ruled out by other evidence,

since it would imply a very non-standard growth rate at z = 0.5, whereas we

know from redshift-space distortions that the rate is within about 10% of fiducial

at this redshift [320].

In summary, then, an explanation of a low lensing amplitude via modified gravity

must involve an alteration of the strength of light deflection by a given mass

concentration, rather than reducing the amplitude of mass fluctuations. Such an

explanation appears to be consistent and not in conflict with other evidence, but

one could hardly call it compelling – not least because it has no impact on the H0

tension; such a radical conclusion requires more than a single piece of evidence.

In due course, we will have more accurate tomographic lensing and redshift-space

distortion data where changes in the growth rate and strength of lensing with

redshift can be measured, so that a progressive decline in the strength of lensing

could be measured. Without such evidence, this hypothesis is at best provisional.

5.2.7 AISW and implication on AvERA model

An interesting approach that has been proposed with a view to explaining

the high claimed ISW signal from superstructures is the AvERA model [234].
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This is a radical framework that postulates a critical-density universe without a

cosmological constant, but with averaging of an inhomogeneous expansion rate,

leading to an apparent acceleration as measured by the mean effective Hubble

parameter. The model can be adjusted so that the empirical H(z) relation rather

closely matches the standard ΛCDM case – which has the advantage that the

conversion between distance and redshift remains as in the standard model, so

that inferences from the CMB regarding density parameters and the shape of the

matter power spectrum remain valid.

On the other hand, the amplitude of the spectrum is modified in this model, and

the density growth rate fg ≡ d ln δ/d ln a is rather different from ΛCDM. There

is a spike above fg = 1 around z ' 2 and in general the rate is higher than the

standard model; thus, the required value of σ8 at z = 0 has to be increased in

order to be consistent with the amplitude of primordial fluctuations inferred from

the CMB. A convenient fitting formula for the growth rate is

fg(a) = exp(−2.308a2) + 0.549[1 + 11.569(ln a+ 1.222)2]−1. (5.21)

Integration of this expression implies that σ8(z) for AvERA is above ΛCDM

at high redshift, by as much as a factor 1.2 at z = 1.5. Conversely, the low-

redshift evolution is slower and the amplitude of present-day matter fluctuations

is about 5% lower than ΛCDM. The two models predict identical amplitudes

at z ' 0.08. Thus, for redshifts relevant for our tomographic data, the AvERA

model predicts a higher density fluctuation, so that the predicted amplitude of the

linear ISW signature is greater. There will also be a greater degree of nonlinear

evolution. We treat this by assuming that the nonlinearities can be estimated in

the Halofit framework by taking the standard ΛCDM approach and increasing

σ8(z) appropriately. This should be sufficient to indicate how important the

increased nonlinearity might be (this will be more of a potential issue for lensing,

where even weak lensing can be dominated by nonlinear structures on small

enough angular scales).

We use the Planck 2018 Cosmological parameters [227], and set the power

spectrum of AvERA to be identical to ΛCDM at z = 8.55 consistent with [22]. We

use the fitting formula in Eq. 5.21, and interpolate the AvERA H(z) and R(z) as

given by [22]. Fig. 5.14 shows the matter auto-correlation, matter-κ, and matter-

T cross-correlations in AvERA and ΛCDM with both linear and non-linear power

spectra, using the best-fit p(z). As expected, the AvERA prediction has a higher

amplitude than ΛCDM. The corresponding galaxy biases are significantly smaller
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Figure 5.14 The dark matter auto-correlation (top), the matter-κ cross-
correlation (middle), and the matter-temperature cross-correlation
(bottom) in ΛCDM (red) and AvERA (blue) model for the four
tomographic bins using the best-fit p(z). The solid lines show
computation using linear power spectrum, and the dashed lines
show that using non-linear power spectrum from Halofit.
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Figure 5.15 The constraints for Aκ from the normalised likelihoods in the
AvERA model using the best-fit p(z) and fitted galaxy bias.

in the AvERA case as shown in Table 5.3, but this effect is absorbed in the lensing

cross-correlation, resulting in similar constraints on Aκ. The likelihoods for Aκ

and AISW are obtained in Figs 5.15-5.16. In this case, we find Aκ = 0.87 ± 0.02

for the product, and Aκ = 0.91 ± 0.03 for the unbinned case. In the ISW case,

the AvERA prediction is about three times as large as ΛCDM. The preferred

amplitude is AISW = 0.35 ± 0.13 from the product of tomographic bins, and

AISW = 0.39 ± 0.14 from the unbinned result. Adopting the unbinned case, this

ISW result excludes unity at 4.4σ and we can be confident that the AvERA model

greatly over-predicts the general level of ISW fluctuations.

5.3 Summary and discussion

We have performed a tomographic analysis of the cross-correlations between

Legacy Survey galaxies and the Planck CMB lensing convergence and tempera-

ture maps, covering 17 739 deg2. We obtained our own photometric redshifts for

the Legacy Survey based on g − r, r − z, and z −W1 colours, with a precision

of σz/(1 + z) = 0.012 − 0.015. The galaxy sample is divided into four wide

redshift bins between z = 0 and z ' 0.8. We model errors in photometric

redshift with respect to calibration data sets via a modified Lorentzian function,

and constrain the tails of the error distribution by requiring consistent prediction
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Figure 5.16 The constraints for AISW from the normalised likelihoods in the
AvERA model using the best-fit p(z) and fitted galaxy bias.

of the galaxy cross-correlation signal between different tomographic bins. This

modelling incorporates a novel scheme for dealing with scale-dependent bias

(Eq. 5.8), in which the linear and nonlinear parts of the matter power spectrum

receive independent boosts to their amplitudes. The consistency of the galaxy

clustering and its cross-correlations argues that the galaxy sample from the

Legacy survey is robust, and that the properties of the photometric redshifts

are understood.

We then proceeded to evaluate the cross-correlation between the tomographic

galaxy maps and the CMB maps of temperature and lensing convergence. The

results are compared with the predictions of the fiducial Planck cosmological

model, marginalizing over the photo-z error parameters with weights given by

the likelihood from fitting galaxy auto- and cross-correlations.

The amplitude for the ISW signal relative to the fiducial prediction is AISW =

0.98 ± 0.35, consistent with ΛCDM, as found by previous works, e.g. [280]. We

also explored the AvERA model [234], which was developed in order to explain

the claimed excess signal in the stacked ISW signal in supervoids. We find that in

this model, Aκ = 0.91± 0.03, and AISW = 0.39± 0.14, with significantly smaller

galaxy biases compared to the ΛCDM case. Thus, the AvERA model achieves its

aim of predicting an enhanced supervoid signal at the price of raising the overall

level of ISW power to the point where it is inconsistent with observation, even

given the relatively noisy nature of the ISW signal. If the supervoid signal is

159



found to persist in future studies, AvERA cannot be the explanation.

The amplitude of the CMB lensing signal is found to be significantly lower than

the prediction of the fiducial Planck model, with a scaling factor Aκ = 0.901 ±
0.026. We note that this lower amplitude is consistent with the results from an

analysis of cross-correlation between CMB lensing and a DESI LRG sample based

on the Legacy Survey data [140]. Our result can be translated into constraints on

the parameter combination σ8Ω0.78
m = 0.297±0.009. The total CMB lensing signal

provides an alternative constraint on this plane, of σ8Ω0.25
m = 0.589± 0.020 [228],

which also represents an amplitude lower than fiducial, although only by 1σ. In

combination, these CMB lensing figures prefer a solution with a relatively low

matter density of Ωm ' 0.274. These CMB lensing results are also in excellent

agreement with the value of σ8Ω0.5
m deduced from weak galaxy lensing [15, 291].

Within the compass of ΛCDM, the model that does least violence to lensing and

CMB data is

Ωm = 0.296± 0.006, σ8 = 0.798± 0.006, (5.22)

and this is consistent with the 95% confidence ranges from both datasets. It is

therefore worth taking seriously the possibility that the true cosmic density is

substantially on the low side of the fiducial Planck estimate. Such a reduction

would also reduce the H0 tension, raising the best-fitting CMB value to around

69 km s−1Mpc−1 – although this would still imply the existence of systematics in

the direct H0 data (see e.g. Efstathiou 2020).

We therefore face a situation where at least two of three currently dominant

cosmological probes contain unrecognised systematics at the level of a few

standard deviations, or the standard model must be extended. The choice

between conservatism or revolution is perhaps not so easy in the current

circumstances, but the next generation of experiments should settle the question

beyond all doubt.
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Chapter 6

Stacked CMB lensing and ISW

signals around superstructures in

the DESI Legacy Survey

6.1 Introduction

Chapter 5 has shown that the impact of LSS on the CMB from lensing and ISW

is close to the LCDM prediction, within a discrepancy of order 10%. But the

literature contains claims of much larger discrepancies in the amplitude of these

foreground effects. Granett et al. [101] averaged CMB temperature maps at the

positions of 50 objects identified as voids and clusters that had the most extreme

density contrasts as measured using the SDSS LRG sample. By comparison

to ΛCDM simulations, they claimed an excess ISW signal of 4σ significance.

Subsequently, [40, 42, 144, 145] used stacking techniques and claimed an ISW

signal that was higher than the ΛCDM prediction at moderate significance. [190]

reported a signal consistent with ΛCDM using the whole void catalogue, rather

than focusing on superstructures. Most recently, [146], hereafter K19, measured

the stacked ISW signal using the DES supervoids with radius Rv > 100h−1 Mpc,

and found an amplitude relative to the ΛCDM prediction of AISW = 5.2± 1.6 in

combination with BOSS. In a separate paper, [298] measured the stacked CMB

lensing convergence signal for the same objects, and found no discrepancy with

ΛCDM.
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The anomalous ISW amplitude from supervoids is of interest in terms of modified

gravity, where the screening mechanisms in some theories are less effective in

empty regions [50]. However, there has not been a satisfactory explanation for

this excess signal. [40] argued that the signal is unlikely to be caused by Sunyaev-

Zel’dovich effects, non-Gaussianity, or modified gravity (see also Nadathur et al.

2012). Another possible explanation comes from the AvERA (Average Expansion

Rate Approximation) model [22], which assumes an inhomogeneous expansion

rate with ΩΛ = 0 and predicts a higher overall ISW signal by modifying the growth

rate. However, [114] showed that the AvERA model prediction is inconsistent

with galaxy-temperature cross-correlation results, so the ability of the AvERA

model to account for the supervoid results is subject to doubt.

One needs to be cautious in interpreting the stacked results. Firstly, the definition

of supervoids is not exactly the same in each case. In some cases, voids are

defined in 3D density fields based on e.g., the ZOBOV algorithm [197], whereas

in other cases the void definition is based on 2D smoothed density fields [e.g. 250].

Different void-finding algorithms can lead to different structures being selected.

Secondly, the procedures involve various parameter choices such as the initial

smoothing scale of the density field and threshold criteria for superstructure

selection. Therefore, one needs to make sure that the final result does not depend

on such choices.

Nevertheless, the reported anomalous ISW amplitude is usually at the 2-3σ level.

There is a fair chance that they are statistical flukes. To clarify the situation,

it is useful to use a bigger sample of galaxies for the analysis to beat down the

dominant noise from sample variance. The aim of this work is to repeat the

stacking analysis using superstructures in the DESI Legacy Imaging Survey. The

large sky coverage reduces the noise due to cosmic variance. We use the galaxy

maps produced in Chapter 4 [114], hereafter H21, based on photometric redshifts;

the cross-correlation of these maps with the CMB lensing convergence and ISW

effect provides a baseline for the ISW amplitude coming from superstructures

only. We attempt to adopt the same void finding algorithm as in K19 based on

the 2D maps, although the relatively high thickness of the photometric redshift

bins means that our selected superstructures are not exactly comparable to those

of K19. In order to reduce confirmation bias, we also adopt a ‘blind’ strategy

where we fix our analysis pipeline using mock data based on cosmological N -body

simulations, before we run the pipeline on the actual data.

The Chapter is organised in the following structure. Section 6.2 introduces
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the data used for creating superstructures, the mock galaxy dataset, and the

generated lensing convergence and ISW maps. The void finding procedure and

covariance matrix is described in Section 6.3. We compare our superstructure

catalogues from the real and mock data in Section 6.4 and present the stacking

results in Section 6.5. Finally, we discuss the results and sum up in Section 6.6.

6.2 Simulation

We make use of the MultiDark Planck [MDPL2; 142] simulations with Planck

2013 Cosmology. The simulation is performed with a 1h−1Gpc box with 38403

particles using the L-Gadget 2 codes. The mass resolution of the simulation is

1.51 × 109 h−1M�. The simulation assumes a flat ΛCDM cosmology with Ωm =

0.307, Ωb = 0.048, h = 0.67, ns = 0.96 and σ8 = 0.823. The dark matter

halo catalogue for 32 snapshots between redshift 0 & 1 is processed using the

ROCKSTAR1 phase space halo finder [23], in order to construct galaxy lightcones.

The simulation is publicly available through the CosmoSim database2 [231, 240].

6.2.1 Simulated galaxy light-cones

We use the halo occupation distribution (HOD) model to generate simulated

galaxy catalogues. We only use the measurements of linear and non-linear bias

(H21) to find the best fit HOD parameters. We use a simplified version of the

HOD model with only two free parameters corresponding to the characteristic

mass of central (Mcut) and satellite galaxies (M1) as given in following equations:

pcen =
1

2
erfc

(
lnMcut − lnMhalo√

2

)
(6.1)

〈Nsat〉 =
Mhalo −Mcut

M1

, (6.2)

where pcen gives the probability of assigning a central galaxy to a halo with mass

Mhalo and 〈Nsat〉 gives the mean number of satellite galaxies as the function of

halo mass. The actual number of satellite galaxies for any given halo is drawn

1https://bitbucket.org/gfcstanford/rockstar
2https://www.cosmosim.org/cms/simulations/mdpl2/

163

https://bitbucket.org/gfcstanford/rockstar
https://www.cosmosim.org/cms/simulations/mdpl2/


Figure 6.1 Top panel shows the best fit HOD parameters as the function of
redshift used to generate simulated galaxy catalogues. Bottom panel
shows the evolution of linear and non-linear bias in mock with
coloured lines. The black line shows the best fit linear and non-
linear bias obtained for the data from [114]. This figure is made by
Shadab Alam.
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from a Poisson distribution. We use main haloes (i.e. discarding subhaloes) from

32 snapshots between redshift 0 & 1 and determine the best fit HOD parameters

by fitting the 3D galaxy power spectrum with linear and non-linear bias evolution

as measured in the data (H21). The linear bias values in our mocks are defined

using scales 0.05 < k < 0.1hMpc−1 and the non-linear bias uses the scales

0.5 < k < 2hMpc−1. Our best fit parameters are not very sensitive to the

limits of scales used to define the linear and non-linear bias. The best fit HOD

parameters along with galaxy bias are shown in the Figure 6.1. We have created

two sets of mocks, one of which only matches the linear bias, and the other one

also has non-linear bias matched. For the scales considered in this project, we

confirm that the two mocks do not give rise to significantly different stacking

signals from superstructures.

We then convert our galaxy catalogue into lightcone form by simply repeating

the box and placing the observer at the origin in order to extract shells from

each snapshot covering the comoving separation between consecutive snapshots.

The simulation and data are matched in galaxy number density in each redshift

slice. In order to include the photometric redshift effect, we assign to each galaxy

a photometric redshift zp = z + δz, where δz is drawn from the distribution of

Eq. 4.1 with the parameters given by the best-fit p(z) in each bin from H21. We

then construct our tomographic slices by selecting galaxies in redshift bins using

zp. The resulting true redshift distribution is close to the best-fit p(z) from the

real data, as shown in Fig. 6.2. The same survey mask is applied to the mock as

the DESI Legacy Survey data.

6.2.2 Making mock lensing convergence maps

In order to generate lensing convergence maps that are consistent with our

simulated galaxy data, we perform the following integral using the Born

approximation:

κ(θ̂) =

∫ rmax

0

3H2
0 Ωm

2c2

(rLS − r)r
rLS

δ(r, θ̂) dr, (6.3)

where rLS is the comoving distance between CMB and the lens plane and r is

the comoving distance to the lens plane. The δ(r, θ̂) is the matter overdensity

in the direction θ̂ within a shell of width dr at distance r. To determine δ, we

first create particle lightcone using snapshot by repeating the box and extracting
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Figure 6.2 The mock redshift distribution (dashed) is matched to observations
by assigning a redshift error δz from the best-fit modified Lorentzian
distribution used in [114] and the corresponding best-fit p(z) from
data (shaded) by fitting the galaxy auto- and cross-correlations in
the four tomographic bins.

a shell of particle at the location of 32 halo snapshot between redshift 0-1. But

we have only three particle snapshots (z ≈ 0, 0.49, 1.02) available compared to 32

halo snapshot. Therefore, for each halo snapshot shell we use the nearest particle

snapshot and scale the over-density by ratio of growth at the halo snapshot to the

growth at nearest particle snapshot. This gives us δ(r, θ̂) which is then integrated

using equation 6.3. In principle the full κ map should be integrated with rmax =

∞. But since we are only concerned with the cross-correlation of galaxies with

the convergence map, as long as we limit our integral to larger than the maximum

galaxy redshift (z ≈ 0.9) we will obtain unbiased results. Therefore we use rmax

corresponding to zmax = 1.02 to generate our lensing convergence map. We note

that we use a Healpix pixelisation with nside = 512 to generate our convergence

map.

6.2.3 Making ISW maps in simulations

Although the ISW signal arises from the linear evolution of the potential Φ, it has

contributions from non-linear evolution. To include both of them, we follow the

algorithm presented in Cai et al. [39], Seljak [261] to compute the time derivative
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of the potential Φ̇ in Fourier space using

Φ̇(k, t) =
3

2

(
H0

k

)2

Ωm

[
ȧ

a2
δ(k, t) +

ik · p(k, t)

a

]
, (6.4)

where a is the expansion factor at z, p(k, t) is the Fourier transform of the

momentum density fluctuation p(x, t) = [1 + δ(x, t)]v(x, t), and δ(k, t) is the

density contrast. We use the full particle data at the three snapshots mentioned

above to compute Φ̇(k, t) in Fourier space. We then interpolate Φ̇ in Fourier

space according to the linear growth factor G(a) = D(a)[1 − f(a)] to obtain

Φ̇(k, t) at more epochs t between the original snapshots, where the times t are

chosen such that their line-of-sight comoving spacing is 100h−1 Mpc. The inverse

Fourier transform of the above yields Φ̇ in real space on 3D grids. Follow Cai

et al. [39], we then use Healpix to tessellate the sky, and follow Healpix pixel

centres along the line of sights to interpolate and integrate Φ̇ values on grids to

obtain the full ISW maps including the non-linear Rees-Sciama effect. Examples

of the power spectra measured from these maps are shown in Fig. 6.3.

6.2.4 Quasi-linear ISW maps

With the expected high signal-to-noise from the galaxy-CMB lensing cross-

correlation, we can also use the observed lensing signal around peaks and troughs

to predict their corresponding ISW signal directly. This has the benefit of using

one observable to predict the other. Using Eq. 6.3, we compute the lensing

convergence κ for each direction θ̂ in each shell between 0 < z < 1. We then follow

methods in Section 3.3.2 and obtain the quasi-linear ISW map using Eq. 3.53 for

each of the 30 shells, where r0 is the comoving distance to the shell centre. These

maps are then added together to produce the final (noise-free) ISW map. The

comparison of the power spectra of the quasi-linear and full ISW maps is shown

in Fig. 6.3. We can see that the two maps are most consistent in the range of

10 < ` < 40. At scales ` . 10, the linear map gives unphysical modes whose

amplitudes are much larger than the full computation. At smaller scales, where

` > 40, the full computation gives a higher amplitude than the quasi-linear case.

In the stacking analysis, we are mostly interested in structures of a few degrees,

corresponding to ` ∼ 100.

An alternative method based on non-linear density evolution is mentioned earlier

in Section 3.3.1. This method assumes spherical symmetry of the stacked void
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Figure 6.3 The auto power spectra of simulated ISW maps for the mock
catalogue in four tomographic slices. The full non-linear
computations are shown with dashed lines and the quasi-linear
approximations are shown with solid lines. The grey region indicates
the low-` range that is removed in the linear map.

profile. This is generally the case for 3D voids. Void finders based on 2D density

slices preferentially find elongated voids [145]. For our case, the redshift slice

is 400 − 800h−1 Mpc in width, the voids found are more likely to be ‘tunnels’,

and spherical symmetry is not applicable. Therefore, we use our simulations to

predict the stacked ISW signal, which captures the non-linearity of the density

evolution. As a comparison, we use this method to compute the linear theory

prediction of the same signal, and demonstrate their differences.
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6.3 Methods

6.3.1 Void finder

We follow the void finder algorithm in [250]. The finder takes the following steps:

1. We estimate the 2D density fluctuation on Healpix maps with δ = n/n̄−1.

We then apply a Gaussian smoothing of σ = 20h−1 Mpc/d(z), where d(z)

is the mean comoving distance to the tomographic slice. We then define

pixels with δ < δ∗ as potential void centres. In practice, we fix δ∗ to pick

out the lowest 10% of the smoothed pixels, which is around δ∗ = −0.2.

2. Starting from the lowest density pixel in the potential void centres, we

compute the mean density δi inside a circular shell of radii Ri and Ri +

∆R for each Ri ∈ {R}. ∆R is chosen to be 1h−1 Mpc. Once δ̄i > 0 is

encountered for the first time, we register Rv = Ri + ∆R/2 as the void

radius. In practice, we use the query disc function in Healpy to find

pixels within a disc of angular size θi = Ri/d(z).

3. Once the void is found, we check the potential void centre list, and exclude

any centre that is inside the existing void.

4. We then update the list of potential void centres and repeat steps (2)-(3)

until the list is exhausted.

The free parameters in this finder algorithm are the initial smoothing σ and the

density cut δ∗. A larger σ will result in the merging of smaller voids, and could

lead to higher signal to noise [146, 250]. As a result of the merging of voids

and the hierarchical void-finding procedure, the void catalogue can be different.

Increasing δ∗ would include shallower voids. However, this should not affect any

deeper voids found with a lower δ∗. It is possible to find small but deep voids

embedded in large shallower voids. We choose {R} in the range 1h−1 Mpc ≤
R ≤ 300h−1 Mpc, with an increment of 2h−1 Mpc between each sample. After

we obtain the void sample, we further exclude voids that have have less than 70%

of their area inside the survey mask. An illustration of the procedure is shown in

Fig. 6.5.

A major difference between this work and [146] is that our redshift slice is much

thicker whereas they used slices of comoving size 100h−1 Mpc. In [146], due to
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Figure 6.4 An example of the void finding procedure using the tomographic slice
in redshift range 0.3 < z ≤ 0.45. The highlighted pixels correspond
to the potential void centres, selected on the smoothed density map
with δ < δ∗. In this case, δ∗ = −0.15. The background intensity
map shows the density fluctuation in this slice.

the thin redshift slice, they also include a pruning of overlapping voids between

different redshift bins by shifting the bin edges a few times. Thus, although

the void finding algorithm is defined in 2D, their void catalogue is comparable

to those found using 3D algorithms. We do not carry out this procedure here

because we expect that the structures in the four tomographic bins are dominated

at distinctive redshifts and thus not strongly correlated. The voids found here

are likely to be ‘tunnels’ rather than spherical objects.

To find clusters, we apply the identical procedure to an inverted density map.

Due to the lognormal shape of the smoothed density distribution of each map,

we select the densest 5%, instead of 10%, pixels as potential centres. This choice

gives similar numbers of clusters and voids in the final sample.

In order to obtain the stacked signal at the position of these superstructures, we

rotate the map (in this case, the map can be galaxy density, lensing convergence,

or temperature fluctuation) at the pixel level to place each superstructure centre

at (θ, φ) = (0, 0). We then stack the rotated maps scaled by the void radius Rv,

on a grid with 0 ≤ R ≤ 3Rv. To account for masks, we also perform the same
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Figure 6.5 The resulting void centres (shown highlighted dots) from Fig. 6.4 and
their void radius (shown in fainter circles). Notice that some voids
at survey boundaries are cut. Also notice that voids can overlap, in
cases where deeper voids can be found inside shallower voids.

rotation to the mask for each void. The stacked map is obtained by

P stack =

∑
i P

map
i∑

i P
mask
i

, (6.5)

where Pmap
i is the pixel value for the map for i-th void, and Pmask

i is that for the

mask. We extract the isotropic radial profile for these stacked images. Given the

angular bins {θ}, we measure the average signal in the ring between radii θi and

θi+1, and assign the value to the middle of the angular bin.

6.3.2 Covariance matrix

We use three methods to estimate the covariance matrix for the stacked signal

to account for the noise on the background CMB map as well as the foreground

superstructure positions.

To capture the CMB noise, we generate 1000 random CMB maps with nside = 512

using the measured pseudo CMB temperature auto power spectrum, corrected

by the fraction of sky lost due to the mask Ĉ` = C`/fsky. The maps are then

generated using the synfast function in Healpy applied to C`, and multiplied

by the Planck 2018 CMB mask. For comparison, we also use the Planck best-
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fit ΛCDM CMB power spectrum3, accounting for the pixel window function

and the FWHM = 5 arcmin circular Gaussian smoothing. These methods

give a consistent covariance matrix. We repeat the same stacking process for

superstructures in each redshift slice on each of the random CMB maps and

extract the averaged radial profile. The covariance matrix is computed by

Cij =
1

N

N∑
s

(xsi − x̄i)(xsj − x̄j), (6.6)

where N = 1000 is the sample size, xsi is the measurement of i-th data component

in the s-th sample, and x̄i is the mean measurement of the i-th component. The

inverse covariance is corrected by the Hartlap factor [116] with C−1
ij = (N − p−

1)/(N − 1)〈C−1
ij 〉, where p = 15 is the length of the data vector.

To estimate the errors due to the fluctuations of the foreground galaxy sample,

we generate 1000 sets of random superstructure positions for each redshift bin

within the survey mask, and compute the stacked signal on the Planck 2018 CMB

temperature map. It should be noted that this assumes no correlation of the

positions of the superstructures, which are in general not true: there will be close

pairs of clusters, while it is unlikely to find two voids that are close to each other.

Nevertheless, this method provides a rough estimate of the foreground random

error. The covariance is computed using Eq. 6.6 and the inverse covariance is

corrected by the Hartlap factor.

Finally, we estimate the covariance matrix from Jackknife subsampling by

excluding one superstructure at a time in the given redshift bin. The sample size is

equal to the number of superstructures in each bin, NJ . The resultant covariance

matrix from Eq. 6.6 is multiplied by (NJ − 1) to account for correlation between

different Jackknife samples. The Jackknife covariance matrix is noisy with small

sample size, i.e., in the lower redshift bins.

The comparison of the diagonal elements of the three covariance matrices for

the void sample is shown in Fig. 6.6. For the cluster sample, the covariance is

similar but with different number of objects in each bin. In all cases, there is close

agreement between the three methods. Due to the small Jackknife sample size in

bin 0, the diagonal elements are noisy compared to the other two methods. From

here on, we will use the covariance matrix estimated from random void positions

in our following analysis. The jackknife covariance is used for the case of the

3http://pla.esac.esa.int/pla/#cosmology
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Figure 6.6 The diagonal elements of the covariance matrices (in [µK2]) for the
radial ISW stacked profile in each redshift bin (shown in different
colours). The dotted lines show that from 1000 random CMB
samples using the void positions in data, the solid lines show that
from 1000 sets of void positions using the real CMB map, and the
dashed lines show the Jackknife error from the actual data.

stacking of all superstructures.

6.4 Superstructures

A summary of the numbers of voids and clusters found in each redshift bin is

shown in Table 6.1 for both the mock and real data. In general, the data and the

mock show good consistency in terms of the number of voids found and in the

distribution of void radius. For clusters, the density cut δ∗ in the finder algorithm

is slightly larger in data compared to mock, and the number of clusters found is

smaller especially in bin 2 and bin 3. The distribution of the radius in comoving

length and central density (in the smoothed map) of these superstructures is

shown in Fig. 6.7. The majority of the superstructures found have a radius of

around 60h−1 Mpc, with an extended tail towards Rv ∼ 300h−1 Mpc. There is

a small number of clusters in data that saturate at the maximum radius. It is

pointed out in [145] that there is an anti-correlation between the depth and the

size of the superstructures. There is, however, no clear trend in the voids and

clusters found here. The minimum Rv at fixed central density increases with the

central density becoming more extreme.
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The stacked galaxy density profiles are shown in the upper panel of Fig. 6.8 for

both voids and clusters. The agreement between mock (solid bands) and real

data (circles for voids and squares for clusters) is good. The dotted lines show

the profile divided by linear galaxy bias in each case. The agreement between data

and simulation using linear bias is expected for voids, as discussed in [229]. At

R > Rv, the stacked density profile changes sign and peaks at R ∼ 1.3Rv, before

falling to zero at larger scales. This suggests that on average, the voids found

are surrounded by overdensities and clusters are surrounded by underdensities,

consistent with other findings in the literature (e.g. [110]).

6.5 Results

6.5.1 Stacked lensing map

We stack the the Planck 2018 lensing convergence map with `max = 2048 and

the simulated lensing convergence map at superstructure positions in real and

mock data respectively. Prior to stacking, we smoothed the lensing maps with

a Gaussian kernel with FWHM = 1◦ to suppress the small scale power for the

purpose of map rotation at the pixel level, and this is done consistently in both

data and simulation.

The lower panel of Fig. 6.8 shows the stacked radial profile of the κ-map. Similar

to the case of the stacked galaxy density profile, the change of sign with a peak at

R ≈ 1.3Rv is also present in the stacked κ profiles. For voids, the real and mock

datasets show good consistency in general. For clusters, however, the simulation

over-predicts the lensing signal in bin 3 significantly for R < Rv. Combining

clusters in all four redshift bins, we find that the simulation also shows a 30%

excess compared to data, because the sample is dominated by the highest redshift

bin. Due to the slightly more extended Rv distribution in the real data compared

to the mock, especially in the highest redshift bin (see Fig. 6.7), we check whether

including a weight based on the ratio of the two Rv distributions can reduce the

difference between the data and mock. However, the inclusion of this weight

does not change the signal significantly. We characterise the consistency between

simulation result and data using the lensing amplitude Aκ, where κdata = Aκκth.

Assuming Gaussian likelihoods with L ∝ exp(−χ2/2) and using the Jackknife

covariance for the combined case, we find Aκ = 0.937 ± 0.087 for all voids and
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Table 6.1 Summary of various parameters used in void finding and the number
of voids in each redshift slice. The first row shows the mean redshift
computed from the best-fit redshift distribution in our previous work.
The second row shows the smoothing scales for the density maps in
units of degrees, which correspond to a comoving length of 20h−1 Mpc
for each slice. The third row shows the density cut, where δ < δ∗ are
selected as potential void centres. The last row shows the number of
voids found in each bin, after excluding voids that have less than 70%
of their area inside the survey mask.
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Figure 6.7 Superstructure size and central density in real and mock data. The
radius is defined as when the mean density measured within a ring
of central radius R and width 1h−1 Mpc first become positive.
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Aκ = 0.712 ± 0.076 for all clusters. Assuming independence, this difference is

formally 1.9σ, so hardly compelling evidence of an inconsistency; the combined

result gives Aκ = 0.811± 0.057.

In H21, the measured the angular cross-correlation between CMB lensing and

galaxy overdensity also has a lower amplitude, Aκ = 0.901±0.026, given the best-

fit Planck 2018 cosmological parameters, σ8 = 0.811 and Ωm = 0.315. We further

measure the angular cross-correlation Cgκ
` of the mock and compare it with data.

In order to account for the difference in the galaxy bias, we include galaxy auto-

correlation Cgg
` , and compare the bias-independent quantity R = Cgκ

` /(C
gg
` )−1/2.

The lensing amplitude Aκ is then given by Aκ = Rdata/Rmock. We compare

the binned modes with 10 ≤ ` < 500, assuming a diagonal covariance where the

diagonal terms, following equations (12) and (13) in H21. We obtain the following

values for Aκ in the four bins: 0.84±0.06, 0.81±0.05, 0.86±0.04, 0.79±0.04, and

for the unbinned case, Aκ = 0.85± 0.03, consistent with the stacked result. This

may suggest that the lower lensing signal is likely contributed by high density

peaks.

6.5.2 Stacked ISW map

We remove ` < 10 modes from the Planck 2018 CMB temperature map and the

simulated ISW map to reduce the effect of the imperfectly simulated large-scale

modes in the simulated ISW map as shown in Fig. 6.3. A comparison of the

stacked ISW profiles in data and simulation is presented in Fig. 6.9. The linear

theory prediction from the lensing potential gives consistent result as does the full

non-linear calculation, shown in the solid and shaded lines. Given the size of the

error, the data show general consistency with the simulation. In the void case, it

is noticeable that in bin 1, the data have a larger signal in R < Rv, whereas in

bin 0, the data measurement is slightly positive. The level of fluctuations in the

four measurements suggest that these deviations are not statistically significant.

We use the covariance matrix obtained from 1000 sets of random void positions

to quantify the consistency between data and simulation. Given 15 degrees of

freedom, the χ2 for each redshift bin is 8.9, 11.1, 16.2, 11.8. The null test of

the data signal gives χ2 of 8.1, 12.7, 15.2, 10.2. In general, the data do not

show a preference for the simulation prediction over a null signal. For clusters,

similar level of statistical fluctuations are present, with χ2 = 11.3, 7.6, 10.8, 16.1

for data compared to simulation, and χ2 = 10.5, 8.9, 11.3, 17.3 for the null test.
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Figure 6.8 Upper panel: The averaged radial profile of stacked galaxy density in
each redshift bin at the superstructure positions found in simulation
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profile divided by the linear galaxy bias measured in simulation and
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for the purpose of map rotation at the pixel level. The error bars
come from Jackknife sampling of the voids in each redshift bin.
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Combining voids in all four bins, we find that χ2 = 12.6 for simulation and

10.1 for a null signal. The larger χ2 for the simulation is probably due to the

slightly negative signal at R > Rv opposed to positive. The combined cluster

result shows χ2 = 11.1 for simulation and 15.1 for null signal. We characterise

the consistency between simulation result and data using the ISW amplitude

AISW, where ∆Tdata = AISW∆Tth. Assuming Gaussian likelihoods with L ∝
exp(−χ2/2), we find AISW = −0.10±0.69 for all voids and AISW = 1.52±0.72 for

all clusters. The combined result gives AISW = 0.68± 0.50. Therefore, given the

size of the error, the measurements are fully consistent with the ΛCDM prediction;

however, there is also no clear detection of this signal.

6.5.3 Comparison with K19

We investigate the possible causes of the excess signal in K19. We have tried to

apply the same void finding algorithm as K19, but there are a few differences.

Firstly, they used redshift bins with a comoving width of 100h−1 Mpc between

0.2 < z < 0.9, whereas our bins are much wider. Secondly, due to the larger

galaxy bias of the redMaGiC sample, they use a fixed δ∗ = −0.3 in the void finding

algorithm across all redshift bins, and a comoving smoothing scale of 50h−1 Mpc.

In our fiducial setting, we have chosen to define δ∗ to correspond to the lowest

10% in density, and applied a comoving smoothing scale of 20h−1 Mpc. Thirdly,

in K19 a subsample of supervoids with Rv > 100h−1 Mpc in particular gave the

excess signal, whereas in our fiducial void sample, we do not make selections

based on void properties. Finally, the void sample in K19 is only within the DES

footprint, whereas our sample covers a larger region.

To begin with, we make the assumption that differences in the void finding

process would not lead to an inconsistent stacking signal, because the underlying

structures found should correspond to the same physical underdensities. In this

case, one possibility could be that the excess is only contributed by the supervoids

with Rv > 100h−1 Mpc.

Thus, we look at such subsample with our fiducial setting. This gives a total of

151 simulated voids, and 187 voids in the actual data. This number is smaller

than one would expect from the K19 sample, which comprises 87 voids with

Rv > 100h−1 Mpc within the DES footprint, if it were extended about 3 times

to the same size as the Legacy Survey. This difference can be attributed to the

thicker redshift slices used in our analysis. An additional factor is that most of
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Figure 6.9 The averaged radial profile of stacked ISW temperature in each
redshift bin at the void positions found in the mock (yellow band)
and real data (purple data points). The simulation prediction using
linear theory is shown by the solid orange lines. For data, we use
the Planck 2018 CMB temperature map. For both maps, the ` < 10
modes are removed. The error bars come from Jackknife sampling
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180



the DES Y1 region is masked owing to our completeness cut, thus we may also

lose a number of voids from that area. The stacked ISW profiles are shown in

Fig. 6.10. The overall signal from data (purple dots) shows good consistency

with our simulation results (yellow band). On the same plot, we also copy the

results from K19. While their theoretical prediction (grey solid line) seems to be

smaller than ours, their void signal from the DES sample (blue band) is much

stronger. The difference in the theoretical prediction is plausibly due to the

difference involved in the void finding procedure. Using the covariance matrix

from 1000 sets of random void samples, the χ2 is 16.3 compared to simulation

and 16.5 compared to a null signal with DOF = 15. This suggests that in our

fiducial sample, the large voids with Rv > 100h−1 Mpc do not cause an excess

ISW signal.

Another possibility is that the K19 excess is due to cosmic variance. To test this,

we apply the same survey mask from the DES footprint, giving a subsample of

173 voids. Among these, 40 voids have Rv > 100h−1 Mpc. As shown in Fig. 6.10,

the stacked signal using all voids within the DES footprint (brown squares) is

consistent with zero, but selecting the large voids (pink star) does result in a

mean signal closer to that measured in K19. However, given the size of the error

bars, the overall signal is consistent with both a null signal and the simulation

prediction.

The above investigation suggests that the excess signal may be due to difference in

the redshift binning and parameter choices in the void finding process. Thus, we

try to follow as closely as possible the procedure outlined in K19 (and references

therein) in order to see if we can reproduce their signal. We split our photometric

sample in the redshift range 0.2 < z < 0.8 into bins of comoving width of

100h−1 Mpc. We exclude bins beyond z ≈ 0.7 due to a sharp drop in number

density. This gives a total of 11 redshift bins. We also create another sample that

has a matched colour distribution in g −W1 vs r − z and g − r vs r − z as the

DESY1A1 RedMaGiC sample. The details of the selection criteria can be found

in Appendix A. Such a selection removes about half of the sample compared to

the unmatched one. To account for the masked DES Y1 region, we relax the

completeness threshold for the mask to 30% so that most of the DES Y1 region is

now included. The completeness weighting and stellar density correction is then

applied to each density map. Finally, due to the large photo-z tail, we expect

neighbouring bins to overlap significantly. In K19, a careful pruning of voids was

applied by shifting the redshift binning by a small amount. In this case we apply a
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Figure 6.10 Stacked void profiles for a few subsamples chosen to match the
K19 measurements (data shown as a blue band and theory shown
as a grey solid line). The subsamples involving our fiducial setting
include: selection of void radius Rv > 100h−1 Mpc (purple circle);
selection within the DES footprint (brown square); and selection
within DES footprint as well as cut on Rv (pink star). We also
consider subsamples that are more closely matched to K19 in the
void finding process within the DES footprint with and without
a redMaGiC-like colour selection (shown in open and filled green
triangles). The error bars given by Jackknife resampling are shown
in the lower panel.
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simplified version, where for neighbouring bins we remove the voids in the higher

redshift bin if their centre lies within 0.5Rv of the voids in the lower redshift bin.

We check that this removes most of the overlapping voids. We also apply the

same smoothing scale as in K19, σ = 50h−1 Mpc, in void finding. We find 75 and

64 voids with Rv > 100h−1 Mpc inside the DES footprint with and without colour

space constraints respectively, comparable to the 87 sample in K19. The stacked

signal at these void centres are shown in Fig. 6.10 as green open triangles (with

colour selection) and filled triangles (without colour selection). These signals are

slightly positive at R < Rv, and do not reproduce the excess signal shown in K19

(open black triangles). Thus, the excess signal may be due to other details in the

void catalogue construction. For example, the small redshift bins can be affected

by the uncertainty of our photo-z sample, which has a median of |∆z| = 0.027

but with a large non-Gaussian tail.

To summarise, we have attempted to compare the ISW signal from our void

sample with K19, by investigating cuts on the void size, cosmic variance, and

void-finding procedure. In the first two cases, we do not see a clear deviation

from our simulation prediction based on the ΛCDM cosmology. In the last case,

we obtain a signal that is consistent with ΛCDM, rather than about three times

larger than the theoretical prediction from K19. This difference may be caused

by details in the galaxy catalogue such as the galaxy sample and the photometric

redshifts.

6.5.4 Searching for higher ISW signal

In this Section we look at the dependence of the signal-to-noise of the stacked

ISW profile on supercluster properties. The purpose of Section is to see whether

the excess ISW can be reproduced in by applying specific selections, rather than

trying to claim a higher significance detection. Specifically we focus on Rv and

δc, and in each case, we split the sample into the most extreme 10% and 50%, and

compare the SNR with the full sample. We use the simulation to determine the

mean expected signal (thus the signal itself is noise free) and we show realistic

errors by computing the covariance from 1000 sets of random void positions within

the DESI Legacy Survey footprint, and stack using the Planck CMB map. As

shown in the upper panel in Fig. 6.11, selecting the 10% most extreme objects

in terms of Rv or δc can boost the predicted ISW signal by about a factor of 2.

From the lower panel in Fig. 6.11, it is clear that the larger Rv has a smaller
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Figure 6.11 Stacked ISW profile split by central depth δc (solid line) and size Rv
(dotted line) using superstructures in the mock catalogue. The split
is using the most extreme 10%, 50%, and the full sample in each
case. Error bars are given by 1000 sets of random void stacking
using the Planck CMB map.

uncertainty compared to the more extreme δc selections with the same number

of objects. This may be due to that fact that with the larger Rv selection, the

stacked profile is effectively averaging over a larger scale on the CMB map, thus

reducing the noise on the profile.

We measure the constraints on AISW for these selections in data. Focusing on

the 10% and 50% of the superstructures with largest Rv, we find that the data

measurements show an increased signal especially in density peaks, with AISW =

0.10± 0.99, 0.57± 0.71 for voids and AISW = 1.47± 0.77, 2.59± 0.73 for clusters.

Limiting the sample to the 10% and 50% with the most extreme δc, we find

that the data do not show significant boost in the ISW signal, and AISW =

0.15± 1.24, 0.32± 0.89 for voids and AISW = 0.83± 1.26, 0.25± 0.89 for clusters.

Combining the voids and clusters in the δc selection, one finds AISW = 0.75 ±
0.83, 0.58±0.59 for the 10% and 50% of the total sample, which does not improve
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the significance of the signal compared to the full sample. On the other hand,

in the Rv case, AISW = 0.96± 0.61, 1.55± 0.51. The constraints on Rv from the

higher Rv subsamples and the full sample is statistically consistent with 0.3σ and

1.2σ for the 10% and 50% cases respectively. Therefore, by constraining on a

larger Rv sample, it is statistically possible to obtain a larger mean ISW signal,

leading to a more significant detection of the ISW amplitude AISW. However,

we emphasise that this selection is a posteriori and one should be careful in

interpreting these results because of the look-elsewhere effect. This effect refers

to that, by repeating certain measurements multiple times (or searching over a

wide range of parameter space in the continuous case), the possibility of getting a

higher signal due to random fluctuations also increases [180, 264]. The significance

of an anomaly can be overestimated in this way which leads to biased conclusions.

This effect can be accounted for using a number of simulations or analytically,

e.g. [21].

6.6 Conclusions

In this Chapter we have constructed a catalogue of superstructures, using

tomographic data with 0 < z < 0.8 in the DESI Legacy Imaging Survey. We

adopt the void finding algorithm described in [250], taking the lowest 10% and

highest 5% pixels of the galaxy density field after 2D Gaussian smoothing with

σ = 20h−1 Mpc. The aim has been to test the excess ISW signal from supervoids

claimed in the literature [101, 146]. To compare our results with the ΛCDM model

prediction, we constructed a mock catalogue using the Multidark simulation. The

galaxy number density, linear, and non-linear galaxy biases are matched to those

found in our previous work on the DESI Legacy Imaging Survey (Hang et al.

2021: H21), and we applied a redshift error to match the photo-z precision found

in H21. The properties of the superstructures and the stacked galaxy density

profiles around these superstructures are consistent between the mock and the

data. We also created the corresponding lensing convergence and ISW maps.

We then looked at the stacked CMB lensing convergence and CMB temperature

using the Planck 2018 maps at the centre of these superstructures, scaled by

the void/cluster radius Rv. The comparison between the stacked lensing signal

agrees well in the void case, but the cluster signal seems to be slightly over-

predicted in the highest redshift bin. Using the covariance matrix from 1000

sets of randomised superstructure positions, we quantify the consistency between
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simulation and data via the lensing amplitude Aκ, and find Aκ = 0.81±0.06 from

combining the voids and clusters. This is largely driven by the highest redshift

bin, which contains the most clusters. In H21, we favoured a lensing amplitude

of Aκ = 0.90± 0.03 compared to the theoretical prediction from the Planck 2018

best-fit cosmology, using cross-correlation in spherical harmonic space (therefore

essentially utilising all pixels, rather than density peaks and troughs). This

lower amplitude of the CMB lensing signal is consistent with our result from

superstructures, although we note that the voids and clusters are in 1.9σ tension,

with Aκ = 0.937 ± 0.087 for all voids and Aκ = 0.712 ± 0.076 for all clusters.

Despite this, the level of disagreement between our mocks and data for the lensing

signal is negligibly small for the purpose of ISW study, as its measurement is much

noisier.

The stacked ISW signals are in general consistent with simulation results –

but also with a null signal, reflecting the low signal-to-noise of the ISW effect.

Specifically, we do not detect a significant signal from the void catalogue, and only

a marginal signal from clusters. Combining the superstructures, we find the ISW

amplitude to be AISW = 0.68± 0.50, somewhat weaker than the cross-correlation

result from H21 which gave AISW = 1.10±0.31 (although both measurements are

consistent). Therefore, we do not claim a detected ISW signal using this sample.

We compare our results with K19, [146], who reported a 3σ excess of ISW

signal compared to ΛCDM prediction from supervoids with void radius Rv >

100h−1 Mpc, using the DES redMaGiC sample within similar redshift range.

Using our fiducial settings described above, we do not find any excess signal from

voids with the same size cut, or within the same survey mask. Two subsamples are

then constructed to match the redshift binning and void finding procedure in K19

as closely as possible within the DES footprint, with and without a redMaGiC-

like colour selection. The stacked ISW profiles from the voids found in these

samples also do not show any anomalous signal.

Lastly, we look at the dependence of the ISW signal on the void properties

and discuss whether this can be used to explain a higher detection of the

ISW signal from suitably chosen superstructures. We show that the mean ISW

signal from the mock dataset is amplified by excluding smaller or less extreme

superstructures, while the shot noise increases. Applying the same selections

to the data, we find no significant improvement in the constraint on the ISW

amplitude AISW from more extreme superstructures, although there is a boost in

AISW from density peaks with largerRv. The most extreme subset conditioning on
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the largest Rv gives AISW = 0.96±0.61, and the 95% upper limit is 2.16. However,

we emphasise that the selection of the subset is not a priori. The increase in the

signal is likely overestimated due to random statistical fluctuations, or the look-

elsewhere effect.

In summary, then, our results from investigating the impact of superstructures

on the CMB do not reveal any compelling discrepancy with ΛCDM. The CMB

lensing results for superstructures independently favour an approximately 10%

reduction in amplitude relative to the Planck 2018 prediction, in very close

agreement with our conclusion from the overall galaxy-lensing cross-correlation

in H21, which we argued favoured a matter density at the low end of the range

permitted by Planck. The evidence for this reduced lensing amplitude is present

in both voids and clusters although the latter favour a stronger signal at the 1.9σ

level; it will be interesting to see if this tension becomes more significant in future

datasets. Similarly, the ISW signal from stacked superstructures is consistent with

the H21 cross-correlation result, and not in significant disagreement with ΛCDM.

Formally, the 95% confidence upper limit on AISW from superstructures is 1.51,

and therefore we do not reproduce literature claims of anomalous superstructure

ISW signals at several times the ΛCDM prediction. We have tried to vary our

analysis in order to mimic more closely the selection involved in these claims, but

have not succeeded in raising the ISW signal. Presumably some small differences

in method remain. But the important point is that any such excess is apparently

not robust, since we were not able to produce an excess signal even by exploring

a number of alternative forms of superstructure selection.
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Chapter 7

Closing Remarks

Over the last few decades, a cosmological concordance has been established by

observations of the CMB and the spatial distribution of galaxies. However, our

ignorance of the nature of dark matter and dark energy, which comprise 95% of

the Universe, is unsatisfying. Various models of dark energy and modifications

to General Relativity have been postulated in order to solve this mystery. The

growth and evolution of large-scale structures, as the result of the competition

between gravity and expansion caused by dark energy, is an excellent testing

ground for possible deviations from the standard cosmological model. In this

thesis, I have performed two such tests using redshift-space distortion and the

correlation between CMB and large-scale structures. I will now briefly summarise

the main results presented in this thesis, and provide an outlook for possible future

works.

7.1 Summary

In Chapter 2, I measured RSD from the two-point cross-correlation between

galaxies and groups using the GAMA survey. To reveal the dependence of the

RSD signal on tracers, I split galaxies into red and blue subsamples, and groups

into three stellar mass bins. The resultant 2D correlation functions show a clear

trend in colour and group mass, as expected, especially at non-linear scales where

the ‘Fingers of God’ dominates (Fig. 2.9). Applying a linear model with an

appropriate minimum scale cut on the measurements, and testing against GAMA
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mock catalogues, I measured a growth rate fσ8 = 0.25 ± 0.15, consistent across

different subsamples and also with the Planck 2018 result (Fig. 2.15).

The imprints of galaxy clustering on the CMB is useful for constraining

cosmological parameters such as the growth rate via CMB lensing, and the dark

energy equation of state via the ISW effect. In Chapter 4, I used the public DESI

Legacy Survey, which provides the deepest wide-area multicolour CCD imaging,

to conduct angular cross-correlation for the above purposes. The challenge was

to obtain robust photometric redshifts for the galaxies given limited photometric

bands. I assigned photometric redshifts to over 70% of galaxies in the Legacy

Survey using a 3D colour grid calibrated by spectroscopic galaxy samples, and

separated the galaxy sample into four tomographic bins between 0 < z < 0.8

(Fig. 4.6).

In Chapter 5 I measured the angular cross-correlation C` of galaxy densities

with the Planck lensing convergence and temperature maps. To pin down the

galaxy bias and photo-z parameters, I fitted the ten galaxy auto- and cross-

correlations between the four redshift bins. The best-fit parameters are used

in the CMB cross-correlation analysis, and I tested that marginalisation over

the nuisance parameters do not have a significant effect on the constraints of

the final lensing and ISW amplitudes. Interestingly, I discovered a low lensing

amplitude Aκ = 0.901 ± 0.026, more than 3σ below the fiducial value given

by Planck. The result was translated to a constraint on the Ωm − σ8 plane

(Fig. 5.13), reinforcing the existing lensing tension with Planck. The result shows

that the combined lensing data favours a lower density than Planck, rather than

a reduced normalisation. I also reported a 2.8σ detection of the ISW signal with

AISW = 0.98± 0.35.

In Chapter 6, I constructed a superstructure catalogue for the tomographic

bins to measure the stacked signals from CMB lensing and temperature. The

large survey area covered by the DESI Legacy Survey effectively reduces the

impact of cosmic variance, and is ideal for the investigation of the ‘excess ISW

signal’ from supervoids claimed by many in literature. I used a realistic mock

catalogue with matched galaxy bias with data and its corresponding lensing

convergence and ISW maps to compute the expected signal in the ΛCDM model.

I measured a lensing amplitude Aκ = 0.81 ± 0.06 (Fig. 6.8), consistent with

that found in Chapter 5. The ISW amplitude is detected with mild statistical

significance, AISW = 0.68 ± 0.50. However, it indicates no clear deviation from

the ΛCDM prediction (Fig. 6.9), with a 95% upper limit of 1.51. By splitting
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the superstructures into different subsamples, I found that the signal is boosted

with a minimum size cut from superclusters. However, because this choice is a

posteriori, the result can be overestimated due to the look-elsewhere effect.

7.2 Future outlooks

An extension to the work presented in Chapter 2 would be to push the RSD

modelling into quasi-linear scales where the GAMA data has a higher signal-to-

noise ratio. I plan to apply the streaming model with a separation of the 1-

and 2-halo contributions. While a tighter constraint on fσ8 may be obtained,

the modelling can also reveal dependence of the 1-halo parameters on different

group mass and galaxy types. At small scales, non-linear galaxy bias can be a

complication. Recently, it is pointed out in [201] that, depending on the way

the galaxy sample is split, anisotropic assembly bias can also affect quadruple

moment.

The size and quality of the DESI Legacy Survey photo-z catalogue constructed

in Chapter 4 permits a range of interesting further investigations. One possible

extension of the current study can be to focus on different galaxy tracers in

the DESI Legacy Survey, such as splitting by colour and luminosity. These

subsamples will allow me to check that our results are robust with respect to e.g.

the treatment of scale-dependent bias. The cross-correlation between different

galaxy tracers can also improve our understanding of the assembly history of

galaxies and halos via assembly bias [92, 312].

Another interesting extension is the cross-correlation between the tomographic

density maps and the Planck CMB Compton-y maps via the thermal Sunyaev-

Zel’dovich (tSZ) effect (e.g. [143]). The signal directly probes the total

thermal energy of hot gas in clusters, haloes, and intergalactic medium, which

can be modulated by processes such as radiative cooling and AGN feedback.

The understanding of baryonic feedback is crucial for improving cosmological

parameter constraints at non-linear scales. Strong stellar and AGN feedback can

affect the matter power spectrum at scales up to ∼ 1Mpc/h, first demonstrated in

[321] using hydrodynamic simulations. The hot gas ejected from AGN suppresses

the power at these intermediate scales at the percent level. [262] further points out

that such effects can bias weak lensing shear measurements due to redistribution

of baryons. The current solution in the lensing community is to marginalise over
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various baryonic effects, subsequently increasing the error budget. The study of

baryonic effects through cross-correlation between tSZ and the galaxy field could

potentially be a remedy.

In recent years, voids have become a competitive probe for cosmology and

structure formation (e.g. [110, 192]) via RSD and the Alcock-Paczynski (AP)

effect due to their enhanced linearity at small scales. Voids are also ideal

laboratories to test deviations from the standard cosmological model, because

their abundance and profile are sensitive to modified gravity, evolving dark energy

[41], and neutrino mass [313]. The supervoid catalogue constructed in Chapter 6

can be used for statistical studies assisted with non-standard cosmological

simulations. When combined with the split tracers as proposed above, it also

has the potential to reveal void-galaxy connection and the dependence of galaxy

properties on their environments.

Looking ahead, the field of observational cosmology is expecting a major leap

with the scope of next-generation galaxy surveys and CMB experiments. Tests

of structure growth mentioned in this thesis, RSD and galaxy-CMB cross-

correlation, can be performed to unprecedented precision. With the enhanced

signal-to-noise, these experiments will push parameter constraints to percent or

sub-percent level so that different cosmological models can be distinguished. For

example, DESI [60, 175], which has recently started its 1% survey, is designed to

significantly advance the BAO and RSD measurements. Covering a vast sky area

of 14,000 deg2, DESI will take spectra for over 30 million galaxies and quasars

out to z ∼ 3.5. This dataset is expected to improve constraints on the growth

rate by a factor of 4-10 compared to previous results [89] (see also Fig. 7.1). The

combination of different probes and across different datasets can lead to even

stronger constraints [129]. In particular, DESI contains a dedicated high density

galaxy sample, the Bright Galaxy Sample (BGS), at z < 0.4. This sample,

similar to the GAMA survey but much larger in area, is ideal for RSD analysis

with groups and galaxies as mentioned in Chapter 2 with significantly improved

statistical power.

The space-based Euclid mission [158], expected to be launched in late 2022, will

provide a great leap forward in weak lensing cosmology, another major test for

gravity. Equipped with multi-band photometry and excellent imager, Euclid will

scan a sky area of 15,000 deg2, delivering exquisite shape measurements of 30

galaxies per arcmin2 to as far as z ∼ 2. Compared to ground-based surveys,

Euclid does not suffer from systematics caused by the Earth’s atmosphere, and is
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Figure 7.1 The forecast of growth rate measurements from DESI as a function
of redshift. The light pink error bars are from the Bright Galaxy
Sample (BGS) at z < 0.4. The ΛCDM model is plotted in black
solid line, and the coloured lines show two f(R) modified gravity
models [167] and the Dvali-Gabadadze-Porrati (DGP) braneworld
model [71]. The f(R) models are scale-dependent, and two cases
with k = 0.02hMpc−1 and k = 0.1hMpc−1 are shown. These
theories can be distinguished given the forecasted error bar. The plot
is adopted from Huterer et al. [129].
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able to extend the measurable wavelength to near infrared. This permits precise

systematic control and photo-z calibration, essential for interpreting the lensing

signal. Euclid will determine the dark energy equation of state to 1% and improve

the growth rate measurement by a factor of 30 compared to current results.

The Legacy Survey of Space and Time (LSST) [151] at the Vera C. Rubin

Observatory will bring the size of cosmological surveys to the next level. Starting

around 2022-2023, LSST will chart almost the entire sky with 30,000 deg2,

observing ∼ 10 billion stars and galaxies and generating petabytes of data during

its 10-year operation. In addition to a boost in statistical power, hundreds of

repeated visits in the main survey area of LSST allow fine control of systematics

and null tests, making it suitable for a wide range of scientific purposes.

We also expect major advances in CMB observations in the near future. For

example, CMB Stage 41 is a set of ground-based experiments that consists of 21

telescopes at the South Pole and in the Chilean Atacama desert, targeting at

wide area and high resolution CMB observations. With an order of magnitude

increase in the number of detectors, the sensitivity and depth of these experiments

will not only greatly improve the current constraints, but also permit a test of

inflationary theories. The cross-correlation analysis with large-scale structures

similar to Chapter 5 will greatly benefit from these upgraded CMB maps, as the

constraints on the lensing amplitude Aκ is limited by the current CMB resolution.

In light of these high precision surveys, I believe that it is a particular exciting

time for cosmology. One should be prepared to embrace one of the two possible

outcomes: either the discrepancy persists, thus pointing to strong evidence for

new physics, or it vanishes due to a better knowledge of systematic errors,

hereby proving another triumph for General Relativity and the ΛCDM model.

In any case, unbiased interpretation of these measurements are vital – non-linear

effects and unaccounted systematics may easily shift the parameter constraint at

percent or sub-percent level. Therefore, it will also be a flourishing time for novel

cosmological probes and theoretical efforts.

Finally, tests for fundamental theories of physics, i.e. General Relativity and the

Standard Model of particle physics, upon which cosmology stands, are also carried

out extensively in other branches of physics. For example, since its first detection

in 2016, the LIGO/Virgo Collaboration now has a collection of 50 gravitational

wave events. Moreover, in 2020, they found a 2.6M� object lying in the ‘mass gap’

1https://cmb-s4.org/
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between a neutron star and black hole [3], posing challenges to the current model

for the formation and mass distribution of coalescing compact binaries. Not long

after the breathtaking photo of the supermassive black hole at the centre of M87

taken by the Event Horizon Telescope (EHT) [79], earlier this year, the light

polarisation was also detected around this black hole, revealing signatures of a

magnetic field [80, 81]. The consistency of observation and modelling shows a

great triumph for General Relativity tested in the strong field regime. Outside

the field of astronomy, the Large Hadron Collider (LHC) has reported a mild

violation of lepton universality in the beauty-quark decays at 3.1σ level [150]

earlier this year. Several weeks before the completion of this thesis, the Muon g−2

experiment at Fermilab revealed a 4.2σ tension in the measured muon magnetic

anomaly in combination with a previous experiment [4]. These results, although

still tentative by the standard of particle physics, could shake the foundation of

the Standard Model. Therefore, it may well be the case that a breakthrough in

cosmology can come unexpectedly from outside of its realm, and vice versa. In

my opinion, with great advance in theory and technology, the future is bright for

cosmology.
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Appendix A

Matching redMaGiC colour

selection

In order to match the DESY1A1 redMaGiC galaxies as closely as possible, we

compare their distribution in colour-colour space with a subsample of DECaLS

galaxies in the same region (Fig. A.1). We apply cuts in the g − r versus r − z
plane based on the ratio of the normalized distribution. We exclude regions in

this space where the ratio is smaller than a threshold set to 0.5. Such a exclusion

does not affect the redMaGiC sample (about 92% of our objects remain), but it

results in a cut in low-redshift DECALS galaxies. The selected DECALS sample

contains 1.8 million galaxies, about 3 times the redMaGiC sample. Fig. A.2

shows the selected region in the colour-colour plane for our full sample used in

Section 6.5.3 in the redshift range 0.2 < z < 0.8 in the north and south part of

the DESI Legacy Survey.
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Figure A.1 The comparison of redMaGiC (left, blue) and DECALS (right, red)
samples in the same sky area in g−r and r−z plane (upper panel),
and in g − w1 and r − z plane (lower panel). DECALS contains a
large number of bluer objects compared to redMaGiC. The thin strip
on the left side of the main sequence is likely to be residual stars.
The black dotted box is the region used to take ratios.
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[96] Gil-Maŕın H., Noreña J., Verde L., Percival W. J., Wagner C., Manera M.,
Schneider D. P., 2015, MNRAS, 451, 539

[97] Gonzalez-Perez V., Lacey C. G., Baugh C. M., Lagos C. D. P., Helly J.,
Campbell D. J. R., Mitchell P. D., 2014, MNRAS, 439, 264
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Yepes G., Gottlöber S., 2010, ApJ, 724, 878

[290] Treyer M., et al., 2018, MNRAS, 477, 2684

[291] Troxel M. A., et al., 2018a, Phys. Rev. D, 98, 043528

[292] Troxel M. A., et al., 2018b, MNRAS, 479, 4998

[293] Tytler D., O’Meara J. M., Suzuki N., Lubin D., 2000, Physica Scripta
Volume T, 85, 12

[294] Uhlemann C., Codis S., Pichon C., Bernardeau F., Reimberg P., 2016,
MNRAS, 460, 1529

[295] Valageas P., 2009, A&A, 508, 93

[296] Vale A., Ostriker J. P., 2004, MNRAS, 353, 189

[297] Verde L., Wang L., Heavens A. F., Kamionkowski M., 2000, MNRAS, 313,
141

[298] Vielzeuf P., et al., 2021, MNRAS, 500, 464

[299] Wang L., Steinhardt P. J., 1998, ApJ, 508, 483

[300] Wechsler R. H., Tinker J. L., 2018, ARA&A, 56, 435

[301] Weinberg S., 2008, Cosmology, 1 edn. Oxford University Press

[302] White S. D. M., Rees M. J., 1978, MNRAS, 183, 341

[303] White M., Hernquist L., Springel V., 2001, ApJ, 550, L129

[304] Williams G. G., Olszewski E., Lesser M. P., Burge J. H., 2004, in
Moorwood A. F. M., Iye M., eds, Society of Photo-Optical Instrumentation
Engineers (SPIE) Conference Series Vol. 5492, Ground-based Instrumentation
for Astronomy. pp 787–798, doi:10.1117/12.552189

[305] Wojtak R., Hansen S. H., Hjorth J., 2011, Nature, 477, 567

[306] Wong K. C., et al., 2020, MNRAS, 498, 1420

[307] Wright E., et al., 2010, AJ, 140, 1868

[308] Yang X., Mo H. J., van den Bosch F. C., Weinmann S. M., Li C., Jing
Y. P., 2005, MNRAS, 362, 711

[309] Yang X., Mo H. J., van den Bosch F. C., 2008, ApJ, 676, 248

210

https://ui.adsabs.harvard.edu/abs/2005astro.ph.10346T
https://ui.adsabs.harvard.edu/abs/2005astro.ph.10346T
http://dx.doi.org/10.1111/j.1365-2966.2006.11157.x
https://ui.adsabs.harvard.edu/abs/2007MNRAS.374..477T
http://dx.doi.org/10.1088/0004-637X/724/2/878
https://ui.adsabs.harvard.edu/abs/2010ApJ...724..878T
http://dx.doi.org/10.1093/mnras/sty769
http://adsabs.harvard.edu/abs/2018MNRAS.477.2684T
http://dx.doi.org/10.1103/PhysRevD.98.043528
https://ui.adsabs.harvard.edu/abs/2018PhRvD..98d3528T
http://dx.doi.org/10.1093/mnras/sty1889
https://ui.adsabs.harvard.edu/abs/2018MNRAS.479.4998T
http://dx.doi.org/10.1238/Physica.Topical.085a00012
http://dx.doi.org/10.1238/Physica.Topical.085a00012
https://ui.adsabs.harvard.edu/abs/2000PhST...85...12T
http://dx.doi.org/10.1093/mnras/stw1074
https://ui.adsabs.harvard.edu/abs/2016MNRAS.460.1529U
http://dx.doi.org/10.1051/0004-6361/200912486
https://ui.adsabs.harvard.edu/abs/2009A&A...508...93V
http://dx.doi.org/10.1111/j.1365-2966.2004.08059.x
https://ui.adsabs.harvard.edu/abs/2004MNRAS.353..189V
http://dx.doi.org/10.1046/j.1365-8711.2000.03191.x
https://ui.adsabs.harvard.edu/abs/2000MNRAS.313..141V
https://ui.adsabs.harvard.edu/abs/2000MNRAS.313..141V
http://dx.doi.org/10.1093/mnras/staa3231
https://ui.adsabs.harvard.edu/abs/2021MNRAS.500..464V
http://dx.doi.org/10.1086/306436
https://ui.adsabs.harvard.edu/abs/1998ApJ...508..483W
http://dx.doi.org/10.1146/annurev-astro-081817-051756
https://ui.adsabs.harvard.edu/abs/2018ARA&A..56..435W
http://dx.doi.org/10.1093/mnras/183.3.341
https://ui.adsabs.harvard.edu/abs/1978MNRAS.183..341W
http://dx.doi.org/10.1086/319644
https://ui.adsabs.harvard.edu/abs/2001ApJ...550L.129W
http://dx.doi.org/10.1117/12.552189
http://dx.doi.org/10.1038/nature10445
https://ui.adsabs.harvard.edu/abs/2011Natur.477..567W
http://dx.doi.org/10.1093/mnras/stz3094
https://ui.adsabs.harvard.edu/abs/2020MNRAS.498.1420W
http://dx.doi.org/10.1088/0004-6256/140/6/1868
http://adsabs.harvard.edu/abs/2010AJ....140.1868W
http://dx.doi.org/10.1111/j.1365-2966.2005.09351.x
https://ui.adsabs.harvard.edu/abs/2005MNRAS.362..711Y
http://dx.doi.org/10.1086/528954
https://ui.adsabs.harvard.edu/abs/2008ApJ...676..248Y


[310] Yoo J., Seljak U., 2015, MNRAS, 447, 1789

[311] Zehavi I., et al., 2011, ApJ, 736, 59

[312] Zehavi I., Contreras S., Padilla N., Smith N. J., Baugh C. M., Norberg P.,
2018, ApJ, 853, 84

[313] Zhang G., Li Z., Liu J., Spergel D. N., Kreisch C. D., Pisani A., Wandelt
B. D., 2020, Phys. Rev. D, 102, 083537

[314] Zhou R., et al., 2020, arXiv e-prints, p. arXiv:2001.06018

[315] Ziman J., 1972, Principles of the Theory of Solids. Cambridge University
Press, https://books.google.co.uk/books?id=o4woMNO-C3sC

[316] Zou H., et al., 2017, PASP, 129, 064101

[317] Zu Y., Weinberg D. H., 2013, MNRAS, 431, 3319

[318] Zwicky F., 1933, Helvetica Physica Acta, 6, 110

[319] de la Torre S., Guzzo L., 2012, MNRAS, 427, 327

[320] eBOSS Collaboration et al., 2020, arXiv e-prints, p. arXiv:2007.08991

[321] van Daalen M. P., Schaye J., Booth C. M., Dalla Vecchia C., 2011, MNRAS,
415, 3649

211

http://dx.doi.org/10.1093/mnras/stu2491
https://ui.adsabs.harvard.edu/abs/2015MNRAS.447.1789Y
http://dx.doi.org/10.1088/0004-637X/736/1/59
https://ui.adsabs.harvard.edu/abs/2011ApJ...736...59Z
http://dx.doi.org/10.3847/1538-4357/aaa54a
https://ui.adsabs.harvard.edu/abs/2018ApJ...853...84Z
http://dx.doi.org/10.1103/PhysRevD.102.083537
https://ui.adsabs.harvard.edu/abs/2020PhRvD.102h3537Z
https://ui.adsabs.harvard.edu/abs/2020arXiv200106018Z
https://books.google.co.uk/books?id=o4woMNO-C3sC
http://dx.doi.org/10.1088/1538-3873/aa65ba
https://ui.adsabs.harvard.edu/abs/2017PASP..129f4101Z
https://ui.adsabs.harvard.edu/abs/1933AcHPh...6..110Z
http://dx.doi.org/10.1111/j.1365-2966.2012.21824.x
http://adsabs.harvard.edu/abs/2012MNRAS.427..327D
https://ui.adsabs.harvard.edu/abs/2020arXiv200708991E
http://dx.doi.org/10.1111/j.1365-2966.2011.18981.x
https://ui.adsabs.harvard.edu/abs/2011MNRAS.415.3649V

	Lay summary
	Abstract
	Declaration
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Background in Cosmology
	The Framework of General Relativity
	Cosmological model
	Homogeneity and isotropy assumptions
	Redshift and distance measures
	Recombination
	Inflation
	The dark sector

	Structure formation
	The linear perturbation theory
	Descriptive statistics
	Redshift-space distortion
	Nonlinear growth
	From dark matter to galaxies

	Current cosmological constraints
	The distance ladder
	CMB anisotropy
	BAO
	RSD
	Weak lensing

	Beyond the standard model
	Statistics
	Bayesian inference
	Internal Sampling
	MCMC

	Thesis outline

	Group-galaxy cross-correlations in GAMA
	Introduction
	RSD models
	The streaming model
	Non-linear scales
	Cross-correlation in redshift space

	The Galaxy And Mass Assembly (GAMA) Survey
	Galaxy colours: the red sequence and the blue cloud
	Galaxy groups

	The GAMA mock catalogue
	Matched galaxy colour subsample
	Mock group catalogue

	Measuring statistics
	Likelihoods

	Cross-correlation measurements
	Model fitting
	Fitting Mocks
	Fitting GAMA

	Conclusion

	Cross-correlation of large scale structures and the CMB
	Perturbation to the photon geodesic
	Temporal part: the ISW effect
	Spatial part: the CMB lensing convergence 

	Angular cross-correlation C between tracers and CMB
	Predicting stacked signal
	Non-linear density evolution
	Quasi-linear approach


	Galaxy data from the DESI Legacy Imaging Survey
	The DESI Legacy Imaging Survey
	Galaxy selection

	Photometric redshifts
	Spectroscopic calibration samples
	Photo-z assignment in multi-dimensional colour space
	Photometric redshift error distribution
	Comparison with other photo-z

	Galaxy density maps
	Systematic corrections


	Imprints of galaxy clustering on the CMB from the DESI Legacy Imaging Survey
	Galaxy auto- and cross-correlation
	Lensing magnification bias
	Non-linear bias and bias evolution
	Marginalising photo-z parameters

	Cross-correlation with CMB
	The Planck CMB maps
	Cross-correlation with the lensing convergence map
	Cross-correlation with the temperature map
	Consistency checks
	Implication of low A
	Discussion
	AISW and implication on AvERA model

	Summary and discussion

	Stacked CMB lensing and ISW signals around superstructures in the DESI Legacy Survey
	Introduction
	Simulation
	Simulated galaxy light-cones
	Making mock lensing convergence maps
	Making ISW maps in simulations
	Quasi-linear ISW maps

	Methods
	Void finder
	Covariance matrix

	Superstructures
	Results
	Stacked lensing map
	Stacked ISW map
	Comparison with K19
	Searching for higher ISW signal

	Conclusions

	Closing Remarks
	Summary
	Future outlooks

	Matching redMaGiC colour selection
	Bibliography

