
STATUS AND RECENT DEVELOPMENTS OF
PYTHON ACCELERATOR TOOLBOX

S. White, L. R. Carver, L. Farvacque, S. M. Liuzzo, ESRF, Grenoble, France

Abstract
The Accelerator Toolbox (AT) is a multipurpose track-

ing and lattice design code relying on a C tracking engine.
Its MATLAB interface is widely used in the light source
community for beam dynamics simulations and can be in-
tegrated in control systems through the MATLAB Middle
Layer. In recent years major effort was made to develop a
Python interface to AT: pyAT. In this framework, several
features were added to pyAT, in particular, the introductions
of the 6D optics dynamic aperture and lifetime calculation,
single and multi-bunch collective effects simulations and
parallel tracking capabilities. A Python ring simulator was
also developed at ESRF based on pyAT for offline modeling
of the accelerator control system. Following a presentation
of the structure and main features of AT, an overview of
these recent developments is provided.

INTRODUCTION
The Accelerator Toolbox [1, 2] was originally developed

at the Stanford Linear Accelerator Center (SLAC) as a col-
lection of tools to perform beam dynamics simulations in
the MATLAB framework [3]. AT applications were later
extended to accelerator controls with the introduction of the
MATLAB Middle Layer (MML) [4]. Following several
developments and increasing number of contributors [5]
AT has evolved into a fully open source international col-
laboration project [6]. Although it is well established and
widely used in science applications, MATLAB is a propri-
etary software with its own programming language and it
was found desirable to provide an AT implementation in a
free open-source language. Users would then be able to run
AT without having to purchase MATLAB. Python benefits
from a large user base in the scientific community and the
implementation of a large number of third-party libraries
that provide most of the functionalities available in MAT-
LAB. It also allows to adopt an object-oriented approach and
to build simple interfaces with other Python codes. It was
therefore selected as the most promising language for this
project. A new Python interface, pyAT [7], was therefore
developed and is now matching, or even surpassing, most of
the MATLAB AT features.

IMPLEMENTATION
The MATLAB AT implementation is organized as fol-

lows: the tracking engine and most of the computationally
intensive routines are implemented in C to optimize run time.
All the high level functions to derive characteristic lattice
quantities such as optics or closed orbit from the tracking
data are implemented in MATLAB. The C code is organized
in so-called pass methods, associated with lattices elements

such as bending magnets or quadrupoles. They transform
the particles 6D coordinates in-place following the lattice
magnetic layout. The pass methods were entirely re-used in
pyAT with some adaptations to interpret Python objects. In
this way, the tracking results are strictly identical and only
the top level functions and user interface have to be rewrit-
ten. This also makes any new C pass method immediately
available to both the MATLAB and Python implementations
of AT. More details on the implementation and comparisons
between both interfaces can be found in Ref. [7].

PARALLEL TRACKING
Parallel tracking functionalities are implemented in pyAT

using 3 different methods: OpenMP [8], the Python multi-
processing library and MPI [9]. OpenMP is implemented
at the pass method level where directives were added to ex-
ecute the loop over the particles in parallel. This method
is activated when compiling the C code. The Python multi-
processing method is provided through a dedicated tracking
function, it does not require any specific compilation but
does not allow to pass information between processes. It
is therefore well suited for intensive single particle simu-
lations such as dynamic aperture or lifetime calculations
but cannot be used for collective effects. Parallel collective
effects simulations are the most demanding as they generally
require a very large number of processes running on several
hosts. This is not possible to implement with either of the 2
methods cited above and an MPI implementation of the C
collective effects pass methods was developed. It is also ac-
tivated at compile time. These 3 methods provide sufficient
flexibility to allow for parallel computation of most of the
typical pyAT tracking simulations and the user can select
either of these depending on the physics process to model.

Figure 1 shows the speed-up factor for the 3 methods. A
simple, perfectly parallel, problem where particles do not
interact with each other is considered in this case. However,
for MPI, the results are gathered together to model realistic
usage. On the architecture used for this test (3.4 MHz AMD
EPYC 7542 32 core processors running on ubuntu), OpenMP
is less performant and seems to be more appropriate for
calculations involving few cores. It is nevertheless the only
method that can be used in the MATLAB framework. For the
other 2 methods and for large number of particles per cores
the speed-up is linear with the number of cores as expected.
Nevertheless, for smaller number of particles per core the
python multiprocessing suffers from a visible overhead. It
should be noted that for heavy collective effect simulations
involving large memory exchange between processes this
linear behavior will not hold. Similarly, for simulations
requiring very little number of particles over one or few turns



14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-WEPL031

MC5.D11: Code Developments and Simulation Techniques

3185

WEPL: Wednesday Poster Session: WEPL

WEPL031

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.



Figure 1: Multi-particle tracking speed-up factor for the
3 parallelization methods provided in pyAT. pyMP stands
for Python multiprocessing, OMP for OpenMP, Np is the
number of particles and Nt is the number of turns.

Figure 2: 4D without radiation and 6D with radiation hor-
izontal closed orbit and 𝛽-functions with 𝛿𝑝 = 0.1% (left
column) and the difference between the Python and MAT-
LAB implementations (right column) for the HMBA lattice.

(such as closed orbit or optics calculations) the initialization
overhead become detrimental and parallel tracking may not
give any improvement.

SINGLE PARTICLE DYNAMICS
Closed orbit and linear optics calculations are available

in 6D including radiation damping effects. For 6D lattices,
the particle momentum offset is determined by the devia-
tion of the Radio-Frequency (RF) cavities frequency with
respect to the nominal frequency given by the length of the
machine. All calculations are available for circular machines
and transfer lines.

Figure 2 shows the 4D and 6D (including RF cavities and
synchrotron damping) optics and closed orbit for a 𝛿𝑝 offset
of 0.1%. Differences between the Python and MATLAB
implementations are also shown. The calculation in 4D

Figure 3: (𝑥, 𝑦) and (𝛿𝑝, 𝑥) dynamic aperture computations
for the HMBA lattice with the Python and MATLAB imple-
mentations.

assumes a constant 𝛿𝑝 offset along the ring circumference
while in 6D an equivalent RF frequency shift is applied and
the tracking is performed including synchrotron motion. The
effect of synchrotron radiations and of the energy kick from
the cavities is clearly seen on the 6D orbit. The closed orbit
is calculated with iterative tracking simulations until a con-
vergence criteria is met. This could explain the differences
observed between the MATLAB and Python implementa-
tions for the 6D cases. 6D optics calculations are based on
the formalism presented in Refs. [10, 11]. 6D tracking is
also available for more advanced calculations such as optics
matching, dynamic aperture or lifetime calculations there-
fore providing all the necessary tools for lattice design and
characterization.

Figure 3 shows the (𝑥, 𝑦) and (𝛿𝑝, 𝑥) dynamic aperture
computations with the Python and MATLAB implementa-
tions. Calculations were done for the HMBA lattice with
synchrotron motion and radiation damping activated. The
vertical dynamic aperture is cut due to a physical aperture
restriction at 2.5 mm in straight sections corresponding to
the half gap of the in-vacuum undulators. Overall the results
are equivalent, however small differences are observed that
can be explained by the different grid generation (cartesian
or radial) and boundary search algorithms used in both cases.
Python multiprocessing was integrated in the pyAT dynamic
aperture calculation reducing the computation time from
almost 10 minutes to 30 seconds on a 64 cores machine for
this specific case.

COLLECTIVE EFFECTS
Collective effects were added to AT during the ESRF-EBS

design phase to allow lattice and instability threshold calcu-
lations within the same framework. At the time, it was only
possible to model single bunch effects on a single process.
The bunch (or beam) is sliced longitudinally and convoluted
with the wake field to derive the kick to apply to each particle.
This operation is done every time the beam passes through



14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-WEPL031

3186

MC5.D11: Code Developments and Simulation Techniques

WEPL031

WEPL: Wednesday Poster Session: WEPL

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.



Figure 4: Measured and simulated vertical headtail modes
at the ESRF-EBS storage ring [12].

the collective effects elements to account for any change in
bunch distribution. The lattice can be modeled with either a
one turn map or the full lattice description. Collective effects
elements are treated like any other AT element and can be in-
serted at any location in the lattice to model local impedance
contributions. The AT implementation was benchmarked
against well established codes and experimental data [5,12].
Figure 4 shows a comparison between the measured and
simulated vertical headtail modes at ESRF-EBS. Parallel
tracking functionalities for single and multi-bunch collective
effects are now fully integrated in pyAT using MPI. When
MPI is activated, particles are evenly distributed on the avail-
able cores therefore ensuring optimal CPU load. Only the
slices center of mass information, needed the derive the kick,
are shared between processes to optimize overhead due to
memory exchange between processes. Analytical wake field
elements for resistive wall and resonators or arbitrary wake
field tables can be used in all 3 planes. A specific imple-
mentation of RF cavity beam loading is also available that
allows to automatically maintain the cavity set point [13].

ESRF RING SIMULATOR
An ESRF-EBS ring simulator was first developed in MAT-

LAB and then ported to pyAT. The simulator consists in a
pyAT loop continuously running and returning characteris-
tic machine observables such as the closed orbit, the tune
or the optics in a Tango [14] device server (DS). This DS
therefore represents the virtual accelerator that mimics the
behavior of the real machine. In parallel, a clone of the real
ESRF-EBS control system is running that allows the users
to modify the settings of the lattice used in the pyAT loop.
Consequently, the simulated observables are affected in real
time using the same interface and environment as the ones
found in the control room. In Fig. 5, the structure of the real
control system (acs.esrf.fr) and the simulator (ebs-simu) are
shown side-by-side. The 2 structures are identical except for
the electron beam that is replaced by the ring simulator for

Figure 5: ESRF-EBS control system and ring simulation
structures [15].

the virtual machine. A more detailed description of the im-
plementation of the simulator can be found in Ref. [15]. The
simulator made it possible to develop and validate most con-
trol applications and scripts before the beam commissioning
started. This helped to optimize beam time usage to con-
centrate on real physics issues faced during the ESRF-EBS
commissioning rather than online software debugging.

SUMMARY AND OUTLOOK
The Accelerator Toolbox has been extended with a Python

interface and most features from the original MATLAB im-
plementation have been ported to this new framework. In the
context of this development new features have been added to
pyAT such as parallel tracking, 6D optics calculation (now
also available in MATLAB) and collective effects. These
features have been thoroughly benchmarked with the MAT-
LAB implementation when possible or experimental data
and other codes in the case of collective effects. At ESRF,
a ring simulator was developed as a realistic virtual rep-
resentation of the ESRF-EBS control room environment.
It was used to test and validate software applications and
beam commissioning scripts ahead of the beam commis-
sioning period. It is still extensively used to validate new
controls developments. pyAT now features all the necessary
tools to perform lattice design and characterization. The
GitHub repository is very active and developments are ongo-
ing such as lattice errors modeling and corrections, tools for
commissioning simulations or the implementation of exact
Hamiltonian pass methods.

REFERENCES
[1] A. Terebilo, “Accelerator toolbox for MATLAB”, SLAC, CA,

USA, SLAC-PUB-8732, 2001.



14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-WEPL031

MC5.D11: Code Developments and Simulation Techniques

3187

WEPL: Wednesday Poster Session: WEPL

WEPL031

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.



[2] A. Terebilo, “Accelerator Modeling with MATLAB Accel-
erator Toolbox”, in Proc. PAC’01, Chicago, IL, USA, Jun.
2001, pp. 3203–3205. doi:10.1109/PAC.2001.988056

[3] The MathWorks Inc., “MATLAB”, Natick, Massachusetts,
USA, https://www.mathworks.com

[4] G. J. Portmann, W. J. Corbett, and A. Terebilo, “An Ac-
celerator Control Middle Layer Using Matlab”, in Proc.
PAC’05, Knoxville, TN, USA, May 2005, pp. 4009–4011.
doi:10.1109/PAC.2005.1591699

[5] B. Nash et al., “New Functionality for Beam Dynamics in
Accelerator Toolbox (AT)”, in Proc. IPAC’15, Richmond,
VA, USA, May 2015, pp. 113–116.
doi:10.18429/JACoW-IPAC2015-MOPWA014

[6] ATCollab, “Accelerator Toolbox”,
https://github.com/atcollab/at

[7] W. A. H. Rogers, N. Carmignani, L. Farvacque, and B. Nash,
“pyAT: A Python Build of Accelerator Toolbox”, in Proc.
IPAC’17, Copenhagen, Denmark, May 2017, pp. 3855–3857.
doi:10.18429/JACoW-IPAC2017-THPAB060

[8] R. Chandra, L. Dagum, D. Kohr, R. Menon, D. Maydan, and
J. McDonald, Parallel programming in OpenMP, Morgan
kaufmann, 2001

[9] L. Dalcín, R. Paz, M. Storti, “MPI for Python”, J. Parallel
Distrib. Comput., vol. 65, pp. 1108–1115, 2005.
doi:10.1016/j.jpdc.2005.03.010

[10] E. Forest, “Dispersive lattice functions in a six-dimensional
pseudo-harmonic-oscillator”, Phys. Rev. E, vol. 58,
pp. 2481–2488, 1998. doi:10.1103/PhysRevE.58.2481

[11] A. Wolski, “Alternative approach to general coupled linear
optics”, Phys. Rev. ST Accel. Beams, vol. 9, p. 024001, 2006.
doi:10.1103/PhysRevSTAB.9.024001

[12] L. R. Carver et al., “Single Bunch Collective Effects in the
EBS Storage Ring”, in Proc. IPAC’21, Campinas, Brazil,
May 2021, pp. 425–428.
doi:10.18429/JACoW-IPAC2021-MOPAB117

[13] L. R. Carver, N. Carmignani, A. D’Elia, J. Jacob, V. Serriere,
S. White, “Beam loading simulations in PyAT for the ESRF”,
presented at IPAC’23, Venice, Italy, 2023, paper WEPL030,
this conference.

[14] J. M. Chaize, A. Gotz, W. D. Klotz, J. Meyer, M. Perez,
and E. Taurel, “TANGO - an object oriented control system
based on CORBA”, in Proc. ICALEPS’99, Trieste, Italy, 1999,
pp. 475–479.

[15] S. M. Liuzzo et al., “The ESRF-EBS Simulator: A Commis-
sioning Booster”, in Proc. ICALEPCS’21, Shanghai, China,
Oct. 2021, pp. 132–137.
doi:10.18429/JACoW-ICALEPCS2021-MOPV012



14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-WEPL031

3188

MC5.D11: Code Developments and Simulation Techniques

WEPL031

WEPL: Wednesday Poster Session: WEPL

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.




