
Classical and Quantum Gravity

Class. Quantum Grav. 40 (2023) 025013 (15pp) https://doi.org/10.1088/1361-6382/acad60

Relativity of superluminal observers in
1+3 spacetime

Andrzej Dragan1,2,∗, Kacper Dębski1,
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Abstract
We develop an extension of special relativity in 1+ 3 dimensional spacetime
to account for superluminal inertial observers and show that such an extension
rules out the conventional dynamics of mechanical point-like particles and
forces one to use a field-theoretic framework. Therefore we show that field
theory can be viewed as a direct consequence of extended special relativity.
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1. Introduction

In a recent paper Dragan and Ekert showed that extending special relativity to account for
superluminal particles and observers does not result in causal paradoxes [1], as was com-
monly believed [2]. Instead, such an extension modifies the notion of causality in the same
way quantum theory does. In particular, it was shown that when Galilean relativity (involving
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all inertial observers) is assumed in 1+ 1 dimensional spacetime, indeterministic behavior
and motion along multiple paths analogous to quantum mechanical superpositions becomes
inevitable. This result concluded the debate, initiated by Tolman [2], about alleged problems
with causality triggered by the presence of superluminal particles in relativity [3–11].

However, generalizing this scheme to a relativistic framework in a 1+ 3 dimensional space-
time poses some serious challenges, both mathematical and interpretational [12]. The main
obstacle, pointed out by Marchildon, Antippa and Everett [13], results from the fact that the
smallest group containing superluminal transformations is SL(4,R). This group, however, can-
not be a symmetry group, because it contains elements such as direction-dependent dilations,
which are not observed. In this work, we propose a way to overcome these difficulties and
consistently extend special relativity in 1+ 3 dimensional spacetime to superluminal frames
of reference.We argue that within such an extension the standard classical dynamics of a point-
like particle cannot be supported and the only relativistically invariant dynamics of any phys-
ical systems involving both subluminal and superluminal observers requires a field-theoretic
framework.

2. Kinematics

An orthodox 1+ 3 dimensional subluminal Lorentz boost between two mutually unrotated
frames (ct,r) and (ct ′,r ′) moving with a relative velocity V leaves the transversal spa-
cial components of four-position unaffected: r ′ − r ′·V

V 2 V= r− r·V
V 2 V. The longitudinal com-

ponent undergoes the standard Lorentz transformation: r ′·V
V 2 V=

r·V
V 2 −t√
1− V 2

c2

V. Adding these two

equations by sides and supplementing them with the Lorentz transformation for the temporal
coordinate t′ leads to the 1+ 3 dimensional Lorentz boost between a pair of mutually unrotated
observers [14]:

r ′ = r− r ·V
V 2

V+
r·V
V 2 − t√
1− V 2

c2

V,

ct ′ =
ct− r·V

c√
1− V 2

c2

. (1)

Such a boost preserves the metric, so that the form of the spacetime interval remains the same
in both frames: c2dt2 − dr · dr= c2dt ′2 − dr ′ · dr ′. The inverse transformation can be obtained
by substituting V→−V, as well as r↔ r ′ and t↔ t ′, instead of algebraically reversing the
equations. A velocity transformation formula is obtained by evaluating the derivative v ′ ≡ dr ′

dt ′ :

v ′ =

√
1− V 2

c2
(
v− v·V

V 2 V
)
−
(
V− v·V

V 2 V
)

1− v·V
c2

. (2)

Let us now carry out a similar procedure for the superluminal transformations with V > c
discussed in [1]. Superluminal observers have been discussed since the 1960s [15], but even
the simplest 1+ 1 dimensional transformations considered in literature were missing the anti-
symmetric factor [16, 17] rendering the whole theory non-covariant. The correct expressions
containing that anti-symmetric term appeared for the first time in a paper by Parker [12]:
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x ′ =± V
|V|

x−Vt√
V 2

c2 − 1
,

t ′ =± V
|V|

t− V
c2 x√

V 2

c2 − 1
. (3)

This transformation changes the sign of the metric: c2dt2 − dx2 =−c2dt ′2 + dx ′2, but pre-
serves null intervals, so the speed of light is the same in both subluminal and superluminal
frames of reference, as required. The unspecified sign ± cannot be uniquely determined, as
no V→ 0 exists, but, as discussed in [1], we will pick the negative sign convention so that the
transformation (3) remains a hyperbolic rotation.

In order to generalize (3) to the 1+ 3 dimensional spacetime we introduce an additional pair
of spatial dimensions y and z for the ‘resting’ observer, as well as an extra pair ξ ′ and χ ′ for the
superluminal one. We will also assume that the ‘transversal’ components of the four-position
are not affected by the superluminal transformation. It follows that for the motion along the x
axis with a superluminal velocity the spacetime interval undergoes the following transform-
ation: c2dt2 − dr · dr=−c2dt ′2 + dx ′2 − dξ ′2 − dχ ′2, so the spacetime metric is affected, but
the null intervals are still preserved. This result indicates that the laws of physics in the inertial
superluminal frame of reference are different from those within the orthodox family of sublu-
minal frames. This agrees with the argument put forth by Machildon et al [13]. Furthermore,
Sutherland and Shepanski argue [18] that this is due to the fact the ‘spatial’ component of the
four-position in the superluminal frame, defined as (x ′, ξ ′,χ ′), characterizes a non-Euclidean
space. In this work we follow a different interpretation first mentioned by Demers [19] and
developed in [1]: the signs of the metric components indicate that the extra pair of dimen-
sions ξ ′ and χ ′ are in fact temporal, because they enter the metric with the same sign as the
temporal coordinate t′. According to this interpretation a superluminal frame of reference is
equipped with a single spatial dimension that we will denote with r′, as well as three temporal
dimensions t ′. In this paper, we will investigate physical consequences of such a hypothesis.

Let us consider a subluminal frame (ct,r) and an unrotated, superluminal frame (ct ′,r ′)
moving with a superluminal velocity V. Here, by ‘unrotated’ we mean that the resting frame
should move relative to the superluminal frame with velocity −V, so that the inverse trans-
formation leads to a sign flip in relative velocity. First off, we note that the superluminal trans-
formation apparently leaves the transversal spatial components of four-position unaffected:
ct ′ − c t

′·V
V 2 V= r− r·V

V 2 V. The longitudinal component along the direction V undergoes the

transformation given by (3): t
′·V
V 2 V=−V

V

t− r·V
c2√

V 2

c2
−1

and the spatial coordinate transforms accord-

ing to r ′ =−
r·V
V −Vt√
V 2

c2
−1

. Adding up the first two equations and supplementing the result with the

third one yields a result first introduced by Dragan and Ekert [1, 14]:

r ′ =
Vt− r·V

V√
V 2

c2 − 1
,

ct ′ = r− r ·V
V 2

V+
r·V
Vc −

ct
V√

V 2

c2 − 1
V, (4)

which is the coordinate transformation between a subluminal and a superluminal inertial
observer in 1+ 3 spacetime, we will call a superboost. The purpose of this paper is to invest-
igate physical consequences of (4).
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As mentioned before, the V→ 0 limit of this transformation does not exist, but the infinite
velocity limit does. For V→∞, the formulae (4) reduce to the following superflip:

r ′ = ct,

ct ′ = r, (5)

regardless of the direction of velocityV. The spacetime interval undergoes the following trans-
formation under (4):

c2dt2 − dr · dr=−c2d t ′ · d t ′ + dr ′2, (6)

which does not depend on V. This signifies the fact that laws of physics are the same across
the whole family of superluminal inertial observers, although these laws differ from the
ones common among subluminal inertial observers due to a different metric. In the fol-
lowing we will adopt a convention, in which the spacetime metric in subluminal frames is
ηµν ≡ diag(1,−1,−1,−1), and in superluminal frames it is defined as η ′

µν ≡ diag(1,1,1,−1),
so that the four-positions xµ ≡ (ct,r) and x ′µ ≡ (ct ′,r ′) and all other four-vectors are related
by:

ηµνx
µxν =−η ′

µνx
′µx ′

ν
. (7)

The superboost (4) can be also rewritten in the following form:

r ′ =
ct− cr·V

V 2√
1− c2

V 2

,

ct ′ = r− r ·V
V 2

V+
r·V
V 2 − c2t

V 2√
1− c2

V 2

V, (8)

in which it becomes clear that it can be decomposed into the subluminal Lorentz boost (1) for
velocityV→ c2

V
V
V followed by the superflip (5). The first operation takes an object movingwith

a superluminal speed V to a frame, in which the object moves infinitely fast, the latter goes to
the rest frame of the object, in which r′ is constant. Any superboost (8) can be decomposed
into a pair of such operations.

In subluminal relativity the worldline of a moving observer coincides with his temporal
axis t′ and it uniquely defines the 1+ 3 decomposition of spacetime into time and space, as
the three-dimensional space r ′ is orthogonal to the time axis t′. In order to uniquely define the
orientation of the spacial axes r ′ additional information has to be provided. To supplement the
missing information one usually assumes that the two moving frames are mutually unrotated,
which is equivalent of saying that the inverse transformation involves a simple sign flip in
relative velocity.

In the case of superluminal observers the situation is different, but some analogies remain. A
trajectory of the superluminal observer does not necessarily coincide with any of the three tem-
poral axes t ′. Also the one-dimensional space r′ of the superluminal observer is not uniquely
defined by his worldline and additional information has to be provided to define it. Our deriv-
ation may be interpreted as a way to choose the r′ axis. The missing information is again
provided by assuming that the two considered reference frames are mutually unrotated. These
observations are a part of a bigger picture that will be better understood once we deal with
dynamics. In particular we will show that point-like trajectories need to be rejected anyway,
as incompatible with relativistic requirements involving superluminal observers.

Our interpretation that the superluminal observer characterizes spacetime using three tem-
poral dimensions t ′ poses several interpretational challenges. The first question: how to even
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define a velocity in a frame that has more than one temporal dimension? In order to answer
this question, let us determine the inverse superboost to (4). It can be obtained by an algebraic
reversal, which turns out to be equivalent to substituting V→−V and interchanging primes
according to substitutions r ′ ↔ ct and ct ′ ↔ r:

ct=
Vr ′

c + V·ct ′
V√

V 2

c2 − 1
,

r = ct ′ − V · ct ′

V 2
V+

V·t ′
V + r ′

V√
V 2

c2 − 1
V. (9)

The question that remains is whether −V is an actual velocity of the frame (ct,r) observed
in the frame (ct ′,r ′), as required by the fact that the two frames are mutually unrotated, and
how such a velocity is even defined? Let us take the point of view of the superluminal primed
observer and consider the origin of the ‘resting’, unprimed frame r= 0. We should expect that
according to the right definition of velocity, that origin should move with velocity −V. By
substituting r= 0 into (4) we find:

r ′ =
Vt√
V 2

c2 − 1
,

ct ′ =−
ct
VV√
V 2

c2 − 1
. (10)

Elimination of t from the equations gives r ′ VV 2 =−t ′. This result inspires the definition of a
velocity v ′ of an object moving in a superluminal frame such that the following equation is
satisfied:

r ′
v ′

v ′2
= t ′ (11)

and such a velocity also has the property that:

r ′ = v ′ · t ′. (12)

We can now determine v ′2 by taking a scalar product of (11) with itself and plug it back
into (11). A rearranged differential form of (11) is then:

v ′ =
dr ′

dt ′
d t ′

dt ′
, (13)

where dt ′ ≡
√
dt ′ · dt ′. Equation (13) will provide our definition of an instantaneous velocity

in a superluminal frame.
Let us now use the definition (13) to determine the superluminal velocity composition for-

mula. Consider an object moving in the subluminal frame with any velocity v. Let us transform
this velocity to the superluminal frame. By substituting r= vt into (4) we obtain:

r ′ =
Vt− v·V

V t√
V 2

c2 − 1
,

ct ′ = vt− v ·V
V 2

Vt+
v·V
Vc − c

V√
V 2

c2 − 1
Vt (14)

5



Class. Quantum Grav. 40 (2023) 025013 A Dragan et al

and eliminating t from the equations we get:

r ′

√
V 2

c2 − 1
(
v− v·V

V 2 V
)
− c
(
1− v·V

c2
)
V
V

V− v·V
V

= ct ′. (15)

Now we can compare our result (15) with the equation (11) to find the superluminal velocity
addition formula:

c2

v ′2
v ′ =

√
1− c2

V 2

(
v− v·V

V 2 V
)
−
(
c2

V 2V− v·V
V 2 V

)
1− v·V

V 2

, (16)

where v ′ is the velocity of the considered object in the superluminal frame of reference. Notice
that the result (16) can be obtained directly from (2) by substitution V→ c2

V
V
V and v ′ → c2

v ′
v ′

v ′ .
Finally, we take a square of (16) to compute v ′2, plug it back and after some simplifications we
find the velocity composition formula for a superluminal velocity V, which is a superluminal
version of (2):

v ′ =

√
1− c2

V 2

(
v− v·V

V 2 V
)
−
(
c2

V 2V− v·V
V 2 V

)
1− v·V

V 2

1−

(
1− c2

V 2

)(
1− V 2

c2

)
(
1− v·V

V 2

)2
−1

. (17)

By squaring the above result we also find the relation between speeds:(
1− c2

v ′2

)
=

(
1− c2

V 2

)(
1− V 2

c2

)
(
1− v·V

V 2

)2 . (18)

The result (18) shows that if v= c then v ′ = c. Therefore our superboost (4) preserves the speed
of light. Moreover, if v> c then v ′ < c and vice versa. Therefore subluminal objects move
with superluminal speeds according to any superluminal observer and superluminal objects
according to any superluminal observer move with subluminal speeds. We must remember,
however, that since both subluminal and superluminal families of observers are physically
distinguishable, we can apply these adjectives to observers in an absolute sense. The constancy
of the speed of light across all inertial frames is a property characteristic to the definition of
velocity derived in (13). Notice that alternative, incorrect definitions, such as one in [20] may
lead to different conclusions.

The inverse transformation to (16) can be obtained either by using (9) to evaluate v≡ dr
dt or

by using (16) with the substitution: V→−V and c2

v ′2 v
′ ↔ v. The result is the same:

v=

√
1− c2

V 2

(
c2v ′

v ′2 − c2

v ′2
v ′·V
V 2 V

)
+
(
c2V
V 2 + c2

v ′2
v ′·V
V 2 V

)
1+ c2

v ′2
v ′·V
V 2

. (19)

Now, that the kinematics is well defined in superluminal frames of reference, and the cor-
responding transformation laws are established, let us discuss the expressions for energy and
momentum of superluminal particles.

3. Energy and momentum

Let us begin by looking for the characterization of energy and momentum of a point-like
particle moving in a subluminal frame with a superluminal velocity v. As in conventional
special relativity, we require that energy and momentum of a superluminal particle form a
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four-vector structure. This will guarantee that if energy and momentum are conserved for a
certain process in one inertial frame, they will also be conserved for this process in all other
reference frames. Such a process can include interactions between both sub- and superluminal
objects, as well as light.

Similarly to conventional special relativity we will assume that the four-momentum pµ of
a superluminal particle is proportional to four-velocity uµ, but this time we will take the latter
to be a space-like four-vector with uµuµ =−c2.

Consider a worldline of a superluminal object characterized by the four-velocity uµ ≡
(u0,u). We will look for this four-vector in a form analogous to the subluminal expression
for which u= u0 vc , so that uµ = u0(1, vc ). Notice that the direction of velocity v= dr

dt and the
spacial component u are either parallel or antiparallel, depending on the sign of u0. Since the
four-vector uµ is spacelike, even the subluminal Lorentz transformation (1) can change the sign
of u0 and reverse the mutual orientation between v and u. We require energy E of the particle
to be proportional to u0 and momentum p proportional to u, therefore we should be aware
that the sign of energy will be frame dependent. Therefore a superluminal particle can either
have positive energy and momentum parallel to velocity, or negative energy and momentum
antiparallel to velocity in another frame of reference. This ambiguity results from the fact
that specifying the mass and velocity of a superluminal object is insufficient to determine its
energy and momentum. We also have to specify, whether the object in question is a particle,
or an antiparticle moving backwards in time. Furthermore we should expect that in quantum
field theory a tachyonic particle can be transformed into its antiparticle via a mere subluminal
Lorentz transformation (1). This is essentially the same argument, as the one used by Feynman
in his famous lecture on the relativistic reason for antiparticles [21], in which he was focusing
on superluminal virtual particles.

Let us compute the length of the superluminal four-velocity:

c=
√
−uµuµ =

√
u ·u− (u0)2 = u0

√
V 2

c2
− 1, (20)

which gives:

u0 =
c√

V 2

c2 − 1
, (21)

that can be used together with u0 = sgn(u0)|u0| to define the four-momentum in the following
way:

pµ ≡ muµ = sgn(u0)

 mc√
V 2

c2 − 1
,

mv√
V 2

c2 − 1

 , (22)

where m is the superluminal mass of the particle in analogy to subluminal particles. An
identical procedure in another subluminal reference frame gives:

p ′µ = sgn(u ′0)

 mc√
v ′2
c2 − 1

,
mv ′√
v ′2
c2 − 1

 (23)
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and four-vectors (22) and (23) are related via a Lorentz boost (1). This relation for the temporal
component yields:

u ′0 =
u0 − u·V

c√
1− V 2

c2

, (24)

which leads to the transformation properties of sgn(u0):

sgn(u ′0) = sgn

 u0 − u·V
c√

1− V 2

c2

= sgn

(
u0 − u ·V

c

)

= sgn(u0)sgn

(
1− v ·V

c2

)
. (25)

Finally, the relativistically covariant expressions for energy and momentum of a superluminal
particle in subluminal reference frames are given by:

E≡ σmc2√
V 2

c2 − 1
,

p ≡ σmv√
V 2

c2 − 1
, (26)

where σ =±1 carrying the information whether the object is a particle or an antiparticle trans-
forms according to the equation:

σ ′ = σ sgn

(
1− v ·V

c2

)
, (27)

which was first justified heuristically in [22]. The important observation is that superluminal
objects cannot be slowed down under the speed of light, as this would require infinite supplies
of energy. Also notice that an object moving with an infinite velocity carries momentum, but
no energy, as limv→∞ p= mc and limv→∞E= 0. This leads to an interesting novelty. In con-
ventional relativity a particle cannot emit another particle without changing its own mass [14].
For example a free electron cannot emit a photon without violating conservation of energy. The
situation is different if we include superluminal particles in our considerations. For example,
a subluminal particle could emit an infinitely fast moving particle and simply reverse its own
velocity due to recoil. In such a process, the energy is conserved, because the source does not
change its energy and the emitted particle carries no energy. Momentum conservation can also
be satisfied by an appropriate choice of the initial velocity or mass of the object. In principle,
such an emission could be repeated a number of times and the object could emit a number
of infinitely fast moving particles [15]. Notice that such an emission is only possible after
reaching certain velocity threshold. If velocity of the ‘source’ is below the threshold, only the
absorption of an infinitely moving particle is permitted unless one chooses to interpret such a
process as an emission of an anti-particle backwards in time [15].

The possibility of superluminal particles moving backwards in time was discussed by
Bilaniuk and Sudarshan [23]. Since an ordinary Lorentz boost can transform a positive energy
forward-in-time moving particle into its antiparticle (a negative energy, backwards-in-time
moving particle), it is always possible to transform a problematic scenario with a backwards-
in-time moving object to a frame, in which it moves forwards in time. When a negative-energy
particle is emitted from a source backwards in time, it is always possible to ‘reinterpret’ such
a scenario as the one, in which a positive-energy particle is moving forwards in time and
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being absorbed by the source. Probability amplitudes computed in quantum field theory remain
invariant under such a ‘reinterpretation’, whichwas pointed out in [23]. Also, Dragan and Ekert
in [1] argued that no explicit causal paradoxes result from such a reinterpretation as long as
the classical notion of determinism is abandoned.

Energy and momentum can also be transformed to superluminal frames of reference. Sim-
ilarly to four-position, the four-momentum in these frames contains the energy three-vector
and a single momentum. Applying the superboost (4) to the four-vector (22) instead of four-
position (ct,r) we obtain:

p ′ =
VE
c2 − p·V

V√
V 2

c2 − 1
,

E ′

c
= p− p ·V

V 2
V+

p·V
Vc − E

Vc√
V 2

c2 − 1
V. (28)

Transformation to the rest frame of the superluminal particle, as previously, can also be decom-
posed into two steps: first transforming the four-momentum to a frame, in which the object
moves with an infinite velocity in some direction s and then applying the analogue of the super-
flip (5) that interchanges energy with momentum. This results in the four-momentum taking
the form:

p ′µ = (mcs,0), (29)

which is not unique and corresponds to a bundle of infinitely many worldlines for each choice
of s. This shows that there are infinitely many observers characterized by non-parallel world-
lines, each given by a different s, that are at relative rest. To confirm this it suffices, to inspect
the definition of velocity in superluminal frames (13) that shows that if dr ′ = 0 then the velo-
city vanishes. This interesting conundrum will be clarified once we turn our attention to the
dynamical laws including superluminal extension of relativity.

4. Dynamics

In classical mechanics, a dynamical evolution of a system is obtained byminimizing the action:

S≡
ˆ
Ldt. (30)

Frame-independence of the result is guaranteed by demanding S to be the same in all (sub-
luminal) frames and for a single point-like particle the result is a one-dimensional trajectory
r(t). Now we wish to generalize this principle of least action to include superluminal frames.
As we now have to deal with three time variables, t ′, we hypothesize that the corresponding
variational principle will involve an action of the form:

S ′ ≡
ˆ
L ′ d3t ′, (31)

where L′ is an appropriately defined superluminal counterpart of the Lagrangian. Clearly, the
resulting ‘trajectory’ of a single particle r ′(t ′) defines a three-dimensional surface, which is
apparently at odds with subluminal intuitions. It is therefore interesting to explore this notion
in more detail.

9
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We are seeking to write down L′ such that S′ is relativistically invariant. With one time
variable, it would be accomplished with L proportional to the length of the one-dimensional
trajectory r(t), i.e. we would take

L∝

√
1− 1

c2

(
dr
dt

)2

. (32)

Similarly, with three time variables, the natural choice would be to consider the three-
dimensional volume of the manifold parametrized as r(t), i.e. to consider

L ′ ∝
√

1
c2

(∇t ′r ′)
2 − 1, (33)

where ∇t ′ denotes a gradient with respect to the time variables. The choice of signs in the
square root reflects the fact that we are interested in motions which are superluminal in the
chosen reference frame, i.e. we characterize the example of subluminal particles in a super-
luminal frame. With such a choice of L′, the action (31) is evaluated over R3 of the time
variables. This is strikingly different from a one-dimensional case, in which instants of time
can be ordered, so we can evaluate the action (30) over a finite interval.

Demanding that the action (31) is stationary with respect to the variations of the manifold
r ′(t ′)→ r ′(t ′)+ δr ′(t ′) leads to:

0= δS ′ ∝
ˆ ∇t ′r ′ ·∇t ′δr ′√

1
c2 (∇t ′r ′)

2 − 1
dt ′3

=

ˆ (( 1
c2 (∇t ′r ′)2 − 1

)
δij− 1

c2
∂r ′

∂t ′i
∂r ′

∂t ′j

)
∂2r ′

∂t ′i ∂t
′
j(

1
c2 (∇t ′r ′)

2 − 1
)3/2

δr ′ dt ′3, (34)

where in the last equality we assumed that the boundary term vanishes at infinity and we can
evaluate the integral by parts; summation over repeated indices is understood. Because δr ′ is
an arbitrary function of t ′, we conclude that the stationary action corresponds to the equation
of motion ((

1
c2
(∇t ′r

′)2 − 1

)
δij−

1
c2
∂r ′

∂t ′i

∂r ′

∂t ′j

)
∂2r ′

∂t ′i ∂t
′
j
= 0. (35)

Because (35) contains second-order time derivatives, it is solved by functions of the form:

r ′(t ′) = r ′0 + v ′ · t ′, (36)

where r ′0 and v
′ are constant. Those solutions, that are compatible with the equation of constant

motion (12), can be viewed as ‘sheets’ of particles traveling with velocity v ′ perpendicular
to the sheets. This behavior corresponds to the motion of a collection of point-like particles
described in a subluminal frame. Unfortunately, this is where the similarities of the two points
of view end. In a spherically symmetric case, equation (35) becomes:

d2r ′

dt ′2
+

2
t ′

dr ′

dt ′
− 2
c2t ′

(
dr ′

dt ′

)3

= 0 , (37)

where t ′ ≡ |t ′|. Solutions of equation (37) include a constant, a spherical shell moving with the
speed of light and in other cases they are expressed in terms of elliptic functions. In particular,
the latter solution does not correspond to any known representation of a free particle or a
collection thereof.

10



Class. Quantum Grav. 40 (2023) 025013 A Dragan et al

The problems that we encountered after swapping the temporal and spatial coordinates by
means of a superluminal transformation follow from the dimensionality of space. Were there
only one spatial dimension, the partial differential equations involving ∇t ′ would become
ordinary differential equations and linear trajectories of point-like particles would remain lin-
ear trajectories.

Furthermore, the choice of (33) is not unique. However, any action that respects the shift
and rotational symmetry of t ′ will depend only on (∇t ′r)2, which will lead to the second order
differential equation like (35) for a free particle. In this sense, the derivation presented above
is quite general, as (36) would still be the solution of the resulting equation of motion.

What is even worse, the formalism described above gives us no chances to arrive at a rela-
tion between the actions (30) and (31) as their solutions are clearly non-equivalent. We are
therefore forced to conclude that our approach of treating r ′(t ′) as the parametrization of the
configuration space of the system fails badly on many fronts.

Let us take a step back and try to formulate our requirements for a satisfactory description of
a physical system which is relativistically invariant and, in particular, does not break down for
a superluminal transformation. To this end, let us symbolically denote the state of the system
fully characterizing it in a configuration space in a subluminal frame by ψ and similarly in the
superluminal frame by ψ ′. We will also assume that the transition to the superluminal frame
transforms ψ→ ψ ′ so that the action S given by (30) can be written down in both subluminal
and superluminal frames as:

S≡
ˆ
L[ψ]dt=

ˆ
L[ψ ′]

dr ′

c
, (38)

where in the last equality we applied the superflip (5). We also have similar relations for the
superluminal action S′ given by (31):

S ′ ≡
ˆ
L ′[ψ ′]d3t ′ =

ˆ
L ′[ψ]

d3r
c3
. (39)

In order to guarantee that the principle of least action leads to equivalent solutions in all frames
we will enforce that the actions (38) and (39) are equal: S= S ′. This leads to the following
equalities: ˆ

L[ψ]dt=
ˆ
L ′[ψ]

d3r
c3
, (40)

and ˆ
L[ψ ′]

dr ′

c
=

ˆ
L ′[ψ ′]d3t ′. (41)

It follows that the characterization of the state in terms of a ‘trajectory’ is no longer possible,
because the Lagrangian L′ must now be integrated over d3r and the Lagrangian L must be
integrated over dr ′, therefore ψ ̸= r(t) and ψ ′ ̸= r ′(t ′). This circumstance brings us to the
conclusion that it is necessary to introduce a new type of configuration space and a new notion
of a state of the system, ψ(t,r), that depends on all spacetime coordinates, over which the
action will be minimized. For such states, the function encoding the state of the system has to
be integrated over both time and space, hence it should be interpreted as a Lagrangian density
of the system. Of course, such a physical picture brings us outside of the domain of classical
mechanics and forces us to consider a familiar framework involving fields as the only possible
descriptions of physical systems.

Let us now observe that if the Lagrangian L on the left-hand side of (40) only involves
integration over dt, while L′ on the right-hand side over d3r, we would face the equality of a

11
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pair of functions of different variables: r on the left-hand side and t on the right-hand side.
In order to avoid this without introducing preference for any of the spacetime point, we are
forced to impose that the Lagrangians must be expressed in terms of Lagrangian densities:
L[ψ]≡

´
L[ψ]d3r and L ′[ψ ′]≡

´
L[ψ ′]dr ′, so that the additional variables are also integ-

rated over. This also solves an analogous difficulty with equation (41). All in all, we find that
extending the special relativistic dynamics to superluminal observers terminates any chance to
consider mechanical systems and forces one to consider a field-theoretic configuration space.
In order to specify whether the resulting ‘field theory’ should be classical or quantum one
has to refer to arguments put forth in [1] that ruled out a conventional deterministic theory.
Whether the resulting theory can only be quantum field theory or other alternatives are also
possible [24–26] is yet to be determined. What remains out of question is that the superlu-
minal extension of special relativity in 1+ 3 spacetime is possible in a fully consistent way.
However, for this task to be covariant it is necessary to abandon the classical picture of mech-
anical systems characterized by unique, one-dimensional trajectories and upgrade physics to
the field-theoretic framework.

5. Example: Maxwell’s theory

In Maxwell’s theory the state of the system is characterized by electromagnetic potentials and
their derivatives: ψ→{Aµ,∂νAµ} and we have the following Lagrangian density in Lorenz
gauge ∂µAµ = 0:

L(Aµ)≡− 1
4µ0

FµνFµν −Aµjµ, (42)

where Fµν ≡ ∂µAν − ∂νAµ and ∂µ ≡ ( 1c∂t,∇). The resulting Euler–Lagrange equations are:

∂µ∂µA
ν = µ0j

ν . (43)

Let us now formulate the theory in superluminal reference frames. This problem has already
been addressed by Dawe and Hines [27, 28], however they adopted the interpretation in which
superluminal observers are characterized by a single temporal dimension and non-Euclidean
space [29]. Our approach, assuming the three-dimensional time variable, provides a much
cleaner mathematical framework and the task of deriving field equations becomes practically
trivial. Since an arbitrary superluminal transformation (4) can be decomposed into a sublu-
minal boost (which leaves Maxwell’s equations intact) and the infinite velocity superflip (5),
it is sufficient to only consider the latter.

The superflip (5) imposes that ∂ ′
µ = ( 1c∇t ′ ,∂r ′), as well as the following set of conditions

for the four-potentials Aµ and four-current jµ:

A ′µ ≡
(
1
c
φ ′,A ′

)
=

(
A,

1
c
φ

)
,

j ′µ ≡ (ϱ ′c, j ′) = ( j,ϱc). (44)

The transformation procedure characterized in the previous section requires that the Lag-
rangian density (42) and dynamical equations (43) in the superluminal frame have the ana-
logous form:

L(A ′µ) =− 1
4µ0

F ′µνF ′
µν +A ′µj ′µ, (45)

12
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where F ′
µν ≡ ∂ ′

µA
′
ν − ∂ ′

νA
′
µ and the sign change in the source term is due to the equation (7),

so that ηµνAµjν =−η ′
µνA

′µj ′ν . The resulting dynamical equations are

−∂ ′µ∂ ′
µA

′ν = µ0j
′ν , (46)

which can be also obtained directly by applying the superflip (5)–(43). Our construction of
electromagnetic potentials in superluminal frames is manifestly covariant. We can also intro-
duce electric and magnetic fields in subluminal frames in a standard way:

E≡−∇φ− ∂tA,

B≡∇×A (47)

and define these fields in superluminal frames using the following analogies:

E ′ ≡−∇t ′A
′ − ∂r ′φ

′,

B ′ ≡∇t ′ ×φ ′. (48)

Then the Maxwell’s equations in superluminal frames take the form:

∇t ′ ·E ′ =− 1
ε0c

j ′

∇t ′ ·B ′ = 0

∇t ′ ×E ′ =−∂r ′B ′

∇t ′ ×B ′ =−µ0cϱ
′ +

1
c
∂r ′E ′. (49)

In the special case of static fields, the Ampère law given by the last equation (49) reduces to
the superluminal form of the ‘Gauss la’:

∂r ′E ′ =
ϱ ′

ε0
. (50)

Our four-dimensional formalism introduced in this work makes the derivation of the super-
luminal form of Maxwell’s equations almost effortless. The lack of invariance of Maxwell’s
theory under superboosts is a signature of the fact that superluminal observers physically differ
from their classical counterpart.

6. Conclusions

Wehave explicitly shown how to extend special relativity to allow superluminal inertial observ-
ers in 1+ 3 dimensional spacetime. Admittedly, these observers can be physically distin-
guished from the subluminal ones, but we show that they are indistinguishable among them-
selves, just like all the subluminal inertial observers are. One of the most challenging and
counter-intuitive aspects of our construction is the fact that spacetime metric in superluminal
frames transforms itself into a 3+ 1 dimensional one. Therefore we developed the whole kin-
ematics starting with a derivation of a sensible and useful definition of velocity in a spacetime
involving three-dimensional time and one-dimensional space. We showed that the speed of
light is still preserved by the superboosts, therefore the task of finding all possible transform-
ations preserving the speed of light may not be considered complete with just conventional
Lorentz boosts. A subtlety that is easy to overlook is that superluminal observers require their
own, unorthodox definition of velocity. Furthermore, we characterized expressions for energy
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and momentum of superluminal particles and discussed some of their novel properties, absent
in conventional subluminal special relativity.

Finally, we showed that dynamical theories based on a relativistically invariant principle of
least action including superluminal observers cannot be based on a mechanical paradigm of a
classical, point-like trajectory. Inclusion of superluminal observers leads to a principle of least
action based on a field-theoretical framework with a notable example of the Maxwell’s theory.
Therefore one of the most interesting aspects of extending special relativity to superluminal
frames of reference is the emergence of field theory. The need for a field-theoretic descrip-
tion of matter in terms of ‘matter waves’ came out of the blue in the early era of quantum
theory. Until recently it was generally believed that postulates underlying quantum theory are
fundamental and cannot be derived from anything more basic. In this work we showed that
the justification of quantum theory using extended relativity, presented in [1], can be naturally
generalized to 1+ 3 spacetime and such an extension leads to the field-theoretic formulation
of the quantum theory. This justifies, or at least provides a plausibility argument, why this
extension is not just an eccentric thought exercise, but reflects something fundamental about
symmetries of laws of physics.

A relevant question that remains to be answered is whether tachyons—understood as loc-
alized lumps of energy traveling with superluminal speeds—can physically exist [30]. As was
shown here, and earlier in [1], special relativity does not exclude such a possibility. In quantum
field theory, mechanisms of spontaneous symmetry breaking, such as the Higgs mechanism,
involve fields whose mass squared is negative in the unbroken phase [31], so excitations of
those fields can be regarded as tachyons [32, 33]. In the phase with broken symmetry, those
field are expanded around a degenerate local minimum, so their excitations have positive mass
squared and are known as Higgs particles behaving as regular, subluminal particles. However
the basic principle of the mechanism always involves tachyons as a starting point. Given rather
interesting kinematics and dynamics of superluminal particles discussed in this work, it would
be interesting to explore this initial phase before symmetry breaking in more detail and the
role of tachyons therein. We believe our current work should stimulate new research in this
direction.
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