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Abstract

One of the most prominent distinguishing features in strongly correlated electron

systems, such as the high Tc (critical temperature) cuprates and the most recent iron

pnictides, is the presence of “competing orders” that are related to the breaking of

the lattice symmetries. Does the ubiquitous presence of such inhomogeneous orders

in strongly correlated superconductors have a deep connection to superconductivity?

The answer to this question is crucial for identifying the mechanism of supercon-

ductivity, at least in the cuprates. Amidst serious difficulties within conventional

theoretical framework to deal with strongly interacting degrees of freedom at finite

density, “AdS/CFT correspondence” or “gauge/gravity duality” sheds new light

into the origin of high Tc superconductivity by mapping the original system into

an appropriate weakly coupled one. An example of the “Holographic principle”,

according to which, a quantum theory with gravity must be describable by a boundary

theory, AdS/CFT duality provides guidelines to model a d dimensional strongly

coupled condensed matter system in terms of a suitable gravity theory (as low energy

limit of String theory) on a d+1 dimensional anti de-Sitter (AdS) space. In this thesis

I will develop a phenomenological holographic model of strongly coupled “striped”

superconductors in two spatial dimensions and study the interplay between charge

density waves and superconductivity. It will be shown that charge density waves

with large modulation compete with superconducting order, causing the critical

temperature to fall off with increasing modulation in various ways depending on free

parameters of the theory. For small modulation, the effects of fluctuations dominate,
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causing an enhancement of critical temperature upon turning on modulation. The

highest critical temperature is obtained at an intermediate modulation. Moreover,

there exists a region in parameter space of the theory within which the modulation vs

Tc phase structures show striking resemblance to doping phase structure of cuprates.
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Chapter 1

Introduction

It was noticed in the early part of the 20th century that the electrical resistivity of

most metals drops suddenly to zero as the temperature is lowered below a critical

temperature Tc. These materials were called superconductors. A second independent

property of these materials was the Meissner effect: A magnetic field is expelled

when T < Tc. This is perfect diamagnetism and does not follow from the perfect

conductivity (which alone would imply that a pre-existing magnetic field is trapped

inside the sample).

A phenomenological description of both of these properties was first given by the

London brothers in 1935 with the simple equation Ji ∝ Ai [1]. Taking a time

derivative yields Ei ∝ ∂Ji/∂t, showing that electric fields accelerate superconducting

electrons rather than keeping their velocity constant as in Ohm’s law with finite

conductivity. Taking the curl of both sides and combining with Maxwell’s equations

yields ∇2Bi ∝ Bi showing the decay of magnetic fields inside a superconductor.

In 1950, Landau and Ginzburg described superconductivity in terms of a second

order phase transition whose order parameter is a complex scalar field ψ [2]. The

density of superconducting electrons is given by ns = |ψ(x)|2. The contribution of ψ
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to the free energy is assumed to take the form

F = α(T − Tc)|ψ|2 +
β

2
|ψ|4 + · · · (1.1)

where α and β are positive constants and the dots denote gradient terms and higher

powers of ϕ. Clearly for T > Tc the minimum of the free energy is at ψ = 0 while for

T < Tc the minimum is at a nonzero value of ψ. This is just like the Higgs mechanism

in particle physics, and is associated with breaking a U(1) symmetry. The London

equation follows from this spontaneous symmetry breaking [4].

A more complete theory of superconductivity was given by Bardeen, Cooper and

Schrieffer in 1957 and is known as BCS theory [5]. They showed that interactions

with phonon can cause pairs of elections with opposite spin to bind and form a

charged bound state called a Cooper pair. Below a critical temperature Tc, there is a

second order phase transition and these bosonic pairs condense. The DC conductivity

becomes infinite producing a superconductor. The pairs are are not bound very

tightly and typically have a size which is much larger than the lattice spacing. In

the superconducting ground state, there is an energy gap ∆ for charged excitations.

This gap is typically related to the critical temperature by ∆ ≈ 1.7Tc. The charged

excitations are “dressed electrons” called quasi particles. The gap in the spectrum

results in a gap in the (frequency dependent) optical conductivity. If a photon of

frequency ω hits the superconductor, it must produce two quasi particles. The binding

energy of the Cooper pair is very small, but the energy of each quasi particle is ∆, so

the gap in the optical conductivity is ωg = 2∆ ≈ 3.5Tc.

A new class of high Tc superconductors were discovered in 1986 [6]. They are cuprates

and the superconductivity is along the CuO2 planes. The highest Tc known today (at

atmospheric pressure) is Tc = 134oK for a mercury, barium, copper oxide compound.

If you apply pressure, Tc climbs to about 160K. There is evidence that electron pairs
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still form in these high Tc materials, but the pairing mechanism is not well understood.

Another class of superconductors were discovered in 2008 based on iron and not

copper [7]. The highest Tc so far is 56oK. These materials are also layered and

the superconductivity is again associated with the two dimensional planes. They are

called iron pnictides since they involve other elements like arsenic in the nitrogen

group of the periodic table.

Bolstered by numerous experiments, strongly coupled systems are expected to play

a key role in the understanding of high temperature superconductivity. However,

strongly coupled systems are far from being understood [12, 13]. Study of such

systems within conventional theoretical frameworks have met with serious difficulties.

While some techniques have been devised over the years to model such systems, there

is a scarcity of simple, tractable models to deal with strongly coupled fermions at

finite density. Recently, there has been a flurry of activity trying to fill in this gap

using various developments of the gauge/gravity duality [14]. Holographic ideas have

become increasingly popular in the field of high energy theory, over last fifteen years.

The AdS/CFT correspondence, spurred by proposals in references [8, 9, 10], has

become the most successful realization of holographic principle. The conjecture posits

a correspondence which relates string theory on asymptotically anti de Sitter (AdS)

space-time to conformal field theory on the boundary. The first and most fundamental

reason for its importance is that, AdS/CFT conjecture provides a definition of

quantum gravity in a particular curved background space-time. The second is that,

AdS/CFT acts as a tool to understand strongly interacting field theories with Lorentz

symmetry in d space-time dimensions by mapping them to classical gravity, as low

energy limit of string theory, in d + 1 space-time dimensions. A popular model that

includes some important ingredients of a realistic system is the 2+1 dimensional

holographic superconductor [16, 15]. It consists of a 3+1-dimensional Einstein-

Maxwell-scalar theory in an AdS black hole background. At low temperatures, a phase
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transition to a superfluid state takes place [11], in which the scalar field develops a

non-vanishing expectation value, spontaneously breaking the gauge U(1) symmetry.

Physical properties such as transport coefficients can be studied and contrasted with

other known systems like Bardeen-Cooper-Schrieffer (BCS) superconductors. The

main conceptual ingredients of the holographic superconductors are strong coupling

and proximity to an underlying conformal symmetry, which are believed to be crucial

features of cuprates as well.

One of the differences between conventional superconductors and high temperature

superconductors is that the normal states of the conventional superconductors are

well described by Fermi liquid, whose only (weak coupling) instability is to super-

conductivity. By contrast, the normal states of high temperature superconductors,

such as cuprates and iron pnictides, are highly correlated and thus, exhibit other

low temperature orders which interact strongly with superconductivity. One of the

prominent orders is the unidirectional charge density wave “stripe” order [56, 55, 57]

that break the discrete translation and rotation symmetries of the square lattice

underlying the CuO2 planes. It is therefore important to understand the nature of

the interplay between superconductivity and the stripe order in the presence of strong

correlation. Models have been proposed based on the coexistence of homogeneous

superconductivity with CDW and SDW, as well as models where the superconducting

order parameter itself is modulated (pair density waves or PDW). Signatures of

CDW have been reported in a variety of strongly correlated superconductors, most

notably the hole-doped cuprates La1.6−xNd0.4SrxCuO4, La1.8−xEu0.2SrxCuO4, and

La2−xBaxCuO4 [17]. For these materials, the order can be consistently interpreted

in terms of uni-directional SDW and CDW over a wide range of doping. Study of

these orders and their connection to superconductivity required extension of existing

holographic models of homogeneous systems by introducing inhomogeneity.

In this thesis, we will develop a holographic model to study the interplay between
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superconductivity and CDW orders. The outline of this thesis is as follows.

Chapter two and chapter three will be dedicated to discussion of superconductivity

and holography respectively. In chapter four we will review a holographic model

of homogeneous superconductors. In chapter five, we will introduce the system

describing strongly coupled striped superconductors and solve the system in both

mean-field level and then adding fluctuations. The last chapter will summarize the

main results and conclusions of this work.
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Chapter 2

Superconductivity

Quantum theories have successfully explained a variety of fascinating phenomena

throughout the last century. These phenomena can be loosely classified as either

microscopic or macroscopic quantum phenomena. The former class of phenomena

are primarily observed at small length scales or at high energies, while the

later are observed at low temperatures in systems with large degrees of freedom.

Superconductivity, superfluidity and Bose-Einstein condensation, are all examples

of macroscopic quantum phenomena. These macroscopic systems undergo phase

transitions between ordered and disordered states, under variation of external

conditions. A transition from a disordered to an ordered state is characterised by non-

vanishing expectation value of some suitable macroscopic coherent state, called order

parameter, wherein a macroscopic number of elementary excitations condense into a

ground state that exhibits long ranged order among spatially separated excitations.

Superconductors exhibit fascinating phenomena that can be predicted, at least for

conventional superconductors, with great accuracy. To explain these phenomena

both macroscopic and microscopic models are used. There are macroscopic models

like that of Ginzburg and Landau, in which cooperative states of electrons are

represented by a complex scalar field. There are microscopic models like BCS
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theory, in which electrons appear explicitly, but are assumed to interact via only

single phonon exchange. These approximations are not useful for high Tc phenomena

where electrons are strongly correlated. So it is necessary to sort out the general

properties that are independent of these models. There is one feature common to all

these models that provide these high-precision predictions : all these models exhibit

a spontaneous breakdown of electromagnetic gauge invariance in a superconductor.

The thermodynamic conditions and underlying mechanism of this symmetry breaking

depends on the details dynamical models. However, many fundamental characteristics

of superconductors can be predicted by simply assuming that for whatever reason the

electromagnetic gauge invariance of the system is spontaneously broken [4].

In the first section of this chapter we will glance through two popular theories of

weakly coupled superconductors: Ginzburg-Landau theory and BCS theory ∗. In

the following section, after a brief review of electromagnetic gauge invariance and

spontaneous symmetry breaking, we will discuss how such a simple consideration can

account for much of the phenomonology of superconductivity.

2.1 The Ginzburg-Landau and BCS theory

The Ginzburg-Landau (GL) theory of superconductivity [2], originally introduced

as a phenomological theory, describes superconducting phase transition from a

thermodynamics point of view. In orginal proposal a wave function ψ(x) was

intoduced as a complex order parameter. The quantity |ψ|2 is to represent the local

density of superconducting electrons ns(x). The theory was developed by applying

variational method to an assumed expansion of free energy in powers of |ψ|2 and

∗In 1959, Gorkov derived [3] the macroscopic Ginzburg-Landau theory from microscopic BCS
theory.
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|∇ψ|2, leading to a pair of coupled differential equations for ψ(x) and electromagnetic

potential A(x).

The basic postulate of GL theory is that if ψ is small and varies slowly in space,

the free energy density can be expanded as,

f = fn + α(T ) |ψ|2 +
β(T )

2
|ψ|4 +

1

2m
|Dψ|2 (2.1)

where,

fn = fn0 +
B2

8π

is the free energy of the normal state; α(T ) and β(T ) are temperature dependent

phenomological paramaters of the theory and D = ∇ − i q ~A is the spatial part of

gauge derivative.

Here we consider a spatially uniform superconductor without any external magetic

field (Dψ = 0). The difference between free energies in normal and superconducting

states reads,

fs − fn = α(T ) |ψ|2 +
β(T )

2
|ψ|4 = |ψ|2

(
α(T ) +

β(T )

2
|ψ|2

)
(2.2)

Note that β must be positive for free energy to be bounded below (or else we have to

include highier power in expansion). The above functional is minimized by,

|ψ|2 = 0,−α
β

(2.3)

If sign of parameter α determines which of the above two solutions represents the

ground state. If α > 0 then the minimum free energy occurs at |ψ|2 = 0 and if α < 0

then the minimum free energy occurs at |ψ|2 = −α
β
.
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Since by definition Tc is the highest temperature at which a non vanishing condensate

gives a lower free energy than a vanishing condensate, the parameter α(T ) must

change sign at Tc, going from positive above Tc to negative below Tc. We also assume

that β(T ) is a smooth function of temperature near Tc. We can thus expand these

parameters about Tc as,

α(T ) = ȧ(T − Tc) + · · · ; β(T ) = b+ · · · (2.4)

Then close to Tc the magnitude of condensate becomes,

|ψ| =
√
ȧ

b
(Tc − T )1/2 T < Tc

Inserting the above expressions for |ψ|, α and β the difference between free enrgy

densities between superconducting phase and normal phase reads,

fs − fn = − ȧ
2

2b
(T − Tc)2 (2.5)

We note that the entropy density (s = −∂f/∂T ), is continuous during the transition.

ss(T )− sn(T ) = − ȧ
2

b
(Tc − T )

However, the heat capacity per unit volume CV = −T ∂2f / ∂T has a discontinuity

at Tc.

∆CV = Tc
ȧ2

b
(2.6)

Since the system exhibits discontinuity in a second derivative of the free energy, it is

a second order phase transition.

The Ginzburg-Landau theory makes many important predictions, a description of

which can be found in any standard text book on Condensed matter physics [21].
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However, it is worth mentioning here two of the most powerful features of this theory:

first, this theory, although originally applied as mean-field theory can be extended

to include thermal fluctuations, an important feature of high Tc superconductors.

Second, the theory does not rely on underlying microscopic theory and consequently

applicable upon full filling certain conditions even if the microscopic mechanism is

unknown.

The first microscopic theory of superconductivity was worked out by Bardeen, Cooper

and Schrieffer in 1957 [5]. Since it’s inception, the BCS theory successfully explained

a plethora of experimental data. In particular, explanation of isotope effect and

prediction of existence of an energy gap at Fermi surface are two major triumphs of

the theory.

The BCS theory was formulated upon three key ideas. First, it was recognised that

effective interaction between electrons can be attractive. Second Cooper’s simple

consideration of just two electrons outside an occupied Fermi surface showed that

the electrons form a stable bound state in the presence of attractive potential.

Moreover such states form as long as the effective interaction between electrons remain

attractive, however weak it is. Third a coherent state N body wave function was

constructed by Schrieffer such that all electrons near to the Fermi surface pair up.

These bound states called Cooper pairs are defined as,

Φ†(~R) ≡
∫

d3r φ(~r)ψ†↑(
~R + ~r/2)ψ†↓(

~R− ~r/2) (2.7)

where ψ† are Fermionic operators and φ(~r) is the spatial part of two body wave

function of spin singlet state. The effective interaction between electrons due to

exchange of a virtual phonon of wave is of the form:

Veff (Q,ω) = |gQ|2
1

ω2 − ω2
Q

(2.8)
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where gQ is the electron-phonon vertex. It was shown by Migdal that the electron-

phonon vertex,

gQ ≈
√
m

M
(2.9)

where m is the effective mass of electrons at Fermi surface and M is the mass of ions.

To simplify the problem individual interaction vertex between a phonon mode with

wavevector Q and electrons are replaced by a contant avarage |geff | and individual

phonon fequencies are replaced by Debye frequency ωD. Then the effective potential

reads,

Veff (Q,ω) = |geff |2
1

ω2 − ω2
D

(2.10)

A fundamental parameter of BCS theory is the electron-phonon coupling parameter

λ defined as,

λ = |qeff |2 g(εF ) (2.11)

and is assumed to be small, λ << 1. Consequently most applications of this theory

is valid only in this the weak coupling regime. This approximation breaks down for

high Tc superconductors and the theory become strongly coupled.

2.2 Superconductivity via Higgs Mechanism

Although, breaking of gauge symmetry first appeared in Ginzburg-Landau theory [2]

in 1950, the mechanism was not clear at that time. In 1962, Schwinger [22] proposed

what we know today as breaking of gauge symmetries in relativistic theories. The

following year, Anderson [23] identified Ginzburg-Landau theory as a non-relativistic

realization of Schwinger’s idea and thereby established superconductivity as a theory

of spontaneous breaking of gauge symmetries. In 1964, Higgs [25], Englert and Brout

[26] introduced relativistic models of electroweak symmetry breaking analogous to

11



Ginzburg-Landau model of superconductivity. In 1981, Littlewood and Varma [28]

realized that an unexpected feature of the Raman spectrum of NbSe2 superconductor

could be explained by a massive collective mode the oscillation of the amplitude of

the superconducting gap.

2.2.1 Spontaneous Symmetry Breaking

A spontaneously broken symmetry in field theories is associated with a degeneracy

of vacuum states. Consider an action I[ψ(x)] of a single field ψ(x). The action has a

symmetry under a symmetry transformation g : ψ(x)→ ψ′(x) if,

I[g ψ] = I[ψ] (2.12)

The vacuum is defined as a state whose expectation values of ψ(x) is at a minimum

of vacuum energy −I[ψ], say at ψ0. Since the action is invariant under a symmetry

transformation g, under such a transformation the same minimum of vacuum energy

−I[gψ] = −I[ψ] is obtained, but now at gψ0. So, unless gψ0 = ψ0, we have two

minima, each corresponding to a state of broken symmetry. However, it should be

emphasized that Spontaneous symmetry breaking occurs only for idealized systems,

that are infinitely large. The matrix elements of Hamiltonian between vacuum states

of different field expectation values are exponentially suppressed by the size of the

system and vanish for infinitely large systems. Hence, the true vacuum is one of the

above minima and not any linear combination of them (which may also preserve the

symmetry of the action).

In order to describe symmetry breaking in physical systems, we may introduce a

quantity, different values (or sets of values) of which correspond to different symmetry

structure. In descriptions of a phase transition characteristic values of such a quantity
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determines if the system is in an ”ordered” or a ”disordered” phase. For this reason

such quantities are called order parameter. In what follows we will consider the

set of values of an order parameter as points in an infinitely differentiable manifold

M . Let G be a compact Lie group, acting smoothly on M . The action of a group

element, g ∈ G, on a point ψ ∈ M will be denoted simply as gψ. For each point

we also denote as Hψ the set of all group elements that leave ψ invariant, that is,

Hψ = {g ∈ G | gψ = ψ}. This set forms a subgroup of G and is called the little (or

isotropy) group of ψ. In physical terms, it consists exactly of those transformations

that left unbroken when the order parameter takes the value ψ. A very important

notion that we will further use is that of the orbit G(ψ) of a given point ψ. It consists

of all points of M which can be reached from ψ by a (naturally, broken) symmetry

transformation, G(ψ) = {gψ | g ∈ G}. The relation defined by the condition that two

points be connected by a group of transformations is an equivalence relation, and the

group orbits then define a partition of the manifold M into equivalence classes. Any

potential V on the manifold which is invariant under the group action, V (ψ) = V (gψ)

for all ψ ∈ M and g ∈ G, may be thought of as a function on the orbits. The

minimization problem for a given potential on M can therefore be reformulated as a

minimization of a function on the space of orbits.

It is clear from the definition of the orbit that two points ψ and ψ′ on the same

orbit have isomorphic little groups, since for each symmetry transformation h ∈ Hψ

we can define another symmetry transformation h′ = g h g−1 where ψ′ = gψ so that

h′ψ′ = ψ′. This is in fact an immediate consequence of the stronger statement that

the two little groups are conjugate, Hgψ = gHψ g
−1. In addition to the orbit G(ψ)

there may be other points on the manifold whose little groups are conjugate to Hψ.

For example, when M is a linear space , multiplying ψ by any (nonzero) number we

obviously get a point with the same little group as ψ. The set of all points with

little groups conjugate to Hψ is called a stratum, S(ψ). Intuitively, a stratum consists

of all points of the same symmetry “class”: they have the same unbroken subgroup
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and the same symmetry-breaking pattern. In the phase diagram, a stratum would be

associated with a particular phase. At a phase transition, the order parameter moves

from one stratum to another, and the symmetry class changes.

One of the most striking consequences of spontaneous symmetry breaking is the

existence of soft modes in the spectrum whose energy vanishes in the long-wavelength

limit. This is the Goldstone theorem and the soft modes are usually referred to as the

Nambu-Goldstone bosons. Any system described by a Lagrangian with symmetry

group G, when in a phase in which G is spontaneously broken to a subgroup H,

will posses a set of fields, that transform under G like the coordinates of coset space

G/H. Such fields are called Nambu-Goldstone excitations. From a physical point

of view, the most important ingredient responsible for the presence of NG bosons

is, apart from the symmetry breaking itself, the existence of a conserved charge.

The Goldstone theorem guarantees the existence of a NG mode in the spectrum. In

the most general formulation it does not tell us how many NG bosons there are. In

Lorentz invariant theories there turns out to be exactly one NG boson for each broken

generator. In spontaneously broken global symmetries these bosons are massless and

spin zero particles. In spontaneously broken local symmetries these degrees of freedom

show up as helicity zero states of vector particles associated with the broken local

symmetries. Consequently each vector particle acquires a mass. This phenomenon

is known as Higg’s mechanism. Several consequences of broken symmetries can be

deduced solely from properties of these Nambu-Goldstone modes.

2.2.2 Electrodynamics and Gauge Invariance

The need for a principle of gauge invariance arises from the difficulty in formulating

quantum theories of massless particles with spin. It turns out that there is no way
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to construct a true four vector as a linear combination of creation and annihilation

operators for massless particles with helicity ±1. We can construct an antisymmetric

tensor of form Fab = ∂aAb − ∂bAa, but Aa’s transform as four-vector only up to a

guage transformation,

U(Λ)Aa U(Λ) = Λb
aAb(Λx) + ∂ Ω(x,Λ) (2.13)

where U(Λ) is a unitary representation of Lorentz transformation Λ. The presence of

singularities at m = 0 in propagator of a massive vector field of helicity ±1 prevents

us from passing to m→ 0 limit from the theory of massive particle of spin one.

If all interactions take place through only Fab and its derivatives, these problems

could be avoided, as due to commutativity of partial derivative, field strength tensor

Fab is blind to gauge freedom. However this is neither the most general interaction,

nor the one realized in nature. To remove this restriction, and incorporate Aa itself

as directly interacting with matter. then matter action IM must be invariant under

general guage transformation,

Aa(x)→ Aa(x) + ∂aε(x) (2.14)

The change in matter action under the transformation 2.14,

δIM =

∫
d4x

δIM
δAa(x)

δAa(x) =

∫
d4x

δIM
δAa(x)

∂aε(x) (2.15)

Integrating by parts (and thus shifting the ∂a to δIM
δAa(x)

) with vanishing boundary

term, leads to the condition for which change in matter action will vanish,

∂a
δIM
δAa(x)

= 0 (2.16)
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This condition is satisfied trivially if IM involves only Fab and its derivatives, along

with other matter fields, but is non-trivial if IM involves Aa itself.

Suppose in the set of independent fields other than Aa , fields are denoted by

ψ(l)(x), where l runs over number of independent fields. We want this set of fields

to provide conserved currents when coupled to Aa(x). We know that, infinitesimal

internal symmetries of the action imply the existence of conserved currents. Under

an infinitesimal transformation ε(x), these fields changes by,

δψ(l)(x) = iε(x) ql ψ
(l)(x) (2.17)

If the above transformations leave the matter action invariant for a constant ε then

for general ε(x) the change in matter action must take the form,

δIM = −
∫
d4xJa(x)∂aε(x) (2.18)

When the matter fields satisfy their equations of motions, the matter action is

stationary with respect to any variation of the ψ(l). So in this case,

∂aJ
a = 0 (2.19)

where,

Ja = −i
∑
l

∂LM
∂(∂aψ(l))

ql ψ
(l) (2.20)

The time independent charge operator reads,

Q =

∫
d3x J0 ; [Q,ψ(l)(x)] = −ql ψ(l)(x) (2.21)

We can therefore construct a Lorentz invariant theory by coupling the vector field Aa

to the conserved current Ja, in the sense that δIM/δAa(x) is taken to be proportional
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to Ja(x). Any constant of proportionality may be absorbed into the definition of

overall scale of charges ql. So,

δIM
δAa(x)

= Ja(x) (2.22)

This requirement can be restated as a Principle of Invariance : The matter action is

invariant under the joint transformations,

δAa(x) = ∂aε(x) (2.23)

δψ(l)(x) = i ε(x) ql ψ
(l)(x) (2.24)

A symmetry of this type with an arbitrary ε(x) is called a Local Symmetry or Gauge

Invariance of Second kind. A symmetry under a transformation with ε a constant, is

called a Global Symmetry or a Gauge Invariance of First kind.

The action for photons themselves takes the form,

Iγ = −1

4

∫
d4xFabF

ab (2.25)

The field equations for electromagnetism reads,

0 =
δ

δAb
[Iγ + IM ] = ∂aF

ab + J b (2.26)

We note that the change in Fab under local gauge transformation 2.14 ,

δFab = ∂a(δAb) + ∂b(δAa) = ∂a∂bε(x) + ∂b∂aε(x) = 0 (2.27)

A finite gauge transformation can be obtained by simply exponentiating infinitesimal
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transformation. The gauge group can be parametrised by a function Ω(x) so that it

acts on gauge field and matter field as,

Aa(x)→ Aa(x) + ∂aΩ(x) (2.28)

ψ(l)(x)→ ei ql Ω(x)ψ(l)(x) (2.29)

Given a gauge field Aa(x), in general it is not possible to choose Ω(x) such a way

that all four components of gauge field vanish in a finite region region.For this the

function Ω(x) has to satisfy four differential equations,

Aa(x) + ∂aΩ(x) = 0 (2.30)

which cannot be solved unless certain integrability conditions are satisfied. However

if there exist such a function Ω(x), for which all components of gauge field vanish,

then all elements of Fab vanish identically. A gauge field is called a pure gauge field if

there exists a gauge transformation which makes it vanish everywhere. Consequently

the necessary and sufficient condition that Fab vanish everywhere is that the gauge

field must be expressible as a pure gauge field, satisfying (2.30).

2.2.3 Broken Gauge Invariance and Nambu-Goldstone modes

A superconducting system is described by an order parameter ψ charged under

electromagnetic gauge group G = U(1). The action for the system is invariant under

gauge transformations of the form,

Aa(x)→ Aa(x) + ∂aΩ(x) (2.31)

ψ(x)→ ei qΩ(x)ψ(x) (2.32)
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where Ω(x) is arbitrary and q = 2 e is the charge of the ψ under this U(1) symmetry.

Therefore the group is compact: the phases Ω(x) and Ω(x) + 2π
e

must be identified.

The normal state of a superconductor is characterized by a vanishing order parameter

ψ(x) = 0. The isotropy group of this value of order parameter is the entire gauge

group Hψ=0 = U(1). A non-vanishing order parameter ψ of charge q = 2e breaks this

U(1) symmetry into a subgroup Z2 with two elements Ω(x) = 0 and Ω(x) = π
e
.

In our case there will be a single Nambu-Goldstone excitaion described by a field

φ(x). We write the order parameter ψ(x) as,

ψ(x) = ei q φ(x)ρ(x) (2.33)

where ρ(x) is a gauge invariant field. Under U(1) the Nambu-Goldstone excitation

transforms like the phase Ω(x) itself

φ(x)→ φ(x) + Ω(x) (2.34)

so that under a gauge transformation ψ(x) = ei q φ(x)ρ(x) → ei q (φ(x)+Ω(x))ρ(x) =

ei qΩ(x)ψ(x). The field φ(x) parameterizes the coset space U(1)/Z2. So we must

identify the points

φ(x) = φ(x) +
π

e
(2.35)

The matter action describing such a system must be some gauge invariant functional

of ρ(x), Aa(x) and φ(x). Since ρ(x) is gauge invariant by definition and first derivatives

of φ transform the same way as gauge field themselves, the matter action must

be a functional of ρ and ∂aφ − Aa. In what follows, we will assume that the

superconductor has a stable equilibrium configuration in the absence of Goldstone
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or external electromagnetic fields, so that the energy has at least a local minima at

∂aφ(x)− Aa(x) = 0 (2.36)

with non-vanishing second derivative with respect to ∂aφ(x)−Aa(x). In other words,

deep inside a large superconductor where boundary conditions are unimportant the

electromagnetic field is pure gauge,

∂aφ = Aa (2.37)

and consequently electromagnetic field vanishes. Such expulsion of an external

electromagnetic field, in particular an applied magnetic field by a superconductor

is known as Meissner effect.

In a simply connected time-independent superconductor the Nambu-Goldstone fields

can be gauged away. However, in multiply connected superconductors such a gauge

transformation may not be possible, since the φ(x) can jump by multiples of π/e.

Consider a thick superconducting wire with cross sectional diameter much larger

than λ, bent into a closed ring. If we draw a closed contour C running deep inside

the wire, then previous analysis shows that ∇φ− ~A vanishes along contour. ie,

∮
C

~A · d~x =

∮
C
∇φ · d~x =

∮
C
dφ

Since going around a ring φ must return to an equivalent value and can therefore only

change by some integral multiple of π/e, we can write,

∮
C
dφ =

nπ

e
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Using Stoke’s theorem we see that the magnetic flux through the area A surrounded

by contour C is quantized, ∫
A

~B · d~S =
nπ

e
(2.38)

This is known as flux quantization. The flux quantization shows that the current

(flowing through a layer of thickness λ below the surface of superconductor)

maintaining the magnetic field cannot decay smoothly, but only in jumps such that the

magnetic flux drops by multiples of π/e. So there is no ordinary electrical resistance.

In order to construct a Lagrangian density, we note that the only non-trivial

irreducible representation of U(1) is a real two vector (ψ1, ψ2) or equivalently a

Golstone mode φ(x) and modulus ρ(x), with

ψ1 + i ψ2 = ρ eq φ(x) ≡ ψ(x) (2.39)

Consider the Lagrangian density

L = −1

4
F abFab − (Daψ)†Daψ − V (ψ) (2.40)

with,

V (ψ) = α(T )ψ†ψ +
β(T )

2
(ψ†ψ)2 (2.41)

where, Da = ∂a − i q Aa. In terms of ρ and φ the Lagrangian density (2.40) reads,

L = −1

4
F abFab − ∂aρ ∂aρ− α(T )ρ2 − β(T )

2
ρ4 − q2 ρ2 (∂aφ− Aa) (∂aφ− Aa) (2.42)

This is the Ginzburg-Landau theory of superconductivity derived by Gorkov [3] from

microscopic BCS theory in the case of short range potential and a temperature close

to Tc. The equations of motion read,

∂a F
ab − 2q2ρ2

(
∂bφ− Ab

)
= 0 (2.43)
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� ρ− α(T ) ρ− β(T )ρ3 − q2 ρ (∂aφ− Aa) (∂aφ− Aa) = 0 (2.44)

�φ− Aa

q2 ρ2
= 0 (2.45)

Let’s consider a superconductor of volume L3 in an external magnetic field B. We

define a characteristic length depending on nature of material of superconductor,

λ =
1

q|〈ρ〉| (2.46)

In static case we have A0 = φ̇ = 0. So the energy contribution of the third term in

(2.42) must be of order λ−2 |∇φ− ~A|2 L3. If a magnetic field of order B penetrated the

superconductor, then we would have |∇φ− ~A| ∼ BL. So the energy cost of allowing

the magnetic field into the superconductor would be of order λ−2B2L5. The energy

cost of expelling a magnetic field B from a volume L3 is of order B2 L3. Hence a

weak magnetic field will be expelled from a superconductor if λ−2B2L5 � B2L3 or

if L� λ (Meissner effect). For this reason the parameter λ is known as penetration

depth of superconductor.

Variations in ρ(x) are characterized by a distance scale known as coherence length,

given by,

ξ =
1√
2 |α|

(2.47)

The difference in energy per unit volume between the normal state and supercon-

ducting state is given by,

∆ = −α
2

2β
(2.48)

Eliminating α and β we obtain an approximate relation between observables,

∆ =
1

8e2λ2ξ2
(2.49)
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The analysis can be extended to describe several crucial properties of both typeI and

typeII superconductors [20].

Recently, it was found [11] that U(1) gauge symmetry is spontaneously broken below

a crtical ratio of temperature and chemical potential near black hole horizons in

asymptotically AdS spacetime. Consider the Ginzburg-Landau system (2.40) in 3+1

dimensions and add gravity with negative cosmological constant to the system.

L = R +
6

L2
− 1

4
FabF

ab − gab(DaΨ)†DbΨ− V (|ψ|) (2.50)

Background gauge field is set to Aa = (At,~0). Upon expanding the covariant

derivatives, the Lagrangian becomes

L = kinetic terms− Veff (ψ) (2.51)

with the effective potential Veff (ψ) = V (ψ) − |gtt|A2
tψ
†ψ. The gauge potential

thus gives a negative contribution to the mass matrix,and when it exceeds certain

critical value, the perturbative vacuum will no longer be stable and the field ψ will

condense. As soon as the field develops nonzero expectation value, the U(1) symmtery

is spontaneously broken. In our holographic description of superconducting phase

transition we will use (2.50) as our gravity dual.

23



Chapter 3

Holography and AdS/CFT

Correspondance

In the late 1960s it was found that a theory based on one dimensional extended

object, rather than point particles, can account for various features of strong nuclear

forces and strongly interacting particles. Here specific particle states were treated

as specific modes of oscillation of this single object called strings. Unlike point

particles, whose trajectories in space time are one dimensional curves called world

lines, strings are one dimensional objects sweeping two dimensional areas through

spacetime called world sheets. These objects admit two different topologies: a closed

string has no endpoints and is topologically equivalent to a circle while an open string

is equivalent to a line segment. Due to various technical problems and rise of Quantum

Chromodynamics, the theory fell out of fervor. Nevertheless, research on dynamics

of string like objects continued during 1970s, leading to formulation of (unphysical)

bosonic string theory in 26 dimensions. It turned out that including fermions in the

theory requires supersymmetry: a proposed symmetry of nature relating two basic

classes of elementary particles bosons and fermions ∗. Interest was revived during

1980s when it was realised that string theory was capable of describing all elementary

∗Supersymmetry is invented in two contexts at once: in ordinary particle field theory and as a
consequence of introducing fermions into string theory
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particles as well as the interactions between them. The breakthrough came in 1984

with the discovery that quantum mechanical consistency of a ten dimensional theory

with N = 1 supersymmetry requires a local Yang-Mills gauge symmetry based on

one of the two possible Lie algebras: SO(32) and E8 × E8. During this period,

called first superstring revolution, five consistent string theories, all living on ten

dimensions, were put forward. Excitations of a closed string can be decomposed into

right and left moving plane waves. The supersymmetries associated with these modes

can have either same or opposite handedness. In superstring formalism two possible

handedness among modes of a string led to two different superstring theories: type

IIA and type IIB. A third possibility let to type I superstring theory, which can

be derived from type IIB. String theories were also constructed by hybridizing 26-

dimensional bosonic string theory and 10 dimensional superstring theory as right and

left moving modes. These are known as heterotic SO(32) and heterotic E8 × E8

string theories. In the early 1990s, strong evidences were found that the different

superstring theories were different limits of a new 11-dimensional theory called M-

theory sparking the second superstring revolution. Moreover, it was found that

at low energies M-theory can be approximates by 11 dimensional supergravity: a

supersymmetric classical gravity theory. Two powerful features of discoveries during

this period are dualities and D-branes. It was found that different string theories

reside on perturbative corners of a larger coupling space and related to each other

via various dualities. For instance T-duality relates the two type II theories and

two heterotic theories. In essence it establishes a correspondence between a string

propagating on a large circle and a string propagating on a small circle. Study of

T-duality on open string reveals that upon compactification the endpoints of an open

string do not move in the direction along the dimension being compactified. The two

endpoints freely move on fixed hyperplanes, orthogonal to compactified dimension

separated by integral multiples of periodicity of dual dimension. These hypersurfaces,

called Dirichlet branes or D-branes, revealed themselves as fundamental objects to

our understanding of superstring theories and M-theory. One implication is that the
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quantum field theories of Yang-Mills type reside on the world volume of D-branes.

The Yang-Mills fields arise from massless modes of open string attached to a D-brane.

On the other hand D-branes were used to count the quantum states of an extreme

black hole, matching the results of black hole thermodynamics proposed earlier by

Bekenstein and Hawking. Another kind of duality, called S-duality, relates string

coupling constant gs to 1/gs. For instance it relates type I superstring theory to

SO(32) superstring theory and type II superstring theory to itself.

In 1998, Maldacena [8] has made a remarkable suggestion concerning the large N limit

not of conventional SU(N) gauge theories but of some of their conformal invariant

cousins. According to this proposal,the large N limit of a conformal invariant theory

in d− 1 dimensions is governed by supergravity (and string theory) on d-dimensional

AdS space (often called AdSd) times a compact manifold which in the maximally

supersymmetric cases is a sphere. There has also been a discussion of the flow to

conformal field theory in some cases.

An important example to which this discussion applies is N = 4 super Yang-Mills

theory in four dimensions, with gauge group SU(N) and coupling constant gYM .

This theory is equivalent to Type IIB superstring theory on AdS5 × S5, with string

coupling constant gst proportional to g2
YM , N units of five-form flux on S5, and radius

of curvature (g2
YMN)1/4. In the large N limit with x = g2

YMN fixed but large, the

string theory is weakly coupled and supergravity is a good approximation to it. So

the hope is that for large N and large x, the N = 4 theory in four dimensions is

governed by the tree approximation to supergravity.

The black holes under consideration [8] have near-horizon AdS geometries, and for

our purposes it will suffice to work on the AdS spaces. AdS space has many unusual

properties. It has a boundary at spatial infinity as a result of which quantization

and analysis of stability are not straightforward. As we describe in this section, the

26



boundary Md of AdSd+1 is in fact a copy of d-dimensional Minkowski space (with

some points at infinity added); the symmetry group SO(2, d) of AdSd+1 acts on Md

as the conformal group. The fact that SO(2, d) acts on AdSd+1 as a group of ordinary

symmetries and on Md as a group of conformal symmetries means that there are two

ways to get a physical theory with SO(2, d) symmetry: in a relativistic field theory

(with or without gravity) on AdSd+1, or in a conformal field theory on Md. The

possible relation of field theory on AdSd+1 to field theory on Md has been a subject

of long interest.The main idea in [8] was not that supergravity, or string theory,on

AdSd+1 should be supplemented by singleton (or other) fields on the boundary, but

that a suitable theory on AdSd+1 would be equivalent to a conformal field theory in

d dimensions. [10]

This chapter is organized as follows. In the first section we will review some

fundamental properties of AdS space and black solutions in AdS space. In the next

section we will review the symmetry structure and quantization of conformal field

theories. In the following section we will establish the bulk/boundary correspondence.

3.1 AdS Black Holes

Anti-de-Sitter space has generally been regarded as of little physical interest for two

reasons. First it is the solution of Einstein’s equation with negetive cosmological

constant, if interpreted as vacume energy, corresponds to negetive energy density.

Second anti-de-Sitter has closed timelike curves. The latter can be removed by passing

to universal covering space by creating infinite replicas, one for each full period of

timelike coordinate, but, this is not globally hyperbolic. The Cauchy data on a

spacelike surface determines the evolution of the system, only in a region bounded by

a null hypersurface called Cauchy horizon [29]. Thus, one has to specify not only the

initial configuration but also boundary conditions, which describe radiation which
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comes in from infinity. Despite these difficulties, there are indications that anti-

de-Sitter space may have physical importance. Extended theories of supergravity

have AdS as their ground state (most symmetric state). Moreover, Witten’s proof

of positive mass theorem [30] has been extended to AdS space [31, 32]. Here I give

a brief overview of AdS space and black hole solutions that are asumptotically AdS

space.

Let us consider vacume Einstein’s equations with cosmological constant Λ in d

dimensions.

Gab + Λgab = 0 (3.1)

where, Gab = Rab − 1
2
gabR . We consider the simplest class of solutions of (3.1),

which are characterized by a high degree of symmetries. Such spaces admit maximum

number d(d+1)/2 of independent Killing vectors, which are generators of infinitesimal

isometries (ie coordinate. transformation that leaves the metric form invariant), and

thus called Maximally symmetric spaces. These spaces are locally characterised by

geometric condition,

Rabcd =
R

d(d− 1)
(gacgbd − gadgbc) (3.2)

where R is Ricci scalar curvature. Using (3.1) and (3.2) we see that,

R =
2d

(d− 2)
Λ (3.3)

So they are locally constant curvature solutions. They are Einstein Spaces which are

locally homogeneous and isotropic about every point. If Λ = 0 we have flat-Minkowski

spacetime., for Λ > 0 positively curved de Sitter spacetime, and Λ < 0 negetively

curved anti de Sitter spacetime.

In general for d dimension we have d(d+ 1)/2 independent components of Einstein’s

tensor Gab and thus, d(d + 1)/2 algebriacally independent Einstein’s equations.
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But these d(d + 1)/2 components are related by d differential Bianchi identities

(Ga
b;a = 0), and thus we have d degrees of freedom in d(d + 1)/2 unknowns. These

d degrees of freedom corresponding to arbitrary (but allowed) coordinate transform

(x → x′, g → g′), the metric in which also staisfies Einstein’s equations. We can use

this d degrees of freedom to choose d coordinate conditions that fixes this ambiguity.

Maximally symmetric spaces admit Ricci tensor Rab ∝ gab and Bianchi identities

satisfy identically. Thus we have exactly d(d + 1)/2 unknowns gab in d(d + 1)/2

independent equations which uniquely determine the metric components.

A useful representation of d dimensional AdS spacetime is obtained by embedding d

dimensional hyperboloid in (d+ 1) dimensional flat spacetime.

X2
0 +X2

d −
d−1∑
i=1

X2
i = L2 (3.4)

where L > 0 is the radias of curvature of above hyperboloid in (d + 1) dimensional

flat spacetime, given by,

ds2 = −dX2
0 − dX2

d +
d−1∑
i=1

dX2
i (3.5)

Clearly the translation invariance is broken by (3.4). Any element of Lorentz group

SO(2, d − 1) will leave (3.4) and (3.5) invariant. Since SO(2, d − 1) has d(d + 1)/2

Killing generators, it is the isometry group of AdS.

Another property useful to us is that AdS space has conformal boundary (ie it admits

an equivalance class of metrics related via stretching and shrinking of coordinates,

namely Conformal Transformations) at the hyperboloid infinity. If we rescale all
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coordinates Xµ → ΛXµ then (3.4) becomes,

X2
0 +X2

d −
d−1∑
i=1

X2
i =

L2

Λ2
(3.6)

The limit Λ→∞ defines the boundary as,

X2
0 +X2

d −
d−1∑
i=1

X2
i = 0 (3.7)

If X0 6= 0 we can divid (3.7) through X0 and rescaling Xµ → Xµ
X0

gives,

−X2
d +

d−1∑
i=1

X2
i = 1 (3.8)

This is (d−1) dimensional de Sitter space (R×Sd−2) in d dimensional flat spacetime.

If X0 = 0 then (3.7) represents a sphere of (d− 2) dimension in (d− 1) dimensional

flat spacetime.Together the boundary is maximally symmetric space S1 × Sd−2 and

preserves SO(1, d − 1). In addition, it has d more transformation, 1 dilatation

(generated by D = −iXµ∂µ) and (d−1) special conformal transformations (generated

by ki = i(X2∂i − 2XiX
j∂j). So the symmetry group is Conformal Group C(1, d− 2)

which is isomorphic to symmetry group SO(2, d− 1) of bulk AdS.

Now we briefly discuss the parameterisation of AdS space in d dimensions. The

space given by (3.4) can be paremeterised by X0 = r1 cos(t), Xd = r1 sin(t),∑d−1
i=1 X

2
i = r2

2, so that (3.4) becomes r2
1−r2

2 = L2. Further putting r1 = L cosh(u/L),

r2 = L sinh(u/L) in (3.5) with representing (d − 2) sphere in spherical coordinate

dK2
d−1 = dr2

2 + r2
2dΩ2

d−2 we obtain line element of d-dimensional AdS space embedded

in (d+1) dimensional flat spacetime, parametrized by d coordinates (t, u, θ1, ..., θd−2),
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ds2 = −(dr2
1+r2

1dt
2)+dr2

2+r2
2dΩ2

d−2 = −L2 cosh2(u/L)dt2+du2+L2 sinh2(u/L)dΩ2
d−2

(3.9)

where dΩ2
k = dθ2

k + sin2(θk)dΩ2
k−1.This is a global parameterisation of AdS with

boundary at u → ∞ and a solution to Einstein’s equation (3.1) with cosmological

constant,

Λ = −(d− 1)(d− 2)

2L2
(3.10)

Note that the timelike coordinate t ∈ [−π,+π] is an angular coordinate, which implies

AdS is a spacetime with closed timelike curves. This is avoided by uncompactifying

timelike coordinate by taking infinite copies of this hyperboloid, and map timelike

coordinate of each hyperboloid into a noncompact coordinate t ∈ [−∞,+∞].

We conclude this section with a discussion of black holes solutions in asymptotic

AdS spacetimes. Consider, in d dimensional spacetime, a maximally symmetric

d − 2 dimensional spacelike section. They are classified (by normal curvature κ)

as representing locally Euclidian (κ = 0), Spherical (κ = 1) and hyperbolic sections

(κ = −1).

dK2
n−1 =

dχ2

1− κχ2

+ χ2dΩ2
n−2 ≡ L2hijdx

idxj (3.11)

A spacetime with such maximally symmetric spacelike section, the general solution of

Einstein’s equation (3.1) admits locally timelike Killing vectors (Generalised Birkoff’s

theorem). The static Black hole solution reads [33],

ds2 = −V (r)dt2 +
dr2

V (r)
+ r2hijdx

idxj (3.12)

where,

V (r) = κ− µ

rd−3
+
r2

L2
(3.13)

31



The metric hij are functions of xi only and referred to as horizon metric.We take the

horizon to be compact manifold denoted by Md−2.The AdS curvature L related to

cosmological constant by (3.10). Here µ is an integration constant and can written

as, µ = ωdM , where,

ωd ≡
16πG

(d− 2)V ol(Md−2)
(3.14)

Here V ol(Md−2) =
∫
dd−2x

√
h, so that M has a dimension of inverse length. This form

of solution satisfies Einstein’s Equation (3.1) with negetive cosmological constant,

Rab = −d− 1

L2
gab (3.15)

provided the horizon is a constant curvature space of the form,

Rij(h) = (d− 3)κhij (3.16)

and thus can be of zero, positive and negetive curvature for κ = 0, 1,−1 respectively.

We see that the M = 0 is a constant curvature spacetime and locally isometric to

AdS. Though its topology depends on value of κ and thus topology of horizon. We

note from (3.13) that the dominant behaviour of horizon is dominated by cosmological

constant for any value of M . So we have a class of black hole solutions which are

asymptotically locally anti de Sitter, for all values of M. The horizon rh of these black

holes are zeros of potential V (r),

V (rh) = 0 (3.17)

To have a black hole interpretation we want the metric to describe the exterior of

a black hole with a non degenerate horizon. This is achieved if the polynomial

V (r)rd−3L2 has a simple positive root rh, such that, V (r) > 0 for all r > rh. For κ = 0,

there is always a simple positive root of V (r)rd−3L2 given by rh = (ωdML2)1/(d−1)

with V (r) > 0 for all r > rh.So we have black hole solutions with toroidal topology.
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For κ = 1,−1 analysis of existance of simple positive roots are more involved and can

be found here [33]. In the next subsection we will see that the for κ = 1 the black

hole solution exists only above a critical temperature, while for κ = 1,−1 there is no

such minimum temperature. We may use any one of these solutions which has an

acceptable horizon located at rh. The parameter M is specified in terms of rh as,

M =
rd−3
h

ωd
(κ+

r2
h

L2
) (3.18)

Classical black holes behave like thermodynamical objects characterised by a

temperature and entropy. From a thermodynamic point of view consider the partition

function,

Z = Tr
(
e−β H

)
(3.19)

where H is the Hamiltonian of the system. Since the quantum mechanical evolution

by a time interval t is given by e−iHt, the trace corresponds imposing a periodicity β

in Euclidian time. So the temperature T is periodic in Euclidian time with a period

of β−1. The temperature of a black hole is determined by analytic continuation to

Euclidian time and examin the periodicity of this coordinate. Following this process

for metric (3.12), the Hawking temperature of the AdS-Scwarzschild black hole reads,

T =
(d− 1)r2

h + (d− 3)κL2

4πL2rh
(3.20)

In gauge/gravity duality Hawking temperature of the black is identified with the

temperature of dual field theory.
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3.2 Conformal Field Theories

Symmetry principles, and in particular Lorentz and Poincare invariance, play a

major role in our understanding of quantum field theory. It is natural to look

for possible generalizations of Poincare invariance in the hope that they may play

some role in physics; in [34] it was argued that for theories with a non-trivial S-

matrix there are no such bosonic generalizations. An interesting generalization of

Poincare invariance is the addition of a scale invariance symmetry linking physics

at different scales (this is inconsistent with the existence of an S-matrix since it

does not allow the standard definition of asymptotic states). Many interesting field

theories, like Yang-Mills theory in four dimensions, are scale-invariant; generally this

scale invariance does not extend to the quantum theory (whose definition requires

a cutoff which explicitly breaks scale invariance) but in some special cases (such as

the d = 4,N = 4 supersymmetric Yang-Mills theory) it does, and even when it does

not (like in QCD) it can still be a useful tool . It was realized in the past 30 years

that field theories generally exhibit a renormalization group flow from some scale-

invariant (often free) UV fixed point to some scale-invariant (sometimes trivial) IR

fixed point, and statistical mechanics systems also often have non-trivial IR scale-

invariant fixed points. Scale invariant field theories are important as possible end

points of renormalization group flow in the space of cut-off effective field theories.

It is widely believed that unitary interacting scale-invariant theories are always

invariant under the full conformal group, which is a simple group including scale

invariance and Poincare invariance. This has only been proven in complete generality

for two dimensional field theories [35, 37], but there are no known counter-examples.

In this section we will review the symmetry structure of conformal group and

introduce local conformal field operators O(x) as representations of that symmetry.

We will further discuss an efficient way to obtain correlation functions in CFT

by taking functional derivative of partition function with respect to some suitable
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classical source.

We consider the space Rd with flat metric gab = ηab of signature (p, q) with line

element ds2 = gabdx
adxb. By definition, the conformal group is the subgroup of

coordinate transformation x → x′, that leaves the metric invariant up to a scale

change,

gab(x)→ g′ab(x
′) =

∂xc

∂x′a
∂xd

∂x′b
gcd(x) = Ω(x)gab(x) (3.21)

Such transformations, preserve the angle between two vectors. If two vectors

transform as v → v′ and w → w′ under a coordinate transformation x→ x′ then,

v′ · w′√
v′2w′2

=
v · w√
v2w2

The infinitesimal generators of conformal group can be obtained by infinitesimal

coordinate transformation xa → xa + εa, under which,

ds2 → ds2 + (∂aεb + ∂bεa)dx
adxb

To satisfy (3.21) the term (∂aεb+∂bεa) must be proportional to ηab. The proprtionality

constant is detrmined by tracing both side by ηab. Thus we get,

∂aεb + ∂bεa =
2

d
(∂ · ε)ηab (3.22)

So the conformal factor is Ω(x) = 1 + 2
d
(∂ · ε). From (3.22) we obtain,

{ηab�+ (d− 2)∂a∂b}∂ · ε = 0 (3.23)

Both (3.22) and (3.23) requires the third derivatives of ε must vanish, so that ε is at

most quadratic in x.
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For zeroth order in x,

εa = aa : Ordinary translation independent of x

For first order in x,

εa = ωabx
b (where,ωab = −ωba) : Rotation about a-th axis

εa = λxa : Scale transformation

For second order in x,

εa = bax2 − 2xasb · x : Special conformal transformation

Note that for special conformal transformation, x → xa(1 − 2b · x) + bax2, and

x2 → x2(1 − 2b · x) up to first order in ε, and thus, this transform up to first order

is a composition of an inversion xa → xa

x2 and translation xa

x2 → xa

x2 + ba. The algebra

generated by (no sum on a) ≡ aa∂a, ω
a
b ε
b∂a, λx · ∂, and ba(x2∂a − 2xax · ∂), (a total

of (p+ q) + 1
2
(p+ q)(p+ q − 1) + 1 + (p+ q) = 1

2
(p+ q + 1)(p+ q + 2) generators) is

isomorphic to SO(p+ 1, q + 1).

Integrating to finite conformal transformation, aa∂a, ω
a
b ε
b∂a generate Pincare group,

x→ x+ a, x→ Λx (where Λa
b ∈ SO(p, q)) with Ω(x) = 1 (3.24)

In addition we have dilatation,

x→ λx with Ω(x) = λ−2 (3.25)
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and special conformal transformations,

x→ x+ bx2

1 + 2b · x+ b2x2
with Ω(x) = (1 + 2b · x+ b2x2)2 (3.26)

The corresponding generators Pa = −i∂a,Mab = i(xa∂b−xb∂a), D = −ixa∂a and Ka =

−i(2xaxb∂b − x2∂a) obey the following algebra,

[D,Ka] = iKa , [D,Pa] = −iPa , [Pa, Kb] = 2i(Mab − gabD) (3.27)

while other commutators either vanish or follow from rotational invariance. Note

that the Poincare group together with dilation forms a subgroup of the full conformal

group. This means that a theory invariant under translation,rotations and dilations

are not necessarily invariant under special conformal transformation. This algebra

is isomorphic to the algebra of SO(d, 2), and can be put in the standard form of

the SO(d, 2) algebra (with signature −,+,+, · · · ,+,−) with generators Jab (a, b =

0, · · · , d+ 1) by defining †

Jab = Mab; Jad =
1

2
(Ka−Pa); Ja(d+1) =

1

2
(Ka+Pa); J(d+1)d = D. (3.28)

To analyze the constraints imposed by conformal invariance on N-point functions

of a quantum theory, let us consider the Jacobian,

|∂x
′

∂x
| = 1√

detg′ab
= Ω−d/2 (3.29)

For dilatation (3.25) and (3.26) this reads,

|∂x
′

∂x
| = λd and |∂x

′

∂x
| = (1 + 2b · x+ b2x2)−d (3.30)

†In the special case of d = 2 the conformal group is larger, and in fact it is infinite dimensional
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Let there exist a set of fields {A∆i
} (where index ∆i specifies different fields) such

that members of a subset {O∆i
} ⊂ {A∆i

}, under global conformal transformations

x→ x′, transform as,

O∆i
(x)→ |∂x

′

∂x
|∆i/dO∆i

(x′) where ∆i is the scaling dimension of O∆i
(3.31)

such that, the correlation functions statisfy,

〈O∆1(x1) · · · O∆n(xn)〉 ≡
∫ ∏

[DO∆]O∆1 · · · O∆ne
−S[O∆]∫ ∏

[DO∆]e−S[O∆]

= |∂x
′

∂x
|∆1/d · · · |∂x

′

∂x
|∆n/d〈O∆1(x′1) · · · O∆n(x′n)〉 (3.32)

where S[O∆] is the action of the system. The members of this subset {O∆i
} of fields

are called ”quasi-primary” fields. The rest of the members of {Ai} can be expressed

as linear combination of the quasi-primary fields and their derivatives. We also

assume the existance of a vacume state |0〉 invariant under global conformal group.

The covariance property (3.32) imposes several restrictions on N -point correlation

functions.

One of the basic properties of conformal field theories is the one-to-one correspondence

between local operators O and states |O〉 in the radial quantization of the theory. In

radial quantization, we foliate Euclidian Rd by (d − 1)-spheres, Sd−1, concentric at

origin, and define Hilbert space of states of CFT at a given radial slice, where the time

coordinate is chosen to be the radial direction in Rd, with the origin corresponding to

past infinity, so that the field theory lives on R×Sd−1. The dilatation operator D then

generates the evolution of states of CFT at a given radial distance. The Hamiltonian

in this quantization is the operator J0(d+1) mentioned above. An operator O can then

be mapped to the state |O〉 = limx→0O(x)|0〉. Equivalently, the state may be viewed

as a functional of field values on some ball around the origin, and then the state

corresponding to O is defined by a functional integral on a ball around the origin
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with the insertion of the operator O at the origin. The inverse mapping of states to

operators proceeds by taking a state which is a functional of field values on some ball

around the origin and using conformal invariance to shrink the ball to zero size, in

which case the insertion of the state is necessarily equivalent to the insertion of some

local operator.

We can classify local operators O∆(xa) by their tranformation properties of the little

group SO(d) × SO(2) ⊂ SO(d, 2) of conformal group. In radial quantization, (and

in Euclidian signature), the SO(d) irresducible representation is the spin of the field,

while the charge under the SO(2) subgroup is scaling dimension, ∆, of the field,

O∆(λxa) = λ−∆O∆(xa)⇔ [D,O∆(0)] = −i∆O∆(0) (3.33)

The commutation relations (3.27) imply that the operator Pa raises the dimension of

the field, while the operator Ka lowers it. In unitary field theories there is a lower

bound on the dimension of fields (for scalar fields it is ∆ ≥ (d − 2)/2 which is the

dimension of a free scalar field), and, therefore, each representation of the conformal

group which appears must have some operator of lowest dimension, which must then

be annihilated by Ka (at x = 0). Such operators are called Primary operators. By

translating such operators to arbitrary position, it follows that they obey the following

commutation relations,

[Pa,O∆(x)] = i∂aO∆(x)

[Mab,O∆(x)] = i{(xa∂b − xb∂a) + ΣR
ab}O∆(x)

[D,O∆(x)] = i(xa∂a −∆)O∆(x)

[Ka,O∆(x)] = i{(x2∂a − 2xax
b∂b + 2xa∆)− 2xbΣR

ab}O∆(x)

where ΣR
ab are representation of irrudicible spin R of the primary which acts on its

spin indices.
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A general property of local field theories is the existence of an operator product

expansion (OPE). As we bring two operators O∆1(x) and O∆2(y) to the same

point, their product creates a general local disturbance at that point, which may be

expressed as a sum of local operators acting at that point; in general all operators with

the same global quantum numbers as O∆1O∆2 may appear. The general expression

for the OPE is O∆1(x)O∆2(y) →∑
nC

n
12(x − y)On(y), where this expression should

be understood as appearing inside correlation functions, and the coefficient functions

Cn
12 do not depend on the other operators in the correlation function (the expression

is useful when the distance to all other operators is much larger than |x − y|). In

a conformal theory, the functional form of the OPE coefficients is determined by

conformal invariance to be Cn
12(x− y) = cn12/|x− y|∆1+∆2−∆n , where the constants cn12

are related to the 3-point functions described above. The leading terms in the OPE

of the energy-momentum tensor with primary fields are determined by the conformal

algebra. For instance, for a scalar primary field O of dimension ∆ in four dimensions,

Tab(x)O∆(0) ∝ ∆O∆(0)∂a∂b(
1

x2
) + · · · (3.34)

In principle all n-point correlators are determined by OPE’s, since any n-point

functions can be replaced by an infinite sum of (n − 1)-point functions by using

OPE for any two adjacent insertions. Thus, the CFT is completely described by the

data {∆i, spins, cijk} for all the primaries (labelled i, j, k). However this data is highly

constrained, and thus, an arbitrary set of data will not general define a consistent

CFT. AdS/CFT provides a different approach to overcome these difficulties.
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Consider the partition function,

Z[ψ̃∆i
] = 〈exp(

∫
ddxψ̃∆i

(x)O∆i
)〉CFT (3.35)

This is a functional of classical source ψ̃∆i
(x) associated with each field operator O∆i

of CFT, which generates correlation functions by taking derivative of Z with respect

to the sources,

〈O∆1(x1)O∆2(x2) · · · 〉 =
∂nZ[ψ̃∆i

]

∂ψ̃∆1(x1)∂ψ̃∆2(x2) · · ·
|ψ̃∆i

=0 (3.36)

The conformal invariance of correlators is reflected in the conformal invariance of

Z[ψ̃∆]. In particular under scaling,

∫
ddxψ̃∆(x)O∆(x) =

∫
dd(λx)ψ̃∆(λx)O∆(λx) = λd−∆

∫
ddxψ̃∆(λx)O∆(x) (3.37)

So Z is invariant under above scaling tranformation, if, the source transforms as

ψ̃∆(x)→ λd−∆ψ̃∆(λx) (3.38)

In the next section we will discuss an elegant method of obtaining partition function

Z[ψ̃∆] from a dual theory living on one higher space dimension.

3.3 AdS/CFT Correspondance

In the last couple of sections we have established that the d dimensional conformal

boundary ∂AdSd of a d + 1 dimensional AdS space has the same isometry group as

CFT on a manifold of d dimensions. So ∂AdS is suitable for a space to define a d

dimensional CFT. Introducing a new parametrisation x = (z, t, ~x) with z → e−u/L
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and uncompactifying the rescaling time coordinate in equation (3.9) we can bring the

AdSd+1 in a simple form whose boundary is at z = 0.

ds2 =
L2

z2

(
−dt2 + dz2 + ~dx

2
)

~x = (x1, · · · xd−1) (3.39)

Thus, AdSd+1 is conformal to upper half space z > 0 of Rd+1 while its boundary

∂AdSd is conformal to Rd. Any generally covariant combinations tensor fields

ψ(z, t, ~x) on AdS will be conformal invariant. Any restriction of ψ(z, t, ~x) on boundary

∂AdSd = (z = 0, t, ~x) transforms as representation of conformal group and therefore

a covariant combination of them will be also conformal invariant. In other words,

existence of a boundary with the same symmtery group as its bulk superspace allows

us to construct a partition function of a d dimensional CFT by taking covariant

functions of boundary values of fields that reside in higher dimensional bulk space.

Defining ψ̃(t, ~x) ≡ limz→0ψ(z, t, ~x) we write,

Z
[
ψ̃∆(t, ~x)

]
=

∫
ψ|∂=ψ̃∆

Dψ(x) e−S[ψ(x)] (3.40)

It follows that if ψ behaves at boundary as,

ψ(z, t, ~x) = zd−∆ ψ̃∆(t, ~x) + O
(
zd−∆−1

)
(3.41)

then ψ̃∆ transforms according to equation 3.38 and hence identified as a source of an

operator of dimension ∆ in boundary theory.
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Chapter 4

Holographic Superconductors

Motivated by cuprate superconductors, a flurry of theoretical work have been done

on quantum phases and quantum phase transitions in 2 + 1 dimensional strongly

correlated electron systems. A quantum phase transition is phase transition between

different states of matter at T = 0. They are driven by quantum fluctuations

associated with Heisenberg uncertainty principle rather than thermal fluctuations.

Let g be the physical parameter driving the quantum phase transition. The quantum

critical point gc is a point in parameter space at which the phase transition takes

place. At T = 0 but away from critical point, the system has a characteristic energy

scale ∆ and coherence length ξ associated with length scale over which correlations

in the system are lost. We expect ∆ to vanish and ξ to diverge at quantum critical

point as,

∆ ∼ (g − gc)νz ; ξ ∼ (g − gc)−ν (4.1)

The quantity z relating the behavior ∆ ∼ ξ−z is called the dynamical scaling

exponent. At the quantum critical point the system becomes invariant under rescaling

of time and distance,

t→ λz t ; ~x→ λ~x (4.2)

Different z occur in different condensed matter system. We consider systems with

z = 1 since in this case the system preserves Lorentz symmetry in d spacetime
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dimensions. In fact, together with scaling symmetry, they become part of the larger

conformal symmetry group SO(d, 2). Thus, quantum critical systems with scaling

exponent one are suitable CFTs for applications of AdS/CFT correspondence. One

class of problems are associated with strongly interacting quantum systems at finite

temperature near quantum critical points. To this end an effective scale invariant field

theory at critical point can be extended to nonzero Tc. Holographic superconductors

are thus a class of materials characterised by strong interaction, proximity to a

quantum phase transition. In gravity dual the supersymmetry as well as the conformal

symmetry is broken by finite temperature and chemical potential.

The existence of holographic superconductors was established in [11, 15, 41]. From

the (d dimensional) field theory point of view, superconductivity is characterised by

the condensation of a, generically composite, charged operatorO for low temperatures

T < Tc. In the dual (d + 1 dimensional) gravitational description of the system, the

transition to superconductivity is observed as a classical instability of a black hole

in anti-de Sitter (AdS) space against perturbations by a charged scalar field ψ. The

instability appears when the black hole has Hawking temperature T = Tc. For lower

temperatures the gravitational dual is a black hole with a nonvanishing profile for the

scalar field ψ. The AdS/CFT correspondence relates the highly quantum dynamics

of the ‘boundary’ operator O to simple classical dynamics of the ‘bulk’ scalar field ψ

[9, 10].

4.1 The model

In the superconductor we need a notion of temperature. On the gravity side, that

role is played by a black hole. In gauge/gravity duality, the Hawking temperature

of the black hole is identified with the temperature of the dual field theory. Since
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gauge/gravity duality traditionally requires that spacetime asymptotically approach

anti de Sitter (AdS) space at infinity, we will be studying black holes in AdS. Unlike

asymptotically flat black holes, these black holes have the property that at large

radius, their temperature increases with their mass, i.e., they have positive specific

heat, just like familiar nongravitational systems. There are also planar AdS black

holes, which will be of most interest. These black holes always have positive specific

heat.

In the superconductor, we also need a condensate. In the bulk, this is described by

some field coupled to gravity. A nonzero condensate corresponds to a static nonzero

field outside a black hole. This is usually called black hole “hair”. So to describe

a superconductor, we need to find a black hole that has hair at low temperatures,

but no hair at high temperatures. More precisely, we need the usual Schwarzschild or

Reissner-Nordstrom AdS black hole (which exists for all temperatures) to be unstable

to forming hair at low temperature.

A simple solution to this problem was found by Gubser [11]. He argued that a charged

scalar field around a charged black hole in AdS would have the desired property.

Consider

S =

∫
d4x
√−g

(
R +

6

L2
− 1

4
FabF

ab − gab(DaΨ)∗DbΨ−m2|Ψ2|
)
. (4.3)

where Da ≡ ∂a − iqAa. This is just general relativity with a negative cosmological

constant Λ = −3/L2, coupled to a Maxwell field and charged scalar with mass m and

charge q. For an electrically charged black hole, the effective mass of Ψ is m2
eff =

m2 + q2gttA2
t . But the last term is negative, so there is a chance that m2

eff becomes

sufficiently negative near the horizon to destabilize the scalar field. Furthermore, as

one lowers the temperature of a charged black hole, it becomes closer to extremal

which means that gtt is closer to developing a double zero at the horizon. This
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means that |gtt| becomes larger and the potential instability becomes stronger at low

temperature.

4.2 Condensate

Line element of a planar Schwarzschild anti-de Sitter black hole reads,

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2(dx2 + dy2) , (4.4)

where

f =
r2

L2
− M

r
. (4.5)

L is the AdS radius and M determines the Hawking temperature of the black hole:

T =
3M1/3

4πL4/3
. (4.6)

This black hole is 3+1 dimensional, and so will be dual to a 2+1 dimensional theory.

In this background, we now consider a Maxwell field and a charged complex scalar

field, with Lagrangian density∗

L = −1

4
F abFab − V (|Ψ|)− gµν(DµΨ)∗DνΨ . (4.7)

For simplicity and concreteness, we will focus on the case

V (|Ψ|) = −2|Ψ|2
L2

. (4.8)

Although the mass squared is negative, it is above the Breitenlohner-Freedman bound

[36] and hence does not induce an instability. It corresponds to a conformal coupled

scalar in our background (4.4). This is a new source of instability. An extremal

∗Introducing a gauge coupling 1/q2 in front of the |F |2 term in the action is equivalent to rescaling
the fields Ψ → qΨ and Aµ → qAµ. Setting q = 1 is a choice of units of charge in the dual 2+1
theory.

46



Reissner-Nordstrom AdS black hole has a near horizon geometry AdS2×R2. The BF

bound for AdSd+1 is m2
BF = −d2/4. So scalars which are slightly above the BF bound

for AdS4, can be below the bound for AdS2. This instability to forming neutral scalar

hair is not associated with superconductivity (or superfluidity) since it doesn’t break

a U(1) symmetry. At most it breaks a Z2 symmetry corresponding to ψ → −ψ. Its

interpretation in the dual field theory is not clear.

We will work in a limit in which the Maxwell field and scalar field do not backreact

on the metric. This limit is consistent as long as the fields are small in Planck

units. Alternatively, this decoupled Abelian-Higgs sector can be obtained from the full

Einstein-Maxwell-scalar theory considered in [11] through a scaling limit in which the

product of the charge of the black hole and the charge of the scalar field is held fixed

while the latter is taken to infinity. Thus we will obtain solutions of nonbackreacting

scalar hair on the black hole.

Taking a plane symmetric ansatz, Ψ = Ψ(r), the scalar field equation of motion

is

Ψ′′ +

(
f ′

f
+

2

r

)
Ψ′ +

ξ2

f 2
Ψ +

2

L2f
Ψ = 0 , (4.9)

where the scalar potential At = ξ. With Ar = Ax = Ay = 0, the Maxwell equations

imply that the phase of Ψ must be constant. Without loss of generality we therefore

take Ψ to be real. The equation for the scalar potential ξ is the time component of

the equation of motion for a massive vector field

ξ′′ +
2

r
ξ′ − 2Ψ2

f
ξ = 0 , (4.10)

where 2Ψ2 is the, in our case, r dependent mass. The charged condensate has triggered

a Higgs mechanism in the bulk theory. At the horizon, r = r0, for ξ dt to have finite

norm, ξ = 0, and (4.9) then implies Ψ = −3r0Ψ′/2. Thus, there is a two parameter

family of solutions which are regular at the horizon. Integrating out to infinity, these
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solutions behave as

Ψ =
Ψ(1)

r
+

Ψ(2)

r2
+ · · · . (4.11)

and

ξ = µ− ρ

r
+ · · · . (4.12)

For Ψ, both of these falloffs are normalizable [18], so one can impose the boundary

condition that either one vanishes.† After imposing the condition that either Ψ(1) or

Ψ(2) vanish we have a one parameter family of solutions. It follows from (4.10) that

the solution for ξ is always monotonic: It starts at zero and cannot have a positive

maximum or a negative minimum. Note that even though the field equations are

nonlinear, the overall signs of ξ and Ψ are not fixed. We will take ξ to be positive

and hence have a system with positive charge density. The sign of Ψ is part of the

freedom to choose the overall phase of Ψ. Properties of the dual field theory can be

read off from the asymptotic behavior of the solution. For example, the asymptotic

behavior (4.12) of ξ yields the chemical potential µ and charge density ρ of the field

theory. The condensate of the scalar operator O in the field theory dual to the field

Ψ is given by

〈Oi〉 =
√

2Ψ(i) , i = 1, 2 (4.13)

with the boundary condition εijΨ
(j) = 0. The

√
2 normalization simplifies subsequent

formulae, and corresponds to taking the bulk-boundary coupling 1
2

∫
d3x(ŌΨ +OΨ̄).

Note that Oi is an operator with dimension i. From this point on we will work in

units in which the AdS radius is L = 1. Recall that T has mass dimension one, and

ρ has mass dimension two so 〈Oi〉/T i and ρ/T 2 are dimensionless quantities.

An exact solution to eqs (4.9,4.10) is clearly Ψ = 0 and ξ = µ − ρ/r. It appears

difficult to find other analytic solutions to these nonlinear equations. However, it is

†One might also imagine imposing boundary conditions in which both Ψ(1) and Ψ(2) are nonzero.
However, if these boundary conditions respect the AdS symmetries, then the result is a theory in
which the asymptotic AdS region is unstable [38].
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straightforward to solve them numerically. We find that solutions exist with all values

of the condensate 〈O〉. However, as shown in figure 4.1, in order for the operator to

condense, a minimal ratio of charge density over temperature squared is required.

The right hand curve in figure 4.1 is qualitatively similar to that obtained in BCS
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Figure 4.1: The condensate as a function of temperature for the two operators O1

and O2. The condensate goes to zero at T = Tc ∝ ρ1/2.

theory, and observed in many materials, where the condensate goes to a constant

at zero temperature. The left hand curve starts similarly, but at low temperature

the condensate appears to diverge as T−1/6. However, when the condensate becomes

very large, the backreaction on the bulk metric can no longer be neglected. At

extremely low temperatures, we will eventually be outside the region of validity of

our approximation.

By fitting these curves, we see that for small condensate there is a square root

behaviour that is typical of second order phase transitions. Specifically, for one

boundary condition we find

〈O1〉 ≈ 9.3Tc (1− T/Tc)1/2 , as T → Tc , (4.14)
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where the critical temperature is Tc ≈ 0.226ρ1/2. For the other boundary condition

〈O2〉 ≈ 144T 2
c (1− T/Tc)1/2 , as T → Tc , (4.15)

where now Tc ≈ 0.118ρ1/2. The continuity of the transition can be checked by

computing the free energy. Finite temperature continuous symmetry breaking phase

transitions are only possible in 2+1 dimensions in the large N limit (i.e. the classical

gravity limit of our model), where fluctuations are suppressed. These transitions will

become crossovers at finite N . Thus for T < Tc a charged scalar operator, 〈O1〉
or 〈O2〉, has condensed. It is natural to expect that this condensate will lead to

superconductivity of the current associated with this charge.
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Chapter 5

Holographic Striped

Superconductors

Superconductivity in copper oxides arise from doping of half filled Mott insulators.

For example, consider the parent compound La2CuO4, which is an antiferromagnetic

insulator at low temperatures. To turn La2CuO4 into a superconductor, the

compound can be doped with strontium which has an effect of removing one electron

from every lanthanium atom replaced with strontium. Once the doping concentration

x in La2−xSrxCuO4becomes sufficiently large, the compound superconducts at low

temperature. There exist an optimal doping x0 at which the highest Tc is obtained.

When x > x0 the compound is said to be over doped and for x < x0 it is called

under doped. Many low temperature properties are compatible with BCS-like pairing

of d-wave symmetry. In strong over doped regime the normal state behaves like

Fermi liquid whose only instability is to superconductivity. In this regime the

effective degrees of freedom become weakly coupled and the physics is relatively well

understood. In contrast, the effective degrees of freedom are believed to be strongly

interacting in under doped regime. In this regime superconducting to normal state

phase transition involves disordering the phase of condensate. The electrons can still

form pairs in normal state of compound. This region of temperature-doping phase
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space is called pseudogap region. The pseudogap regime in under doped compounds is

still not understood. One fundamental problem is highly unconventional normal state

that appears to violate Fermi liquid properties. The doping evolution of normal state

Fermi surface and magnetic moments are still elusive. Moreover, Linear temperature

dependence of resistivity around optimal doping above Tc and asymmetry between

electron and hole doped materials pose further puzzles.

Both theoretical and experimental studies indicate presence of various competing

orders in cuprates. Although, the most prominent ones are commensurate antifer-

romagnetic and superconducting order, incommensurate unidirectional spin density

waves (SDW) and charge density waves (CDW), called stripes play an important role

in these compounds. These orders are associated with modulation of spin and charge

density respectively that break the discrete translational and rotational symmetry

underlying the Cu2O4 plane. These states are first predicted in mean-field studies of

Hubbard model and later observed in La2−xBaxCuO4and La1.6−xNd0.4SrxCuO4. Since

then signatures of stripes have been observed in many other high Tc materials.

The charge density wave (CDW) state is a state where the charge density oscillates

around its average value as,

ρ(t, ~r) = ρ0(t, ~r) + ρ1(t, ~r) cos( ~Qc · ~r) (5.1)

and spin density wave is a state with spatially modulated spin vector.

Si(t, ~r) = Si1(t, ~r) cos( ~Qs · ~r) (5.2)

where ~Qc and ~Qs are charge and spin ordering vector respectively. In general the

transition into a state with broken translational symmetry could either display a

modulation in charge density only or in both charge and spin density. In low
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dimensional metals CDW forms as a consequence of electron-phonon interactions.

The nature of interplay between these unidirectional stripe orders and supercon-

ductivity is still poorly understood. In particular we may ask: do stripes enhance

or inhibit superconductivity? . The critical temperature Tc as a function of doping

follows a parabolic dome shape curve for multilayer compounds like Bi2Sr2CaCu2O8+δ.

In single layer compounds like La2−xSrxCuO4and La2−xBaxCuO4Tc behaves similarly

except a pronounced Tc supprassion at x = 1/8 doping. This sharp dip on dome

curve is called the ”1/8 anomaly” (5.1). Since the stripe order is particularly strong

near x = 1/8 doping in these compounds, the 1/8 anomaly is commonly attributed

to stripes competing with superconductivity. Although, data shows the physics in

that region is more complicated than competition of two orders. On the other hand

few observations such as in spin density waves in La2−xSrxCuO4indicate that stripes

enhances superconductivity. See [17] for a review.
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Figure 5.1: Temperature-Doping Phase diagram of cuprates.
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In this thesis we study the interplay between CDW and superconductivity with a

holographic model. We study the effect of CDW on Tc of a 2+1 dimensional strongly

coupled conformal system with planar topology [43, 44]. The effect of charge density

is introduced phenomenologically by an externally modulated chemical potential with

wave vector Q as in [40]. The Tc vs Q phase structure is studied for condensates of

various scaling dimensions. It is found [44] that for a fixed chemical potential µ there

is an enhancement of Tc upon turning on modulation. On the other end for large

modulation either Tc has a power law behavior or there exists a critical modulation

beyond which no phase transition takes place. Moreover, there exists a regime in

parameter space of this theory in which Tc vs Q phase structure reproduces [58] the

Tc vs doping phase structure of cuprates, namely the superconducting dome, provided

there exists a monotonic relation between doping and CDW modulation.

5.1 The System

We are interested in studying a strongly coupled striped superconductor using the

gauge/gravity duality. To this end, consider a U(1) gauge potential Aa and a scalar

field ψ charged under this potential living in a 3 + 1-dimensional spacetime with

negative cosmological constant Λ = −3/L2. The scalar field is dual to the scalar

order parameter of the superconductor, i.e., the condensate, while the U(1) gauge

field is dual to the four-current in the strongly coupled system. For simplicity, we

shall adopt units in which L = 1, 16πG = 1. To study the strong coupling regime of

the superconductor, we only need to study the gravity theory at the classical level. In

particular, we are interested in finding solutions to the classical equations of motion

whose boundary values are related to the parameters of the superconductor. The
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action for this system is

S =

∫
d4x
√−g

[
R + 6− 1

4
F 2 − |Daψ|2 −m2|ψ|2

]
, (5.3)

where, Da = ∂a − iqAa, Fab = ∂aAb − ∂bAa and a, b ∈ {t, r, x, y}. Here, m and q are

the mass and charge of the scalar field, respectively.

The field equations consist of the Einstein equations,

Rab −
1

2
gabR− 3gab =

1

2
Tab , (5.4)

where the stress-energy tensor is

Tab = FacF
c

b −
1

4
gabF

cdFcd

+ Daψ(Dbψ)∗ + (a↔ b)− gab
[
|Daψ|2 +m2|ψ|2

]
,

(5.5)

the Maxwell equations,
1√−g∂b(

√−gF ab) = Ja , (5.6)

where the U(1) current is

Ja = −i[ψ∗Daψ − c.c.] , (5.7)

and the Klein-Gordon equation for the scalar field,

− 1√−gDa(
√−ggabDbψ) +m2ψ = 0 . (5.8)

We are interested in finding a static black hole solution of flat conformal boundary

which is sourced by a modulated chemical potential µ(~x), where µ is a given spatially

dependent function. The presence of this modulated chemical potential gives rise

to inhomogeneities in the system. However, it should be emphasized that this is
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a phenomenological description of inhomogeneities. The chemical potential is an

effective potential resulting from interactions within the system. Ultimately, one

would like to understand the dynamical emergence of the modulated potential and

attendant inhomogeneities. However, here, we are only interested in the consequences

of the presence of the modulated potential, which we treat as fixed.

Let (x, y) be the Cartesian spatial coordinates of the two-dimensional conformal

boundary. We concentrate on the case in which µ only depends on one of the

coordinates, which is chosen to be x. For definiteness, we only consider the case

in which only a homogeneous term and a single oscillating mode are present,

µ(x) = µ(1− δ) + µδ cosQx (5.9)

To find a solution to the coupled Einstein-Maxwell equations 5.4 and 5.6, consider

the metric ansatz

ds2 = −r2e−αdt2 + eα
dr2

r2
+ r2e−β

[
e−γdx2 + eγdy2

]
, (5.10)

where α, β, and γ are functions of (r, x). The boundary is at r →∞ and the horizon

is at r = r+, where r+ is an arbitrary parameter. For a flat conformal boundary,

we require α, β, γ → 0, as r → ∞, and in fact, we find α ∼ O(r−3) while β and

γ ∼ O(r−4).

For the U(1) potential, we fix the gauge so that Ar = Ax = Ay = 0 and At = At(r, x)

with At = 0 at the horizon (for a finite norm, AaA
a <∞), whereas at the boundary,

At(r, x)
∣∣∣
r→∞

= µ(x) (5.11)

We shall solve the Einstein-Maxwell equations 5.4 and 5.6 perturbatively by

expanding around the Schwarzschild solution, which is obtained as µ → 0. This
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corresponds to the probe limit in which the scalar charge q →∞ so that the product

q µ remains finite. Near the critical temperature, we have a radius of the horizon of

the same order as qµ (r+ ∼ qµ), so an expansion in µ is equivalent to an expansion

in 1/q. More precisely, the expansion is in the dimensionless parameter

(
µ

r+

)2

∼ 1

q2
, (5.12)

which is the only parameter in the Einstein-Maxwell system (since the vector potential

enters quadratically). This expansion is valid for large black holes (or small chemical

potential), or more precisely for

µ . r+ . (5.13)

Expanding in the small dimensionless parameter (5.12), we have

At = A
(0)
t +

(
µ

r+

)2

A
(1)
t + . . .

α = α(0) +

(
µ

r+

)2

α(1) + . . .

β = β(0) +

(
µ

r+

)2

β(1) + . . .

γ = γ(0) +

(
µ

r+

)2

γ(1) + . . . (5.14)

and consequently, the expansions of the metric, Ricci tensor and U(1) field strength

and stress-energy tensor, respectively,

gab = g
(0)
ab +

(
µ

r+

)2

g
(1)
ab + . . .

Rab = R
(0)
ab +

(
µ

r+

)2

R
(1)
ab + . . .

Fab =

(
µ

r+

)2

F
(0)
ab + . . .

Tab =

(
µ

r+

)2

T (0)
ab + . . . (5.15)
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5.2 Mean-Field Analysis

In the mean-field treatment we will neglect the backreaction of the scalar field and

the gauge field onto the metric. This is valid when scale invariant quantities, such as

GNµ
2, where µ is the chemical potential, are small. As usual, this can be achieved

by sending GN to zero while keeping everything else fixed.

At zeroth order, the Einstein-Maxwell equations read

R
(0) a

b + 3δab = 0 , ∂b

(√
−g(0)F (0)ab

)
= 0 . (5.16)

The Einstein equations decouple and are solved by the AdS Schwarzschild black hole∗

e−α
(0) ≡ h = 1−

(r+

r

)3

, β(0) = γ(0) = 0 . (5.17)

To solve the Maxwell equations, it is convenient to introduce the coordinate

z =
r+

r
, (5.18)

so that the boundary is at z = 0 and the horizon at z = 1. Writing the U(1) potential

in terms of Fourier modes

A
(0)
t = µ(1− δ)A0(z) + µδA1(z) cosQx , (5.19)

∗There are also other inhomogeneous black hole spacetimes obtained by perturbing Reissner-
Nordström black hole [? ].
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we deduce the mode equations

A′′n(z)− n2Q2

r2
+h(z)

An(z) = 0 (n = 0, 1) , (5.20)

to be solved together with the boundary conditions An(0) = 1, An(1) = 0. Here,

h(z) = 1− z3 (Eq. (5.17)) and ′ denotes a derivative with respect to z. For n = 0, we

obtain

A0(z) = 1− z . (5.21)

For n = 1, a good analytic approximation to the solution is given by [40, 43]

A1(z) ≈
sinh

[
Q
r+

(1− z)
]

sinh Q
r+

. (5.22)

The error vanishes at both ends (z = 0, 1) and attains a maximum value at an

intermediate z. As Q→ 0, this maximum value decreases like Q2, whereas as Q→∞,

it decays exponentially. Numerically, for Q/r+ ∼ 0.1, 1, 10, we obtain a maximum

error of 10−4, 0.01, 0.001, respectively.

Let us define

Ψ =
〈O∆〉(0)

√
2

z∆

r∆
+

∑
n≥0

F (n)(z) cosnQx, (5.23)

with F (0)(z = 0) = 1, such that the expectation value of the condensate is

〈O∆〉 =
∑
n≥0

〈O∆〉(n) cosnQx, (5.24)

with

〈O∆〉(n) = 〈O∆〉(0) F (n)(z = 0). (5.25)
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Here, ∆ = ∆± = 3
2
±
√

9
4

+m2 is the dimension of the condensate operator O∆. We

shall examine the range
1

2
< ∆ < 3, (5.26)

where ∆ > 3
2

(
∆ < 3

2

)
for ∆ = ∆+ (∆ = ∆−), corresponding to masses in the range

0 > m2 ≥ −9
4
.

To gain more insight, let us solve the equation of motion for F (0) by treating the

electrostatic potential as a perturbation to a leading order solution, which is nothing

but that of a scalar field on an AdS Schwarzschild black hole without any background

U(1) gauge field

F
(0)
0

′′
+

(
h′

h
+

2(∆− 1)

z

)
F

(0)
0

′ − ∆2z

h
F

(0)
0 = 0. (5.27)

Here, F
(0)
0 is the leading term of the solution. Strictly speaking, this perturbation

is valid only when δ ≈ 1, however, as we shall see in a bit, the result is a good

approximation even when δ is far away from unity. The solution that satisfies the

correct boundary conditions at z = 0 is

F
(0)
0 = 2F1

(
∆

3
,
∆

3
;
2∆

3
; z3

)
, (5.28)

where 2F1 is the Gauss hypergeometric function. There is another solution, which

corresponds to the solution with the correct boundary conditions for ∆→ 3−∆

F̃
(0)
0 = z3−2∆

2F1

(
3−∆

3
,
3−∆

3
;
2(3−∆)

3
; z3

)
. (5.29)
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Using perturbation theory, we obtain the next leading order solution, which is given

by

F
(0)
1 (z) =

µ2
c

3− 2∆

(
F

(0)
0 (z)

∫ z

0

dz′

z′2−2∆
F̃

(0)
0

A
h
F

(0)
0 − F̃ (0)

0 (z)

∫ z

0

dz′

z′2−2∆
F

(0)
0

A
h
F

(0)
0

)
≡ µ2

c

3− 2∆

(
F

(0)
0 (z) ã(z)− F̃ (0)

0 (z) a(z)
)
, (5.30)

where

A(z) = (1− δ)2A(0)2
+
δ2A(1)2

2
. (5.31)

As both F
(0)
0 and F̃

(0)
0 diverge logarithmically at the horizon, we obtain the following

singularity for the full solution

F (0)(z → 1) = F
(0)
0 (z → 1) + F

(0)
1 (z → 1) + · · ·

≈ log(1− z)

{
Γ
(

2∆
3

)
Γ2
(

∆
3

) [1 +
µ2
c ã(1)

3− 2∆

]
−

Γ
(

2(3−∆)
3

)
Γ2
(

3−∆
3

) µ2
c a(1)

3− 2∆

}
,(5.32)

where

a(1) ≈ (1− δ)2 a
(0)
0 +

Γ(2∆− 1)

22∆

δ2

Q2∆−1
c

,

ã(1) ≈ (1− δ)2 ã
(0)
0 +

1

8

δ2

Q2
c

, (5.33)

with

a
(0)
0 =

∫ 1

0

dz

z2−2∆
F

(0)
0

(1− z)2

h
F

(0)
0 ,

ã
(0)
0 =

∫ 1

0

dz

z2−2∆
F̃

(0)
0

(1− z)2

h
F

(0)
0 . (5.34)

In obtaining Eq. (5.33), we have approximated the subleading integrals by evaluating

the integrand near the boundary z = 0.
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Requiring regularity at the horizon, we obtain

1

µ2
c

=
1

3− 2∆

Γ2
(

∆
3

)
Γ
(

2∆
3

) Γ
(

2(3−∆)
3

)
Γ2
(

3−∆
3

) a(1)− ã(1)


=

Γ2
(

∆
3

)
Γ
(

2∆
3

) Γ
(

2(3−∆)
3

)
Γ2
(

3−∆
3

) a(0)
0 − ã(0)

0

 (1− δ)2

3− 2∆
+

Γ2
(

∆
3

)
Γ
(

2∆
3

) Γ
(

2(3−∆)
3

)
Γ2
(

3−∆
3

) Γ(2∆− 1)

22∆(3− 2∆)

δ2

Q2∆−1
c

,

(5.35)

where we have dropped the term proportional to 1/Q2
c on the last line. Both terms

in Eq. (5.35) are small, but we make two different approximations in which one is a

lot larger than the other. When the first term is significantly larger than the second

one, for ∆ = 1, we have

µ2
c =

1.19

(1− δ)2
− 0.91 δ2

(1− δ)4Qc

, (5.36)

When the second term is significantly larger than the first, we have

µ2
c =

Γ
(

2∆
3

)
Γ2
(

∆
3

) Γ2
(

3−∆
3

)
Γ
(

2(3−∆)
3

) 22∆(3− 2∆)

Γ(2∆− 1)

Q2∆−1
c

δ2
. (5.37)

For ∆ = 1, δ = 1, we then have µ2
c = 1.55Qc and

Tc
µ

=
0.15

Q/µ
, (5.38)

We would like to note that for δ = 1 and ∆ > 3/2, Eq. 5.37 does not have any

solutions. This is related to the fact that for δ = 1 and ∆ > 3/2, there is a critical

Q∗ such that Tc(Q > Q∗) = 0, as we have mentioned earlier.

Let us also comment on the ∆ = 1/2 unitarity limit, which is singular. To approach
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it, we introduce a cutoff Λ in Q-space. From Eq. (5.35), we have

1

µ2
c(Q)

− 1

µ2
c(Λ)

=
Γ2
(

∆
3

)
Γ
(

2∆
3

) Γ
(

2(3−∆)
3

)
Γ2
(

3−∆
3

) Γ(2∆− 1)

22∆(3− 2∆)
δ2
(
Q1−2∆ − Λ1−2∆

)
. (5.39)

If ∆ > 1/2, we can safely take the limit Λ→∞, in which Λ1−2∆ → 0 and µc(Λ) has

a finite limit. This is not so for the case of ∆ = 1/2. Taking the limit ∆ → 1/2, we

have

lim
∆→ 1

2

[
1

µ2
c(Q)

− 1

µ2
c(Λ)

]
=

Γ2
(

1
6

)
Γ
(

1
3

) Γ
(

5
3

)
Γ2
(

5
6

) δ2

4
log

Λ

Q
, (5.40)

which shows that the limit Λ → ∞ is not well defined and that for ∆ = 1/2, the

chemical potential is no longer a physical quantity. A well defined physical quantity

would be
d

d logQ

[
1

µ2
c(Q)

]
= −Γ2

(
1
6

)
Γ
(

1
3

) Γ
(

5
3

)
Γ2
(

5
6

) δ2

4
. (5.41)

5.3 Adding Fluctuations

With the choice of boundary conditions (5.9), the lowest-order stress-energy tensor

T (0)
ab has modes with n ≤ 2 due to the fact that it is quadratic in the U(1) potential.

The same should be true for the first-order corrections to the metric. Explicitly, the

non-vanishing components of the zeroth-order electromagnetic stress-energy tensor

are

T (0) t
t = −T (0) y

y = −z
4

4

[E2
x

h
+ E2

z

]
,

T (0) z
z = −T (0)x

x =
z4

4

[E2
x

h
− E2

z

]
,

T (0)x
z =

1

h
T (0) z

x = − z
4

2h
ExEz , (5.42)
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given in terms of the components of the electric field

Ex =
δQ

r+

A1 sinQx ,

Ez = (1− δ)A′0(z) + δA′1(z) cosQx . (5.43)

To solve the Einstein equations at first order,

R
(1) a

b = T (0) a
b , (5.44)

we set

α(1) = α
(1)
0 (z) + α

(1)
1 (z) cosQx+ α

(1)
2 (z) cos 2Qx ,

β(1) = β
(1)
0 (z) + β

(1)
1 (z) cosQx+ β

(1)
2 (z) cos 2Qx ,

γ(1) = γ
(1)
0 (z) + γ

(1)
1 (z) cosQx+ γ

(1)
2 (z) cos 2Qx .

(5.45)

We obtain five non-vanishing components for each set of functions {α(1)
i , β

(1)
i , γ

(1)
i },

where i = 0, 1, 2. Of the five equations, only three are independent and can be solved

analytically for the three corresponding metric functions. After some algebra, we

obtain the following system of equations for the modes of the metric functions.
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For the Fourier zero modes, we obtain

α
(1)′
0 −

(
3

z
− h′

h

)
α

(1)
0 −

z

2

(
4

z
− h′

h

)
γ

(1)′
0

−
z3
(
Q2

r2
+
δ2A2

1 − h (2(1− δ)2A′20 + δ2A′21 )
)

8h2
= 0 ,

β
(1)′′
0 −

(
2

z
− h′

h

)
β

(1)′
0 − Q2z2δ2A2

1

4r2
+h

2
= 0 ,

γ
(1)′′
0 +

Q2z2δ2A2
1

4r2
+h

2
= 0 .

(5.46)

We solve these equations by requiring that the functions be regular at the horizon

(z = 1) and vanish sufficiently fast at the boundary (z = 0). We obtain

γ
(1)
0 (z) = −Q

2δ2

4 r2
+

∫ z

0

dz′
∫ z′

0

dz′′
(z′′)2A2

1

h2
, (5.47)

β
(1)
0 (z) = −Q

2δ2

4 r2
+

∫ z

0

dz′
(z′)2

h

∫ 1

z′
dz′′
A2

1

h
, (5.48)

α
(1)
0 (z) =

z3

8h

∫ 1

z

α
(1)
0 (z′) dz′ , (5.49)

where

α
(1)
0 (z) = 2(1− δ)2A′02

+ δ2A′12 − Q2

r2
+

δ2A2
1

h
− γ(1)′

0

4h− zh′
z3

. (5.50)
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For the Fourier first modes, we obtain

α
(1)′
1 −

3

z
−

Q2

r2
+
z + 2h′

2h

α
(1)
1

−z
2

(
4

z
− h′

h

)
γ

(1)′
1 +

Q2z(β
(1)
1 − γ(1)

1 )

2r2
+h

+
z3δ(1− δ)A′0A′1

2h
= 0 ,

β
(1)′′
1 −

(
2

z
− h′

h

)
β

(1)′
1 = 0 ,

γ
(1)′′
1 − Q2

r2
+ h

α
(1)
1 = 0 . (5.51)

The second equation readily yields

β
(1)
1 (z) = 0 . (5.52)

By eliminating α
(1)
1 between the other two equations, we obtain a third order

differential equation for γ
(1)
1 . Then the possible behavior of γ

(1)
1 at the horizon is

found to be a linear combination of 1 − z, (1 − z) ln(1 − z), and (1 − z)1+Q2/6r2
+ .

We fix the three integration constants by demanding γ
(1)
1 (0) = 0, γ

(1)′
1 (0) = 0, and

γ
(1)′′
1 . O(1/(1−z)) at the horizon (z = 1). The second boundary condition, together

with Eqs. (5.51), ensure α
(1)
1 ∼ z3 at the boundary. The third boundary condition is

necessary for the existence of a well-defined temperature (surface gravity), resulting

in α
(1)
1 (1) = 0, on account of the third equation in (5.51).
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Finally, for the Fourier second modes, we obtain

α
(1)′
2 −

3

z
−

2Q
2

r2
+
z + h′

h

α
(1)
2

−z
2

(
4

z
− h′

h

)
γ

(1)′
2 +

2Q2z

r2
+h

(β
(1)
2 − γ(1)

2 )

+
δ2z3

(
Q2

r2
+
A2

1 + hA′12
)

8h2
= 0 ,

β
(1)′′
2 −

(
2

z
− h′

h

)
β

(1)′
2 +

δ2Q2z2A2
1

4r2
+h

2
= 0 ,

γ
(1)′′
2 −

Q2
(

16hα
(1)
2 + δ2z2A2

1

)
4r2

+h
2

= 0 . (5.53)

The second equation yields

β
(1)
2 (z) =

Q2 δ2

4r2
+

∫ z

0

dz′
(z′)2

h

∫ 1

z′
dz′′
A2

1

h
. (5.54)

We note that β
(1)
2 = −β(1)

0 . Eliminating α
(1)
2 between the other two equations, we

obtain, as before, a third-order differential equation for γ
(1)
2 , from which we deduce the

possible near horizon behavior, 1−z, (1−z) ln(1−z), and (1−z)1+2Q2/3r2
+ . As before,

we fix the three integration constants by demanding γ
(1)
2 (0) = 0, γ

(1)′
2 (0) = 0, and

γ
(1)′′
2 . O(1/(1−z)) at the horizon (z = 1). The second boundary condition, together

with Eqs. (5.53), ensure α
(1)
2 ∼ z3 at the boundary. The third boundary condition is

necessary for the existence of a well-defined temperature (surface gravity), resulting

in α
(1)
2 (1) = 0, on account of the third equation in (5.53).

The equations for the various modes can be solved numerically subject to the

boundary conditions outlined above. We have plotted α
(1)
n (n = 0, 1, 2) in Fig. 5.2

for representative values of Q, whereas β
(1)
n (n = 0, 2; it vanishes for n = 1) is plotted

in Fig. 5.3, and γ
(1)
n is plotted in Figs. 5.4, 5.5, and 5.6, for n = 0, 1 and 2, respectively.
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Figure 5.2: α
(1)
0 (black), α

(1)
1 (red) and α

(1)
2 (blue) for δ = 0.5, and Q/r+ = 0.1, 1,

3 and 5.

Note that, the β
(1)
n and γ

(1)
n components of metric perturbations are sourced by x-

component of electric field (5.43), which vanishes at both small and large Q. The

functions β
(1)
n s and γ

(1)
n s depend on Q via two terms: a direct proportionality factor

Q2 and area under the functions A2
1/h or z2A2

1/h
2. The first factor vanishes at Q→ 0,

while the integrals vanish at Q → ∞, due to A1 ∼ Q
sinhQ

(1 − z) near the horizon.
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Figure 5.3: β
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0 = −β(1)

2 for δ = 0.5, and QL2/r+ = 0.1 (red), 1.0 (green), 2.0 (blue)
and 8.0 (orange).

Consequently, β
(1)
n and γ

(1)
n (n = 0, 1, 2) are very small in both limits Q � r+ and

Q� r+. These functions are more significant in the intermediate range 2 < Q/r+ < 3

and decay rapidly on both sides, but even when they reach their maximum, they

remain well below unity (see Figs. 5.3–5.6). Thus, their contribution to physical

quantities is negligible in the entire range of Q.

Next, we discuss the behavior of α
(1)
n (n = 0, 1, 2) which are physically important

because they determine the temperature. Indeed, the Hawking temperature at first

order in perturbation is

T =
3r+

4π

[
1− µ2

r2
+

α(1)(1)

]
. (5.55)

Since α
(1)
n (1) = 0 for n ≥ 1, we have

α(1)(1) = α
(1)
0 (1) =

α0(1)

24

=
2(1− δ)2 + δ2A′12 − 3γ

(1)′
0

24

∣∣∣∣∣
z=1

. (5.56)
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Figure 5.4: γ
(1)
0 for δ = 0.5, and Q/r+ = 0.1 (red), 1.0 (green), 2.0 (blue) and 8.0

(orange).

We can calculate these functions analytically in the two important limits: Q→ 0 and

Q→∞. In the limit Q→ 0, we obtain the analytic expressions

α
(1)
0 =

(
(1− δ)2 +

δ2

2

)
z3

4 (1 + z + z2)
+O

(
Q2

r2
+

)
,

α
(1)
1 =

(1− δ) δ z3

2 (1 + z + z2)
(1− z)Q

2/6r2
+ +O

(
Q2

r2
+

)
,

α
(1)
2 =

δ2 z3

8 (1 + z + z2)
(1− z)2Q2/3r2

+ +O
(
Q2

r2
+

)
. (5.57)

At Q = 0 (or equivalently, δ = 0), we recover the exact Reissner-Nordström solution

representing the homogeneous system

e−α = e−α
(0)

(
1 +

µ2

r2
+

α(1)

)
= 1−

(
1 +

µ2

4r2
+

)
z3 +

µ2

4r2
+

z4 , (5.58)

where we used α(1) = α
(1)
0 + α

(1)
1 + α

(1)
2 from Eq. (5.45) with Q = 0. We recover

the Schwarzschild solution, which is the solution in the probe limit, in the limit

µ→ 0. As we increase µ, we move further away from the probe limit and the effects
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Figure 5.5: γ
(1)
1 for δ = 0.5, and Q/r+ = 0.1 (red), 1.0 (green) and 2.0 (blue).

of back reaction to the metric become more pronounced. We reach extremality at

µ/r+ = 2
√

3, but this lies outside the regime of validity of our approximation (Eq.

(5.13)).

It should be noted that the convergence to the homogeneous system is not uniform.

At the horizon, α
(1)
n (1) → 0 for n = 1, 2, and therefore α(1) does not converge to

its homogeneous counterpart. In other words, the limits Q → 0 and z → 1 do not

commute. It follows that there is a discontinuity in the temperature which depends

on the behavior of α
(1)
n at the horizon. From Eq. (5.55) in the limit Q→ 0, we obtain

T ≈ 3r+

4π

[
1− µ2 ((1− δ)2 + δ2/2)

12r2
+

]
, (5.59)

which is valid for small Q. Comparing this result with the homogeneous case, which

is recovered by setting δ = 0, we obtain an enhancement in temperature upon turning

on modulation
∆T

T
=

T

Tδ=0

− 1 ≈ µ2

12r2
+

δ

(
2− 3δ

2

)
, (5.60)
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Figure 5.6: γ
(1)
2 for δ = 0.5, and Q/r+ = 0.1 (red), 1.0 (green) and 2.0 (blue).

with a maximum enhancement for δ = 2
3
. The change in temperature is discontinuous,

but this is an artifact of keeping only the first order in perturbation theory. This

change in the temperature is expected to become smooth (yet remain steep) as higher

orders in the perturbative expansion are included.

On the other hand, in the Q � r+ regime, the contribution of A1 becomes

exponentially small, and all functions except α
(1)
0 become negligible. In this regime,

we have

α
(1)
0 ≈

(1− δ)2 z3

4 (1 + z + z2)
. (5.61)

So in the Q→∞ limit, we recover another exact Reissner-Nordström solution, albeit

with less charge density,

e−α ≈ 1−
(

1 +
µ2(1− δ)2

4r2
+

)
z3 +

µ2(1− δ)2

4r2
+

z4 . (5.62)

This coincides with the homogeneous solution (5.58) if δ = 0, as expected.
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We then deduce the temperature for large Q to be given by

T ≈ 3r+

4π

[
1− µ2(1− δ)2

12r2
+

]
. (5.63)

The Klein-Gordon equation for a static scalar field ψ(z, x) of mass m and charge

q reads ∑
i=z,x

1√−g ∂i
(√−ggii∂iψ)+

(
q2A2

t −m2
)
ψ = 0 . (5.64)

The mass is related to the conformal dimension ∆ of the superconducting order

parameter by

m2 = ∆ (∆− 3) . (5.65)

We have ψ ∼ z∆ as z → 0. For a given set of parameters {∆, δ, q, Q, µ}, the wave

equation yields the critical value of the radius of the horizon,

r+ = r+c . (5.66)

It is convenient to define the eigenvalue

λ =
qµ

r+c

. (5.67)

The critical temperature is then found from (5.55) by setting r+ = r+c. We obtain

Tc
qµ

=
3

4π

[
1

λ
− λ

q2
α(1)(1) +O

(
1

q4

)]
. (5.68)

To simplify the wave equation, we note that the electrostatic potential has Fourier

modes with wavenumbers nQ, where n = 0, 1, whereas the metric consists of modes
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with n = 0, 1, 2. It follows that ψ can be expanded in a Fourier series,

ψ(z, x) = z∆F (z, x) , F (z, x) =
∑

Fn(z) cosnQx , (5.69)

where we factored out z∆, so that the modes Fn(z) ∼ const., as z → 0. Using (5.69),

the wave equation (5.64) can be written as an infinite system of coupled ordinary

differential equations.

In the large Q regime, the higher modes become negligible, and the wave equation

can be well approximated by the equation obeyed by the zero mode where all other

modes have been set to zero,

F ′′0 +

[
2(∆− 1)

z
+
h′0
h0

]
F ′0 +

∆ [(∆− 3)(h0 − 1) + zh′0]

z2h0

F0

+ λ2(1− δ)2 (1− z)2

h2
0

F0 = 0 , (5.70)

where

h0 ≡ e
−α(0)− µ2

r2+
α

(1)
0 ≈ h

[
1− µ2

r2
+

α
(1)
0

]
. (5.71)

Expanding the scalar field, as we did with the other fields,

F = F (0) +

(
µ

r+

)2

F (1) + . . . , (5.72)

where F (0) is the scalar field in the probe limit, we obtain for each Fourier mode,

Fn = F (0)
n +

(
µ

r+

)2

F (1)
n + . . . . (5.73)

We also need to expand the eigenvalue (5.67) similarly,

λ = λ0 +

(
µ

r+

)2

λ1 + . . . . (5.74)
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We deduce for the probe limit zero mode,

F
(0)
0

′′
+

[
2(∆− 1)

z
+
h′

h

]
F

(0)
0

′

+
∆ [(∆− 3)(h− 1) + zh′]

z2h
F

(0)
0

+ λ2
0(1− δ)2 (1− z)2

h2
F

(0)
0 = 0 . (5.75)

which is the same as the equation for a homogeneous system in the probe limit, but

with µ reduced to µ(1 − δ). The correction to the zeroth-order eigenvalue can be

found using standard first-order perturbation theory. After some algebra, we obtain

λ1 =

∫ 1

0
dz z2(∆−1)hF

(0)
0 HF (0)

0

2λ0(1− δ)2
∫ 1

0
dz z2(∆−1) (1−z)2

h
[F

(0)
0 ]2

, (5.76)

where

HF ≡ α
(1)
0

′F ′ +
[

∆(∆− 3)

z2h
α

(1)
0 +

∆

z
α

(1)
0

′

−2λ2
0(1− δ)2 (1− z)2

h2
α

(1)
0

]
F . (5.77)

The above results are valid in the Q → ∞ limit. From (5.68), we deduce the

asymptotic value of the temperature in this limit. As we decrease Q, an increasing

number of Fourier modes become significant and one needs to solve a coupled

system of ordinary differential equations of increasing complexity. This can be done

numerically. The error in the numerical analysis can be reduced to the desired

accuracy by including enough higher modes of the Fourier expansion. As Q → 0,

all modes become significant. In this limit, numerical methods based on a Fourier

expansion become cumbersome. Fortunately, we can obtain analytic results in the

limit Q → 0, because all functions are slowly varying functions of x, and therefore
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the x-dependence can be ignored. We deduce the wave equation in the limit Q→ 0,

F ′′ +

[
2(∆− 1)

z
+
h
′

h

]
F ′

+
∆

z2h

[
(∆− 3)(h− 1) + z h

′
]
F + λ2 (1− z)2

h
2 F = 0 , (5.78)

where

h ≡ h

[
1− µ2

r2
+

α

]
, α = α

(1)
0 + α

(1)
1 + α

(1)
2 . (5.79)

At zeroth order, this reduces to the probe limit result of the homogeneous case

F (0)′′ +

[
2(∆− 1)

z
+
h′

h

]
F (0)′

+
∆

z2h
[(∆− 3)(h− 1) + zh′]F (0)

+ λ2
0

(1− z)2

h2
F (0) = 0 , (5.80)

to be compared with the Q→∞ result (5.75). At first order, we obtain the correction

to the eigenvalue in the limit Q→ 0,

λ1 =

∫ 1

0
dz z2(∆−1)hF

(0)
0 HF (0)

0

2λ0(1− δ)2
∫ 1

0
dz z2(∆−1) (1−z)2

h
[F

(0)
0 ]2

, (5.81)

where

HF ≡ α′F ′ +
[

∆(∆− 3)

z2h
α +

∆

z
α′ − 2λ2

0

(1− z)2

h2
α

]
F . (5.82)

From (5.68), we deduce the value of the temperature in the limit Q → 0. At small

Q, we obtain from Eq. (5.60) the enhancement in the critical temperature,

∆Tc
Tc
≈ λ2

12q2
δ

(
2− 3δ

2

)
+O

(
1

q2

)
, (5.83)

which vanishes at the probe limit (q → ∞) and becomes significant away from it.

However, we stress that the above results are not accurate in the small q limit, as
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they are only first-order O(1/q2) results.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Q

q Μ

0.040

0.045

0.050

0.055

0.060

T c

q Μ

D=2

Figure 5.7: From top to bottom: Tc vs. Q for ∆ = 2 and (δ, q2) = (0.3,∞),
(0.2, 7.92) and (0.1, 4.22). Parameters are chosen so that curves asymptote to
Tc/(qµ) = 0.041 as Q→∞.

The wave equation is solved numerically subject to the boundary conditions F0 ∼ z∆

at the boundary and the demand of regularity at the horizon (F0(1) < ∞). The

results are shown in Figs. 5.7 and 5.8, for ∆ = 2 and 3, respectively. In each

case, we have chosen the other parameters so that the curves asymptote to the

same temperature as Q → ∞. We note that all curves exhibit a jump at Q = 0+,

showing the enhancement of the critical temperature once modulation is switched on,

in agreement with our analytic result (5.83). As Q increases, the critical temperature

decreases monotonically. The jump vanishes in the probe limit which is obtained for

µ = 0 (Schwarzschild black hole). For any given Q, the critical temperature attains

its maximum value at this limit. Put differently, back reaction to the metric lowers

the critical temperature. Correspondingly, in the dual boundary system, quantum

fluctuations result in a reduction in the critical temperature for a given modulation
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(0.2, 20.65) and (0.1, 13.13). Parameters are chosen so that curves asymptote to
Tc/(qµ) = 0.020 as Q→∞.

vector Q.

5.4 Superconducting dome

With growing evidences of a monotonic relation between doping and modulation

[54, 55, 56, 57], it is plausible that the qualitative behavior of the critical temperature

viewed either as a function of doping or as a function of the modulation wave number

should be similar. If this is true, then doping temperature phase diagram should be

qualitatively similar to modulation temperature phase diagram. Therefore, as a step

toward realizing a realistic holographic model of cuprate, it is crucial to show that

indeed there exists a regime in the parameter space in which the holographic striped

superconductor exhibits a superconducting dome.
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Below we show that there is a critical modulation wave number Q∗, above which

the critical temperature vanishes. The value Q∗ can be estimated analytically by

considering the large modulation wave number regime where Q � Tc. In this

regime, we can see from the numeric that the effects of backreaction are suppressed.

Furthermore, the higher modes are suppressed. Using the perturbative method of

Ref. [43], we have

r2
+c

q2µ2
=

1

2∆− 3

ãc(1)− Γ2
(

∆
3

)
Γ
(

2∆
3

) Γ
(

2(3−∆)
3

)
Γ2
(

3−∆
3

) ac(1)

 , (5.84)

where

ac(1) =
1

22∆

r2∆−1
+c

Q2∆−1
Γ(2∆− 1),

ãc(1) =
r2

+c

8Q2
. (5.85)

Here, r+c is the value of r+ at the critical temperature. Therefore,

r2∆−3
+c

(qµ)2∆−3
=

22∆(2∆− 3)

Γ(2∆− 1)

Γ
(

2∆
3

)
Γ2
(

∆
3

) Γ2
(

3−∆
3

)
Γ
(

2(3−∆)
3

) Q2∆−1

(qµ)2∆−1

×
(

1

8(2∆− 3)

q2µ2

Q2
− 1

)
, (5.86)

which means above (
Q∗
qµ

)2

=
1

8(2∆− 3)
, (5.87)

we have no instability and Tc = 0. We can improve upon this approximation by

iteratively solving the equation of motion

∂2
z̃F

(0) +
2(∆− 1)

z̃
∂z̃F

(0) + λe−z̃F (0) = 0, (5.88)
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where z̃ = zr+/(2Q) and λ = q2µ2/(8Q2
∗). We would like to evaluate this in the

interval z̃ ∈ [0,∞), with the boundary condition F (0) → 0 as z̃ →∞. This differential

equation can be solved exactly for ∆ = 2, but for other values 3/2 < ∆ ≤ 3, we can

estimate λ by iteration. To do so, let us rewrite 5.88 as an integral equation

F (0)(z̃) = 1− λ

2∆− 3

∫ z̃

0

dww e−w F (0)(w)

+
λ

(2∆− 3)z̃2∆−3

∫ z̃

0

dww2∆−2e−w F (0)(w).

(5.89)

Solving this iteratively, we reproduce Eq. 5.87 at zeroth order while a first order

correction results in

(
Q∗
qµ

)2

=
3− 4∆

32
+

(∆− 1)(∆− 2)

4
×

×
[
ψ

(
5

2
−∆

)
− ψ(3−∆) +

2π

sin 2π∆

]
.

(5.90)

Here, ψ denotes the digamma function. Despite appearances, as we can see in Fig.

5.10, this is a smooth function of ∆ in the interval (3/2, 3) (the two expressions above

have almost indistinguishable graphs). Furthermore, at ∆→ 3−, we have Q∗
qµ
≈ 0.158,

in good agreement with our numerical results.
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Figure 5.10: The end point of the superconducting dome as a function of the scaling
dimension of the order parameter.
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Figure 5.9: (Color online) The critical temperature as a function of modulation
wavenumber. Here, ∆ = 3 and the black, red and green lines correspond to q2 =∞,
10 and 5, respectively.

By comparing the information concerning the end points of the dome, Q = 0 and

Q = Q∗, with experiment, we can then in principle extract the value of ∆. This is
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yellow lines (bottom to top) correspond to T/Tc = 0.975, 0.95 and 0.9, respectively.
For clarity, we have also shown the critical temperature, plotted in dashed line.
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Figure 5.12: (Color Online) The ratio of the gap to temperature deep under the
dome, as a function of the scaling dimension of the order parameter. Here, the blue,
purple and yellow lines (bottom to top) correspond to T/Tc = 0.975, 0.95 and 0.9,
respectively.
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because the Q = 0 point gives us the information on q and upon substituting it into

Eq. 5.90, we obtain ∆. Another method to extract the realistic value of ∆ is by

calculating the anisotropy of the optical conductivity akin to the calculation done in

[45] (see also [46]) and comparing its scaling behavior with the observed behavior in

cuprates [47].

Combining the results of [43] and [44], we expect that when the chemical potential

averages to zero (δ = 1) and the scaling dimension of the order parameter 3/2 < ∆ ≤
3, the superconducting regime is capped at larger values of Q, while for sufficiently

low q2, it is capped at the smaller values of Q and thus, resulting in a superconducting

dome. We show [58] that indeed this expectation is correct. Modulation dependence

of condensate within this dome is found to be mild, except divergent near extrimality

at overdoped regime.

We found that deep under the superconducting dome, the gap shows a mild

dependence on Q. Interestingly, recent measurement of the gap at fixed temperature

at low temperature also showed mild dependence on Q. We are hopeful that gap

measurement near Tc from STM will be available to be compared with our prediction

in Fig. 5.11 in the near future.

The ratio 〈O∆〉1/∆/T deep under the superconducting dome as a function of ∆

is plotted in Fig. 5.12. The value is about 8-10, which is the same order of

magnitude with the measured value of 29 [57]. We would like to note that the

measurement is done at T/Tc ≈ 0.2, which is beyond the regime of validity of our

approximation. However, considering that in some holographic models, the ratio of

gap over temperature can go as high as O(103), our result is encouraging.
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Chapter 6

Conclusions

In this thesis we developed a phenomenological holographic model of strongly coupled

2 + 1 dimensional striped superconductors and studied the interplay between charge

density wave order and superconductivity. In particular, dependence of Tc on CDW

wave vector Q is studied for condensates of various scaling dimension ∆ while tuning

the ratio δ of homogeneous and inhomogeneous part of charge density and modulation

wave vector Q. The dynamics of fluctuations in such systems were analyzed in first

order approximation and the effects of fluctuations on both Tc and condensate were

studied. In the following section we summarize our major results.

6.1 Summary of Results and Outlook

First we analyzed the properties of a striped holographic superconductor in the probe

limit at large modulation wavenumber Q, where the backreaction is negligible. We

calculated the critical temperature Tc and the expectation value of the condensate

〈O∆〉 below Tc analytically for arbitrary values of the scaling dimension ∆. We found

that in the absence of a homogeneous terms in the chemical potential, both Tc and

〈O∆〉 have a power law behavior for large Q for ∆ < 3/2. In particular, the critical
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temperature behaves as

Tc ∝ Q−
2∆−1
3−2∆ , (6.1)

while the power of the condensate is such that the gap

〈O∆〉1/∆ ∝ Q. (6.2)

On the other hand if the scaling dimension of the order parameter ∆ is larger than

3/2 then there exist a critical modulation Q∗, beyond which no phase transition takes

place. This critical modulation is given by,

(
Q∗
qµ

)2

=
1

8(2∆− 3)
+ corrections

We also found that the odd modes of the condensate vanish, while the higher even

modes are suppressed
〈O∆〉(n)

〈O∆〉(0)
≤ O

(
µ2n

Q2n

)
. (6.3)

In the case in which a homogeneous term is included in the chemical potential, both Tc

and 〈O∆〉 approach constant values in the large Q limit, but the subleading terms are

powers of Q. These constant values are the corresponding values for the homogeneous

superconductors with chemical potential µδ. We also found that the higher modes of

the condensate are suppressed

〈O∆〉(n)

〈O∆〉(0)
≤ O

(
µ2[n/2]

Q2[n/2]

)
. (6.4)

Next we incorporated fluctuations in system by including backreaction into the

spcetime geometry. The two characteristic features of fluctuations in this system with

modulated charge density seem to have a profound influence on Tc. First, fluctuations

are found to be dominant in small modulation regime and exponentially suppressed

at large modulation. This is expected, since for a CDW with modulation wave vector
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large compared to some characteristic energy scale of the system, the fluctuations are

energetically costly are therefore suppressed. On the other hand for modulation small

compared to energy scale of the system, the energy cost due modulated charge density

is small and fluctuations play a dominant role in this regime. Second, fluctuations

compete with superconductivity. As we turn on modulation, strength of fluctuations

decrease monotonically causing a steep jump in Tc. After that, as we increase Q,

the critical temperature decreases until it reaches the asymptotic value. In other

words, we found an enhancement of the critical temperature due to inhomogeneity

that comes from the stripe order.

∆Tc
Tc
≈ λ2

12q2
δ

(
2− 3δ

2

)
+O

(
1

q2

)
, (6.5)

which vanishes in the mean-field or probe limit (q → ∞) and becomes significant

away from it.

We have seen that the critical temperature vanishes asymptotically at Q∗ the value

of which is depends on the scaling dimension of the condensate. On the other hand

at Q = 0 the critical temperature vanishes for sufficiently large q2. In the regime of

validity of the 1/q2 expansion, we are not able to crank up the fluctuations to reach

vanishing critical temperature at Q = 0. However, as the exact solution at Q = 0 is

known, we expect this to happen at q2 = 3/4 + ∆(∆ − 3)/2 [59]. Consolidating

the results we conclude that the holographic striped superconductor exhibits a

superconducting dome with vanishing or nearly vanishing critical temperature at the

end points. In other words, assuming a CDW normal state throughout the modulation

range 0 ≤ Q ≤ Q∗, the critical temperature of a holographic superconductor shows

similar dependence on Q as critical temperature of cuprates depend on doping

concentration x.
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6.2 Future Work

The simple model considered in section 1 to study the interplay between stripe

orders and superconductivity has one major limitation: anisotropy is introduced via

externally modulated chemical potential. It is desired to extend this model into which

both the superconducting order and stripe order emerge dynamically. Insight can be

drawn from the existing holographic models that have been proposed to describe

CDW [53]. One simple mechanism for dynamic emergence of CDW, is to introduce

another U(1) gauge field corresponding to an effective magnetic field acting on the

spins in boundary theory. The scalar field is neutral under this gauge field.

In another approach towards a dynamic emergence of CDW in holographic system

I am considering a system with higher powers of derivatives in Lagrangian. A

similar non relativistic analysis of a classical dynamical systems [60] by Shapere et al.

revealed motion of the system in their lowest energy state, forming a time analogue

of crystalline spatial order.

In cuprates and iron pnictides the formation of Cooper pair can no longer be

attributed to the electron-lattice coupling. Despite intensive studies, the correct

pairing mechanism is still elusive. However, a common feature of these systems is a

long range antiferromagnetic ground state in the non superconducting parent which,

upon doping, evolves into loosely correlated magnetic excitations coexisting with

superconductivity. To date, pairing mechanism mediated by magnetic fluctuations

has been regarded as a leading candidate to resolve the problem of high-Tc

superconductivity. Holographic models of pairing mechanism might be able to

elucidate the underlying physics. In striped superconductors as we have seen,

modulated pairing is possible as well, in which the cooper pair is spatially modulated.

Φ†(~R) ∼ cos( ~Qp · ~R)F †(~R) (6.6)
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Although most superconducting state has vanishing momentum ~Qp = 0, finite

momentum pairing has been proposed by Fulde,Ferrel,Larkin and Ovchinnikov called

the ”FFLO” state. Such finite momentum condensate is related to ”antiphase

superconductivity” where neighbouring stripes are in opposite phase leading to strong

suppression of bulk superconductivity. Holographic models of FFLO states have

already been proposed. An interesting extension of present work will be to analyze

modulation dependence of these states.
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