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[. INTRODUCTION

Several years ago we began abstracting from the
Feynman diagram expansion of field theory a number
of exact properties of the scattering amplitudes on the
mass-shell, continued sometimes to unphysical values
of the various energy and momentum variables.
We found the crossing relation and a set of dispersion
relations and generalized unitarity formulae. Re-
search on the unitarity and dispersion equations (or
analyticity properties) is still going on, for though
they are simple in elementary cases, they become
fairly complicated when anomalous thresholds and
many-particle channels are present. Still, it became
clear quite early * that these equations would contain
enough information to determine all the scattering
amplitudes in the Feynman diagram expansion,
provided some high-energy boundary conditions
were supplied (the problem of subtractions) and some
masses and coupling constants specified.

Mandelstam » showed us how to solve the subtrac-
tion problem in perturbation theory, but it soon
became apparent that, for strongly coupled systems
at least, the high-energy boundary conditions suitable
for individual Feynman diagrams would not work.
In particular, they were inconsistent with the existence
of dynamical resonances or composite particles of
high spin. Meanwhile, Regge ¥ has discovered, by
means of the Watson-Sommerfeld transformation,
how scattering amplitudes behave in Schrodinger
theory at large cos & when such states are present.
In relativistic theory, large cos $ is high energy in
the crossed reaction, and Mandelstam and others
therefore suggested that the high-energy boundary
condition suitable for a reaction involving the exchange
of a dynamical resonance is just the behaviour s*®
of a Regge trajectory. If a(r) goes negative at large

negative 7, then there are no subtraction difficulties and
no unwanted singularities. The Regge boundary
conditions can thus replace those suggested by the
Feynman diagrams.

During 1961, increasingly wide applications of this
idea were suggested in the realm of strong interactions.
Goldberger and Blankenbecler * suggested that the
nucleon, and one or more of its isobars, might lie
on a Regge trajectory. Chew and Frautschi > and
Gribov ® [see also Lovelace '] suggested that the
exchange of a trajectory with the quantum numbers
of the vacuum (the Pomeranchuk trajectory P) could
explain the phenomena of diffraction scattering, in-
cluding Pomeranchuk’s rules. [Of course, constant
asymptotic cross-sections now come from the condi-
tion ap(0) = 1, still unexplained, and are not connected
with a fixed particle size, but with increasing size and
increasing transparency at high energies.] Finally,
Chew and Frautschi ® declared that all the strongly
interacting particles should lie on Regge trajectories.
They would then all be “ dynamical ”, and one hopes
that the unitarity and dispersion equations for the
strongly interacting particles (when they are all
written down) could be solved with the Regge bound-
ary conditions, the specification of a single mass,
the requirement of consistency, and very little else
(perhaps the conservation laws and the condition
ap(0) = 1).

My interest in the Regge pole hypothesis became
intense during 1961 and has remained so. [ am
concerned not so much with the distant prospects of
calculations, but with the immediate question of
working out the properties of the Regge poles and
predicting the results of high-energy experiments, or
using the Regge poles to correlate high-energy data
with our knowledge of low-energy resonances in the
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crossed reaction. Let me summarize some of the
results obtained so far in this type of research; in
what follows, we shall discuss most of them in some
detail.

I started on the problem in collaboration with
Frautschi and Zachariasen ). We worked out the
rules for “reggeizing” any two-body scattering
amplitude not involving anomalous thresholds. We
showed that each trajectory has a signature (1)
that permits it to give poles corresponding to particles
or resonances only at every other value of J (0, 2, 4, ...
or 1/2, 5/2, 9/2, ... etc.). The Regge term is either
odd or even in the cosine of the scattering angle in the
relevant reaction, depending on the signature. The
data on n-N 7 and N-N ? scattering have been ana-
lyzed and some properties of the P trajectory deter-
mined. The “spin ” a,(¢) passes through 1 at 1 =0
with a slope of around 1(GeV)™ 2. Thus there may
be a resonance of spin 2 on the trajectory with a mass
of something like 1 GeV and there is the apparent
problem of a threatened “ ghost” with spin 0 at
t & —1 (GeV)?%

The coefficients f(¢) of the Regge poles are not in
general real, but by factoring out the threshold
dependence of f one can define ®) a coefficient b(?)
that is real in a region of ¢ extending down from the
lowest threshold.

Now consider the exchange of a trajectory on which
a known particle lies (for instance, the p trajectory
including the p meson). The function o, () and the
functions b(f) for various reactions involving p
exchange can all be tied down at ¢ = mpz, where
@, ~ 1 and the various b become the products of
coupling constants of the p [buee(m?) = 4y2,.,
b NN = 27 pmx¥onn » tc.].  Udgaonkar '” has used
observed total cross-sections (that is, imaginary parts
of scattering amplitudes at ¢ = 0) to obtain informa-
tion about «,, «,, and various b’s at t = 0. It is
most interesting to compare these and other values
of b’s and «’s obtained for 1<0 from high-energy
scattering amplitudes with known values at positive .
The method of extrapolating b is then of great im-
portance.

It has been shown ''*'? that the factoring of b
coefficients [e.g., bir)nny = Nax,Min,] holds not only
near an actual particle, but all along the trajectory.
In fact, the Regge pole is just a kind of virtual state,
with outgoing wave boundary conditions imposed

in all open channels and decaying wave conditions
in all closed channels. The energy squared is ¢,
the angular momentum «, and the coefficients of the
asymptotic outgoing or decaying wave terms in all
the channels just the “ coupling constants ” #.

In the present report, we discuss the following results:

Section 2: a restatement, somewhat more explicit,
of the “ reggeizing ™ rules.

Section 3: a comment on the role of the signature
in producing symmetries at high energies. The
relations of Pomeranchuk can be widely generalized.

Section 4 and 5: the general application of the
“ reggeizing ” rules to the nm, 7N, and NN channels.
Here some of our results have been obtained by
Gribov and Pomeranchuk ', but with one significant
error. The NN channel has been treated by Wagner
and Sharp 7.

Section 6: the explanation of why the “ ghost ” is
not present along the Pomeranchuk trajectory, even
if o,(f) passes through zero at negative 7. The
absence of the lowest member, or members, from a
Regge series is a familiar phenomenon (for instance,
in nuclear physics) and perfectly natural. A number
of new general principles involving Regge trajectories
in the presence of spin are involved in the explanation.
All are rather obvious once we look at the case of
the Schrodinger equation.

In the Appendix, we refer briefly to the work of
Gell-Mann and Udgaonkar '* on the case of anom-
alous thresholds, with particular reference to nuclei.

The present report is to be considered a kind of
sequel to Refs.”) and '’ and we shall make use freely
of ideas, notations, and results contained in those
publications.

Il. « REGGEIZING"”

Consider a set of two-body ¢ reactions sharing a
given set of values of the conserved quantum numbers
other than J. We treat the case of no anomalous
thresholds. For simplicity, we take the baryon
number in the ¢ reactions to be zero. We label all
the participating channels by the indices C, D, E, etc.
A given reaction may involve several channels, cor-
responding to different relative orientations of spin
and orbital angular momenta.
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Assume the S-matrix for these reactions has a
Regge pole at J = a(1):

e ISR EMEMI —an] T (2.0)

For each reaction, there is a set of invariant scattering

amplitudes free of kinematic singularities, such as

are used for “ mandelstamizing”. Call them 7.
Then we may express 7; in terms of the S-matrix:

The contribution of the pole (2.1) to the scattering amplitude (2.2) is then easy to determine.
Z; to non-integral indices, simply by generalizing the Legendre functions and the algebraic functions.

we have:

Contribution to P; = Y (—im)(2 sin n) ™' E(1)Ep(N[Z
C, D

Here the 4 is the signature. From (2.3) we obtain,
at high s or large x, , just the rules of Ref.*.

Apart from the notion of signature, (2.3) is essen-
tially obvious from the work of Regge . In Regge’s
work, we deal with one channel only and no spin.
The single scattering amplitude f is related to S by
the single coefficient

2J+1)
Z,=——P)(x
J Zlkt J( t)
and the contribution to the scattering amplitude from
the Regge pole is just

— in(sin mo)) " EX(H)(2ik,) T Qo+ DP,(x,) .

However, one comment is in order. We can write

P, as the sum of two terms:

Pv(x) = gv(x)_!_‘@—v—l(x) ’ (24)

where 2,(x), which is essentially a @ function, is
defined by

r(v+3d)

P =
) \/nl'(v +1)

1
(2x)”F(—%v, F=vii-vs ?)

2.5

and F is the hypergeometric function. Now, strictly
speaking, the pole in the S-matrix at J = o contributes
only the term £, rather than the whole function P, .
[See Mandelstam **.] Whether the remaining term
P _,—, is actually present, depends on what happens
to the S-matrix in the “ left half-plane ” Re (J+ 15) <0.

(t’ xr)igizg(?)i(t3 —'X,)] .

T= Y Z§P(t, x)[S{n()—=dcp) »

J,C, D

(2.2)

where x;, = cos ¢ for the ¢ reaction, and Z; is a linear
combination of functions like P,(x,), x,Pj(x,), P}, (x,),
etc., with coefficients that are functions of ¢ and alge-
braic functions of /. We choose each amplitude T; so
that for integral J the Z, obey Z,(—x,) = (—1)"Z,(x,),
or else Z,(—x,) = (—1"'Z,(x,). In the former
case, we say ¢ = -1 and in the latter case ¢, = —1.

We generalize
Then

(2.3)

Regge and Predazzi '® have recently discussed the
case of Schrodinger equations with repulsive cores,
similar to the original problem of Sommerfeld, for
which the S-matrix obeys the symmetry principle:
e ™S’ symmetrical about J = —5. There is then
a twin pole for every Regge pole, giving a total
contribution

2 2
¢ S

J—oc_—J+oz+l

to e~ ™ * NS’ and the twin poles together give
Qut+1)2,—[2A—a—1)+1]2_,_; = Qu+1)P, .

If we do not consider the repulsive core case, but
rather the situation with an ordinary attractive
Yukawa potential *¥, then the poles in the right
half-plane Re (/4 15)>0 have twins in the above
sense only at half-integral and integral J and we
should not, in general, add precisely a term #_,_,
to 2, to make P, .

Since 2, has poles at the half integers # —15
[and Z_,_, has equal and opposite poles], something
must happen in any theory to cancel these. At
o = 15, say, either there is a trajectory that acts as
a twin (if only for this particular value of o) or else
the coefficient vanishes.

In this report, we shall usually not have to choose
between the two situations discussed by Mandelstam
and by Regge and Predazzi, because we shall be
mostly concerned only with the leading term in each
Z at large x, or large s, and with a>—15. In the
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spinless case discussed by Regge, it is obvious that
the leading term in 2, dominates the leading term
in #_,_, as long as «>—15. Actually we can make
a similar statement for the more complicated case
including spin. For every channel C there is a cor-
responding channel C with the same particles but
with the total spin added to the orbital angular mo-
mentum in an opposite sense (for example, for S = 3,
we might have L = J—2 instead of L = J+2). For
the case with spin, the symmetry rule of Regge and
Predazzi becomes: e ™S¢, symmetrical under
J—>—J—1, C—C, D—D. Similarly the Z’s always
obey the rule
760 = 7%, (2.6)
and we may break up each Z into Z’s by breaking
up each Legendre function P in it into 2’s, as follows:
ZP = g i g (2.7)
We see, then, that the dominant term coming from
the % _,_, will not catch up with the dominant term
coming from the 2, unless J<—15, just as in the
simple case. Thus we can, at very large x, or s, just
replace each P by the asymptotic expansion of 2
given in (2.5).
In what follows, we shall simply list P’s and Z’s
as the contributions of Regge poles to scattering
amplitudes, without prejudice to the question of twins.

Ill. SIGNATURE AND HIGH-ENERGY SYMMETRY

The fact that each trajectory has a fixed signature
gives rise to an important symmetry at high energies,
a generalization of Pomeranchuk’s rules relating
the forward elastic scattering of p and p to that of
p and p, etc.

Consider the s reaction a-+b—c--d, dominated at
high energies by a Regge pole in the crossed reaction
a-c—>b+d. The same Regge pole also dominates
the s reaction with the “ lines ” for particles @ and ¢
reversed: c-+b—a-+d. Moreover, the contribution
to the two amplitudes is just about the same. When
we perform the line reversal, the contribution of the
Regge pole to the amplitude 7 is affected as follows.

Since the line reversal amounts to interchanging
x, and —x,, the amplitude acquires the factor 4-¢;,
where - is the signature of the Regge trajectory.

Furthermore, if the reversed line has spin, then we
may want to reverse the spin matrices in order to
re-express the amplitude in terms of spin matrices
that go forward from initial to final particle as before.
For example, suppose both a and ¢ are Dirac particles;
then the amplitudes 7; multiply Dirac invariants. In
order to obtain the coefficients of the new invariants
with the line reversed, we must charge conjugate the
Dirac matrices connecting a and ¢ and new factors
of -1 or —1 will appear '".

Apart from these various charges of sign, the
amplitudes for a--b—c-+d and a+-c—b+-d at fixed ¢
for sufficiently high s are just the same, since they
are determined by the same leading Regge pole of
definite signature. The difference between the two
amplitudes is determined, at high energies, by the
leading Regge pole with the opposite signature.

Pomeranchuk’s rules are obtained by considering
the special case of elastic scattering, t = 0, and no
spin flip. The imaginary part of the amplitude is
just proportional to the total cross-section and so
we obtain a(p-+p—>p+p) = a(p+p—p-+p), etc., as
s—co because the dominant P trajectory has signature
1. [If the dominant trajectory with these quantum
numbers had negative signature, the asymptotic
cross-sections would have to be equal and opposite !]

But we can just as easily apply the signature rule
to a much more complicated case, say the amplitudes
for 1~ +p—>K°4A and KO+p—>n"+A at arbitrary
momentum transfer . The leading trajectory near

= 0 includes, at positive #, a K* resonance; probably
the resonance lying on the leading trajectory is a
vector state, so that the signature is negative. [If
there is no vector K* at low energies but only a scalar
one, then the signature of the leading trajectory is
presumably positive.] The criterion in any case is
the value of « at r = 0. If we define two amplitudes
(T;) as the coefficient 4 of unity and the coefficient B of

H=1y qi—iy-qy)
where g; and g, are initial and final meson momenta,
then 4 has ¢ =1 and B has ¢ = —1. [See below
in Section IV.] Since we are reversing a spinless

meson line, we do not have to worry about reversing
spin matrices.
It would be most interesting to be able to compare

experimental results for these two reactions at high
energies and confirm the existence of the symmetry.
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V. APPLICATION TO n—r,
SCATTERING

n—N, AND N—N

Let us specialize at first to the quantum numbers of
the P trajectory, =0, (—1)’G=1, (—=1)’P = 1.
Then there are three channels altogether for a given
J: the 2n channel with / = 0, L = J and the two NN
channels with /=0, S=1, and L= J+1 or
L= J—1. It is convenient to define  helicity ”

states
\/ (L J—1>+\/—~—[L J+1),

J+1
L= -1 /E._|L J+1)

v \/2J

for the NN system. The three channels are thus
labelled 7, v, and w respectively. The relativistic
scattering amplitudes are treated in terms of the
reactions n+4n—>n+tn, 1+ N—>n+ N, N+N—>N+N.
For n-n scattering we have the relativistic transition
amplitude T,, [the same contribution in all three
isotopic spin states]. For mN scattering we write

—iy-(q;+4q,)
TnN = AnN+BIN|:———~—i_—f-:| - AnN+BnN yqﬂ

4.1
[again the same contribution in both I states]. Finally
for NN scattering we write
Ty = hy + o[y p@ 4 iy p1]
—|~h3[iy(”~p(2’iy(2)‘p(”]
+ hy[ip - pPy iy ]
+hsy§ Oy (4.2)

Here pV =4[p"+pP], p@ = 4[p® +p?],
once more we have the same contribution in both I
states.

Ignoring I-spin, we have contributions to 8 am-
plitudes to express in terms of three coefficients,
¢, &, and &, . Let us begin with 7,,. Con-
necting T, with the S-matrix element in the crossed
reaction, we find for this case

8n\/t (2J + 1)
3 2ik,

Z,= Py(x) (4.3)

so that the contribution of the Regge pole to T, is

_gn\/} Qu+1) (=in) ,
3 2ik, 2sinz

é AO[Px)+PL=x)], (44)

where we have specialized to the positive signature

of the P trajectory. Here k, = \/1/4—m,f Is the
C. of M. momentum in the crossed reaction and

N N

———>——7 aS §— 00 .
26 2k7

(4.5)

Now to obtain the leading term at large s and fixed ¢
we use the expansion (2.5). We get that the

—ina

contribution to T,,— 2s0(s/s0)n,  (4.6)
2 sin 7o
where
2 27.[2 inoy, —2a—1 % a—1/ g N
Ny =Te k, Fsg Qa+DIG+o0)n™ % x
[ +a)] 2. 4.7

Here s, is an arbitrary quantity with the dimension of
mass squared. If we put it equal to 2m2 and consider
the P trajectory, then #2 = b__,. . as defined in Ref.”
and Eq. (4.6) is identical with our result given
there.

By factoring out the threshold dependence k2**' of
¢% and by multiplying by *, we have made 5> a real
quantity from threshold (tf =4m?) down through
t =0 and for negative ¢ as far as « remains real.
We can see that in the following way. Below threshold
in ¢, there is, according to the Mandelstam representa-
tion, a cut for positive real s [with x,>1] and one for
positive real u [with x,<—1]. Since P,(x,) has a cut
from —oo to —1, it is reasonable to expect that the
P,(x,) term in Eq. (4.4) contributes to the  cut, while
the P,(—x,) term contributes to the s cut. [Actually,
the various Regge terms give cuts from x, = 1 to co
and —oco to —1, which are more extensive than the
Mandelstam cuts, and some cancellation must take
place.] Now consider large positive s and consider

. . s
only the P, (x,) term, which contributes ,—0—(5/50)“;1i
sin 7o

to T,,. Since we have omitted the term connected
with the s cut, our result is real and so #Z is real. In
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fact, taking ¢ = 0, using the optical theorem, and
putting «p(0) = 1 for the Pomeranchuk trajectory,
we find

17(0) = Opr (4.8)

where ¢, is the asymptotic nn cross-section.

Next, we treat the n-N problem, much as in Ref.”.
Expressing 4 and B in terms of the S-matrix in the
crossed reaction, we find '®

2ni o
7o = o p Tk I QI £ DPY(x),  (49)

J6

dri ., my(2J+1
Z‘\;vnA_:___:t /zk /2 N( )

Jo o NIUTD

x,Py(x,) , (4.10)

=0, (4.11)

In terms of &’s we have

212

) ., B B TG +a) ot
Ny = — o™k B lt%sa 1 200+ 1 ________vn év_\/_________zw ,
At \/6 (k:py) ND: o ( )\/n I +a)§ nt1 2mN‘=

2

n ina —a—1 1,1 g— I'($+ o 2
Nell, = —=€ (ktpr) *myp; 11"250 1(2O(+1) ‘—‘——._(2 (x) énéw<_2 E— lpt > .
V6 NETE, 2+ 1

Again the #’s are real in a region around t = 0. In
fact we have

12(0)1:(0) = oy (4.17)

in the asymptotic region.

For the N-N problem, we have no contribution to
hs , so there are twelve Z’s corresponding to the four
amplitudes /; and the three S-matrix elements S7,, S,
S7 ., These can be worked out using well-known for-
mulae % 29 provided we correct a misprint in Ref. ',
[See Plenary Section V.]

Going to large s and fixed #, we obtain

—nia

Contr. to hy —>2

_ 2
2s0(s/so)°‘<'“2 "2>1; (4.18)

sin 7ol my
1+e—i7m . L,
Contr. to hy»— 250(5/50)" N2\ (M 72) ,
2 sin ma s 2my
(4.19)

4ri 2J+1
Z}vnB — ____pt—l/Zkt—:‘/z L_)—P./I(xt) s (412)
J6 VI +1)
where
S s s
=\t/d—my and x,= —l———o——r0.
Pt \// My ! Zk,p,—-) 2k,p,

Substituting into Eq. (2.3) and taking the limit of
large s for fixed 7, we obtain

e—ina s s o
—°(—> nni—12),  (4.13)

2 sin o my\ S

1+e—i1ta ) a—1

2 — Hafa s
2 sin o \ S,
where, if s, = 2m_my , nn, corresponds to bhyy

of Ref.”) and #,4, corresponds to op bChyy -

Contr. to A—

Contr. to B—

(4.14)

(4.15)
(4.16)
1+€ ina s 2
Contr. to hy—>— 2so(s/s0)°‘<—> . (4.20)
2 sin 7o s

So far we confirm the results of Gribov and Pomeran-
chuk ', but they are in error in saying that the P
trajectory contributes nothing to 4, . It gives

l_l_e—ina ' — 2
 ososiso — (2. @2
2 sin 7no 2sa/\ s

Although this term is rather small at high energies,

it is important in the discussion of the ghost problem

in Section 4. Note the factor o™ 1.

Contr. to hy—

We remark that n2(0) = oy, asymptotically, so
that the rule "'V g2y = 0,0,y is confirmed.

V. ASIMPLER TREATMENT OF THE NN CHANNELS

For what follows, we need not make use of invariant
amplitudes for N-N scattering, free of kinematic
singularities and easy to deal with in the s reaction



High energy physics (Theoretical) 539

N+ N—N+N. Thus we can dispense with the com-
plicated /#’s and make use of the four simple amplitudes
defined in Ref.'®? for n-p scattering, but used here for
N-N scattering with 7 = 0. In the notation of Ref.'®,
M, and Ty .

V2

We now introduce two trajectories, the Pomeranchuk
trajectory P and another, called Q, with negative
signature and with all the same quantum numbers
except that (—1)’P = —1 instead of 1. Instead
of the helicity states v and w, we go back to the partial

wave states |L:J—]> and |L = J+1), called

weuse Tyy, Ty -y,

— and -+ respectively, and we add the state ]L =J),
called 0, to be connected with the Q trajectory. For
the P trajectory we use

oUp ap+1
é— :\/ ! ¢u+\/ ! gw
20+ 1 20p+ 1
. ap+1 ap .
‘:+ = ,59— —-—_——Cw
20p+ 1 20p+1

instead of ¢, and &,,. For the Q trajectory, there is
just &, .

and

We now make use of Eq. (B.11) of Ref.!?), correcting the misprint in the equation for 7 _;: the denominator
of the first term should be L-+1, not L+2. For the contributions of the two Regge trajectories to the
T’s, we have just the following [without bothering to symmetrize in x, according to the signature]:

n PR
Contr. to Ty = — — — E(op+ )Py + ErtpPys i —E L EN0p(ap+ D (Pypyy +Pypiy) | —
2p, sin wap
m_ [£5(20p+ 1P 5.1
2p, sin natg o200+ D)Py ] (1)
18 1 5;2 1 62 " é é"‘ 1
Contr.to Ty -y = — — — li——Pa,,_l-l——j— b1 — e (P + Pl D] -
2p, sin mop| op op+1 Vap(ap+1)
n 1 — &0y +1
S I L et Dy sy
2p, sinmag | op(op+1)
Tyo—T no 1 20p+ 1 e} 1 Eo(2ap+1
Contr. to 10 _01:_ : 5_2( pt1) ;P_l_ 6+ (ZOCP-I-])P;,,H L __90( Q )P’ ,
J2 2p,sin mop op ap+1 2p, sin aplog+1) ™
(5.3)
T 2 ) 2 . [ ‘
Contr. to Tog = — — = [E0pPy g +E5(0p+ DP, 4y +é+£—\/ap(ap+l)(Pap—1+P1p+1)]' (5.4)
2p, sin mop

The Q trajectory is not coupled to the 2n channel;
for the P trajectory we retain our definition of &, .

The advantage of using the formulae of this Section
is that they are complete, while in Section 4 the for-
mulae for N-N scattering are only asymptotic. Using
the matrices of Ref.?®, one can obtain complete
formulae for the A’s of Section 4, but they are rather
complicated.

VI. THE ABSENCE OF THE GHOST

Let us assume that op passes through zero at a
negative value of . Why is there not a pole in each

of the scattering amplitudes at this value of ¢ and
thus a ghost? Let us first note a set of mathematical
conditions that will avoid the ghost. Although these
conditions may look remarkable, we shall see, by
looking at a Schrodinger equation problem with
several channels and spin, that they are quite ordinary.
A large class of all trajectories obey them, and it is
a purely dynamical matter whether the leading
trajectory belongs to the class. Similar mathematical
reasons 2!’ underlie the absence, in many nuclear
rotational series, of the state or states of lowest J.

First, let us return to Section 4 and look at the leading
contributions to T,,, Ay, Buys hys h,, and hy,

nrn 2
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ignoring /1, for the moment. We see that if, as ap—0,
we were to have ¢,—0 like /o, and ¢,—0 like \/ap,
while £, const., then all terms in 1z, #11 > Hall2 »
(n,—n2)% n2(n—n,), and 3 would —0 like ap, so
that all the amplitudes under discussion would have

a factor a, to cancel the pole in and there

sin mop
would be no ghost.

Now, in the notation of Section 5, we note that as
wp—>0, & ¢, and & ¢, . Let us consider the
exact contribution to Ty, in Eq. (5.4). If {_— const.
and &, oc\/up as op—>0, then there is in each term a

factor «p to cancel the pole of

sin mop
Next, in Section 4, we turn to the amplitude /i, .
Here we see that the above conditions are insufficient.

|
Because of the additional factor of — , we would
ap

still have a ghost. Another apparently remarkable
condition is needed. We can see what that is by
looking at Egs. (5.1)-(5.3). Suppose that as op—0,
the Q trajectory has a,—>—1.  Moreover, we suppose
that at the same value of 7, the quantity

22 22 z2 22
So é—_—_ o +2

or
I+op op

[+oy  op

remains finite. In Eq. (5.1), for example, we would
have, in the limit,

-2 v 2
__n é___+_—§0 P.
2p, L mop m(l+ayp)

The condition that

&g
+— —const.
I+ay op

is sufficient to remove the pole. The same is true
of Egs. (5.2) and (5.3). Evidently, when we go to
the asymptotic limit of Section 4, the obnoxious term
in h, is taken care of, along with everything else.

Now let us understand how these miracles happen.
We consider a system of coupled Schrédinger equa-
tions including two-body channels like the 27 and
NN channels under consideration. Take a Regge
trajectory like P, which has a wave function in the
nn channel and in the triplet NN channels with
L =J+1 and with L = J—1. The asymptotic

wave functions are proportional to &, £, , and ¢_
respectively. The three channels are coupled to-
gether by forces; for example the tensor force connects
the + and — channels. At J =1, 2, 3, ..., both the
+ and — cases correspond to physical situations
[e.g., °F, and *P,, *D, and °S,], but at J = 0 only
the 4 channel is physical (*P,). If we introduce
the notation “a-wave ” for L = —1 [corresponding
to s wave for L =0, etc.], then the — channel at
J = 0 gives the physically meaningless state *A4,, .

Now at all values of />0, whether integral or not,
the three channels couple together and the wave
functions mix. However, as J—0, that is no longer

the case. The tensor force matrix element, for
example, goes like %(J;‘” . Similarly the coupling
__I_

between the — channel and the nn channel goes to

zero like \/ J. Thus at J = 0 the nonsense channel
>4, and the sensible channels (*P, and nn s-wave)
become decoupled. A given Regge trajectory, there-
fore, as a«—0, becomes either pure “sense” or pure
“nonsense 7. If there is a J=0" state, then

E_—0 like \/& and ¢, , &~ const. The other type
of trajectory, which is just as common, chooses
nonsense at o« =0, so that £_—const. and ¢, ,

inoc\/ «. The P trajectory, if «, passes through zero,
is evidently of the latter type.

Next, we explain the other miracle, the cancellation
between P and Q trajectories. We look at the S-
matrix elements in two different channels, one relevant
to the P trajectory and the other to Q, namely S”'_
and Sp3. As J;—>0 and J,—>—1, these matrix
elements become equal. [Both are, of course, un-
physical.] The proof can be accomplished in several
ways. First, for the Schrodinger equation, we
notice that L (L+1) and L*S become the same for
the two channels as J,—0 and J,—>—1. We have
seen, too, that the tensor force and the coupling to
the n7m state disappear. In fact, all the forces in the
two channels become identical. So do the orbital
angular momenta, both approaching —1.

In the general case, including the relativistic problem,
we have only to generalize Froissart’s 22 definition
of the analytically continued S-matrix to our problem
to see that the definitions of S° _ and S are the same.
Thus e” V1987 and e~ ™V2* 572 approach equal
and opposite values as J—0, J,—>—1. A pole in
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the first quantity of the form ¢2(J, —ap) ™" requires

a pole in the second of the form &3(J,—ug) ™" with

22 2
Q_-+ o
ap  I+ag

—const.

as ap—>0and oy—>—1. The second miracle is explained.

Here we are dealing with J, < —15 and the question
of twin poles becomes really important for the first
time. If the QO trajectory really possesses a twin
near the value of # we are discussing, then the twin
passes through O as o, passes through —1. The
contribution of the twin to h,, for example, is one
order higher in x, than that of the leading term due
to the Q pole itself. The coefficient of this new
contribution is proportional to «,, cancelling sin na,
in the denominator; thus there is no ghost, but there
is a term in A, larger by one power of s than that given
in Eq. (4.21).

The generalization of our story to more complicated
crossed channels with higher spin and with many
particles is very interesting and gives rise to a situation
closely resembling that in nuclei, where the Regge
trajectories are familiar as series of “ rotational ”
levels.

APPENDIX
Regge Poles and Nuclear Scattering

If all the strongly interacting particles lie on Regge
trajectories, then there is nothing to distinguish
“ elementary ” particles like nucleons from obviously
composite systems like nuclei, except that the latter
possess very prominent “anomalous singularities ”,
corresponding to a spatial extension of their wave
functions greatly exceeding the Compton wave lengths
of the particles involved. What effect do these
singularities have on diffraction scattering and total
cross-sections at high energies ?

In the scattering of nucleons from nuclei at several
GeV, it is apparent that the absorption cross-sections
are geometrical and that for scattering of two nuclei
with radii R and R’ we would obtain a total cross-
section of the order of 2n(R-+ R')%.

But if we assume that high-energy scattering am-
plitudes are dominated by the exchange of the P
trajectory, then we obtain the factoring property for
total cross-sections. There must then be a slow
transition from the apparently constant nuclear cross-

sections at moderate energies to true asymptotic cross-
sections at very high energies, the latter being factorable.

Udgaonkar and Gell-Mann '* investigated the
consequences of a very crude model in which the
nucleus is treated as a collection of nucleons and the
semi-classical approximation is made. Since each
nucleon becomes larger and more transparent at higher
energies, eventually the nucleus-nucleus cross-section
tends to AA'oyy, where A and A’ are the atomic
numbers of the collision partners. This picture gives
an illustration of factorability at very high energies.

The slow transition is accomplished by having a
cut in the angular momentum plane as well as the
Pomeranchuk pole, so that besides the asymptotic
constant cross-section there are terms in 1/In s, etc.
These “eclipse ” terms, which eventually vanish
at very high energies, come from dispersion diagrams
like the following (for p-d scattering):

15913

Here we are dealing with the simple eclipse of neutron
by proton and vice versa in the deuteron.

It would be attractive to suppose that the cuts in J
due to the eclipse terms are exactly cancelled by cuts
from other dispersion diagrams, leaving only Regge
poles, even in the case of anomalous singularities.
The total cross-sections at moderate energies would
then be roughly the asymptotic ones. But how can such
a situation be reconciled with the factoring property ?

In the absence of anomalous singularities, Amati
and Fubini >*) have obtained cuts in J simply from
diagrams like

15914

P p p
P P P

but in that case it is perfectly possible that they cancel
against cuts from the other diagrams, leaving just
Regge poles.
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DISCUSSION
WEINBERG: Does the vanishing of the denominator 2J-4-1 GELL-MANN: Probably.
at J = — 14 have anything to do with the difficulty of analytic-

ally continuing from J>—145 to J<<—154?




