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Abstract

We compute the non-Gaussianity of the curvature perturbation generated by ekpy-
rotic collapse with multiple fields. The transition from the multi-field scaling solu-
tion to a single-field dominated regime converts initial isocurvature field perturba-
tions to an almost scale-invariant comoving curvature perturbation. In the specific
model of two fields, ¢1 and ¢2, with exponential potentials, —V; exp(—ci¢;), we cal-
culate the bispectrum of the resulting curvature perturbation. We find that the
non-Gaussianity is dominated by non-linear evolution on super-Hubble scales and
hence is of the local form. The non-linear parameter of the curvature perturbation is
given by fnr = 50? /12, where c¢; is the exponent of the potential for the field which
becomes sub-dominant at late times.

1 Introduction

Recently, there has been progress in generating a scale-invariant spectrum for curvature perturbations
in the ekpyrotic scenario with more than one field, which we will refer to as the new ekpyrotic scenario
[1, 2, 3]. If these fields have steep negative exponential potentials, there exists a scaling solution where
the energy densities of the fields grow at the same rate during the collapse. In this multi-field scaling
solution background, the isocurvature field perturbations have an almost scale-invariant spectrum, owing
to a tachyonic instability in the isocurvature field.

The multi-field scaling solution in the new ekpyrotic scenario can be shown to be an unstable saddle
point in the phase space and the late-time attractor is the old ekpyrotic collapse dominated by a single
field [4]. But the transition from the multi-field scaling solution to the single-field-dominated solution
also provides a mechanism to automatically convert the initial isocurvature field perturbations about the
multi-field scaling solution into comoving curvature perturbations about the late-time attractor [5].

On the other hand, the non-Gaussianity of the distribution of primordial curvature perturbations in
the inflationary scenario has been extensively studied by many authors (see e.g. [6] for a review). Thus,
as a natural extension of the study performed in [4, 5], in this paper [7] we compute the non-Gaussianity
of the primordial curvature perturbations generated from the contracting phase of the multi-field new
ekpyrotic cosmology.

2 Model and Homogeneous dynamics
We first review the model and the background dynamics of the new ekpyrotic cosmology with multiple

scalar fields. During the ekpyrotic collapse the contraction of the universe is assumed to be described by
a 4D Friedmann equation in the Einstein frame with n scalar fields with negative exponential potentials

BH2 =V +) 5%, where V= = Ve, (1)
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and we take V; > 0 and set 87G equal to unity. From now on, for simplicity, we concentrate our attention
on the case of two fields. In this case, it will be easier to work in terms of new variables,

1t g1 — g2

IR

The potential can then be simply re-written as

(2)
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It can be shown that U(x) has a minimum at xy = xo and the multi-field scaling solution corresponds
to the classical solution along this minimum x = xg, while ¢ is rolling down the exponential potential.
It is worth noting that the potential for x has a negative mass-squared mi = 9?V/0x?: = 2V < 0
around x = xo which makes the multi-field scaling solution unstable. Furthermore, the x field evolution
is nonlinear, with the cubic interaction being given by

where ¢ = ——=, (4)

which becomes important when we consider the non-Gaussianity later in this paper. Another important
solution is the single-field dominated scaling solution which is also appeared in the old ekpyrotic scenario.
In this paper, we consider the case in which the background evolves from the multi-field scaling solution
to the ¢o-dominated scaling solution without loss of generality.

3 Statistical correlators and d N-formalism

In the two-field new ekpyrotic cosmology, the isocurvature fluctuations acquired by the field y during
the multi-field scaling regime, play a crucial role to generate a scale-invariant spectrum of perturbations.
On the other hand, the fluctuations of the field ¢ are negligible on large scales, because of its very blue
spectral tilt. Thus, in the following we neglect dp fluctuations. To relate the non-Gaussianity of the
scalar field fluctuations to observations, we need to calculate the three-point functions of the comoving
curvature perturbation ¢. In order to do that, we can use the § N-formalism [8, 9]. In the § N-formalism,
the comoving curvature perturbation ¢ evaluated at some time t = t; coincides with the perturbed
expansion integrated from an initial flat hypersurface at ¢t = ¢;, to a final uniform density hypersurface
at t = ty, with respect to the background expansion, i.e.,

C(tfvx) = 5N(tf>tivx) = N(tf7tivx) - N(tfvti) ) (5)

with
ty tr
N(tg, ti,x) = H(x,t)dt, Nty t;)= H(t)dt, (6)
ti 123
where H(x,t) is the inhomogeneous Hubble expansion. We will choose the initial time ¢; to be during
the multi-field scaling regime. Furthermore, since ¢ is unperturbed, § N can be expanded in series of the

initial field fluctuations dy;. Retaining only terms up to second order, we obtain

1
ON = N,Xz'(SXi + §N7X1'XL'(6X1')2 ) (7)
where N, denotes the derivative of N with respect to x.
The bispectrum of the curvature perturbation ¢, which includes the first signal of non-Gaussianity, is
defined as

(Gier Gies Gacs) = (2m)26P (Y ") Be (b, ko, is) (8)
J
where the left hand side of Eq. (8) can be evaluated by the d N-formalism using Wick’s theorem,
1
<<k1 (ks <k3> = N,?;(i <5Xik1 OXiks 5Xik3> + §N,2X,i N yixi <5Xik1 OXiks (6Xi * 6Xi)k3> + perms. (9)
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In the above equation, a star x denotes the convolution and we have neglected correlators higher than
the four-point.

Observational limits on the non-Gaussianity of the primordial curvature perturbations are usually
given on the nonlinear parameter fy defined by

3
§fNL = Hj kj Be

- 3 2
S ) jkj 47r473<

(10)

where P; is the power spectrum of the curvature perturbation (. If the non-Gaussianity is local, one can
write ¢ as

6N = (¢ + ngLC% : (11)

where (7 is a Gaussian variable.

4 Non-Gaussianities

We consider the situation in which x; is perturbed on the ¢t = ¢; hypersurface, while H; assumes on this
hypersurface a constant value. This is justified by the fact that the ¢ = ¢; hypersurface is flat and since
X is an isocurvature field its fluctuations do not affect the local Hubble expansion. Furthermore, we
assume that the transition into the single-field-dominated scaling solution at the time ¢ = t7, happens
instantaneously on the hypersurface x = xr = const., where Hy is perturbed.

Under these assumptions, the expansion N defined by Eq. (6) can be split into

tr ty

N= [ Hdt+ | Hdt, (12)

ti tr

where t; is set sufficiently later than the transition time ¢7. In Eq. (12), the first integral is over the
multi-field scaling evolution and the last integral is over the ¢o-dominated phase.

The first term on the right hand side of Eq. (12) can be expressed as —(1/¢)In(H;/Hr), where
€ = ¢?/2, while the second term becomes —(1/es) In(Hr/Hy), where €2 = ¢3/2. Then, for a fixed ¢; and
t¢, the expansion N can be expressed as

2
N = a2 In|Hr| 4+ const., (13)

which depends only on the parameter c;, besides the transition time tp.
During the multi-field scaling regime, the linear evolution equation of x on large scales is given by

X+3Hx+mlx=0. (14)

Including the cubic self-interaction V(%) given in Eq. (4), the large scale evolution equation for x in
the multi-field scaling regime becomes

. . 1.
X+3Hx+m>2()< = —icmiXQ. (15)

The above evolution equation can be solved perturbatively. Given the solution to the linear equation
(14), i.e., x1 o< H, the growing-mode solution for y is

1 1
X =X+ ZEX% =aH + ZEQ2H27 (16)

where « is a constant parameter whose value distinguishes the different trajectories and shown to be
close to Gaussian. Then, the simplest way to compute fy, is to calculate the 6 NV corresponding to the
fluctuation da, i.e.,

1
SN = N 0 + in(aa)? ) (17)
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In order to compute N, and N oo we want to use Eq. (13), and for this we need to know how Hyp varies
as a function of « at the transition from multi-field scaling to single-field ¢o-dominated scaling solution.
Inverting Eq. (16) (to leading order in éy) gives

a= % (1 - iéx) . (18)

Assuming as in the linear case that the transition corresponds to a critical value of the tachyon field
X = X, on the transition surface (constant x7) we have from (18) that v oc H;,' and hence we find

200 1 (6o
5N=—20‘+2<0‘) : (19)
Aa A&\«
which means 9 1 5 1
No=-22"  Npo=—=—. 20
“ Aa’ e 2 a2 (20)
Taking da to be a Gaussian random variable and comparing with Eq. (11) with ¢; = —2da/(c3a) we

obtain the nonlinear parameter for the curvature perturbation after the transition:

5Naa 5 o
= — = —c7.
6 N2, 12!

N (21)

5 Conclusion

In this paper we have studied the nonlinear evolution of perturbations in the multi-field new ekpyrotic
cosmology. We have studied the simplest model based on two fields with exponential potentials and
considered the specific scenario in which the nearly scale-invariant comoving curvature perturbation is
generated by the transition from the multi-field scaling solution to the single-field dominated attractor
solution. We have applied the d N-formalism, which is widely adopted to study the non-linearity of
the primordial curvature perturbation. We find that after the transition to the single-field attractor
solution the non-Gaussian parameter fyr = 5¢7/12, where —V; exp(—ci¢1) is the potential of the field
¢1 which becomes subdominant at late time. Since the non-Gaussianity is mainly generated by the
nonlinear super-Hubble evolution, it is of the local form, and the nonlinear parameter is k independent.
Since ¢? must be large, in order to generate an almost scale invariant spectrum, the non-Gaussianity is
inevitably large. Thus, the model is strongly constrained by observational bounds on the spectral index
and non-Gaussianity.

References

[1] J. L. Lehners, P. McFadden, N. Turok and P. J. Steinhardt, Phys. Rev. D 76, 103501 (2007).
[2] E. I. Buchbinder, J. Khoury and B. A. Ovrut, arXiv:hep-th/0702154.

[3] P. Creminelli and L. Senatore, arXiv:hep-th/0702165.

[4] K. Koyama and D. Wands, JCAP 0704, 008 (2007).

[5] K. Koyama, S. Mizuno and D. Wands, Class. Quant. Grav. 24, 3919 (2007).

[6] N. Bartolo, E. Komatsu, S. Matarrese and A. Riotto, Phys. Rept. 402, 103 (2004).

[7] K. Koyama, S. Mizuno, F. Vernizzi and D. Wands, JCAP 0711, 024 (2007).

[8] A. A. Starobinsky, JETP Lett. 42, 152 (1985) [Pisma Zh. Eksp. Teor. Fiz. 42, 124 (1985)].
[9] M. Sasaki and E. D. Stewart, Prog. Theor. Phys. 95, 71 (1996).

168



	Text1: 


