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I. I N T R O D U C T I O N 

Several years ago we began abstracting from the 
Feynman diagram expansion of field theory a number 
of exact properties of the scattering amplitudes on the 
mass-shell, continued sometimes to unphysical values 
of the various energy and momentum variables. 
We found the crossing relation and a set of dispersion 
relations and generalized unitarity formulae. Re­
search on the unitarity and dispersion equations (or 
analyticity properties) is still going on, for though 
they are simple in elementary cases, they become 
fairly complicated when anomalous thresholds and 
many-particle channels are present. Still, it became 
clear quite early l ) that these equations would contain 
enough information to determine all the scattering 
amplitudes in the Feynman diagram expansion, 
provided some high-energy boundary conditions 
were supplied (the problem of subtractions) and some 
masses and coupling constants specified. 

Mandelstam 2 ) showed us how to solve the subtrac­
tion problem in perturbation theory, but it soon 
became apparent that, for strongly coupled systems 
at least, the high-energy boundary conditions suitable 
for individual Feynman diagrams would not work. 
In particular, they were inconsistent with the existence 
of dynamical resonances or composite particles of 
high spin. Meanwhile, Regge 3 ) has discovered, by 
means of the Watson-Sommerfeld transformation, 
how scattering amplitudes behave in Schrôdinger 
theory at large cos# when such states are present. 
In relativistic theory, large cos 9 is high energy in 
the crossed reaction, and Mandelstam and others 
therefore suggested that the high-energy boundary 
condition suitable for a reaction involving the exchange 
of a dynamical resonance is just the behaviour s*(t) 

of a Regge trajectory. If a(t) goes negative at large 

negative t, then there are no subtraction difficulties and 
no unwanted singularities. The Regge boundary 
conditions can thus replace those suggested by the 
Feynman diagrams. 

During 1961, increasingly wide applications of this 
idea were suggested in the realm of strong interactions. 
Goldberger and Blankenbecler 4 ) suggested that the 
nucléon, and one or more of its isobars, might lie 
on a Regge trajectory. Chew and F rau t sch i 5 ) and 
Gribov 6 ) [see also Lovelace 7 ) ] suggested that the 
exchange of a trajectory with the quantum numbers 
of the vacuum (the Pomeranchuk trajectory P) could 
explain the phenomena of diffraction scattering, in­
cluding Pomeranchuk's rules. [Of course, constant 
asymptotic cross-sections now come from the condi­
tion ap(0) = 1, still unexplained, and are not connected 
with a fixed particle size, but with increasing size and 
increasing transparency at high energies.] Finally, 
Chew and F r a u t s c h i 8 ) declared that all the strongly 
interacting particles should lie on Regge trajectories. 
They would then all be " dynamical and one hopes 
that the unitarity and dispersion equations for the 
strongly interacting particles (when they are all 
written down) could be solved with the Regge bound­
ary conditions, the specification of a single mass, 
the requirement of consistency, and very little else 
(perhaps the conservation laws and the condition 
«P(0) = i) . 

My interest in the Regge pole hypothesis became 
intense during 1961 and has remained so. I am 
concerned not so much with the distant prospects of 
calculations, but with the immediate question of 
working out the properties of the Regge poles and 
predicting the results of high-energy experiments, or 
using the Regge poles to correlate high-energy data 
with our knowledge of low-energy resonances in the 
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crossed reaction. Let me summarize some of the 
results obtained so far in this type of research; in 
what follows, we shall discuss most of them in some 
detail. 

I started on the problem in collaboration with 
Frautschi and Zachariasen 9 ) . We worked out the 
rules for " reggeizing " any two-body scattering 
amplitude not involving anomalous thresholds. We 
showed that each trajectory has a signature ( ± 1 ) 
that permits it to give poles corresponding to particles 
or resonances only at every other value of J (0, 2, 4, ... 
or 1/2, 5/2, 9/2, ... etc.). The Regge term is either 
odd or even in the cosine of the scattering angle in the 
relevant reaction, depending on the signature. The 
data on n-Nn) and N-N9) scattering have been ana­
lyzed and some properties of the P trajectory deter­
mined. The " spin " aP{t) passes through 1 at t = 0 
with a slope of around 1 (GeV)" 2 . Thus there may 
be a resonance of spin 2 on the trajectory with a mass 
of something like 1 GeV and there is the apparent 
problem of a threatened " ghost " with spin 0 at 
t « - 1 (GeV) 2 . 

The coefficients /?(*) of the Regge poles are not in 
general real, but by factoring out the threshold 
dependence of /} one can define 9 ) a coefficient b(t) 
that is real in a region of / extending down from the 
lowest threshold. 

Now consider the exchange of a trajectory on which 
a known particle lies (for instance, the p trajectory 
including the p meson). The function ap(t) and the 
functions b{t) for various reactions involving p 
exchange can all be tied down at t = m 2 , where 
ap « 1 and the various b become the products of 
coupling constants of the 

Udgaonkar 1 0 ) has used 
observed total cross-sections (that is, imaginary parts 
of scattering amplitudes at t = 0) to obtain informa­
tion about ap , ocm9 and various b's at t = 0. It is 
most interesting to compare these and other values 
of b9s and a's obtained for t^O from high-energy 
scattering amplitudes with known values at positive u 
The method of extrapolating b is then of great im­
portance. 

It has been shown 1 1 , 1 2 ) that the factoring of b 
coefficients [e.g., b™pNN = ^ K p f / j& p ] holds not only 
near an actual particle, but all along the trajectory. 
In fact, the Regge pole is just a kind of virtual state, 
with outgoing wave boundary conditions imposed 

in all open channels and decaying wave conditions 
in all closed channels. The energy squared is t, 
the angular momentum a, and the coefficients of the 
asymptotic outgoing or decaying wave terms in all 
the channels just the " coupling constants " r\. 

In the present report, we discuss the following results : 

Section 2: a restatement, somewhat more explicit, 
of the " reggeizing " rules. 

Section 3: a comment on the role of the signature 
in producing symmetries at high energies. The 
relations of Pomeranchuk can be widely generalized. 

Section 4 and 5: the general application of the 
" reggeizing " rules to the nn9 nN9 and NN channels. 
Here some of our results have been obtained by 
Gribov and Pomeranchuk 1 3 ) , but with one significant 
error. The NN channel has been treated by Wagner 
and Sharp 1 7 ) . 

Section 6 : the explanation of why the " ghost " is 
not present along the Pomeranchuk trajectory, even 
if ap(t) passes through zero at negative t. The 
absence of the lowest member, or members, from a 
Regge series is a familiar phenomenon (for instance, 
in nuclear physics) and perfectly natural. A number 
of new general principles involving Regge trajectories 
in the presence of spin are involved in the explanation. 
All are rather obvious once we look at the case of 
the Schrôdinger equation. 

In the Appendix, we refer briefly to the work of 
Gell-Mann and Udgaonkar 1 4 ) on the case of anom­
alous thresholds, with particular reference to nuclei. 

The present report is to be considered a kind of 
sequel to Refs . 9 ) and n ) and we shall make use freely 
of ideas, notations, and results contained in those 
publications. 

II. - R E G G E I Z I N G " 

Consider a set of two-body t reactions sharing a 
given set of values of the conserved quantum numbers 
other than / . We treat the case of no anomalous 
thresholds. For simplicity, we take the baryon 
number in the / reactions to be zero. We label all 
the participating channels by the indices C, D, E, etc. 
A given reaction may involve several channels, cor­
responding to different relative orientations of spin 
and orbital angular momenta. 
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Assume the S-matrix for these reactions has a 
Regge pole at / = &(t) : 

For each reaction, there is a set of invariant scattering 
amplitudes free of kinematic singularities, such as 
are used for " mandelstamizing Call them Tt. 
Then we may express T} in terms of the 5-matrix : 

where xt = cos ô for the t reaction, and Z3 is a linear 
combination of functions like Pj(xt), xtPj(xt), Pf

J+l(xt), 
etc., with coefficients that are functions of t and alge­
braic functions of / . We choose each amplitude Tt so 
that for integral / the Z 7 obey Zj(-xt) = (—l)JZj(xt)9 

or else Zj(-xt) = (-l)J+1Zj(xt). In the former 
case, we say sL = + 1 and in the latter case si = —I. 

The contribution of the pole (2.1) to the scattering amplitude (2.2) is then easy to determine. We generalize 
Zj to non-integral indices, simply by generalizing the Legendre functions and the algebraic functions. Then 
we have: 

Here the ± is the signature. From (2.3) we obtain, 
at high s or large xt, just the rules of Ref. 9 ). 

Apart from the notion of signature, (2.3) is essen­
tially obvious from the work of Regge 3 ) . In Regge's 
work, we deal with one channel only and no spin. 
The single scattering amplitude / is related to S by 
the single coefficient 

where ^ v ( x ) , which is essentially a Q function, is 
defined by 

and F is the hypergeometric function. Now, strictly 
speaking, the pole in the S-matrix at J = a contributes 
only the term 0>a rather than the whole function Pa. 
[See Mandelstam 1 5 ) . ] Whether the remaining term 
0>-a-i is actually present, depends on what happens 
to the S-matrix in the " left half-plane " Re ( / + 1 / 2 ) <0 . 

Regge and P redazz i 1 6 ) have recently discussed the 
case of Schrôdinger equations with repulsive cores, 
similar to the original problem of Sommerfeld, for 
which the 5-matrix obeys the symmetry principle: 
e~lnJSJ symmetrical about J = — There is then 
a twin pole for every Regge pole, giving a total 
contribution 

If we do not consider the repulsive core case, but 
rather the situation with an ordinary attractive 
Yukawa po ten t i a l 1 5 ) , then the poles in the right 
half-plane R e ( / + J / 2 ) > 0 have twins in the above 
sense only at half-integral and integral / and we 
should not, in general, add precisely a term SP-^-i 
to ^ a to make Pa . 

Since ^ a has poles at the half integers — 1/ 2 

[and ^ - a _ i has equal and opposite poles], something 
must happen in any theory to cancel these. At 
a = l/x, say, either there is a trajectory that acts as 
a twin (if only for this particular value of a) or else 
the coefficient vanishes. 

In this report, we shall usually not have to choose 
between the two situations discussed by Mandelstam 
and by Regge and Predazzi, because we shall be 
mostly concerned only with the leading term in each 
Z at large xt or large s, and with a>—1/2. In the 

to e
 in(J+*)sJ, and the twin poles together give and the contribution to the scattering amplitude from 

the Regge pole is just 

However, one comment is in order. We can write 
Py as the sum of two terms : 
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We see, then, that the dominant term coming from 

the will not catch up with the dominant term 

coming from the i^j unless J<,—1/2, just as in the 

simple case. Thus we can, at very large xt or s, just 

replace each P by the asymptotic expansion of & 

given in (2.5). 

In what follows, we shall simply list P 's and Z 's 

as the contributions of Regge poles to scattering 

amplitudes, without prejudice to the question of twins. 

III. S I G N A T U R E A N D H I G H - E N E R G Y S Y M M E T R Y 

The fact that each trajectory has a fixed signature 

gives rise to an important symmetry at high energies, 

a generalization of Pomeranchuk's rules relating 

the forward elastic scattering of p and p to that of 

p and p, etc. 

Consider the s reaction a+b->c+d, dominated at 

high energies by a Regge pole in the crossed reaction 

a+c-+b+d. The same Regge pole also dominates 

the s reaction with the " lines " for particles a and c 

reversed: c+b-^a+d. Moreover, the contribution 

to the two amplitudes is just about the same. When 

we perform the line reversal, the contribution of the 

Regge pole to the amplitude T{ is affected as follows. 

Since the line reversal amounts to interchanging 

xt and —xt, the amplitude acquires the factor ± £ i 5 

where ± is the signature of the Regge trajectory. 

Furthermore, if the reversed line has spin, then we 

may want to reverse the spin matrices in order to 

re-express the amplitude in terms of spin matrices 

that go forward from initial to final particle as before. 

For example, suppose both a and c are Dirac particles ; 

then the amplitudes Ti multiply Dirac invariants. In 

order to obtain the coefficients of the new invariants 

with the line reversed, we must charge conjugate the 

Dirac matrices connecting a and c and new factors 

of + 1 or —1 will appear 1 7 ) . 

Apart from these various charges of sign, the 

amplitudes for a+b-^c+d and a+c->b+d at fixed / 

for sufficiently high s are just the same, since they 

are determined by the same leading Regge pole of 

definite signature. The difference between the two 

amplitudes is determined, at high energies, by the 

leading Regge pole with the opposite signature. 

Pomeranchuk's rules are obtained by considering 

the special case of elastic scattering, t = 0, and no 

spin flip. The imaginary part of the amplitude is 

just proportional to the total cross-section and so 

we obtain a(p+p-+p+p) = <r(p+p-+p+p), etc., as 

s-+oo because the dominant P trajectory has signature 

+ 1. [If the dominant trajectory with these quantum 

numbers had negative signature, the asymptotic 

cross-sections would have to be equal and opposite !] 

But we can just as easily apply the signature rule 

to a much more complicated case, say the amplitudes 

for n~+p-+K°+A and KÔ+p-+n ++A at arbitrary 

momentum transfer t. The leading trajectory near 

t = 0 includes, at positive /, a K* resonance; probably 

the resonance lying on the leading trajectory is a 

vector state, so that the signature is negative. [If 

there is no vector K* at low energies but only a scalar 

one, then the signature of the leading trajectory is 

presumably positive.] The criterion in any case is 

the value of a at t = 0. If we define two amplitudes 

(7i) as the coefficient A of unity and the coefficient B of 

spinless case discussed by Regge, it is obvious that 

the leading term in ^ a dominates the leading term 

in ^ L a - i as long as a> — y2. Actually we can make 

a similar statement for the more complicated case 

including spin. For every channel C there is a cor­

responding channel C with the same particles but 

with the total spin added to the orbital angular mo­

mentum in an opposite sense (for example, for S = 3, 

we might have L = J—2 instead of L = J+2). For 

the case with spin, the symmetry rule of Regge and 

Predazzi becomes: e~inJSJ

CD symmetrical under 

C ->C D-+D. Similarly the Z's always 

obey the rule 

and we may break up each Z into Jf ' s by breaking 

up each Legendre function P in it into ^ ' s , as follows: 

where q. and qf are initial and final meson momenta, 

then A has s = 1 and B has e = — 1. [See below 

in Section IV.] Since we are reversing a spinless 

meson line, we do not have to worry about reversing 

spin matrices. 

It would be most interesting to be able to compare 

experimental results for these two reactions at high 

energies and confirm the existence of the symmetry. 
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IV. A P P L I C A T I O N T O %—n, n—N, A N D N—N 

S C A T T E R I N G 

Let us specialize at first to the quantum numbers of 

the P trajectory, 7 = 0 , ( — = 1, {-\)JP=\. 

Then there are three channels altogether for a given 

J: the 2n channel with I = 0, L = J and the two AW 

channels with 7 — 0 , £ = 1, and L = 7 + 1 or 

L=J— 1. It is convenient to define " helicity " 

states 

for the NN system. The three channels are thus 

labelled n, v9 and w respectively. The relativistic 

scattering amplitudes are treated in terms of the 

reactions n+n-+n+n, n+N-+n + N9 N+N-+N+N. 

For n-n scattering we have the relativistic transition 

amplitude Tnn [the same contribution in all three 

isotopic spin states]. For nN scattering we write 

[again the same contribution in both I states]. Finally 

for NN scattering we write 

once more we have the same contribution in both I 

states. 

Ignoring /-spin, we have contributions to 8 am­

plitudes to express in terms of three coefficients, 

Çn9 £v9 and Çw. Let us begin with Tnn . Con­

necting Tnn with the S-matrix element in the crossed 

reaction, we find for this case 

so that the contribution of the Regge pole to Tn% is 

where we have specialized to the positive signature 

of the P trajectory. Here kt = y/t/4 — ml is the 

C. of M. momentum in the crossed reaction and 

Now to obtain the leading term at large s and fixed / 

we use the expansion (2.5). We get that the 

contribution to 71. 

where 

Here is an arbitrary quantity with the dimension of 

mass squared. If we put it equal to 2m\ and consider 

the P trajectory, then Y\\ = bnitPnn as defined in Ref. 9 ) 

and Eq. (4.6) is identical with our result given 

there. 

By factoring out the threshold dependence k]* + 1 of 

l;l a n d by multiplying by t*9 we have made rj2

n a real 

quantity from threshold (t = 4ml) down through 

t = 0 and for negative i as far as a remains real. 

We can see that in the following way. Below threshold 

in t, there is, according to the Mandelstam representa­

tion, a cut for positive real s [with xt>l] and one for 

positive real u [with xt<—l]. Since Pa(xt) has a cut 

from —oo to — 1 , it is reasonable to expect that the 

P a(x f) term in Eq. (4.4) contributes to the u cut, while 

the Pa(—xt) term contributes to the s cut. [Actually, 

the various Regge terms give cuts from xt = 1 to oo 

and — oo to — 1 , which are more extensive than the 

Mandelstam cuts, and some cancellation must take 

place.] Now consider large positive s and consider 

only the Pa(xt) term, which contributes (slsoyrjn 

sin 7ia 

to Tnn. Since we have omitted the term connected 

with the s cut, our result is real and so r\\ is real. In 

Here 
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where ann is the asymptotic nn cross-section. 
Next, we treat the n-N problem, much as in Ref. 9 ). 

Expressing A and B in terms of the ^-matrix in the 
crossed reaction, we find 1 8 ) 

Substituting into Eq. (2.3) and taking the limit of 
large s for fixed t, we obtain 

where, if s0 = 2mnmN , rjnrji corresponds to b^PNN 

of Ref. 9 ) and rfnrj2 corresponds to aP b[2

nPNN . 

Again the rç's are real in a region around t = 0. In 
fact we have 

in the asymptotic region. 

For the N-N problem, we have no contribution to 
h5, so there are twelve Z's corresponding to the four 
amplitudes ht and the three ^-matrix elements SJ

VV, SJ

VW, 
SJ

WW These can be worked out using well-known for­
mulae 1 9 , 2 0 ) provided we correct a misprint in Ref . 1 9 ) . 
[See Plenary Section V.] 

Going to large s and fixed t, we obtain 

So far we confirm the results of Gribov and Pomeran­
chuk 1 3 ) , but they are in error in saying that the P 
trajectory contributes nothing to h4 . It gives 

Although this term is rather small at high energies, 
it is important in the discussion of the ghost problem 
in Section 4. Note the factor a " 1 . 

We remark that ^ ( 0 ) = aNN asymptotically, so 
that the rule 1 0 ' 1 1 } <j*N = vnK(TNN is confirmed. 

V. A SIMPLER T R E A T M E N T OF T H E NN C H A N N E L S 

For what follows, we need not make use of invariant 
amplitudes for N-N scattering, free of kinematic 
singularities and easy to deal with in the s reaction 

fact, taking t = 0, using the optical theorem, and 
putting a P(0) = 1 for the Pomeranchuk trajectory, 
we find 

where 

In terms of <?'s we have 
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N-\-N-+N+N. Thus we can dispense with the com­

plicated A's and make use of the four simple amplitudes 

defined in Ref. 1 9 ) for n-p scattering, but used here for 

N-N scattering with 7 = 0 . In the notation of Ref. 1 9 ) , 

We now introduce two trajectories, the Pomeranchuk 

trajectory P and another, called Q, with negative 

signature and with all the same quantum numbers 

except that (—\) JP = —1 instead of + 1 . Instead 

of the helicity states v and w, we go back to the partial 

wave states \L = J—]} and |L = / + ! > , called 

— and + respectively, and we add the state \L = />, 

called 0, to be connected with the Q trajectory. For 

the P trajectory we use 

instead of and Çw . For the Q trajectory, there is 

just £ 0 . 

We now make use of Eq. (B.l l ) of Ref. 1 9 ) , correcting the misprint in the equation for Tx _x : the denominator 

of the first term should be L + l , not 1 + 2 . For the contributions of the two Regge trajectories to the 

7"s, we have just the following [without bothering to symmetrize in xt according to the signature]: 

The Q trajectory is not coupled to the 2n channel; 

for the P trajectory we retain our definition of £ n . 

The advantage of using the formulae of this Section 

is that they are complete, while in Section 4 the for­

mulae for A -̂7V scattering are only asymptotic. Using 

the matrices of Ref. 2 0 ) , one can obtain complete 

formulae for the h's of Section 4, but they are rather 

complicated. 

V I . T H E A B S E N C E OF T H E G H O S T 

Let us assume that aP passes through zero at a 

negative value of /. Why is there not a pole in each 

of the scattering amplitudes at this value of t and 

thus a ghost? Let us first note a set of mathematical 

conditions that will avoid the ghost. Although these 

conditions may look remarkable, we shall see, by 

looking at a Schrôdinger equation problem with 

several channels and spin, that they are quite ordinary. 

A large class of all trajectories obey them, and it is 

a purely dynamical matter whether the leading 

trajectory belongs to the class. Similar mathematical 

reasons 2 1 } underlie the absence, in many nuclear 

rotational series, of the state or states of lowest / . 

First, let us return to Section 4 and look at the leading 

contributions to TnK, AnN , BnN, hl9 h29 and h3, 

we use 
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ignoring h4 for the moment. We see that if, as a P ->0 , 

we were to have £ B-*0 like and ^ - > 0 like ^JctP 9 

while £ w -> const., then all terms in Y\\ , rjnril9 r\nr\2, 

Oh—*te)2> ViOli—li)* and would -^0 like aP, so 

that all the amplitudes under discussion would have 

1 
a factor aP to cancel the pole in and there 

sin naP 

would be no ghost. 

Now, in the notation of Section 5, we note that as 

£_<-^U> A N D Ç+^Çv L e t u s consider the 

exact contribution to T00 in Eq. (5.4). If const, 

and Ç + cCyfôTp as a P~>0, then there is in each term a 

1 
factor QcP to cancel the pole of . 

sin nocP 

Next, in Section 4, we turn to the amplitude // 4 . 

Here we see that the above conditions are insufficient. 

1 
Because of the additional factor of — , we would 

otP 

still have a ghost. Another apparently remarkable 

condition is needed. We can see what that is by 

looking at Eqs. (5.1)-(5.3). Suppose that as a P ->0, 

the Q trajectory has 1. Moreover, we suppose 

that at the same value of t9 the quantity 

is sufficient to remove the pole. The same is true 

of Eqs. (5.2) and (5.3). Evidently, when we go to 

the asymptotic limit of Section 4, the obnoxious term 

in hA is taken care of, along with everything else. 

Now let us understand how these miracles happen. 

We consider a system of coupled Schrôdinger equa­

tions including two-body channels like the 2n and 

NN channels under consideration. Take a Regge 

trajectory like P9 which has a wave function in the 

nn channel and in the triplet NN channels with 

L = J+1 and with L = J— 1. The asymptotic 

wave functions are proportional to £ n , £ + , and £ _ 

respectively. The three channels are coupled to­

gether by forces; for example the tensor force connects 

the + and — channels. At J = 1, 2, 3, both the 

+ and — cases correspond to physical situations 

[e.g., 3F2 and 3P2 , 3DX and 3S1]9 but at / = 0 only 

the + channel is physical (3P0). If we introduce 

the notation " ^-wave " for L = — 1 [corresponding 

to s wave for L = -0 , etc.], then the — channel at 

J — 0 gives the physically meaningless state 3A0 . 

Now at all values of / > 0 , whether integral or not, 

the three channels couple together and the wave 

functions mix. However, as J->0, that is no longer 

the case. The tensor force matrix element, for 

example, goes like ^ ^ ^ Similarly the coupling 
2J + 1 

between the — channel and the Tin channel goes to 

zero like V / . Thus at 7 = 0 the nonsense channel 
3A0 and the sensible channels (3P0 and nn ^-wave) 

become decoupled. A given Regge trajectory, there­

fore, as a->0, becomes either pure " sense " or pure 

"nonsense" . If there is a J = 0+ state, then 

£_->0 like \]a and £ + , const. The other type 

of trajectory, which is just as common, chooses 

nonsense at a = 0, so that C„ > const, and £ + , 

£noz\loL. The P trajectory, if aP passes through zero, 

is evidently of the latter type. 

Next, we explain the other miracle, the cancellation 

between P and Q trajectories. We look at the S-

matrix elements in two different channels, one relevant 

to the P trajectory and the other to Q9 namely SJ_!_ 

and SQO . As Jx~^0 and J2~>~~19 these matrix 

elements become equal. [Both are, of course, un-

physical.] The proof can be accomplished in several 

ways. First, for the Schrôdinger equation, we 

notice that L ( L + l ) and L*S become the same for 

the two channels as J{ >0 and J2-> - 1 . We have 

seen, too, that the tensor force and the coupling to 

the nn state disappear. In fact, all the forces in the 

two channels become identical. So do the orbital 

angular momenta, both approaching — 1 . 

In the general case, including the relativistic problem, 

we have only to generalize Froissart's 2 2 ) definition 

of the analytically continued 5-matrix to our problem 

to see that the definitions of S°_ _ and Sqq are the same. 

Thus e~IN{JL+^SJ^_ and e~IN(J2+^SJ

0

2

0 approach equal 

and opposite values as J ^ O , J2-+ — l. A pole in 

remains finite. In Eq. (5.1), for example, we would 

have, in the limit, 

J il r 

The condition that 

sonst. 
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as a P->0 and a Q -> — 1. The second miracle is explained. 

Here we are dealing with J2< — Vi and the question 
of twin poles becomes really important for the first 
time. If the Q trajectory really possesses a twin 
near the value of i we are discussing, then the twin 
passes through 0 as aQ passes through — 1 . The 
contribution of the twin to A4 , for example, is one 
order higher in xt than that of the leading term due 
to the Q pole itself. The coefficient of this new 
contribution is proportional to aQ, cancelling sin naQ 

in the denominator; thus there is no ghost, but there 
is a term in h4 larger by one power of s than that given 
in Eq. (4.21). 

The generalization of our story to more complicated 
crossed channels with higher spin and with many 
particles is very interesting and gives rise to a situation 
closely resembling that in nuclei, where the Regge 
trajectories are familiar as series of " rotational " 
levels. 

sections at moderate energies to true asymptotic cross-
sections at very high energies, the latter being factorable. 

Udgaonkar and Gell-Mann 1 4 ) investigated the 
consequences of a very crude model in which the 
nucleus is treated as a collection of nucléons and the 
semi-classical approximation is made. Since each 
nucléon becomes larger and more transparent at higher 
energies, eventually the nucleus-nucleus cross-section 
tends to AA'<jnn , where A and A' are the atomic 
numbers of the collision partners. This picture gives 
an illustration of factorability at very high energies. 

The slow transition is accomplished by having a 
cut in the angular momentum plane as well as the 
Pomeranchuk pole, so that besides the asymptotic 
constant cross-section there are terms in I/Ins, etc. 
These " eclipse " terms, which eventually vanish 
at very high energies, come from dispersion diagrams 
like the following (for p-d scattering) : 

APPENDIX 

Regge Poles and Nuclear Scattering 

If all the strongly interacting particles lie on Regge 
trajectories, then there is nothing to distinguish 
" elementary " particles like nucléons from obviously 
composite systems like nuclei, except that the latter 
possess very prominent " anomalous singularities 
corresponding to a spatial extension of their wave 
functions greatly exceeding the Compton wave lengths 
of the particles involved. What effect do these 
singularities have on diffraction scattering and total 
cross-sections at high energies ? 

In the scattering of nucléons from nuclei at several 
GeV, it is apparent that the absorption cross-sections 
are geometrical and that for scattering of two nuclei 
with radii R and R' we would obtain a total cross-
section of the order of 2n(R+Rr)2. 

But if we assume that high-energy scattering am­
plitudes are dominated by the exchange of the P 
trajectory, then we obtain the factoring property for 
total cross-sections. There must then be a slow 
transition from the apparently constant nuclear cross-

Here we are dealing with the simple eclipse of neutron 
by proton and vice versa in the deuteron. 

It would be attractive to suppose that the cuts in / 
due to the eclipse terms are exactly cancelled by cuts 
from other dispersion diagrams, leaving only Regge 
poles, even in the case of anomalous singularities. 
The total cross-sections at moderate energies would 
then be roughly the asymptotic ones. But how can such 
a situation be reconciled with the factoring property ? 

In the absence of anomalous singularities, Amati 
and Fubini 2 3 ) have obtained cuts in / simply from 
diagrams like 

but in that case it is perfectly possible that they cancel 
against cuts from the other diagrams, leaving just 
Regge poles. 

the first quantity of the form t;2_(Jx— aP) 1 requires 
a pole in the second of the form Co(^2"~ a e) _ 1 w ^ 
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