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1. Introduction

It is known that the center of mass energy can take arbitrarily large value if a
collision occurs near the event horizon of an extreme rotating black hole!. However,
it does not mean that an ejected particle will have very high energy at infinity
because of red-shift. Hence, how large energy we will observe at infinity has been

2. Most of those results were obtained for a point

evaluated for various situations
test particle. But a matter around a black hole normally has rotation. Since
the equation of motion of a spinning particle is totally different from the geodesic
equation, and the effect of spin is nontrivial, it is important to study the efficiency
of the extracted energy (n = (extracted energy)/(input energy)) in the collision of
spinning particles. We focus on the collisional Penrose process of spinning particles
near the horizon of an extreme Kerr black hole and evaluate the maximal value of

the energy efficiency for various processes.

2. The orbit of a spinning particle

In the Kerr spacetime, there are two Killing vectors, and then we have two conserved
quantities; the particle energy E and the particle total angular momentum J. For
simplicity, we assume that a spinning particle is orbiting on the equatorial plane
(¢ = 7/2) and the direction of a particle spin is parallel to the rotation of a black
hole. The spin parameter s is positive when a particle is parallelly spinning to the
rotation of the black hole, while s is negative when it is counter-rotating.
By this setting, we obtain the specific momentum u(®) = p(a)/u, where p(®) is
the momentum and g is the particle mass, as
) [(r®+ala+s)r +aMs)E — (ar + Ms)J| 1)
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where M and a are the black hole mass and its specific angular momentum, respec-
tively. The suffix (a) denotes the tetrad components. From the definition of the
particle mass, we obtain the radial component u(*) as

uD — U\/(u<0>)2 — (u®)2 —1, (3)

where ¢ = 41 denotes the direction of the radial motion of the particle, i.e., a
particle is moving outward for ¢ = 41 while it does inward for o = —1.

Before the discussion of the collisional Penrose process, we should note a few
important points as follows:
(1) Since the four-velocity of a spinning particle v(*) = dx(®) /dr is not always paral-
lel to the four-momentum u(* , we have to impose the timelike condition v(“)v(a) <0
in our analysis.
(2) In order for a particle to reach the horizon, the condition J_ < J < J., must
be satisfied. Here, J..(> 0) and J_(< 0) are the maximum and minimum values
of the particle angular momentum, respectively. This condition is obtained from
(uM)2 > 0 for any radius of r > ryg = M.
(3) To obtain arbitrarily large center-of-mass energy, the collision must take a place
near the horizon and one of collisional particles must have the critical angular
momentum J., = 2F M, and the other particle must have sub-critical angular mo-
mentum (J_ <)J < Jgp.

3. Collisional Penrose process

We assume that two particles (the particle 1 [critical, J; = 2FE; M| and the particle
2 [sub-critical, Jy < J-]) plunge from infinity, and collide at the point r. = rg/
(1 —¢) (0 < e <« 1), where ry = M is the horizon radius. After collision, the
particle 3 (= the particle 1) is coming back to infinity, while the particle 4 (= the
particle 2) will fall into a black hole.

At the collision, we have the following onservation laws:

Ey+Ey=FE3+Ey, Ji+Jo=Js3+ Ju, (4)
(1) 4 ) — 1) | 0, 5)

S1+ 82 =353+ 54, Dy’ + Do
From these conservation laws, we find that particle 3 must have near-critical angular
momentum (J3 = 2E3M + O(e)). We consider only the head-on collision with
01 =03 =+1 09 =04 = —1, s9 = s4, and s1 = s3, because it gives the maximum
efficiency.

We expand the above conservation equations in terms of € and solve the ener-
gies F5 and F3 by use of the expansion coefficients. We then evaluate the energy
efficiency ) = F3/(E1 + E2). The detailed analysis is given in Ref. 4.

In Table 1, we show the maximal efficiencies and the input and output en-
ergies for the following three cases : [1] Collision of two massive particles, [2]
“Compton” scattering (the particle 1: massless, the particle 2: massive), and [3]
“Inverse Compton” scattering (the particle 1: massive, the particle 2: massless).
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In the case of the collision of two massive particles, the maximal efficiency 7 is
about 15.01, while it is about 26.85 for the case of the “Compton” scattering in the
limit of Fy — oco. The maximal efficiency becomes the largest for the “Compton”
scattering, which in fact is the same as the case for without spin. Compared with
the spinless case, these maximal efficiencies become twice larger than the spinless
case. We then conclude that a spin plays an important role in the context of energy
extraction. Note that the efficiency does not change significantly in the case of the
“inverse Compton” scattering because the absorbed massless particle is spinless and
the escaped massive particle with large energy cannot have a large spin.

Table 1. The maximal efficiencies and energies for three cases of collisions of particles plunging
from infinity. We include the result for the nonspinning case (Ref. 3) for comparison. The maximal
efficiencies and maximal energies are enhanced when the spin effect is taken into account.

collisional process spin input energy | output energy | maximal
(s1,52) (E1, E2) (E3) efficiency
Collision of non-spinning 12.66p 6.328
two massive particles || (0.01379M, —0.27004M) (1 1) 30.02 15.01
“Compton” non-spinning +o0 13.93
scattering (0, —0.2700M) (+o0,) T 26.85
“Inverse Compton” non-spinning 12.66p 12.66
scattering (0.02679,:M, 0) (1, 0) 15.6410 15.64

The present setting may be very unlikely in more realistic astrophysical situa-
tions. Since there are many particles in an accretion disc around a black hole, it
may be more natural for a particle plunging from infinity will collide particles in
the innermost stable circular orbit (ISCO). The result in this case will be published
elsewhere®. The ansatz of an extreme black hole is also not natural. The study for
a non-extreme black hole is in progress.
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