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Lay summary

Cosmology is the study of the origin and evolution of the Universe as a whole.
Although a seemly daunting question to ask, we now have a pretty good
understanding about the history of the Universe thanks to profound theoretical
insights and breathtaking observational evidence. The Universe started from
a Big Bang about 13.8 billion years ago. At its early times, the Universe
was extremely hot, dense, and uniform with only tiny fluctuations generated
by quantum interactions. This is supported by the detection of the Cosmic
microwave background radiation (CMB), the afterglow of the Big Bang. Then, the
Universe expanded and cooled, while those fluctuations grew under the attraction
of gravity, eventually becoming the large-scale structures of the Universe. When
the temperature became sufficiently low, stars and galaxies formed within these
structures, leading to the observable Universe today. There are three main
contents of the Universe. The particles that make up the surrounding materials
such as ourselves, baryons, only takes up 5% of the total content. The rest of the
Universe is dark. Observations of distant supernovae suggest that the expansion
of the Universe is accelerating, yielding 70% of the content to be the repulsive
dark energy. Studies of galaxy rotation curves and clusters of galaxies require
that as much as 80% of the total matter is dark matter, a particle beyond our

current knowledge that only interacts gravitationally.

The success of this ACDM model in explaining a spectrum of independent
observations is in fact a slightly awkward case. We do not know anything
about dark energy and dark matter! Dark energy is supposed to arise from
vacuum. Similar to boiling water, the vacuum is actually full of ‘bubbles’ of
particle-antiparticle pairs that are instantaneously created and annihilated. The
resultant vacuum energy, according to quantum theory calculations, is 100 orders
of magnitude larger than what is required by the cosmological model. On the

other hand, the search for dark matter has been carried out extensively by particle



physicists but to no avail. It is thus speculated that our understanding of the
cosmological model is not complete, and alternative models have been proposed,
for example, modifications to the theory of gravity. These models, although
designed to reproduce the observed cosmos today, often alter the formation and
evolution history of the large-scale structures. The focus of this thesis is to test

the theory of cosmic structure formation using large galaxy surveys.

One of the probes of structure formation is redshift-space distortions. Very much
analogous to the case where one can infer the speed of an ambulance by the
pitch change of the siren, the recession speed of a galaxy due to the expansion
of the Universe can be inferred by the frequency change of its emitted light, or
the redshift. We can convert the redshifts into distances, hence study the large-
scale structures by the spatial distribution of the galaxies. However, this is not
entirely correct, because galaxies can have additional velocities, called peculiar
velocities. This additional component distorts the observed spatial distribution.
On large scales (at least 1000 times the size of the milky way), peculiar velocities
are directly related to the growth rate of large-scale structures: galaxies fall
into the gravitational potential generated by these structures. In Chapter [2]
I use this effect to measure the growth rate using the GAMA survey [16§], and
show that it is consistent with the consensus cosmology. Specifically, I showcase
the consistency of this measurement using different types of galaxies and galaxy

groups.

Structure formation also generates specific features on the CMB. One such feature
is gravitational lensing, the bending of light due to gravity. The effect is a
small distortion of the CMB image, in a way similar to looking at it through
an uneven glass. Another feature, the Integrated Sachs-Wolfe (ISW) effect, is
present at recent epoch when dark energy started to dominate. In this effect,
the gravitational potential generated by large-scale structures evolves with time,
causing a net change in the CMB photon energy via gravitational redshift. These
small imprints can be measured statistically by cross-correlation of the galaxy
density and the CMB, thus providing a test for the ACDM model. In Chapter [5]
I carry out this measurement using galaxies from the DESI Legacy Survey [6§]
and the CMB maps from the Planck Collaboration [226],228]. While I find an ISW
signal consistent with theoretical expectation, the lensing signal is significantly
lower. In combination with other lensing results, this points to a possible tension
within the ACDM paradigm.

Superstructures, the most dense and empty regions of the Universe, are also
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fascinating objects for studying structure formation. Recently, a number of works
on supervoids claim an excess ISW signal that is several times the prediction of
the standard model. Such discrepancy, if real, can be a compelling evidence
for non-standard dark energy. To test these claims, I construct a catalogue of
superclusters and supervoids using the DESI Legacy Survey, and measure the
stacked CMB lensing and ISW signals at centres of these superstructures. In
Chapter [6] I show that, by comparison with a cosmological simulation, no excess
ISW signal is observed. The claimed signal is thus likely overestimated due to

selection and statistical fluctuation, often referred to as the look-elsewhere effect.

The interesting tension between the lensing measurements and the CMB shown
in this work and other literature will need more evidence to be resolved. Luckily,
a number of next generation galaxy surveys are underway, including DESI, LSST,
Euclid, and the CMB Stage 4 experiments. These high precision experiments,
covering large sky area and reaching incredible depth, will soon open up an
unprecedented view of the Universe that would allow us to further test and fill in

the missing pieces for the cosmological model.
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Abstract

The distribution of galaxies in the Universe is not random: rather, galaxies cluster
in a structured way. The formation and growth of these large-scale structures
(LSS) provides powerful dynamical probes for cosmology. This thesis explores
two of these probes, namely redshift-space distortion (RSD) and the imprints of
LSS on the Cosmic Microwave Background (CMB). Using galaxy surveys, I test
the theory of structure growth in the context of the ACDM cosmological model.

RSD probes the velocity field of LSS, which is influenced by the growth of matter
fluctuations. I use the galaxy and group catalogues in GAMA survey to test
the robustness of RSD in recovering unbiased growth rate fos with different
tracers. Specifically, galaxies are split into red and blue subsamples, and groups
are divided into three stellar mass bins. The 2D group-galaxy cross-correlation
function between these subsamples are interpreted by a linear model and a small-
scale Finger of God convolution. Given an appropriate minimum fitting scale, I
show that the subsamples give consistent growth rate, fog = 0.25 4 0.15, also in
agreement with the Planck 2018 results.

The imprints of LSS on the CMB correspond to the effects of weak gravitational
lensing and the Integrated Sachs-Wolfe (ISW) effect. T measure these effects using
the public DESI Legacy Survey, exploiting its large sky coverage and substantial
depth for tomographic studies. After careful selection of galaxies and correction
for various systematic effects, I assign photometric redshifts to galaxies based on
g—r,r—z and z — W colours, and construct four tomographic redshift bins
in 0 < z < 0.8. The photo-z errors are accounted for using the galaxy auto- and

cross-correlations between these redshift bins.

Having a clean galaxy sample, I measure the cross-correlation C; between the
galaxy density fields and the Planck CMB temperature and lensing convergence

maps. The amplitudes of these measurements relative to the ACDM prediction

v



using the fiducial Planck 2018 best-fit cosmology are A, = 0.901 £+ 0.026 and
Aigsw = 0.98 £ 0.35. While the ISW result is consistent with the fiducial
cosmology, the CMB lensing result is noticeably lower. This low amplitude is
interpreted in terms of a lower (2, in combination with the total CMB lensing

constraints.

Finally, to address the excess stacked ISW signal from supervoids claimed in
literature, I construct a superstructure catalogue using the four tomographic bins
in the DESI Legacy Survey, and measure their stacked CMB lensing and ISW
signals. The results are compared to the ACDM prediction from a mock catalogue
that is based on N-body simulations and carefully matched to the data. I find a
similar discrepancy in the lensing amplitude as in the cross-correlation scenario.
Here, it is mainly contributed by density peaks at the higher redshift end. 1
also show that the detection of ISW signal from superstructure stacking is only
mild, but is consistent with the ACDM prediction with a 95% upper limit of
Arsw = 1.51 using the full sample. Testing a range of superstructure subsamples,

I demonstrate that the claimed excess signal may be due to look-elsewhere effect.
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Chapter 1

Background in Cosmology

Cosmology is perhaps the scientific field that concerns the biggest subject of all:
the Universe. During the past century or so, we have established a decent model to
describe of how the Universe has begun and evolved to what it looks like today.
In this Chapter, I will give a brief introduction to the standard cosmological
model and set up the background necessary for the rest of the thesis. I will
start with a brief overview of General Relativity, the fundamental framework
use in cosmology, in Section [I.I] Then, with a few general assumptions, we will
see that the evolution of the Universe on large scales is well described by the
Friedmann-Robertson-Walker (FRW) metric with a time-dependent expansion
factor in Section [I.2] As we go to smaller scales, these assumptions break down,
allowing structures to form in the Universe. I will describe in Section how
these small perturbations grow and evolve under gravity before they collapse
to form haloes and galaxies, and how these structures can be related to the
observables in modern cosmological studies. This altogether establishes the
standard ACDM model, which allows us to describe the Universe quite precisely
with only seven parameters. However, the model has two unknown contents that
are suggested by its name, dark energy (A) and cold dark matter (CDM), and they
happen to make up most of the Universe. A few main cosmological probes are
listed in Section [I.4] providing almost consistent constraints on these parameters.
Interestingly, tension between some of these parameter has also started to emerge,
as I will briefly discuss in Section [I.5] Finally, I will mention the statistical tools
used in cosmological analysis in Section [I.6], before ending this Chapter by giving
a brief outline for this thesis in Section



1.1 The Framework of General Relativity

General Relativity is one of the greatest discoveries in physics, because it
introduces the important notion that the Nature should be described in a frame-
independent, or covariant way. Tracing back to the Michelson-Morley experiment
in 1887, it was the discovery of constant speed of light in the vacuum that has
deepened the thought of relative motion and given rise to Special Relativity.
Later on, based the Equivalence Principle, which states that the inertial mass is
the same as the gravitational mass, Einstein was able to include gravity into the
framework and formulated General Relativity. This has revolutionised our view
of physics profoundly ever since. The idea was summed up concisely by physicist
John Wheeler: “Space-time tells matter how to move; matter tells space-time how

to curve’.

Given the coordinate z#, where u = 0, 1, 2, 3, the line element ds of the space-time

is given by
ds* = g, dz"dz, (1.1)
where g, is the metric. The metric signature adopted in this thesis is
(4, —,—,—). The equation of motion is given by the geodesic equation:
i TH NV =0, (1.2)

where the dot denotes derivatives with respect to the affine parameter, and the

affine connection, I'", | is a function of the metric and its derivatives:

gh

F'uzl)\ 9

(Orgva + 0ugra — Dalgunr)- (1.3)
A special case is the flat Minkowski metric n,, = (1, —1, —1, —1), where I'*,,, = 0,
and Eq. gives the usual linear motion. In general, however, the space-time
can be curved. The curvature is manifested in the non-vanishing Riemann tensor
arising from parallel transportation of a vector. Consider parallel transportation
around a parallelogram with sides a* and b* for a vector V#. The change between

the original and transported vector is given by:

SVH = R,V a b, (1.4)



where the Riemann tensor is given by
Ryaaﬁ - aar'uoﬂ - aﬁrua‘a -+ FH&VFVO'/B — F“g,,fwga. (15)

Notice that the Riemann tensor involves the second derivative of the metric and
is therefore a measure of the curvature of the space-time. The Riemann tensor
has a number of symmetries, and among them the Bianchi Identity allows one to
get:
1
V,R, = iv#R, (1.6)

where R, = R%,,, is the Ricci tensor, and R = R*, is the Ricci scalar. Eq.

can be rearranged to give the Einstein tensor,

1
G = R = g™ R, (1.7)

such that the covariant divergence V,G*” = 0.

The source of the space time is given by the energy-momentum tensor, TH".
The conservation of energy and momentum requires that 9,7*” = 0 in the local
frame. Covariance requires that this equation holds generally, i.e., V,T* = 0.
Therefore, to link the curvature of the space-time with its source, the simplest
approach is to have G* proportional to T"”. In Newtonian limit, this constant
can be computed and one arrives at the Einstein’s field equation:

G = -G (1.8)

ct

In principle, nothing stops us from adding other terms into this equation as long
as they have vanishing covariant divergence. The simplest such term is the metric

tensor multiplied by an arbitrary constant A:

G

GMV + Agwj = —FTM,/. (19)

We shall see in the next Section that this is the cosmological constant.

More complicated terms can also be added to this equation. In fact the above

equation can be derived from the Einstein-Hilbert action:

4
S:/ C (R—20) + Ly | V=g d'z, (1.10)
167G

where £, is the Lagrangian for the source fields, by requiring 65 = 0 given a



change of the metric dg,,. Theories that involve additional terms in the square
bracket in the action are generally referred to as modified gravity theories. For
example, one class of terms is functions of the Ricci scalar, f(R), called the f(R)
gravity. These theories lead to exotic physical effects that may provide alternative
solution to dark energy and dark matter, or have the potential to resolve the
tension in the cosmological parameters. A thorough review of modified gravity
theories can be found in [51]. For now, we shall assume standard GR and carry
on with Eq. for the cosmological model.

1.2 Cosmological model

1.2.1 Homogeneity and isotropy assumptions

The cosmological model is constructed based on the cosmological principle: on
large scales, the Universe is homogeneous and isotropic, i.e., the universe looks
the same at all locations and in all directions. This is a fair assumption, because
observations of distant galaxies do not suggest that our location in the Universe
is special, nor any particular direction is preferred. It also implies that the same
physical laws are valid everywhere in the Universe. Based on these assumptions,
one may write down a metric that has the following properties: (1) the metric
is spatially symmetric; (2) it can only be a function of time; and (3) it must
have the same geometry everywhere. The resultant cosmological metric is the
Friedmann-Robertson-Walker (FRW) metric, which takes the form:

2

279 2 7,2 2 T
c“dr® = c*dt* — R*(t) T

+ 72 sin? 0dp? + rdo?| (1.11)

where the evolution of the space is characterised by the arbitrary function
R(t), and the curvature is characterised by the constant k, with & = —1,0,1
corresponding to closed, flat, and open universe respectively. It is common to
define the scale factor a(t) = R(t)/R(t = ty), such that a = 1 at today.

The Universe is assumed to be filled with perfect fluid, where the density p and
pressure p are functions of time only. The energy-momentum tensor takes the

covariant form,
p
T,uu = (p + C_2>uuuu +pg;w> (112)

where u# is the 4-momentum of the fluid. It is interesting to note that, one can



interpret the cosmological constant term in Eq. as an energy density with

negative pressure, and whose equation of state yields

p

=om =l (1.13)

Therefore, A is often referred to as dark energy. Solving Eq. in the rest frame

of the fluid, we arrive at the Friedmann equations:

_8nGp ket AC

H? 1.14
3 St (1.14)
a 4rCG 3p Ac?
-7 20) L2 1.1
3 (p c2> T (1.15)
where .
a="2 (1.16)
=" .

is the Hubble parameter, and dot denotes derivative with respect to t.

These equations immediately suggest that the Universe is in general not static.
The fate of the Universe, whether it expands or collapses, depends on the matter
content of the Universe and its curvature. Combining Eq. and [1.15] one gets

p‘+3% (p+§2) —0. (1.17)

This allows us to compute the time dependence of the content of the universe
given its equation of state, and solve for the evolution of the scale factor. There

are three types of content below.

e Matter (dust): This includes all non-relativistic baryons and dark matter.
Because these particles are non-relativistic, their sound speed ¢ = dp/dp is
much smaller than the speed of light. Thus, the pressure can be neglected,

3 i.e., the density decreases with the

i.e. w = 0. This implies that p,, oc a™
expansion of space. In a matter dominated Universe, Eq. shows that
a o« t?/3, and Eq. gives @ < 0. This implies that the universe starts

from a singularity, or Big Bang, and expands with deceleration.

e Radiation: This includes photon and relativistic neutrinos. The equation
of state for radiation is w = 1/3, and this shows that p o a=* This
dependence can also be understood physically from the expansion of

the space as well as the ‘redshifting’ of the photon energy E = h/\.

Substituting this into Eq. [1.14] and [1.15| again gives a o t'/? and d < 0




in a radiation dominated universe.

e Dark energy: The dark energy equation of state in Eq. means that
this energy density is a constant, as indicated in the A term in Eq.[I.14] In
a dark energy dominated universe, a exp(\/m t), i.e., the universe
expands exponentially. We shall see that observations from supernova
suggest that the Universe is expanding and accelerating. This is one of

the strong evidences that A is nonzero.

The real Universe is a mixture of these contents. To make comparison between
different species, it is convenient to define the critical density of the Universe
today with £ = A = 0:

3H?
Do = Wé ~ 1.88 x 1072°A? kgm 2, (1.18)

which is about 5 hydrogen atoms per cubic meter, and use the fractional density
Q; = pi/pe (usually defined at today with explicit a dependence). Hj is

usually written in unit 100k kms *Mpc ™!, where h is a parameter of order unity.
Eq.(1.14)) can then be recast into:

H? = Hi [Qp 4+ Qpa + Qa™ = (2= 1)a?] . (1.19)

Here, €2, is the fractional dark energy density, €2, = Q, + Qpy is the fractional
matter density consisting of baryonic matter and dark matter, €2, is the fractional
radiation density, and 2 = Q +,,+£,.. The last term corresponds to curvature:
the open, flat, and closed universe corresponds to €2 > 1, = 1, and 2 < 1

respectively.

Given the dependence of the scale factor on each species, assuming no fine tuning
of €; and negligible curvature, the very early universe is dominated by radiation,
and then by matter, before it is completely taken over by dark energy. An

important time scale is the matter-radiation equality at

Q, 42x107°
e == .
10, Q,,h?

(1.20)

As we shall see near the end of this Chapter, these parameters have been
accurately determined by various cosmological observations. To the lowest
significant digit, a cosmological model with h = 0.7, Q =1, Q, = 0.7, 2, = 0.3,



Q, = 0.05, Qpy = 0.25, and negligible €2, provides a good description of these
observations. Given the measured density parameters above, it is perhaps a
surprise to find that dark energy has only become dominant todayﬂ These
parameters suggest that the Universe is spatially flat and is expanding with
acceleration. It is also interesting that the matter content is dominated by the
unknown (cold) dark matter, which is about five times the amount of the normal

baryonic matter. The standard model of cosmology is therefore referred to as the

ACDM model.

1.2.2 Redshift and distance measures

In an expanding universe, the physical coordinate r expands with the scale factor.
It is convenient to define the comoving coordinate x, where r = a(t)x, meaning
that x does not change as the Universe evolves. The velocity due to expansion
for a physical distance r is given by v = 7 = H(t)r. This apparent motion is
referred to as the Hubble flow.

Due to the Hubble flow, galaxies appear to move away from us. Their radial
velocity can be directly measured from the redshift of the galaxy characteristic

emission lines:

)\o_/\e
Ae

where ), is the wavelength observed and A, is the wavelength emitted. The

(1.21)

z =

change in the wavelength is given by the Doppler effect for a small increment in
distance: d\ = Adv/c = XA H(t)dr/c. Now the time of propagation is given by
dt = dr/c, thus d\/\ = da/a. This integrates to

Ao Qo
— = —. 1.22
N a (1.22)
Therefore, one can relate the redshift and the scale factor via
1
24+1=—, (1.23)

a

where the observed time is set to today.

With these tools, we can determine the distance to observed galaxies. In the local

IThis has lead to the question of “Why now?’



Universe, the distance can be approximated by the Hubble law:
d =v/H,. (1.24)

For more distant objects, H(t) can no longer be approximated as a constant and

one needs the following integral to compute the comoving distance:

-7

It should be noted that this distance determined redshifts may not correspond to
the true distance — as we shall see later, the redshift can also have a component
arising from the galaxy peculiar velocity. This additional velocity actually encodes

important cosmological information.

There are two other useful distance measures. The angular diameter distance is

Da(z) =/ %27, (1.26)

where R is the radius of the source observed, and €2 is the solid angle subtended.

given by

Since the proper size of the source is given by its comoving size multiplied by the
scale factor, we find that Da(z) = x(2)/(1 + z). The other one is the luminosity

Dy(z) =/ %, (1.27)

where L is the luminosity of the source at frequency, and S is its measured flux.

distance

The photon energy is redshifted, and the arrival time is dilated, so that the the
measured flux S = Sy/(1 + 2)2. Therefore, the luminosity distance is related to

the comoving distance via Dy (z) = x(2)(1 + z).

1.2.3 Recombination

One of the greatest success of the cosmological model is the prediction of a
relic radiation background from recombination, an important epoch during the
evolution of the Universe. In the very early universe, photons are constantly
scattering off protons and electrons. While hydrogen atoms can be formed,
they are also constantly ionised by these high energy photons. As the universe
expands, the temperature drops as 1" o« 1/a, and the number density of ionised

(electrons and protons) and neutral components (hydrogen) also drops with



n; o< T%?2 exp(p; — m;c?/kgT) in thermal equilibrium, where g; is the chemical
potential. When the reaction rate is lower than the expansion rate, the Universe
becomes neutral. Computation of the ionised fraction of the universe suggest that
this happens at z ~ 1000. From around this time, a photon rarely interacts with
the neutral hydrogen and is able to propagate freely. This is often referred to as
last scattering or recombination. This afterglow of the Big Bang reaches us from
every direction in the form of a background radiation. Due to constant scattering,
these photons have a perfect black body spectrum with a temperature redshifted
with time: Ty = T'(2)/(1 + z) ~ 3K, corresponding to microwave frequencies. It
is the earliest radiation that we could detect — the Universe is electromagnetically

opaque before this era due to the photon scatteringﬂ

This Cosmic Microwave Background (CMB) was first predicted by G. Gamow and
first observed by Penzias & Wilson [216]. This provided a strong evidence for Big
Bang. Subsequently, it is measured by a series of satellite missions. The Cosmic
Background Explorer (COBE) measured CMB to high precision and confirmed
that the spectrum is a perfect black body with a temperature of T' = 2.73K. Later
on, the measurements from Wilkinson Microwave Anisotropy Probe (WMAP)
allowed determination of cosmological parameters to percent level precision via
the study of CMB anisotropies, and stated the era of ‘precision cosmology’. This
was succeeded by the Planck mission, and along with the polarisation data, has
provided one of the tightest constraints on our current cosmological model today
(see Section . More recently, higher precision CMB experiments are carried
out as well as being planned, such as SPT, ACT, and CMB-54.

1.2.4 Inflation

The CMB is extremely uniform across the whole sky with fluctuations of only
one part in 10°. The comoving particle horizon, which defines the size of causal

interaction at the time of recombination is given by

Xph(2) = /0 o ;(—it). (1.28)

Assume a matter dominated Universe, x,, ~ 180 h~! Mpc, corresponding to an

angular size of only ~ 1° on the sky — most of the last scattering surface was not

2Most of our current observations are based on electromagnetic waves, which cannot probe
the epoch before recombination. However, gravitational waves can propagate through this early
era, and is considered a potential future probe for the very early universe before recombination.



causally connected. How is the CMB so uniform across the whole sky?

This is referred to as the horizon problem, and inflation is proposed as a solution.
The idea is that there is a period where the scale factor grows exponentially,
a(t) o< exp(Ht) just like the vacuum dominated case. This allows a small patch of
the sky to rapidly grow large enough to cover the whole observable universe today.
However, inflation needs to end at some point, or otherwise the Universe today
would be completely empty. Such mechanism can be generated by a dynamical

scalar field with Lagrangian:
1
L =50"00,4 - V(9), (1.29)

where V' (¢) is the potential. One can work out the energy-momentum tensor 7"

of the field from Noether’s theorem, and read off the density and pressure:

po= 562+ V(0), (130
po= 56~ V(0) (131

In this equations, I have assumed that ¢ = ¢(t) is homogeneous and thus ignored
the terms involving gradients of ¢. This is fine because as the space expands
exponentially, any small spatial perturbations are quickly damped away. We

recognise that the equation of state is now

1.2
15—y
w = M (1.32)
50* +V(9)
and requiring ¢? < V(¢) gives the vacuum w = —1, which generates the

exponential growth. We expect that the potential during the inflation era would

be flat until the end of the inflation. The equation of motion is given by
¢+ 3Ho+V'(¢) =0, (1.33)

where V' = dV/d¢. In order to keep ng small, we also require that the first term
in the above equation is negligible. Together, these conditions are referred to as

the slow-roll approrimation, and can be recasted into the two Hubble slow-roll
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parametersﬂ:

_H &
pu— _i
T (1.35)

After expanding for about 60 e-folds or so, these parameter become O(1) and ¢

is attracted to the minimum of the potential, hereby exiting the inflation epoch.

It is noticeable that inflation not only solves the horizon problem, but also
provides an explanation for the flatness problem. This problem refers to that,
given the measured curvature being almost zero at the current epoch, the initial
curvature must be finely tuned to be extremely small. From Eq. [[.19] the time

dependence of the curvature term is

Hg

1-90) = g

— Q). (1.36)
Thus, tracing back to the neutrino freeze-out time, for example, where a ~ 10710
and the Universe was radiation dominated, the curvature term has to be as
small as ~ 1071, This is solved by including the inflation epoch, because the
exponential expansion of the space essentially stretch out any initial curvature

and naturally result in a flat Universe as we observe today.

At the end of the inflation, the fluctuations in the scalar field d¢ also provide
seeds for density fluctuations that later evolve into the large scale structures of
the Universe. We shall see in Section that inflation is able to predict the
shape, or the spectral index of the initial power spectrum that matches well with

observation.

1.2.5 The dark sector

Dark Matter

The existence of dark matter has been demonstrated by a range of evidence from
astrophysical and cosmological observations. One set of evidence comes from the

observations of galaxy clusters. In 1933, Zwicky [318] showed that the velocity

3There are also potential slow-roll parameters, which control the flatness of the potential.
These two sets of slow-roll parameters are equivalent in the limit € — 0 and n — 0.
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dispersion of galaxies in the Coma cluster is much larger than the escape velocity
given the total mass of the cluster estimated from its luminous components. This
indicates that there must be a much larger gravitational potential that hold these
galaxies together. X-ray observations of clusters show high gas temperature from
clusters of galaxies, indicating high thermal pressure which has to be balance out
by the gravitational potential. Again, this gravitational potential is much larger
than expected from luminous matter and gas. Furthermore, massive clusters
bend the light from distant background galaxies, resulting in strong gravitational
lensing effect. The distorted image, often looking like a ring or symmetric arcs,
provides a direct determination of the mass of the lens. The three independent
cluster mass estimation turns out to agree well, showing that about 80% of the

total mass is invisible (see [10] for a thorough review).

Another set of evidence comes from the measurements of the rotational curves
of spiral galaxies. According to Newtonian mechanics, the rotational velocity at
radius R from the disk centre enclosing a mass M is given by

v?(R) = GM—(R). (1.37)

R

The rotational velocity can be measured from the Doppler effect of luminous
tracers such as stars and HI gas in the disk of these galaxies, and the total visible
mass can also be estimated from empirical relations such as the mass-to-light
ratio. If the galaxy is composed solely of visible matter, then most of its mass
will be concentrated within the size of the disk, beyond which the rotational
curve would drop as a function of R. In 1978, Rubin et al. [246] showed that the
measured rotational curve of spiral galaxies actually flattens, indicating that the
enclosed mass is much larger. Such an effect is also measured in the Milky Way.

It is now known that most galaxies are surrounded by dark matter haloes.

Big Bang nucleosynthesis (BBN) also provides strong evidence for dark matter.
The early Universe has high temperature which allows particles to be constantly
created and annihilated. As the Universe expands (and temperature drops as T"
1/a), the rate of interaction eventually falls below the Hubble parameter, and the
species ‘freeze out’, i.e., the comoving number density becomes conserved. The
primordial abundance of elements, especially that of helium (He*) and deuterium
(D), determined from e.g. metal poor intergalactic gas, is a good indicator of the
thermal history since the Big Bang. The basic idea is the following. Neutrons

and protons are in equilibrium in the early Universe through the interaction
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with electrons and neutrinos. This is no longer true at kg7 ~ 1MeV when
the electron neutrino decouples, and neutrons decay into proton only. Neutrons
and protons can also combine to form deuterium through p+n — D + v. As
the temperature continues to drop, not enough energetic photons are around to
reverse the process, and the deuteriums begin to form helium 2D — He!. At
the end of this process, the free neutrons and protons (and electrons) are almost
all in the form of hydrogen (H) and He'. Elements heavier than He* are hard
to be produced primordially from two colliding He* or H atoms due to unstable
nuclei and low number density. The abundance of these elements are sensitive
to the baryon-to-photon ratio, which is directly proportional to €2, since the
photon number density can be derived from the Cosmic Microwave Background
(CMB). Measurements of these elements show that €, ~ 0.04, indicating that
only €,/Q,, ~ 20% of total matter is made up of baryonic matter. For a thorough
review on BBN see [293].

Finally, various cosmological probes are sensitive to €2,. For example, the Baryon
Acoustic Oscillations (BAO) — the sound horizon of the coupled baryon-photon
fluctuations, and the relative amplitude of the acoustic peaks of the CMB
anisotropy can be used to constraint 2,. We will leave detailed discussion of
these probes to Section [I.4}

Before leaving this topic, I would like to briefly mention possible candidates
for dark matter. For a while, neutrinos had been considered a very probable
candidate due to their small cross-section to interact with the other Standard
Model particles. However, there are two problems with neutrinos being dark
matter. Firstly, their abundance can be computed from the corresponding photon

number density as determined from the CMB temperature:

> My
QW = g2 (1.38)

Neutrino oscillation experiments give constraints on the squared mass difference
of the three neutrino species, which are of order ~ 1073 — 107%eV, and the
upper bound of electron neutrino from particle physics experiment is about 2eV.
Together, this means that €2, < 0.12 (taking h ~ 0.7), and so the neutrino
fraction is not large enough to account for all of the dark matter. Another
problem is that given the small mass, neutrinos have substantial thermal velocity,
a phenomenon called free streaming. This prevents them from clustering on

small scales. Thus, they would suppress the growth of small structures in the
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universe, and this is in contrast to what we observe, for example, from the galaxy
power spectrum. In fact, all hot dark matter like neutrinos can be ruled out,
and this is why we often refer to the name cold dark matter. Another promising
candidate is Weakly Interacting Massive Particles (WIMP). These particles could
arise from extensions of the Standard Model motivated by the Hierarchy Problem,
with a mass scale of my ~ 100GeV — 10TeV. Using the cross-section of weak
interactions, their abundance can be computed, and it turns out that the relic
density is comparable to that of CDM, Qx ~ 0.3. This is often referred to
as the ‘WIMP miracle’. However, the search for WIMPs, along with other
Supersymmetry particles, has not shown any convincing detections. Finally, well
motivated from particle physics to solve the strong CP problem, QCD axions are
also considered a candidate for dark matter. In contrast to WIMPs, they are very
light particles with a mass m, ~ 107%eV(10'°GeV/f,), where f, is the Peccei-
Quinn scale and is a free parameter [212]. To obtain a relic density comparable
to observation, ,h% ~ 1011GeV/f,, the axion mass would be of order < 107V,
yielding f, > 10'2GeV. This is referred to as the ‘axion window’. It is noticeable,
however, that the natural scale of f, is ~ 10*® — 10'8GeV from String Theory.
Other types of axions (or axion-like particles) are proposed that have desired dark
matter properties but do not solve the CP problem (e.g. fuzzy dark matter). The
search for this particle, along with its related physical effects, are also ongoing,
and has not provided convincing evidence of its existence yet. A review on the

dark matter candidate can be found in e.g. [83].

Dark Energy

We now know from cosmological observations that the dark energy density
parameter, {2, is about 0.7. Given the critical density p. = 3HZ/(87G), the
vacuum energy density is of the order (107'2GeV)?* in natural units. This has
raised the question of fine-tuning of the vacuum energy and the smallness of
the cosmological constant. From Quantum Mechanics, we know that the zero-
point energy of massless field is given by £ = (0|H|0) = hAw/2. This has been
experimentally verified, for example, in Casimir effect [155] and X-ray diffraction
of lattice [315]. Therefore, the total energy density of the vacuum is given by

integrating the equation in phase space,

dnh [
DvacC’ = W/o w3 dw. (1.39)
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This expression clearly diverges. One could introduce a UV cutoff, A, as the
upper limit, by arguing that there is a minimum scale in the space, i.e., a
lattice. A natural scale to assume is the Planck scale, A = \/W, above
which quantum gravity would need to be considered, and is beyond our current
understanding with the Standard Model. In this case we get a total vacuum
energy of order (10®GeV)* — some 120 orders of magnitude difference between
this naive prediction and the measured value. Of course, this naive computation
needs to be taken cautiously. Firstly, it is unknown if this expression actually
breaks down at much smaller energy scales, since QFT has only been tested up
to the QCD scale. Secondly, we will need to consider all types of particles in
the standard model and their interactions, rather than the single massless scalar
field case. Thirdly, it is a common practice in QFT that such divergence can
be avoided by renormalisation of the theory, and the observables turn out to be
finite. After all, the observable is sensitive the the change of the energy, rather
than its absolute value. In this sense, the vacuum energy can be ‘renormalised’
to any value. However, it is unsatisfactory that the choice of this ‘free’ parameter
has to be finely tuned across many orders of magnitudes to be so small. This is

often referred to as the cosmological constant problem.

One solution is that the cosmological constant is generated by other dynamical
(scalar) fields, for example, in a scenario similar to the inflation field. This in
general allows some evolution of the dark energy equation of state, i.e., w = w(t),
which can alter the evolution of large scale structures and their formation, and
is a key aspect for the design of modern galaxy surveys to clarify. The evolution
of w can be tested through two kinds of methods, geometrical and dynamical
probes. The former refers to the precise measurements of the cosmic distance
scale. Recall that for arbitrary w, considering k = A = 0, Eq. and
together give dp/da = —3(1 + w)p/a. This means that the dark energy density

equation has the dependence
p o el Hwdina, (1.40)
Therefore, the Hubble equation is then modified to
H?*(a) = H} [QAef_?)(Hw)dlna + Qa ™ + Qua ™t — (2 - 1)a_2] : (1.41)

It is then clear that, by Eq.(1.25]), non-trivial dependence of w on time can affect

the comoving distance measure. Thus, geometric probes such as BAO are able to
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test these effects. A complication is that such measurements also depend on the
value of the matter density €2,,, and to get tight constraints on w, we will also
need high precision measurements in 2,,,. The dynamical probe the dark energy
equation of state is through the growth of structures. As will be explained later,

the density fluctuation is governed by the following equation:
6+ 2H6 = 471G pyd.

This is a wave equation with a ‘drag’ term induced by the Hubble expansion.
Therefore, the growth rate of large scale structures are also sensitive to the specific

form of the dark energy equation of state.

1.3 Structure formation

The very existence of galaxies and stars shows that the homogeneity assumption
of the Universe is not valid on small scales. It is also revealed in galaxy surveys
that the distribution of galaxies is inhomogeneous and anisotropic, such as shown
in Fig. [[.IT We can model these structures by introducing small perturbations
to the density (and the metric) in the early Universe, and evolve them to the
present. This is described in Section as the linear perturbation theory. The
two-point statistics of the density fluctuations are introduced in Section [1.3.2),
namely the power spectrum and the correlation function. In Section I
will also discuss an important observational effect in the measured correlation
function: redshift space distortions. Eventually, the small perturbations grow to
O(1), and the perturbation theory breaks down. To account for non-linearity,
the theoretical approach is to expand to higher order. The advantage of this
method is that it does not involve additional parameters — non-linearities are
computed from first principles. However, computation becomes complicated
quickly before one can approach much smaller scales. An alternative approach
is phenomenological models that are tested against N-body simulations, such as
the halo model introduced in Section [1.3.4] It states that when the local density
exceeds some critical value, the matter within the overdense region should collapse
under gravity and form a gravitationally bound structure, or haloes. The large
and small scales can then be described by the statistical distribution of different
haloes and a single halo profile respectively. The connection between galaxies

and haloes is discussed briefly in Section [1.3.5] Finally, there are also empirical
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Figure 1.1 The Solan Digital Sky Survey (SDSS) map of the Universe. Each
dot is a galaxy; the colour is the g — r colour of that galaxy. Credit:
M. Blanton and SDSS.

approaches towards the non-linear scales via parameterised models that explicitly
match observations. These various approaches have been applied intensively in
cosmological studies, and conveniently, there are many numerical packages that
can generate non-linear matter power spectrum based on empirical fitting formula
with different cosmological parameters, e.g. the HALOFIT [270], 282], and CAMB
[163].

1.3.1 The linear perturbation theory

The density field p(x,t) fluctuates around a homogeneous mean background

density p(t). The density fluctuation is defined as

5(x,1) = W, (1.42)
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where § > 0 corresponds to overdensity, and —1 < § < 0 refers to underdensity
compared to the background. The linear assumption, |§| < 1, is valid in two
scenarios. Firstly, given that the CMB fluctuations are very much Gaussian
and of order 107°, this assumption should hold in the early Universe. Secondly,
it should be valid on very large comoving scales > 100 h~! Mpc, regardless of
epoch, because the homogeneous and isotropic assumption holds well even up
to today. In these linear regimes, one can compute the equation of motion to
first order in 4. In the following text, I will adopt the Newtonian limit where
the gravitational field is weak, and when perturbation is much smaller than the
horizon scale. This provides an intuitive way to work out the dynamics of the
perturbation. The full relativistic treatment is more complicated and involves
introducing perturbations to the metric and the energy momentum tensor (for
details, see e.g., [301]). In this more rigorous approach, perturbations beyond
scalar modes are in principle present: the vector perturbations correspond to
the vorticity field, and the tensor perturbations produce small gravitational
waves. The effect of vector perturbations corresponding to vorticity can be safely
neglected, because they dissipate quickly with the expansion of the universe. The
tensor perturbations are in fact predicted by inflation, but it has not yet been
observed. For the following analysis, we shall ignore the tensor modes, and quote

results from the relativistic approach directly when needed.

We adopt the non-relativistic fluid approximation. There are three equations

that govern the dynamics of density.

e Continuity equation:
dp
ot
where U is the velocity field of the fluid. The derivative V and the partial

time derivative are with respect to the proper distance r.

—V, - (pU), (1.43)

e Euler equation (or conservation of momentum):

0 V.p
—+U-V,|U=- - V,o. 1.44
(32? " > p (144)
e Poisson equation:
V20 = 47Gp — A. (1.45)

Since A domination only happens at late times, we will ignore its

contribution for the following discussion.
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To distinguish the dynamics from Hubble expansion, we solve these equations
in the comoving coordinates x where r = a(¢)x. The velocity then is given by
U =r = Hr + v, where the first term corresponds to the Hubble flow, and the
second term is the peculiar velocity. The zeroth order equations are solved by the
background cosmological model, e.g., Eq. [I.17. The first order equations can be

rearranged into:

o+ 2H6 — %vg(s = 4GP, (1.46)
where ¢ = dp/dp is the sound speed of the fluid, and the derivative is with
respect to the comoving coordinates, V. This is essentially a wave equation with
a friction term given by the expansion of the background universe, and a driving
term given by the competing effect of pressure and gravity. In Fourier space,
Eq. becomes Oy + 2Hd + (2 /a®)(k* — k2)d) = 0, where k is the comoving
wave vector, and k; = /4rGp/c, is the Jeans scale. Below the Jeans scale
(k > kj), pressure dominates, and the density perturbation has an oscillatory
solution, also referred to as acoustic waves. Above the Jeans scale (k < k),
gravity dominates and the density evolves with time according to a power law.
In the case of cold dark matter and baryonic matter after decoupling, the pressure
term can be ignored, and Eq. only involves time derivatives of §. Thus, one
can separate the temporal and spatial dependences of the density perturbation,
ie. 6(x,t) = D(t)do(x). During matter domination, a o< t*/3, and we find a
growing solution D, () & a and a decaying solution D_(t) o t~!; the latter

quickly becomes negligible. It is commonly adopted that D, (ty) = 1, and
d(x,t) = Dy (t)do(x). (1.47)

In radiation dominated era, D, (t) o< t o< a? from relativistic computations (for
more detail, see e.g., [204]). From here on, we will drop the ‘+’ on the growth

factor Dy (z) as we will only consider the growing mode.

The peculiar velocity field

The peculiar velocity v can also be solved from Eq. 1.45| In the linear regime
and using comoving coordinates, the Eq. with negligible pressure becomes

ov V.o
— +Hv=--"- 1.4
ot v a ’ (1.48)
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where ® is the Newtonian potential which satisfies the linearised Poisson equation.
It is convenient to define the comoving velocity u such that v = au, and Eq.
becomes Ou/dt + 2Hu = —V,®/a*>. We can now drop the subscript z on the
spatial derivative as we work consistently in comoving space. The inhomogeneous
solution, where the RHS of the equation is set to zero, yields a decaying function
with |u| o< 1/a®. This soon becomes negligible. The homogeneous solution yields
that u is along the direction of the potential gradient and thus can be expressed

as a gradient of a scalar convergence 0, i.e., u = V4.

The comoving peculiar velocity is related to the density perturbation via the

linearised continuity equation:

o)
— -u=0. 1.4
5 +V-u=0 (1.49)

Substituting Eq. we find that in Fourier space,

- , k

where

olnD
f=Sro~, (1.51)

is the growth rate of the density perturbation. In the last expression, the power
is v &~ 0.55 in GR [152], 299]. Conveniently, the peculiar velocity is completely
determined by the density field in the linear regime. Thus, by measuring galaxy
peculiar velocities, one can constrain the growth rate of the large scale structures.
It is an important parameter for testing theories of gravity on cosmological scales,

as will be discussed in more detail Section [1.3.3

1.3.2 Descriptive statistics

Correlation function

The n-point functions are defined as

" (X1, Xg, ... Xp) = (0(x1)d(X2)...0(x,)), (1.52)
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where the bracket represents ensemble averageﬂ If § is a Gaussian random field,
the 2-point function will be able to capture all statistical features. This is a
good approximation in the early universe, for example, for the CMB analysis,
because the CMB fluctuations are extremely close to Gaussian distributed. For
the local universe, the n = 2 case is also most commonly adopted for its simplicity
to model and convenience to construct an estimator for observational purposes;
both modelling and observation get hugely complicated even at the bispectrum
(n = 3) level, not to mention higher order statistics. However, it should be
noted that as structures grow, the distribution of § deviates significantly from
Gaussian; it is more appropriately described by a lognormal distribution at low
redshifts [55, 56]. Non-linearity also induces coupling between different scales,
making the evolution of the density perturbation difficult to model. Thus, there
are many efforts towards trying to capture these non-Gaussian properties beyond
the 2-point functions, for example, using 1-point function (PDF of the density
field) and 3-point functions, e.g.[96, 259, 274, 294]. In this thesis, we will focus

on 2-point statistics only,

The 2-point function can be related to the excess probability of finding a pair of

galaxies at positions x; ¢ each in a volume dV with a mean number density n:
P = (ndV)?[1 +&(x1,%2)] (1.53)

when compared to a random distribution, where £ = 0. Assuming isotropy
(since there is no preferred direction for the inhomogeneity), £(x1,x2) = £(r),
where r = |x; — x3|. This definition is used to construct estimators for the
correlation function, and the average is taken over many such galaxy pairs. The
ensemble average in Eq. is replace by an average over volume (or galaxy pairs)
here because we assume the ergodic hypothesis, which states that the statistical
properties at different parts of the universe are the same. One of the commonly

used estimators is the Davis-Peebles estimator [63]:

£(r) = g—g ~1. (1.54)

Here D denotes data and R denotes random points in the same volume. A
quantity like DR is the number of data and random pairs separated by distance r,

normalised by the number of data and randoms in the volume. This is to account

4The ensemble average refers to averaging over many such samples. Ideally, this requires
averaging over many realisations of the universe at positions x1, ...x,. However, as we shall see
below, due to the homogeneity of the universe, this average can be performed spatially instead.
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for the fact that normally the number of random points used is much larger
than data points in order to reduce noise. Another commonly used estimator

is the Landy-Szalay estimator [I56], which has the improvement of better noise
suppression compared to Eq.

_ DD -2DR+RR
N RR '

§(r) (1.55)

In actual observations, the correlation function is not isotropic due to the peculiar
velocities of galaxies along the line of sight, as we will soon discuss in Section [1.3.3]
To reduce the anisotropic effect, it is often useful to measure the projected

correlation function

wy(rp) = /Oo &(rp, m) dr, (1.56)

where (r,, m) are the separation of the pair perpendicular and parallel to the line
of sight, and r? = 7“;2) + 2. With this, one can then invert the relation to find the

isotropic 3D correlation function via the inverse Abel transform:

&(r) = —%/TOO dw;;w \/%. (1.57)

It should be emphasised that these expressions assume a distant observer, and

there is no selection as a function of distance (or redshifts).

In some cases, the distance to individual galaxy is not well determined (e.g., in a
photometric survey), and the clustering is measured via the angular correlation
function, w,(6), which counts galaxy pairs given an angular separation #. This
is related, but not to be confused with the above expressions that count pairs in
3D. In the case of angular correlation functions, the interpretation of the signal

also requires the overall redshift distribution N(z) of the galaxy sample.

Power spectrum

The power spectrum is the 2-point correlation function in Fourier space. In
the linear regime, each Fourier mode of the perturbation evolves independently,
making the power spectrum convenient for theoretical computations. Assuming

zero curvature, the density perturbation can be decomposed into plane waves,
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d(x) = > ok exp(ik - x), and the Fourier coefficients are given by

1

= x)e X PBx. )
Ok = (27r)3/5( ) d (1.58)

In the continuum limit, the power spectrum is defined as:

(60} = ﬁP(k)é?’(k _ W), (1.59)
where §3(k — k') is the Dirac delta function and k& = |k|. In the linear regime,
according to Eq.[I.47] the temporal and spatial dependence of the power spectrum
are separable, i.e. P(k,z) = D*(2)Py(k), where Py(k) is the power spectrum at
z = 0. The power spectrum and the 2-point function is linked by the 3D Fourier
transform. Integrating out the solid angle, the isotropic correlation function can

be expressed as

dm [ sin(kr)
g(r)zw/o PR gy, (1.60)

The total variance of the field is given by integrating over the full phase space,

(62) = 2—;2/13(@/&‘ i — /AQ(k;)dlnk, (1.61)
where .
A*(k) = P ;?f (1.62)

is the dimensionless power spectrum. This integral is divergent at large k given
the shape of the power spectrum: as we shall see shortly, the small scale power
is approximately oc k72 in linear theory, and non-linearities further enhance the
power. Thus, the variance is usually defined with a smoothing at some scale R:
1 o0 ~
) = 53 / P(k, )W (RK) 2K dk, (1.63)
™ Jo
where W (kR) is the Fourier transform of the smoothing function. It is common

to adopt the spherical top-hat filter:

(4rR3/3)7', if r <R,
W(r) =
0, otherwise.

In this case, or simply tells us the rms overdensity enclosed in a sphere of radius

R. Tt is conventional to use R = 8h~'Mpc with z = 0 to define the normalisation
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of the power spectrum, og, which has a measured value of about 0.8. There is a
subtlety that the og parameter is often quoted as the linear extrapolation with
the linear growth factor D(t). In general, however, the variance 01%1 would also

include the non-linear scale, and thus has a different definition.

Shape of the matter power spectrum

The linear matter power spectrum can be written as
P(k, z) = D*(2) Ak™T2(k), (1.64)

where A o o7 is the normalisation amplitude, n, is the spectral index, which
characterise the initial power spectrum, and T'(k) is the transfer function, which
encodes the deviation from the initial power law due to the growth of structure.
I will give a qualitative description of the last two terms in Eq. below.

The power law form comes from the argument that the power spectrum has to
be featureless due to the lack of a characteristic scale in the early universe. The
corresponding functional form is a power law. The power index is postulated
to be ng = 1 because then the fluctuation of gravitational potential is constant,
which is expected in as a result of scale invariance [I15] 215]. This is known as
the Harrison-Peebles-Zel dovich spectrum. Such a constant potential fluctuation
is also predicted by inflationary models, via introducing perturbations to the
scalar field d¢. It can be shown (see e.g. [204]) that the initial power actually
deviates from unity by a small amount which is related to the slow-roll parameters

(Eq. [38 and [[39)
1 —n=6e—2n. (1.65)

Indeed the measured n is slightly lower than unity. This small deviation is called

the tilt of the power spectrum, and can be used to constrain inflationary models.

The transfer function T'(k) captures deviation from the initial power law. The
main effect is the suppression of the growth of matter fluctuation at radiation
domination due to pressure. This is reflected in a scaled dependent way via
the horizon size of the perturbation. Given the size of the horizon yg(z),
perturbation modes that are smaller than the horizon, i.e. k > 1/xp, are in
causal contact, thus often called modes that have entered the horizon. Large
scale modes with & < 1/xpy, on the other hand, are unaffected by physical

interactions such as pressure or free streaming. On sub-horizon scales, during
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radiation domination, the matter fluctuation eases to grow. This can be seen
qualitatively from Eq. [I.46} ignoring the pressure term for dark matter, 0 varies
on the characteristic expansion time scale ~ 1/H. Thus, the RHS of the equation
is ~ H%) ~ (87G/3)p,0 > 47Gp,,d, much larger than the LHS, i.e. the gravity
term is negligible. We ignore the contribution of radiation density on the LHS,
because it oscillates fast with baryons. Well within the horizon, radiation can
be treated as a uniform background field. This means that a perturbation mode
which grows o< a? during the radiation dominated era (a < a.,) will stop growing
once it enters the horizon, and start to grow again o< a when matter dominates
(a > aeq). Compared to modes that enter the horizon during matter domination,
their amplitude is suppressed by a factor of (@enter/@eq)?. One can show that the
horizon scale at radiation domination is given by xy ~ 1/k o a, and defining
the horizon scale at matter-radiation equality as x.q ~ 1/keq, We can see that the
power at k > k., is suppressed by 1/k?. This is referred to as the Mészdros effect.

Therefore, qualitatively, the transfer function is

1, itk < ke,

T(k) ~
K2 i k> ke

The full transfer function can be computed numerically. The exact transition scale
depends on k.,, which in turn depends on the matter density €2,,,. Therefore, the

shape of the power spectrum provides a constraint on €2,,.

Acoustic Oscillations

Although only a small portion of the total matter density, baryons also leave
distinct features on the matter power spectrum via Baryon Acoustic Oscillations
(BAO). At very early times, baryons and photons are tightly coupled due to the
constant Compton scattering, and they can be treated as coupled relativistic fluid
until recombination at z &~ 1000. As we saw in Eq. [1.46] the pressure term in
the density perturbation gives rise to acoustic oscillations of the perturbation
with a sound speed of c,, at scales smaller than the Jeans scale. For radiation,
the sound speed is ¢/ , thus the sound horizon — the maximum distance of a
sound wave could travel in a given epoch — is roughly 1/4/3 of the horizon scale.

This oscillation can be solved exactly in radiation dominated era using relativistic

5For the baryon-photon fluid, there is a slight deviation because while the pressure is
supported by photons, the density is a sum of photon and baryon. The deviation is proportional
to /9, < 1 at early epochs, so we ignore it here.
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perturbation theory. One finds that the potential evolves as

sinxz — xcosx ket

O (1) = 39,(0) , T=—. (1.66)

23
Here, 7 is the conformal time, where dt = adr, and ¢t = xpg is the comoving
horizon. Thus, on the sub-sound-horizon scale, x > 1, the potential oscillates
with a decaying amplitude oc 1/7% o< 1/a®. On super-sound-horizon scale, z < 1
and the potential tends to a constant. This oscillatory behaviour of the photon-
baryon fluid leaves an imprint on the CMB, referred to as the acoustic peaks, and

they are used to provide some of the most precise constraints on the cosmological
parameters (see Section [1.4.2]).

After reaching the drag epoch at z ~ 500, the photon pressure can no longer
support baryons from collapsing under gravity, and the baryonic matter co-evolve
with dark matter with a similar spatial distribution. This can be solved by the

following coupled equations ignoring pressure:

0y + 2H0, = 47G Y _ pid;, (1.67)
b,c

dc + 2Hb, = 47G Y _ pid:. (1.68)
b,c

The solutions to these equations suggest that §, and J. tend to the same after
large enough time. This oscillatory feature from baryons before decoupling, often
referred to as the BAO wiggles, thus also leave an imprint on the total matter

power spectrum, with an amplitude proportional to €, /€. ~ 20%.

In configuration space, this oscillatory feature corresponds to a bump with a
characteristic scale of the sound horizon at the time of recombination in the 2-
point correlation function. The location of this bump corresponds to the sound
horizon at recombination (or the drag epoch, to be more rigorous), which is the

largest wavelength of the acoustic oscillation. This is given by [12, [16]

Adrag Cs da Qbh2 —0.13 thQ —0.26
dy = ~ 147M , 1.
/0 2 H(a) ~ HATMPe <o.0224> 0.1424 (1.69)

where agrag is the redshift at the drag epoch, and the sound speed c, of the
photon-baryon fluid is given by ¢, = (¢/v/3)/v/1+ (3/4)(%(2)/Q,(2)). Here we

use the full expression for ¢, because at later times as the correction from €2,/€2,

becomes relevant given that the current measurements from galaxy surveys are
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up to percent level. The BAO is another pillar of the cosmological probes, and

it provides tight constraints on the matter density and the Hubble parameter H,

(see Section [1.4.3)).

1.3.3 Redshift-space distortion

The measured correlation function from observations relies on the determination
of the distance to galaxies, which in turn depends on their redshifts. As mentioned
above, due to peculiar velocity, the measured redshift of a galaxy would have an

additional contribution from the Doppler effect of the peculiar velocity via
T+ zops = (1+ zg) (1 + |v|p/c), (1.70)

where g is the cosine of the angle between the peculiar velocity and the line of
sight, and |v| < ¢. Because the comoving distance to galaxies are determined
from redshift via Eq. [1.25] the radial distance to the galaxies are ‘distorted’ by
the peculiar velocity. This results in a measured galaxy 2-point function that is

anisotropic, referred to as the Redshift-space distortion (RSD) effect.

The mapping between real and redshift space and its effect on the power spectrum
was quantified by [137] with the notion of the displacement field. Subsequently,
the effect was discussed by [86, 111), 164 178] including configuration space. Let
the true position in real space be denoted by superscript r, and the observed
position in redshift space by s. Mass conservation yields (1 + ") d®x, = (1 +
§%) d®x,. The redshift space position differs from the real space position by x, =
x, + d, where d = v/aH is the comoving displacement field. In Fourier space,

the mapping is given by:

0x,

Ox,

1468 :/(1 _"_57") eik-xs d3Xs7

where to first order, the Jacobian is given by |0x,/0x,|™ ~ (1 -V, -d).

Since the effect is only along the line of sight, we can replace V, - d by dd, /0y,
where y is the coordinate along the line of sight. We will also adopt the distant
observer assumption, where y" ~ y°. From Eq.[1.50] the Fourier transform of the
displacement is di = —if(0x/k)k, and the component along the line of sight is
d, = |dk|p, where p = k,/k is the cosine of the angle between the wave vector
and the line of sight. Altogether, this gives §; = 6 (1 + fu?). Thus, the power
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spectrum in redshift space, P?, is then related to that in real space, P", by
P(k, ) = (1+ Fu2)2P" () (1.71)

I emphasise that this is valid only for distant observers, where the radial vectors
pointing to the pair of galaxies are assumed to be parallel. This is a good
approximation for galaxy surveys with a pencil-beam like survey geometry, such
as the GAMA fields studied in Chapter [2 In general, however, this assumption
breaks down for galaxy pairs that are widely separated, and one need to account
for the wide angle effect, see e.g. [26, [45, [176], 233, 1310].

For the galaxy power spectrum, Py(k) = bgP(k), Eq. becomes Py (k, ) =
(by + fu?)?Pr(k), since the velocity is assumed to be unbiased given that it
responds directly to the matter distribution. It it thus useful to define the
distortion parameter 8 = f/b such that:

Py (k, i) = (14 Bp?)* Py (k). (1.72)

Given the dependence of i in Eq.[I.71} the power spectrum can be expanded into
multipoles of Legendre polynomials L,(k), where ¢ = 0,2,4. The quadrupole-to-

monopole ratio directly measures the distortion parameter [54].

In configuration space, the 2-point correlation function in redshift space can be

expressed in terms of multipoles [111]:

& (r p) = &o(r)Lo(p) + &a(r)La(p) 4 €a(r) La(p), (1.73)

where & is given by real space isotropic correlation function £(r) and its higher

moments:
o= (1+37+5) €0 (174
&= (3 +37) 60) - €0 (173
6= 5l |60+ 560 - 360 (1.76)
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with

I

—~
=

N2

=33 /Or £(s)sds, (1.77)
= 5r° /OT £(s)s'ds. (1.78)

78]

—
=

~

In practice, higher order (even) multipoles are present due to non-linear scale
effects (e.g. the Finger of God effect which will be introduced shortly), and the
multipoles also deviate from the linear expression Eq. Odd multipoles
can also be non-zero — although at a much smaller amplitude — due to relativistic
effects such as lensing and gravitational redshift [27, 35, B05]. However, at the
cost of losing some information, it is still a common practice to compress the full

degree of freedom of the 2D &£*(r, 1) into the lowest few even multipoles via:

2£+1
obs — / E5(r, ) Ly() dp (1.79)

1.3.4 Nonlinear growth

Spherical collapse

Linear perturbation breaks down at late times, when § ~ O(1). Furthermore,
the fluid approximation becomes invalid when the density becomes too large
and shell crossing happens. To study the density evolution beyond linearity,
N-body simulations are usually employed, where a huge system of collisionless
dark matter particles are placed initially with a Gaussian distribution, and then
evolved under gravity with a background cosmology. The spherical collapse model
[103, 213] provides an intuitive picture that explains well the observations from
these N-body simulations. In this picture, we consider a patch of overdensity
with mass M (< r;) enclosed within some radius r; initially. The patch would
expand slightly slower than the background expansion rate due to gravity, while
this will lead to more enhanced overdensity. At some point, if the overdensity
is sufficiently large, the patch would break away from the background expansion
and collapse under gravity. A thorough review on non-linear growth and halo

model can be found in [58].

In the following text, I will assume spherical symmetry. Extensions to non-
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spherical models were first discussed in [I86], and more details could be found
in e.g. [214]. T will also assume a matter dominated universe with ,, = 1 and
negligible pressure. The inclusion of dark energy is discussed in e.g. [174] [301].
The spherical model works given that the initial density of the sphere is larger
than the dark energy density, which is true until the recent epoch. According to
Birkhoff Theorem, the dynamics of a spherical mass distribution can be described
by the homogenous and isotropic FRW metric. Thus, Eq[I.15 applies and the

proper radius of the overdense sphere enclosing mass M satisfies the equation of

motion: oM
F=— o (1.80)
The equation has the parametric solution
r = A(l —cos#), (1.81)
t = B(0 —sinb), (1.82)

where A%/B? = GM.

Linear theory is recovered close to t = 0. Expansion in small € gives r(t) in the

A [6t\? 1 /6t\%3
rea~—| — 1—— [ —
(%) w(%)

The leading order term is r o a(t) oc t2/3, consistent as found in Section |1.2.1|

The second term implies an overdensity

3 /6t\%3
S = (= 1.84
20<B) | (1.84)

linear regime:

(1.83)

which is also what we found in Section [[L3.11

As the sphere continues to expand, it soon reaches two critical phases. The first
phase is at # = 7, where a maximum radius r = 2A is reached at time t = 7B,
known as the turnaround. At this point, the linearly extrapolated density of the
sphere is 0 ~ 1.06, i.e., linear theory already fails at this time. Past this point,
the radius begins to shrink. The second phase is at § = 27, where r = 0 and
t = 27 B, i.e. the sphere now collapse into a singularity. By the time of collapse,

the linearly extrapolated overdensity is

5. = 64(6 = 2m) — 2%(12@2/3 ~ 1.69, (1.85)
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whereas the actual overdensity of the sphere is

1+0= ;—% = 1872 ~ 178. (1.86)
In a real physical situation, an overdense sphere rarely collapses to a singularity
because this would require perfectly spherical orbits and no fluctuations in the
density or gravitational potential. Rather, the sphere would wirialise and reach
equilibrium. According to Virial Theorem this happens when the potential energy
of the sphere is twice its kinetic energy at § = 37 /2. The spherical collapse model
thus says that a region with an extrapolated linear density 6 > . would collapse
and form a virialised region with an actual density that is ~ 20@ times the
background density p. (Eq. . These collapsed regions are called dark matter

haloes.

Halo mass function

Based on spherical collapse, Press & Schechter [232] proposed a model for the
number density of dark matter haloes in a given mass range and redshift. In this
model, the probability to find the overdensity between 0 and § + dd in a sphere

of radius R at redshift z is given by a Gaussian distribution:

1 52
P(>R,z)dd = mexp (—m> do, (1.87)

where og(2) is given by Eq.. This parameter is often quoted as a function
of mass enclosed by the radius, M = 4mp,,R3/3. In Eq. I have used
> R because the variance is calculated by ‘blurring’ out structures smaller than
the scale R, thus only haloes larger than this scale would contribute to the
probability. We also notice that o would be a decreasing function of R or M — a
larger smoothing would reduce the variance of the perturbation. The fraction of
collapsed matter at redshift z with radius > R is then given by integrating this

function from 4,

F(R,z) = /5 COO P(R,z)ds = %erf (”(i’;)) , (1.88)

6Tt is common to use p = 200p. to define the virialised mass, often referred to as Mago,
although some literature adopt p = 178p. at the time of collapse.
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where the peak height v is given by

(1.89)

This expression receives a factor of two correction [32] 77, 209]. A qualitative
explanation is that at fixed redshift, when v — 0 corresponding to the low mass

end, we expect that all matter would have collapsed, thus F' — 1.

The number density of haloes at redshift z with mass larger than M can then
be calculated, which is simply given by n(M, z) = 2(p,,/M)F (M, z). It is more
commonly expressed as the differential number density per logarithmic mass bin,
or known as the halo mass function:

dn(M, z) 2 pSy dlnay) ey

dnM V7 M dmMm ¢ (1.90)

Adopting the power spectrum in the form Eq. with n, = 1, the M dependence

of the variance is:
o2, o / T (k)P F (kR(M)) PRPdk. (1.91)
0

For large mass, the integral is dominated by small k, for which T'(k) — 1. Then
by a simple change of variable, 02, occ R=* oc M~*/3. For low mass, the integral is
dominated by large k, where T'(k) falls as In k/k* [127], so the overall behaviour
is 03, < log R. Therefore, Eq. falls roughly as a power law of M at small
mass, and exponentially at large M. This behaviour is in general agreement with
observations [279] and numerical simulations, although deviations are reported
in [102, 132, 159], and generalised forms are proposed, for example, the Sheth-

Tormen mass function [266].

Nevertheless, this model has a few implications. Firstly, it implies that structures
are formed in a hierarchical manner: lower mass objects form first, and larger
mass objects are formed later via mass accumulation or merging between different
haloes. Another implication is that the number density of haloes is cosmology
dependent. Specifically, the shape at the high mass end, corresponding to
clusters and superclusters, is highly sensitive for parameters such as €2,,. Thus,
cluster counts are used to constrain cosmology, e.g. [2, [I7], although a range of
observational systematics such as mass calibration and sample completeness can

greatly complicate the analysis.
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Halo profile

The mass distribution inside a dark matter halo can be extracted from N-body
simulations. It was first shown in [193] that the profile has a universal form even
across different simulations, which can be fitted by the following Navarro-Frenk-
White (NFW) profile:

%

_ P
) = AT

where p* and 7* are free parameters. When r > r*, p decays as oc 1/72 and the

(1.92)

total mass enclosed diverges logarithmically; when r < r*, the density diverges as
1/r. This behaviour at r — 0 is referred to as cuspy. The halo mass profile can be
inferred from the profile of galaxies and galaxy clusters, although interpretations
should be taken with care. In the case of galaxies, baryonic effects are important
near the galaxy centre, and observations have suggested a core rather than cusp
in the centre. The profiles measured from galaxy clusters, on the other hand,
show good agreement with the NFW profile [I66]. This is often referred to as the

core-cusp problem.

The NFW profile is often expressed in terms of the virial radius ryg, which
corresponds to the radius within which the mean density is 200 times the critical

density p.(z), and the concentration parameter, defined as

c=2 (1.93)

T*

The NFW profile deviates from simulations at small scales, where it underesti-
mates the actual density, and the true relation should be much steeper [91]. A
number of profiles are subsequently proposed to capture this trend, e.g. [194[195],
and a commonly adopted profile is [194]:

o 2 “
In (p—) - KL> - 1} , (1.94)
P—2 a T_2
where « is a free parameter and r_, is a characteristic radius at which the slope

of the profile dlnp/dInr = —2. This fitting formula can capture a variety of

trends with different «.
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Halo bias

The statistical distributions of dark matter haloes are different from those of the
matter density field — haloes only form at peaks of the density field. Thus, the
density fluctuations measured from haloes 9, are biased compared to d. This
difference is captured by the bias parameter which can depend on the halo mass
and redshift,

o = b(M, 2)0. (1.95)

Notice that this is only true for linear scales. On small scales, the bias can take

the non-linear form [148].

In the spherical collapse model, overdense regions, given a smoothing scale of
R, with dp > 6. collapse to form haloes. However, objects that reside in large-
scale overdensity collapse sooner than in large-scale underdensity. This can be
understood in the picture of peak-background split, where we split the density
perturbation into large and small scale components, § = d;, + dg. In the absence
of 07, the region would collapse if g > d.. With a slightly positive ¢, the
region could collapse with dg < ¢, and vice versa for a slightly negatively dr.
This is equivalent to modulating ¢, for the large scale modes. Let F'(> v) be the
cumulative collapsed fraction as in Eq. , and G = —dF'/dIn v be the collapsed
fraction between In v and In v+ dInv. Given a small change € in J., the collapsed
fraction changes to AG = —(0G/dd.)e = —(dG/dInv)e/d., the negative sign
because € < 0 corresponds to a lower threshold, thus higher collapsed fraction.

The Lagrangian bias is bpe = AG/G, and thus the bias is given by

1dnG

bv)=14+b,=1— — . 1.
@) oL 0. dlnv (1.96)
For the Press-Schechter formula, the bias has a simple form [53] 182]
2
—1
bv) =1+ "2 — (1.97)

The bias increase monotonically as a function of halo mass at fixed redshift given
Eq. [1.89 It tends to a constant as v — 0, and rises steeply at large v. At
fixed mass, the bias also rises with redshift. Because of the deviation of the
mass function predicted from the Press-Schechter formula from simulations, often
empirical formula are used (e.g., [205], 267, 289]). An example of the halo bias-
halo mass relation adopting the empirical formula in [205] is shown in Fig. [1.2 at
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Figure 1.2 Halo bias as a function of halo mass calculated from fitting formula
given in Peacock [205].

z=0.

Given a distribution of halo masses, f(M), the mean halo bias of the sample can

be computed via

(b) = / F(M) b(v) dM. (1.98)

If f(M) is the halo mass function, then the above integral gives (b) = 1.

1.3.5 From dark matter to galaxies

Dark matter haloes are not directly measurable. In practice, we could only
observe luminous matter, i.e., galaxies. Because galaxies reside in dark matter
haloes, we expect the galaxy density fluctuation, d,, to be also biased compared
to the underlying matter fluctuation d, = b, 0, similar to the haloes [302]. Again,
this relation holds only on large linear scales [136], and the galaxy bias in non-
linear regime can be more complicated (see discussion in [66]). On linear scales,
we can measure the galaxy bias in surveys by measuring the power spectrum

or correlation function, and compare it with the theoretical prediction, i.e.

Py(k) = bg P(k) and ,(r) = bg &(r).

Observations show that galaxy bias has a strong dependence on galaxy luminosity.
The measurements from SDSS survey [311] showed that the dependence resembles
the mass dependence of the halo bias, implying that the galaxy luminosity
is strongly correlated with the halo mass. [311] further showed that at fixed
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luminosity, the galaxy bias also depends on the galaxy colour, which also strongly
correlate with the age of the galaxy. The fact that red galaxies have a larger bias,
or are more clustered than blue galaxies implies that red galaxies are preferentially
found in higher mass haloes. Moreover, the clustering of red galaxies on small
scales, in the 1-halo regime, is further enhanced, i.e., the galaxy bias is also scale-
dependent in this case. This can be explained by that large haloes would contain
a central galaxy that is likely blue, and one or more satellite galaxies that are
likely red. We shall come back to the colour dependence in Chapter

The complex dependence of galaxy bias on galaxy properties originates from the
physics of galaxy formation and evolution, for which a more detailed discussion
would perhaps yield the length a whole thesis. A thorough review is given
by [300]. In short, the different galaxy properties are a collaborative result of
various baryonic processes, e.g. star formation, merging, and feedback from
supernovae and AGN, which are also related to the formation and merging
of the underlying dark matter haloes. The aim of studying the galazy-halo
connection is to quantify statistically the relation between galaxy and halo
properties. Empirical methods include abundance matching [296], i.e., matching
galaxy properties such as stellar mass to the halo mass by rank and studying
the stellar mass to halo mass ratio (SHMR), halo occupation distribution (HOD)
[210], i.e., specifying the probability of finding a number of galaxies given the
halo mass, and conditional luminosity function [309], i.e., specifying the galaxy
luminosity function given the halo mass. These methods can also be applied to
dark-matter-only simulations to produce realistic mock galaxy catalogues. With
the aid of hydrodynamical simulations and semi-analytic models, these baryonic
processes can also be studied in detail (see [278] for a thorough review). Due
to the complicated nature to predict galaxy bias, it is usually treated as a free
parameter, or relevant parameters in the galaxy properties are marginalised over

in cosmological studies.

1.4 Current cosmological constraints

1.4.1 The distance ladder

We have seen in Section that the distance-redshift relation is cosmology

dependent. By measuring the distances and redshifts to galaxies independently,
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one can determine the current expansion rate, the Hubble constant Hy, as well
as constrain the density parameters. The earliest distance-redshift relation is
measured at z ~ 0 from extragalactic nebulae [128, 275], and the results showed
a linear relation between the radial velocity and the distance of these nebulae. The
slope of this relation is gives Hy according to Eq.[[.24] This was a direct evidence
for the expansion of the Universe. To obtain more accurate measurements, one
needs to extend this relation to higher redshifts, because the local relation can
be affected by large peculiar velocities. While redshifts can be obtained from
spectroscopic or photometric observations, the direct determination of distances
are more difficult. This is achieved via the distance ladder: the cosmic distances

are calibrated against a set of local galaxies.

The first part of the ladder extends up to the Large Magellanic Cloud (LMC),
about 50kpc away. Its distance can be most precisely determined via the
illuminated ring from the explosion of Supernova 1987A. The inclination of the
ring can be determined from its ellipticity (since the ring is expected to be almost
circular), and the size of the ring can be estimated via the time delay of the
illumination between the close and far part of the ring. These together determines
the physical size of the ring, which can then be turned into a radial distance given
the apparent angular size. Another precise distance determination to the LMC
is using eclipsing binaries for late-type stars [222]. For these stars, the angular
size can be determined using accurately calibrated relation between their surface
brightness and colour. This angular diameter distance can then be compared to
the dimension obtained from spectroscopic or photometric data. These methods
give the distance to LMC up to 2%.

The next part of the ladder comes from the calibrated period-luminosity relation
of Cepheids — a type of highly luminous pulsating stars. The distance can be
extracted from the luminosity L given the observed flux or apparent magnitude
(Eq. . This relation is calibrated accurately to few percent level using a
large sample of Cepheids found in galaxies with known distance, such as LMC
and NGC 4258 (at a distance of ~ 7Mpc). Due to the high luminosity, Cepheids
can be observed at large distance, thus extending the distance-redshift relation
to higher redshifts.

The furthest part of the ladder consists of the light curves of Supernova Type
Ia (SNe Ia). SNe Ia are explosions of white dwarfs — stars at the end of their
evolution that are highly compact and supported by electron degeneracy pressure

only. White dwarfs explode when if their masses exceed the Chandrasekhar limit,
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about 1.4M,. It is expected then that all SNe Ia undergo similar physical process,
thus their maximum luminosity and light curve would be the same. However,
this is not entire true as pointed out in [112] 221] — there is a (correlated) scatter
observed in maximum luminosity and the shape of the light curve. Fortunately
this can be carefully calibrated [88], 220, 241]. Due to their high luminosity, SNe
Ia can be observed to as far as z ~ 1. At this scale, the local Hubble law is not
valid and one needs the full expression of H(z) (Eq. which depends on the
density parameters. The high redshift SNe Ia measurements preferred €2, ~ 0.3
and Qj ~ 0.7, thus provided a direct piece of evidence for a non-zero dark energy
and the accelerated expansion of the Universe [219, 242]. Fig. shows a recent
compilation of the distance ladder measurements of the distance-redshift relation
in [243].

More recent measurements on the Hubble parameter from the distance ladder
yields a precision of 2%. [244] reported Hy = 74.03 + 1.42 km/s/Mpc from
70 Cepheids observed by the Hubble Space Telescope. We shall see that this
highly precise result obtain from the low redshift universe is in tension with that

measured from the early universe in Section [1.5]

1.4.2 CMB anisotropy

We have mentioned in Section that the CMB is not isotropic — there are
fluctuations at the order of 10uK. The primary CMB fluctuations originates
from the photon-baryon interaction up to the recombination epoch, and can
be understood at roughly three scales. Since the CMB fluctuations are usually
analysed in spherical harmonic space (the analogue of Fourier transform on a
sphere), I will quote the angular scales § on the CMB in terms of the spherical

harmonic wave number ¢ ~ 7 /6. The horizon scale xy corresponds to 6 ~ 1° on
the CMB sky, or ¢ ~ 100.

At superhorizon scales, i.e., structures on the CMB with length scales L > yp,
photons and baryons only interact gravitationally through the Sachs- Wolfe effect:
photons propagating from a high density region to a low density region are
gravitationally redshifted, and vice versa. Therefore, the fluctuations in the
photon frequency corresponds to those in the matter density, and the temperature
power spectrum would have the same shape as the matter power spectrum at
¢ <100. Below the sound horizon at recombination, L < xs = xz/v/3, baryons

and photons behave like coupled fluid and the density fluctuations oscillate, as
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mentioned in Section The wavelength that can experience a full oscillation
at this epoch is the sound horizon, and subsequent smaller wavelengths are
present at integer multiples of the corresponding frequency. These waves are
shown as acoustic peaks on the CMB power spectrum, with the first peak located
around ¢ ~ 200. Although we have assumed 2, = 1 in this case, in general,
the location of the peak is (most) sensitive to the curvature parameter 2. The
precise determination of the peak positions in combination with CMB lensing
thus put a tight constraint on the curvature 1 — Q = —0.0027700%8 [123],
suggesting that the Universe is very close to flat. Lastly, recombination did not
happen instantaneously — the last scattering surface has a finite width of Az ~ 80
due to the finite mean free path of the photons. This scale § ~ 5’ or £ ~ 2500, is
the smallest scale where anisotropic structures can be resolved. At small scales,
photon diffusion also causes Silk damping [270], which damps the acoustic peaks
exponentially at small scales. A thorough review of the CMB features can be
found in [126].

The CMB temperature power spectrum (77") is shown in Fig. [1.4] where the
data points are measured by the Planck satellite [227]. The above features are
clearly present, and the agreement between data and theory is remarkable. The
cosmological dependence of these features gives the tightest parameter constraints
so far: Q.h% = 0.120 & 0.001, Qh? = 0.0224 4+ 0.0001, n, = 0.965 4 0.004,
Hy =67.44+0.5kms™ ! Mpc~! and o5 = 0.811£0.006. In addition, the CMB power
spectrum in combination with other cosmological probes also provide constraints
on the optical depth of reionisation, the dark energy equation of stats, relativistic

effective degree of freedom, and upper limit of neutrino mass.

There are additional CMB probes. For example, the polarisation of the CMB
photons is measured by Planck. Its auto power spectrum (E'FE) and the cross
power spectrum with temperature (T'E) show excellent agreement with the best-
fit model determined from 7T only [227]. Secondary CMB fluctuations are also
be explored: these are the perturbations to the CMB photons due to large
scale structures and ionised gas from the recombination epoch to today. Such
effects include CMB lensing, Integrated Sachs-Wolfe (ISW) effect, and Sunyaev-
Zel’dovich (SZ) effect. The former two will be discussed in more detail in
Chapter [3] A general discussion of the CMB anisotropy and its measurements
can be found in [256].

"Without lensing, the curvature parameter is degenerate with other parameters such as Q5
and h, as discussed in detail in [73].
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Figure 1.4 Upper: The CMB temperature power spectrum adopted from Planck
Collaboration et al. [227]. The measured data are shown in red
dots and the best-fit theory is shown in blue. Lower: The residual
difference between data and best-fit theory.

1.4.3 BAO

The sound wave from the coupled baryon-photon plasma before recombination is
also visible in the correlation function £, as we saw in Section [1.3.2] This Baryon
Acoustic Oscillation (BAO) has a characteristic comoving scale ds; ~ 150 Mpc
(Eq. . The exact location of this peak at a given redshift provides a direct
measure for the geometry of the Universe. Therefore, BAO is also referred to as

the standard ruler.

BAO can be measured in the 3D galaxy correlation function using large redshift
surveys (e.g. [12, [75, 218, 320]). At the BAO scale, linear galaxy bias is
a good approximation, thus the shape of the matter power spectrum can be
measured. At a given redshift z, the scale transverse to the line-of-sight gives the
angular diameter distance D4(z), whereas the direction along the line-of-sight
gives the comoving separation cz/H(z). Thus, the result is usually presented as

the spherically averaged BAO scale

Dy(z) = (Di(z) ;(ZZ>>1/3. (1.99)
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Fig.[1.5shows one of the first measurements of the BAO from the SDSS luminous
red galaxies [75], where the feature is clearly visible and the BAO scale is

constrained up to 5%.

In principle, the peak position can be affect by the peculiar velocity of the
galaxies. Due to the large scale and low amplitude of the BAO peak, it is also
difficult to measure with high statistical significance in practice. Thus, it is a
common practice to use the reconstruction technique, where the measured galaxy
density fluctuation is ‘moved back’ according to the inferred peculiar velocity
from gravitational potential, allowing the original density field to be reconstructed
[76], 263]. The application to the SDSS DR7 data has improved the measurement
precision of Dy from 3.5% to 1.9% [203]. The inferred distance-redshift relation

from the BAO measurements gives cosmological parameter constraints that
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Figure 1.6 The combined constraints on matter and dark energy density from
various different cosmological probes, adopted from the Supernova
Cosmology Project and Suzuki et al. [281)]. Due to the different
degeneracy directions, the combination provides a tight constraints
on the two parameters.

are consistent with those obtained from the CMB probes [16, B20], providing
independent and strong evidence for the ACDM model.

The constraints on €2, and €2, from the probes that have been described so far

are shown in Fig. (1.6

1.4.4 RSD

The afore mentioned distance ladder and BAO are geometric probes of the
Universe, i.e. they constrain cosmological parameters via determining a particular
scale. RSD, on the other hand, is a dynamical probe, where cosmological
information in velocities are used. As mentioned in Section [1.3.3] the measured
galaxy redshift consists of a component from Hubble flow and a component from
peculiar velocities. The radial distances determined from redshifts are ‘distorted’,

leading to an anisotropic 2-point correlation function.
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The RSD effect can be understood intuitively by considering the line-of-sight
peculiar velocity on two scales as follows. On linear scales, the Kaiser effect (see
Section dominates. Taking a spherically symmetric distribution of galaxies
in a cluster, the galaxies have a infall velocity towards the centre of the cluster
due to gravity. A galaxy closer to us would then have a slightly lager redshift and
consequently a larger apparent distance due to the infall velocity, whereas a galaxy
further away would have the velocity pointing the opposite direction, giving
a smaller apparent distance. Therefore, the apparent pair separation shortens
along the radial direction, leading to a squashing effect along the line of sight in
the measured &(7,, 7). On smaller scales, the ‘Fingers of God’ effect dominates
— these elongated filament-like structures are apparent in galaxy distributions
such as Fig. [1.1l Take the spherical cluster as an example, now focusing on
the inner virialised region, where galaxies have large velocity dispersions. These
velocities move the galaxies around over a large range in redshift space, increasing
significantly the pair separation, and giving rise to an elongated smearing effect at
small 7, in &(rp, 7). The two features can be observed clearly in the 2D anisotropic

correlation function measured from the 2dF Galaxy Redshift Survey [117, 211]
shown in Fig. [L.7

Cosmological information is encoded in the peculiar velocity on the linear scale
through the growth rate f of the large scale structure (Eq. . To account
for galaxy bias, the measured distortion parameter is 5 = f/b,. Because galaxy
bias and the normalisation of the power spectrum is degenerate, such that byos =
const, the measurement can also be recast into constraint on f(z)og(z) at redshift
z. The dependence on z can be used to constrain the power v in f ~ Q,,7. A
deviation from v = 0.55 could indicate deviation from GR, such as modified
gravity [20], 84]. Recent constraints on fog over a wide range of redshift have
a percent level precision and are consistent with the concordance cosmological
model (see Fig. |1.8]). Interpreting the RSD measurements on smaller scales is
challenging — the main difficulties are accounting for the non-linearities in the
coupling of density and velocities as well as scale-dependent galaxy bias. However,
going into smaller scales have the advantage of a greatly improved signal-to-noise.
Thus, improved non-linear models have been considered in e.g. [133] 258 283]. 1

will introduce some of these models in Section 2.2].
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1.4.5 Weak lensing

The light from distant galaxies can be deflected along its path by the gravitational
tidal fields generated by large scale structures. Thus, the image of an observed
galaxy can be distorted. In the presence of a large galaxy cluster, for example,
the background galaxy can be deformed into multiple ring-like images. The
deformation allows one to deduce the mass of the foreground lens. This
phenomenon is called strong lensing. The same can happen when the gravitational
field is weak, generated by the matter perturbations along the line of sight,
hence weak lensing. In this case, the photons are deflected multiple times with
tiny deflection angles, and the resultant distortions are only at percent level.
However, just as powerful as strong lensing, weak lensing allows us to infer
directly the projected matter fluctuation along the path of the photons without
the complication of galaxy bias. In order to measure this signal, however, one
needs not only excellent image quality, but also averaging over a large ensemble of
galaxies, because each galaxy would have an intrinsic shape that is in general not
circular. The measured distortion is called cosmic shear. For a detailed review
see [19].

The distortions of galaxies due to large scale structures are correlated: at higher
density peaks, the distortions are stronger. Thus, the shear correlation function
&, (0), which measures the excess shear between pairs with respect to a random
distribution, has information on the matter power spectrum P(k). Through the
Poisson equation (Eq. , the potential is related to the density perturbation
via &y = (3/2)HZ Q,, 61 /k?, thus the measurement is highly sensitive to the total
matter density €2, and the total clustering og. The lensing kernel is a function of
distance, thus the distance-redshift relation gives additional dependence on (2,,.
In particular, the signal depends on the combination Sg = 05(€2,,/0.3)?, where
q ~ 0.5.

There are two major systematics in weak lensing. One is instrumental — the
point spread function (PSF) smears the image of the galaxies (it could easily
overwhelm the lensing signal) and needs to be corrected before one can extract
the galaxy shape parameters. The other one is of astronomical origin, called the
intrinsic alignment. Suppose the observed shear is given by an intrinsic term plus
the cosmic shear: €, = ¢; + . The shear correlation function has the following

components:
(6o€5) = (i) + {€7) + (v'ed) + (v'9?), (1.100)
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Figure 1.9 The constraints in the parameter plane Sy = 05(£2,,/0.3)%° and Q,,
from several weak lensing surveys and the Planck 2018 cosmological
result, adopted from Asgari et al. [1]].

where the superscripts 1 and 2 denote the two galaxies in the pair, and (...)
denotes the average over all such pairs. The first term corresponds to the
correlation between intrinsic shapes of the two galaxies. This term is contributed
by very nearby galaxies influenced by the same local gravitational tidal field. The
second and third term arise from pairs that are separated at different redshifts.
Because shear is sensitive to the projected tidal fields, 4! of the galaxy at higher
redshift is affect by the tidal field at the lower redshift, which then correlates with
€2 of the other galaxy. What we are interested in is the last term corresponding
purely to cosmic shear (y'9?). Although the first few terms are of lower order
compared to the last term, they need to be carefully accounted for to achieve high
precision and reliable results. Efforts in conducting such careful weak lensing
analysis include the Canada-France-Hawaii Lensing Survey (CFHTLenS; [139]),
the Kilo-Degree Survey (KiDS; [95, 121]), the Dark Energy Survey (DES; [291]),
and the Hyper Suprime-Cam (HSC; [108, 119]). The cosmological constraints
from these weak lensing experiments are summarised in Fig. [[.9] and the most
up-to-date Sg parameter is measured to be Sg = 0.7597002! from the KiDS-1000

survey [15].
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1.5 Beyond the standard model

It is impressive how various cosmological probes presented in Section turned
out to provide consistent parameter constraints over the last few decades. This
has established the ACDM model as the standard cosmological model — any
proposal beyond this standard model has to also pass all of these independent
observational tests, which is truly non-trivial. On the other hand, with better
technology and larger telescopes, the constraints have reached a sufficiently high
precision that in recent years, two major tensions have emerged within the ACDM

paradigm.

The H, tension: The measurements of the Hubble constant H, from the early
and late universe disagree with each other. The late universe measurements,
favouring h ~ 0.74, consists mainly of the distance ladder (see Section ,
reaching a precision of 1 — 2%. Recently, measurements from strong lensing
time-delay (e.g., [29, B06]) also provide independent constraints with competitive
precision of 2.4%. The early universe measurements, preferring h ~ 0.68, mainly
come from the CMB analysis by the Planck Collaboration (see Section and
BAO (see Section in combination with other probes such as BBN. As shown
in Fig. [I.10] the two sets of measurements are consistent within their own groups,
but are discrepant from each other at 4.40 as claimed by [244]. This corresponds
to a ~ 0.002 probability that this discrepancy is due to a statistical fluctuation.
It is noticeable that recently the detections of gravitational wave allow another
measure of the distance. If the electromagnetic counterpart of the gravitational
wave event can be identified, then one can measure Hy, a method referred to
as gravitational-wave standard siren [1, |48, 257]. Currently, the constraints on
Hy provided by this method is rather wide, but within the next few years with
more detections of such events, it is expected that this independent method will

provide competitive constraints.

‘Lensing is low’: This is a tension in the €2, — og parameter plane between
several weak lensing measurements and the CMB results from the Planck
Collaboration. As can be seen from Fig. (it shows the Sg — €, plane instead),
while some surveys such as DES-Y1 and HSC-Y1 are consistent with Planck, the
recent KiDS-1000 and a combination of the lensing surveys (KV540+DES-Y1)
show a discrepancy at 30 level [I5]. Discussion regarding to the tension from

these measurements can be found in e.g. [134, 292]. We will come back to this

topic in Section [5.2.5]
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The origin of the these tensions is not yet clear. A first and conservative
explanation is systematic errors not accounted for by either one of or both groups
of experiments. There have been many efforts devoted to check the robustness of
these results from both sides, while none of the systematic errors investigated are
large enough to close the gap (e.g. [74, 122}, 244]). A bolder step would be to seek
explanations beyond the standard ACDM model. For example, a few suggestions
to ease the Hubble tension are listed on top of Fig. : (a) A change in the
dark energy equation of state Awyg, or time-dependent equation of state, Aw,,
where the equation of state is modified to w(a) = wy + aAw,; (b) A change in
the effective number of relativistic species ANeg; (c¢) A slightly open universe
AQ; < 0; (d) Dark matter interaction with a cross-section of o; (e) Early dark
energy at redshift z = 10*. A thorough review on possible extensions to the
ACDM model can be found in e.g., [I87, 236].

1.6 Statistics

1.6.1 Bayesian inference

There are two main types of statistical inferences: frequentist and Bayesian. The
frequentist’s approach refers to obtaining the probability of an event by repeated
measurements. A simple example is flipping a coin — by flipping the coin many
times, the number of appearances of head and tail tends to the same, indicating
that the probability of getting either is 1/2. This method, however, does not work
well for small samples, and certainly does not work for cosmological inferences,
because there is only one observable universe. For this reason, Bayesian inference,
based on Bayes’ theorem, is widely adopted in cosmology. The Bayes’ theorem
states that, for two events A and B, the conditional probability of A given B

satisfies
P(A)P(B|A)

PUAIB) = =5

(1.101)

In the context of cosmological analysis, A and B correspond to model (M) and
data (D) respectively, where the model depends on a set of parameters 6. The
function P(M(0)|D) is the posterior, which tells us the probability distribution
of the model parameters given the data, and it is what we are most interested
in. The function P(M(0)) is the prior, indicating our a priori knowledge on the

parameters. For example, if a parameter is measured from other experiments to
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be 8+ A6, then a Gaussian prior can be used with mean and std of the measured
value. It is also common to adopt a flat or uniform prior, where no knowledge is
assumed at all for the parameter, except perhaps for a plausible (wide enough)
upper and lower bound. The function P(D|M (#)) is proportional to the likelihood
L, which can be calculated from assessing the goodness of fit of the model to the
data. Let the observables be an N-dimensional vector y, and let y,, be the value
of these observables obtained from the model. Defining v =y —1y,,, the likelihood
is given by

1 —VTC71V/2

where C is the covariance matriz. The covariance matrix can be computed
analytically if Gaussian distribution is assumed. However, non-Gaussianity can
arise on small non-linear scales. In this case, the covariance can be estimated
from mock realisations. For M such realisations labelled by the superscript k,

the covariance is given by

M

_ N
Cij = 377 Zk:(vi — ;) (vF — 1), (1.103)

where v is the mean of the realisations. It is noticeable that xy* = vI'C 'v.
Therefore, if C is not sensitive to change in model parameters, then In £ = const—
x%/2, and so maximising the likelihood is the same as minimising the x?. Finally,
P(D) is a probability that depends on the data only. Therefore, for parameter
inferences, it is irrelevant and can be simply treated as the normalisation of the

posterior.

1.6.2 Internal Sampling

A robust covariance matrix is thus essential for getting unbiased likelihood and
posterior distribution. As mentioned above, in the non-Gaussian case, estimating
an accurate covariance matrix usually requires running a large ensemble of
realisations, and it can be computationally expensive. An alternative route is
internal sampling, where subsamples of the data are used as realisations. The
advantage of internal sampling is that the covariance can be estimated in a
model-independent way. For more details on cosmological studies using internal
sampling, see e.g. [200] for galaxy 2-point functions and [90] for cosmic shear

correlation functions.
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A common method is Jackknife resampling, where the different parts of the data
are rejected to form subsamples (see [I81] for a thorough review). For example, for
N independent data points drawn from some distribution, we reject one datapoint
each time, and form a set of subsamples each with N —1 points. The covariance of
the full data is then estimated by the covariance of these subsamples multiplied by
N — 1 to account for correlations between different subsamples. In cosmological
data, this method is usually applied at the field level — the survey region is
divided into equal area units. Then one unit is masked out in turn, while the
remaining N — 1 units are treated as data subsamples that are used for data
compression and analysis. The covariance matrix can then be estimated from
the final products of these subsamples. Notice that this method can be cosmic
variance limited, because the variations on the scale of the survey coverage or

larger are not captured.

The noise in the estimated covariance matrix from finite number of subsamples
can lead to singular determinant or biased likelihood and x?. This can be treated
with eigenvalue decomposition. If the orthonormal eigenvectors of the covariance

matrix, u;, are used as a basis, then the y? is simply

N

= al A (1.104)

i
where the \;’s are the eigenvalues of the covariance, and a; = v - u; are the
coordinates of v. Thus, small eigenvalues that correspond to singular modes will
dominate the x¥?. One can then reject modes with \; < A, for some )., such that

the sum in y? only runs through non-singular modes.

Another way to regulate the estimated covariance matrix is employing the
shrinkage estimator [230, 253]. In this method, the analytic covariance matrix
from theory, C™", is combined with the estimated covariance matrix from internal
sampling, C°, via C = aC™ + (1 - oz)CIS, with 0 < a < 1. Although the
analytic covariance matrix is noise-free, it is usually not applied directly to the
analysis because it can be biased. The covariance matrix obtained from internal
sampling, on the other hand, is unbiased but noisy. The parameter a can be
optimally chosen such that the estimated covariance is non-singular and has

minimum variance with respect to the true covariance.
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1.6.3 MCMC

In a low dimensional parameter space, the posterior can be computed by a grid
search in the prior space. However, when the number of parameter increases,
the computation soon becomes order N”, where N is the number of samples
taken in each parameter and D is the dimension. In this case, the posterior can
be efficiently computed using the Monte-Carlo Markov-Chain (MCMC) sampling
method [162]. A commonly implemented MCMC algorithm is the Metropolis-
Hastings algorithm. This method works by starting at a random point in the
parameter space, a associated with a likelihood Lj. The algorithm then takes a
random step Aa to arrive at a new point with likelihood L. If £ > L, the new
point, or candidate sample, is kept; otherwise, it is rejected with some probability
p < 1 given by the probability density ratio between the new and the old points.
In this way, the chain will not be trapped at minima, allowing full exploration of
the parameter space. The process is then repeated, generating a chain of points in
the parameter space that eventually converges to the maximum likelihood value.
The determination of the step size Aa is crucial to the efficiency of the algorithm:
steps that are too large can easily miss the minimum, while steps that are too
small take a very long time to converge. The function that is used to optimise the
step size is called the proposal function. Adjacent points in the MCMC chain are
correlated, and it is common to keep points between every other or more points.
The initial points of the chain are also also disregarded because they likely to
be biased. This process is often referred to as burn in. The convergence of the
MCMC chain can be tested via the Gelman-Rubin test [37], which assesses the

variance between different chains and within the chains.

Marginalisation can be done straightforwardly with MCMC, because it generates
a set of points in the parameter space with density p(x) proportional to the PDF.
Thus, marginalisation with respect to one parameter corresponds to summing
over all points spanning that dimension, i.e., p(x) = > . p(x,v;). Pseudo-
marginalisation is sometimes applied, where instead of taking the full distribution
along a dimension, the maximum likelihood value is taken. For example, for two

parameters x and y, the pseudo-marginalised PDF of x is approximated to be

p(z) = /p(rc,y) dy o< p (2, Ymax(2)) - (1.105)
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1.7 Thesis outline

The aim of this chapter is to present a coherent background in cosmology and
its current status. I have briefly introduced how General Relativity provides the
appropriate formalism (so far) to describe space and time in Section . I then
showed, in Section [I.2] that a simple cosmological model based on homogeneity
and isotropy provides a good description of the observable Universe on large
scales as well as the expansion history since the Big Bang. In Section [1.3] we
have seen how, by introducing small inhomogeneities into the early Universe,
structures can grow and evolve on linear and non-linear scales, and how this can
be measured statistically using large galaxy surveys. In Section [I.4], I briefly
mentioned a few main cosmological probes and their constraints on the ACDM
model. In Section 1.5 we saw that with the shrinking error bars on the parameter,
tensions have emerged. Whether this is due to systematic errors or new physics
is currently unresolved, although future experiments may provide more insight
into these issues. Finally, Section briefly summarised statistical tools that are

commonly adopted for cosmological parameter inference.

My work presented in the rest of this thesis fits into the big picture by further
testing the theory of structure formation using galaxy survey data. The work
contains two major parts. In the first part, I tested the RSD method using
different density tracers represented by different types of galaxies and galaxy
groups. In the second part, I measured the secondary CMB anisotropies arising
from CMB lensing and ISW effect via their correlation with nearby galaxy density
fields. The thesis is thus organised in the following way. In Chapter [2| I will
present my work on measuring and modelling the group-galaxy cross-correlation
using the GAMA survey. In Chapter [3] I will discuss in detail the CMB lensing
and ISW effect, and how these are related to the galaxy density fields. To conduct
such analysis, I processed data from the DESI Legacy Survey in order to produce
galaxy density maps in four tomographic redshift bins. This is described in
Chapter [dl The results of the cosmological analysis are presented in Chapter
&6k Chapter [5]shows the angular cross-correlation between the CMB and galaxy
density maps, and Chapter [6]shows the stacked CMB signal from superstructures.

Finally, in Chapter [7} I give closing remarks and discuss possible future works.
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Chapter 2

Group-galaxy cross-correlations in
GAMA

2.1 Introduction

The large-scale structure in the galaxy distribution has a long history of providing
cosmological information. The first constituents of the inhomogeneous galaxy
density field to be identified were the rich clusters, which today we see as marking
the sites of exceptionally massive haloes of dark matter. Further down the halo
mass spectrum, we find less rich groups of galaxies, and below them systems like
the Local Group that are dominated by a single L, galaxy. All these systems have
been familiar constituents of the Universe since the first telescopic explorations of
the sky, but it took rather longer to appreciate that they were connected as part
of the cosmic web of voids & filaments (see e.g. [206] for some selective history).
In part, the history here showed a complex interaction of theory and observation,
since redshift surveys through the 1980s lacked the depth and sampling to reveal
the cosmic web with complete clarity. For a period, it was therefore a question
of asking whether the real Universe displayed the same structures that were
predicted in numerical simulations of structure formation in the Cold Dark Matter
model [33]. But since those times, there has been an increasing confidence that
galaxy groups are indeed particularly extreme nonlinear points in the general
field of cosmic density fluctuations, and this makes them interesting in two ways.
First of all, groups are readily identified in galaxy surveys, providing a relatively

robust dataset; secondly, their nonlinear nature makes them an informative probe
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of theory. Modelling nonlinear behaviour is by its nature challenging compared
to linear theory, but by studying structure formation further into the nonlinear

regime, we have the chance to test the robustness of our cosmological conclusions.

Our specific aim in this direction is to use galaxy groups as a probe of the
cosmological peculiar velocity field. Such deviations from uniform expansion
must exist through continuity, and density concentrations such as groups should
be associated with an average infall velocity in regions surrounding the groups.
The amplitude of these velocities depends in part on the strength of gravity on
cosmological scales, and the peculiar velocity field has thus increasingly been
seen as a means of probing the nature of gravity and testing alternative theories.
Although it is possible to probe peculiar velocities directly using absolute distance
indicators, the most powerful tool has been Redshift-space distortions (RSD).
These arise inevitably in the study of the 3D galaxy distribution because the
distances to galaxies observed on the sky are inferred from their redshifts, z, via

the standard relation:
Z cd?

W)=, mey

As we have seen in Chapter [T this equation does not give the true distances,

(2.1)

because Doppler shifts from the peculiar velocities modify the observed redshift:
1+ 2z — (14 2)(1 + v./c), where v, is the radial component of the peculiar
velocity. If we then use the observed redshift as if it were a true indicator of
distance, we obtain a distribution of galaxies in ‘redshift space’ — in which the

apparent properties of galaxy clustering are distorted in an anisotropic way.

As a recap, these distortions have a character that depends on scale: outside
of large density concentrations, galaxies fall coherently together under gravity;
while inside of haloes, the orbital velocities are effectively randomised. RSD due
to coherent flows in the linear regime were first studied by Kaiser [I37]. The

growth factor f is defined by:

0lnd N
Olna

f Qm(z)o'%» (2.2)

where a is the expansion factor, and €2,,, is the matter fraction; the approximation
for f(€2,,) only applies for flat ACDM models in standard gravity [152]. In Fourier
space, and in the small-angle limit of a distant observer, the matter power spectra

in redshift space and in real space are related by:
Pi(k, ) = P (k) (1+ f42) (2.3)
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where p is the cosine of the angle between the wave-vector k£ and the line of sight.
This simple equation was highly influential from its first appearance, as it offered
the chance of measuring €2, from measuring the RSD anisotropy. But eventually
goals shifted as €2, became very well determined from other routes (especially
the CMB). Following [107], the modern view is therefore to emphasise that the
growth rate for a given density is also proportional to the strength of gravity, so

that RSD can be used as a test of theories of gravity.

RSD has been measured using various surveys to constrain cosmological param-
eters. For example, it was measured in the 2dFGRS survey using the dispersion
model for the FOG [I17, 211], and in the SDSS survey using the Gaussian
streaming model [9, 238]. For the GAMA survey, Loveday et al. [I70] had
measured pair-wise velocity dispersion to small scales with different luminosity.

The above studies had focused on galaxy auto-correlations.

The difficulty of modelling RSD is that truly linear modes are rare. In observation,
large scales are affected by cosmic variance due to the finite survey volume.
McDonald & Seljak [I77] proposed the use of multiple tracers to beat cosmic
variance, although in practice the improvement is slight because the tracer density
has to be high enough such that the signal is not shot-noise dominated. Using
multiple galaxy tracers to measure growth rate has been done in e.g. Mohammad
et al. [I85], who used blue galaxies for their reduced non-linearities, and Blake
et al. [31], who used different galaxy subsamples in the GAMA survey. To gain
more information, one needs to probe smaller scales, where the effect of non-
linearity can systematically bias the results [319]. One of the solutions is to
use galaxy groups to probe the velocity field. Due to the small random virial
velocity at the group centre, the coherent large-scale infall velocities of groups are
dominant down to intermediate and small scales. The the group auto-correlation
would thus have negligible FOG, ideal for the extraction of linear growth rate
[184,202]. In practice, the group catalogue in GAMA is sparse and measurements
of the auto-correlation will have high statistical noise. The cross-correlation
between groups and galaxies can thus effectively improve the statistical power
as well as reduce the non-linear pairwise velocities at small scales. The aim
of the work in this Chapter is to test the robustness of RSD methods in the
intermediate scales using multiple tracers. By cross-correlating galaxies of red
and blue types, and groups in different mass bins, we examine the consistency
of the inferred cosmological results between the subsamples. We briefly review a
few RSD models in Section[2.2] and apply the extension of the Hamilton model in
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configuration space proposed by Mohammad et al. [I84] for the GAMA sample.

The GAMA data set and its mocks are detailed in Section [2.3|and [2.4]respectively,
followed by Section where we introduce the statistics for measuring the 2-
point function in the data. In Section [2.6] we present 2D-correlation function
measurements for sub-samples. In Section we discuss modelling for galaxy-
group cross-correlation: the model is validated in Section with the GAMA
mocks, and we present the fitting of GAMA data in Section [2.7.2] Finally, the

work is summarised in Section 2.8]

2.2 RSD models

2.2.1 The streaming model

An alternative description of RSD to the linear Kaiser model (see Section
is the streaming model [63, 214], based on the definition that the two point
correlation function is the excess probability of finding a pair of galaxies within
a radius r compared to Poisson distribution. The probability of finding a pair of

galaxies at two locations x; and x5 in real space is
dP = a*[1 + &(r)]d*x,d*x, (2.4)

where n is the mean number density of the galaxies. In redshift space, this is
modified by a velocity distribution, P(v), which affects the line of sight component
of the coordinate by shifting the coordinate y with y — pwi2(r), where vyo is the
scale-dependent pairwise velocity. Denoting redshift space coordinates as s, the

probability of finding a pair is
dP = *[1 + &(r)|P (TW —y— %012(7“)) dy d*s,d’s,. (2.5)

The redshift space coordinates and the real space coordinates are related in the

following way

S| =1y =Y+ vig/aH, (2.6)
S| = rpa (27)

r=\/y*+r. (2.8)
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This gives the relation between redshift and real space two-point functions,

1+ &5(8p, 87) = / 14 &(r)] P (r,r —y — %'lhg(r)) dy. (2.9)

One then needs to specify the velocity distribution P.

It was pointed out by Fisher [85] that in order for this model to be consistent with
the Kaiser description in the linear regime, P(v) needs to be a joint Gaussian
distribution of both velocity and density. The mean pairwise velocity is the
weighted average of the velocity difference for each pair by density ((v —v’)(1 +
5)(1 + ¢)), and the dispersion is given by the second moment of the velocity
(vv}). This is referred to as the Gaussian Streaming Model (GSM). In the linear
theory limit

1 [re —y — (y/r)via(r)]
1+ &5(sp,8.)= | 1+ exp — dy.  (2.10
s = [+ En] —pew S v (210
The pairwise velocity and dispersion can be computed in terms of the real space
correlation function. The radial pairwise velocity v12(7) can be computed by
solving the pair conservation equation [214]. In linear theory, the mean pairwise
velocity is

v1(r) = —gaHTff(r), (2.11)

where € is the volume averaged correlation function given by Eq.|1.77l It is shown
in [135] that the the higher order correction to the pairwise velocity can be solved

by perturbation theory. To first order:

wolr) = —aHr fE(r)[1 +vE(r)), (2.12)
where _
)= 1o i(gzr)- (2.13)

This gives a better description of the mean velocity in N-body simulations. In
principle, v is a function of the logarithmic slope of the (leading order) two point
correlation function, which can also depend on scale. Moreover, v is more sensitive

to the transition scale between the linear and non-linear regime.

The scale-dependent velocity dispersion, o(r) in the linear regime takes a more
complicated form (see Eq.15 of [85]). [214] suggests that the full form would

depend on the three point function. The extension of o(r) into quasilinear scales
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is therefore non-trivial [I83]. [268] adopted a halo model description, and showed

good consistency down to scales 7 ~ 0.1 h~* Mpc with N-body simulations.

2.2.2 Non-linear scales

On small scales, the velocity due to virialised motion becomes large and the linear
assumption breaks down. This is shown clearly by the Finger of God (FOG) effect
[131] at small separations perpendicular to the line of sight in the correlation
function in Fig. [[.7, The small-scale pairwise velocity distribution from N-
body simulations shows deviation from Gaussian, and is closer to an exponential
distribution with no strong scale dependence [265]. Following this, [208] proposed
the dispersion model, where in Fourier space, the large k£ modes of the anisotropic
power spectrum in Eq. is damped by a Lorentzian function D(ku) =
1/(1 + k*p202,/2), and 015 is a scale-independent free parameter characterising
FOG only. In configuration space, this is equivalent to a convolution along the

line of sight r, with the exponential distribution:

D(Tﬂ—) = —\/§H0T7r/0'12> . (214)

1

Vina
Furthermore, it is common to replace the linear power spectrum in Eq. by
the non-linear one because the transverse direction unaffected by RSD should be
exactly the same as in real-spacdl] It is discussed in [30] that this rather simple
model is actually among the best-performing models when fitting down to small
scales of order 10 h~! Mpc. The parameter o1, may be inferred by adopting a
HOD analysis [118] 238, 248]

There are multiple challenges in extending the analytical model to the non-linear
regime from first principles. Nonlinearities alter the small scale shape of the
matter power spectrum and correlate the density and velocity fluctuations. Thus,
they can introduce systematic bias in the inferred cosmological parameters [319].
The difference between the matter field and haloes is explored in [269, 288, [303].
Accounting for these effect requires higher order expansion in Perturbation
Theory as well as the inclusion of the velocity spectrum, Py(k), and the density-
velocity cross spectrum, Psg(k) (e.g. [133,283]). Galaxy bias can also be nonlinear
and stochastic on small scales [65]. Furthermore, the approximate velocity

dispersion in equation fails to fit auto-correlation data on the smallest scales

! Assuming no significant wide angle effects.
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[258]. More elaborate velocity distributions are proposed by e.g., [28, 237, [317]
based on simulations. In [317], for example, the velocity profile is characterised
by a 7-parameter joint PDF, P(v,, v|r), of the velocity along and perpendicular

to the line of sight of the satellite galaxies with respect to the cluster centre.

2.2.3 Cross-correlation in redshift space

Linear model

The Hamilton model was extended to cross-correlation by Mohammad et al. [I84].
Consider cross-correlation between groups and galaxies with galaxy bias denoted

by bga and group bias by bgp,. It is also useful to define the relative bias, bya:
b12 = bgar/bgrp- (2.15)
The cross power spectrum in redshift space is
P?(k, 1) = bgabgup(1 + Bgarpt®) (1 + brofgarps®) P (k) (2.16)

where Sga = f/bgal. In configuration space, equations — are modified to

So.c(r) = (1 + %Bgaﬂ(l + bi2) + %5;1512)&(7‘)7 (2.17)
er) = (3Bea(1+ o) + 2000 ) ) — £, (218)
54,C<T) = % §a1b12 |:§c(r> + ggc(r) - ggc(r)}u (219)

where &.(r) = (béal/blg) ¢(r) and similarly for & and &,.

The FOG term in the cross-correlation would be a convolution of the two velocity

dispersions. In case of a Gaussian dispersion, the velocity dispersion would be

2
grp’

small, given that the group centre would correspond to the halo centre. In that

0%y = O'gal +0 In case of the galaxy groups, we expect the dispersion to be

case, the total dispersion term would be close to that of galaxies. This model is

applied to the analysis in Section [2.7]
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One-halo and two-halo decomposition

A simple extension to the linear model is by separating the correlation function
into two components: the 1-halo term and the 2-halo term (e.g., [268]). The 2-halo
term takes the same form as the usual linear (or quasi-linear) RSD model, whereas
the 1-halo term is given by the halo model. The 1-halo term can be approximated
by a power law &1y, = (/1) or take the NFW profile &1, = a/x(1 + )%, where
x = 1/r9. The FOG is modelled separately for each term, using exponential
profiles with velocity dispersion o1, and oy, respectively. The model takes the

form:
2

b
£ = &m(r|a,ro) * D(ow) + % &hin (75 1) % D(01in). (2.20)

Compared to the linear model, this 1- and 2-halo decomposition contains three
extra parameters «, 79, and oy,. The extra degrees of freedom could thus
improve the model fitting at smaller scales. These 1-halo term parameters can
be constrained by fitting the projected cross-correlation function. In this model,

it has the form

r

wy(rp) = l;il/ [(E)a +§nn(r)} drz, (2.21)

2 _ .2, ,2
where 7% =1, + 7.

2.3 The Galaxy And Mass Assembly (GAMA)

Survey

The Galaxy And Mass Assembly (GAMA DR2) spectroscopic survey [16§],
conducted by the Anglo-Australian Telescope, contains around 300,000 galaxies
in five survey fields, with most galaxies concentrated at z ~ 0.2. The three
main fields near the equator: G09, G12, and G15 are used here, each covering
an area of 12 x 5 deg®. The survey has an extinction-corrected r-band flux limit
of r < 19.8. The overall redshift completeness of the equatorial region is 98.5%
above the magnitude limit. This high completeness, thanks to repeated visits of
each target in GAMA, is greatly advantageous for small scale galaxy and group
studies compared to much larger surveys such as BOSS: fibre collision can lead to
undercounts of close galaxy pairs and bias the measured galaxy 2-point correlation
function [104]. Fig. shows the survey geometry of the three GAMA main fields

overlapped with a few other galaxy surveys.
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Figure 2.1 The pencil beam of the three main fields, G09, G12, and G15 of the
GAMA survey. The upper panel shows the RA and Dec of the three
fields in black, and the lower panel shows the radial depth of the field
in terms of redshift and lookback time. The figure is adopted from

Driver et al. [70].
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Galaxies are selected with the following criteria: redshift quality nQ > 3, angular
completeness mask > 80%, and visual classification VIS_CLASS = 0,1,255. The
random catalogue is generated by [82] from the actual GAMA galaxy catalogue
using a modified method following [52]. The idea of this method is to clone each
galaxy n times and distribute them randomly within the maximum volume V.«

that the galaxy can be observed given the survey magnitude limits,

Vm ax

2.22
VmaX,dC ’ ( )

N = TNclones
where nciones = 400 is the total number of randoms divided by data, and Viyax dc is
the maximum volume weighted by overdensity A(z). This method is iterated until
A(z) converges, and the redshift distribution of the resultant random catalogue

is smooth without large scale features (see Fig. 4 in [82]).

The official GAMA group catalogue (G3C) is constructed by Robotham et al.
[245]. Most of the groups are found within z < 0.35 (see Fig. 16 in [245]), thus
we impose a redshift cut 0.1 < z < 0.3 for the groups. The group catalogue is
derived using an anisotropic friends-of-friends (FoF) algorithm. The idea is to
link galaxies together if their separation is smaller than the linking length (g.p
that is related to the local overdensity. This linking length is defined separately
for the radial direction and the projected plane: the fg,r along the line of sight
is much larger than the transverse direction, accounting for the effect of galaxy
peculiar velocities (see an illustration in Fig. . The choice of ¢rp is crucial for
groups found because a single group can be split into a few if lg,r is too small,
while several groups can merge if {p.r is too large. Thus, the free parameters
involved in determining fp,r are adjusted against an N-body mock catalogue
before they are applied to the actual data. To have consistently defined groups
in the GAMA mocks (see Section [2.4), we do not use the official G3C catalogue.
Instead, we apply a similar FoF group finder algorithm by Treyer et al. [290]
to both data and mocks. This algorithm has also been applied to GAMA and
other datasets [147, I72]. The main difference between the two algorithms is
the parameterisation of the two linking lengths, and a detailed description of the
algorithm and assessment of the group reconstruction quality can be found in the
Appendix of [290].

The redshift distribution of the galaxies and groups in the GAMA survey is
shown in Fig. 2.3] In addition to the above selections, we further split galaxies

and groups into subsamples. The number of selected galaxies and groups in each
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Figure 2.2 A schematic diagram of the Friends-of-friends (FoF) algorithm
applied to GAMA galaxies in order to construct the group catalogue.
The figure is adopted from Robotham et al. [245].
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Figure 2.3 Redshift distribution of the GAMA galaxies and groups. This work
uses the redshift range 0.1 < z < 0.3.

Table 2.1

Number of selected galaxies and groups from GAMA fields with
redshifts 0.1 < z < 0.3 and flux limit r < 19.8. Galaxies are split
into red and blue subsamples, and groups are split into three stellar
mass bins by 40%, 50%, and 10% by mass ranking from low to high.

Number of G09 G12 G15
Galaxies Blue 17,335 18,719 19,053
Red 20,584 22,155 21,141
Total 37,919 40,874 40,194
Groups LM 1,877 2,084 2,054
MM 2,347 2,606 2,569
HM 470 522 514
Total 4,694 5,212 5,137

GAMA field and for each subsample is summarised in Table[2.1] We describe the

selection in more detail below.

2.3.1 Galaxy colours: the red sequence and the blue cloud

In section [I.3.5] it is briefly mentioned that galaxy clustering is different for

red and blue galaxies, and it can be qualitatively explained by their association

with the dark matter haloes attributed to galaxy formation and evolution. The

bimodality in galaxy colour and magnitude distribution is well known. It is found

that galaxies are mainly concentrated in two regions in the colour-magnitude

plane: there is a high luminosity ‘red sequence’ and a lower luminosity ‘blue

cloud’.

The galaxies in between are often referred to as the ‘green valley’.
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Galaxy colours are closely associated with the age and star formation history
of the galaxy. The luminous red galaxies tend to be older, with little or no star
formation going on, while the less luminous, blue galaxies generally are younger
with active star formation. It is also observed that the red population is rather
tightly confined in colour, whereas the blue cloud has a much bigger spread. This
trend can be explained by noting that the colour of old stellar populations do
not change much with their age. The spread of colour in the blue cloud, on the
other hand, suggests a range of stellar ages and different stages of star formation

activities.

It is then interesting to split the GAMA galaxies into two tracer samples: red
and blue, and study their two-point clustering with galaxy groups. To obtain
the galaxy colours, we use the extinction corrected SDSS magnitudes from the
TilingCatv46 DMU (Database Migration Assistant for Unicode). It is, however,
non-trivial to separate the two populations from a continuous distribution in
colour and magnitude, and elaborate approaches have been discussed in e.g. [286].
For the purpose of this study, we adopt a simple quadratic cut in the apparent

g — 1 colour versus redshift plane:
g —1i=6.220z% + 1.383z + 0.831. (2.23)

The specific form of the cut comes from matching the red and blue fraction at
ecach redshift of GAMA data with the mocks, which is discussed in Section [2.4]
The upper panel of Fig. shows the bimodal distribution in g — ¢ colour and z
for the GAMA data and the cut. The overall fraction of the red or blue galaxies
is very close to 0.5, and it changes slightly with redshift: at the low redshift end,
the red and blue fractions are similar, while towards higher redshifts, the fraction
of red galaxies increases mildly until z ~ 0.2, and the difference in red and blue
fraction becomes small at z ~ 0.3. We create random catalogues for the red and

blue galaxy subsamples with matched redshift distribution.

2.3.2 Galaxy groups

Galaxy groups are assemblies of galaxies that are spatially close to each other, as
we have seen in the group finding algorithm, and are tracers for density peaks.
Compared to galaxy clusters, which typically have N 2 50 members per cluster,

groups have fewer members and therefore probe lower mass haloes.
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Figure 2.4 Distribution of the g—1i colour of galaxies in redshift range 0.1 < z <
0.3, for GAMA data (upper panel) and 25 mocks combined (lower
panel). Red and blue populations are separated by the dashed black
lines. The cut in GAMA is chosen such that GAMA and mocks have
similar red and blue fraction at each redshift.
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Groups are accepted with group members > 2, and the centre of the group is
determined by the most (more) massive member in stellar mass. The 2-member
systems make up 66% of the total groups in the GAMA data, but are likely to have
poor fidelity. Thus, we emphasise that having the same group finder algorithm
for the data and mocks is vital for these low-fidelity groups to be comparable.
There are several approaches for determining the group centre. The simplest
choice is to select the most massive member to be the central galaxy, and assume
that it overlaps with the halo centre. Other approaches include determining
a weighted centre by averaging over the positions of the group members, or
iteratively excluding members that are most distantly separated (see e.g. [245]).
The iterative centres are used in the G3C catalogue, and it is shown in [245] that
the agreement with using the brightest group galaxy (BCG) as group centre is 95%
for groups with NV > 5, and for 2 < N < 4, both BCG and iterative centres give
highly consistent results compared with the mock, and the BCG centres are only
degraded by about 3% compared to the iterative centres. The effects of different
group centre choices on the group-galaxy cross-correlation concern mainly the
1-halo regime at » < 1 h~! Mpc, and the correlation functions converge on larger
scales [308].

The halo mass of GAMA groups is found to be tightly correlated with the group
total luminosity in Han et al. [I13], where they used maximum-likelihood weak-
lensing analysis to determine the mass distribution of the GAMA groups with
background SDSS photometric galaxies. The halo mass of groups is related to

the r-band luminosity via:

Lo\
Mh:Mp(ip) : (2.24)
0

where
Lo=2x10"r"2Lg,

log,o(M,/h™'My) = 13.48 — 0.08 £ 0.12,
a = 1.08 4 0.01 + 0.22.

In the expression of M, and «, the three numbers refer for the best-fit value, bias,

and the error. The luminosity is computed from the apparent r-band magnitude:

—2.5log(L/Le) =m — K(z) — 5log(d) — 25 — Mg, (2.25)

where K(z) the k-correction up to z = 0 (kcorr_z00), d; is the luminosity
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distance, and M, = 4.67 is the r-band absolute magnitude of the sun. The
luminosity distance is expressed with unit hA~! Mpc so that the luminosity is
expressed with unit A=2L.. The total luminosity of the group is computed in
[245] by

—14
10704Mr M, ) dM,
Lyor = BLoy 57 Cennn (1)

Mr—lim 704Mr )
-3
f 0 10 ¢GAMA(MT) er

(2.26)

where Ly, is the total observed luminosity in rag band, B = 1.04 is the correction
for median unbiased mean estimate for N > 5 groups, and M, _;,, is the absolute
magnitude limit of the group depending on the redshift z. ¢ganma is the luminosity
function defined in [245]. The luminosity function at the faint end for GAMA
galaxies is well approximated by ¢ oc L™ exp(—L/L,) [169]. Thus, we apply a
redshift-dependent correction factor 3(z) = exp(z%/z2) with z, = 0.33 to each
group instead, where z is the mean redshift of the group members. This correction
factor has been checked using the G3C groups to produce a consistent total

luminosity as TotFluxProxy.

The total stellar mass is another proxy for the total group mass. We use the
StellarMasses DMU from Taylor et al. [285], where stellar population synthesis
is used to model the optical photometry of the GAMA galaxies. Because the
modelling uses rest frame luminosities, which depends on distance, the stellar
mass is expressed in units of h_2M®E|. Furthermore, for each group, we correct the

total stellar mass by the same redshift dependent factor as the total luminosity.

The calibration of the total stellar mass and the halo mass from weak lensing of
the GAMA groups is shown in Fig. for the official G3C groups (dashed line)
and the group catalogue used in this work (solid line). The contours show 95%,
50%, and 20% of the total sample, and are highly consistent between the two
group catalogues. We choose to divide groups into three stellar mass bins based
on percentiles: the Low Mass (LM) bin consists of the least massive 40% groups,
the Medium Mass (MM) bin corresponds to the middle 50%, and the High Mass
(HM) bin contains the most massive 10%. The signal-to-noise of from high mass

haloes is expected to be high, despite the low number in the HM bin.

2Notice that this is only approximately true, because the stellar mass to light ratio, M/L,
which is used obtain the stellar mass, depends on age and is therefore specific to the choice of
h. The stellar mass used here assumes h = 0.72.
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Figure 2.5 Upper panel: Correlation between the total stellar mass, corrected by
a factor exp(22/22) and the halo mass from the calibration from [113]
for the GAMA groups with two or more members between redshifts
0.1 < z < 0.3. The contours denote 95%, 50%, and 20% of the
total sample. The solid lines show the groups used in this work
using the group finder algorithm in [290)], and the dashed lines show
the the official G3C groups [245]. Lower panel: The same relation
for the mock catalogue. In this case, My is not estimated from the
luminosity, but directly taken as the arithmetic mean host halo mass
of the group member. The difference in the distribution indicates
that such estimator is not very reliable.
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2.4 The GAMA mock catalogue

There are two reasons for including mock catalogues: (1) to validate the
RSD models and assess the bias on the recovered growth rate, and (2)
to quantify the impact of cosmic variance via the construction of covari-
ance matrices. We used 26 realisations of a lightcone mock catalogue based
on the GALFORM semi-analytical galaxy formation [07]. The catalogue
exploits the Millennium Simulation with WMAP7 cosmology [105]: o0g =
0.81, Q,, = 027, h = 0.70, and n, = 0.967. These mocks are queried
from the table GAMA v1...LCmulti Gonzalez2014a from the Durham hosted
Virgo-Millennium Databasel [161]. For more details of the mock catalogue, see
[82]. By Eq. the fiducial value of growth rate at the mean redshift of the
mocks, z = 0.195, is fzq = 0.593. The lightcone is constructed using the methods
in Merson et al. [179], where, given an observer, the galaxy is placed at the epoch
where it first enters the past lightcone of the observer. The galaxy trajectories
are interpolated between snapshots. Each mock covers the five GAMA fields with
the SDSS r-band apparent magnitude SDSS_r_obs_app < 21, and z < 0.9.

We use galaxies in the G09, G12, and G15 fields and apply the same selection in
redshifts 0.1 < z < 0.3 and the apparent r-band magnitude cut SDSS_r_obs_app <
19.8. We also apply the same survey mask generated using the random catalogue.
The masked areas are obtained by binning random galaxies in each field with an
average of ~ 2000 counts in each bin. Pixels with counts smaller than five times
the Poisson noise are masked. The total masked area in the three fields is about
0.14 deg?. Because the mock redshift distribution is not matched exactly with
GAMA data and random (see Fig. , we create a random catalogue for these
mocks by down-sampling the random catalogue for the GAMA data, such that

the n(z) matches the mean of 25 mocks.

2.4.1 Matched galaxy colour subsample

The red and blue subsamples for the mean of the mocks are separated by the
empirical line given by
g—1=0.46 + 3.2z, (2.27)

as shown in the lower panel of Fig. 2.4 The line is chosen to go through the
green valley of the mock galaxy ¢g — i colour. The GAMA galaxies have a

73



...... Random (scaled) .
—1 GAMA
2000 B Mock mean

2500

0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.275 0.300
V4

Figure 2.6 The mean redshift distribution of the 25 GAMA mocks (square)
is offset from that of the random sample (dotted line). A
random catalogue is created for the mocks to have matched redshift
distribution as the mock mean. The redshift distribution of the
GAMA galaxy sample is also shown (histogram) for comparison.

more concentrated red sequence overlapping with an extended blue population,
without a distinct green valley in between. On the contrary, the mocks have
a broader red population which is well separated from the blue population by
a green valley. Since the mock catalogues have more distinctive separation for
the two populations, we find the corresponding colour cut in the GAMA data
by matching red and blue fractions in the two catalogues for 20 redshift bins in
0.1 < z < 0.3. The cut is smoothed by fitting a second order polynomial, as
shown in the upper panel of Fig. [2.4]

The contamination of the red and blue sub-samples in the GAMA data resulting
from the colour cut is quantified in the following way: for each redshift bin, the
red and blue sub-samples are fitted by a double Gaussian. It is a reasonable
fit except for the green valley in the mocks, as shown in Fig. 2.7  Given
a colour cut, the contamination of the red sub-sample is defined as the area
under the blue Gaussian over the area under the red Gaussian, and similarly
for the contamination of the blue sub-sample. Clearly, GAMA data contain
a contaminated red sample and a pure blue sample. Therefore, we create a
contaminated red sub-sample using the mock catalogues by placing the mock
colour cut such that extra blue galaxies are included with the same level of

contamination as GAMA data. The contaminated red cut in the mocks (see
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Fig. is smoothed by fitting a quadratic polynomial of the form

g—i=2432"+ 155z + 0.388. (2.28)

2.4.2 Mock group catalogue

For mock groups, the stellar mass is computed by the sum of diskstellarmass
and bulgemass of all group members, and corrected by the same redshift-
dependent factor as the data. We do not estimate the group halo mass from
the same mass-luminosity relation in Eq. [2.24] Instead, we use the host halo
mass of the mock galaxy directly. Because some haloes contain more than one
galaxy, for each group, we test the largest, the arithmetic mean, and the median
halo mass of the group member, and find that they give similar results. We also
test using the sum of unique host haloes in the group. This increases the total

group halo mass in the lower mass end, but does not affect the higher mass end.

The stellar-halo mass relation of the groups using the total stellar mass and the
arithmetic mean host halo mass of the group members is shown in the lower panel
of Fig.[2.5 It is clear that the the mocks show a much large scatter in the M — M,
plane and the slope is smaller compared to data, i.e., at fixed stellar mass, the
halo mass is larger. The total stellar mass of the mock groups are also smaller
by about 0.5 dex compared to data. The clear difference between data and the
mocks shows that estimating the halo mass from luminosity using Eq. is not
very reliable. The luminosity is itself strongly correlated with stellar mass via
the luminosity-mass relation, thus the upper panel of Fig. does not show the
true scatter of My, at fixed M, faithfully (or vice versa).

The comparison between the group and the halo catalogue also reveals interesting
information. Across the mock realisations, the number of groups with two or
more members is of order 1.4 x 10%, and that of haloes is of order 8 x 103. Haloes
containing one galaxy only are concentrated towards low M) and low M,, whereas
haloes containing two or more members have a minimum log(Mj,/h~' M) ~ 11.5.
Therefore, the extended lower mass end in the lower panel of Fig. shows that
galaxies from different low mass haloes are identified in the same group. At
the high halo mass end, the excess of small stellar mass groups indicates that
the group finder breaks a small number of haloes with multiple galaxies into

several smaller groups. This observation again emphasises the importance of
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Figure 2.7 The g—1i colour distribution of GAMA and mock mean (blue shaded
region) in 20 redshift bins with 0.1 < z < 0.3. The black dashed lines
are double Gaussian fits to the distributions characterising the blue
and red populations. The vertical grey cuts separate the red and blue
populations in mock and data, with matched red and blue fraction of
the total galaxy number.
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using a consistent group finder algorithm between the GAMA data and the mock
catalogues. The mock group catalogues are separated into three stellar mass bins
based on the 40%, 50%, and 10% percentiles as the data.

2.5 Measuring statistics

We measure the 2-point correlation function £ of the groups and galaxies. For
two objects located at sy, sq, the line of sight is defined as 1 = (s; + s3)/2. Their
separation is given by s = s; — sy. The correlation function is then measured in

bins of the separation parallel and perpendicular to the line of sight:
T=-—, 1,=Vs?—72 (2.29)

As mentioned above, the survey mask and redshift distribution n(z) are captured
by the random catalogue. For the red and blue subsamples, the random
n(z) is adjusted by the smoothed, redshift-dependent red and blue fraction
respectively. The group subsamples also have different n(z), with lower mass
groups concentrating at lower redshifts, and higher mass groups dominating at
higher redshifts. We do not try to fit their redshift distribution due to their small
sample sizes. Thus, the standard Landy-Szalay estimator, which requires random
catalogues for both groups and galaxies, is not applicable here. Instead, we use
the Davis-Peebles estimator:

. DD,
S(Tp77r) - D]_RQ

—1, (2.30)

where subscript 1 denotes groups and 2 denotes galaxies in the above case.

To break the degeneracy of galaxy and group biases, we also measure the 2-point
function for the galaxy subsamples. In this case, we use the standard Landy-

Szalay estimator:

A DD —- DR —-2DR
E(rp,m) = R )

Although the latter is better at suppressing statistical noise, the two estimators

(2.31)

make negligible difference for our sample. Throughout the analysis, the size of
random galaxies used is 20 times that of data. The 2D correlation functions
are measured with a bin width of 127! Mpc in both r, and 7. We take |r,| <

40 h~! Mpc, where both positive and negative r, are counted in the same bin,
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because £ is symmetric around the transverse direction. Along the line of sight, we
do not assume symmetry and take m = [—40,40] h~! Mpc instead, where positive
and negative 7 are counted in different bins. It is interesting to check the line of
sight symmetry because, as mentioned briefly in Section [1.3.3] additional effects
such as gravitational redshift could give rise to a non-vanishing dipole in the

cross-correlation function, leading to an asymmetry in the 7 direction.

For the convenience of model fitting, the information in the 2D correlation
function is then compressed into the projected correlation function w, with

integral limits of £,y

wp(rp) = / f(Tp,ﬂ')dT(, (232)
and multipoles & and &;:
20 —I— 1
§u(r) = / &(r, w)Po(p) dps, €= 0,2, (2.33)

where p = w/[s|. We ignore &4 because it is more sensitive to non-linearity.
For the integral limit in Eq. , Tmax = 40h~ " Mpc, the w, is only weakly
dependent on RSD parameters. The multipoles are computed by interpolating
the 2D correlation function, and this is done consistently for both measurements
and the model.

2.5.1 Likelihoods

The constraints of model parameters are computed using Bayesian likelihoods.

The probability distribution of a set of parameters 6 given the data D is

P(D|0)P(6)

P|D) = —————— 2.34
where P(D|0) is proportional the likelihood £, P(#) is the prior distribution of
the parameters, and P(D) is treated as a normalisation. The covariance matrix
is only weakly dependent on model parameters, allowing the approximation £ o

exp(—x?/2), where the x? is defined as

m

=" () — y(ra) O () — y(ry)] (2.35)

Z7J
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for a data vector x(r) and a model vector y(r) with m bins in separation r. Cj; is
the covariance matrix. The degree of freedom of x2-fitting is given by dof = m—p,
where p is the number of parameters. For each subsample (e.g. LM-red), the data
and mock vector includes both the group-galaxy cross-correlation and the auto-
correlation of the corresponding galaxy subsample. We use the python package

emced’| to explore the parameter space with uniform priors.

For N independent mock realisations, the estimator for the covariance matrix is

3 ) — (b)) — (o) (236

k=1

Cz'j =

The dimension of the covariance matrix needs to be smaller than N in order for it
to be invertible [284]. This justifies the compression of the 2D-correlation function
into w, and multipoles. Due to the small number of mocks, we apply Jackknife
re-sampling on the mocks by dividing each survey field 18 sub-regions, giving a
total of N; = 54 Jackknife samples for each mock. The covariance matrix for
each mock sample is estimated using equation , with an extra factor (N;—1)
to account for correlations between Jackknife samples. We then average over the
covariance matrices of the 25 mocks to obtain the final covariance matrix. It is
pointed out in Escoffier et al. [78] that this method can reduce the noise on the
covariance estimation, and fast approach the truth. However, it should be noted
that these mocks are not completely independent, since they are constructed
from the same simulation [97]. We compare the mean Jackknife errors with the
scatters between mock realisations and find that they are consistent, with the only
exception of the cross-correlations with blue samples, where the mean Jackknife
error is smaller than the scatter between mocks by about 10%, especially at scales
r < 10h~t Mpc. The covariance matrix is computed for each of the correlation

configurations.

2.6 Cross-correlation measurements

In the following analysis, we will refer to the group subsamples as LM (low mass
bin), MM (medium mass bin), and HM (high mass bin), and the cross-correlation
between subsamples as e.g., LM-Red for low mass group cross-correlated with red

galaxy subsamples. We measure the cross-correlation of all groups and galaxies

3http://dfm.io/emcee/current/
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Figure 2.8
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2D group-galazxy cross-correlation with all galaxies and groups (top
left), auto-correlation of all galaxies (top right), auto-correlation
of red galazies (bottom left), and auto-correlation of blue galaxies
(bottom right) measured in GAMA (black solid lines) and the
mean of mocks (blue dashed lines). The contour levels are & =
(0.1,0.2,0.5,1,5). In the ‘Red auto’ case, the purple dotted contours
show the contaminated red galaxy subsample in the mocks. The bin
size is 1 h~ Y Mpc in both rp and 7.
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Figure 2.9

Same as Fig. but for group-galaxy cross-correlation with galazies
split in two colours and groups split in three mass bins from the
GAMA data (black solid lines) and mean of the mocks (blue dashed
lines). Lowest contour level in the high mass (HM) bins for the
GAMA data is not shown due to large noise.
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(denoted as All), and those between the three group and two galaxy subsamples.
In addition, we also measure the galaxy auto-correlations for all, red, and blue
galaxies. This allows us to fit cross-correlation with the corresponding galaxy
auto-correlation simultaneously to break the degeneracy between by, and bio. We
do not measure the auto-correlation for groups because it is tricky to construct
randoms that match the group catalogue; the cross-correlation conveniently

avolds this issue.

The measured 2D auto- and cross-correlations from GAMA and the mean of the
mocks are shown in Fig. and Fig. 2.9) For subsamples involving red galaxies,
the mock results from the contaminated red sample is also shown in dotted purple
contours. The effect of including bluer galaxies in the red subsample reduces the
galaxy bias and the FOG slightly, resulting in a better agreement with data in
the Red auto case. The agreement between data and the mocks in each of these
measurement is well down to small scales (< 1527 Mpc). The only exception
is with the blue galaxy auto-correlation, where the mock results seem to give a
slightly smaller galaxy bias and the FOG. On larger scales, the agreement is not so
well possibly due to the large noise — there are fewer pairs on larger scales. Cosmic
variance also affects these large scales. In particular, the cross-correlation with
low mass groups (LM-Red and LM-Blue in Fig. is excessive on these scales,
even higher than the MM and HM subsamples and resulting in poor agreement
between the data and mocks for ¢ < 0.5. This is also reflected in the projected
correlation functions w, as we shall see later on. This could be due to cosmic
variance: there happen to be a spike in the distribution of GAMA galaxies at
0.1 < z < 0.2, where the low mass groups are concentrated. It could give rise to a
mismatch in the n(z) of GAMA with its random catalogue. After inspecting each

mock realisation, we believe that this signal is consistent with cosmic variance.

The upper panels in Fig. 2.8 show the group-galaxy cross-correlation and the
galaxy auto-correlation for the full sample, and while the cross-correlation has a
slightly higher amplitude, they show very similar trend. The lower panels in the
same figure shows the auto-correlations for the red and blue galaxy subsamples,
and their differences can be seen clearly. On large scales, the correlation function
is amplified for the red galaxies compared to the blue galaxies, yielding a larger
galaxy bias. This implies that red galaxies are preferentially associated with
massive haloes (e.g. [106]). On small scales, the FOG effect is more dominant in
the red galaxies than blue galaxies, showing a stronger non-linearity in the red

subsample. This is consistent with the observation that red galaxies are likely to

82



be satellites while blue galaxies are likely centrals.

Fig. shows the cross-correlations between the group and galaxy subsamples.
The left and right panels show those involving red and blue galaxies, and
the difference between the two shows a similar trend as observed in the auto-
correlation case. The panels from top to bottom show low mass, medium mass,
and high mass groups. The amplitude of the correlation function on large scales
and the FOG on small scales increases significantly with increasing group mass.
This is expected because larger groups are likely found in higher density peaks,
and are strongly clustered with a higher bias. The virial velocities of galaxies on
small scales are also expected to be larger for larger groups, thus the strongly

increasing FOG with group mass.

Fig. shows the projected correlation function w, (red), the monopole &,
(blue), and the quadrupole & (orange) for data (solid circles) and the mean of
mocks (open circles). For demonstration purposes, we have multiplied 7, to the
projected correlation function, and r? to the multipoles. The cross-correlation
is shown on the panel below its corresponding galaxy auto-correlation for each
subsample. The error bars on the data points are adopted from the averaged
Jackknife errors from the mocks. As we have seen from the 2D correlation
functions, the data and mocks match closely in most cases, especially on small
scales with < 10 A~ Mpc. On scales r > 15h~t Mpc the quadrupole of data
becomes larger than the mocks, and a rise in w, and monopole can also be seen at
r 2> 20 h~' Mpc, but the size of the errors suggests no clear deviation of the data
from the mocks. There is a more obvious difference in w, between the data and
mock in the LM cases, also seen clearly in the top panels in Fig. 2.9] Given that
the data points are strongly correlated, such difference is also not statistically

significant.

2.7 Model fitting

We adopt the linear RSD model in [I84] with a non-linear power spectrum
generated by HALOFIT [276, 282]. We test a set of minimum fitting scales,
Tmin = 2,5,10,15,20 h~ Mpc. We also include an extra parameter, the integral
constraint I, which is a small constant added to the 2D correlation function. It
accounts for the missing power from modes with wavelengths longer than the

survey scale. The non-linear power spectrum is taken at z = 0.195 with oy fixed
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Table 2.2 Range of the uniform priors of the RSD fitting parameters. For
growth rate, the usual constraint from RSD is fog, but we fixr og =
0.81 in this analysis.

Parameter Range

bgal [0 1 2. 5]
b12 [0 1 2. 5]
f [0, ]

o, [km/s]  [100,800]
0. [km/s] [100 800]
Ia [ Y ]
‘[C [ ) ]

to the mock fiducial value 0.81. Although the shape of the non-linear power
spectrum at large k is sensitive to og, this dependence is weak for the analysis
here. Thus, we treat og as an overall factor completely degenerate with the linear
biases. Fitting the auto- and cross-correlations together, there are in total seven
free parameters, namely bga, b12, f, 04, 0¢, I, and I.. Due to the bin size in
the 2D correlation function, the model is insensitive to dispersions smaller than
100kms™!. For the GAMA data, we run MCMC at the optimum minimum scale
for each subsample determined from mocks with uniform priors. The prior range
is shown in Table 2.2l

2.7.1 Fitting Mocks

We test the model on each mock realisation using w,, &, and &, shown in Fig. [2.10]
For each subsample, the galaxy auto-correlation (shown in the rows labeled with
‘Auto’ ) and the group-galaxy cross-correlation (shown in the rows labeled with
‘Cross’) are fitted simultaneously. For example, on the third row of Fig. the
data points in each column show the same measured red galaxy auto-correlation,
but the best-fit models can be sightly different from simultaneously fitting the
cross-correlation in each column in the fourth row. The model (dashed lines)
provides a good fit for the mocks in most cases, and except for those cases
involving red galaxies, the fits are reasonable even down to r < rp;,. Fig.
shows the constraints on the model parameters by taking the mean and the
standard deviation of the best-fit parameters from the mocks. The All sample
is shown in black circles, subsamples using LM, MM, and HM groups are shown
in square, triangle, and star markers, and subsamples involving red and blue

galaxies are shown in their respective colours. We also include the contaminated
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Figure 2.10 The projected correlation wy, the monopole &, and the quadrupole
& of the seven sub-samples All, LMred, MMred, HMred, LMblue,
MMblue, HMblue measured from GAMA and the mean of the
mocks, as well as their best-fit models. The wy, &o, &2 are multiplied
by powers of r to amplify the dynamics on large scales. For each
of the seven sub-samples, we show both the galaxy auto-correlation
and the cross-correlation, as used in our fitting method. GAMA
data are shown in filled circles with error bars, and the mock means
are shown in open circles. The solid and dashed lines are best-fit
models to the data and the mean of the mocks using the linear
model. All sub-samples involving blue galazies, as well as the All
case, are fitted with Ty, = 10 =1 Mpc, the LMred case fitted with
rmin = 15~ Mpc, and all other cases with rmin = 20 R~ Mpc.
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red galaxy subsample here, labelled by ‘Red*’. The specific values of the best-fit

parameters and its 1o errors are summarised in Tab. [2.3]

The top panel of Fig. shows the constraints on the growth rate f. The
fiducial value with +10% error is marked in the grey band. As expected, in all
cases the model recovers the fiducial growth rate at 7y, > 15h~1 Mpc, but the
fitting including small scales (ryy, < 5h~' Mpc) are significantly biased. The
overall growth rate seems to be under-estimated by about 5 — 10%, but this is
much smaller than the statistical error. This means that the linear assumption
is recovered at these scales and the measurement of f is consistent from different
biased tracers. Comparison between the red and blue galaxy subsamples reveals
that cross-correlation with blue galaxies recovers the growth factor f better
than red galaxies. For the blue-galaxy cases, f is over-estimated at smallest
Tmin = 2R~ Mpc, but with rpm > 10271 Mpec it is measured within 10% of the
fiducial value. For the MM-Red and HMred cases, the measured f is only within
10% of the fiducial value at 7y, = 20 h~' Mpc, while for the LM-Red case this
is rmin = 15h ' Mpc. The contaminated red galaxy sample gives less biased
measurements of f at small scales, and converges with the pure red sample at
Tmin > 15h~!Mpc. This confirms that blue galaxies show smaller non-linearity

compared to red galaxies.

The second and the third panels show the group and galaxy biases, by, and
bgai. We see that this is determined consistently between different subsamples at
Tmin > 101 Mpec. As observed in the 2D correlation functions, the group bias
increases with higher group masses, and the red galaxies have a larger galaxy bias
compared to the blue galaxies. The consistency between different subsamples and
the convergence of the bias values as a function of r;, at sufficiently large scales
indicate that linear bias model is a good approximation. The contaminated red
galaxy sample shows a smaller galaxy bias here, due to the mixing with blue
galaxies. The last two panels show the velocity dispersion, which determines the
extent of the FOG convolution, in the auto- and cross-correlations. The results

! consistent across different

indicate an average velocity dispersion of ~ 300 kms™
subsamples. There is a slight hint that o, is larger for the red galaxies compared to
the blue galaxies, but it is not statistically significant. Beyond rpy, = 10 h~! Mpc,
the uncertainty in the measured o, and o, increases rapidly as the model becomes

insensitive to the dispersion on large scales.

From this test, we choose to adopt rni, = 10h~!Mpc for all subsamples

involving blue galaxies and the All case, rpym = 15h71 Mpc for LM-Red, and
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Figure 2.11 The constraints on model parameters from fitting the mocks as a
function of the minimum fitting scale, Tmin for all galaxies and
groups, and for the siz subsamples split by galaxy colours and
group masses. In addition, we also include the contaminated red
subsample indicated by ‘Red*’. The values and error bars are from
the means and standard deviations of the 25 mocks. Data points at
each rmin are displaced by £0.3 h~! Mpc for clarity. The top panel
shows the growth rate parameter, f, with the grey band marking
+10% regions around the fiducial value, f = 0.593. The middle
panel shows the group and galazy biases. The bottom panel shows
the velocity dispersion for the auto- and cross-correlations.
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Tmin = 20 h~1 Mpc for MM-Red and HM-Red respectively for this linear model.
This choice is also taken in the best-fit models shown in Fig. [2.11]

2.7.2 Fitting GAMA

We then fit the data w,, &, and & for the auto- and cross-correlation
simultaneously, shown in Fig. [2.10. The best-fit models are shown in solid
lines. In this case, we quote the best-fit parameters from r.;, based on the
previous mock results and we use the mock covariance matrices. In all cases
except those with red galaxies, the model provides reasonable fit even down to
scales smaller than r,;,. With the red subsamples, the model does not capture
the small scale behaviour of the quadrupole well in particular. In the LM cases,
the best-fit models give smaller galaxy biases in the red and blue subsamples
compared to MM and HM cases. Fig. show the marginalised posteriors
for f, bgar, and by from MCMC sampling for the All, red-galaxy, and blue-galaxy
cases respectively. There is a degeneracy between f and by, because the RSD
constraints the distortion parameter = f/b. In Fig. and , adding the
galaxy auto-correlations breaks the degeneracy between the group and galaxy
biases, and they provide distinction constraints on the b5 for groups in each

mass bin.

Fig. shows the the best-fit (filled markers) and mean-fit (open markers)
parameters from MCMC fitting the GAMA data, taken at the optimal r;, for
each subsample. The specific parameter values for the best-fit case can be found
in Tab.[2.4 The symbols and colours are the as in Fig.[2.11] The error bars on the
best-fit parameters are taken from the std of the 26 mocks, whereas the error bars
on the mean-fit parameters are the 1o deviation estimated from the marginalised
posterior from MCMC. The two sets of constraints show good consistency. The
growth rate is measured consistently across the six subsamples. The All case gives
a constraint fog = 0.25 4+ 0.15. The constraint from Planck with 68% limit from
TT, TE, EE+lowE+lensing is fog = 0.47 4+ 0.01 at the redshift z = 0.195 [227].
The mean value is lower than the Planck value, possibly due to the flattening
of the quadrupoles at scales » > 15h~! Mpc, as shown in Fig. , but the
difference between the measurements is only 1.40. Therefore, they are consistent

measurements.

The middle panels in Fig. [2.15] show the measured galaxy and group biases.

For galaxy biases, the LM subsamples give a lower mean bias compared to the
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The values are at

Table 2.3 Mock measurements using the linear RSD model.

smallest rmin which gives f below 10% bias compared to the fiducial

value.
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Figure 2.12 The posterior distributions of the growth rate and biases of
the cross-correlation with all galazies and all groups in GAMA,
marginalised over other parameters.
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Figure 2.13 Same as Fig. but for blue galaxies cross-correlating groups in
the three mass bins.

N LMred
I MMred
I HMred
014 018 112 116 0?8 1.2 1.6 0.5 1.0 1.5 2.0
f bgal b12

Figure 2.14 Same as Fig. but for red galazies cross-correlating groups in
the three mass bins.
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other two mass bins. Combining the measurements from different groups bins
assuming independency, we find bga = 1.32 £ 0.10 for the red-galaxy subsample
and bg, = 1.04 & 0.04 for the blue-galaxy subsample. The mean galaxy bias
is bga1 = 1.33 £ 0.08, closer to the red galaxy bias. Combining the red and
blue subsamples, the group biases for LM, MM, and HM bins are by, = 1.27 £
0.10, 1.57 £ 0.08, 2.02 £ 0.15 respectively. The mean group bias is measured
to be bgp = 1.53 £0.09. The galaxy biases for the red and blue galaxies are
consistent with other measurements using GAMA (e.g. [31]). The lower panels
show the measured velocity dispersions for the auto- and cross-correlations. The
results seem to suggest a consistent velocity dispersions between the auto- and
cross-correlations, and between different group masses, but there is a preference
of larger velocity dispersion in the red-galaxy subsamples than the blue ones.
Combing the measurements from o, with different mass bins, we find o, = 462 +
99kms™!, 217 £ 45kms~! for the red and blue subsamples respectively. The
mean velocity dispersion for the whole sample is 0. = 245 & 76kms~!. These
velocities are also in good consistency with other measurements from GAMA
(e.g. [31), I70]).

Group bias from the Halo Model

Having a proxy for the halo mass for each group, we attempt to compute the
group bias in each mass bin. We compute this based on halo model mentioned
in Section [1.3.4] For a given halo mass M, we compute the corresponding peak
height v as defined in Eq. using the linear power spectrum at z = 0.195.
The bias is then computed by

1dndG
bv)=1- 5 diny’ (2.37)

where §, = 1.686, G = —dF(v)/dInv, and we adopt the fitting formula for F'(v)
in [205]:
F(v) = (1 4+ a’)exp(—cr?) (2.38)

with (a, b, c) = (1.529,0.704,0.412). The group bias in a stellar mass bin is then

computed by
N

berp = > _ F(M}) (M) /M, Alog(M), (2.39)

)
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Figure 2.15 Parameters fitting from the actual GAMA data at optimal

minimum fitting scales for each sub-sample. The filled points show
best-fit values with error bars from the scatter of 25 mocks. The
unfilled points show the mean fit and 1o deviation from MCMC
sampling marginalising over other parameters. The black line in
the top panel shows the Planck result and the grey band shows
the using the TT, TE, EE+lowE+lensing 68% limits [227] at
z = 0.195.
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The values are at

Table 2.4 GAMA measurements using the linear model.

smallest rmin which gives f below 10% bias compared to the fiducial

value.
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Table 2.5 Group bias for the full sample, and for the LM, MM, and HM
stellar mass bins, computed from the fitting formula given in [205]
and measured from the 2-point correlation functions using the mocks
and the GAMA data. For the mock groups, the halo mass in each
stellar mass bin is based on the arithmetic mean host halo mass of
the member galazies. For the data, the mass-luminosity relation in
[113] is used to compute the group halo mass, and the uncertainty of
this relation is included as a convolution to the halo mass distribution

in each stellar mass bin. The measured values is from combining the
red and blue subsamples in Tab. and [2.4) assuming independency.

Groups by, (predicted) by, (measured)

Mocks All 1.13 1.42 £0.09
LM 0.96 1.204+0.11
MM 1.16 1.46 +0.09
HM 1.70 2.04+0.17
GAMA Al 1.07 1.53 £0.09
LM 0.92 1.27 +0.10
MM 1.11 1.57 £0.08
HM 1.42 2.02+0.15

where f(Mj) is the halo mass distribution in that stellar mass bin, and we take
N logarithmic bins in the corresponding halo mass range with width Alog(M,,).
Different halo mass definitions for groups in the mock catalogue results in biases
differing by < 10%, and we use the arithmetic mean host halo mass here. For
GAMA, we include the uncertainty in the halo mass from the uncertainties in the
parameters M, and a from Eq. [2.24}

Olog M;, = Olog M, + 0q log(Lgrp/L0>7 (240)

where 01,4 1, and o, are given in below Eq. . For each mass bin log M, we
then convolve the number of objects by a Gaussian with oiog 17, . The predicted
and measured group biases (combining the red and blue galaxy subsamples in the
measured case) using mocks and GAMA data are summarised in Table

We see that the predicted group bias are all smaller than the fitted values by
25% — 50%. The predicted bias can match the measured values if the mass is
increased by a factor of 2 — 3.5 from HM to LM bins for mocks, and 3 — 6 for
data. For mocks, if the sum of the halo mass from members in unique host
haloes is used as the group halo mass, then the group bias is increased to bgy, =
1.21,1.03,1.23,1.80 for the All, LM, MM, and HM cases respectively. This is
closer to but still smaller than the measured bias values by about 1—2¢, especially

in the lower stellar mass bins. For data, increasing the dispersion in log Mj by a
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factor of two only increases the bias in each bin by a few per cent. As indicated
by Fig. M, estimated from total luminosity may not represent the true halo
mass of the group. While the true scatter can be much larger, the mean slope
of M, as a function of M} can also be smaller, indicating that at fixed M,, the

mean halo mass can be larger, leading to a larger group bias.

2.8 Conclusion

In this work, we present measurements of the 2D cross-correlation function
&(rp, ) between groups and galaxies using the GAMA data in the redshift range
0.1 < z < 0.3. The groups are found using a FoF algorithm from [290], and are
subdivided into three stellar mass bins (LM: 40%, MM: 50%, and HM: 10%).
We calibrate the corresponding halo mass for the groups using the relation in
[113]. The galaxies are split into red and blue colours using a cut in the g — i vs
z plane. This altogether gives six cross-correlation subsamples. We use the 26
GAMA lightcone mocks from [82] for the purpose of testing the RSD models on
a series of minimum fitting scales r;,, and of constructing Jackknife covariance
matrices to capture the sample variance between the GAMA fields. There are
a few differences between the mocks and the GAMA data, including the mock
mean redshift distribution, the bimodal g — i colour distribution, and the total
stellar mass of the groups. We match them carefully with the data subsamples.
The measured 2D correlation functions show good consistency between the data
and the mocks down to scales rp,, 7 < 15 h~" Mpc. At larger scales, the correlation
functions are noise dominated. The measurements show distinct bias and FOG

features for subsamples involving different galaxy colours and group masses.

The linear RSD model in [184] is adopted for this work with a non-linear power
spectrum generated by HALOFIT [276], 282]. We fit the model to the projected
correlation w, and the multipoles &, &, and include the galaxy auto-correlation
for each cross-correlation subsample to break the degeneracy between the galaxy
and group bias. Applying the model to the mocks with oy fixed to the fiducial
value, we find that the growth rate f is recovered with negligible bias compared
to the variance between the mocks at minimum fitting scales of r;, = 10 —
20 b~ Mpc, depending on the subsample: the blue galaxy subsamples are more
linear, and can be fitted to smaller scales compared to the red galaxy subsamples.
Different subsamples also give consistent galaxy and group biases. The same
model is then applied to the GAMA data, fitted down to the optimal 7, for
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each subsample. We use MCMC sampling to marginalise over the biases, velocity
dispersions, and integral constraints, and recover consistent growth rates from
each subsample. The full sample gives a growth rate of fog = 0.25 £ 0.15 at
mean redshift z = 0.195, consistent with the Planck value of fog = 0.47 4+ 0.01.
Using the halo mass of the groups, we attempt to predict the group bias from
the halo model. However, in both mocks and the data, we find that the bias
is underestimated by 25 — 50%. The discrepancy is partially alleviated in the
mock case by using the sum of the unique halo mass, rather than the arithmetic
mean halo mass of the group members. In data, the discrepancy suggests that
the estimated halo mass from total luminosity and its scatter at fixed stellar mass

is not very reliable.

The linear model adopted in this work is can only provide unbiased fitting results
at relatively large scales, where the signal-to-noise of the GAMA sample is limited.
Thus, an extension of this work will be to apply more sophisticated models, such
as the 1-halo and 2-halo decomposition mentioned in Section [2.2.3] that can
allow unbiased results at smaller scales. In principle, the much higher signal to
noise can lead to a much tighter constraint on fog, and the distinctive small
scale features for different subsamples can also be explored. Currently, another
limiting factor of this work is the relatively small sky coverage of GAMA, leading
to large noise at large pair separation. In the future, however, the same analysis
can be applied to larger datasets, such as the Bright Galaxy Sample in the Dark
Energy Spectroscopic Instrument (DESI) survey [I75], where the linear model

may provide improved constraints on fog from different tracer samples.
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Chapter 3

Cross-correlation of large scale
structures and the CMB

We now turn to another cosmological probe for the growth of structures: the
correlation between large scale structures and the CMB. Photons emitted from the
CMB are perturbed by the presence of gravitational potentials sourced by matter,
imprinting secondary features on the CMB that correlate with the foreground
matter overdensity. By measuring the density field in the local Universe through
galaxy surveys, one can pull out this correlation signal via cross-correlation or
stacking. Tomographic analysis can demonstrate further the evolution of this
correlation with the growth of structure, providing constraints on the cosmological
parameters (2, and og. I will present in Chapter [f| and [6] the measurements of
this signal using the DESI Legacy Survey galaxies and the Planck 2018 CMB
maps. Before I talk about the practical details of the survey and measurements,

I will go through the theoretical background of these correlations in this Chapter.

The gravitational perturbations to the photon trajectory is discussed in Sec-
tion . The temporal effect (Section [3.1.1)) is changes in the peak and troughs
of the CMB temperature fluctuations on relatively large scales, referred to as
the Integrated Sachs-Wolfe (ISW) effect. The spatial effect (Section is
weak gravitational lensing, which distorts the CMB fluctuations and induces
non-Gaussianity that can be used to reconstruct the CMB lensing convergence
map. Then, in Section I will show how these effects can be formulated into
predicting the angular cross-correlation in spherical harmonic space, Cy, between
galaxy fields and the CMB. This serves as the theory section for Chapter [5
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In Section [3.3] T will discuss how the ISW signal can be predicted from the
lensing convergence field in linear theory, and from the non-linear evolution of
the matter density field. This serves as the theory section for Chapter [6] where
we use a mock catalogue to predict the stacked CMB lensing and ISW signals

from superstructures.

3.1 Perturbation to the photon geodesic

In the Newtonian gauge, the perturbed FRW metric is given by [189]:
ds® = —(1 + 20)dt* + a(t)*(1 — 2®)6;;dx"da?, (3.1)

where ¥ <« 1 and & < 1 are two scalar potentials. The potential ® satisfies
the Poisson equation (Eq. , whereas the gradient of the other potential,
VWU, corresponds to the acceleration of non-relativistic particles. As we shall see
below, the deflection of relativistic particles always comes with the combination
U 4+ &. In the absence of anisotropic stress, the off-diagonal terms in T*”, the
two potentials are equal, i.e. ® = W. This is a result of the perturbed Einstein
equation (see e.g. [I88]). In most cases, the anisotropic stress is negligible, but

it can arise in, e.g. neutrino free-streaming [171].
The photon geodesic equation is given by

A2t dx? dz°
s —o. 3.2
2 T i (3:2)

The goal is to obtain the first order perturbations arising from these potentials.
To do so, we first look at the unperturbed geodesic equation. Let the photon four
momentum be P* = dz*/d\. It satisfies P*P, = 0, so that

P° = q|P|. (3.3)

The time component of Eq. [3.2]is

dP°

da,

This can be rewritten as dP°/d\ + dIna/d\(P°) = 0, which gives the solution
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PY « 1/a. Therefore, choosing the normalisation, we have

Pt = (1/a,1/a%e"), Yie' =1. (3.5)

3.1.1 Temporal part: the ISW effect

We first look at the perturbation in the temporal component of Eq. [3.2] For a
more thorough discussion of the ISW effect and its derivation , see the notes by
[198], where the following derivation is based on. It is more convenient to work
with conformal time, where k° = 7, and the dot is the derivative with respect to

the affine parameter.

We start with Eq. with conformal time dr = dt/a:
ds® = a(7)*[— (1 + 20)dr? + (1 — 2®)6;;dz"da’]. (3.6)

We shall work with the scaled metric g,, = g,,,/a® to simplify the computation.
Since the two metrics are conformal, the photon geodesic is the same. Notice
that the affine parameter in g, is however not affine in g,,. We first find the

affine parameter in g,,. The following manipulations can be found in e.g. [49].

First, one can show that the Christoffel symbols for the two metrics are linked

via
T =14 + 58 (3.7)
where
S = %[558,,@ +01d,a — §y,0"al. (3.8)

Let p and A be the affine parameters of g,, and g, respectively. The affine

parameters satisfy the geodesic equation

dz? dzt
¥ v (—dp ) =0, (3.9)
dx? -~ dxt
e () < o0

where V is the covariant derivative. The two parameters can be linked by taking
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the derivative with respect to A in g,,:

dx” dxt dx* dx¥ dp dxt d dp

i v - (2 = (2P 3.11

I (dA) i ax (dA) dx dn (d>\> (3:11)
where the second step used Eq. Now substituting Eq. 3.7 into the left hand

side of the above equation, it becomes

dz? dxt . dxP A dxP
- w w
N [8,, < N ) +T + 5 } , (3.12)

The first two terms combine to give zero according to Eq. |3.10] leaving

(3.13)

~odx¥ dx? dx* d dp
i — =———In(—).
PdXN dA d\ d\ d\

Substituting Eq. 3.8 one finds that the third term in Eq. [3.8 drops out because
of the null geodesic, getting:

dp
2lna =In | — 14
na n(d)\) +c, (3.14)

where ¢ is a constant. Choosing it to be one, we have that dp = a*d\.

Let the photon four-momentum in the conformal metric g,, be kt = dat Jd.
Therefore, k* = I /a*. The photon geodesic in Eq. [3.10|is given by
die

-+ I ki = 0. (3.15)

The ISW effect concerns the perturbed photon energy, i.e., the = 0 term:

dk° . - Ny

T 0V (K92 + 20,0 K°k" — 0,® (k')? = 0. (3.16)
Now let kt = IACSL + 8k*. Since the potentials are of first order, at zeroth order,
1%6‘ is constant, i.e., (1,e;), where e; is a unit vector. We have chosen such that

d\ = dr. At first order, one can integrate Eq. [3.16, We recognise that

— = }",V, 3.17
) (3.17)

so that Eq. at first order becomes

dok® AV
T 2a — (0, V¥ 4 0, 9). (3.18)
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Let the emission time be 7, and receive time be 7y, the perturbed photon energy
is

0k (1) — kO (1) = —2[W(19) — W(7,)] + /70(87\11 + 0-P) dr. (3.19)

Thus, the perturbed photon four-momentum is k* = a=2(1 + 512:0, e;). Indeed,
one would expect that, in an expanding universe, the photon energy decreases as

a~2. The photon energy measured by the observer moving at velocity u*, is
E = g k'u”. (3.20)

Since the background fluid speed is small, the velocity vector to first order is
ut =1/a(l — ¥, v;), with v; a first order quantity, such that g, u*u” = —1. This

gives the measured energy to first order,
1 2¢1.0
E=——14Y+adk"—v-e). (3.21)
a

The measured photon energy decreases with a~!, which is related to the redshift.
The redshift is given by the ratio of energy emitted and received, i.e.,1 + z, =
E./Ey = (1/a.)(1 + A), where

A=—a®k|" =" +v-e|”. (3.22)

Finally, the temperature is proportional to 1 + z, giving dInT = dIn(1 + z).

Therefore,
oT oT 1 vee|® 1 [T
- . = ) + C—Q[\I/(TO) — U(1)] + i 2 /T (0, ¥ + 0, D) dr. (3.23)

In the above equation, we have restored the factors of speed of light, ¢. The
first term refers to the primordial temperature fluctuation at last scattering. The
second term refers to the gravitational redshift of the photon at today and last
scattering. The third term shows the Doppler effect of the observer. The last
term is the Integrated Sachs-Wolfe effect, depending on the time evolution of the
two potentials, and becomes significant as dark energy becomes dominant. In
linear perturbation theory, the potentials are related to the density fluctuation

directly through the Poisson equation

V2® = 47Gpd/a. (3.24)
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It is therefore correlated with the matter distribution at late times.

3.1.2 Spatial part: the CMB lensing convergence x

The aim here is to compute the spatial perturbation of the photon geodesic in
the presence of ¥ and ®. To put the result in a form which corresponds to the
observable, it is convenient to change the coordinate system to ' = r(0y,6,,1) =
7"5), where the z direction points towards the source located far away, and the x
and y axis are aligned with the lens and source plane. We use the small angle
approximation here. In this case, we have dt = —adr, the minus sign since the
origin is set to today. In the analysis, we would like to express the variable in
terms of the vector 5), which tells us how much the 2D image of the source is

changed by the perturbation.

The photon momentum is given by P* = dx*/d\, where X is the affine parameter;
it satisfies P#P, = 0. Let the spatial part be p* = ¢;; P*P7, then

—(P°)?(1+2¥) +p* =0, (3.25)

and from Eq[3.5 we know that p o< 1/a. The spatial part of Eq. [3.2] to first order

1S

Pt (dt\? . odtdr, dad dat
_ 2 - [ ", —— =90 3.26
e o (dk) NN AN N (3:26)
where the Christoffel symbols are:
T, =a 20, (3.27)
Ty, = 01(H — @) (3.28)
I = 6"00m® — 6,0;® — 5.0, . (3.29)

We rewrite Eq. terms of derivatives with respect to r. We can write d/d\ =
(dt/d\)(dr/dt)d/dr. In general we need to consider d/d\ = 0/0z*dx*/d\, but in
fact there is only one variable here, which is r because we have 6° = 6(r). Notice
that 6 are very small, so all terms containing the product of #° and the potentials
drop out. The last term is only contributes with j = £ = 3. Combining with
Eq. [3.25] and with some cancellations, we get

d*(r6")

= —690;(V + ®). (3.30)
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One can now integrate the equation twice to get the source location, 6, in terms

of the imaged location, 0¢

r

0. =0, — 5—/ dr/ dr'0;(U + ). (3.31)
0 0

Reverse the integral order and change the limits of the 7’ integral to [r”, 7], and

integrate over this variable to get the expression:

"

A / e 0;(¥ + ®). (3.32)
0
Define the distortion matrix as
80@
ij = 061 =1+&; (3.33)

The matrix &;; is symmetric given the expression, and the three degrees of freedom

2 L (3.34)
Y2 —K+tM

where the diagonal part proportional to the identity is the convergence or

can be written as

magnification, x, which changes the size of the image. The ~; are referred to
as shear, and they change the shape of the image. Therefore we get
1 1 [" r"(r —r"
R = ——(511 + 622) = —/ Ch’//ng(\If + @)Q, (335)
2 2 Jo r
where the extra r” comes from converting the derivative of # to the coordinate

derivative. The convergence is linked to the lensing potential.

In terms of CMB lensing, the source is at the last scattering surface, r = rg.
The lensing potential, v, is defined such that the distorted displacement is given
by its gradient, Af = V1. From Eq. we can write

(T s
W) = /0 L ) (3.36)

In spherical harmonic space, then, one can write

K(R) = o Yem (1), (3.37)
Im
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and similarly for ¢. Recording that r*V?Y,,, = —{({ + 1)Ys,, the lensing

convergence and lensing potential thus has a simple relation

- %w 1), (3.38)

3.2 Angular cross-correlation C; between tracers
and CMB

To measure the lensing and ISW signals associated with a galaxy sample, the
galaxy auto-correlations (gg) and the cross-correlations with CMB lensing (gr)
and with CMB temperature (¢g7") are employed. The following theoretical
predictions for these quantities in the ACDM model are presented in spherical
harmonic space and follow the notation in Peacock & Bilicki [207]. In the rest of

this Chapter, we will assume ¥ = &,

The galaxy harmonic auto-correlation in the Limber—Kaiser approximation [138|
165] is given by
0+ 1)

T g T 2A2(7. 2 M
g = /bA(k_e/r,z)p(z) ©ra, (3.39)

where b is galaxy bias, A%(k,z) is the dimensionless matter power spectrum
at redshift z (A%(k,z) = k3Pss(k,2)/27%), and p(z) is the redshift probability
distribution function: [ p(z)dz = 1. Note that the corresponding equation, (7),
in [207] is misprinted and lacks the factor ¢(¢ + 1)/2m. For the case of galaxy
cross-correlations between different tomographic slices, p?(z) — pi(2)pa(2) in
Eq. [3.39] where pi(z) and ps(z) are the redshift probability distributions of the
two slices. There are also different biases for the two slices, b*> — b1bs, although
for tomographic slices with a single sample selection, the bias is purely a function
of redshift. Note that the above theory ignores distortions from peculiar velocities
and treats redshift as an exact radial coordinate. This would not be correct for
shells with width ~ 10 A~ Mpc, but is negligible for the much thicker shells that

we consider [199].

Similarly, the theoretical galaxy-lensing convergence cross power spectrum is
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computed by

sz; ey - 7 /bﬁz(’f = /1, z) p(2) K (r)rdz, (3.40)

where the lensing kernel is given by

_ 3H§Qy, (s — 1)

K(r)= A1
(r) 2c2a rLS (3.41)
Finally, the galaxy ISW cross-correlation is given by
((0+1) 27
" = Tows / bAZ (k= O/r,2) /kp(z)ade.  (3.42)

Agé(k,z) is the dimensionless matter-® cross-power spectrum. In linear the-
ory, d(t,x) = D(t)0(0,x). In Fourier space, Eq. becomes —k*® =
3/2HZQ,,D(t)d(k). Therefore, the time derivative of the potential can be

expressed as
o BHA (1~ f,(2)
2k? a
where f, = dlnD/dIna ~ Q%% (2) is the growth rate [e.g. [5, 59, 93| 124, 225].
Thus,

D(2)8(k), (3.43)

BHEQ H(2) (1 — f4(2))

2k2 a
N-body simulations have suggested that small deviations from linear theory for
C’fT occur at ¢ 2 50, and Eq. becomes inaccurate [38, 39, 43|, 57, 261, 277].
This can be alleviated by using the full nonlinear matter power spectrum in
Eq.[3.44] e.g. HALOFIT, while still assuming a linear coupling between the density
and velocity fields [39].

A2 (k,z) = A*(k, 2). (3.44)

The above expressions for angular power spectra assume spatial flatness. The
Limber-Kaiser approximation is inaccurate at large scales [e.g. 125 297]. The
agreement between the small angle approximation and the exact computation is
about 15% in power at ¢ = 10, but quickly improving to < 1% for ¢ > 30. In
practice these deviations are statistically negligible, as we exclude the largest-
scale modes with ¢ < 10 from our fitting, to allow for possible complications from
combining several surveys in the sky (see Chapter [4]). Because of cosmic variance,
those very large-scale perturbations contain little statistical power. Note also that
in principle the bias parameter may depend on scale, although it should tend to

a constant in the linear limit as & — 0; in practice we do allow for this scale
dependence (see Section [5.1]).
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In summary, combinations of Eqs [3.39, [3.40] & [3.42] can be used to predict

measurements from observations, and should in principle allow us to determine
both cosmological parameters and nuisance parameters such as galaxy bias and
uncertainties in the true redshift distribution of the galaxy samples. Most
directly, one can determine the amplitudes of the CMB lensing and ISW signals
associated with the late-time LSS galaxies, relative to the prediction of a fiducial

cosmological model.

3.3 Predicting stacked signal

Another way to measure these imprints of large scale structures on the CMB sky is
via stacking: the CMB maps are stacked at the locations of selected density peaks
and troughs. This is similar to measuring the angular cross-correlation function
in configuration space, w(f). I will use this stacking technique in Chapter [6] to
study the CMB lensing and ISW signals around superstructures in the DESI
Legacy Survey. In this case, the modelling of this signal is non-trivial, because
we will need to model small scales and targeting on specific structures means we
cannot directly use the full distribution of §. I will discuss below two possible
ways one can model this effect. Due to the complication, it is also common to use

mock galaxy samples and simulated CMB maps to predict the measured signals.

3.3.1 Non-linear density evolution

One can use the stacked density profile at the peaks or troughs to predict the
signal. This method applies to thin tomographic bins or 3D voids/clusters.
Taking voids as an example, the void profile is found by the void-galaxy cross-
correlation function, and the RSD effect can be alleviated by integrating along
the line of sight. Spherical symmetry is a good approximation for the average
void profile. Thus, one can use the inverse Abel transformation to obtain the
spherically symmetric 3D void profile, d,(r, z) centred at the mean redshift z of
the galaxy sample. One can then use non-linear density evolution and spherical
collapse to find the full evolution of the density profile. This can be done by
numerically solving (e.g. see Eq.11 in [295])

Qo (1)
2

1 3
y'+ (— + §QA(t)> Y+

5 (v’ —1)y=0, (3.45)
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where the prime denotes derivative with respect to Ina, and y is related to  via

pm(t) = P (t)y(t) . (3.46)

Alternatively, the mapping between linear and non-linear density can be approx-
imated, e.g. 1+ 0y, = (1 — D(¢)0.,/6.) % from Eq.B1 in [I54]. Then the density
can be evolved to different redshifts for each r. This density profile then allows

one to straightforwardly compute the lensing convergence by integrating along
the line of sight with the lensing kernel (Eq. 3.41]).

For the ISW signal, one needs to compute the time derivative of the potential
®. The corresponding spherically symmetric gravitational field ®(r, z) for the 3D
density fluctuation can computed for each redshift z by integrating the Poisson

equation:

2
P(r,z) = SHQ [ /(57” 2)r'%dr’ +/ a(r', 2)r ’dr] (3.47)

The stacked ISW temperature at a given angular position n is then obtained

through this integral
AT(n) = —TO— —1 (n,2)dz, (3.48)

where 0®/0z|ap(n, 2) is a 2D slice at redshift z of the full 3D potential 0®/0z
generated at the void centre. In this way, the derivative of ® is projected in space

and integrated in time.

3.3.2 Quasi-linear approach

Alternatively, one can also link the two observables — lensing and ISW effects —
by making the assumption that density and velocity are linearly coupled. This
should be true on linear scales where the ISW effect is most significant. Given
the lensing convergence x map, the lensing potential 1) map can be computed in
spherical harmonic space using Eq. [3.38] The lensing potential is related to the

3D gravitational potential ¢ via

V(i) = —= / S T 6, r) dr, (3.49)

c? rLeT
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where rpg is the comoving distance to the CMB. The ISW signal is related to the

time derivative of the gravitational potential via

9 )
AT(R) = Ty [ ®(a,t)dt. (3.50)

From the Poisson equation V2® = (3/2) H3Q),,0/a, it follows that in linear theory,
V2d = —H(1 — f)V2®. Notice that the ® here is not fully linear — because the
3D potential & can have non-linear contributions, and the ‘linear’ assumption

here is only between the density and velocity coupling.

Given a thin shell centred around redshift zy with edges [z9 — Az, zo + Az], one

can make the approximations

A 215 —19 ¢ / oths
n,zp) & —— d(n,z)dz, 3.51
V(A 20) c risro H(zo) 20—Az (8. 2) ( )
2 z0+Az
AT (3, 20) ~ ~Ty Sa(z0) [1 - f(z0)] / (i, 2) d. (3.52)
z0—Az

Combining these two equations we have

rrsro  H(zo)

AT(n, z9) =~ Toa(zo) [1 — f(z0)] P(n). (3.53)

s —To C

This approach allows us to directly construct quasi-linear ISW signals from
lensing potentials. We will check the validity of this method in Chapter [6] using

simulations.
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Chapter 4

Galaxy data from the DESI Legacy

Imaging Survey

A major part of this thesis concerns the study of the correlation between large
scale structures and the CMB. The dataset used for mapping out the large
scale structures is the DESI Legacy Imaging Survey. Purposed for the Dark
Energy Spectroscopic Instrument (DESI) target selection, this public imaging
survey covers a vast sky area in both the north and south hemisphere, and
also reaches a substantial depth, down to g = 24.0, »r = 23.4, and z = 22.5.
It is much deeper than alternative large-area imaging such as SDSS or Pan-
STARRS, thus is invaluable for tomographic cross-correlation studies. However,
as we shall see, some efforts are required to bring the dataset to a high
quality that can be used for cosmological studies. This chapter is devoted to
the procedure towards constructing reliable tomographic galaxy density maps.
These procedures include various survey selections, systematic corrections, and
photometric redshift assignments. Having set up the stage in this chapter, we will

discuss the galaxy clustering and their CMB correlations in detail in Chapter [5

4.1 The DESI Legacy Imaging Survey

Altogether covering an area of 17,739 deg?, the DESI Legacy Imaging Survey [68]
is divided around Dec = 33° in J2000 coordinates, a combination of four different

projects observed using three different instruments on three different telescopes,
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namely, DECaLs, BASS, and MzLS.

DECaLS The Dark Energy Camera Legacy Survey (DECaLS) is observed using
the Dark Energy Camera (DECam; [87]) based on the 4m Blanco telescope at
the Cerro Tololo Inter-American Observatory, Chile. DECam has high sensitivity
in the wavelength range of 400 — 1000nm, which is optimal in obtaining the
photometry in grz bands. The overall survey area is about 9000 deg?, covering
regions with Dec < 32° in the North Galactic Cap (NGC) and and Dec < 34°
in the South Galactic Cap (SGC). Part of the data is directly adopted from the
Dark Energy Survey (DES; [287]), which covers about 5000 deg? area in the SGC.

BASS The Beijing-Arizona Sky Survey (BASS; [316]) is observed by the 90Prime
camera [304] at the prime focus of the Bok 2.3m telescope at Kitt Peak, Arizona.
The survey covers about 5000 deg? in the NGC at Dec > 32°, and supplies the g
and r band photometry matched with DECaLS for the DESI Legacy Survey.

MzLS The Mayall z-band Legacy Survey (MzLS) is observed by the MOSAIC-3
camera [67] at the prime focus of the 4m Mayall telescope at Kitt Peak National
Observatory, Arizona. The imaging covers the same sky area as BASS. The
z-band filter is matched to the DECam filter bandpass.

We use the publicly available Data Release 8E] (DRR) of the DESI Legacy Survey.
The sources are processed and extracted using Tractorﬂ [157], which in general
involves the following procedures. Firstly, the sky is subtracted on each CCD
iteratively, and its PSF is estimated. Then, using several weighted stacks of the
images, sources are detected above a 60-threshold. Finally, the Tractor models
the source with a set of parametric light profiles, producing a catalogue containing
source information such as positions, fluxes, and morphologies. In addition to the
three optical bands grz, for each optically observed source, the Legacy Survey
also include its mid-infrared photometry from the WISE [307] satellite. These
fluxes are centred at 3.4um, 4.6pum, and 12um, namely the Wy, W5, and Wj
bands. The WISE photometry is also measured using the Tractor algorithm
with ‘forced photometry’, i.e., forcing the location and shape of the model, since

WISE has a lower spatial resolution compared to the optical surveys.

'http://legacysurvey.org/dr8/
Zhttps://github.com/dstndstn/tractor
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4.1.1 Galaxy selection

We apply the following selections and corrections to the DESI Legacy Survey

data at the catalogue level.

Firstly, the catalogue contains stars, galaxies, and quasars. For our purpose of
constructing tracers for the large scale structure, we would like to only select
galaxies. A convenient way to do so is by looking at the morphology types of the
source. There are six morphology types fitted by the Tractor algorithm (except

the last one), namely:

1. PSF: point sources;

2. REX: round exponential galaxies with a variable radius;
3. DEV: deVaucouleurs profiles for elliptical galaxies;

4. EXP: exponential profiles for spiral galaxies;

5. SER: Sersic profiles;

6. DUP: Gaia sources that are coincident with an extended source.

The majority of the sources are in the first four morphology types. The point
sources mainly contain stars and quasars. Objects of this type are thus excluded.
This is also confirmed by cross-matching galaxies from spectroscopic surveys to
the DESI Legacy Survey, where only a small fraction of galaxies are identified
as PSF objects. The resultant sources may still contain some stars and quasars.
This can be separated in the colour space. Since we also select objects implicitly
in the three dimensional colour space of g —r, r — 2z, and z — W; via photometric

redshift assignment, the contamination is thus small.

Secondly, we require FLUX_.G|IR|Z|W1> 0, i.e. fluxes in these four bands are
detected. Because of the shallower effective depth of the W5 and W3 bands, we
only make use of Wj. This is to ensure successful determination of photometric
redshifts. Fluxes are corrected using MW_TRANSMISSION G|R|Z|W1 for Galactic
extinction correction. These values are derived from the maps in [254] to account
for the dust absorption near the Galactic Plane. This largely removes the survey
depth dependence as a function of galactic coordinates. However, there are still

residual correlations, which we attempt to remove at the galaxy density map level

in Section

112



The survey does not have a uniform depth over the entire footprint. The main
difference in depth is between the deep DES region and the rest of the survey.
Magnitude cuts are applied with g < 24, r < 22, and W; < 19.5, where all
magnitudes are computed by m = 22.5 — 2.51og,,(flux). The cuts in g and r are
chosen as reasonable completeness limits from inspection of the number counts.
The cut in W further removes faint objects that are not well covered by the
calibration sample. We experimented with imposing a brighter cut, and found
that our main results were essentially unchanged if all limits were made 0.5 mag.
brighter.

Finally, Bitmasksﬂ are used to generate a survey completeness map, with the

following Bits masked:

Bit 0: touches a pixel that is outside the primary region of a brick;

Bit 1: touches a pixel within the locus of a bright star;

Bit 5-7: masks in grz bands;

Bit 11-13: touches a pixel within the locus of a medium bright star, large

galaxy, or globular cluster.

To convert the mask to appropriate resolution for this work, we generate large
number of randoms and bin them into a HEALPIX map [98] with Ngq. = 128,
corresponding to a pixel area of 0.2 deg?. The completeness map is obtained from
the ratio of the number of randoms in each HEALPIX pixel with and without
masking. The map is then upgraded to Ngge = 1024 which is the resolution used
for most of our analyses. Fig. shows the completeness map of the Legacy

Survey footprint.

4.2 Photometric redshifts

One of the key pieces of information needed for interpreting observations of CMB-
galaxy cross-correlations is the redshift distribution of the galaxy sample. A
variety of methods have been developed over many years to estimate either the
redshifts of individual galaxies or the redshift distribution of a galaxy sample

using broad band photometry (see Schmidt et al.|2020 for a review). Generally

3http://legacysurvey.org/dr8/bitmasks
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Compteleness map based on nside=128

0 1

Figure 4.1 The completeness map of the DESI Legacy Survey. The higher
intensity denotes regions with higher completeness.

photo-z estimates are either template based (e.g. LEPHARE |Arnouts et al.
1999; BPZ Benitez 2000; EAZY |Brammer et al. 2008) or data-driven methods
(e.g. TPZ |Carrasco Kind & Brunner| 2013; SKYNET Graff et al|2014; GPz
Almosallam et al.|[2016; ANNZ2 [Sadeh et al.[2016; METAPHOR |Cavuoti et al.
2017; DELIGHT |Leistedt & Hogg 2017; CMN |Graham et al|[2018; CHIPPR
Malz & Hogg||2020) . There have been several attempts to compare the accuracy
and precision of various photometric redshift methods [34, 120, 235, 249] with no

strong winner.

Our approach is direct and empirical, based on using observed spectroscopy to
assign a redshift to a given location in multi-colour space. In parallel with this
work, a public catalogue of photometric redshifts for the Legacy Survey was
made available by Zhou et al. [314]; Z20 hereafter. Although they used similar
spectroscopic calibration samples, their approach differs somewhat from ours,
being based on machine learning. The advantage of this is that we are able to
look in detail at the sensitivity of our results to the properties of the photometric
redshifts.
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4.2.1 Spectroscopic calibration samples

We use a number of spectroscopic surveys that overlap with the DESI Legacy
Survey footprint to calibrate photometric redshifts. These surveys and their

details are listed below.

GAMA DR2 The Galaxy and And Mass Assembly (GAMA) survey [168§] is
a spectroscopic survey conducted by the Anglo-Australian Telescope, down to
r < 19.8 mag over a sky area of ~ 286deg®. We select samples with z > 0.01
and redshift quality NQ> 3. The GAMA sample has been rejection sampled to
remove the dip in density around z = 0.23; this is known to represent a rare LSS

fluctuation, which we do not wish to imprint on our photo-z estimates.

BOSS DR12 The Baryon Oscillation Spectroscopic Survey (BOSS) [§] is part
of SDSS-III. The main sample consists of LOWZ (z < 0.4) and CMASS (0.4 <
z < 0.7) galaxy samples. The LOWZ sample has a set of colour-magnitude cuts
that are similar to Luminous Red Galaxies (LRG), whereas the CMASS sample
is selected with a bluer extension. We remove very low redshift samples with

z > 0.01.

eBOSS DR16 The extended BOSS survey [0] consists of three target classes:
LRG, ELG (Emission Line Galaxies), and QSO (Quasars). Since we aim to
remove quasars in our selected catalogue, we only use the LRG and ELG sample
for calibration. The LRG sample covers a mean redshift of 0.7, whereas the ELG

sample covers 0.7 < z < 1.1. We remove very low redshift samples with z > 0.01.

VIPERS DR2 The VIMOS Public Extragalactic Redshift Survey [260] is a
spectroscopic survey conducted by the Very Large Telescope (VLT) at the
European Southern Observatory (ESO). The survey covers an overall area of
~ 23.5deg?, with a redshift overage of 0.5 < z < 1.2, and a magnitude limit of
1 < 22.5. We select sources with z > 0.01, zf1g> 3, and classFlg> 0.

DEEP2 DR2 The DEEP2 Redshift Survey [196] is a spectroscopic survey
conducted by the DEIMOS spectrograph on the Keck II telescope. The survey
has a limiting magnitude of R,p = 24.1, with redshifts extending to 1.4. We
select sources with z > 0.01 and flag ZQUALITY> 3. This survey is useful in
covering the high redshift tail of the DESI Legacy Survey sample.

In addition, we also include two photometric surveys for their highly accurate

photometric redshifts.
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COSMOS The Cosmic Evolution Survey [130] is a deep, wide area, multi-
wavelength survey. We use the COSMOS2015 photo-z catalogue [I53], which has
an accuracy of 0.007 and less than 0.5% catastrophic failures. Since COSMOS is
much deeper than the DESI Legacy Survey, we choose sources with r MAG_APER2
< 23 to match with the DECaLS sample. This is another survey which we use

to cover the high redshift tail of our selected galaxy sample.

DESY1A1l redMaGiC The Dark Energy Survey [47] is conducted using
DECam mounted at the Blanco 4m telescope. We use the Y1 redMaGiC
Catalogue, consisting of LRG samples in the photometric redshift range 0.15 <
z < 0.9. The photometric redshift has an uncertainty of 0.017(1 + z). We use

this sample as a ‘space filler’ as will be explained below.

Altogether, the calibration sample contains 1.26 x 10° galaxies, roughly covering
the redshift range 0 < 2z < 1. The majority of these datasets overlap with
DECaLS, and galaxies in the calibration data sets are matched with DECals
objects based on their nearest neighbours using the python routine cKDTree

within a distance of 0.5°.

4.2.2 Photo-z assignment in multi-dimensional colour space

The redshifts from the original calibration samples will be referred to as
‘spectroscopic’ or ‘true’ from this point onward, in order to make a distinction
with the inferred photometric redshifts. All calibration samples except DESY1A1
redMaGiC [47] are binned in 3-dimensional grids of g —r, r — z, and z — W} with
a pixel width of about 0.03. The range of the colours are: —0.5 < g —r < 2.5,
—2<r—z<3,and —2 < z—W; < 4. Pixels containing more than 5 objects from
the calibration samples are assigned the mean redshift of these objects. The DES
sample is processed in the same way to fill out pixels that are not calibrated in this
initial pass. We then apply this calibration to the full Legacy Survey: objects
that fall in pixels that lack a redshift calibration are excluded, thus selecting
objects that occupy the same colour space as our calibration sample. The assigned
photometric redshift is the mean redshift for the colour pixel, plus a random top-
hat dither of £0.005 so that digitisation artefacts are not apparent in the N(z)
distributions. Fig. compares the inferred photometric redshifts with the true
redshifts of all the calibration sample, and Fig. shows the break down for
each sample including both DECaLl.S and BASS+MzLS. The general agreement
is good, with 68% of the sample having photometric redshifts within +0.027 of
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Figure 4.2 Photometric redshifts inferred from g —r, r — z, and z — W1 colours,
versus the spectroscopic redshifts for the calibration samples. The
contour shows the 95% interval. The colour bar indicates the number
of galaxies in each pizel.

their spectroscopic redshifts. However, a small proportion of the objects with true
redshifts 0.2 < z < 0.4 are assigned photometric redshifts between 0.4 < z < 0.6.
The inferred redshifts are also underestimated beyond z = 0.9, as usual: this
estimation method means that (zge.) should be unbiased at given zhot, S0 that

a bias in (zppet) at given zg,ec is inevitable at the extremes of the distribution.

Photometric redshifts are assigned to 78.6% of the selected Legacy Survey objects,
yielding a primary sample of approximately 49 million galaxies (see Table for
details). The lost 21.4% objects will lead to higher shot noise, but this is a
small price to pay for excluding objects where the photometric redshift cannot
be reliably calibrated. The redshift distribution of our final sample is shown in

Fig. [4.4] as solid line histogram.

We can compare this distribution with the corresponding N(z) for the public
Legacy Survey photometric redshifts made available by Z20; this is shown in
Fig. 1.4 as shaded histogram. The two distributions are generally in good
consistency with each other; both distributions show some weak features,
indicating that LSS in the calibrating samples has still propagated into the final

photo-zs to some extent. With broad tomographic bins, we expect that such
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Figure 4.3 The assigned photometric redshift and true redshift for each of the
spectroscopic samples used: GAMA, BOSS (CMASS in blue and
LOWZ in orange), eBOSS (LRG and ELG), VIPERS (field 1 and
4), DEEP2, COSMOS, and DES redMaGiC. All panels show the
calibration with DECaLS, except for the last panel, which shows the
calibration with BASS+MzLS.

structure will be unimportant, but it will be helpful to compare the results
from two rather different photo-z catalogues (see Section . We divide
our samples into four tomographic slices, illustrated by the grey dotted lines
in Fig. [4.4 The redshift ranges are: bin 0: 0 < z < 0.3; bin 1: 0.3 < z < 0.45;
bin 2: 045 < z < 0.6; bin 3: 0.6 < z < 0.8. Our photo-z data and
accompanying software can be accessed at https://gitlab.com/qianjunhang/

desi-legacy-survey-cross—correlations|

4.2.3 Photometric redshift error distribution

For the calibration sample, the distribution of 6z = Zspec — Zphot as a function of

Zphot, can be well modelled by the modified Lorentzian function,

N

MO 0 G wjor e

(4.1)

where x(, o, and a are parameters that control the mean. width, and fall-off of
the distribution, and N is the normalisation such that fj;o L(x)dx = 1. For
each of the tomographic bins, we fit ¢ and a, while zy is fixed to zero. The

results for calibration sample is shown in Fig. [£.5 and their best-fit parameters
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Figure 4.4 Photometric redshift distribution of galazies after selection, in the
DECALS (yellow) and BASS-MzLS (green) regions respectively. We
compare our photometric redshifts (shown as a solid line histogram,)
with the corresponding redshifts from [3T]|] (shown as a shaded
histogram). Grey dotted lines show our four tomographic redshift
bins in 0 < z < 0.8.

are summarised in Table [4.1] The inferred true redshift distribution p(z) is then
estimated by convolution of the raw distribution with the Lorentzian function, as
shown in the black dashed line in Fig. 4.6, [252] have recently proposed a similar
approach to marginalising over photo-z errors while restricting themselves to the

case of Gaussian fields with an ad-hoc mixing matrix.

However, galaxies fainter than the calibration sample may not follow this 6z
distribution exactly. There is an irreducible scatter that arises because galaxy
spectra are not universal in shape; but photometric measuring errors will
increase the scatter for fainter objects. As shown below in Section [5.1, we are
able to diagnose this using the galaxy cross-correlations between the different
tomographic redshift slices. The width of the error distribution controls the
degree of cross-correlation between the different tomographic slices, which is
observed to be larger than predicted when using the directly calibrated p(z)
parameters from Table[d.I The largest discrepancy occurs in the cross-correlation
between redshift bin 1 and bin 2, which is almost double the predicted value.
We therefore model the true error distribution in the photometric redshifts by

allowing the tail a of each distribution to spread, while fixing the width o to that
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i four tomographic bins for the spectroscopic calibration sample.
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Figure 4.6 Redshift distribution function, normalised such that for each redshift
bin [p(z)dz = 1. The dotted lines show the raw photometric
redshift distribution with |Az| < 0.05, the solid lines show the mean
distribution (see text for details) and their 1-o deviation using the
2-bias model (see Section , and the dashed lines show the
distribution using parameters from spectroscopic calibration sample.
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Table 4.1

Summary of the four tomographic redshift slices. The first row shows
the number of galazxies in each redshift slice. The second row shows
the effective volume of the redshift slice. The third and forth rows
are parameters for the Lorentzian function (Eq. fitted to redshift
errors in each redshift bin derived from the calibration data sets; and
the last two rows show the best-fit parameters derived empirically from
the cross-correlations between the different tomographic bins (noting
that o is not varied in this exercise). The best-fit parameters refer to
our photo-z data clipped with |Az| < 0.05.
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determined by the spectroscopic sample. We also allow a change in the mean xz
of each bin, while requiring the sum of the mean shifts in the four bins to be zero.
This results in 7 systematic nuisance parameters to marginalise over. We take
10 samples in each dimension of the 7-parameter space with appropriate upper
and lower bounds, and for each point in the grid, we compute the y? of the 10
galaxy auto- and cross-correlation between different redshift slices. The galaxy
bias parameters in each case are fixed at the lowest-x? values from the auto-
correlation (which we fit using the 2-bias model up to ¢ = 500). This is sufficient
given the size of the error bar in the auto-correlations: the galaxy bias is very
tightly constrained. Constraints on the cross-correlation amplitudes can then be
marginalised over the photo-z parameters, i.e., weighted by the likelihoods of
each set of parameters. The mean and 1-o deviation of p(z) weighted by the
likelihoods of the p(z) parameters are shown in Fig. . We leave the detail of

this procedure to be discussed in Section [5.1]

4.2.4 Comparison with other photo-z

We present a detailed comparison between our photometric redshifts and those
of Z20 [314)], including the impact of the different photo-z options on our
cosmological results. Firstly note that this comparison is only possible for the
78.6% of galaxies that lie in regions of multicolour space for which calibration
data exist. Z20 give photometric redshifts for additional galaxies, and these are
probably to be considered less reliable. Nevertheless, we can perform clustering
analyses that use all the Z20 data, or just their redshifts for the same set of
objects that we use, and this can give useful insight into the robustness of our
conclusions. Fig. compares the two photo-z catalogues in detail. For the
objects in common, the median redshift difference is |Az| = 0.023, and 68% of
objects agree in photometric redshift to within 0.038 . The difference distribution
has non-Gaussian tails, and we also therefore consider a ‘clipped’ selection where
we retain only objects where the two estimates agree to within |Az| < 0.05
(indicated by the black dashed line in Fig. : this is about twice as large as
our photo-z 1-0 uncertainty, so the effect is to remove outlying objects in the
tails of the error distribution. This removes a further 23.4% of the sample, but
should provide a cleaner selection in the sense that object are more likely to lie
in their nominal tomographic bin. The cross-correlations between the different

bins confirm that this strategy is successful.
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Figure 4.7 Photometric redshifts inferred from g —r, r—z, and z — W1 colours,
versus that from Z20. The dotted lines mark |A,| = 0.05 interval.
In the clipped sample, we only use objects inside the dashed line.

Table 4.2 Photo-z parameters for Z20, using spectroscopic calibration sample as
well as the best-fit values from the galaxy clustering analysis.

bin 0 bin 1 bin 2 bin 3
o 0.0075 0.0128 0.0150  0.0248
ac  1.320 1.484  1.700 1.502
a”fit 1320 1.110 1.697 1.502
zbit0.000  0.0003 —0.0002 —0.0001

Furthermore, there is a slight offset in the mean of the two samples, shown
explicitly in the north and south part of the Legacy Survey in Fig. [£.8] We fit this
offset for the south and north part of the survey separately using a cubic spline.
Then we further create an ‘offset’ sample which has its redshifts corrected using
the spline for A,(z) to match with that of Z20. For this sample, the clipping of
|A.| = 0.05 is applied after correcting for the offset, cutting 22.5% of the objects.
Fig. compares the raw redshift distributions of this work and Z20 for the three
samples. The left panel shows the sample using redshifts inferred from g—r, r—z,
and z — W; colours, the middle panel shows that from 720, and the right panel
shows that from the offset sample. The two photo-z distributions are close in all

cases.

We find the photo-z convolution function parameters, (o a®®), for the
720 samples using the same spectroscopic samples. We then follow the same
procedures to find the best-fit n(z). The parameters are summarised in Table
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Figure 4.9 The raw redshift distribution binned using photo-z obtained in this
work (left), in Z20 (middle), and in this work with the correction
for the offset (right), after a clipping of |Az| < 0.05. The solid line
shows the distribution of photo-z in this work, while the dashed line
shows that from Z20
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4.3 Galaxy density maps

Galaxies in each tomographic slice are binned in HEALPIX maps with Ngge =

1024. The density fluctuation, ¢, in each pixel is then computed by
n
0=—-—1 4.2
2o, (4.2

where n is number of galaxies in the pixel, and n is the mean number of galaxies
per pixel. Due to the slight differences in the photometric passbands for DECam,
BASS, and MzLS, the surface density of the tomographic slices varies slightly,
between 2% and 5%, in the north and south regions. For our purpose here, we
compute ¢ for the north and south regions separately, and join the two regions
at Dec = 33°.

The density maps are correlated with various systematics, including observa-
tional conditions, survey depth, stellar density, and Galactic extinction. Most
foreground contamination is captured by the completeness map. In addition, we
use the ALLWISE total density map as a proxy for stellar density. We find little
correlation with the E(B — V) extinction map. The following corrections are

applied to the density map to remove possible systematics.

4.3.1 Systematic corrections

To obtain an unbiased mean density, we compute 7 using pixels with completeness
> 0.95 and stellar number Ng,. < 8.52 x 10® deg™2, about 70% of the
total unmasked pixels. The largest correlation with density comes from the
completeness map. The galaxy count in each pixel is corrected by n/w, where w
is the completeness in each pixel. Regions with w < 0.86 are masked, based on
the binned one-dimensional relation between the completeness and mean density
fluctuation in the bin, §, such that the deviation of § from zero is smaller than
0.1. We also introduce a similar cut in stellar number at Ny, < 1.29 x 10%
deg2. The residual binned one-dimensional correlation between log,,(Nya:) and
mean § in the bins is below 5% for all bins except for the highest redshift bin at
the large stellar density end. We use Hth-order polynomials to fit for the residual
correlation for each bin as a function of log;,(Ngar) and subtract the residual mean
density from the raw ¢ (see Fig. . The final corrected density maps are cross-

correlated with the completeness map and stellar density map in each bin. The

125



0.02
001 N AN
0.001 %=

—-0.01 -

delta

—0.02 A

—0.031 —— pino

—}— bin1
=0.047 4 pin2
—0.05 1 —— bin 3
1.35 1.40 1.45 1.50 1.55 1.60

loglo(stellar)

Figure 4.10 The completeness weighted mean galaxy density fluctuation per
pizel in bins of various stellar number density from ALLWISE total

density map. The dashed lines show fitting of the relation using fifth
order polynomials.

resultant correlation is consistent with zero for the ¢ range used in the analysis
(see Fig. and [4.12). The corrected density fluctuations in the four redshift
slices are shown in Fig. For illustrative purpose, they are smoothed by
a Gaussian symmetric beam with o = 20 ~~! Mpc in comoving distance. We note
that the photometric variations and correlations with various foreground maps
for our sample are relatively small. This is driven by the magnitude cuts used in
our selection. [I41] provides a more detailed analysis of photometric systematics

for a variety of galaxy samples.

To check the consistency between different survey regions: the BASS+MzLS,

Cross-correlation with completeness map

0.0004 A « E 1 - Raw
i w correction

b wand Nstr correction |

0.0002 4

0.0000 1 HHHE

0+ 1)C2n

~0.0002 |,

0 200 400

Figure 4.11 The angular cross-correlation between galary density maps and the
completeness map. The blue dotted curves show the correlation
using raw density maps, the orange dashed curves show that using
completeness weighted maps, and the green points show that using
completeness weight and stellar number correction.
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Figure 4.12 Same as Fig. but for the ALLWISE total density map. It cam

Figure 4.13

be seem clearly that the stellar correction is only effective on large
scales with £ < 50, and is most effective for the highest redshift bin.

0<z=0.3

The density fluctuation map for bin 0, with 0 < z < 0.3. For
illustrative purpose only, the map is smoothed by a Gaussian
symmetric beam with comoving scale of 20~ Mpc. This map is
made from the corresponding galaxy map via Eq.[{.3, and corrected
by completeness and stellar density.
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Figure 4.14 Same as Fig. but for bin 1, with 0.3 < z < 0.45.
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Figure 4.15 Same as Fig. but for bin 2, with 0.45 < z < 0.6.
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0.6<z=<0.8

Figure 4.16 Same as Fig. m but for bin 3, with 0.6 < z < 0.8.

DES footprint, and the DECSLS region (without DES), we look at the galaxy
auto-correlations from these three independent regions. We use the systematic-
corrected galaxy maps in the four redshift bins as well as the unbinned case. The
results are shown in Fig. [£.17 We see that the measurements from the three
regions are in good consistency with each other out to ¢ = 500 in the unbinned
case as well as split into four redshift bins. However, the auto-correlation from bin
3 in the DES and BASS+MzLS regions are different from the rest of the DECaLS.
The x? of the DES and BASS+MzLS regions against the best-fit model in bin
3 indicates about 2.50 and 3.7¢ inconsistency with (.. = 500, whereas it is
fully consistent with the DECaLS region. This can be due to the relatively large
photo-z error at the high redshift tail. Because the number of galaxies in bin 3
accounts for only ~ 15% of the total sample, its contribution for the clustering

in the combined case is relatively minor.
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Figure 4.17 The galazy auto-correlations in four redshift bins and their cross-

correlations, measured from three separate parts of the DESI Legacy
Survey footprint: BASS+MzLS, DES, and DECaLS (without
DES). The unbinned case is presented at the bottom left.
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Chapter 5

Imprints of galaxy clustering on the
CMB from the DESI Legacy

Imaging Survey

In this Chapter, we will exploit galaxy samples from Chapter [4] to measure the
angular correlations between galaxy number density and the CMB. Observations
of CMB lensing have progressed hugely in recent years, with a full sky map of
lensing convergence delivered by Planck [223] 224, 228], and over 2100 deg® by
ACTpol [61]. Here, we correlate the Planck lensing and temperature maps with
LSS traced by galaxies. A particular aim is to measure the ISW effect, which has
the attraction of providing an independent probe of dark energy. However, ISW
detections have been challenging because the signal is largest at low multipoles
where substantial cosmic variance is unavoidable; the effect has therefore been
detected with only modest significance [e.g. 93] 124, 225]. The uncertainty of
measurements for the redshift range beyond z > 0.5 is particularly large, with
some having null, or anti-correlations between LSS and the CMB [25I]. This
regime is of particular interest as it may provide key evidence for distinguishing
ACDM from early dark energy or modified gravity models (e.g. Renk et al.
2017). Recent examples of this sort of work include [280] for the ISW effect
and [62, 69 94], 149] 207, 272, 273] for CMB lensing. A particular goal for the
present study is to extend the redshift range of the tomographic measurements

from z < 0.5 to z ~ 1 using the Legacy Survey.

We will be especially interested in comparing the amplitudes of the CMB lensing
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and ISW signals with the predictions of the fiducial ACDM model, from Eqs[3.40
& [3.42] We use HALOFIT 276, 282] as implemented in CAMB [163] to model the
non-linear matter power spectrum. The procedure can be summarised as follows:
e Constrain linear galaxy biases with the galaxy auto- and cross-correlations from
the four redshift bins:

CI97 = b, C2°. (5.1)

Here, we allow the pdf of photo-zs to vary with nuisance parameters that will be
marginalised over.

e Measure the amplitude of the lensing and ISW signals A, and Aigw defined as
CJF = ADCE; O = AgwbCiT, (5.2)

incorporating the constrained galaxy biases from the previous step.

The angular power Cy is computed by converting a pixel map into its spherical
harmonics ay,, in HEALPY. For a masked map, we use the simplest pseudo-power
estimate ég = lenaSked / fsy- We have verified that inaccuracies in this estimate are
unimportant for this large sky coverage, especially given that we exclude ¢ < 10 as
further insurance against any residual large-scale systematics. We also impose an
upper cutoff: throughout the analysis, we use modes in the range 10 < ¢ < 500.
The ¢ > 500 modes give very noisy measurements for cross-correlations between
LSS and CMB, and the S/N for the amplitude of the cross-correlation signal
has converged by this point. Linear bias is no longer a valid assumption beyond
about ¢ = 250, and we make allowance for scale-dependent bias as described in
Section [5.1.2] We use a HEALPIX resolution of Ngge = 1024 for our analysis, and
have tested that using finer maps would not alter the results. We correct for the

pixel window function, although this is not a significant effect.

In the following analysis, we group every M = 10 ¢-modes together such that

O+M-1

1
Y Cu, U'=M2M, .., (5.3)
el

<C€>group = M

and /¢ is the median value in each case. A simple error bar on each grouped data

point can then be computed by

_ 1 on) -y
fsky M -1 '

(5.4)

Oy
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The fuy factor accounts for correlations between ¢-modes due to the masked sky.

We use 50 lognormal simulations to test the effect of sky mask and shot noise.
As an example, we show the results using bin 1 of our tomographic slice, and
we focus on modes with ¢ < 300, because the mask would especially correlate
the low-¢ modes. The upper panel of Fig. shows the comparison between the
mean Cy of the simulated galaxy maps with or without mask and shot noise. We
see that the deviation is large at low-£ but is only of order < 5%, consistent within
the statistical error. The lower amplitude at lower multipoles in the measured
spectra compared to the input is likely caused by the survey mask. The bottom
panel of the same figure shows the error estimated on these modes in simulations
as well as the error on the actual data Cy. The masked maps with shot noise show
a slightly larger error, but is consistent with the error estimated on the data. The
covariance matrix for Cy = £(¢+1)C,/2x form the lognormal simulations is shown
in Fig. We see that it for can be well approximated by a diagonal covariance
C = diag(c?).

The 2 of a theoretical model is defined as
x> =dfcld, (5.5)

where the vector d has components d, = C§#** — C*. The likelihood of a model
parameter set x is given by
o—()/2

- [ e /2 dnx’

£(x) (5.6)

where as usual we will take the likelihood to give the posterior on the parameters,
assuming uninformative uniform priors.

The theory vector C® contains the predictions from Eqs [3.39] [3.40] & [3:42] and

We convert them to equivalent band power before comparing with data. It has

the following free parameters: 0 = {A,, Asw,a’,x}}. o' and z{ are nuisance
parameters to account for uncertainties for our photo-z calibration. We impose
So.xh = 0, where the indices of the redshift bins are i = 0,1,2,3, and so
there are 7 degrees of freedom for the nuisance parameters. A, and Ajgw are
the key parameters of interest, which characterise the amplitudes of the lensing
and ISW signals relative to the fiducial model, as discussed above. All other
cosmological parameters are fixed to the Planck 2018 cosmology, with n, = 0.965,
og = 0.811, Q,,, = 0.315, ), = 0.0493, and Hy = 67.4 [227]. The cross-correlation
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Figure 5.1 The effect of survey mask and shot noise on the measured angular

correlation Cy demonstrated using lognormal simulations. As an
example, we show the galaxy auto-correlation for bin 1 here. The
upper panel shows the ratio of the mean Cy from simulation compared
to the input best-fit theoretical power spectrum, with the full or
binned modes. The lower panel shows the errors on Cp = 00+
1)Cy/2m from different realisations as well as the those on the actual
data (red squares).
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Figure 5.2 The covariance matriz for bin 1 galary auto-correlation with . =
300 from 50 lognormal simulations with mask and shot noise. The
covariance matriz has very small correlation on the off-diagonal, and
can be well approzimated by using just the diagonal components.

measurements are made using the CMB temperature and lensing x maps and
masks from the 2018 Planck data [226, 228]. Galaxy bias is a further nuisance

parameter, but this will be constrained from data.

5.1 Galaxy auto- and cross-correlation

We now present the auto- and cross-correlations from the different tomographic
bins. We will use the results to constrain galaxy bias and also to determine
the empirical form of the photo-z error distribution. The galaxy auto-power
requires shot noise to be subtracted. Given NN, galaxies in a redshift slice, the
shot noise spectrum is given by C§"° = 47 fy /N,. There is no correction to be
made to the cross-power between the different bins. However, we also consider
the cross-correlation between our data and that of Z20 and the computation of
shot noise is more complicated in that case, since it depends on the numbers of
galaxies that are in common to the two catalogues (which is non-zero even for

cross-correlation).

Data points with error bars in Fig. show the 10 measured galaxy auto-

and cross-correlations for our data. The off-diagonals show the cross-correlation
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The last column shows the auto- and cross-correlations with the
unbinned case, with shot noise subtracted. Data is presented in

groups of 10 modes.

the best-fit p(z) and redshift-dependent bias.
is performed simultaneously for all the sub-sections except the last
column for modes in 10 < £ < 500, with a total DOF=49 x 10 —7 =
483 and the total x> = 471. The break-down of x? is in each case is
shown on the top left corner of each sub-section.
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coefficients, defined as
Ccgb
Taph = —— (5.7)

Neen

where a, b refers to different redshift slices. These are independent of galaxy bias.

In this procedure of finding photometric redshift errors, we use only the large-
scale modes with £,,,. = 500 as discussed above. The cross-correlation coefficients
are flat over a large range of ¢, and is only dependent on the redshift distribution.
Specifically, using constraints from the 10 auto- and cross-correlations of galaxy
redshift bins, we compute x?’s in the 7D nuisance parameter space [a' ] for
p(z). The fitting also excludes ¢ < 10 modes. We use a 2-bias model, detailed in
Section to find the best-fit p(z).

5.1.1 Lensing magnification bias

Finally, we note that the use of cross-correlations in calibrating p(z) is potentially
problematic because of lensing. Even with perfect redshift selection, some
cross-correlation is expected between different tomographic slices because of
magnification bias: lensing by the nearer slice will imprint an image of its
density fluctuations on the more distant slice. Indeed, [149] argue strongly that
magnification bias should be allowed for in CMB lensing tomography. However,
we can see that such effects are unimportant here, as they should be largest for
widely separated bins, and where the bin has the largest count slope. This should
affect above all bin 3, with the highest mean redshift and the highest count slope
(the slopes in slices 0-3 are respectively s = dlog,, N/dm = 0.19, 0.29, 0.41, 0.57).
But we see from Fig. that bin 3 has no significant correlation with bins 0 and
1. The reason for our different conclusion regarding magnification bias is that our
photo-zs are calibrated using the colours of spectroscopic objects, whereas [149]
calibrated their photo-zs using the cross-clustering with a spectroscopic sample.
Magnification bias can affect that cross-correlation and hence the inferred p(z),

but it has no effect on the numbers of objects at a given colour.

5.1.2 Non-linear bias and bias evolution

The galaxy auto-power data beyond ¢ ~ 250 cannot be fit well by a constant
bias. Specifically, the ratio between C** and CPM are roughly constant at small

and large ¢, with a transition at intermediate scales corresponding to roughly the
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transition between linear and non-linear scales. We allow for this by introducing

two bias parameters for the linear and non-linear regimes separately:
C¥ = V2O + BIACH, (5.8)

where CJ™ and the nonlinear correction ACH are computed using the linear and
additional non-linear components of the CAMB power spectrum. This simple
model gives an excellent fit up to ¢/ = 1000. The best-fit linear and non-
linear biases using the best-fit p(z) are shown in Table .3l We note that by is
systematically larger than by, obeying the approximate relation by—1 ~ 1.9(b;—1).

In the marginalised case, to speed up the computation, we approximate the best-
fit biases by taking the ratio of the data with the linear and non-linear theory at

different scales using

s G 1o
bl,Z - zg: (6) C;h ) (e) Z[(l/agg) (59)

The transition scales are different for each redshift slice. For bias fitting, a good
approximation is the scale at which the fraction of the nonlinear power becomes
comparable to the measurement error. This ranges between ¢ ~ 100 — 200 from
low to high redshift slices. The drawback of this approximation is that the
intermediate scales are hard to control, but it gives biases close to the lowest
x? value. In this case, the best-fit p(z) gives x? = 471 with DOF = 483. The
model parameters are shown in Table and the convolved mean p(z) with
its 1o deviation is shown in Fig. [£.6l The best-fit spectra are shown as black
solid lines in Fig. [5.3, with the galaxy biases and break-down of x? printed for
each case. The measured galaxy biases and their errors for each redshift slice
are shown in Table[5.3] We have checked that with £y, = 500, the best-fit p(z)
model and the marginalised case give almost identical amplitude constraints on
the cross-correlation of CMB lensing and ISW effects. Therefore, in the following
analysis, we will carry out the modelling using the best-fit p(z).

The linear and non-linear biases evolve with redshift, with b; increasing from 1.2
to 2.0 over redshift 0.2 to 0.7, although the trend is not quite monotonic (see
Fig. |5.4]). This is consistent with the expectation for luminosity-limited galaxy
samples in which high-z galaxies are intrinsically brighter, thus those galaxies
tend to occupy more massive dark matter haloes. In general, such evolution can

be locally treated as a constant if the redshift bin is thin, or if the distribution
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Figure 5.4 Linear and non-linear bias parameters, by and by (Eq. @, as
a function of mean redshift. The circles show minimum-x* bias
measured in 8 sub-bins, the stars and triangles show that measured
i 4 bins, and the solid lines show quadratic fits to the circles.

Table 5.1 The effective redshift and the perturbation to the quadratic fits of the
bias evolution.

Bin 0 1 2 3 unbinned
2o 0.21 0.39 0.52 0.66 0.42
ob;  —0.010 0.098 —0.033 0.029 —0.005
oby  —0.022 0.159 —0.056 —0.056 0.027

is symmetric. However, for bin 3, which has a tail towards higher redshifts, and
for an analysis of the unbinned sample, such an approximation breaks down, and
the full bias evolution needs to be included in the kernel. To determine the bias
evolution more precisely, we sub-divided each bin into two bins. We approximate
the redshift distribution of each sub-bin by convolution of the raw p(z) with
the best-fit photo-z error of that bin. Then for each sub-bin we fit linear and
non-linear biases as above. These measurements are consistent with the 4-bin
case. The biases as a function of the mean redshift in that bin can be fitted
by a quadratic function (see Fig. . We only use the increasing part of the
quadratic, and extrapolate the decreasing part beyond the function’s minimal
point by a constant. To match the auto-correlation amplitude, for each bin, we
introduce a small correction b;(2) = (1 + 6b;)bY(2), where i = 1,2, bY(2) is the

fitted quadratic curve, and 6b; < 1. We find 0b; by iteration, shown in Table 5.1}

This model agrees with our measurements very well in general, as seen in Fig. [5.3]

with reasonable x?/DOF overall and for most individual spectra. The auto-power
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for bin 1 has x? on the high side, but we were unable to identify any systematics
that could account for this (e.g. looking for discrepant sky sub-areas in the data).
In any case, the look-elsewhere effect is clearly relevant here, with 10 spectra to
consider. It is worth noting that x? is nominal for bin 3, even though this has the
largest volume and the lowest errors. Indeed, the precision of this bin and bin 2

is sufficient to show a clear signal from Baryon Acoustic Oscillations (BAO).

Overall, then, these cross-correlation results reassure us that the clustering of the
galaxy samples and the calibration of the underlying p(z) distributions is robust,

and that the samples are ready for the cross-correlation analysis with the CMB.

5.1.3 Marginalising photo-z parameters

We marginalise our photometric redshift parameters in the following way. We
look at 7 parameters: xg, 1, and x9 are defined as in Eq. for bin 0, 1, and 2
respectively, whereas for bin 3, x3 = —z¢ — x1 — 22. We also use f; = a;/a** for
the tail parameters. Wider tails mean smaller a, so we take the upper limit of f to
be 1, i.e., we assume that the scatter of faint objects always increase the tails. We
then run a grid search in the 7-dimensional parameter space, taking a 10 points in
each parameter with range listed in Tab. to compute the x? of the 10 galaxy
auto- and cross-correlations. MCMC is not adopted in this case for two reasons.
Firstly, the prior range is hard to determine without a grid search, thus running
a MCMC may result in longer computational time for convergence. Secondly, we
would like to marginalise over these parameters, rather than interested in their
detailed posterior distribution. A grid search should suffice our purpose for this
analysis. As mentioned before, for each case, we fix the galaxy bias (linear and
non-linear) at the lowest x? values, and fit for modes 10 < ¢ < 500. Fig.
shows the likelihoods for this parameter search. The black lines on the diagonal
points indicate the mean parameter values. The mean and 1 — o of the convolved
redshift distribution p(z) weighted by the likelihoods in each tomographic slice
is shown in Fig. [1.6, We also propagate this likelihood to the computation of
A, and Agw. This is summarised in Table [5.3] It is clear that the marginalised
constraints are similar to that coming from the the best-fit p(z). Therefore, in
the following analysis including the unbinned case, we use the best-fit p(z) and

its set of galaxy biases.
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Figure 5.5 The likelihood for the 7 photometric redshift parameters fitted to the
10 galazy auto- and cross-correlations between the four tomographic
bins. The likelihood is estimated based on a grid search with 10
points in each parameter. The black lines on the diagonal points
indicate the mean parameter values.
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Table 5.2 The range of the photo-z parameters used in fitting the 10 galaxy auto-
and cross-correlations. We take 10 uniform points in each parameter
to compute the likelihood. The fo — f3 parameters controls the tail of
the photo-z error. f; = 1 indicates the same tail as the calibration
sample, while f; < 1 indicates a larger tail. The xo — x2 parameters
control the shifts in the mean redshifts of bin 0 to 2, and the shift in
bin 3 is given by x3 = xo + x1 + x2.

Parameter Range

7o 0.7, 1]
f 0.7, 1]
fo 0.7, 1]
f3 0.5, 1]
o [—0.02,0.01]
1 [—0.01,0.02]
s [—0.01,0.01]

5.2 Cross-correlation with CMB

5.2.1 The Planck CMB maps

The Planck 2018 lensing and temperature maps are shown in Fig. and [5.7]
In computing the galaxy-lensing cross-power signal, we encountered unexpected
practical issues. The Planck CMB lensing data are made available as spherical
harmonic coefficients, from which the required x map can be obtained by using
the alm2map routine within the HEALPY package. The maximum wavenumber is
2048 in the 2015 release and 4096 in the 2018 release. The 2015 map is already
dominated by small-scale noise, but the noise spectrum in the 2018 map displays
a nearly divergent spike at high ¢: C¥ increases from about 107 at ¢ = 3650 to
over unity at ¢ = 4096. This creates numerical problems in reconstructing the
map, so that e.g. making a map at Ngg. = 512 directly yields a different answer
to creating a map at 2048 and downgrading to 512. The spike at ¢ = 2048 can
be tamed by filtering the map, but a sufficiently large FWHM is required that
modes at ¢ < 100 would be affected. In practice, therefore, we chose to truncate
the data at ¢ = 2048, consistent with the 2015 data. With the adoption of a
standard resolution of Ngq. = 1024 for our analysis, the results were robust (and
only slightly different from Ngq. = 512).

A further issue concerned coordinate systems: the CMB maps are supplied

in galactic coordinates, whereas we constructed our galaxy maps in equatorial
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Figure 5.6 The Planck 2018 CMB lensing convergence k map with fyax = 2048.

coordinates. Facilities exist within HEALPY for performing the rotation in ag,,
but we found that the rotation generated artefacts in the lensing auto-power C7,
which we attribute to the extremely noisy nature of the lensing map, dominated
by fluctuations on the inter-pixel scale. After tests at a range of resolutions, we

are confident that this issue does not affect the regime of our measurements, out

to £ = 500.

5.2.2 Cross-correlation with the lensing convergence map

Fig. shows the measured galaxy-x cross-power, with the solid black lines
showing the theory using the best-fit p(z) and biases obtained from the galaxy
auto- and cross-correlations. The black lines are not fits to the data points. To
quantify the consistency between data and theory, we include a scaling factor for
the lensing amplitude, A,, such that Ci* = A bCPM. In terms of the two bias
model, this is

O = A, [b,OPM™ £ b, ACTM™ (5.10)

The constraints on A, as a function of maximum ¢-mode is shown in Fig. [5.9]
The coloured points show measurements from individual tomographic slices, the
black open circle shows the product of the four likelihoods, and the black solid
points show that from the unbinned case. The mean and 1-o deviation for each

of these likelihoods are presented in Table [5.3
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Figure 5.7 The Planck 2018 CMB temperature map.
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Figure 5.8 The galaxy-lensing cross-correlation Ceg"i for each redshift slice and
the unbinned case. The solid lines are theory with the best-fit p(z)

and the same galazy biases as in Fig. .

144




¢ binO ¢ bin2 ¢ unbinned

¢ binl bin 3 ¢ product
1.10
1.05 1
1.00 A
0.95 A * +
SR
0.85 A + +
0.80 A1 + +
0.75 A * *
0.70 T T T T T
100 200 300 400 500
lmax

Figure 5.9 The mean and 1-0 of Ay likelihoods. Individual bins are shown in
blue (bin 0), purple (bin 1), pink (bin 2), and orange (bin 3) points,
while the product of the four bins is shown in black open circles.
The solid black points show the unbinned case, using the set of best-

fit p(2).

Our conclusion is that all of these options consistently yield A, close to 0.9, and
that the deviation from the fiducial Planck prediction is real. In order to report
an overall amplitude for A,, we need to combine the different redshift slices, which
we do in the simple approximation that the slices are independent. Because this
is not exact, we also consider an unbinned analysis in which all objects at z < 0.8
are combined; this gives closely consistent results to the outcome of averaging the
four slices. We adopt the mean of the unbinned measurements using the two sets

of photo-zs as our final result:
A, = 0.901 £+ 0.026. (5.11)

This significant discrepancy with the fiducial model is one of the principal results
of this work. The implications are discussed in Section [5.2.5] A particularly
interesting point is that the overall amplitude of CMB lensing, dominated by
LSS at z ~ 2, is nevertheless consistent with the fiducial model. What we will
show is that these two observations in combination require a matter density lower
than the fiducial value.
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Figure 5.10 The galaxy-temperature cross-correlation CgT for each redshift
slice and unbinned case. The solid lines are the fiducial ACDM
predictions with the best-fit p(z) and the same galaxy biases as in

Fig. .
5.2.3 Cross-correlation with the temperature map

Fig. shows the measurements of galaxy-temperature cross-correlations. The
signal is dominated by noise at ¢ > 50. The black solid line shows the theory
prediction using the best-fit p(z) and bias from galaxy auto-correlations. As with
the lensing case, we introduce an ISW amplitude Ajgw in order to compare theory

and data, such that Cf" = AigwbCPM. In the two bias case, it is
Cit = A [P 4 b ACPM (5.12)

The likelihood for Ajgw is then computed for each set of p(z), then marginalised
over. The marginalised likelihood for Aisw is almost identical with that of the
best-fit model, as shown in Table [5.3] Fig. shows the likelihoods of Aigw
for each redshift slice (coloured) and combined (black) in the marginalised (solid
line), mean parameter (circles), and best-fit (dotted line) model cases. The mean
and width of individual curve are presented in Table 5.3, The combined likelihood
shows a clear detection of the ISW signal, with Ajgw = 0.984 + 0.349, excluding

zero at 2.80.

In contrast to the CMB lensing signal, the temperature cross-correlation is thus
in good agreement with the fiducial ACDM prediction of the ISW effect, although
the intrinsically greater cosmic variance on the ISW signal means that we cannot
exclude discrepancies at the same level as seen in the lensing signal. The overall
modest S/N also prevents strong statements about the signal as a function of
redshift, although Ajgw is positive and consistent with unity in all bins. The
lowest signal is seen in our highest-redshift bin, Agw = 0.18 4+ 0.67, which is
interesting in the light of the report by [13] of a null signal at z = 0.68 using
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Figure 5.11 The mean and 1-0 of Aisw likelihoods. Individual bins are shown
in blue (bin 0), purple (bin 1), pink (bin 2), and orange (bin 3)
points, while the product of the four bins is shown in black open
circles. The solid black points show the unbinned case, using the

set of best-fit p(z).

a combined VST+SDSS sample of LRGs: Agw = —0.89 4+ 0.82. Our signal is
certainly closer to the fiducial Ajgw = 1 than to this result, but the lack of a clear

ISW signal in this bin remains.

5.2.4 Consistency checks

A tendency for the CMB lensing signal to lie below the fiducial model is seen
consistently in all tomographic bins. It is also a robust feature, which does not
alter with different treatments of the photometric redshifts. We summarise the
results of a number of options that we considered in Fig. We can consider
our photometric redshifts or those of Z20; we can further restrict the Z20 sample
to objects in the calibratable region of multicolour space; we can clip the photo-
z catalogues to remove objects where the estimates are discrepant (we choose
a threshold of |Az| = 0.05); we can adjust one of the photo-z catalogues to
remove any offset in (Az) as a function of redshift; we can remove objects that
are placed in different tomographic bins by the two catalogues. All of these
options potentially alter the error distribution and hence the true p(z) of the
selection. The nuisance parameters governing these distributions were therefore

re-optimised using the galaxy cross-correlations in each case. The impact of some
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Table 5.3 The linear and non-linear bias and constraints on A, and Aigw for
various cases at bmax = H00. The first row shows the case where all
p(2) parameters are marginalized over. The second row shows the case
for best-fit p(z) parameters. The third and fourth rows show the cases
using the photo-z from [314] (Z20) and that with the applied offset.
The last row shows the case of using the AvERA model described in

Parameters bin0 binl bin2 bin3 combined Un-binned
Redshift 0<2<03]03<2<045 | 045<2<0.6 | 06<2<0.8 - 0<2<0.8
Marginalized over p(z)
by 1.25 £ 0.01 1.53 £0.02 1.54 +£0.01 1.86 £+ 0.02 - -
ba 1.274+0.01 1.85 4+ 0.03 1.824+0.01 2.23 £0.02 - -
A 0.91 + 0.05 0.82+0.04 0.94 +0.04 0.90 + 0.04 0.89 + 0.02 -
Arsw 0.52+0.78 1.20 £ 0.63 1.48 £ 0.61 0.18 £ 0.67 0.91 +0.33 -
Best-fit p(z)
b1 1.25 1.56 1.53 1.83 - 1.43
ba 1.26 1.88 1.84 2.19 - 1.59
Ay 0.91 + 0.05 0.80 + 0.04 0.94 +0.04 0.91 +0.04 0.88+0.02 | 0.91 £+0.03
Arsw 0.52 +0.75 1.17 £0.58 1.44 +0.52 0.18 +0.67 0.91+0.33 | 0.99 +£0.35
Zhou et. al.
b1 1.25 1.54 1.55 1.90 - 1.44
ba 1.26 1.87 1.90 2.21 - 1.62
Ay 0.91 + 0.06 0.81 + 0.04 0.93 +0.04 0.87 + 0.04 0.87+0.02 | 0.89 +0.03
Arsw 0.50 £ 0.79 1.03 £0.59 1.37 £ 0.55 0.20 + 0.63 0.82+0.33 | 0.98+0.35
Offset
b1 1.28 1.52 1.54 1.89 - 1.45
ba 1.30 1.86 1.87 2.20 - 1.64
Ag 0.89 + 0.05 0.81 +0.04 0.93 +0.04 0.89 + 0.04 0.87 +0.02 0.88 +0.03
Arsw 0.45+0.81 1.05 £ 0.58 1.32 £ 0.56 0.25 + 0.46 0.83+0.33 | 0.99+0.35
AvERA model
b1 1.16 1.34 1.25 1.46 - 1.23
bo 1.11 1.50 1.45 1.75 - 1.33
A 0.97 £ 0.06 0.80 + 0.04 0.91+0.04 0.85 +0.04 0.87+0.02 | 0.91£+0.03
Arsw 0.24 +0.35 0.48 +0.25 0.55+0.23 0.07 £ 0.24 0.35+0.13 | 0.39+0.14
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Figure 5.12 Measurements of A, and Aigw for wvarious data selections at
lmax = 500 using the appropriate best-fit p(z) for each set. The
blue dashed line and band shows our default result, which is the
average of the first two data points in each column. These represent
a single unbinned analysis, as opposed to the average of the results
for the various tomographic shells. The ‘offset’ results refer to the
impact of the mean differences between our photo-zs and those of

Z20 (see Section .

of these different choices is shown in Fig.

5.2.5 Implication of low A,

We first consider the simplest interpretation of our low A, amplitude for the
galaxy-CMB lensing cross correlation in terms of parameters within the ACDM
model. The lensing signal at low z has a direct linear dependence on the matter
density fluctuation, which is proportional to the mean density times the relative
fluctuation — i.e. to €,,053. The cross-correlation is also proportional to galaxy
bias, but we have shown in Section how that degree of freedom can be
determined separately by including the galaxy auto-correlation data. At non-zero
redshifts, the dependence on (2, becomes nonlinear as this parameter influences
distances and evolution of density fluctuations. For our range of redshifts, the
empirical density dependence of the amplitude is as 2. so that our result for

A, produces the following constraint:

002 = 0.297 4 0.009. (5.13)
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The cosmology is fixed when determining bias parameters from galaxy clustering,
and these bias parameters are then used to constrain cosmology from cross-
correlations. This is acceptable, because the bias determined such that bog is
matched to the overall amplitude of the measured galaxy clustering. The cross-
correlation amplitude depends on boZ. Therefore, if we change the og parameter
in fitting galaxy clustering (thus determining the corresponding bias parameters),
the change in the cross-correlation amplitude will only depend on the change in o5.
The amplitude of galaxy clustering is not sensitive to changes in €2, parameter,

and thus also does not affect the determination of the bias parameter.

It is interesting to note that total CMB lensing itself produces a constraint of a

similar form, but with a different density dependence:
050 = 0.589 4 0.020 (5.14)
[228]. A straightforward combination of these two results yields
Q,, =0.275£0.024; 05 = 0.814 £ 0.042; (5.15)

the same normalisation as Planck, but a somewhat lower density.

It is interesting to compare these results with analogous constraints from weak
galaxy lensing. Here the dependence on density is intermediate in strength. The
constraints from the cosmic shear measurement of KiDS-1000 [15] and DES Y1

[291] are as follows:

05 = 0.41670017  KiDS — 1000 (5.16)
0527 =0.428+0.015 DES—Y1 (5.17)

which is in close consistency with what would be deduced from the CMB lensing
results: 0g0%% = 0.427, as opposed to the fiducial 0.455. In combination, these
three lensing results then give a clear preference for a model with a rather lower
density than the Planck fiducial model, as illustrated in Fig. [5.13}

Q= 0.274 £0.024; 05 = 0.804 £ 0.040. (5.18)

It can be noted that the KiDS-1000 papers preferred to interpret their results in

terms of a reduced og, but a shift purely in normalisation is disfavoured by the
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Figure 5.13 Comparison of constraints on the €, — og plane; the contours
contain 68% and 95% of the total probability. Note the consistent
intersection of the three lensing-based results. The KiDS-1000 +
DES Y1 constraint are for cosmic shear only. We use a Gaussian
likelihood for DES Y1 and a skewed Gaussian using model 2 of [18]
for KiDS-1000 to account for their asymmetric errors. This figure
is produced by Shadab Alam, the author on the paper in which this
section was published. The figure is adopted here as to maintain
the clarity of discussion from that work.

total CMB lensing amplitude, quite apart from our current results.

The conflict of this result with Planck is marked: Ax? = 12 on 2 degrees of
freedom, which represents a p value of 2x 1073, In these circumstances, we should

be cautious in accepting the formal combination of the above lensing result with
Planck, which is

2, = 0.296 £ 0.006; o5 = 0.798 £ 0.006. (5.19)

In fact, this unimaginative compromise model is arguably not ridiculous: it lies
within the 95% confidence contours of both our combined lensing result and

Planck. The value of €2, alone would represent a 2.70 deviation from Planck,
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but consistency in og is better and there is no prior reason to be more concerned
about a deviation in one or other of these parameters. Nevertheless, agreement
this weak is asking a lot of bad luck: we may be fairly sure that systematics are
present, and the question is whether they lie in the data or in the theoretical
framework. From the point of view of the actual values of €2,, and og, ‘new
physics’ counts as just a further systematic on the same footing as data errors

[25], but these alternatives are hardly equal in their implications.

5.2.6 Discussion

Imperfections in data

The most conservative assumption is that there are indeed imperfections in the
data. If these were to lie on the lensing side, we would point the finger of suspicion
at photometric redshifts, which are a dominant source of potential bias. We have
discussed the reliability of the photo-zs used in this paper at some length, and a
huge effort has been invested in this topic by galaxy weak lensing groups — using
rather different data and methods to the approach taken here. On the CMB side,
the exemplary thoroughness of the Planck analysis makes one reluctant to suggest
any imperfection, but there are issues. Apart from the continuing puzzle of the
well-known large-scale anomalies, there is the fact that the Planck TTTEEE
data prefer an amplitude of CMB lensing that is higher than fiducial: Ap,s =
1.180 4 0.065, which represents some form of internal inconsistency. These issues
were investigated in detail by [74], who argued that that the anomalies represented
no more than slightly unusual statistical fluctuations in the Planck dataset and
that there was no evidence of systematics at an important level. Where large-
scale properties of the CMB are concerned, cosmic variance dominates and the
many independent Planck maps can indeed give confidence that systematics are
negligible. But in the noise-dominated regime, where the best results require the
combination of all data subsets, residual systematics at the few-o level are not so
easy to rule out. The Planck constraint on €2, does depend significantly on the
high—¢ data, and so could be considered potentially less robust. We therefore
think it is plausible that the compromise solution with €2,,, ~ 0.296 may be close to
the truth. If we look at CMB constraints independent of Planck, ACT+WMAP
yields €, = 0.313 £ 0.016, which is easily consistent with 0.296; this work also

has Ajens very close to unity [7].

152



Implications for the Hubble parameter

A slightly reduced matter density would also have the advantage of reducing
the other tension that is currently the subject of much discussion: the Hubble
parameter. The most robust inference concerning H, from the CMB comes
from the main acoustic scale, which can be taken empirically as measuring the
combination ,,h% with negligible error [217]. If we use this as a basis for
rescaling the fiducial model, the compromise €2, = 0.296 would require Hy ~
69kms 'Mpc™!. This 2% increase from the fiducial value is still significantly
below the direct determination of 74.03+1.42 [244], but again would only require
a modest level of systematics for consistency. Furthermore, taking seriously the
Q,, >~ 0.274 from the combined lensing data would imply a completely consistent
Hy ~T71.

Consideration of variations in h prompts us to ask whether the predicted A,
depends on h. From Eq.[3.40] we can see that there is no explicit h dependence,
since h times comoving distance is a function of redshift and €2, only. The scale
at which og is determined is accessible to the range of ¢ under study, so changes
in power-spectrum shape arising from changes in A would be expected to have a
minor effect. In practice, we find A, oc h%?*, which is equivalent to a negligible

0008 effect when considering variations with 2,,,h? fixed.

It is undeniably depressing to be considering the possibility that one or more of
the leading current cosmological datasets could be reporting results that contain
systematic errors of close to 20, but equally we need to beware of too hastily
declaring the existence of new physics as soon as we see a minor statistical
discrepancy. Because there are in principle two distinct discrepancies, affecting
Q,, — og and Hj, a single new addition to the cosmological model that solved
both issues would demand to be taken seriously. But both the lensing and H,
discrepancies have existed in the literature for some while, and it is fair to say
that no compelling solution has emerged. Nevertheless, it is worth reviewing

some selected candidates.

Massive neutrinos

It is known that neutrinos make a non-zero contribution to the non-relativistic
density, with a summed mass of at least 0.06eV (£2,h? > 0.00064). Owing to

free streaming, the neutrino distribution is close to homogeneous on the scales of
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LSS, and therefore the lensing effect is reduced in two ways: the clumped mass is
only the CDM, with a density (1— f,)2,,; this lower effective dark matter density
slows growth since last scattering, reducing og today. At first sight, these effects
sound as if they have the potential to close the gap between lensing results and
Planck, but this is not so. Firstly note that we do not really need to be concerned
with growth suppression for the interpretation of the lensing results themselves,
since the lensing signal is directly proportional to the low-redshift normalisation.
Furthermore, the standard definition of oy (adopted by Planck and CAMB) is
that it is the rms fractional fluctuation in the total matter density. The fractional
fluctuation in the CDM density is thus os/(1 — f,), and this raised amplitude
compensates for the lower clumped density, so that the lensing signal for a given
Q,, and og should be independent of the neutrino fraction. The only subtlety is
that the growth between z = 1 — 2 and z = 0 will be slightly less than in ACDM
for the given ,,. But this is a tiny effect: f, is about ,,(2)"%, so the relative f,
is (1— f,)"%, so the mass fluctuations at z = 1 —2 are higher by of order 1+ 0.6,

than in ACDM for a given z = 0 normalisation, which is a negligible correction.

Therefore, all the dependence on neutrino fraction on the €2,, — og plane comes
from Planck. Inspecting their chains, the effect is approximately og o< (1 — f,,)?2
and Q,, o< (1 — f,)72. Although the predicted normalisation is reduced, as
expected, the best-fit density rises and so the tension between primary CMB and

lensing is increased if there is a non-minimal neutrino fraction.

Modified gravity

A more effective modification of theory concerns the strength of gravity. To avoid
excessive complication, it is common to approach this in a form that includes two
linear parameters that modify the scalar potentials ¥ and ®, which describe
fluctuations in the time and spatial parts of the metric. In the standard model,
U = & and the potentials satisfy the Poisson equation. The most transparent
modification is to scale the forces for non-relativistic particles (from ¥) and
photons (from W + &) that result from a given mass fluctuation, §, so that
V20 o (14 p)d and VAP + @) « (14 X)d (e.g. [Simpson et al|2013). The
motivation for modified gravity comes from late-time accelerated expansion, and

therefore it is normally assumed that the modifications evolve as

(1(2),E(2)) = (1o, Xo) 2a(2), (5.20)
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so that modifications are unimportant at last scattering. Since ACDM seems
to describe the expansion history well, it is also assumed that the modifications
affect only perturbations. Thus the cosmological parameters inferred from the
CMB should be unaffected in this framework, and therefore modified gravity can
be used to close any gap between the predicted and observed lensing signal. There
is a degeneracy here: for ¥ = 0 (normal lensing strength), we can appeal to 1 < 0
to reduce the growth in fluctuations; alternatively, we can have normal growth
with © = 0 and suppress the resulting lensing signal by appealing to ¥ < 0. In
either of these solutions, it would be understandable that the total CMB lensing
signal is consistent with standard gravity, because it arises around z = 2, where
the modifications are only just switching on. To achieve A, ~ 0.9 at z ~ 0.5,
where 2y = 0.4, we need either ¥y = —0.25, or g = —1.5. The large value for py
seems surprising at first sight, implying close to total suppression of LSS gravity
at the present epoch. This is partly a consequence of the p o< Q5 (a) assumption,
and also because p suppression of the strength of gravity only alters the growth
rate: to achieve significant reduction in § at z ~ 0.5 would require substantial
alteration to the growth rate at much higher redshifts, which is hard to achieve
in this model unless pg is large. Such a model can be ruled out by other evidence,
since it would imply a very non-standard growth rate at z = 0.5, whereas we
know from redshift-space distortions that the rate is within about 10% of fiducial
at this redshift [320].

In summary, then, an explanation of a low lensing amplitude via modified gravity
must involve an alteration of the strength of light deflection by a given mass
concentration, rather than reducing the amplitude of mass fluctuations. Such an
explanation appears to be consistent and not in conflict with other evidence, but
one could hardly call it compelling — not least because it has no impact on the H
tension; such a radical conclusion requires more than a single piece of evidence.
In due course, we will have more accurate tomographic lensing and redshift-space
distortion data where changes in the growth rate and strength of lensing with
redshift can be measured, so that a progressive decline in the strength of lensing

could be measured. Without such evidence, this hypothesis is at best provisional.

5.2.7 Aisw and implication on AvERA model

An interesting approach that has been proposed with a view to explaining
the high claimed ISW signal from superstructures is the AvERA model [234].
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This is a radical framework that postulates a critical-density universe without a
cosmological constant, but with averaging of an inhomogeneous expansion rate,
leading to an apparent acceleration as measured by the mean effective Hubble
parameter. The model can be adjusted so that the empirical H(z) relation rather
closely matches the standard ACDM case — which has the advantage that the
conversion between distance and redshift remains as in the standard model, so
that inferences from the CMB regarding density parameters and the shape of the

matter power spectrum remain valid.

On the other hand, the amplitude of the spectrum is modified in this model, and
the density growth rate f; = dInd/dIna is rather different from ACDM. There
is a spike above f, = 1 around z ~ 2 and in general the rate is higher than the
standard model; thus, the required value of g at z = 0 has to be increased in
order to be consistent with the amplitude of primordial fluctuations inferred from

the CMB. A convenient fitting formula for the growth rate is
fy(a) = exp(—2.308a*) + 0.549[1 + 11.569(In a + 1.222)?] 7" (5.21)

Integration of this expression implies that og(z) for AVERA is above ACDM
at high redshift, by as much as a factor 1.2 at z = 1.5. Conversely, the low-
redshift evolution is slower and the amplitude of present-day matter fluctuations
is about 5% lower than ACDM. The two models predict identical amplitudes
at z ~ 0.08. Thus, for redshifts relevant for our tomographic data, the AvERA
model predicts a higher density fluctuation, so that the predicted amplitude of the
linear ISW signature is greater. There will also be a greater degree of nonlinear
evolution. We treat this by assuming that the nonlinearities can be estimated in
the HALOFIT framework by taking the standard ACDM approach and increasing
os(z) appropriately. This should be sufficient to indicate how important the
increased nonlinearity might be (this will be more of a potential issue for lensing,
where even weak lensing can be dominated by nonlinear structures on small

enough angular scales).

We use the Planck 2018 Cosmological parameters [227], and set the power
spectrum of AvERA to be identical to ACDM at z = 8.55 consistent with [22]. We
use the fitting formula in Eq. [5.21] and interpolate the AVERA H(z) and R(z) as
given by [22]. Fig. shows the matter auto-correlation, matter-x, and matter-
T cross-correlations in AVERA and ACDM with both linear and non-linear power
spectra, using the best-fit p(z). As expected, the AvERA prediction has a higher
amplitude than ACDM. The corresponding galaxy biases are significantly smaller
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Figure 5.14 The dark matter auto-correlation (top), the matter-k cross-

correlation (middle), and the matter-temperature cross-correlation

(bottom) in ACDM (red) and AvERA (blue) model for the four

tomographic bins using the best-fit p(z). The solid lines show

computation using linear power spectrum, and the dashed lines
show that using non-linear power spectrum from HALOFIT.
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Figure 5.15 The constraints for A, from the normalised likelihoods in the
AvERA model using the best-fit p(z) and fitted galazy bias.

in the AVERA case as shown in Table[5.3] but this effect is absorbed in the lensing
cross-correlation, resulting in similar constraints on A,. The likelihoods for A,
and Agw are obtained in Figs [5.15}5.16] In this case, we find A, = 0.87 + 0.02
for the product, and A, = 0.91 4+ 0.03 for the unbinned case. In the ISW case,
the AVERA prediction is about three times as large as ACDM. The preferred
amplitude is Agw = 0.35 £ 0.13 from the product of tomographic bins, and
Aisw = 0.39 £ 0.14 from the unbinned result. Adopting the unbinned case, this
ISW result excludes unity at 4.40 and we can be confident that the AVERA model

greatly over-predicts the general level of ISW fluctuations.

5.3 Summary and discussion

We have performed a tomographic analysis of the cross-correlations between
Legacy Survey galaxies and the Planck CMB lensing convergence and tempera-
ture maps, covering 17 739 deg®. We obtained our own photometric redshifts for
the Legacy Survey based on g — r, r — 2z, and z — W} colours, with a precision
of 0,/(1 +2) = 0.012 — 0.015. The galaxy sample is divided into four wide
redshift bins between z = 0 and z ~ 0.8. We model errors in photometric
redshift with respect to calibration data sets via a modified Lorentzian function,

and constrain the tails of the error distribution by requiring consistent prediction
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Figure 5.16 The constraints for Aigw from the normalised likelihoods in the
AvERA model using the best-fit p(z) and fitted galaxy bias.

of the galaxy cross-correlation signal between different tomographic bins. This
modelling incorporates a novel scheme for dealing with scale-dependent bias
(Eq. , in which the linear and nonlinear parts of the matter power spectrum
receive independent boosts to their amplitudes. The consistency of the galaxy
clustering and its cross-correlations argues that the galaxy sample from the
Legacy survey is robust, and that the properties of the photometric redshifts

are understood.

We then proceeded to evaluate the cross-correlation between the tomographic
galaxy maps and the CMB maps of temperature and lensing convergence. The
results are compared with the predictions of the fiducial Planck cosmological
model, marginalizing over the photo-z error parameters with weights given by

the likelihood from fitting galaxy auto- and cross-correlations.

The amplitude for the ISW signal relative to the fiducial prediction is Aigw =
0.98 4+ 0.35, consistent with ACDM, as found by previous works, e.g. [280]. We
also explored the AvERA model [234], which was developed in order to explain
the claimed excess signal in the stacked ISW signal in supervoids. We find that in
this model, A, = 0.91 + 0.03, and Ajsw = 0.39 £ 0.14, with significantly smaller
galaxy biases compared to the ACDM case. Thus, the AvERA model achieves its
aim of predicting an enhanced supervoid signal at the price of raising the overall
level of ISW power to the point where it is inconsistent with observation, even

given the relatively noisy nature of the ISW signal. If the supervoid signal is
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found to persist in future studies, AVERA cannot be the explanation.

The amplitude of the CMB lensing signal is found to be significantly lower than
the prediction of the fiducial Planck model, with a scaling factor A, = 0.901 +
0.026. We note that this lower amplitude is consistent with the results from an
analysis of cross-correlation between CMB lensing and a DESI LRG sample based
on the Legacy Survey data [140]. Our result can be translated into constraints on
the parameter combination 0gQ2%"™® = 0.297+0.009. The total CMB lensing signal
provides an alternative constraint on this plane, of 0502 = (0.589 + 0.020 [228§],
which also represents an amplitude lower than fiducial, although only by 1. In
combination, these CMB lensing figures prefer a solution with a relatively low
matter density of 2, ~ 0.274. These CMB lensing results are also in excellent
agreement with the value of 030205 deduced from weak galaxy lensing [15], 291].
Within the compass of ACDM, the model that does least violence to lensing and
CMB data is

Q= 0.296 £0.006, o0 =0.798 + 0.006, (5.22)

and this is consistent with the 95% confidence ranges from both datasets. It is
therefore worth taking seriously the possibility that the true cosmic density is
substantially on the low side of the fiducial Planck estimate. Such a reduction
would also reduce the Hj tension, raising the best-fitting CMB value to around
69km s 'Mpc~! - although this would still imply the existence of systematics in
the direct Hy data (see e.g. Efstathiou/2020).

We therefore face a situation where at least two of three currently dominant
cosmological probes contain unrecognised systematics at the level of a few
standard deviations, or the standard model must be extended. The choice
between conservatism or revolution is perhaps not so easy in the current
circumstances, but the next generation of experiments should settle the question
beyond all doubt.
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Chapter 6

Stacked CMB lensing and ISW
signals around superstructures in

the DESI Legacy Survey

6.1 Introduction

Chapter [5| has shown that the impact of LSS on the CMB from lensing and ISW
is close to the LCDM prediction, within a discrepancy of order 10%. But the
literature contains claims of much larger discrepancies in the amplitude of these
foreground effects. Granett et al. [I01] averaged CMB temperature maps at the
positions of 50 objects identified as voids and clusters that had the most extreme
density contrasts as measured using the SDSS LRG sample. By comparison
to ACDM simulations, they claimed an excess ISW signal of 40 significance.
Subsequently, [40, 42] 144], 145] used stacking techniques and claimed an ISW
signal that was higher than the ACDM prediction at moderate significance. [190]
reported a signal consistent with ACDM using the whole void catalogue, rather
than focusing on superstructures. Most recently, [146], hereafter K19, measured
the stacked ISW signal using the DES supervoids with radius R, > 100 A~ Mpc,
and found an amplitude relative to the ACDM prediction of Ajgw = 5.2+ 1.6 in
combination with BOSS. In a separate paper, [298] measured the stacked CMB

lensing convergence signal for the same objects, and found no discrepancy with

ACDM.
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The anomalous ISW amplitude from supervoids is of interest in terms of modified
gravity, where the screening mechanisms in some theories are less effective in
empty regions [50]. However, there has not been a satisfactory explanation for
this excess signal. [40] argued that the signal is unlikely to be caused by Sunyaev-
Zel’dovich effects, non-Gaussianity, or modified gravity (see also Nadathur et al.
2012). Another possible explanation comes from the AVERA (Average Expansion
Rate Approximation) model [22], which assumes an inhomogeneous expansion
rate with 24, = 0 and predicts a higher overall ISW signal by modifying the growth
rate. However, [114] showed that the AvERA model prediction is inconsistent
with galaxy-temperature cross-correlation results, so the ability of the AvERA

model to account for the supervoid results is subject to doubt.

One needs to be cautious in interpreting the stacked results. Firstly, the definition
of supervoids is not exactly the same in each case. In some cases, voids are
defined in 3D density fields based on e.g., the ZOBOV algorithm [197], whereas
in other cases the void definition is based on 2D smoothed density fields [e.g. [250].
Different void-finding algorithms can lead to different structures being selected.
Secondly, the procedures involve various parameter choices such as the initial
smoothing scale of the density field and threshold criteria for superstructure
selection. Therefore, one needs to make sure that the final result does not depend

on such choices.

Nevertheless, the reported anomalous ISW amplitude is usually at the 2-30 level.
There is a fair chance that they are statistical flukes. To clarify the situation,
it is useful to use a bigger sample of galaxies for the analysis to beat down the
dominant noise from sample variance. The aim of this work is to repeat the
stacking analysis using superstructures in the DESI Legacy Imaging Survey. The
large sky coverage reduces the noise due to cosmic variance. We use the galaxy
maps produced in Chapter 4| [114], hereafter H21, based on photometric redshifts;
the cross-correlation of these maps with the CMB lensing convergence and ISW
effect provides a baseline for the ISW amplitude coming from superstructures
only. We attempt to adopt the same void finding algorithm as in K19 based on
the 2D maps, although the relatively high thickness of the photometric redshift
bins means that our selected superstructures are not exactly comparable to those
of K19. In order to reduce confirmation bias, we also adopt a ‘blind’ strategy
where we fix our analysis pipeline using mock data based on cosmological N-body

simulations, before we run the pipeline on the actual data.

The Chapter is organised in the following structure. Section introduces
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the data used for creating superstructures, the mock galaxy dataset, and the
generated lensing convergence and ISW maps. The void finding procedure and
covariance matrix is described in Section We compare our superstructure
catalogues from the real and mock data in Section and present the stacking
results in Section Finally, we discuss the results and sum up in Section [6.6]

6.2 Simulation

We make use of the MultiDark Planck [MDPL2; [142] simulations with Planck
2013 Cosmology. The simulation is performed with a 1A 'Gpc box with 3840?
particles using the L-Gadget 2 codes. The mass resolution of the simulation is
1.51 x 10° h"' M. The simulation assumes a flat ACDM cosmology with €, =
0.307, €, = 0.048, h = 0.67, ng, = 0.96 and og = 0.823. The dark matter
halo catalogue for 32 snapshots between redshift 0 & 1 is processed using the
ROCKSTARH phase space halo finder [23], in order to construct galaxy lightcones.
The simulation is publicly available through the CosmoSim database?| [231, 240].

6.2.1 Simulated galaxy light-cones

We use the halo occupation distribution (HOD) model to generate simulated
galaxy catalogues. We only use the measurements of linear and non-linear bias
(H21) to find the best fit HOD parameters. We use a simplified version of the
HOD model with only two free parameters corresponding to the characteristic

mass of central (M.,;) and satellite galaxies (M;) as given in following equations:

1 In Mcut —In Mhalo>
cen = —erfc 6.1
p 5 ( 7 (6.1)
Mhalo - Mcut
N,y) = —halo — Heut 6.2
(M) = =2 (62)

where peen, gives the probability of assigning a central galaxy to a halo with mass
Myao and (Ngyi) gives the mean number of satellite galaxies as the function of

halo mass. The actual number of satellite galaxies for any given halo is drawn

"https://bitbucket.org/gfcstanford/rockstar
2https://www.cosmosim.org/cms/simulations/mdpl2/
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Figure 6.1 Top panel shows the best fit HOD parameters as the function of
redshift used to generate simulated galaxy catalogues. Bottom panel
shows the evolution of linear and non-linear bias in mock with

coloured lines.

The black line shows the best fit linear and non-

linear bias obtained for the data from [11J)]. This figure is made by

Shadab Alam.

164



from a Poisson distribution. We use main haloes (i.e. discarding subhaloes) from
32 snapshots between redshift 0 & 1 and determine the best fit HOD parameters
by fitting the 3D galaxy power spectrum with linear and non-linear bias evolution
as measured in the data (H21). The linear bias values in our mocks are defined
using scales 0.05 < k < 0.1hMpc! and the non-linear bias uses the scales
0.5 < k < 2hMpc™t. Our best fit parameters are not very sensitive to the
limits of scales used to define the linear and non-linear bias. The best fit HOD
parameters along with galaxy bias are shown in the Figure [6.1] We have created
two sets of mocks, one of which only matches the linear bias, and the other one
also has non-linear bias matched. For the scales considered in this project, we
confirm that the two mocks do not give rise to significantly different stacking

signals from superstructures.

We then convert our galaxy catalogue into lightcone form by simply repeating
the box and placing the observer at the origin in order to extract shells from
each snapshot covering the comoving separation between consecutive snapshots.
The simulation and data are matched in galaxy number density in each redshift
slice. In order to include the photometric redshift effect, we assign to each galaxy
a photometric redshift z, = z 4+ 0z, where ¢z is drawn from the distribution of
Eq. with the parameters given by the best-fit p(z) in each bin from H21. We
then construct our tomographic slices by selecting galaxies in redshift bins using
2p. The resulting true redshift distribution is close to the best-fit p(z) from the
real data, as shown in Fig. [6.2] The same survey mask is applied to the mock as
the DESI Legacy Survey data.

6.2.2 Making mock lensing convergence maps

In order to generate lensing convergence maps that are consistent with our
simulated galaxy data, we perform the following integral using the Born

approximation:

A [T BHEQ, (rs — )T ~
k(0) —/0 502 - o(r,0)dr, (6.3)

where rpg is the comoving distance between CMB and the lens plane and r is
the comoving distance to the lens plane. The o(r, é) is the matter overdensity
in the direction @ within a shell of width dr at distance r. To determine & , We

first create particle lightcone using snapshot by repeating the box and extracting
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Figure 6.2 The mock redshift distribution (dashed) is matched to observations
by assigning a redshift error 6z from the best-fit modified Lorentzian
distribution used in [IT]|] and the corresponding best-fit p(z) from
data (shaded) by fitting the galaxy auto- and cross-correlations in
the four tomographic bins.

a shell of particle at the location of 32 halo snapshot between redshift 0-1. But
we have only three particle snapshots (z ~ 0,0.49, 1.02) available compared to 32
halo snapshot. Therefore, for each halo snapshot shell we use the nearest particle
snapshot and scale the over-density by ratio of growth at the halo snapshot to the
growth at nearest particle snapshot. This gives us (r, é) which is then integrated
using equation In principle the full x map should be integrated with 7., =
0o. But since we are only concerned with the cross-correlation of galaxies with
the convergence map, as long as we limit our integral to larger than the maximum
galaxy redshift (z ~ 0.9) we will obtain unbiased results. Therefore we use rpax
corresponding to zn.x = 1.02 to generate our lensing convergence map. We note
that we use a HEALPIX pixelisation with nggq. = 512 to generate our convergence

map.

6.2.3 Making ISW maps in simulations
Although the ISW signal arises from the linear evolution of the potential @, it has

contributions from non-linear evolution. To include both of them, we follow the

algorithm presented in Cai et al. [39], Seljak [261] to compute the time derivative
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of the potential ® in Fourier space using

Bk, 1) = ; (%)2 o, {%5(& £+ w , (6.4)

where a is the expansion factor at z, p(k,t) is the Fourier transform of the
momentum density fluctuation p(x,t) = [1 + §(x,t)|]v(x,t), and d(k,t) is the
density contrast. We use the full particle data at the three snapshots mentioned
above to compute ®(k,t) in Fourier space. We then interpolate ® in Fourier
space according to the linear growth factor G(a) = D(a)[l — f(a)] to obtain
(iD(k, t) at more epochs t between the original snapshots, where the times t are
chosen such that their line-of-sight comoving spacing is 100 h~* Mpc. The inverse
Fourier transform of the above yields @ in real space on 3D grids. Follow Cai
et al. [39], we then use HEALPIX to tessellate the sky, and follow HEALPIX pixel
centres along the line of sights to interpolate and integrate ® values on grids to
obtain the full ISW maps including the non-linear Rees-Sciama effect. Examples

of the power spectra measured from these maps are shown in Fig. [6.3]

6.2.4 Quasi-linear ISW maps

With the expected high signal-to-noise from the galaxy-CMB lensing cross-
correlation, we can also use the observed lensing signal around peaks and troughs
to predict their corresponding ISW signal directly. This has the benefit of using
one observable to predict the other. Using Eq. [6.3] we compute the lensing
convergence k for each direction 0 in each shell between 0 < z < 1. We then follow
methods in Section and obtain the quasi-linear ISW map using Eq. for
each of the 30 shells, where r( is the comoving distance to the shell centre. These
maps are then added together to produce the final (noise-free) ISW map. The
comparison of the power spectra of the quasi-linear and full ISW maps is shown
in Fig. We can see that the two maps are most consistent in the range of
10 < ¢ < 40. At scales £ < 10, the linear map gives unphysical modes whose
amplitudes are much larger than the full computation. At smaller scales, where
¢ > 40, the full computation gives a higher amplitude than the quasi-linear case.
In the stacking analysis, we are mostly interested in structures of a few degrees,

corresponding to ¢ ~ 100.

An alternative method based on non-linear density evolution is mentioned earlier
in Section This method assumes spherical symmetry of the stacked void

167



102 4 : 3
% 10! % : 3
= I A, o ey
(5 100 3 “\'\ E ll\l “\\\
a \r~“' I, '\\\‘
= 1071 ; N - .
- i, z
= 1072 4 E
3 ]
10-3 1 linear, bin 0 \ linear, bin 1
. —--- nonlinear, bin 0 i --- nonlinear, bin 1
10
102 4 E
Y 10! A
= 1YW E
E P \‘\ ]
Q 100 ; /A\ II/ h}"'n\ _g
= / ]
2101 N \”*\‘
+ ]
= 10_2 3 \
-~ ]
10-3 4 linear, bin 2 _ linear, bin 3
---nonlinear, bin 2 1 nonlinear, bin 3
100 10! 102 109 10! 102

Figure 6.3

profile. This is generally the case for 3D voids. Void finders based on 2D density
slices preferentially find elongated voids [145]. For our case, the redshift slice
is 400 — 800 A~! Mpc in width, the voids found are more likely to be ‘tunnels’,
and spherical symmetry is not applicable. Therefore, we use our simulations to
predict the stacked ISW signal, which captures the non-linearity of the density

evolution. As a comparison, we use this method to compute the linear theory

The auto power spectra of simulated ISW maps for the mock
i four tomographic slices.
computations are shown with dashed lines and the quasi-linear
approximations are shown with solid lines. The grey region indicates

catalogue

the low-£ range that is removed in the linear map.

prediction of the same signal, and demonstrate their differences.

The full non-linear
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6.3 Methods

6.3.1 Void finder
We follow the void finder algorithm in [250]. The finder takes the following steps:

1. We estimate the 2D density fluctuation on HEALPIX maps with § = n/n—1.
We then apply a Gaussian smoothing of ¢ = 202! Mpc/d(z), where d(z)
is the mean comoving distance to the tomographic slice. We then define
pixels with § < d, as potential void centres. In practice, we fix J, to pick

out the lowest 10% of the smoothed pixels, which is around §, = —0.2.

2. Starting from the lowest density pixel in the potential void centres, we
compute the mean density J; inside a circular shell of radii R; and R; +
AR for each R; € {R}. AR is chosen to be 1A' Mpc. Once §; > 0 is
encountered for the first time, we register R, = R; + AR/2 as the void
radius. In practice, we use the query_disc function in HEALPY to find

pixels within a disc of angular size 6; = R;/d(z).

3. Once the void is found, we check the potential void centre list, and exclude

any centre that is inside the existing void.

4. We then update the list of potential void centres and repeat steps (2)-(3)

until the list is exhausted.

The free parameters in this finder algorithm are the initial smoothing ¢ and the
density cut d,. A larger o will result in the merging of smaller voids, and could
lead to higher signal to noise [146, 250]. As a result of the merging of voids
and the hierarchical void-finding procedure, the void catalogue can be different.
Increasing 9, would include shallower voids. However, this should not affect any
deeper voids found with a lower 6,. It is possible to find small but deep voids
embedded in large shallower voids. We choose {R} in the range 1h~! Mpc <
R < 300 h~! Mpc, with an increment of 2 h~* Mpc between each sample. After
we obtain the void sample, we further exclude voids that have have less than 70%

of their area inside the survey mask. An illustration of the procedure is shown in

Fig.

A major difference between this work and [146] is that our redshift slice is much

thicker whereas they used slices of comoving size 100 A~! Mpc. In [146], due to
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0.3 <z =0.45 potential centres

Figure 6.4 An example of the void finding procedure using the tomographic slice
in redshift range 0.3 < z < 0.45. The highlighted pizels correspond
to the potential void centres, selected on the smoothed density map
with § < &x. In this case, 0, = —0.15. The background intensity
map shows the density fluctuation in this slice.

the thin redshift slice, they also include a pruning of overlapping voids between
different redshift bins by shifting the bin edges a few times. Thus, although
the void finding algorithm is defined in 2D, their void catalogue is comparable
to those found using 3D algorithms. We do not carry out this procedure here
because we expect that the structures in the four tomographic bins are dominated
at distinctive redshifts and thus not strongly correlated. The voids found here

are likely to be ‘tunnels’ rather than spherical objects.

To find clusters, we apply the identical procedure to an inverted density map.
Due to the lognormal shape of the smoothed density distribution of each map,
we select the densest 5%, instead of 10%, pixels as potential centres. This choice

gives similar numbers of clusters and voids in the final sample.

In order to obtain the stacked signal at the position of these superstructures, we
rotate the map (in this case, the map can be galaxy density, lensing convergence,
or temperature fluctuation) at the pixel level to place each superstructure centre
at (6,¢) = (0,0). We then stack the rotated maps scaled by the void radius R,,

on a grid with 0 < R < 3R,,. To account for masks, we also perform the same
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0.3 <z=0.45 voids

Figure 6.5 The resulting void centres (shown highlighted dots) from Fig. and
their void radius (shown in fainter circles). Notice that some voids
at survey boundaries are cut. Also notice that voids can overlap, in
cases where deeper voids can be found inside shallower voids.

rotation to the mask for each void. The stacked map is obtained by

. p™map
Pstack — Zz 7 )
Zi Pimask ’ (6 5)

where P"*P is the pixel value for the map for i-th void, and P is that for the
mask. We extract the isotropic radial profile for these stacked images. Given the
angular bins {f}, we measure the average signal in the ring between radii ¢; and

0;11, and assign the value to the middle of the angular bin.

6.3.2 Covariance matrix

We use three methods to estimate the covariance matrix for the stacked signal
to account for the noise on the background CMB map as well as the foreground

superstructure positions.

To capture the CMB noise, we generate 1000 random CMB maps with nside = 512
using the measured pseudo CMB temperature auto power spectrum, corrected
by the fraction of sky lost due to the mask C; = C, / fscy- The maps are then
generated using the synfast function in HEALPY applied to Cy, and multiplied
by the Planck 2018 CMB mask. For comparison, we also use the Planck best-
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fit ACDM CMB power spectrumEL accounting for the pixel window function
and the FWHM = b5arcmin circular Gaussian smoothing. These methods
give a consistent covariance matrix. We repeat the same stacking process for
superstructures in each redshift slice on each of the random CMB maps and

extract the averaged radial profile. The covariance matrix is computed by

1 & I
Cij =~ D (@ -z — 7)), (6.6)

where NV = 1000 is the sample size, x; is the measurement of i-th data component
in the s-th sample, and z; is the mean measurement of the i-th component. The
inverse covariance is corrected by the Hartlap factor [116] with Cj;' = (N —p —
1)/(N — 1)(C’igl>, where p = 15 is the length of the data vector.

To estimate the errors due to the fluctuations of the foreground galaxy sample,
we generate 1000 sets of random superstructure positions for each redshift bin
within the survey mask, and compute the stacked signal on the Planck 2018 CMB
temperature map. It should be noted that this assumes no correlation of the
positions of the superstructures, which are in general not true: there will be close
pairs of clusters, while it is unlikely to find two voids that are close to each other.
Nevertheless, this method provides a rough estimate of the foreground random
error. The covariance is computed using Eq. and the inverse covariance is

corrected by the Hartlap factor.

Finally, we estimate the covariance matrix from Jackknife subsampling by
excluding one superstructure at a time in the given redshift bin. The sample size is
equal to the number of superstructures in each bin, N;. The resultant covariance
matrix from Eq. is multiplied by (V; — 1) to account for correlation between
different Jackknife samples. The Jackknife covariance matrix is noisy with small

sample size, i.e., in the lower redshift bins.

The comparison of the diagonal elements of the three covariance matrices for
the void sample is shown in Fig. [6.6] For the cluster sample, the covariance is
similar but with different number of objects in each bin. In all cases, there is close
agreement between the three methods. Due to the small Jackknife sample size in
bin 0, the diagonal elements are noisy compared to the other two methods. From
here on, we will use the covariance matrix estimated from random void positions

in our following analysis. The jackknife covariance is used for the case of the

Shttp://pla.esac.esa.int/pla/#cosmology
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—— bin 0
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bin 3
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random CMB
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diag(C) [uK?]
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0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 6.6 The diagonal elements of the covariance matrices (in [uK?]) for the
radial ISW stacked profile in each redshift bin (shown in different
colours). The dotted lines show that from 1000 random CMB
samples using the void positions in data, the solid lines show that
from 1000 sets of void positions using the real CMB map, and the
dashed lines show the Jackknife error from the actual data.

stacking of all superstructures.

6.4 Superstructures

A summary of the numbers of voids and clusters found in each redshift bin is
shown in Table for both the mock and real data. In general, the data and the
mock show good consistency in terms of the number of voids found and in the
distribution of void radius. For clusters, the density cut J. in the finder algorithm
is slightly larger in data compared to mock, and the number of clusters found is
smaller especially in bin 2 and bin 3. The distribution of the radius in comoving
length and central density (in the smoothed map) of these superstructures is
shown in Fig. [6.7 The majority of the superstructures found have a radius of
around 60 A~ Mpc, with an extended tail towards R, ~ 300 h~! Mpc. There is
a small number of clusters in data that saturate at the maximum radius. It is
pointed out in [I45] that there is an anti-correlation between the depth and the
size of the superstructures. There is, however, no clear trend in the voids and
clusters found here. The minimum R, at fixed central density increases with the

central density becoming more extreme.
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The stacked galaxy density profiles are shown in the upper panel of Fig. for
both voids and clusters. The agreement between mock (solid bands) and real
data (circles for voids and squares for clusters) is good. The dotted lines show
the profile divided by linear galaxy bias in each case. The agreement between data
and simulation using linear bias is expected for voids, as discussed in [229]. At
R > R, the stacked density profile changes sign and peaks at R ~ 1.3R,,, before
falling to zero at larger scales. This suggests that on average, the voids found
are surrounded by overdensities and clusters are surrounded by underdensities,

consistent with other findings in the literature (e.g. [110]).

6.5 Results

6.5.1 Stacked lensing map

We stack the the Planck 2018 lensing convergence map with /., = 2048 and
the simulated lensing convergence map at superstructure positions in real and
mock data respectively. Prior to stacking, we smoothed the lensing maps with
a Gaussian kernel with FWHM = 1° to suppress the small scale power for the
purpose of map rotation at the pixel level, and this is done consistently in both

data and simulation.

The lower panel of Fig. shows the stacked radial profile of the k-map. Similar
to the case of the stacked galaxy density profile, the change of sign with a peak at
R =~ 1.3R, is also present in the stacked « profiles. For voids, the real and mock
datasets show good consistency in general. For clusters, however, the simulation
over-predicts the lensing signal in bin 3 significantly for R < R,. Combining
clusters in all four redshift bins, we find that the simulation also shows a 30%
excess compared to data, because the sample is dominated by the highest redshift
bin. Due to the slightly more extended R, distribution in the real data compared
to the mock, especially in the highest redshift bin (see Fig. , we check whether
including a weight based on the ratio of the two R, distributions can reduce the
difference between the data and mock. However, the inclusion of this weight
does not change the signal significantly. We characterise the consistency between
simulation result and data using the lensing amplitude A,, where Kqata = AxKin-
Assuming Gaussian likelihoods with £ oc exp(—x?/2) and using the Jackknife

covariance for the combined case, we find A, = 0.937 + 0.087 for all voids and
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Table 6.1 Summary of various parameters used in void finding and the number
of voids in each redshift slice. The first row shows the mean redshift
computed from the best-fit redshift distribution in our previous work.
The second row shows the smoothing scales for the density maps in
units of degrees, which correspond to a comoving length of 20 h~! Mpc
for each slice. The third row shows the density cut, where § < §, are
selected as potential void centres. The last row shows the number of
voids found in each bin, after excluding voids that have less than 70%
of their area inside the survey mask.
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Figure 6.7 Superstructure size and central density in real and mock data. The
radius is defined as when the mean density measured within a ring
of central radius R and width 1 h~' Mpc first become positive.

176



A, = 0.712 £ 0.076 for all clusters. Assuming independence, this difference is
formally 1.90, so hardly compelling evidence of an inconsistency; the combined
result gives A, = 0.811 £ 0.057.

In H21, the measured the angular cross-correlation between CMB lensing and
galaxy overdensity also has a lower amplitude, A, = 0.901+0.026, given the best-
fit Planck 2018 cosmological parameters, og = 0.811 and €2, = 0.315. We further
measure the angular cross-correlation C7” of the mock and compare it with data.
In order to account for the difference in the galaxy bias, we include galaxy auto-
correlation C¥?, and compare the bias-independent quantity R = CJ"/(C§9)~1/2.
The lensing amplitude A, is then given by A, = Rdata/Rmock  We compare
the binned modes with 10 < ¢ < 500, assuming a diagonal covariance where the
diagonal terms, following equations (12) and (13) in H21. We obtain the following
values for A, in the four bins: 0.84+0.06, 0.8140.05, 0.86+0.04, 0.79+0.04, and
for the unbinned case, A, = 0.85 4 0.03, consistent with the stacked result. This
may suggest that the lower lensing signal is likely contributed by high density
peaks.

6.5.2 Stacked ISW map

We remove ¢ < 10 modes from the Planck 2018 CMB temperature map and the
simulated ISW map to reduce the effect of the imperfectly simulated large-scale
modes in the simulated ISW map as shown in Fig. [6.3] A comparison of the
stacked ISW profiles in data and simulation is presented in Fig. [6.9 The linear
theory prediction from the lensing potential gives consistent result as does the full
non-linear calculation, shown in the solid and shaded lines. Given the size of the
error, the data show general consistency with the simulation. In the void case, it
is noticeable that in bin 1, the data have a larger signal in R < R,, whereas in
bin 0, the data measurement is slightly positive. The level of fluctuations in the
four measurements suggest that these deviations are not statistically significant.
We use the covariance matrix obtained from 1000 sets of random void positions
to quantify the consistency between data and simulation. Given 15 degrees of
freedom, the y? for each redshift bin is 8.9, 11.1, 16.2, 11.8. The null test of
the data signal gives x? of 8.1, 12.7, 15.2, 10.2. In general, the data do not
show a preference for the simulation prediction over a null signal. For clusters,
similar level of statistical fluctuations are present, with y? = 11.3,7.6,10.8,16.1
for data compared to simulation, and x? = 10.5,8.9,11.3,17.3 for the null test.
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Figure 6.8
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Upper panel: The averaged radial profile of stacked galaxy density in
each redshift bin at the superstructure positions found in simulation
(solid band) and data (points). The dotted lines show the mean
profile divided by the linear galaxy bias measured in simulation and
data respectively. Lower panel: The averaged radial profile of stacked
CMB lensing convergence. The lensing map have been smoothed by
a Gaussian kernel of FWHM = 1° to suppress the small scale power
for the purpose of map rotation at the pixel level. The error bars
come from Jackknife sampling of the voids in each redshift bin.
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Combining voids in all four bins, we find that x> = 12.6 for simulation and
10.1 for a null signal. The larger x? for the simulation is probably due to the
slightly negative signal at R > R, opposed to positive. The combined cluster
result shows x? = 11.1 for simulation and 15.1 for null signal. We characterise
the consistency between simulation result and data using the ISW amplitude
Arsw, where ATyaa = AiswATi,. Assuming Gaussian likelihoods with £ o
exp(—x?/2), we find Aigw = —0.1040.69 for all voids and Agw = 1.5240.72 for
all clusters. The combined result gives Ajgw = 0.68 = 0.50. Therefore, given the
size of the error, the measurements are fully consistent with the ACDM prediction;

however, there is also no clear detection of this signal.

6.5.3 Comparison with K19

We investigate the possible causes of the excess signal in K19. We have tried to
apply the same void finding algorithm as K19, but there are a few differences.
Firstly, they used redshift bins with a comoving width of 100 A~! Mpc between
0.2 < z < 0.9, whereas our bins are much wider. Secondly, due to the larger
galaxy bias of the redMaGiC sample, they use a fixed §, = —0.3 in the void finding
algorithm across all redshift bins, and a comoving smoothing scale of 50 h~! Mpc.
In our fiducial setting, we have chosen to define ¢, to correspond to the lowest
10% in density, and applied a comoving smoothing scale of 20 h~! Mpc. Thirdly,
in K19 a subsample of supervoids with R, > 100 A~! Mpc in particular gave the
excess signal, whereas in our fiducial void sample, we do not make selections
based on void properties. Finally, the void sample in K19 is only within the DES

footprint, whereas our sample covers a larger region.

To begin with, we make the assumption that differences in the void finding
process would not lead to an inconsistent stacking signal, because the underlying
structures found should correspond to the same physical underdensities. In this
case, one possibility could be that the excess is only contributed by the supervoids

with R, > 100~ Mpec.

Thus, we look at such subsample with our fiducial setting. This gives a total of
151 simulated voids, and 187 voids in the actual data. This number is smaller
than one would expect from the K19 sample, which comprises 87 voids with
R, > 100 h~! Mpc within the DES footprint, if it were extended about 3 times
to the same size as the Legacy Survey. This difference can be attributed to the

thicker redshift slices used in our analysis. An additional factor is that most of
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Figure 6.9 The averaged radial profile of stacked ISW temperature in each
redshift bin at the void positions found in the mock (yellow band)
and real data (purple data points). The simulation prediction using
linear theory is shown by the solid orange lines. For data, we use
the Planck 2018 CMB temperature map. For both maps, the £ < 10
modes are removed. The error bars come from Jackknife sampling
of the voids in each redshift bin.
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the DES Y1 region is masked owing to our completeness cut, thus we may also
lose a number of voids from that area. The stacked ISW profiles are shown in
Fig. . The overall signal from data (purple dots) shows good consistency
with our simulation results (yellow band). On the same plot, we also copy the
results from K19. While their theoretical prediction (grey solid line) seems to be
smaller than ours, their void signal from the DES sample (blue band) is much
stronger. The difference in the theoretical prediction is plausibly due to the
difference involved in the void finding procedure. Using the covariance matrix
from 1000 sets of random void samples, the x? is 16.3 compared to simulation
and 16.5 compared to a null signal with DOF = 15. This suggests that in our
fiducial sample, the large voids with R, > 100 h~'Mpc do not cause an excess
ISW signal.

Another possibility is that the K19 excess is due to cosmic variance. To test this,
we apply the same survey mask from the DES footprint, giving a subsample of
173 voids. Among these, 40 voids have R, > 100 A~ Mpc. As shown in Fig. [6.10]
the stacked signal using all voids within the DES footprint (brown squares) is
consistent with zero, but selecting the large voids (pink star) does result in a
mean signal closer to that measured in K19. However, given the size of the error
bars, the overall signal is consistent with both a null signal and the simulation

prediction.

The above investigation suggests that the excess signal may be due to difference in
the redshift binning and parameter choices in the void finding process. Thus, we
try to follow as closely as possible the procedure outlined in K19 (and references
therein) in order to see if we can reproduce their signal. We split our photometric
sample in the redshift range 0.2 < 2z < 0.8 into bins of comoving width of
100 A=t Mpc. We exclude bins beyond z ~ 0.7 due to a sharp drop in number
density. This gives a total of 11 redshift bins. We also create another sample that
has a matched colour distribution in ¢ — W; vs r — 2z and g — r vs r — z as the
DESY1A1 RedMaGiC sample. The details of the selection criteria can be found
in Appendix [A] Such a selection removes about half of the sample compared to
the unmatched one. To account for the masked DES Y1 region, we relax the
completeness threshold for the mask to 30% so that most of the DES Y1 region is
now included. The completeness weighting and stellar density correction is then
applied to each density map. Finally, due to the large photo-z tail, we expect
neighbouring bins to overlap significantly. In K19, a careful pruning of voids was

applied by shifting the redshift binning by a small amount. In this case we apply a
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Figure 6.10

K19 theory
® R, >100Mpc/h, fiducial
[l DES footprint, fiducial
DES footprint, R, > 100Mpc/h, fiducial
< DES footprint, R, > 100Mpc/h, matched
<] DES footprint, R, > 100Mpc/h, matched, colour sel
R, >100Mpc/h, mock fiducial

K19 data

Stacked wvoid profiles for a few subsamples chosen to match the
K19 measurements (data shown as a blue band and theory shown
as a grey solid line). The subsamples involving our fiducial setting
include: selection of void radius R, > 100 h~! Mpc (purple circle);
selection within the DES footprint (brown square); and selection
within DES footprint as well as cut on R, (pink star). We also
consider subsamples that are more closely matched to K19 in the
void finding process within the DES footprint with and without
a redMaGiC-like colour selection (shown in open and filled green
triangles). The error bars given by Jackknife resampling are shown
in the lower panel.
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simplified version, where for neighbouring bins we remove the voids in the higher
redshift bin if their centre lies within 0.5R,, of the voids in the lower redshift bin.
We check that this removes most of the overlapping voids. We also apply the
same smoothing scale as in K19, 0 = 50 h~! Mpc, in void finding. We find 75 and
64 voids with R, > 100 h~! Mpc inside the DES footprint with and without colour
space constraints respectively, comparable to the 87 sample in K19. The stacked
signal at these void centres are shown in Fig. as green open triangles (with
colour selection) and filled triangles (without colour selection). These signals are
slightly positive at R < R,, and do not reproduce the excess signal shown in K19
(open black triangles). Thus, the excess signal may be due to other details in the
void catalogue construction. For example, the small redshift bins can be affected
by the uncertainty of our photo-z sample, which has a median of |Az| = 0.027

but with a large non-Gaussian tail.

To summarise, we have attempted to compare the ISW signal from our void
sample with K19, by investigating cuts on the void size, cosmic variance, and
void-finding procedure. In the first two cases, we do not see a clear deviation
from our simulation prediction based on the ACDM cosmology. In the last case,
we obtain a signal that is consistent with ACDM, rather than about three times
larger than the theoretical prediction from K19. This difference may be caused
by details in the galaxy catalogue such as the galaxy sample and the photometric
redshifts.

6.5.4 Searching for higher ISW signal

In this Section we look at the dependence of the signal-to-noise of the stacked
ISW profile on supercluster properties. The purpose of Section is to see whether
the excess ISW can be reproduced in by applying specific selections, rather than
trying to claim a higher significance detection. Specifically we focus on R, and
0., and in each case, we split the sample into the most extreme 10% and 50%, and
compare the SNR with the full sample. We use the simulation to determine the
mean expected signal (thus the signal itself is noise free) and we show realistic
errors by computing the covariance from 1000 sets of random void positions within
the DESI Legacy Survey footprint, and stack using the Planck CMB map. As
shown in the upper panel in Fig. [6.11] selecting the 10% most extreme objects
in terms of R, or §. can boost the predicted ISW signal by about a factor of 2.
From the lower panel in Fig. it is clear that the larger R, has a smaller
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Figure 6.11 Stacked ISW profile split by central depth . (solid line) and size R,
(dotted line) using superstructures in the mock catalogue. The split
is using the most extreme 10%, 50%, and the full sample in each

case. Error bars are given by 1000 sets of random wvoid stacking
using the Planck CMB map.

uncertainty compared to the more extreme 9. selections with the same number
of objects. This may be due to that fact that with the larger R, selection, the
stacked profile is effectively averaging over a larger scale on the CMB map, thus

reducing the noise on the profile.

We measure the constraints on Ajgw for these selections in data. Focusing on
the 10% and 50% of the superstructures with largest R, we find that the data
measurements show an increased signal especially in density peaks, with Aigw =
0.10 £0.99,0.57 + 0.71 for voids and Ajgw = 1.47+0.77,2.59 £ 0.73 for clusters.
Limiting the sample to the 10% and 50% with the most extreme 4., we find
that the data do not show significant boost in the ISW signal, and Aigw =
0.154+1.24,0.32 + 0.89 for voids and Agw = 0.83 £ 1.26,0.25 £ 0.89 for clusters.
Combining the voids and clusters in the d. selection, one finds Agw = 0.75 £+
0.83,0.58 +0.59 for the 10% and 50% of the total sample, which does not improve
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the significance of the signal compared to the full sample. On the other hand,
in the R, case, Ajgw = 0.96 £+ 0.61,1.55 £ 0.51. The constraints on R, from the
higher R, subsamples and the full sample is statistically consistent with 0.3c and
1.20 for the 10% and 50% cases respectively. Therefore, by constraining on a
larger R, sample, it is statistically possible to obtain a larger mean ISW signal,
leading to a more significant detection of the ISW amplitude Asw. However,
we emphasise that this selection is a posteriori and one should be careful in
interpreting these results because of the look-elsewhere effect. This effect refers
to that, by repeating certain measurements multiple times (or searching over a
wide range of parameter space in the continuous case), the possibility of getting a
higher signal due to random fluctuations also increases [I80}, 264]. The significance
of an anomaly can be overestimated in this way which leads to biased conclusions.
This effect can be accounted for using a number of simulations or analytically,
e.g. [21].

6.6 Conclusions

In this Chapter we have constructed a catalogue of superstructures, using
tomographic data with 0 < z < 0.8 in the DESI Legacy Imaging Survey. We
adopt the void finding algorithm described in [250], taking the lowest 10% and
highest 5% pixels of the galaxy density field after 2D Gaussian smoothing with
o = 20 h~* Mpc. The aim has been to test the excess ISW signal from supervoids
claimed in the literature [101} [146]. To compare our results with the ACDM model
prediction, we constructed a mock catalogue using the Multidark simulation. The
galaxy number density, linear, and non-linear galaxy biases are matched to those
found in our previous work on the DESI Legacy Imaging Survey (Hang et al.
2021; H21), and we applied a redshift error to match the photo-z precision found
in H21. The properties of the superstructures and the stacked galaxy density
profiles around these superstructures are consistent between the mock and the

data. We also created the corresponding lensing convergence and ISW maps.

We then looked at the stacked CMB lensing convergence and CMB temperature
using the Planck 2018 maps at the centre of these superstructures, scaled by
the void/cluster radius R,. The comparison between the stacked lensing signal
agrees well in the void case, but the cluster signal seems to be slightly over-
predicted in the highest redshift bin. Using the covariance matrix from 1000

sets of randomised superstructure positions, we quantify the consistency between
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simulation and data via the lensing amplitude A, and find A, = 0.81+£0.06 from
combining the voids and clusters. This is largely driven by the highest redshift
bin, which contains the most clusters. In H21, we favoured a lensing amplitude
of A, = 0.90 4 0.03 compared to the theoretical prediction from the Planck 2018
best-fit cosmology, using cross-correlation in spherical harmonic space (therefore
essentially utilising all pixels, rather than density peaks and troughs). This
lower amplitude of the CMB lensing signal is consistent with our result from
superstructures, although we note that the voids and clusters are in 1.9¢ tension,
with A, = 0.937 £ 0.087 for all voids and A, = 0.712 4+ 0.076 for all clusters.
Despite this, the level of disagreement between our mocks and data for the lensing
signal is negligibly small for the purpose of ISW study, as its measurement is much

noisier.

The stacked ISW signals are in general consistent with simulation results —
but also with a null signal, reflecting the low signal-to-noise of the ISW effect.
Specifically, we do not detect a significant signal from the void catalogue, and only
a marginal signal from clusters. Combining the superstructures, we find the ISW
amplitude to be Ajgw = 0.68 4+ 0.50, somewhat weaker than the cross-correlation
result from H21 which gave Ajgw = 1.10£0.31 (although both measurements are

consistent). Therefore, we do not claim a detected ISW signal using this sample.

We compare our results with K19, [146], who reported a 30 excess of ISW
signal compared to ACDM prediction from supervoids with void radius R, >
100 A= Mpc, using the DES redMaGiC sample within similar redshift range.
Using our fiducial settings described above, we do not find any excess signal from
voids with the same size cut, or within the same survey mask. Two subsamples are
then constructed to match the redshift binning and void finding procedure in K19
as closely as possible within the DES footprint, with and without a redMaGiC-
like colour selection. The stacked ISW profiles from the voids found in these

samples also do not show any anomalous signal.

Lastly, we look at the dependence of the ISW signal on the void properties
and discuss whether this can be used to explain a higher detection of the
ISW signal from suitably chosen superstructures. We show that the mean ISW
signal from the mock dataset is amplified by excluding smaller or less extreme
superstructures, while the shot noise increases. Applying the same selections
to the data, we find no significant improvement in the constraint on the ISW
amplitude Aigw from more extreme superstructures, although there is a boost in

Ajsw from density peaks with larger R,. The most extreme subset conditioning on
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the largest R, gives Aigw = 0.96+0.61, and the 95% upper limit is 2.16. However,
we emphasise that the selection of the subset is not a priori. The increase in the
signal is likely overestimated due to random statistical fluctuations, or the look-

elsewhere effect.

In summary, then, our results from investigating the impact of superstructures
on the CMB do not reveal any compelling discrepancy with ACDM. The CMB
lensing results for superstructures independently favour an approximately 10%
reduction in amplitude relative to the Planck 2018 prediction, in very close
agreement with our conclusion from the overall galaxy-lensing cross-correlation
in H21, which we argued favoured a matter density at the low end of the range
permitted by Planck. The evidence for this reduced lensing amplitude is present
in both voids and clusters although the latter favour a stronger signal at the 1.90
level; it will be interesting to see if this tension becomes more significant in future
datasets. Similarly, the ISW signal from stacked superstructures is consistent with
the H21 cross-correlation result, and not in significant disagreement with ACDM.
Formally, the 95% confidence upper limit on Agw from superstructures is 1.51,
and therefore we do not reproduce literature claims of anomalous superstructure
ISW signals at several times the ACDM prediction. We have tried to vary our
analysis in order to mimic more closely the selection involved in these claims, but
have not succeeded in raising the ISW signal. Presumably some small differences
in method remain. But the important point is that any such excess is apparently
not robust, since we were not able to produce an excess signal even by exploring

a number of alternative forms of superstructure selection.
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Chapter 7

Closing Remarks

Over the last few decades, a cosmological concordance has been established by
observations of the CMB and the spatial distribution of galaxies. However, our
ignorance of the nature of dark matter and dark energy, which comprise 95% of
the Universe, is unsatisfying. Various models of dark energy and modifications
to General Relativity have been postulated in order to solve this mystery. The
growth and evolution of large-scale structures, as the result of the competition
between gravity and expansion caused by dark energy, is an excellent testing
ground for possible deviations from the standard cosmological model. In this
thesis, I have performed two such tests using redshift-space distortion and the
correlation between CMB and large-scale structures. I will now briefly summarise
the main results presented in this thesis, and provide an outlook for possible future

works.

7.1 Summary

In Chapter [2, T measured RSD from the two-point cross-correlation between
galaxies and groups using the GAMA survey. To reveal the dependence of the
RSD signal on tracers, I split galaxies into red and blue subsamples, and groups
into three stellar mass bins. The resultant 2D correlation functions show a clear
trend in colour and group mass, as expected, especially at non-linear scales where
the ‘Fingers of God’ dominates (Fig. 2.9). Applying a linear model with an

appropriate minimum scale cut on the measurements, and testing against GAMA
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mock catalogues, I measured a growth rate fog = 0.25 4 0.15, consistent across
different subsamples and also with the Planck 2018 result (Fig. [2.15]).

The imprints of galaxy clustering on the CMB is useful for constraining
cosmological parameters such as the growth rate via CMB lensing, and the dark
energy equation of state via the ISW effect. In Chapter 4] I used the public DESI
Legacy Survey, which provides the deepest wide-area multicolour CCD imaging,
to conduct angular cross-correlation for the above purposes. The challenge was
to obtain robust photometric redshifts for the galaxies given limited photometric
bands. I assigned photometric redshifts to over 70% of galaxies in the Legacy
Survey using a 3D colour grid calibrated by spectroscopic galaxy samples, and
separated the galaxy sample into four tomographic bins between 0 < 2z < 0.8
(Fig. [4.6)).

In Chapter 5| I measured the angular cross-correlation C, of galaxy densities
with the Planck lensing convergence and temperature maps. To pin down the
galaxy bias and photo-z parameters, 1 fitted the ten galaxy auto- and cross-
correlations between the four redshift bins. The best-fit parameters are used
in the CMB cross-correlation analysis, and I tested that marginalisation over
the nuisance parameters do not have a significant effect on the constraints of
the final lensing and ISW amplitudes. Interestingly, I discovered a low lensing
amplitude A, = 0.901 £+ 0.026, more than 30 below the fiducial value given
by Planck. The result was translated to a constraint on the €2,, — og plane
(Fig. , reinforcing the existing lensing tension with Planck. The result shows
that the combined lensing data favours a lower density than Planck, rather than
a reduced normalisation. I also reported a 2.80 detection of the ISW signal with
Asw = 0.98 +0.35.

In Chapter [0, I constructed a superstructure catalogue for the tomographic
bins to measure the stacked signals from CMB lensing and temperature. The
large survey area covered by the DESI Legacy Survey effectively reduces the
impact of cosmic variance, and is ideal for the investigation of the ‘excess ISW
signal’ from supervoids claimed by many in literature. I used a realistic mock
catalogue with matched galaxy bias with data and its corresponding lensing
convergence and ISW maps to compute the expected signal in the ACDM model.
I measured a lensing amplitude A, = 0.81 £+ 0.06 (Fig. , consistent with
that found in Chapter . The ISW amplitude is detected with mild statistical
significance, Aigw = 0.68 £ 0.50. However, it indicates no clear deviation from

the ACDM prediction (Fig. , with a 95% upper limit of 1.51. By splitting
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the superstructures into different subsamples, I found that the signal is boosted
with a minimum size cut from superclusters. However, because this choice is a

posteriori, the result can be overestimated due to the look-elsewhere effect.

7.2 Future outlooks

An extension to the work presented in Chapter [2| would be to push the RSD
modelling into quasi-linear scales where the GAMA data has a higher signal-to-
noise ratio. I plan to apply the streaming model with a separation of the 1-
and 2-halo contributions. While a tighter constraint on fog may be obtained,
the modelling can also reveal dependence of the 1-halo parameters on different
group mass and galaxy types. At small scales, non-linear galaxy bias can be a
complication. Recently, it is pointed out in [201] that, depending on the way
the galaxy sample is split, anisotropic assembly bias can also affect quadruple

moment.

The size and quality of the DESI Legacy Survey photo-z catalogue constructed
in Chapter [4] permits a range of interesting further investigations. One possible
extension of the current study can be to focus on different galaxy tracers in
the DESI Legacy Survey, such as splitting by colour and luminosity. These
subsamples will allow me to check that our results are robust with respect to e.g.
the treatment of scale-dependent bias. The cross-correlation between different
galaxy tracers can also improve our understanding of the assembly history of

galaxies and halos via assembly bias [02, [312].

Another interesting extension is the cross-correlation between the tomographic
density maps and the Planck CMB Compton-y maps via the thermal Sunyaev-
Zel'dovich (tSZ) effect (e.g. [143]). The signal directly probes the total
thermal energy of hot gas in clusters, haloes, and intergalactic medium, which
can be modulated by processes such as radiative cooling and AGN feedback.
The understanding of baryonic feedback is crucial for improving cosmological
parameter constraints at non-linear scales. Strong stellar and AGN feedback can
affect the matter power spectrum at scales up to ~ 1Mpc/h, first demonstrated in
[321] using hydrodynamic simulations. The hot gas ejected from AGN suppresses
the power at these intermediate scales at the percent level. [262] further points out
that such effects can bias weak lensing shear measurements due to redistribution

of baryons. The current solution in the lensing community is to marginalise over
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various baryonic effects, subsequently increasing the error budget. The study of
baryonic effects through cross-correlation between tSZ and the galaxy field could

potentially be a remedy.

In recent years, voids have become a competitive probe for cosmology and
structure formation (e.g. [110], 192]) via RSD and the Alcock-Paczynski (AP)
effect due to their enhanced linearity at small scales. Voids are also ideal
laboratories to test deviations from the standard cosmological model, because
their abundance and profile are sensitive to modified gravity, evolving dark energy
[41], and neutrino mass [313]. The supervoid catalogue constructed in Chapter [6]
can be used for statistical studies assisted with non-standard cosmological
simulations. When combined with the split tracers as proposed above, it also
has the potential to reveal void-galaxy connection and the dependence of galaxy

properties on their environments.

Looking ahead, the field of observational cosmology is expecting a major leap
with the scope of next-generation galaxy surveys and CMB experiments. Tests
of structure growth mentioned in this thesis, RSD and galaxy-CMB cross-
correlation, can be performed to unprecedented precision. With the enhanced
signal-to-noise, these experiments will push parameter constraints to percent or
sub-percent level so that different cosmological models can be distinguished. For
example, DESI [60, 175], which has recently started its 1% survey, is designed to
significantly advance the BAO and RSD measurements. Covering a vast sky area
of 14,000 deg?, DESI will take spectra for over 30 million galaxies and quasars
out to z ~ 3.5. This dataset is expected to improve constraints on the growth
rate by a factor of 4-10 compared to previous results [89] (see also Fig. [7.1)). The
combination of different probes and across different datasets can lead to even
stronger constraints [129]. In particular, DESI contains a dedicated high density
galaxy sample, the Bright Galaxy Sample (BGS), at z < 0.4. This sample,
similar to the GAMA survey but much larger in area, is ideal for RSD analysis
with groups and galaxies as mentioned in Chapter [2| with significantly improved

statistical power.

The space-based Euclid mission [I58], expected to be launched in late 2022, will
provide a great leap forward in weak lensing cosmology, another major test for
gravity. Equipped with multi-band photometry and excellent imager, Euclid will
scan a sky area of 15,000 deg?, delivering exquisite shape measurements of 30
galaxies per arcmin? to as far as z ~ 2. Compared to ground-based surveys,

Euclid does not suffer from systematics caused by the Earth’s atmosphere, and is
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Figure 7.1 The forecast of growth rate measurements from DESI as a function
of redshift. The light pink error bars are from the Bright Galaxy
Sample (BGS) at z < 0.4. The ACDM model is plotted in black
solid line, and the coloured lines show two f(R) modified gravity
models [167]] and the Dvali-Gabadadze-Porrati (DGP) braneworld
model [71]. The f(R) models are scale-dependent, and two cases
with k = 0.02hMpc™" and k = 0.1hMpc™! are shown. These
theories can be distinguished given the forecasted error bar. The plot
is adopted from Huterer et al. [129)].

192



able to extend the measurable wavelength to near infrared. This permits precise
systematic control and photo-z calibration, essential for interpreting the lensing
signal. Euclid will determine the dark energy equation of state to 1% and improve

the growth rate measurement by a factor of 30 compared to current results.

The Legacy Survey of Space and Time (LSST) [151] at the Vera C. Rubin
Observatory will bring the size of cosmological surveys to the next level. Starting
around 2022-2023, LSST will chart almost the entire sky with 30,000 deg?,
observing ~ 10 billion stars and galaxies and generating petabytes of data during
its 10-year operation. In addition to a boost in statistical power, hundreds of
repeated visits in the main survey area of LSST allow fine control of systematics

and null tests, making it suitable for a wide range of scientific purposes.

We also expect major advances in CMB observations in the near future. For
example, CMB Stage 4]is a set of ground-based experiments that consists of 21
telescopes at the South Pole and in the Chilean Atacama desert, targeting at
wide area and high resolution CMB observations. With an order of magnitude
increase in the number of detectors, the sensitivity and depth of these experiments
will not only greatly improve the current constraints, but also permit a test of
inflationary theories. The cross-correlation analysis with large-scale structures
similar to Chapter [5| will greatly benefit from these upgraded CMB maps, as the

constraints on the lensing amplitude A, is limited by the current CMB resolution.

In light of these high precision surveys, I believe that it is a particular exciting
time for cosmology. One should be prepared to embrace one of the two possible
outcomes: either the discrepancy persists, thus pointing to strong evidence for
new physics, or it vanishes due to a better knowledge of systematic errors,
hereby proving another triumph for General Relativity and the ACDM model.
In any case, unbiased interpretation of these measurements are vital — non-linear
effects and unaccounted systematics may easily shift the parameter constraint at
percent or sub-percent level. Therefore, it will also be a flourishing time for novel

cosmological probes and theoretical efforts.

Finally, tests for fundamental theories of physics, i.e. General Relativity and the
Standard Model of particle physics, upon which cosmology stands, are also carried
out extensively in other branches of physics. For example, since its first detection
in 2016, the LIGO/Virgo Collaboration now has a collection of 50 gravitational
wave events. Moreover, in 2020, they found a 2.6 M, object lying in the ‘mass gap’

'https://cmb-s4.org/
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between a neutron star and black hole [3], posing challenges to the current model
for the formation and mass distribution of coalescing compact binaries. Not long
after the breathtaking photo of the supermassive black hole at the centre of M87
taken by the Event Horizon Telescope (EHT) [79], earlier this year, the light
polarisation was also detected around this black hole, revealing signatures of a
magnetic field [80, 8I]. The consistency of observation and modelling shows a
great triumph for General Relativity tested in the strong field regime. Outside
the field of astronomy, the Large Hadron Collider (LHC) has reported a mild
violation of lepton universality in the beauty-quark decays at 3.1 level [150]
earlier this year. Several weeks before the completion of this thesis, the Muon g—2
experiment at Fermilab revealed a 4.2¢0 tension in the measured muon magnetic
anomaly in combination with a previous experiment [4]. These results, although
still tentative by the standard of particle physics, could shake the foundation of
the Standard Model. Therefore, it may well be the case that a breakthrough in
cosmology can come unexpectedly from outside of its realm, and vice versa. In
my opinion, with great advance in theory and technology, the future is bright for

cosmology.
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Appendix A

Matching redMaGiC colour
selection

In order to match the DESY1A1 redMaGiC galaxies as closely as possible, we
compare their distribution in colour-colour space with a subsample of DECalS
galaxies in the same region (Fig. . We apply cuts in the g — r versus r — z
plane based on the ratio of the normalized distribution. We exclude regions in
this space where the ratio is smaller than a threshold set to 0.5. Such a exclusion
does not affect the redMaGiC sample (about 92% of our objects remain), but it
results in a cut in low-redshift DECALS galaxies. The selected DECALS sample
contains 1.8 million galaxies, about 3 times the redMaGiC sample. Fig.
shows the selected region in the colour-colour plane for our full sample used in
Section in the redshift range 0.2 < z < 0.8 in the north and south part of
the DESI Legacy Survey.
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Figure A.1 The comparison of redMaGiC (left, blue) and DECALS (right, red)
samples in the same sky area in g—r and r — z plane (upper panel),
and in g —wy and r — z plane (lower panel). DECALS contains a
large number of bluer objects compared to redMaGiC. The thin strip
on the left side of the main sequence is likely to be residual stars.
The black dotted box is the region used to take ratios.
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