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PREFACE

Einstien’s general theory of relativity is one of the most beautiful
structures of theoretical physics which describes the mysterious grav-
itational force in terms of geometry. The success of general theory of
relativity is well known as it has passed every unambiguous test both
experimentally and observationally. The recent detection of gravita-
tional waves in the space-time as was predicted by Einstein 100 years
before cemented the status of general relativity, besides other confir-
mations of Einstein’s predictions of deflection of a ray of light and the
perihelion advances of the planet Mercury in the gravitational field of
the Sun. However, in spite of all the embracing characters and widely
recognized string of success of Einstein’s general theory of relativity, it
is considered to be still inadequate in the sense that it does not satisfy
certain desiderata of the theory of gravitation. For example, it does not
incorporate the intrinsic spin of the gravitating matter, it is not free
from singularities, it does not incorporate Mach principle etc. Hence,
there was a hope that there may be something beyond the Einstein’s
general theory of relativity yet to be found. To address such issues,
several theories of gravitation have been proposed as alternatives to
Einstein’s general theory of relativity with the hope that the modi-
fied theories may satisty the desiderata of the theory of gravitation.

Any new theory of gravitation should be more general and better than
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the Einstein’s general theory of relativity and will have to include the
general theory of relativity within itself, satisfying the desiderata for
the theory of gravitation, explaining the four fundamental interactions
(strong interaction, electromagnetic interaction, weak interaction and
gravitational interaction) of nature and their interdependence. None
of the theory so far discovered has been completely successful, in the
sense that none satisfies the desiderata for the theory of gravitation but
all these modified theories of gravitation have gained the attraction of
researchers due to many reasons, such as incorporation of intrinsic spin
of gravitating matters, adaptability of quantum physics, understand-
ing of Mach principle etc. and good amount of work has been done
in these theories in the last more than four decades. Einstein-Cartan
theory of gravitation is one such modified theory of gravitation, pro-
posed by Cartan in 1923, by introducing spin- an intrinsic feature of
gravitating matter, in the theory. In recent years the Einstein-Cartan
theory of gravitation has geared up in receiving the wide attention of
researchers to study the role of intrinsic spin of gravitating matter and
to study some exact solutions of the field equations of Einstein-Cartan
theory of gravitation. The EC theory of gravitation is obtained from
Einstein’s general relativity by modifying the underlying Reimannian
geometry; in which the connections are not symmetric but are asym-
metric in character. Hence the underlying geometry of the EC theory

of gravitation is non-Riemann due to asymmetric connections arising
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from the presence of torsion in the space-time. The Riemannian Cur-
vature tensor of a non-Riemannian space, hence forth referred to it as
the Riemann-Cartan Curvature tensor. A non-Riemannian space with

asymmetric connections is characterized by the metric
ds® = gijdxidxj,
with Riemann-Cartan Curvature tensor [?y,j;; satisfying the properties

Rpiji = —Rinjk = —Rpirj
Ryiji # Rjni

Rpijr + Rpjri + Rygij 7 0,
Ruijieq + Rpirzj + Ruaje # 0,

where semi colon (;) denotes the covariant derivative on a non-Riemann
space with respect to the asymmetric connections, and for a covariant

vector A;, it is defined as

Ay = Ay — AT

Ji s

where F;?Z- = fj} — Kijk, are the components of the asymmetric connec-
tions, {f}}— are the components of the symmetric Christoffel symbols

and Kijk are the components of the contortion tensor satisfying the

property

Kigry =0 .



The contortion tensor Kj;, can be decomposed in to torsion tensor Q)

as
Kiji = —Qiji + Qjri — Quij -
Conversely
Qij" = —%(Kz"k — K;i") .

The Einstein-Cartan theory of gravitation reduces to Einstein’s theory
of gravitation in the absence of torsion. There are several investigations
who have investigated and studied several aspects of Einstein-Cartan
theory of gravitation. Some of them includes Tolman [130], Hehl and
his collaborators [50], 51], Trautman [125], 126, 127, 128 129], Kuchow-
icz [77, (78, [79, RO, 1], 82], Kerlick [67, 68], Prasanna [100], 101], Kibble
[69], Sciama [I11], Singh and Yadav [I18, 119], Yadav and Prasad
[138], Sharif and Igbal [113], Katkar [58] 59, 61] Katkar and Patil [60],
Katkar and Phadatare [63] and many more.

The thesis entitled “A Study of Spherically Symmetric Space-
times in Einstein-Cartan theory of Gravitation ”comprises six
chapters and deals with the study of geometry of the non-Riemannian
space and the study of some exact solutions of field equations when
Weyessenhoft fluid is the source of gravitation in the Einstein-Cartan
theory of gravitation. In order to make the thesis self explanatory, we

are presenting the review of the concepts, the mathematical tools of
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differential forms which form the background of our investigations in

the research work carried out in the thesis.

Mathematical Techniques of Differential
Forms:

Techniques of differential forms is another useful and most powerful an-
alytical tool of modern physics than the old tensor techniques. Instead
of forty christoffel symbols in tensor approach, there are only six com-
plex connection 1-forms. The use of the techniques of differential form
is well known in the literature as it reduces the complexity of compu-
tations. Katkar [61] has extended this technique on a non-Riemannian
space to study the geometry of a non-Riemannian space. We use d,
to denote the exterior derivative in the non-Riemannian space-time of
EC theory of gravitation. This exterior covariant derivative operator
d, is connection dependent and hence obtained by taking the covariant
derivative with respect to the asymmetric connections of a differential
form. It satisfies all properties of the exterior derivative operator ’d’
of Riemannian space-time except the vanishing of repeated exterior
derivative d of a form of any degree.

The operator d, on a non-Riemannian space converts r-form to

r 4+ 1-form. It is defined as

do s N'TF — AT
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by

A = Wiyiy. i 0t A dx™ Aduz™ A A dya'—
r
— Wiy, [Z(—l)pld*x“ A ANdg v A AL AN duzt|
p=1

(1)

for any w € A"T. The operator d, satisfies the following properties

(i) dof = fidaa', (2)
(i) di(@+ ) = d + di7 (3)
(#1) di(fg) =dif - g+ f-dug, (4)
(iv) d (@ AG)=do NG+ (=1) G Ad,5 (5)
(v) di(fo)=d.f Ao+ fdw, (6)
(vi) dy(d,@) # 0 ,for any form @, of degree r >0 | (7)
(vii) dy(dyf ANdeg) = d*f Ndug — dof Nd2g . (8)

Thus for a O-form f, we obtain 1-form d, f as
d*f = f,ld*xZ 9
where for a differential function f, we have

f;i :f/z :f,i .

Thus in the case of a scalar function f, we have d,f = df, and the
coordinate differentials d,z’ form a basis of a space of 1-forms, such

that d.z' A d,z* = 0.
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Using the definition (1) we find
A2 f = —fijdoa’ Ndya! — fudox’ . (9)
Interchanging i <+ j in the equation (9) we get
2 f = fjid.a’ Ndoa! — fudiat (10)
Adding equations (9) and (10) we get
dif = _%(f;ij — fii)da' Ndox! — frdia® (11)
where we have
fai = Fi = 2f4Qi" . (12)
Hence equation (11) becomes
Bf = — faQi"du’ Ndox? — frd2z" . (13)

If f is taken as a coordinate function 2, then we obtain from equation

(13)
2k Lo, i
diz" = —§Qij d.x' N\ d.a’ . (14)
Substituting this in the equation (13) we get
1 . .
dCf = -5 frQifda N dat (15)

We also used a very familiar Newman-Penrose [89] null tetrad formal-

ism and its extension by Jogia and Griffiths [55], especially to find the
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solutions of the field equations in the Einstein-Cartan theory of gravi-
tation. The approach involves a complex null tetrad consisting of four

complex null vector fields
o) = (I',n',m',m") ,

where [' and n' are real vector fields and m' and m' are complex con-
jugates of each other form a basis at each point of the space-time. The
tetrad of the dual basis vector fields is given by

el = (ny, Ly, =y, —my) .
The basis vectors of the tetrad satisfy the orthonormality conditions

—i
in'=—-mm' =1,

and all other inner products are zero.

In our investigations we utilize tetrad components, as they make
field equations more transparent, instead of their tensor components.
Any vector or a tensor of any rank is expressed as a linear combinations

of its tetrad components and conversely. For example

Ai =Aae;

Ay :Aaﬂe(a)ie(ﬁ)j :

and conversely, Aqs = Ajje)'es)’ and so on.

Hence the tetrad components of the equation (15) becomes

1
dzf = _§f;aQa609a A 05 )
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where 0% = e(®).d,2" is a tetrad basis of the coordinate differentials
d.x', which form a basis of the space of 1-forms.

In a non-Riemannian space, Katkar [61] has obtain the Cartan’s
equations of structure, which are used to study the essence of non-
Riemannian geometry and are thoroughly used throughout the the-
sis to facilitate the complex computation of the components of the

Riemann-Cartan curvature tensor. These equations are given by
d.0% = — W /\Qﬁ—lQ 9% A 97
x B 5o ;
Q% =d.ws + W' Awp + %70‘5(;@65”66 NO
where
W05 = A0 07

are the tetrad components of the connection 1-form in a Riemannian
space-time of Einstein’s general theory of relativity; and ~°%3, are
the corresponding components of the Ricci’s coefficients of rotation;
and w3 , 2% are the tetrad components of connection 1-form and
curvature 2-form respectively in the non-Riemannian space-time. They

are defined by
waﬂ — ,}/OKBO_GO' :
and
@ 1 apnd €
QBZ—§R5€39/\9.
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Contents of Chapters:

Chapter wise investigations and results obtained in the thesis are pre-
sented below.

In the Chapter 1 review of the literature and some basic con-
cepts, mathematical techniques exploited in the thesis exhibited. In
particular, results of the Einstein’s general theory of relativity and the
techniques of differential form are presented. The chapter is introduc-
tory and no original results are claimed in this chapter. Remaining
five chapters contain some original results.

In the Chapter 2, the inevitability of geometry in the development
of theory of gravitation is portrated. Vector identities and their invari-
ance in different theories of gravitation are accomplished. A technique
of differential forms, developed by Katkar [61] on a non-Riemannian
space, is presented. A formula for the curvature of a non-Riemannian
space is derived. A non-Riemannian 2- space is constructed and its
curvature is obtained. The results are corroborated by employing the
techniques of differential forms on a non-Riemannian space. Maxwell’s
equations in a more general form are derived.

General relativity has been considered as one of the most difficult
subject due to a great deal of complex mathematics. The complexity
of the mathematics reflects the complexity of describing space-time

curvature and some conceptual issues which are present and even more
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opaque in the physical 4- dimensions world. Hence in order to gain
insight in to these difficult conceptual issues Deser et al. [23] 24], 25]
in a series of papers, Giddings et al. [36], and Gott et al. [39, 40] have
examined general relativity in lower dimensional spaces and explored
some solutions. Studies of general relativity in lower dimensional space-
times have proved that solving Einstein’s field equations of general
relativity in a space-time of reduced dimensionality is rather simple
but yields some amusing results that are pedagogical and scientific
interests and yet are apparently unfamiliar to most physicists.

In the Chapter 3, we study Einstein-Cartan theory of relativity
in a 2-dimensional non-Riemannian space. An exposition of a new
dyad formalism, consisting of two real null vector fields is developed
and employed to construct a 2-dimensional non-Riemannian space. It
is claimed that the 2-dimensional non-Riemannian space contains no
matter at all; so that there is no gravitational field either.

It is shown that the torsion influences the curvature of the 2-
dimensional non-Riemannian space. The results are corroborated by
employing the techniques of differential form developed by Katkar [61].

The field equations of EC theory of gravitation are given by Hehl
et al. [50], 51]

1
Rij — 5Rgiy = —ktij (1)

and Q" +67Q4 — 6;FQy' = kS, (2)
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where Sijk is the spin angular momentum tensor. The spin density of
matter is described by an anti-symmetric tensor S;; and is related to

the source of torsion according to the equation
Sijk = Sijuk . (3)

Frankel condition requires the intrinsic spin of a matter field to be

space-like in the rest frame of the fluid. This yields
Sijul =0 . (4)

The condition (4) implies that the torsion trace vanishes identically and
hence the field equations (2) reduces to an algebraic coupling between

spin and torsion according to

In the Chapter 4, we consider the non-static spherically symmetric

metric in the form
ds® = e dt* — e\ dr? — B*(d6* + sin*0d¢®) | (6)

and the field equations (1) and (2) are solved by using the techniques
of differential form on a non-Riemannian space, when Weyssenhoff
fluid is the source of gravitation and spin. Two classes A and B of
different solutions of the field equations in the EC theory of gravitation

are obtained when the Weyssenhoff fluid is the source of gravitation
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and spin. Many of the previously known solutions for Weyssenhoft
fluid in EC theory of gravitation have zero acceleration and vorticity
(Kuchowicz [82]). Griffiths and Jogia [42] have claimed some non-zero
accelerated solutions. In this chapter we have applied the techniques
of differential forms and a class A of non-static solutions with zero
acceleration and a class B with non-zero acceleration are obtained.
Class A solutions are expanding, shearing and rotating, while the class
B solutions are rotating. In class A solutions, the non-zero kinematical
parameters, the pressure and the density diverge to infinity, and vanish
together at ¢ = 0 and at large t respectively. Similar phenomenon is
observed in class B solutions at r = 0 and at large r respectively.
It can be seen that the rotation, the pressure and the density are
influenced by the spin of the fluid, while there is no such effect on the
expansion, acceleration and the shear. In the absence of the spin our
result coincides with the result obtained by Sharif and Igbal [[I13]],
and the solution is irrotational.

In the Chapter 5, a static spherically symmetric space-time de-

scribed by the metric
ds® = e’dt? — e dr® — r?(d6* + sin*0d¢?) | (6)

is considered and the solution of the field equations when Weyssenhoft
fluid is the source of gravitation and spin is obtained. The solution is
proved to be rotating with non-zero acceleration, but zero expansion

and shear and it is free from singularity. The solution is proved to be
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of Petrov-type D. Our solution matches with the solution obtained by
Prasanna [100] in the absence of the spin.

The Chapter 6 is devoted to the investigation of solutions of
the field equations of EC theory of gravitation when the Weyssenhoff
fluid is the source of gravitation. In general, the non-static spherically
symmetric solution is expanding, accelerating and rotating but non-
shearing. However, the dynamic solution is proved to be expanding
and rotating with zero acceleration and shear, where as static solution
reduces to the solution obtained by Katkar and Patil [60]. This solution
is accelerating and rotating with expansion free and shear free. We
see that the spin of the gravitating matter influences the geometry of

space-times. The solutions are all Petrov type D.
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The following terminologies are used in the presentation of the en-

tire thesis.

1. Equations are numbered by (Chapter number.section.equation
number), e.g. (3.2.5) indicates fifth equation in second section of

third chapter.

2. References are listed at the end alphabetically and are referred

in the text shown in the square bracket.

Mr. D. R. Phadatare
Place: Kolhapur Department of Mathematics
Date:22/01/2019 Balasaheb Desai College, Patan
Satara-415206.
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Chapter 1

Theories of Gravitation



1.1 Introduction

“The most valuable theory of my life...
The theory is of incomparable beauty ” .

... Albert Einstein 1915

It is reported that there are more than forty theories of gravitation.
Out of these only the one propounded by Einstein in 1915 is considered
as the most popular and successful theory, because of the apparent rea-
son that it has been verified both experimentally and observationally.
To know the ingenious work of Einstein, let us digress for a while to
see how the concept of our universe has been changing in keeping with

the pace of civilization.

Aristotle (390-332 B. C.):

A Greek philosopher and one of the most intellectual leaders of the
4th Century B.C.-Aristotle, only on the basis of experience and com-
monsense thought that the Earth was stationary at the centre of the
universe and the Sun, the Moon, the planets and the stars moved in a
circular orbits about the Earth, thus explaining why the Sun and the
stars systematically rise in the east and set in the west. Until the 17th
century Aristotle’s idea came to be regarded as absolute truth. Coper-

nicus (1473-1543) was the first man who challenged the ‘geocentric



theory’of Aristotle and proposed an exactly a rival frame work called
the ‘heliocentric theory’. Nearly a century passed before this idea was
taken seriously, two astronomers- the German, Johannes Kepler and
Italian, Galileo Galilee started publicly to support Copernicus theory.
Only on the basis of observations Kepler modified Copernicus’s theory,
suggesting that the planets moved in elliptical orbit and discovered the
exact laws behind the movements of the planets. These laws are stated

as follows:
e The orbit of a planet is an ellipse.
e Arial velocity of the planet is constant.

e The square of the period of revolution of the planet is directly

proportional to the cube of the semi major axis of the ellipse.

But he did not find the cause responsible for such a well-defined move-
ment. However, he put forward lot many observational data before
Newton to find the exact reasons for the well-defined movement of

planets.

Newton (1642-1727):

Newton had a great belief that natural phenomena take place accord-
ing to some definite rules and those rules are well understood. He

invented calculus-the branch of mathematics and started using for the



description of laws of nature. He defined 3-dimensions space and 1-
dimension time independent of each other, and assumed that space,
time and mass are absolute, that they are independent of the position
of the observers whether at rest or moving with uniform velocity rel-
ative to each other and establish a frame of reference with respect to
which he studied the laws of nature. The most original contributions

of Isaac Newton which essentially laid the foundations of physics were

(7) the laws of motion, which describe how matter moves under the

action of force and

(77) the law of gravitation, which gives the force of attraction between

two masses.

The greatness of Newton was that he formulated these laws mathe-
matically. The Newton’s laws of motion are described by the equation
2

2732: =g. (1.1.1)
This equation is referred as the Newton’s equation of motion for a par-
ticle falling freely under gravity. As the equation (1.1.1) is independent
of mass of a body, which implies that all bodies fall exactly in the same
way in the gravitational field, establishing gravitational field is truly a
democratic force, it pulls every thing equally irrespective of its mass

and composition. Galileo experimentally verified this by dropping two

bodies of same size but with different composition from Pisa Tower.
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Newton also expressed the law of gravitational attraction between two
masses mq and mo, as directly proportional to the product of masses
and inversely proportional to the square of the distance between them.
Equivalently, he expressed the law mathematically as:

Gmims .

F = f (1.1.2)

r2
where G is the universal gravitational constant, n is the unit vector
in the direction of the force, and r is the distance between the two
masses.

The success of Newton’s theory of gravitation, based on the New-
ton’s equation of motion and the inverse square law of gravitation, is
remarkable. With the help of these laws of motion and the law of
gravitation, Newton was not only able to describe the behaviour of the
falling apple but also the motion of the projectile on the Earth, the
movements of planets around the Sun, the motion of moon around the
Earth and so on. The law of gravitation also explains the phenomenon
of tides. Newton’s theory, even today applies in regions of weak field
and scientists use for planning the trajectories of spacecraft visiting
planets of the solar system. It works correctly in a domain where
the velocities of particles are very small as compare to the velocity of
light. However, though the Newton’s theory may work beautifully at
low speeds, it is considered as unsatisfactory as it breaks at speeds
approaching the velocity of light as it is evident from the fact that

Newton’s equations of motion and the inverse square law of force are

5



covariant under Galilean transformation equations but not the laws of
electromagnetism described by Maxwell’s equations. This contradic-
tion has doubted the universality of Newton’s theory of gravitation,
which leads to the foundation of special theory of relativity. How-
ever, Newton’s laws ruled physics for more than two centuries. It took

Einstein to topple from the throne.

Einstein (1879-1955):

Einstein was also a genuine free thinker of 20th century and had a great
curiosity about nature. He lived in a deep faith-that there are laws of
nature to be discovered. His life long pursuit was to discover them. He
had a great belief that “the most incomprehensible thing about nature
is that it is comprehensible”. Latter it has been established in 1980s
by Alain Aspect and his team that the nature really does behave in
a non-commonsensical way. FEinstein’s realism and his optimism are
illuminated by his remark “Subtle is a Lord, but malicious He is not”. It
means that “Nature hides her secret because of her essential loftiness,
but not by means of ruse”.

Einstein had written two separate theories of relativity, the first
one is known as the special theory of relativity and was published in
1905, while the second one is known as the general theory of relativity,

was published in 1915.



Special Theory of Relativity

In order to explain the motion of fast moving particles, Einstein de-
veloped a new theory in 1905 called the special theory of relativity.
The theory of relativity forces us to change fundamentally our ideas
of space and time. There is no unique absolute time, but instead
each individual has his own personal measure of time that depends on
where he is and how he is moving. We must accept that time is not
completely separate from and independent of space, but is combined
with it to form structure called space-time. The combined space-time
structure is called Minkowski space-time. The 4-dimensions Minkowski

space-time is characterized by the flat metric given by

ds? = n;;d'da’ (1.1.3)
where

r' =(x,y, z,ict) ,

and
nij =1 when i=j=1,2,3,
=—1 when i=j=4, (1.1.4)
=0 when i # 7.

The space-time is flat and hence this theory does not deal with gravi-

tation. The theory is based on two principles:
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(¢) The laws of physics ( both for mechanics and electrodynamics),

and

(77) the speed of light in free space

must be the same for all observers moving relative to each other with
uniform velocity. For this is to be true, space and time can no longer be
independent, but rather, they are interdependent of each other in such
a way as to keep the speed of light constant for all observations. The
special theory of relativity is ‘special’ in the sense that it is restricted
and only describes the behaviour of things moving in straight lines
at constant speed. The most remarkable and very strange results of

special theory of relativity are
e the length of a moving rod contracts in the direction of motion,
e mass of a moving particle varies with velocity,
e the moving clock slowed down its speed |,
e simultaneity is not an absolute concept.

Another most exciting result of special theory of relativity is mass and

energy equivalence relation.
E=mc, (1.1.5)

whose practical devastating power has been demonstrated during the

second world war in 1945. It is now understood that the conversion

8



of mass into energy provides the energy source which keeps the Sun
and stars shining and is therefore the ultimate source of the energy on
which life on Earth depends. However, this theory is still considered
as restricted theory because it does not contain gravitational force
and deals only with inertial observers. The theory fails to study the
relativity of all kinds of motion and restricted to inertial observers
only. In view of these constraints Einstein in 1915 generalised the
special theory of relativity and put forth a new theory known as the

general theory of relativity.

General Theory of Relativity (1915)

A new theory which deals with all types of motion as well as gravitation

was needed. Einstein knew that the new theory of gravitation
e should be self-consistent and covariant,

e should resolve the conflict between Newtonian theory of gravita-

tion and the special theory of relativity,

e should reduce to special theory of relativity in the gravity free

limit, and

e should have the correct Newtonian limit in the sense that when

the velocities involved are very small as compared to the velocity



of light and the gravitational field is weak then the theory should

reduce to Newton’s theory of gravitation.

He achieved this new theory of gravitation after ten years of his special
theory of relativity. The theory is called the general theory of relativity.
The name general theory of relativity actually has a double meaning.
It is general because it applies to accelerated motion and gravity not
just to objects moving in a straight line at constant speed. This is the
sense in which Einstein originally used the term. But it is also general
in the sense that it applies to every thing- the entire universe and all
it contains.

Constancy of velocity of light in free space is one of the radical
contributions of Einstein in developing special theory of relativity. In-
troduction of gravity in the general theory of relativity was ingenious.
The key question was how to make gravity interact with light so that
its velocity should not change.

In an attempt to achieve gravitational force so as to act on a mass-
less particle without changing its velocity, Einstein observed that the

gravitation is an interaction
e which can not be switched on and off at will,
e it is omnipresent,

e ever lasting and
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e universal.

Einstein identify this permanent character of gravitation as an intrin-
sic property of the non-Euclidean nature of space-time region, and

announced an astonishing result that
GRAVITATION = SPACE-TIME GEOMETRY.

This law of nature tells that the property of space-time which is
responsible for gravity is the curvature of space-time. After an un-
remitting labour in 1915, Einstein succeeded to formulate this law of

nature in the language of mathematics in the form
1
Rij - §R97] = —kﬂj , (116)

where R;; is the Ricci tensor, R —the Ricci scalar, g;; are the com-
ponents of the fundamental metric tensor, 7;; is the stress-energy mo-
mentum tensor, which is the source of gravitation and k is the coupling
constant. In the history of science, general theory of relativity is the
only subject without any history entirely created by the efforts of one
man Albert Einstein. He described this period as follows: “The years
of searching in a dark for a truth that one feels but cannot express ”.
The following quote from John Gribbin’s book [43] specifies that the
theory of general relativity is too difficult to comprehend. “If Einstein
had not produced the special theory of relativity in 1905, some one

else would have done so within a short time, five years or so 7. “The
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General Theory of Relativity is the startling exception, may be the
only one in 20th century. It is agreed by the most eminent theoretical
physicists - Dirac has said so without qualification — that if Einstein
had not created the General Theory in 1915 no one else would have
done so, perhaps not until now, perhaps not for generations”.
Einstein’s theory goes beyond Newton’s theory, but contains New-
ton’s theory within itself. This theory gives a more accurate and com-
prehensive description of gravitation than the prevailing Newton’s the-
ory of gravitation. In its development, Einstein was guided by two

principles:
(7) the principle covariance and
(77) the principle of equivalence.

Principle of covariance helped Einstein to write the physical laws in
covariant form so that their forms remain unaltered in all coordinate
systems. Equivalently, it means that the physical laws must be ex-
pressed in tensorial form. The principle of equivalence — an axiom of
indistinguishability between gravity and inertia leads to an intimate
relation between metric and gravitation. Einstein’s general theory of
relativity deals with gravitation, which is one of the four basic inter-
actions in nature which is responsible for most of the phenomena we
observe in nature. The success of general theory of relativity is well

known as it has passed every unambiguous test both experimentally
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and observationally. The recent detection of gravitational waves in the
space-time as was predicted by Einstein 100 years before cemented the
status of general relativity, besides other confirmations of Einstein’s
predictions of deflection of a ray of light by the gravitational field of
the Sun and the perihelion advances of the planet Mercury.

However, in spite of widely recognized success of Einstein’s general
theory of relativity, it is considered to be inadequate in the sense that it
does not satisfy certain ‘desirable’ features of the theory of gravitation.
There was a hope that there may be some thing beyond the Einstein’s
theory of gravitation yet to be found. For example, understanding of
Mach’s principle, incorporation of intrinsic spin of gravitating matter,
adaptability of quantum mechanics should suggest the link between
gravitation and other interactions of physics etc are not substantiated
by general theory of relativity. The singularity problem and some
other unsatisfactory features exist in general relativity. To address
such issues there are several well-known classical theories of gravitation
other than Einstein’s general theory of relativity obtained by modifying
the Einstein’s original theory of gravitation. Any new theory of gravity
should be better than the Einstein’s general theory of relativity and will
have to include the general theory of relativity within itself, explaining
every thing that the general theory of relativity explains. Few of them

are

e Einstein-Cartan theory of gravitation,
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Brans- Dicke Scalar tensor theory of gravitation,

Bimetric theories gravitation,

f(R) theory of gravitation,

e f(R,T) theory of gravitation,

Hoyle — Narlikar theory of gravitation,

String theory,

Theory of every thing.

These modified theories of gravitation have been extensively studied
by many authors with the hope to unify gravitation and many other
effects such as other interactions in nature. Einstein-Cartan theory of
gravitation is one such extended theory of gravitation in which spin-an
intrinsic feature of gravitating matter, is introduced. In recent years
the Einstein-Cartan theory of gravitation has geared up in receiving
the wide attention of researchers to study the role of intrinsic spin of
gravitating matter and to study some exact solutions of field equations
of Einstein-Cartan theory of gravitation.

The thesis entitled “A study of spherically symmetric space-times in
Einstein-Cartan theory of gravitation ” comprises six chapters and deals
with the study of geometry of the non-Riemannian space and the study

of some exact solutions of field equations when Weyessenhoft fluid is
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the source of gravitation in the Einstein-Cartan theory of gravitation.
In order to make the thesis self explanatory, we are presenting the
review of the concepts, the mathematical tools of differential forms
which form the background of our investigations in the research work

carried out in the thesis.

Einstein-Cartan Theory of Gravitation

The Einstein-Cartan theory of gravitation is based on 4-dimensions
Riemannian space-time with asymmetric connections. This space-
time is called non-Rimannian space-time. Non-Riemannian space with
asymmetric connection is exhibited by Eisenhart [29]. Cartan [11] was
the first author to introduce torsion into gravitational theory, in or-
der to get a possible connection between the intrinsic spin of matter
and anti-symmetric part of the affine connection. Cartan considered

geometries of space-time with non-symmetric affine connections I'¥

YR
defined by
= {5} — K" (1.1.7)

where Kj;® is known as contorsion tensor, and {J;} are symmetric
Christoffel symbols. The theory of gravitation with spin and torsion
was independently rediscovered by Kibble [69] and Sciama [IT1]. Its
ramifications are due to Trautman [125], 127, 128] and Hehl [48] 49].

The basic difference between the Einstein-Cartan theory of gravitation
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and the general theory of relativity is that an affine connection com-
patible with the metric tensor is not necessarily symmetric in general,
and the asymmetric part of the connection is coupled with the intrinsic
spin of matter. The geometry of the space-time is thus not necessarily
Riemannian and both mass and spin are linked up with the geometry.
In Einstein’s theory of gravitation, mass directly influence the geom-
etry but spin has no such dynamical effect (Trautman [127, 128§]). In
Einstein’s theory of relativity, singularities cannot be prevented (Hawk-
ing [45], Hawking and Ellis [46]), however, these can be prevented in
the Einstein-Cartan theory by direct influence of spin on the geometry
of space-time (Trautman [127], and Hehl, et al. [50]). The Einstein-
Cartan theory will reduce to the Einstein’s theory of gravitation in the

absence of torsion in the space-time geometry.

1.2 Mathematical Pre-requisite

1.2.1 Riemannian Space of Einstein Theory

of Gravitation

A space with symmetric connections (usually denoted by Christoffel

symbols f]}) characterized by the pseudo Riemannian metric

ds® = gida'dx’ (1.2.1)
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where g¢;; are the symmetric components of the fundamental metric
tensor play the role of gravitational potentials, is called the Riemannian
space. If ]:Bhijk is the Riemann curvature tensor of Riemannian space,

then we have

~ 0 0
Rlije = — el + =00 — i + G, (22)
and
Rhijk = ghp}?pijk : (1.2.3)

The Riemann curvature tensor of Riemannian space satisfies the fol-
lowing properties
Rhijk = _Rihjk = —ha‘kj ;
(skew-symmetry in the first and the second pair of indices)

}?hijk = }A%jkh,' , (symmetry in the pair of indices)

and
Rhijk + thm + Rhlﬂ'j = 0 .(cyclic property) (1.2.4)
It also satisfies the Bianchi identities
fl)m'[jk/q =0, (1.2.5)

where slash (/) denotes the covariant derivative with respect to the
symmetric Christoffel symbols.
The contraction of the Bianchi identities yield the dynamical con-

servation laws
T =0, (1.2.6)
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through the Einstein field equations for gravitation in non-empty space-
time

A

1.
Rij — 5Rgij = —kTi; , (1.2.7)

where R;; = ¢"* Ry = R¥jx is the symmetric Ricci tensor, R = g" R;;
is the Ricci curvature scalar, and 7;; is the symmetric stress-energy

momentum tensor representing the source of gravitation.

1.2.2 Non-Riemann space of Einstein-Cartan The-

ory of Gravitation

A space with asymmetric connections characterized by the metric (1.2.1)
is called a non-Riemann space. The difference between a Riemannian
space and a non-Riemannian space is that the connections defined
on a Riemannian space are symmetric while those defined on a non-
Riemannian space are asymmetric. The non-Riemannian part is de-

fined by the torsion tensor ijl defined by

1
Qi = §(F§'k — T - (1.2.8)

This shows that
Qjr' = —Quy" . (1.2.9)

Here and in the following, we denote the symmetric Christoffel sym-

bols of first and second kinds by [ij, k] and {Z} respectively, while the
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asymmetric connections of first and the second kinds are denoted by
I';;j and Ff}

The calculus on a non-Riemannian space of Einstein-Cartan theory
of gravitation is developed with the help of covariant derivative with
respect to asymmetric connections. We denote, in the following, it by

a semi-commayf(;) and for a covariant vector A; (a contravariant vector

A" it is defined as

Apj = Aij — At (1.2.10)

ij
and for contravariant vector A’, we have
Ay = A+ AT, (1.2.11)

where comma (,) denotes the partial differentiation.
At every point of a Einstein-Cartan space-time, there exists a Lorentz

metric g;; which satisfies the metric postulate
Gijie =0 .

Generalizing the definition (1.2.10) for the second rank tensor, we ob-

tain
_ h h
Gijk = Gnjl i + ginl'y; - (1.2.12)

By cyclic permutation of indices i, j, k in the equations (1.2.12) twice

in turn, we obtain two more equations

Gjki = ghkF% + gjhf?k : (1.2.13)
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and
_ h h
9kij = ghirjk + gkhrji . (1.2.14)

Adding equations (1.2.13) and (1.2.14) and subtracting the equation
(1.2.12) we obtain on using equation (1.2.8)

=T = Qi + ¢ g Qu" + 9" 9 Q"
where
Ly Kl
ij} = g"[ij, k] .
This becomes
Uy =) — (Qy' + Q)i — Q%)
or
l ! !
=1 — Ky, (1.2.15)
where
Kijr = =Qiji + Qjri — Quij (1.2.16)
is the contorsion tensor satisfying the property
Using the equation (1.2.15) in the equations (1.2.8) we get
1
Q' = —§(Ki/ — Kji) . (1.2.18)
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By virtue of the equations (1.2.15), the definition of the covariant

derivative of a vector A; becomes

Aij = Ay + ALK (1.2.19)

1.2.3 Ricci Identity in a non-Riemannian Space

Since covariant derivative increases the rank of a tensor by one. Thus,
if A; is a covariant vector then it follows from the equation (1.2.19)
that A;.; is a second rank covariant tensor. Hence taking the covariant

derivative of A;.; with respect to asymmetric connections we obtain

h or’, h h
Aije =Aijr — Anpl; — An ok Ap Uy — Ainly+
+ AL T + AT (1.2.20)

Interchanging j <> k in the equation (1.2.20) we get one more equation.

Subtracting the result thus obtained from the equation (1.2.20), we get

ort. arh.
Ai;jk - Ai;kj =A,;, _8—33?“ + 0:1:]? + F?ZFZZ- — Fé.iFZl +
+ (F?k — FZj)(Ai,h — AT
Az‘;jk - Az‘;kj ZAthjih + QAZ‘;thkh , (1.2.21)
where
8Fh¢ orh.
ki = [ 5);1@ + axljz + F?lrgci - Fé'iFZZ : (1.2.22)
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is the Riemann curvature tensor in a non-Riemannian space, we here
after called it as Riemann-Cartan curvature tensor. Using the equation

(1.2.15) in the equation (1.2.22) and simplifying the equation we obtain

OK ;" OKy"
81‘]’“ Ol — "K' — (K" +

+ G+ {é'i}Kklh + Ki"Kii' — K;i"Kji' (1.2.23)

h_p  h
Ryji" =Ryji +

Using the definition of the covariant derivative of contortion tensor we

have

_h
L 0Kj; B
J axk

Ki"Ty; — KTy + Kji'Thy (1.2.24)

On using this equation we eliminate the partial derivative term from

the equation (1.2.23) and simplifying we get

Riji" = Ryl + K"y — K"y + 2K,"Q; + K K" — Ky K"
(1.2.25)

where Rkjih is the Riemann curvature tensor in the Riemannian space-

time. From the equation (1.2.25) we observe that

Ryjin = — Rijni = —Rjkin

Ryjin #Rinkj - (1.2.26)

The cyclic property of the Riemann-Cartan curvature tensor in the

non-Riemannian space is not true. Its expression is obtain as
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Riji" + Rj" + Ri" = 2(Qij" 1 + Q"5 + Qui")—
—4(Qi' Q" + Q' Q" + Q' Q") . (1.2.27)

Similarly, the Ricci identity for the second rank covariant tensor A;; is

obtain in the form

Aijien — Aijinke = Apj Bpi” + AspRiki” + 2450 Qrn” - (1.2.28)

1.2.4 Generalized Bianchi identities for torsion and

curvature

In Einstein theory of gravitation Bianchi identities are obtained by in-
troducing a locally inertial coordinate system on a Riemannian space.
However, in a non-Riemannian space in which connections are asym-
metric, there does not exists locally inertial coordinate system. It can
be seen by considering a coordinate system z‘ in which the asymmet-
ric connections T, # 0 at a point 2’ = z{. Define another coordinate

system 7' such that

SThahle b)), (1229)

where the suffix zero indicates that the quantity is evaluated at the

T = (2" — ) +

pole xf). Differentiating the equation partially with respect to z* we
get

oz’ 1. , o

ok O + 2 [( Ii)o + (Fﬁgz)o] (" —xp) ,
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852') ,
N — i (1.2.30)
<8$k 0 "

ot

507 | # 0 and hence

We see that the Jacobin of the transformations J =

the transformation defined in the equation (1.2.29) is well defined.
Differentiating the equation (1.2.29) partially with respect to 7/ we

get
5= 50+ 3T [ S5 — )+ s
. ox 1 ; oz m m
= 5] - &CJ [( lm)U + (I, ) ] %(f — ') - (1.2.31)

It follows from the equation that

ox’ ,
-] =4
(55),=

Further differentiating the equation (1.2.31) partially with respect to

Ek, we get

a2i 1 ) ? m m
% = =5 [Tl + ] [ = )

. (1.2.32)

T Tk 8%7 ozF

0%t (%cl axm]

Thus the values of the equation at the pole is given by

(55) =Sl @l (55) (%) - a2

Using the equation (1.2.15) in the equation (1.2.33) we get

(aH) = —{i}, + [ o + (Kiio] - (1.2.34)

Tk
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From the law of transformation of connections at the pole we have

= oz Ox™ ox" ; %z oz
(ij>0 Bl <8xi>0 (({ﬁj )0 (afk>o (Lo + (fjfk)o <8xi)0 .

(1.2.35)

Using the equations (1.2.30) and (1.2.33) in the equation (1.2.35) we
get

(Fé'k>o = (Tj)o — {into + % (K0 + (Kig)o] - (1.2.36)

Using the equation (1.2.10) we get

(f;k% = —{K'}, + % (Ko + (Ko

=l 1
(%)0 =3 (K)o — (Kj')o]
N (%)0 = (Q)), #0. (1.2.37)
This shows that there does not exist in a non-Riemannian space, a
locally inertial coordinate system at a point and in its neighborhood.
In order to find the Bianchi identities in the non-Riemannian space,

we find the expression for the covariant derivative of Riemann-Cartan

curvature tensor as

Rka‘fh = Rkjil/h + Ry Kni” + Rigi' Kij” + Rijp Kni® — Riji Ky .
(1.2.38)
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By cyclic permutation of the indices k, 7, h twice in turn in the equation

(1.2.38) we get two more equations. Thus we obtain

thz'fk = ij'l/k + Ry Kif? + Ripi' KP4 Ry Kt — Rjni? Ky,
(1.2.39)

and

Rikity = Rukiyj + Rypri' Kji” 4 Rigi Kji? + Rugy Kji? — Ry K
(1.2.40)

Adding equations (1.2.38), (1.2.39) and (1.2.40) we get

Rkjifh + thifk + thifj = —2 (ijilehp + B! Qin? + thilekp) :

(1.2.41)
From this equation we obtain the relation
(R“f — %Rgi’f) = 9" (R Qui — 2R Qup) - (1.2.42)
This shows that |
<Rik — %Rﬂ) ) £0 (1.2.43)

where R;; is the Ricci-Cartan tensor obtained by contracting the index

h with k in the equation (1.2.25) we obtain
Rij = Rij + Kij* . — Kij* — K Ky + K3 K (1.2.44)
And the Ricci-Cartan curvature scalar is given by
R=g"R;j = R+ 2K + K k! + K" K,* . (1.2.45)
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However, in a Riemannian space-time of general relativity, we have
ik Lo
R"™ — —Rg =0. (1.2.46)
2 Ik
Consequently, from Einstein’s field equations we have
%) =0. (1.2.47)

These are called dynamical conservation laws. However, such conserva-
tion laws do not hold in the non-Riemannian space of Einstein-Cartan

theory of gravitation, as can be seen from the equation (1.2.43).

1.2.5 Field Equations in EC theory of Gravitation

The relevant field equations for curvature and spin are obtained from
the action principle by Hehl, et al. [50, 5I]. Variation of the action

function with respect to the metric tensor g;; yields the equation
1
Rij — §Rgij = —k’tij s (1248)

where R;;- is the Ricci-Cartan tensor, t;;- is the energy momentum
tensor.

The equation (1.2.48) is not the same as that of the Einstein field
equation in Riemann space, because the Ricci-Cartan tensor here is
no longer symmetric but instead contains information about the tor-
sion tensor. The right hand side of the equation (1.2.48 ) cannot be

symmetric either, so that ¢;; must also contain information about the
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spin tensor. Similarly, the variation of the action with respect to the

torsion tensor @;;" yields a new equation
Qif" + 6 Q" — 6;5Qu' = kS, (1.2.49)

where S;;* is the spin angular momentum tensor. The relation between

Sijk and t;; is defined by the equation
t9 =T 4 (V +2Qu") (8% — giki 1 gkiiy (1.2.50)
where T is the stress-energy momentum tensor of matter,and
Vi=Vi—2Qu . (1.2.51)

The field equation (1.2.48) is an algebraic in character relating to spin
angular momentum tensor. Therefore, one can obtain the torsion ten-

sor in terms of spin angular momentum tensor as
k Fo Lo Log
Qij" =k | Sij" — 551' Sy — 55]' S| - (1.2.52)

The equations (1.2.48) and (1.2.49) together are called the field equa-

tions of Einstein-Cartan theory of gravitation.

1.2.6 The Spin Tensor

For the classical description of the spin tensor, Hehl et al.[51] have

decomposed the spin angular momentum tensor as

Sijk = Sijuk , (1253)
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where u' is the time-like 4-velocity vector; and S;; is the spin tensor
antisymmetric in character.

1.e.
Sij = —Sji . (1.2.54)

This spin tensor is orthogonal to the 4-velocity vector.

ie.,
Syl =0 . (1.2.55)

This shows that the intrinsic spin of a matter field is space-like in
the rest frame of the fluid. The condition (1.2.55) is usually called as
Frankel condition. With the help of this condition the field equation
(1.2.48) or (1.2.52) gives an algebraic coupling between the spin tensor

and torsion tensor as

Thus the torsion contribution to Einstein-Cartan field equation is en-
tirely described by the spin tensor. Contracting the index 7 with & in
the equation (1.2.56) we see that the torsion trace vanishes.

le.
Qi=0, (1.2.57)

where Q; = 2Q;;*. Equivalently, it means that the Frankel condition

implies that the torsion trace vanishes identically. If however, if the
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spin tensor is not u-orthogonal, in this case the trace of the torsion

tensor does not vanish, but it is given by

k
Q" = -5 . (1.2.58)

Substituting this in the field equation (1.2.49), we get

k
Qij" = 5[5z’k5jzul — 58 Sut + 28;uM (1.2.59)

The square of the spin scalar is defined as

1 g
S? = 5957 = 0. (1.2.60)

1.3 Newman-Penrose-Jogia-Griffiths Null

Formalism

The Newman-Penrose [89] (NP) null tetrad formalism is widely used
and proved to be ’amazingly useful’ tool in many applications, mainly
in finding exact solutions of Einstein field equations. An excellent
review on the exact solutions can be found in the book of Kramer
Stephani, Herlt and MacCallum [71] and in the study of black holes
by S. Chandrashekhar [I7]. The approach is extended by Jogia and
Griffiths [55] to deal with certain problems in Einstein-Cartan theory
of gravitation and also in other theories of gravitation that include
torsion. The formalism is widely known as Newman-Penrose-Jogia-

Griffiths (NPJG) formalism. Every chapter of the thesis exploits the
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NPJG formalism because of its suitability for computational work, its
easy adaptability to other formalism and its thorough utilization of
the Bianchi identities. The exposition of the NP formalism is avail-
able in the following books. Flaherty [30], Carmeli [10], Hawking and
Israel [54], Frolov [34], Held [52], Kramer, Stephani, Herlt and Mac-
Callum [71] and S. Chandrashekhar [I7]. We describe below in brief
the formalism

At each point of a curve z' = 2'(s) in a 4-dimensional non-Riemann
space-time, we introduce a tetrad consisting of four null vector fields.
Each vector of a tetrad has four components. A tetrad is denoted by

€(a).- Thus we have
e(a)i = (', n',m" ™) ,a=1,23 4. (1.3.1)

The vectors [* and n’ are real null vector fields, while m’ and m' are
complex conjugate of each other. These vector fields satisfies the con-

ditions
Iin'=—m;m' =1, (1.3.2)

and all other inner products are zero. Greek letters are used to denote
tetrad components, while Lattin indices are used to denote tensor in-
dices. The vector fields of the tetrad form a basis at each point of the

curve. The tetrad of the dual basis vectors is given by
e(o‘)i = (TLZ', li, —mi, —m,-) . (133)
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The basis vectors of the tetrad and its dual satisfy the properties
e(a)l-e(ﬁ)i =7, (1.3.4)
and

e(ayie' ™ = oF . (1.3.5)

el (1.3.6)

while the tetrad indices are raised or lowered by using the tetrad com-

ponents of the metric tensor 7,43 given by

Nap = gije(a)ie(ﬂ)j : (1.3.7)

Consequently, the matrix of the tetrad components of the metric tensor

is given by ( \
01 0 0
10 0 O
Mg = 1" = . (1.3.8)
00 0 -1

\0 0 -1 ())

Using equations (1.3.1) and (1.3.3), we obtain
9ij = linj + nil; — mim; —mym; . (1.3.9)

This is called the completeness relation.
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1.3.1 NP Spin Coefficients

The Ricci rotation coefficients are defined by

Yasy = —€(0)ij€(8) €’ » (1.3.10)

which is anti-symmetric in first two indices.

ie.,

’7/&57 = —’ygcw . (1.3.11)

By expanding covariant derivative in the equation (1.3.10) by using
the equation (1.2.19) we have the relation between the components of
the Ricci rotation coefficients 7,3, and the tetrad components of the

contortion tensor K,z as follows:

Yasy = —€(a)i/i€(8) €(v) — €Ki €(p) €@y’
= Yapy = 70a67 - Kfyﬁa ) (1.3.12)
where
Kagy = Kijie)' e’ e’ (1.3.13)

are the tetrad components of the contortion tensor. The contortion
components K3, are the quantities by which the spin coefficients differ
from their values in a Riemannian manifold.

The applications of NP-Spin co-efficient formalism in figuring out

Einstein’s ambitious explanation of gravitation is liberally proclaimed
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in gravitation radiations (Sachs [108], [109], Goldberg and Sachs [37],
Goldberg [38], Newman, Tamburino, Unti [90], Pirani [99], Penrose
[97, 98], Zakharov [139], Brooker and Janis [§]), in electromagnetic
fields (Debney and Zund [20], [21],[22], Zund [140], [141], [142], Tariq
and Tupper [122], [123], Wallace and Zund [133]), in black holes (Price
[103], Teukolsky [124], Press and Teukolsky [102], Wald [134], Hawking
and Ellis [46], Hajicek [44], Chandrashekhar [15], [16], Carter [13]), in
shock waves (Papapetrou [94], [95]), in netrino radiation fields (Colli-
sion and Morris [19], Radhakrishna and Rao [104]).

According to Jogia and Griffiths, the 12 complex spin coefficients
and 12 complex tetrad components of contortion tensor (with subscript

1) are defined below for ready references.

Kk ="311 = li;jmilj ; T = —7421 = _ni;jmilj 3

P =314 = li;jmimj : A=~V = _ni;jmimj ;

o =313 = liym'm’ | = =3 = —nggmm’

T = 7312 = lz’;jminj 3 V= —7122 = _ni;jminj ;

€= %(7211 — Ya31) = %(li;jnilj - mi;jmilj) g

Q= %(7214 — Ya34) = %(li;jnimj — m;m'm’)

b= %(7213 — Ya33) = %(li;jnimj — mgm'm’)

v = %(7212 — Naz2) = %(li;jninj — mygm'n’)

ki = K31 = Kigpl'm/1* m o= K = —Kgl'mn* |
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p1 = Kz = Kim'm/1F | AN = — Ky = —Kgmmin® |
o1 = K33 = Kipm'm/1" | 1 = —Kzig = —K;jpm'm/n"
7 = Koz = K;jpn'm/ 1 | v = — Koy = —K;pn'm’n" |
€ = %(Km — Kiy3) = % gkl (I 1F —mim") |

= %(sz — Ky3) = % e (n?1F — mim”) |

B = %(sz — Ks33) = %Kijkmi(njlk —m'mF) |

"= %(K221 — Koyy3) = % ien' (1 —mm*) (1.3.14)

Then we have

K=k + k1, p=p"+ p1,0 ="+ 0y etc.

In Einstein-Cartan theory of gravitation the Ricci tensorfz;; is not
necessarily symmetric and hence it has 16 independent components.
These can be expressed in terms of the familiar nine components of a
Hermitian 3 x 3 matrix ¢ 45, (A, B = 0, 1,2) the three complex compo-
nents ¢4 and the real parameter A. These are defined by (Jogia and
Griffiths [55]).

b0 = —5 Byt

do1 = —iRij(limj +m'l)

Po2 = _%Rijmim‘j )

P11 = —%Rij(linj +n'l! + m'm? +m'm?) |
P12 = —iRij(nim‘j +m'n?) |
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4
1 o
o1 —ZRM(ZW —n'l! —m'm’ +m'm’) |
1 .
Py = _ZR” (m'n’ —n'm’) ,
1
A= R (1.3.15)

The 20 independent real components of the trace free curvature tensor
can be expressed in terms of five complex components, nine compo-
nents of the Hermitian matrix © 45(A, B = 0, 1, 2) and a real parameter
X. These are defined by
o = —Ciziy = —Cugisl"m'Vm”
1 1 S
Y1 = —5(01213 + Cu313) = _§Chijk(lhnl +mt'm ) m”
Wy = —Cyorz = —Chigpgm ' n'm" |
1 1 o
Y3 = —5(01242 + Ciza9) = _§Chijk(lhnl +mmymn®
Yy = —Cuogg = —Chippm'n'm’n" |
Op = —iC1314 = —Chjel"m'Um" |
i i . .
Oo1 = —5(01312 — Clga3) = _§Chijklhmz(l]nk +mim") |
Opy = iC1393 = iChijl"m'nImF |

1
O = 1(01212 + Choag — Cuzio — Cuzaz) =

= iChijk(lhni —m'm)(n® + mmk) |
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O = —%(02312 + Cozy3) = _%Chijknhmi(ljnk +mim") |
O = —iCyy93 = —iChipn"m'n'm" |
X = —%(01212 + Chazs + Claz3) =
= —iC’hijk(lhni +m'm") (Fn® + ' mb) — iy m m" .
(1.3.16)

Any arbitrary vector or tensor can be expressed in terms of its tetrad

components and conversely, thus we express
i :f;oze(a)i 3
and  f, :f;ie(a)i :
We write
fi = (fa)mi + (fo)ili — (f3)emi — (faa)emi

where the suffix ¢ indicates the tetrad components of the quantity.

Thus we have

(f;l)t :f;ilZ = Df )
2t — .ml = A s
Uak =4 | I (1.3.17)
(f;3)t :f;iml - 5f )
(f;4)t :f;imi = Sf
Thus we have
fi = Dfni+ Afli = dfm; —ofm; . (1.3.18)
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1.3.2 Contortion tensor, Torsion tensor and Spin

angular momentum tensor

The tetrad formalism provides an algorithm for calculating the curva-
ture tensor of space-time in a form suitable for a variety of applica-
tions and providing additional information pertaining to the geometry
of space-time. Instead of the tensor components their tetrad compo-
nents with respect to the tetrad vectors are utilized and this makes the
Einstein field equations more transparent.

The contorsion tensor Kjj; in terms of its tetrad components is

given by
Kiji = Kopreie; Ve,V a8,y =1,2,3,4. (1.3.19)

By expanding the right hand side of equation (1.3.19) by giving the
different values to a , 8,7y ,0 and using equations (1.3.14) we obtain

the expression

Kijr =2[(e1 + €)nilyng + (7 + 7)) lilng + (€0 — &)nimymy+
+ (71 — y)limmag + {mglymy — sinimpng — minlmg —
— Tilimpgng — vililymy) +o1mmpng — (a1 + Bl)mil[jnk]—k
+ prmimng + mymglmy + (@ — By)mymmy  + c.cl

(1.3.20)

where c.c indicates the complex conjugate of the preceding term.
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Now the torsion tensor Q;;* in terms of its tetrad components is
given by
Qii* = Qug’eie; Vet | a, B,y =1,2,3,4. (1.3.21)

By giving the different values to «, 3,7 and using equation (1.2.18),
the equation (1.3.21) gives

Qi" = — K212l[inj]lk — K121l[jnj]nk + (K314 — K431)m[imj]nk+

+ (K342 — Kyzo1)mpm ]l + {(K124 - K214)l[inj]mk+

+ (K12 — Kao)lmypl* + (Karz — Kiaz)mpnym*+
+ Kyuampnym” + Kigmyngn® + (K1 — Kog)lymyn”—
— Koplympl* + (Kasz — Kao3)l[ymym® — Kapalmgm”+

+ K434m[inﬂmk} - c.c] . (1.3.22)
Now using equations (1.3.14) we readily get
Qij" = (v +7)lingl" + (a1 + €)lngn® + (p1 — py)mmyn*+
+ (1 — my)mpmyl* + [(m — a1 — By)mpngl" — (w1 +71)npl*

+(p1 — e + El)m[mj]mk + Elm[inj]mk — Elm[inj]nk

+ (71 — a1 — B)lgmyn® — valyml® + (1 + = 7)) lmym'+

+ Milym ]m + (v Bl)m[imﬂmk] +c.c. (1.3.23)
Similarly, we obtain the expression
S = o | = (T — (o1 + B)lgnn’ + (i — g+
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o

— /ﬁln[imﬂnk + (284 — ?1)m[inj]lk + (1 — 271)l[imj]mk+
+ (P1 — 261)m[inj]mk + (7T1 + ?1)l[mﬂmk + (71'1 — ?1)m[imﬂmk+
+ Alm[ilj}mk — Elm[mﬂmk} + c.c] : (1.3.24)

The spin tensor is expressed in terms of its three complex tetrad com-

ponents sy, s and so as

Sij = =2 [(s1 4+ 51)lny + (51 — Su)mpmy — (sompng + Salpmy)) — c.c]
(1.3.25)

where the complex tetrad components are defined by
S0 :Slg = Sijlimj s
1 1 - o
51 :5(512 + Sy3) = 5S,-j (I'n’ +m'm’) | (1.3.26)
S9 2832 = Sijminj .

We see that the Frenkel condition (1.2.55) is not identically true, but

it gives
S = S2., S1+ 81 = 0. (1327)

This reduces the number of components of spin tensor from six to
three.

We define the time-like vector u’ as u' = 12(li + n') such that

Sl
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u;u’ = 1. Now multiplying equation (1.3.25) by u’ we get

S,-juk =— \/5{(31 +31)lng + (51— 51)mmj) — (som[inﬂ - §2l[im]~]) —
— c.c] (1" +n") . (1.3.28)

If Sijk = Sijuk, then the corresponding coefficients of the equations

(1.3.24) and (1.3.28) must be identical. Hence equating the corre-

sponding coefficients, we obtain the relations

(o1 +71) = (1 + y) = —V2k(s1 +51)
(pr—P1) = (1 — 1) = _\/§k(31 —31),
k1 =208 — 1 = —V2ksg |
(1.3.29)
Uy =2a; — 7 = —V2ksy
i —27m1=0,p1—26=0,m114+7 =0,

7T1—F1:O,)\1:0,01:O.

Now using equations (1.3.27) we obtain

m=n=A=01=0,
P1 =H1 = 261 = 2’71 = —\/§]€$1 ) (1330)
U1 =K1 =204 =201 = —\/§]€SQ .

By virtue of the equations (1.3.27), the expression for S;; becomes

Sij = 2 [2symymg) + So (lymy) + myny) + c.c] (1.3.31)
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1.4 Techniques of Differential Form in a

Riemannian space

The traditional approach of tensors makes heavy use of Christoffel
symbols which are forty in number and have no invariant significance
under the change of coordinates. Techniques of differential forms is
another useful and the most powerful analytical tool of modern math-
ematics. The use of differential forms can reduce the complexity of
computation. There are only six complex connection 1-forms which
take care the role of forty Christoffel symbols. In this chapter we have
presented this powerful technique on a Riemannian space in which the
connections are symmetric Christoffel symbols.

We assume here the readers are familiar with the exterior derivative

operator d , which maps r- form to (r 4+ 1)- form. i.e.,
. * + 1
d:NT; — N5,

satistying the following properties:

(4) df = fadz",

(i) d(@+6) =dw+d5 |
(i43) d(@ANG) =do NG+ (=1)ETG A da
(iv) d(f@) =df A&+ fdi |

(v) d(d@) =0,

42



(vi) d(df Adg) =0 . (1.4.1)

Here T} is a tangent space of 1 - forms, AT is a set of all r-forms,
/\THT];k - is set of all (r+1)- forms, f and g are a differentiable functions
and are also called as O-forms, W, are forms of any degree, and A is

the wedge product and has the following properties.

@+5)Na=0ANa+cAa,
(WA Na=0AN(GANa), (1.4.2)
(WAe)=(-1)"6 N© ,

where r,p are degrees of W and o respectively. It follows from the

property (v) of equation (1.4.1) that
d(dz") =0 . (1.4.3)

The operator d on any form raises the degree of the form by one.
Thus the operator d takes a O-form f to a 1-form df , 1-form @ to
2-from d@ and so on and in general any p -form to (p + 1) - form
for p > 2. The exterior derivative is independent of the symmetric
Christoffel symbols hence it is performed on any p form by taking
either the partial derivative or covariant derivative of an associated p"
rank tensor. Because of this property of the exterior derivative d , it
subsumes ordinary gradient, curl and divergence when operated on a 0-
form f and 1-form @ give the standard vector identities curl(gradf) =

0 and div(curlw) = 0 respectively in Riemannian space. Maxwell’s
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equations also take on a particularly simple and elegant form when
expressed in terms of the exterior derivative. Lie derivative is another

operator which is independent of the symmetric Christoffel symbols.

1.4.1 Cartan’s Equations of Structure in a

Riemannian Space

To understand the geometry of a Riemannian space, the Cartan’s equa-
tions of structure play a vital role. The Cartan’s equations of structure
facilitate the computation of Riemann curvature tensor. We will elab-
orate the generalization of these equations in a non-Riemannian space
in the Chapter 2. Hence a brief account of these equations in a Rie-
mannian space is presented below.

We denote V,, as a Riemannian space with symmetric Christoffel

symbols and the metric
ds® = gid'dx’ (1.4.4)

where g;; is the metric tensor of a Riemannian space. Define a curve
in V, and at each point of the curve, one can construct a tetrad e(,);,
a = 1,2,3,4, consisting of four vector fields which form a basis at each
point of the curve. Each vector of the tetrad will have four components
denoted by the Lattin index ¢. Thus for a vector field e;, one can have

an associated basis 1-form 6 defined by
0 = e;dz’ .
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Thus corresponding to four basis vector fields e(®); of the tetrad, we

have four basis 1-forms 08¢, defined by
0% = e\da’ | (1.4.5)

where (@), is called the tetrad of dual basis vectors. The vector fields

of the tetrad and the dual tetrad satisfy the orthonormal conditions

This gives
Nop = €@)i€(B) = 9ii€a) @) » (1.4.6)

where 1,4 are called the tetrad components of the metric tensor g;;.

Conversely, one can also express
gij = nage(a)ie(ﬁ)j . (147)

Similarly, any vector or a tensor of any rank can be expressed as a
linear combination of its tetrad components and conversely.

Taking the usual exterior derivative of the equation (1.4.5) we get

A9 =, ;dx? A da' (1.4.8)

do* =Y, ;dad A da'
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as the term involving Christoffel symbol vanishes due to the symmetric
property of the Christoffel symbol and the skew-symmetric property
of the wedge product.

The Ricci’s rotation coefficients in a Riemannian space are denoted

by 704, and are defined as

’)/0045’}/ = —e(a>i/j€(5)i€(7)j . (1.4.9)

Solving the equation (1.4.9) and using the orthonormal conditions

(1.4.6), we obtain

o),

5= =566,

.7 .

Substituting this in the equations (1.4.8) we obtain

do™ = —~"5.07 N7 (1.4.10)
= df” = w5 N0 (1.4.11)

where
W' =45, 07 (1.4.12)

are the tetrad components of connection 1-forms in a Riemannian
space. The equation (1.4.11) is known as the Cartan’s first equation
of structure.

Using the equation (1.4.5), we write the equation(1.4.12) as

w5 =40, e@)dat . (1.4.13)
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Taking the exterior derivative of (1.4.13) we get

dwoaﬂ = [— (’Yoaﬁae(a)i)/j + (’yoaﬁge(a)j)/i] dz’ A dx’

N | —

Eliminating the covariant derivative terms we obtain
Q%5 = dw®s + W' AW, (1.4.14)
where
QOa 1 D ¢ 96
5= —§R gest” N O™, (1.4.15)

are called tetrad components of curvature 2-forms in a Riemannian
space. The equation (1.4.14) is called the Cartan’s second equation of
structure.

We record below the expressions for the connection 1-forms from
equations (1.4.12) in terms of NP spin coefficients for our record for

the use in the thesis.

iz == [+ )8 + (7 + 7 + (@ + 596 + (a° + B8]

w013 - [HOQI +7002 +0_003 +p094] :

oy =70 + 7007 + X603 + 70" (1.4.16)

_ _ - —0

Ny =~ 0"+ (0~ 796 — @ — B+ (o — )"
Similarly, from the equation (1.4.10) we find
4" =(7° + 79012 + @ + B° — 793 + (a° + B — 7)pM -

_ P09 02t ()0 — )R
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6% =(* + 2012 + k9913 + 700 1+ (70 — &0 — V)94
+(7 =’ =T — (o )6

463 = — (70 + 7012 — (70 + 0 — 291 — 7001 1 (10 — A0 4+ 792
1N0p2 (Qo . 30)934 7

d6* = — (@ + 70012 — o918 — (0 — 0 1 2)gH4 ey

4 (E A0 — N0 — (@ — B (1.4.17)

1.4.2 Weyssenhoff Fluid

The Weyssenhoff fluid is a perfect fluid with spin, where the spin of
matter fields is the source of torsion in a Einstein-Cartan theory of
gravitation. We assume that the Einstein-Cartan space-time is filled
up with Weyssenhoff fluid, which is characterized by the canonical

energy momentum tensor, given by
ti = (p+ p)usur, — pgir, — v 7n (u"Sij)uy, (1.4.18)

where p is an isotropic pressure, p is the energy density of matter. We

simplify the equation (1.4.18) and write as
tie = (p + p)usuy — pgix + Sijaw’ v ug + 0(Siu Yuy (1.4.19)

where 6 = u'; is the expansion scalar. Due to the Frankel’s condition

(1.2.55), the equation(1.4.19) reduces to

tit = (p + p)uivr — PG, — SijujUk , (1.4.20)
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where ' = ui;kuk is the acceleration vector. The NP concomitants of
the equation (1.4.20) is given by

1
tir = E(p + p) (lzlk + Ling + n;lp + nmk) — p(lmk + nlp — m;my, — mimk)—

—%{[sﬁ%ﬂ +R + R = =y =71 —m)+

+50(m" + 1+ 5+ =P =0 =T =) (Ll + Ly — nls — nng)+
+2[80(E + & + e+ +" +7 +y + 7))+

+ 51 (P 4+7 +" 47— -y — 7’ — 7r1)] (myly +ming) + c.c} .

(1.4.21)

By virtue of the equation (1.3.30) the equations (1.4.21) becomes

1
Lik =§(p + p) (lzlk + Ling + ning + nzlk) — p(lmk + n;lp — m;my, — mz‘mk)—l—

1
4+ — [{30(%0 + 70 — KJO — TO) + CC}(l@lk + Ling — n;lp — nmk)-i—

2v/2

+ {251 (7" + 10 — B — 7)) — 250(" + & + 4" + 7)) Fmily + ming)+
+ c.cl. (1.4.22)

1.4.3 Kinematical Parameters

In order to study the kinematics of time-like and space-like congruences
Greenberg [41] has introduced kinematical parameters for time-like
congruences and space-like congruences together with natural trans-
port laws. Radhakrishna et al. [70] has introduced ’complete’ optical

parameters for null-like congruences. The role of the kinematical pa-
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rameters is very crucial in the study of universe. The propagation
equations of these parameters are studied by Patil [96]. Below we ob-
tain the Newman-Penrose concomitants of the kinematical parameters
of the time-like vector field in order to study the solutions of the field
equations in Einstein-Cartan theory of gravitation. These are expan-
sion 0, the acceleration ;, the shear tensor o;;, and the rotation tensor

Wi; and are defined as

. . 1
e = w0 — ' g
0 =u'y, U = i 05 = Ugiy) — UGly) — gehlﬂ 7

and
Wij = wjij) — upug) (1.4.23)
where h;; = g;; — u;u; is the 3-dimensions projection operator and
wu' = 1.
We define u; = \/Lé(lZ + n;). Hence the kinematical parameters

(1.4.23) become

0 =——("y +n"),

Sl

Uj =

| —

(Ligl® + Lign” + nigl® + nign®) |
1 : ‘
[(Lij + lsi + iy + i) — il +ny) — (s + )] —

"0

DO
[\

1
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1

Wi =5 [(lij — i) + (i — njsi) — wil; +n5) + (G + ni)iy)

2v/2
(1.4.24)

where

1 0 L
geh” :6 [(lzn] + nll]) — Q(mimj + mimj) — (lzl] + nmj)} . (1425)
The expressions for the covariant derivative of the null vector fields and
their intrinsic derivatives along the tetrad vector fields are enumerated
in the appendix. Using these equations we readily obtain
1 _ _ . _
9:5(60+EO+61+61—70—70—71—71—pO—pO—pl—ler
+ 0+ )
1

i =3 [(eO ++a+a+"+7 +n+7)l—ni)—

—(?0+?1+E0+E1—1/0—Ul—WO—Wl)mi—c.c :

20"+t - - —a—@)-

_ ! [
6v/2
G R e T e e VN GRS Ve

Oij

—2njy —2mumjy) + 3{ (R + R — 7 =T+ )+ v—
_0 J—
— 7T0 — T — 2(040 + 5 + an + 51)) (l(lmj) — m(m]))-l-
+ 2(50 —|—51 — )\0 — )q)ml-mj} +c.c s
1 0 =0 — 0 -0 — \—
Wi =35 200" =P +p1—pr+p — B+ — ) mymy)—
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— {2(a0+30+a1 +B) + R+ R T — T+
+ 10+ — 7Y — 7T1} (lymy) + myng)) — c.c] : (1.4.26)

It should be noticed that, using the conditions (1.3.30), the equations

(1.4.26) can be rewritten as

1 _ _ _ .
9:E<60+€0—70—VO—PO—PO+MO+MO),

1
U; =3 [(eo + @ 4+ 3G —n) = F R =) — 1my; — c.c] :
1
g = | 4240 £ 70— 0 g0 — ()0 L0 — 0 — 0 }
JGﬂH(v gl )= (P +P —p —1)
: (lilj +nm; — 2lng) — zm(imj)> + 3{ <E0 — 7+ — -
—2(a” + BO)) (limj) — many)) +2(3° — )\O)mimj} + c.c] :
1 —0
Wi =——=| 70+ 7% — ° — 7" + 4v2k5) — 2(a’ + ) lym -+
WG [(T @ 0 —2( B8 ) (lgmy
+ m[inj]) +c.c+ 2(,0O — '+ = - 4\/§k51)m[imﬂ] :

(1.4.27)
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Appendix 1:
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+ (7 +7T1)min; + (7 + v1)mil; — (/\ + /\1)mzm‘7
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— (e
— @
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— (7’
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ning — (10 4+ 7)nil; + (0° + oy )nim;+
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— A)lmy — (B + ) lmy + (€2 — & + e — &)mnj+
+ (V" =3+ = F)mily + (@ — 87 + @ — B)mm—
~ (@0 =B+ a1 — Bymam;
— (R’ +R)niny — (7 +7)nil; + (7° + p)nim+
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Appendix 2: Intrinsic Derivatives of the tetrad vector fields.
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Appendix 3: Metric Equations
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Chapter 2

A Geometry of a Non-Riemannian Space
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2.1 Introduction

The use of geometry in the development of science in general and
physics in particular is well known. The familiar geometry in which
parallel lines never meet or diverge, the angles of a triangle add up
to 180 degrees, geodesics are straight lines and so on is known as Eu-
clidean geometry and the space on which the geometry rest is called
Euclidean space. Newton considered Fuclidean space as consisting of
3- dimensions and time as consisting of 1- dimension- the 4th dimen-
sion independent of space and developed Newtonian mechanics which

is well-known to all. Euclidean space is characterised by the metric

ds? = nyda'dr? | i,j=1,2,3, (2.1.1)

where z' = (2!, 22, 2%) = (2, v, 2) -space coordinates and

ni; =1, when =7,
’ (2.1.2)
=0, when 7 # 7,

is called Euclidean metric tensor.

By combining 3-dimensions space and 1- dimension time into a sin-
gle manifold is called the Minkowski space-time and the corresponding
geometry is called as pseudo Euclidean geometry. This is the kind
of geometry Einstein used in his geometrisation of the special the-
ory of relativity. The 4- dimensions Minkowski space-time is charac-

terised by the flat metric defined by the equation (2.1.1), but in which
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at = (2!, 2% 23, 2%) = (,y, 2,ict) the space-time coordinates and the

Minkowski metric tensor 7;; is defined by

nij =1, when i=75=1,23,
——1, when i=j=4, (2.1.3)
=0, when i # 7.

In non-relativistic classical mechanics, the use of Euclidean space
instead of space-time is appropriate, as time is treated as universal and
constant, being independent of the state of motion of an observer. In
relativistic contexts, the space-time is our universe. Time cannot be
separated from 3- dimensions space.

The first person to go beyond Euclid geometry and appreciate its
significance was Carl Friedrich Gauss. Alternate geometries are there-
fore known as non-Euclidean geometries. Non-Euclidean geometry was
independently discovered by the Russian Labochevsky, N. I. in 1829
and by a Hungarian Bolyai, J. The new geometry is known as ‘hyper-
bolic’ geometry, in which, the angles of a triangle always add up to
less than 180 degrees and many straight lines can be drawn parallel to
the given straight line through a point out side the straight line.

Bernhard Riemann realized the possibility of yet another geometry,
who comprehensively put across the notion of non- Euclidean geometry
in 1851, in which the angles of a triangles always add up to more than
180 degrees and all ‘lines of longitudes’ cross the equator at right angles

and must therefore all be parallel to one another, they all cross each
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other at poles. Hence no parallel lines exist on such a space.

Einstein uses 4- dimensions pseudo Riemannian space-time, in the
sense that the metric of the space-time is positive indefinite, with
symmetric connections, called the Christoffel symbols, and developed
General Theory of Relativity. Einstein’s special theory of relativity de-
scribes the way things move about in what is called ‘flat space-time’.
Einstein’s General Theory of Relativity describes how things move in
curved space-time, and the curvature in space-time is caused by the
presence of matter in the universe.

A Riemannian space-time on which the Riemannian geometry based

is characterized by the pseudo Riemannian metric defined by
ds? = gida'dx’ (2.1.4)

where a' are the space-time coordinates of an event and g;; are the
components of the Riemannian metric tensor, which are functions of
coordinates z’ at the point and representing the gravitational poten-
tial. We see that the space, time and the gravity are all invisible.
The ingenuity of Einstein is that he unified all these invisible quanti-
ties into a concise formula given in the equation (2.1.4) and we call it
as Riemannian metric. The geometry on such a space-time is called
a Riemannian geometry. Riemannian geometry generalises Euclidean
geometry to spaces that are not necessarily flat, although they still
resemble Euclidean space at each point infinitesimally. As the conse-

quence of this theory, Einstein deduced that the ray of light bends, the
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perihelion of the planet Mercury advances in the gravitational field
of the Sun and made invisible mathematics visible. This is perhaps
in consonance with the fictitious description of mathematics as our
invisible culture.

In the history of science, Einstein’s general theory of relativity is
considered to be the most successful theory of gravitation. However,
the success of general relativity is decidedly mixed. On one hand it
is highly successful which has passed every unambiguous test both ex-
perimentally and observationally. On the other hand it is inconsistent
with quantum mechanics, not free from singularities and not included
the spin of the gravitating matter and so on. To address such issues
there are several well known (more than forty theories of gravitation)
classical theories of gravitation other than Einstein’s general theory of
relativity.

Einstein-Cartan theory of gravitation is one such modified theory
of gravitation, in which the spin of the gravitating matter is intro-
duced, developed by Cartan with the hopes of avoiding singularities.
The underlying geometry for the Einstein-Cartan theory of gravita-
tion is non-Riemannian characterized by the metric (2.1.4) but where
in which the connections are asymmetric, through which the torsion is
introduced. The theory is also called as the torsion theory of gravita-
tion. Non-Riemannian geometry generalizes Riemannian geometry to

spaces in which covariant derivative of a tensor involves torsion term
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through asymmetric connections.

In this chapter, the technique of differential forms on non-Riemannian
space is presented and the essence of non-Riemannian geometry is stud-
ied. The material of this chapter is organised as follows. In each of the
above mentioned theory of gravitation, we discuss some of the vector
identities and their invariance characteristics in the Section 2 and 3.
A technique of differential forms, developed by Katkar [61] on a non-
Riemannian space, is presented in the Section 4. A formula for the
curvature of a non-Riemannian space is derived in the next section. A
non-Riemannian 2- space is constructed and its curvature is obtained.
The results are corroborated by employing the techniques of differ-
ential forms on a non-Riemannian space in the Section 5. Maxwell’s

equations in a more general form are derived in the last Section.

2.2 Gradient, Divergence and Curl in

3-dimension Euclidean Space

If f is a scalar function of coordinates in R?, then we are familiar with

the standard result

of. of . 0f
radf = —i+ —j5+ =—k, 2.2.1
gradf ox 8y‘7 0z ( )
where 2L 9L 9] are the components of radf with respect to the b
9z’ By’ Dz p g pect to the bases

indicated. Similarly, if F = Fji + F»j + F3k is a vector field in the
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3-dimensional Euclidean space, where F}, Fy, F3 are the components of

the vector field with respect to the basis indicated then we have

0k N 0F, OF;

divF = or "oy + 5, (2.2.2)
—  [(0F; OF)\ . OF, 0Fy\ . oF, 0F
CWZF_(@y 8z>z+(8z 8x>‘7+<8x 8y>k’
(2.2.3)

OFs _ 0k \ (O0F, _ 0F3\ (0F, _ OF)
where ( 9 P ), ( P e ), ( o 9 ) are the components of the

curlF with respect to the basis indicated. In 3-dimension Euclidean

space we have the standard vector identities;
curl(gradf) =0 and div(curlF) =0, (2.2.4)

as the two rows of the determinant are identical.
In tensor notations we define the gradf,divF and curlF in a 3-

dimensional Euclidean space as

of —  OF
gradf = a—finlkék , divF = a—;nm , and
v t (2.2.5)

divF = %nika AE; |
where A is the wedge product of vectors. Wedge product of two vectors
is nothing but their vector product, and n’* is defined in the equation
(2.1.2). The tensor notations are useful to extend the definitions (2.2.5)

into the higher dimension spaces.

It is evident that definitions (2.2.5) are invariant under the coordi-
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nate transformations
gt = At (2.2.6)
where A’ is the matrix of transformation. The matrix A’} and its

inverse matrix of transformation A" satisfy the condition

N Ay k= gk (2.2.7)

2.2.1 4-dimensional Euclidean space and time

In the 4-dimensional Euclidean space and time the definition (2.2.5) re-
mains the same, however, the two inertial frames in the Newtonian rel-
ativity are connected by the Galilean transformation equations, where

the matrix of Galilean transformation is given by

(1 00 —v\

010 0
A= : (2.2.8)
001 0

\0 0 0 1)

and v is the uniform velocity.

We see that the matrix of Galilean transformation equations is
the particular case of the matrix of the most general transformation.
Hence it is obvious that the gradf , divF and curlF are invariant

under Galilean transformation equations.
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2.2.2 4-dimensions Minkowski Space-Time of
Special Relativity

A space-time characterized by the metric (2.1.1) together with (2.1.3)
is called the Minkowski flat space-time. The metric can also be repre-

sented by

ds® = (dz')? + (da*)? + (dx®)* — (da*)? . (2.2.9)

4 = ct, where c is the velocity of light and ¢ is time, so

We choose z
that * = ct has the unit of length and (2!, 22 2%) = (x,y,2) are
space coordinates. In this notation the Minkowski metric becomes
ds? = da® +dy*+dz* —c?dt?. In the 4-dimension Minkowski space-time
of special relativity the gradf, divF and curlF are defined in the same
way as they are defined in the equation (2.2.5). The only difference
is in the definition of the metric tensor n;; which is defined in the
equation (2.1.3). The definitions (2.2.5) also invariant under Lorentz

transformations equations, as the matrix of Lorentz transformation

equations is given by

(v 00 —w)

, 0 10 0
A 1T = : (2.2.10)
01 0
-5 00 v )

and v = is the Lorentz factor.

—
\

n‘c
DN Do
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2.2.3 Exterior Derivative and the Vector

Quantities

In the Minkowski space-time (M, 1), Amur and Christopher [2] have

expressed the gradf, divF and curlF in terms of exterior derivative as
(i) df A*dX = (gradf)dV,

(ii) dF -N\*dX = divF'dV, where - indicates the dot product between

two vectors and A denotes the wedge product,

(iii) —dF A A*dX = (curlF)dV, where double wedge products are
used to indicates the wedge product between differential forms
and vector product between vectors and dV = da' Ade? Ada3 Adx?
is the 4-volume and * is the Hodge star operator defined by

“do' = (=1 et ANd2? A ANdE A L da" (2.2.11)

where cap over the differential da’ indicates that the term is to be

deleted from the expression and
da' A *da® = nFdv .

They have also shown that these definitions do not depend on any

particular coordinate frame.
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2.3 Gradient, divergence and Curl in a
Riemannian space of Einstein’s

General Relativity

The notion of partial derivative of a function from multi-variable cal-
culus is extended in a Riemannian space-time of Einstein’s general
theory of relativity to the notion of covariant derivative of a tensor
with symmetric connections. Furthermore, the covariant derivative
of a form of any degree is independent of symmetric connections as
the terms vanish due to the product of symmetric connections and the
skew-symmetric basis vectors. Consequently, we obtain in Riemannian
space, the covariant derivative of a form by taking either the partial
derivative or covariant derivative of the associated tensor.

The gradient, divergence and curl of a vector field in a Riemannian

space-time of General relativity are defined as

) of

gradf = fi= 5% = fi
. ~ : : 1 0

divA; = divA = Al = ¢" Ay, = Nt (A'/=g) , (2.3.1)
. 0A; O0A,;

The curl of a vector is the tensor of covariant rank two. These def-
initions are invariant under the coordinate transformation from z! to

7'. We have used overhead cap to denote the terms in a Riemannian
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space.

2.3.1 The Vector Identities

We have the standard vector identities in vector calculus:
curl(gradf) =0 |
and
div(curlA;) =0 . (2.3.2)

However, in Riemannian space the curl of the gradient of a scalar

function f is defined as

o 0’ f 0’ f
curl(gradf) = curl(f;) = fr; — fr;i = Oriors  Orior

= curl(gradf) =0 .
Similarly
div(curlA;) =0 . (2.3.3)

These identities are well expressed in the techniques of differential
forms viz., the exterior derivative. In fact the exterior derivative sub-
sumes the ordinary gradient, curl and the divergence and the two vector
identities curl(gradf) = 0 and div(curl4;) = 0. The same is illustrated

below.
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2.3.2 Vector Identities in Exterior Derivative

In order to obtain the vector identities in terms of exterior derivative,
let f, @ = widx', 6 = fdy A dz + gdz A dx + hdx A dy be differential
forms of degree 0, 1 and 2 respectively. Then by applying the exterior

derivative to each one of these form, we obtain

df :f,’éde ;
- 1 8&)@' &uj : i

=3 (axj - 57) do’ A dat, (2.3.4)
. (O0f 9dg 0Oh

do = (8:{: +ay+ 82) de Ndy ANdz .

The coefficients of these equations are respectively called gradf, curlw
and divF' with respect to a basis indicated. Now taking the exterior

derivative of 1-form df, defined above, we obtain the vector identities

in the form
1 : .1 9*f 0% f . .
A ==(f,:— f;:)dz’ Ndz' = = — — ———— | da’ N d2'
f 2<f/lj f/_jl) i /\ X 2 (axlax] aaj]ax'l) i /\ 9 ;
> f =0 < curl(gradf) =0 . (2.3.5)

Similarly, taking the exterior derivative of 2-form dw we obtain

i 1
A’ = — 6 [(@igge = wigng) = (@jgin = wipmi)+

+ (wiyij — wiygi) | dz’ A da? A dz® . (2.3.6)

68



We see that the coefficients are the components of divergence of curl

of a vector. Thus we have

U |
d*0 = dw(curlw)—é [(wifjn — wiskg) — Wik — wWjjki)+

By using the Ricci Theorem wj/j — wi/rj = whf{hijk we obtain

1r . . . | |
A’ = —z [Wthijk — wp R + Wthkji} dz' A dx? A dz*

1 . ) ) | |
Po=— [u)h (Rhijk + R + thij)] dri A dad Ade® | (2.3.8)

d*o = div(curle) =0 .

Hence the repeated exterior derivative operator in the Riemannian

space-time includes the vector identities
cdrlgr&df = (0 and also the d%vcu}lf =0,

when applied to O-form and 1-form respectively.

1. e.
d*f = curl(gradf) = 0 , d*0 = div(curlo) = 0 .

We will prove, in the next section that, these identities do not hold

good in a non-Riemannian space.
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2.4 Gradient, Divergence and Curl in a

Non-Riemannian Geometry

In a non-Rimennian space-time the gradient of a function, the diver-
gence of a vector field and the curl of a vector field are defined below:

Let f be a scalar function, then
gradf = f;, (2.4.1)

where f,; = f; = fi.
Contracting the indices in the definition of covariant derivative of

a contravariant vector, we get
A=Ay — APKy' (2.4.2)
= divA’ = divA' — AFK;, (2.4.3)

Using the relation between the contortion tensor and torsion tensor

(1.2.18), we obtain Kj;;* = —2Q;;". Hence the equation (2.4.3) becomes
divA" =divA’ + 2A%Qu" (2.4.4)

However, the Frankel condition suggests that torsion trace vanishes

identically. Hence, we have
divA’ =div A’ ,
Now the curl of a vector field A; is defined by
curl 4y =Aij — Aji = Aijy — Ajji + 24:Q45" (2.4.5)
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= curlA; =curlA; + 2Ainjk ,
where
curl Ay =A;); — Aji -
Replacing the arbitrary vectorA4; by f,; in the above equation we get
curl(gradf) =curl(gradf) + 2f1Qq;" | (2.4.6)
where

curl(gradf) =0 = curl(gradf) = 2f4Qi;" . (2.4.7)

2.4.1 Techniques of Differential Forms in a

Non-Riemannian Space

Techniques of differential forms in a Riemannian space is wel-known in
the literature Israel, W [54], Spivak, Michael [120], Choquet Bruhat et
al. [18], Franders, Harley [35], Bernard Schutz [110]. Exterior deriva-
tive 'd’ defined in such a space is connection independent. Hence, it can
be obtained by taking either covariant derivative or the partial deriva-
tive (immaterial which) of an associated p® rank tensor of a form of
degree p > 0. However, this is not true in a non-Riemannian space
as it involves asymmetric connections. Katkar [61] has introduced a
new operator d, and derived the Cartan’s equations of structure. The

operator d, is connection dependent and hence obtained by taking the
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covariant derivative with respect to asymmetric connections of a dif-

ferential form of any degree p > 0. The operator d, is defined by

de : N\ T; — /\THT; :

d*&’) — wlllglr’kd*xk /\ d*fL'Zl /\ d*$22 /\ cee /\ d*l'Zr—
T
— Wiyig..i, [Z(—l)p_ld*xil A Adyx Tt AdPat A LA datt|
p=1
(2.4.8)
for any w € /\TT;. Here the symbols /\TT; and /\’"+1T; stand for the set

of all r-forms and (r + 1)-forms respectively. The exterior derivative

operator d, satisfies the following properties

(i) dof = fida',

do(@ +0) = ds@ + d\5 |
d(fg)=dif-g+f-dyg,
(ONG) =d@ NG+ (—1)*E G Ad,G (2.4.9)

(
(@
(f@) =d.f No+ fdw
(d
(

(vi) di(d,w) # 0 ,for any form @, of degree r > 0 ,

)
)
)
(v) d
) d
) d
(vit) dy(dyf ANdeg) = d*f Ndyg — dof AdPg
and the coordinate differential d,x* form a basis of the space of 1-form,
such that d,z’ A d,z* = 0.

We prove the last four properties as first three properties are obvi-

ous.
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Proof: We prove (iv) do(@ AG) = du@ A G + (—1)%8 TG A d,5 |
(a) we choose @ = wid,x? , 7 = ordyz® be two 1-forms. Then by

using the definition (2.4.8), we have
d, 0 = wi;jd*xj Adaxt — widzxk , (2.4.10)
and
A& = opidia’ N doa® — opdia® (2.4.11)
Consider the wedge product of @ and ¢ as
O NG =wiordya Ad.ab (2.4.12)
Taking the exterior derivative d, of (2.4.12) we obtain

di(0 N 7) =(wjjor, + wiak;j)d*xj Ad.at A dat—

— wiak(dfxi Adya® —d.zt A dzxk) .
We rewrite this as

do(@0 N &) =(wijdut? A dot’ — wid?a") A opda®—

— wid, 2’ A (04jdot? A dua® — opd?a®)
Using equations (2.4.10) and (2.4.11), this is nothing but

d(ONG)=do NG+ (=18 A d,5 .
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(b) Now let @ = w;jdia’ A dya?, be 2-form and ¢ a 1-form. Using

the definition (2.4.8), we have

d, o = wij;kd*xk Adyx' A dya? — wij(dzxi Adyal — dyat A d2ad)

(2.4.13)

Consider

A G =(wio)dw' A dya? A doat (2.4.14)
= d.(0 N 7) =(wjjkor + wijag;k)d*xk ANd.zt A doad A doat—
— wijal(dzsci ANd.z) A dat — doat A 2z’ A d.a'+

+ da' Adoa? A dPal)
We write this as

d(0 N F) :[w,’j;kd*xk Adal Adad — wij(dzxi Adya? — d.at A dfa:j)]/\

A oyd,at + wijd*xi NN [Jl;kd*;r:k Adaxt — aldixl] .
Using the equations (2.4.11) and (2.4.13) we get
d(DANG)=d NG+ (=1)98TH A d,5 .

Thus the result is true for any form w.

(v) Now we claim that
do(fo) =d.f N0+ fd.© .

Let © = w;d.z" be a 1-form, and f be a scalar
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= f& = fwid.x', is a 1-form. Using the definition (2.4.8), we

obtain
di(f@) =(fjwi + fwij)dud! Adya’ — fudia’
= d,(fw)
= d,(fQ) =d. f A&+ fd@ .

fidd? Awida' + fwidoar? Adya' — wideat) |

(vi) Claim: We prove d?& # 0 for any form @ of degree r > 0.
(a) Let f be a differentiable function of coordinates. Then by defi-

nition,

dof = fad.a' (2.4.15)
where for a differential function f, we have

fi=Ti=1Fi- (2.4.16)

Thus in the case of a scalar function f, we have d,f = df. Taking
the exterior derivative of (2.4.15) and using the definitions (2.4.1), we

obtain
A2 f = fijdo? Nda' — fudiat (2.4.17)

Interchanging i in to j in the equations (2.4.17) and adding the result
thus obtain to the equation (2.4.17), we get

1 | | |
dif =5(Fij = i)’ oo’ — fdia' (2.4.18)
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It follows from the definition (1.2.19) that
fij = Fgi = 2£0Qu" . (2.4.19)
Hence the equation (2.4.18) becomes
B f = faQif dua? Ndoa' — fidia’ (2.4.20)
For the co-ordinate functions z’, we find from the equation (2.4.8)
dah = %Qijkd*xj Ad.' (2.4.21)
Consequently, the equation (2.4.20) becomes
d*f = % frQi"da? N doa' . (2.4.22)
We see from equations (2.4.7) and (2.4.22) that
dCf = icurl(gmdf) = %f;injkd*xj Ad.a' (2.4.23)

Consequently, we see that d?f # 0, and hence curl(gradf) # 0 in a
non-Riemannian space.

(b) Let @ = w;d,x', be a 1-form. By definition, we have therefore
d.w = wi;jd*xj Adyx’ — widzxi )
Using the equations (2.4.21), we get
dyio = —wijdux’ A doa? + %kaijkd*xi N (2.4.24)
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Interchanging 7 and 7, in the equation (2.4.24) we get
. 1 . .
di> = wiidua’ A dor? + ikaiﬁd*x@ Ada? (2.4.25)
Adding equations (2.4.24) and (2.4.25) we obtain
1

Ao = =5 [(wiy — wjs) — Q"] dua’ A (2:4.26)

This can also be written as

1 . .
d.o = do — Ethijhd*xl Adat (2.4.27)
where
1 - -
dw = —5( i wj;i)d*xl N d*.CC] s (2428)

representing exterior derivative of 1-form in a Riemann space. Tak-
ing the exterior derivative d, of the equation (2.4.26) and using the
definition (2.4.8), we get

2~
d,w = —

[(wisjk — wjk) — (WhQijh);k] d.z' A doad A doa+

+ [(wi;j — W) — thijh} (dle Adua? — dat A df:cj) .

NNl NN

Using the equation (2.4.21) we obtain

~ 1
o =— 92 [(Wi;jk — Wjiik) — (Wh@ijh);k_

— (wiy — wii — thuh)ijl} doa' A doa? A dya® (2.4.29)
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By cyclic permutation of indices i, j, k twice in turn in the equation

(2.4.29), we write two more equations

1
A2 = — 2 [(Wjiki — Wiegi) — (Wh@jkh);i_

— (wjy — wij — w@Qi") Qui' | dua’ A dua? Nda™, (2.4.30)

[(Wriij — wiskj) — (Wthih);j_

— (Wi — wige — wrQr") Q' | dua’ A dux? ANda® . (2.4.31)

Adding equations (2.4.29), (2.4.30) and (2.4.31) and then using the
Ricci identity (1.2.21) and then the cyclic property (1.2.27) we obtain
after simplifying

5 1
dio = G wp{(Qij" % + Qi + Qri"y) — 3(Qi' Q" + Q' Qu"+
+Qk'Qi™M } + Qi win + Qi win + Qui"wi | i’ A dya? A dia
(2.4.32)

As we know the repeated exterior derivative of 1-form subsumes the
div(curl®), we see from the equation (2.4.25) that d%w # 0, due to the

presence of torsion in the space. Consequently, we have
div(curl®w) # 0

in a non-Riemannian space.
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(c) Let @ = wjjd.a’ A dya? be a 2-form, where w;; = —wj;. Using

the definition (2.4.8), we find
d0 = wij;kd*xi Adya? A dya® — wij(dzazi Ada? — dat N dzxj) .
Using the equation (2.4.21) we obtain
dio = (wijr +win Qi A dua? A doa® (2.4.33)

By cyclic permutation of indices i, j, k twice in turn in the equation

(2.4.33), we obtain two more equations as

dio = (Wi +wiQp)dur' A dua? A doa® | (2.4.34)
and

dui> = (wpirj + Wi Qi) dua’ A do? A doz® (2.4.35)
Adding equations (2.4.33), (2.4.34) and (2.4.35) we get

d.w :% [(Wij;k: + Wik + Wrij) + (WikQij' + Wi Q'+

+ wlekil)} d.z' A doad A dox® (2.4.36)

One can also write the equation (2.4.36) as

1 . .
dyw =d — 3 (Wlk‘Qijl +wiQjr’ + ww%/) do' A dux? A da” .

(2.4.37)
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where
-1 i ' k
dw = §(wij;k + Wik + Weiyj)det" A dua? A dyx” (2.4.38)

Taking the exterior derivative d. of the equation (2.4.36) and following

the same procedure elaborated in (b), we obtain after simplifying

1
2~
d.w = T3 |Widikh = Wigihk - Wikiih = Wjkihi + Whizjh — Wkishj+

+ Wkhiij — Wkhyji + Whiskj — Whiyjk T Wihki — Wihsik — Qijlwkh;ﬂr

+ ijlwm';z + Qkilwhj;l — Qkhlwz’j;l + th’lek;z - thlwkz’;l+

+ wi(Qi' sk — Qnj'i + Qui'y + Qui' Qi + Qip' Qni” + Quy' Q")+
+ wi(Qjk'n — Qin'k + Qrn'y + Qui' Qi? + Qip' Qui” + Q' Qin? )+
+ Wi Qi — Qun'i — Qnit s + Qup' Qni® + Qi Qui? + Qup Qi)+
+win(=Qji + Qin'y — Qij' + Qi Qii” + Qui' Qs + Q' Qui”) |-

cdya A doat A dyad A dat (2.4.39)

Using the Ricci identity (1.2.28) and then the cyclic property (1.2.27),

we obtain after simplifying

. 1
4% = = | 2w { (Qirly, + Qrny + Qnil)—

6
— 3(Qu’Qnp’ + Q" Qip + Qni’ Qry') }+
+ Qinwirg + Qri'wjng + Qin'wrig | ded™ A dua’ A dyx? A duz®

(2.4.40)
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This shows that d.20 # 0, for any w.
Note: In the absence of torsion term the results reduce to d, 20 = 0.
(vii) Now we claim d,(d.f A d.g) # 0.
Let f and g be two O-forms, then d,f and d.,g are 1-forms defined
respectively by

d.f = f;id*xi and d.g = g;kd*xk :
Then

1 .
do f Ndyg = 5(f;l-g;k — frgi)dix' A d.z* . is a 2-form

Consider do(df Nd.g) = d2f Nd.g —d.f Ndg .
Using the equation (2.4.22), we obtain
1 . .
do(df N dug) = 5(Frga — f190)Qijldex’ A dord Ndua® | (2.4.41)

By cyclic permutation of the indices i, j, k twice in turn in the equation

(2.4.41) we obtain the following two equations

d.(d.f Ndyg) = %( figa — f19:0)Qi'dex’ A dox? Nda® | (2.4.42)
and

d.(dof Ndig) = %(f;jg;l — £19.)Quildr’ A do? Ndoa® (2.4.43)

Adding equations (2.4.41), (2.4.42) and (2.4.43) we get
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1
d*(d*f A d*g) :6 [(f;kg;l - f;lg;k)Qijl + (f;ig;l - f;lg;i)Qj/fl_l_

+ (90 — f195)Qui']dut’ A dia? Adua® . (2.4.44)

This is a 3-form. Unlike the identity in the Riemann space of ET of
gravitation d(df A dg) = 0, it is not zero in the non-Riemannian space

of Einstein-Cartan theory of gravitation.

2.4.2 Cartan’s Equations of Structure in a

Non-Riemann Space

The essence of Riemannian geometry is studied through the Cartan’s
equations of structure. In this section, we summerise Cartan’s equa-
tions of structure in a in a non-Riemannian space derived by Katkar
[61]. We hope that these equations will be of immense use in the
study of the essence of non-Riemannian geometry and also provide
a technique of computation of the components of Riemannian curva-
ture tensor which latter can be used to find the solutions of the field
equations of the Einstein-Cartan theory of gravitation.

Let V,, be a non-Riemann space with metric defined by
ds® = gida'dx’ (2.4.45)

where g;; are the components of the metric tensor and the connections

involved are asymmetric. Let ' = z'(s) be a curve in V,, and s is a
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parameter of the curve. At each point of the curve, we construct a
tetrad e(,), a = 1,2,3,4, consisting of four vector fields which form a
basis at each point. If ¢ are four basis 1-form corresponding to four

basis vector fields e(®;, then we have
0% = e\ Yd, 2" | (2.4.46)
Applying the derivative operator d, to the equation (2.4.46), we get
d.0% = e(a)i;jd*xj Adal — e d2at (2.4.47)
Using the equation (2.4.21), we get
d,.0% = (e(o‘)i;j — %Qijke(a)k)d*xj Adzt (2.4.48)
However, from the equation (2.4.46), we find
dox' = 0%y . (2.4.49)
Using the equation (2.4.49) in the equation (2.4.48), we get
d.0" = ( — e ey + %Wew)i@(aﬁ €<a>k> A
Using the equation (1.3.10), we write this equation as
d.0% = (ry%g - %%ﬂ) 0° NO7 (2.4.50)
where

Qgga = Qijke(ﬁ)ie(a)je(a)k s (2.4.51)
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are the tetrad components of the torsion tensor Qijk. We write this

equation as
« « I} 1 anp o
40" = —w"5 N0+ SQu"0" N0 (2.4.52)
where
waﬁ = 7%00" ; (2.4.53)

are the tetrad components of connection 1-form of a non-Riemann
space V,, and 7“3, are defined in the equation (1.3.12). Using the
equation (1.3.12) we write the equation (2.4.53) as

waﬁ :’YOQBUQU _ Kaﬁaea ’
= wag :wo% — Kggaga , (2.4.54)
where

Wl =~05 67 (2.4.55)

are the tetrad components of connection 1-form of a Riemann space.
Using the equations (1.2.16) and (2.4.54) in the equation (2.4.52) we

obtain
1
d.0% = do" — 5Qp," N (2.4.56)
where

do® = -5 N O° . (2.4.57)
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The equations (2.4.56) and (2.4.57) are called the Cartan’s first equa-
tions of structure with respect to a non-Riemann space and a Riemann
space respectively.

To arrive at the Cartan’s second equation of structure in a non-
Riemann space, we first write the equation (2.4.53) by using (2.4.46)

as
ws = 5,e%id, (2.4.58)

Operating the derivative d, to the equation (2.4.58) and using the
definition (2.4.8) and (2.4.21), we find

« 1 « o « o « o 7 )
diw®p = —5[(7 30 3) 5 — (V8067 1) — (V7506 0) Q¥ | dua’ A dia?
(2.4.59)
From the equation (1.3.10), we find
e(o‘)k;i = —’yaﬂge(ﬁ)ke(")i . (2.4.60)

Differentiating the equations (2.4.60) covariantly with respect to 27,

we get

a)

) ]e®

6( kiij :[ - (f)/aﬂae(a)i);j + ’yaeaf}/eﬂ(se(g)ie( j

= (1" 40e' 1)y = — e Vije() + 1y pseVie; . (24.61)

Substituting this equation in the equation (2.4.59), we get
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« ]' « (&% (07 € g g
diw" s 25[(6( i — € Vgi)e” — 1% as(e e — el )+

+ 7% 50 Qi e dua’ A doa (2.4.62)

Using the Ricci identity (1.2.21) and the equations (2.4.49) and (2.4.63)
in the equation (2.4.62), we obtain

1 1
d.wg = —535650‘96 NI+ wp Awe + 570‘506265”95 NG, (2.4.63)
where
Rsep® = Rjz’khe(o‘)he(a)je(e)ie(g)k ; (2.4.64)

are the tetrad components of the Riemann curvature tensor in a non-

Riemannian space. If Q% is the curvature 2-form then it is defined

by
o 1 apnd €
0% = —§R566 0° N0 . (2.4.65)
Hence the equation (2.4.63) becomes
1
Q% = duws + W Aw'p + 57" 30Qes” 0 A 0 . (2.4.66)

This is known as the Cartan’s second equation of structure in a non-
Riemannian space.

These Cartan’s equations of structure in a more general form can
hopefully be used in the following chapters to find the solutions of the

field equations of Einstein-Cartan theory of gravitation.
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2.4.3 Tetrad Components of Connection 1-form

and Curvature 2-form

The Cartan’s equations of structure will be used as a technique to
compute 36 tetrad components of Riemann curvature tensor in a non-
Riemannian space-time of Einstein-Cartan theory of gravitation. For
computational purpose, we present below the expressions for the tetrad
components of connection 1-forms and curvature 2-forms.

From the definition of connection 1-form (2.4.53), we recall
WaB = Yapol’ (2.4.67)

Using the equation (1.3.12) in the equations (2.4.67) and expanding

the summation, we get

Wap :(/yoaﬂl + [(10zﬂ)91 + (/yoaﬂQ + KQaﬁ)92 + (f}/Oaﬂ?) + KSaﬁ)93+
+ (7ap1 + Kiap)d" . (2.4.68)

By giving different values to «, f = 1,2,3,4 and using the equation

(1.3.14), we readily obtain the expressions for connection 1-form as
wip =w=—[("+ +e+@)0" +(V+7" + 7 + 7))+
_0 J—
+ @+t + B0+ (0" + B+ ar +51)0Y]
w13 :w23 = —[(HO+/€1) 91 + (TO+7'1) 92+ (O'O‘l‘O'l) 93+

+ (po + pl) 04] )
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e~ e @)+ (V=7 -7 0~
— @ -p"+a - p) ¢+ <@°—Bo+a1 —Bl> 0'] .
(2.4.69)

Similarly Cartan’s first equation of structure (2.4.56) on using (1.3.14)
yields

.6 :(,yo +70)912 4 (ao +50 _%0)913 4 (Qo +BO B 7To>914_

_ 092 _ 0924 | (ﬁo _ M0)934 B %Qaﬁ19a5 ’
d.6> :(60 +EO)912 10918 4 F0pl (60 48— 70)923_

— (@ B T - (= P 5Que
4,03 = — (70 + 1002 — (70 + 0 — )93 — G0l

— (7" = — 1007 + N0 1 (o — )6 — %Qaﬁ?’eaﬁ |
A0 = — (10 + 702 = 0% + (" = — p)oM + N6+

1
—Qu5'0°".  (2.4.70)

+ (0 =7+ e — (@~ 5%) 6% — 3

To find the tetrad components of curvature 2-form in a non-Riemannian
space, we first record here the tetrad components of the torsion tensor

Qi;*. We start from the equation (1.2.52) the decomposition of the
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spin angular momentum tensor Sijk into spin tensor S;; as
Sijk = Sijuk . (2471)

We assume in the following that the frenkel condition (1.2.54) does not
hold true.

e Syul#£0. (2.4.72)

Contracting j with k in the Einstein-Cartan field equation (1.2.48),
and using equations (2.4.71), (2.4.72) we get

k
Qir" = ) i (2.4.73)

Substituting this value in the field equation (1.2.48), we get

k
Qij" = 5 [6%1Sul — 6% Sy’ + 25;u"] (2.4.74)

Multiplying the equation (2.4.74) by e(a)ie(ﬂ)jemk we get
2Qaﬁv = k[5a7560u0 — (557Sa0u” + QSQBUW} , (2,4,75)

where v’ = u'e;(?), are the tetrad components of the unit time-like
vector u'. For the Newman-Penrose null tetrad defined in the equation

(1.3.3) and for the choice of the time-like vector u’ = \/%(l’ +n'), such

that u;u’ = 1, we have the tetrad components of the time-like vector

u' are given by

u’ =

1
—(1,1,0,0) . (2.4.76)
V2
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From the equation (2.4.75) by giving the values 1, 2, 3, 4 to vy we obtain

four equations given by

k
QQaﬁl = [5a1551 + 5011552 — 5g15a1 — (55180& + 2\/§Sa6] ,

V2
k
QQaﬁQ :E[(SQ{QSB]_ + 5a2552 — 552;5@1 — 552,3&2 + 2\/58046] ’

k
20), 3:—5a35 +5a35 —0 3Sa —0 3Sa :
Qo \/5[ 51 g2 — 05°Sa1 — 05°Sa2]
k
2Qas’ 25[50}5&1 + 60" S50 — 05" Sa1 — 65" Sa2) - (2.4.77)

Now giving different values to Greek indices o and 5 = 1,2, 3,4 in the
equations (2.4.77) and using equations (1.3.26), we obtain the tetrad
components ()57 in terms of 12 complex contortion components which

we record as
k 1

f=——Sp=—=(n+7 +31) ,
Q12 NG 12 2(’Y1 Y1) = 2\/—(5’1 51)
k 1
Q13 2\/5( 13 93) 2( 71 +aq + f) 2\/5(80 S9)
k 1 k
1:—S = ] = —— s
(023 7 23 = 571 \/582
k 1 k
1 :—S = — — ) = ——— — S s
(34 ok 2(#1 1) \/5(81 51)
Q L S —1( +€)= k ——(s1+351)
12 —2\/— 12 = 5 €1 T €1 S1 T S81),
k 1 k
2 —— — — ——
Q13 —\/—513 2/11 \/550,
1
Qas” = 2\/—(513—523) —5(71—041 51) 2\/—(80+82)>



k 1 k
3:——S —_ — € —|.—_ = ——— +_ ,
Q13 2\@ 12 = 2(61 €1 p1) 2\/5(81 51)
k 1
3 —
=——=512 = — s1+351) ,
2 =5 5 = s =T —m) = 2\/—( 1+ 51)
kK — — 1 k
3
=— ——(S13+ S9) = —— — — :
Q34 2\/5( 13 23) 2(041 51) 2\/—(50 82)
k 1 k
4
=——=(S13 + S93) = S — S2)
(34 2\/5( 13 53) 2( — b)) = \/ﬁ( 0 2)
Q12> =0 ,Q12" =0,0Q13' =0,0Q53" =0 .
(2.4.78)
From equations (2.4.78) we have
+7 k(s+§) ™ — (a1 + B1) k(s—l—s)
= —— ) m1 — = —— y
71T Y1 \/§ 1 1 1 1 1 \/§ 0 2
V) = _k\/§327 M1 — [ = —k\/§($1 _51) )
k
+&H =——=(51+351), k1= —kV2s |
€1 T €1 \/5( 1 1) 1 0
—(@1+51):—j§(80+82), m+71=0,
€1 — €+ P = __jﬁ(sl "’51) ) p1— P = —\/5]@(31 —31) )
LA 0 =By = (50— %)
7171#1—\/51 1) 1 1—20 2)
k
T +71 =0, a1—512—2(80—82),
01 =0 ,Xl =0.
(2.4.79)
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Now solving equations in (2.4.79) by using equations (1.3.27) we obtain

p1 = = 26 = 271 = —V2ks; |
" 22041 = —\/ikg() 5
K1 :2ﬁ1 = _\/ékso ’

and
1 =7'1=)\1=01=0. (2480)

Using the equation (2.4.75) in the Cartan’s second equation of struc-

ture (2.4.66), we get
(0% « « € k « g
0% =d,w5 + W Aw 5+Z[27 BoSesu”+

+ 7" 8eSs0u” — 7" 35Seou’ |07 A O7 (2.4.81)

By giving different values to €,6 = 1,2,3,4 in the equation (2.4.81)
and using the equation (1.3.26) we obtain

k
0% =dw"s + W Aw'g + ——=[(s1+51) (171 +1%2)0" "+

22
+{7%s1(s0 + 52) + 250792 — (51 +51)7" 310"+
+ {7 51(50 + 32) + 2807 52 — (51 + 51)7 s }OM+
+ {25751 — Y¥52(80 + 52) + (51 + 51 )73 }0%+ (2.4.82)
+{=257"1 — 7" 52(S0 + 52) + (51 + 51)7" pa}07 '+
+ { — 2(s1 = 31) (Y"1 + 7" p2) — ¥V 83(50 — S2)+
+ 7% 54(s0 — 32)}934] .
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By giving the values to «, 5 = 1,2, 3,4 in equation (2.4.82), we obtain

k _
QY =dw' A+ —= [(s1+ 51) (7 11 + vl) 0+

2v/2

+ {v'11(s0 + 2) 4+ 250712 — (s1+51)7 1310+
+ {7'1(50 + 52) + 2507"12 — (51 4+ 51)7v 14101+
+ {—2s07"11 — v 12(s0 + s2) + (51 + 51)7 13107+
+ {=257" 11 — v'12(50 + 52) + (s1 + 51)7 1407+
+ { —2(s1 — 31)(7111 + 7112) - 7113(50 —359) + 7114(50 - 52)}934} ’

k _
Q' =dw's + w'e Aws+ —=[(s1 +51) (V51 +7'52)0+

22
+ {71050 + 52) + 2507 32 — (s1+51)7 ' 33}0"+
+ {7'51(50 +32) + 250732 — (51 +51)7'3a}0"+
4+ {—2s97'31 — Ylsa(sg + s3) + (51 +51)7 33105+
+ (s1+351)7
+{ =251 = 5)(v's1 +7'52) — 7'83(50 — 52) + v sa(s0 — 52) }67]

+ {—=2827"31 — 7'32(50 + 32)

k _
025 =d,w?s + w? AW+ —— [(81 +51) (7231 + 7232)0+

2v/2

+ {7?51(s0 + s2) + 2507732 — (51 + 51)7 5310+
+ {7%31(50 + 52) + 2507732 — (51 + 51)7 540"+
+{=2s07%51 — V32(s0 + 52) + (51 +51)7 53107+
+ {=257%51 — 7*52(50 + 52) + (51 + 51)7 54 107+

+{—2(s1 - 51) (7751 +7%2) — 77(50 — 52) + 77 au(s0 — 32)}934} ’
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k _
0y =d,w’s + w’e Aw's+ —=[(s1 +51)(V*31 +7°32) 0+

2V/2

+ {7%31(50 + 52) + 2507°32 — (514 51)7 5310+

+ {7’51(50 + 52) + 2507%32 — (s1 4+ 51)7 540"+
+{=2597%51 — ¥’352(s0 + 52) + (51 + 51)7 33167+

+ {=252731 — 7*32(50 + 52) + (51 + 51)7 34 0%+

+{ = 2(51 = 51) (7’51 + 7°32) — V°33(50 — S2)+

+9%34(s0 — 2) }071] . (2.4.83)

From equations (1.3.12) and (1.3.14) we find

YVi=pn=L4+ +a+a, Ye=re="+3V+n+%,

Yhs=yz=a’+ 8 +a + B8, Vs =mm =7 7,

Vs =ya30 =7 + 71, V's3 = o33 = X + A1,

Va4 =vo3a =1’ + 1y Vo =721=—(++e+a),
Vo2 =mnn=—"+7+n+7)

Yoz =mas = —(@ + '+ + B1) |

Va1 =3 = — (k" + K1) | Vo= =—("+n),

V33 =mg3 = — (0" + 01) | V31 =31 = —(p" + p1) ,
Yiu=—ym=-F+F), V= =—7+71),

Vi3 == =—@"+7) Vu=—yu=-G"+071),

Vo1 =— o = — (7" +m) , Var = =z = (V' + 1) |

Yoy = — o3 = (1 + 1) , Vou = —yao1 = (A + Ay,
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V== =( - +e —7),

Vo =—qum=0"-F+n—-7),

Vas=— g =—@" = ' +a - B),

o =—ymi=—("—B + o —B) (2.4.84)

1 1 1 _ .2 92 9 3 3 3 3
and v o1, Y 23, 7 22, V11, Y12, Y13, V41, Y 42, Y 43, V44 are all zero. All

other Ricci’s coefficients of rotation namely !4, Y a1, v a2, ¥ a3, Y aa, 7204,

2 2 2 2 4 4 4 4 4 4 4 4 4 4 4
YA, Y42, 7Y T43, Y 44, Y 11, Y 125 7Y 13y Y 145 7Y 225 7Y 7235 7Y 245 Y 41, 7Y 4257 43,7 44,

are complex conjugates and are obtain by interchanging 3 and 4 and
taking the complex conjugate of the respective terms.

Now using equations (2.4.84) and (1.3.27) in equations (2.4.83), we

obtain

k
Q) = dw) +wiy Awi +wyiAwi +—=[so0(’ +8 +79" + 7'+

V2
+€1+El—|—’}/1—|"}/1) 913 923 +30(e + &+~ 750+
te+& +m+7) 0" —0*) =25 (" + & + " + 7+
e+ a -+ +7) 00

Qh = dywk +wi Awh Fwi AWl
+ % [so(@* + 71+ 7 +71) (0" — 07)+
+ 3507+ 7 + 70+ ) (01 — %)

— 251 (P + U+ 7 +7)0%]
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2 2 2 2 2 3
Q.g = d*w.g + Wo N W.s + W3 N W.3—

k
— —[s0(&" + k1 + 70+ 1) (07 — 6%)+

V2

+5o(k” + k1 + 70+ 1) (0" = 07Y) — 251 (K0 + k1 + 70+ 71)0%]

k
03 = dyw + Wb Awh+wd Awd+ ——[s(e) — & + 40 — 70+

V2
te =&+ —7) (07 = 07) +50(! =& + 9" =T+
+e—€a+7— 71)(914 — 67 — 25 (60 — 4+ -7+
+ea—6+m— 71)934} :
(2.4.85)

2.5 Curvature of a Non-Riemannian Space

The formula for the Riemann curvature for a Riemannian space is
well known in the literature[28, [135]. Following the same procedure
we find in this section, a new formula for the Riemannian Curvature
of a non-Riemannian space. We first establish the relation between
the asymmetric connections of a non-Riemannian subspace V,, and an
enveloping non-Riemannian space V;,. Let the metrics of V,, and V,,

be respectively given by
ds? = gida'dx’ (2.5.1)
and

ds?® = anpdy®dy” | (2.5.2)
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where g;; and a,g are the metric tensors of V,, and V;,, respectively such

that

9ij = aapy™y” - (2.5.3)

From this we obtain the relation

(Tijk)g = —(Kij)g + [(Tapr)a + (Kagy)a]y™ 0 597 & + aapy® sy’ i -
(2.5.4)
We use this relation to find the expression for the Riemann curvature

of a non-Riemann space V.

2.5.1 Formula for Riemann Curvature of a V,

Following the method of Weatherburn [I35], we obtain in this sec-
tion, an expression for the Riemannian-Cartan curvature of a non-
Riemannian space. We first construct a 2-dimensional geodesic surface
S1, through a point P of V,,, determined by the orientations of the two
unit vectors p’ and ¢. The Gussian curvature of this surface at a point
is called the Riemannian-Cartan curvature of V,, at that point, for the

orientation determined by two vectors p' and ¢'. It is given by

1] 0 0
K=K+ 5 %(sz) — w(Km)b : (2.5.5)

where b is the determinant of the metric tensor of the 2-dimensional

surface Sy. It is given by

b= (ghjgik - gijghk)phqiquk 3
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and

ijkphqipj qk

. (2.5.6)
(gn9ik — 9ijgnk) P¢'DI ¢~

R1 =

is the Riemann-Cartan Curvature, at a point, of a Riemannian space.
The formula (2.5.5) determines the Riemann-Cartan curvature of a
non-Riemannian space V,, at a point. The quantities (K919), and
(K112)p are the tensor components of contortion tensor of 2-dimensional
surface Sj.

In order to construct an example of a 2-dimensional non-Riemannian
space, we first develop below the null dyad formalism in a 2-dimensions

Riemannian space.

2.5.2 Dyad Formalism in a 15

In the following we introduce, to work in a 2-dimensional space, two
null vector formalism. Hereafter we refer to it as the dyad formalism.
Let C' be a curve defined in V5. At each point of the curve we define a
dyad of basis vectors as
e(a)i = (mz,mz) y (257)
where m; and m; are complex conjugate null vector fields satisfying
the orthonormality conditions
mimi :mimi =0 X
. (2.5.8)
miml =1.
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Here the Latin indices are used to denote the tensor indices while the
Greek indices are used to denote the dyad indices. The dyad of the

dual basis vectors is given by
e(o‘)i = (mi, mz) i (259)

where the basis vectors and the dual basis vectors of the dyad satisfy

the conditions
e(o‘)ie(a)k — ;% ,and e(o‘)ie(ﬂ)i = 0% . (2.5.10)

Consequently, we express the dyad components of the metric tensor

Gij as
Nap = gije(a)ie(ﬁ)j : (2.5.11)
This gives
o 01
Nap =1 = . (2.5.12)
10

Hence the metric tensor in terms of the basis vectors is defined as
gij = m;ymj +m;m; . (2513)

Let S;;* be the spin angular momentum tensor. Hehl et al. [51] have

split up this tensor in to spin tensor S;; in the form

Sijk = Sijuk . (2514)
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The spin tensor is anti-symmetric; hence it has just one independent
component in the 2-dimension space. We express the spin tensor as a

linear combination of the basis vectors of the dyad as

S =Suge@el®)
Sij =(S12)a(Mmim; — m;m;) |

Sij :Sd(mimj — mimj) , (2515)

where Sy = (S12)4 is the dyad component of spin tensor. In general it

is a function of coordinates. For the choice of the time-like vector field

1 .
u=—(m'+m') ,

V2

such that u'u; = 1, we have from equations (2.5.14) and (2.5.15) that

S = Siju* = &(mim]’ — mgm;)(mF +m") . (2.5.16)

V2

We see from this equation that

(m; —my;) #0. (2.5.17)

We express the torsion tensor Qijk in terms of its dyad components as
Qi = Qage! i jer)" .

This leads to

——=(mym; — m;m;)(m" +m") . (2.5.18)



Similarly, we obtain an expression for the contortion tensor Kijk

kESq
V2

Consider now, the 2-dimensional space V5 characterized by the metric

k

Kijk = (m,m]mk - mimjmk + m;m;m” — mimjmk) ) (2.5.19)

ds® = r*df* + r’sin*0de* . (2.5.20)

We define the basis 1-forms as
1
V2

Hence the metric (2.5.20) becomes

0 = —(rdf + irsinfde), 6> = —=(rdf —irsinfde) . (2.5.21)

&\H

ds® = 206* (2.5.22)
The equation 6% = e(®,;dz’ yields
m; = —(7“ —irsin) , m; = —(r,irsind) ,
\/_ V2
, 1 1 1 /1 1
= — (-, = ‘= — . 2.5.23
" \/_(7“ rsine) M \/5(7“’ rsz'n@) ( )

From equations (2.5.15) and (2.5.23), the tensor components of the

spin tensor is obtain as
S, = —ir’sindS, ,

where Sy = (S512); and it is a function of # and ¢. From this we find
Sa = %0056095} : (2.5.24)
r
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Thus the tensor components of the asymmetric connection become

(Ful)t =0, (F211)t =0, (F222)t =0,

(Flgl)t = <§) St , (F212)t = (F122)t = cotf s (2525)

(Toe!); = — sinfeosh , (T11%); = — <E> cosec’0S; .

r

The non-vanishing tensor component of the curvature tensor of a non-

Riemannian space is
(R1212)t = T2Sin29 — (kﬁT)S@Q . (2526)
The tensor components of the Ricci tensor become

K K
(Rll)t = —1 + <—> COS€C2QSt,2 ,(Rgz)t = —sz’n29 + (-) St72 s
r

,
(2.5.27)
and the Ricci scalar takes the form
2 k 9
R=——=+2|—= |cosec’0S;s . (2.5.28)
r r
Finally, the expression for the curvature of a non-Riemannian sphere
becomes
1 k
K= - (ﬁ) cosec*0S; 5 (2.5.29)
k 2
k=1 — | — | cosec’0S; 2 , (2.5.30)
r

where S; = S5,(6, ¢) and k1 = = is the constant curvature of a Rieman-

nian sphere. We see from the equation (2.5.29) that the curvature of

102



the non-Riemannian sphere is a function of coordinates. It shows that

gg’; # 0. It follows from the equation(2.5.29) that torsion influences

the curvature of the non-Riemannian sphere. We further note that,
in the absence of spin tensor or if the component of the spin tensor is
only a function @, then, the Riemann curvature of a non-Riemannian
sphere is the same as that of Riemannian sphere. However, if the
component of the spin tensor is a function of ¢, then we see from
the equation (2.5.30) that the torsion influences the curvature of the
non-Riemannian sphere. For the choice Sy = ¢, we have S;o = 1.
Consequently, from the equation (2.5.29) we obtain

K= L <£) cosec’d . (2.5.31)

— 2 73
As k = 82—4G, where G = 6.66 x 1071'm?/kg/sec?,c = 3 x 10°m/sec,
then the value of the constant k = 2.0667378 x 10~*3. At a point 0 = 5

of the sphere, the curvature of the non-Riemannian sphere becomes

1

1 _
k= 5 — —5(2.0667378 x 10 3y (2.5.32)

We see from the equation (2.5.32) that the curvature of the non-

Riemannian sphere at a point ¢ = 7 of the sphere differ from the
curvature of a Riemannian sphere by an infinitesimal amount.

The dyad equivalent of the equation (2.4.15) is given by

1
d.(d.f) = =5 £2Qag0% A 6" (2.5.33)
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where

foy = fie@)' - (2.5.34)

Consequently, we obtain

TS S5 Y |
d,f = 2\/_[<7“(99 _cosec 8¢)Qaﬁ+

1
+ (ng + cosec@a—z;) Qus ]9@ N (2.5.35)
Using this equation we readily find
d*0 = —gsdel AG? and d*p=0. (2.5.36)
r

Now operating the new exterior derivative operator d, to the basis

1-form defined in the equation (2.5.21), we obtain

1 (kS 1
A" = — —=( =57+ ~cot )0 A6
ﬂ<2 ) |

and

d.0? = — % (% — %c te) AN (2.5.37)
We define

mim'm! =k’ m,m'm = —&, (2.5.38)

where £ is the spin component. We obtain the expression of the

covariant derivative of a basis vector of the dyad as

(0 ikcosecQS 0 ikcoseces o
mi; = | K —W t|mim; — ( K+ 7“2\/_ ¢ |mim; .
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The equation (2.4.53) yields the components of connection 1-form as

wh = —why = — (k—jg + /i0> 0 — <k_\}9§ - EO) 0. (2.5.40)

Also from the Cartan’s first equation of the structure (2.4.52), we have

d.6" :(EO ksd)el NG
2V/2

and

kS
2V/2

Comparing the corresponding coefficients of the equations (2.5.37) and

d.0* = — (/@ + )91 NG* (2.5.41)

(2.5.41), we readily get

g0 ot (2.5.42)

2

Hence the equation (2.5.40) becomes

1 cotd 1 cotd
L= = — kS, — — )0 — — [ kS, + ——]6% .
T ﬁ( ! r) ( o )

(2.5.43)

Now using equation (2.5.43) in the Cartan’s second equation of struc-
ture (2.4.81), we obtain
1k
0l =—-0% = (

rsinb

1
SdQ + >91 A6 (2.5.44)

Also the components of the curvature 2-form using equation (2.4.65)

defined by

Q' = —(Rin M)l N O* (2.5.45)
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Comparing the corresponding coefficients of the equations (2.5.44) and

(2.5.45), we obtain the dyad component of the Riemannian curvature

tensor as
1k 1
R = — S, — . 2.5.46
(R1212)a (rsinﬁ d2 T+ TQ) ( )
We express the Riemannian curvature tensor in terms of its dyad com-
ponents as
Rpij = Raﬁwe(a)he(ﬂ)ie(v)je((s)k _
This becomes
k 9 1y, _ _
Rpiji. = ﬁcosec 052 — 2 (mhmimjmk — TR —
- mhmimjmk + mhmimjmk) . (2547)
We write this equation as
Ryiji. =k(gnjgir — 9ijgnk) (2.5.48)
where
1 k
h=5— ECOSGCQQSLQ : (2.5.49)

is the Riemann curvature and 2y, is the Riemann curvature tensor of
the non-Riemannian sphere V5. The sphere is non-Riemannian because

the curvature tensor of the sphere contains torsion term and satisfies

the identities (1.2.27), (1.2.40) and (1.2.41). We see that the equation
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(2.5.48) is the same as that of the equation f{hijk = K1(9nj9ik — 9ijgnk)-
But the corresponding space is not homogeneous, as Rj;j; involves
torsion x is not constant.

If the Riemann curvature tensor of a non-Riemannian V,,,n > 2,

satisfies the equation (2.5.48), then it readily follows from the Bianchi

identities (1.2.40) that
K- 4
(4 o
K n—1

n:cexp[(nfl) /Qkikdxi] , (2.5.50)

where ¢ is a constant of integration. If Q;* = 0, then ¢ = k- the

or

constant Riemann curvature of the Riemannian space V,,, for n > 2.

K= /ﬁ@@'p[(%) /Qkikdaﬂ} . (2.5.51)

In case of 2-dimensional non-Riemannian space, it is remarkable to

Thus we have

note that the curvature of a non-Riemannian sphere determined in the
equation (2.5.49) is exactly same as the curvature determined from the
formula (2.5.5) in the equation (2.5.29).

Using the equation (2.5.23) in the equation (2.5.45) we obtain the

tensor component of the Riemann curvature tensor as

(Ria12)¢ = r?sin®0 — (kr)Sps . (2.5.52)
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This is also exactly the same as the equation (2.5.26). Consequently,
the result (2.5.38) for the Riemannian curvature at a point of a non-
Riemannian sphere of radius r is corroborated. Contracting the index

h with k in the equation (2.5.47) we obtain the expression for the Ricci

tensor as
R;; = (%605662951572 — %) (miTm; + mymy) (2.5.53)
r r
This gives
R=2 (200360295},2 — %) : (2.5.54)
r T
From equations (2.5.49) and (2.5.54) we have
K= —g : (2.5.55)

We see that the scalar curvature R is not constant, hence the Riemann

curvature k of the non-Riemannian sphere is not constant.

From equations (2.5.13), (2.5.53) and (2.5.54) we obtain

R
R = 29 - (2.5.56)

We see from the equations (2.5.53) and (2.5.54) that R;; and R are
the Ricci tensor and the Ricci curvature scalar of the non-Riemannian

space that involve spin term.

2.5.3 (Geodesics on a non-Riemannian Sphere

Let t' = % be the unit tangent vector field to a curve C' in a non-

Riemannian space V,,. Then the intrinsic derivative of the unit tangent
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vector ¢’ in the direction of the curve is called the geodesic curvature
vector and it is given by p' = ', %=. A geodesic in V}, is a curve whose

geodesic curvature vector at each pomt of the curve is identically zero.

Thus

This leads to the geodesic equation in a non-Riemannian space V,

d*z’ dz’ da* dad dx®

2 T B =0 (2.5.57)

The non vanishing components of the symmetric Christoffel symbols

and the tensor components of the contortion tensor are given by

{%2} = — sinfcosH ,{%Q} = cotf ,
k

(K12')e = — (E> Si (K11?), = (—) cosec*0S; . (2.5.58)
r r

By virtue of the equations (2.5.58), the geodesics on a non-Riemannian

sphere of constant radius r become

d26 d¢ df d¢

—~ _ sinBcosH - 2.5.59
" sinbcos (ds) TStdS 7 =0, ( )

£ dodé  k o\’

y f 2co t@—d —C;b — —Sicosec «9( ) =0. (2.5.60)
S s as r S

From the metric equation (2.5.20) we have

2 2
(Z—i) = ;12 — szn%(zf) : (2.5.61)

109



where r and K are constants. These non-linear second order ordinary
differential equations of geodesics are solved numerically by using soft-
ware MATHEMATICA 10 and the graphs of the geodesics are drawn.
The command "NDSolve” based on explicit Runge-Kutta method is
used. If S; = 0, then we observe that the equations of geodesics on the
non-Riemannian sphere are the great circles. Also, if S; = ¢ then the
geodesics on the non-Riemannian sphere are indistinguishable from the
great circles as it is also evident from the equation (2.5.32) that the
curvature of the non-Riemannian sphere differs from the curvature of

the Riemannian sphere by an infinitesimal amount.

Some Useful Results in Einstein-Cartan Theory

Let ¢ be a scalar function of co-ordinates defined in a non-Riemannian

space of Einstein-Cartan theory of gravitation. Then we have

i =@ =00 (2.5.62)

Taking the covariant derivative of the equation (2.5.62) with respect

to the asymmetric connections, we obtain
G.i; = b + du i
This gives
G.i; — i = o (K" — K" (2.5.63)
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Multiplying the equation (2.5.63) by e(q)’e(s)’, we get

(@;ij - (fb;ji)e(a)ie(ﬁ)j = Qb;a (Kﬁaa - Kaﬂa) , (2564)

where
QS;O = ¢;i€(0)i .

By giving different values to a and 8 from 1, 2, 3, 4, and using the
equations (1.3.14) and (1.3.17), we obtain the equations.

(5 — @) I'm? = — (@ + B1 = T1) Do — k1Ad + () + €1 — €1)0p+
+ 0106 ,

(645 — i) l'n? = — (1 +71) Db — (€1 + @) Ad + (M1 + T1)dg+
+ (71 +711)d¢

(¢ij — ¢yi)m'n! = —T1 Do+ (11 — a1 — B1)A¢ + (11 — 1 +7,)0¢+

+ Xlgqb )
(055 — dyji)m'm’ =(u1 — 11,) Do + (p1 — P1)A¢ — (ar — By)do+
+ (a1 — B1)0g (2.5.65)

We see from the equations (2.5.65) that, in the absence of torsion,
these equations are identically zero as was expected on a Riemannian

space of Einstein’s theory of gravitation.

111



2.6 Maxwell’s Equations in Einstein-Cartan

Theory of Gravitation

The Maxwell’s equations in Einstein-Cartan theory of gravitation are

defined as

F7;=0, and (2.6.1)
Fjija =0, (2.6.2)

where the covariant derivative is defined with respect to asymmetric
connections. Tetrad components of the Maxwell’s equations are ob-
tained as follows:

The tetrad components of the electromagnetic field tensor are de-

fined by
FP = Fiigl®) o) (2.6.3)
From this we obtain

Faﬁw :(Fije(a)ie(ﬁ)j);ke(’y)k 3

P8 —F el o® o F 4 Fiiel) o Fe® ) 4 FUc@) @) o k.
Using equation (2.4.60), we get

Faﬂw _ Fij;ke(a)ie(ﬂ)je(y)k _ WQayFije(U)ie(ﬁ)j _ 75@}7@7’6(0%)2.6(0)], '
(2.6.4)
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Contracting § with v in the equation (2.6.4) we get
Faﬁ _Fzg ke( «@) 5k JBFUﬁ — aﬁFaa
= F el =FP 5 4 FPoys 4 FO04P 5 (2.6.5)
Thus F7;e®; =0 = F 54 FP9%%, + F*~% 5 =0. (2.6.6)

Expanding the summations defined, in the equation (2.6.6), over the

repeated indices we get

FOUL g FO2, 4 Oy g ot FI2(0 ) (0 — 4% )t
+ FM (% — %) + F2(7%3 — v%32) + F? (7% — %)+

+ FP (% —7%s) + F (Y + 72 + %+ )+

+ F%(ylo1 + 70 + a3+ 701) + FO(v a1 + %50 + 755 + )+

+ P a7 e+ s+ ) =0 (2.6.7)

Now by giving @ = 1 in the equation (2.6.7) we get

F120 4+ FBo 4 FMy — F™ (03 + v304) + F3 (213 + Y132 — Ya33) +

+ FY™ (914 + 142 — 344) — F®y030 — F** 000 + F3* (34 — 7043) = 0 .
(2.6.8)

The equations
o — neano’ﬁFaﬂ ’
yields

F?=—Fy FP=—Fy ,F'=—-F;,
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FB—=_[F, F¥=—F; F*=—-Fy. (2.6.9)
Define the tetrad components of the electromagnetic field tensor

¢o =F13 = Fl'm/ |

1 1 i j i—j

o1 :é(FH — Fyy) = §Fij(l n’ —m'm’) ,

pg = — Foy = —Fyn'm | (2.6.10)
where
Fi; :2[ — 2Re¢qlng + 2iImeymm;) + (d2lmy) + aom[mj]) + c.c.} :

(2.6.11)

Using equations (2.6.9) and (2.6.10) in the equation (2.6.8) we obtain

0y — Ay = =" + 1) + 2(1° + )1 + (7" + 11— 28° — 261) ¢ .
Similarly, by giving o = 2,3,4 in the equation (2.6.7) we obtain the
equations

Doy — by =(m° 4 m1 — 20" — 201) o + 2(p” + p1) 1 — (K + K1)a
Doy — 51 = —(AY + X))o + 2(7° + 7)1 + (p° + p1 — 26° — 2€1) 0y

and
51 — Ao =(p’ + 11 — 29" = 2m) o + 2(7° + 1)1 — (0 + 01) s
(2.6.12)

The Maxwell’s equations for different fields characterized by Debney
and Zund [20, 21] reduce to
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(I) Type A field (¢1 7é 0 ,qbo = QSQ = O)

Do =2(p" + p1)¢1, Ady = =2(1" + )1
5¢1 :2(7'0 -+ 7'1)¢1 y 3¢1 = —2(7’(’0 + 7T1)¢1 . (2613)

(II) Type B field (¢2 # 0 ,¢0 = ¢1 = 0)

Dey = (p° + p1 — 26" — 2€1) o
6pp = (7" + 11 — 28" — 2B1) ¢ |
(6" +01)=0,(k"+ k1) =0. (2.6.14)

(IIT) Type C field (¢ # 0 61 = o = 0)

Apyg = — (1’ + 1 — 29" — 271) 0 ,
quo = —(7TO + 1 —2aY — 2a1) g
N4+ A)=0,0"+1)=0. (2.6.15)

On using the equations (1.3.29) we obtain the Maxwell’s equations in

the form

Dy — 5y = (7" — 2" + V2k52)do + 2(p° — V2ks1)d1 — (K — V2ks0) g2
Apy — 6o = (V0 — V2ksy)do + 2(1° — V2ks1)py — (77 — 26° — V2ks) s |
01 — Ao = (1° — 27°)do + 2701 — 090

Dy — 6 = =Ny + 27%1 + (p" — 26" . (2.6.16)
Similarly, to find the tetrad components of the Maxwell’s equation
(2.6.2), we start with the equation
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Fog =Fjje)es’ (2.6.17)
= Fagey =(Fijeca)' e ne)” -
By virtue of the equation (2.4.60), the above equation reduces to

Fopy = Fijne('e(s)€)” + Fop) oy + Fao) sy

= Fijwew'e@’er)’ = Fagn — Fao?V 8y — FraVay - (2.6.18)
Similarly, we obtain
ij;ie(a)ie(ﬁ)jemk =F3v0 — F3oV va — For V7 Ba (2.6.19)
and
Friiew)'e@y’eqm” =Fyas — Fro ap — Fratvp - (2.6.20)

Adding equations (2.6.18), (2.6.19) and (2.6.20) we get

(Fij;k + Flii + Fki;j)e(a)ie(ﬁ)je(v)k = Fupyy + Fpya + Frap—

- Faa(Vaﬁv - 7076) — Fyp ('Vaow - VJW) - Fm(VJﬁa - ’Vaaﬁ) :
Using equations (2.6.2) and (1.3.12), we get
Fogy + Fyia + Fhasp :Faanae('yoeﬁv - ’Voevﬂ + Kpye — KvﬂeH‘
+ Faﬁnoe(’yoea’y - ’Voefyoz + Kowe - K7a6)+
+ Fa’ynge(fyoeﬂa - 706065 + Kﬂae - Kaﬂe) .

Expanding the double summations defined on the right hand side of

the above equation, we obtain
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Fopy + Foya + Frap = Fal(’YOZﬁv - ’702% + Kpyo — Kv/ﬂ)"‘

+ Far(7"19y = 7195 + Kt = Koypn) = Fas(Vagy — 7495 + Kppa—

— Kyp1) — Fa4(7035’y - ’7037ﬂ + Kpy3 — Kop3) + Flﬂ(’yomfy - 7027a+
+ Koo — Koa2) + Fos(1" 100 — V10 + Koyt — Koa1) — F3s(1 40, —
- 704704 + Koy — Kvaﬁl) - F4B(703cw - 703704 + Kaqys — Kva3)+

+ F1,(7%980 — Y205 + Kgaz — Kap2) + Fory (V0150 — 7 108 + Kpa1—
— Kop1) — F3,(Y 480 — 710 + Kpas — Kaps) — Fury (V0350 —

— V305 + Kpaz — Kaps) - (2.6.21)

By giving different values to « , 3 ,~v from 1, 2, 3, 4 and using equa-
tions (1.3.29), (2.6.9) and (2.6.10) we readily obtain the same set of
Maxwell’s equations derived in (2.6.16).

2.7 Conclusion

A technique of differential form on a non-Riemannian space is devel-
oped with the help of the new derivative operator d, introduced by
Katkar [61] and Cartan’s equations of structure are derived in a more
general form. This new technique will definitely be used to study the
indispensable qualities of the non-Riemannian geometry and will also
be exploited to find the solutions of the field equations of the Einstein-

Cartan’s theory of gravitation. The new derivative operator d, and
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the Cartan’s equations of structure in the non-Riemannian space will

form basis for development of the non-Riemannian geometry.

118



Chapter 3

Einstein-Cartan Relativity in

2-Dimensional Non-Riemannian Space
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3.1 Introduction

Einstein’s theory of general relativity is one of the cornerstones of
modern theoretical physics and has been considered as one of the most
beautiful structures of theoretical physics not just in its conceptual
ingenuity and mathematical elegance but also in its ability to explain
real physical phenomena. It is the most successful theory of gravita-
tion in which the gravitation as a universal force can be described by
a curvature of space-time consisting of three spatial dimensions and
one time that has led Einstein to formulate his famous field equations
of general relativity which are non-linear second order partial differ-
ential equations. General relativity has been considered as one of the
most difficult subject due to a great deal of complex mathematics.
The complexity of the mathematics reflects the complexity of describ-
ing space-time curvature and some conceptual issues which are present
and even more opaque in the physical 4- dimensions world. Hence in
order to gain insight in to these difficult conceptual issues Deser et al.
[23, 24], 25] in a series of papers, Giddings et al. [36], and Gott et al.
[39, 140] have examined general relativity in lower dimensional spaces
and explored some solutions. Studies of general relativity in lower di-
mensional space-times have proved that solving Einstein’s field equa-
tions of general relativity in a space-time of reduced dimensionality is

rather simple but yields some amusing results that are pedagogical and
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scientific interests and yet are apparently unfamiliar to most physicists.

A.D. Boozer [9] and R. D. Mellinger Jr. [84] have examined the
general relativity in (1+1) dimensions. Einstein-Cartan theory of grav-
itation is one of the extensions of the general theory of relativity de-
veloped by Cartan [12] in a non-Riemannian space-time. It is only in
the last couple of decades, the Einstein-Cartan theory has caught the
imagination of researchers for constructing models with spin for the
primary purpose of overcoming singularities. In this chapter we intend
to study the Einstein-Cartan theory of relativity in a 2-dimensional
non-Riemannian space.

The material of the chapter is organized as follows. In the Section
2, an exposition of a new dyad formalism, consisting of two real null
vector fields is given and we have employed this dyad formalism and
constructed a 2-dimensional non-Riemannian space and shown that
the 2-dimensional non-Riemannian space contains no matter at all, so
that there is no gravitational field either but torsion influences the
curvature of the 2- dimensional non-Riemannian space.

In the Section 3, the results obtained in the Section 2 are corrob-
orated by employing the techniques of differential form developed by

Katkar in [61]. Some conclusions are drawn in the last section.
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3.2 Dyad Formalism:

Consider a 2-dimensional space characterized by an indefinite metric
ds* = f*(x,t)dz* — h*(z, t)dt* (3.2.1)

where

gi1 = f2, g22 = —hQ, g = —f2h2 )
911 _ f_2, 922 — _p2 (3.2.2)

We define a basis 1-form as

1 1
ol = —[f(x,t)dz + h(z, t)dt] 0% = —[f(z, t)dx — h(z,t)dt] .
\/§[f() (,t)dl] \/§[f(> (,t)dl]
(3.2.3)
In terms of the basis 1-forms the metric (3.2.1) becomes
ds? = 20'6* . (3.2.4)

In order to construct a 2- dimensional non-Riemann space, we intro-
duce, in the following two null vector formalism. This formalism facil-
itates to introduce torsion in to the space and the space becomes non-
Riemannian.

Consider a curve in a space. At each point of the curve, we define

a dyad of basis vectors as

e()i = (lisni) - (3.2.5)
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Where [; and n; are real null vector fields satisfying the ortho-normality

conditions

Iin'=1. (3.2.6)

Here the Latin indices are used to denote the tensor indices while the
Greek indices are used to denote the dyad indices. Any vector (or
tensor) can always be expressed in terms of the dyad components of

the vector (tensor) and vice versa. Thus we express

Aa:AieaiaAa :Ai'eaie ju
(a) B 7% () ©(B) (3.2.7)
A; = Aqe!™; | Ayy = Agge®iel?);

where e(®); is the dyad of the dual basis vectors satisfying the conditions
e(a)ie(a)k = 6%, and e(o‘)ie(ﬂ)i =0 . (3.2.8)

This gives
el = (ng, ;) . (3.2.9)

Consequently, we express the dyad components of the metric tensor

gij as
Nas = Jij€(a) €3) - (3.2.10)
This gives
of 01
Nop = 1" = : (3.2.11)
10

123



Hence the metric tensor in terms of the basis vectors is defined as

The tetrad indices can be raised and lowered by the dyad components
of the metric tensor 7,4, while the tensor indices are raised and lowered

by the metric tensor g;;. The equation

0" = e, Vx|

yields
1 1
li=—2(f,—h),ni=ﬁ(f7h),
S S R T S G
[ = ) = () (3:2.13)

The spin tensor is anti-symmetric; hence it has just one independent
component in the 2-dimension space. We express the spin tensor as a

linear combination of the basis vectors of the dyad as
Sij = aﬁe(a)ie(ﬂ)j .
Sij = (—Slz)d(linj - nilj) ; (3~2~14)
Sij = Sa(ling — ngl;) |

where S; = (—S12)4 is the dyad component of spin tensor. In general it

is a function of coordinates. The tensor component of the spin tensor

is obtain from equations (3.2.13) and(3.2.14) as

1
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Similarly, we express the spin angular momentum tensor in terms of

the basis vectors of the dyad as
Sijk - - [(Sl2l)dlk + (5122)dnk] (ZZ?”L] — nzlj) . (3216)

For the choice of the time like vector field u’ = 7([’ + nt) such that

u'u; = 1, we have from the equations (3.2.14)

S Sa
S+ (S

It follows from the equations (1.2.52), (3.2.16) and (3.2.17) that

Sd

S12M)a = (S12%)a = — (=) 3.2.18
(S12")a = (S127)d (\/5) ( )

Hence we have from equations (3.2.16),(3.2.17) and(3.2.18)

1
i’ = Siju" = ESd(lmj — il (1" 4 n") (3.2.19)
We express the torsion tensor Qijk in terms of its dyed components as
Qi = Quge Ve, Wk () (3.2.20)
This yields

Qij" = [_(lel)d " — (Q12%)4 nk} (linj — nglj) . (3.2.21)

We approximate the values of the dyad components of torsion tensor

to the dyad components of the spin tensor as

kS,
22

kSq

(Ql?l)d = (Q122)d ﬁ .

(Q12%)a = (Qi21)a = (3.2.22)
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Consequently, the equation (3.2.21) becomes

2V/2
Similarly, the tensor components of Contortion tensor are obtain from

the equations (3.2.13) and (3.2.21) as

Qij (Linj — nily) (1" 4+ n*) . (3.2.23)

(Qi2")r = (Qu22): = ];—? (Q12%)r = (Q121): =0 . (3.2.24)

We now express the contortion tensor Kijk as the linear combinations

of the basis vectors of the dyad as
Kz’jk = _(K112)d nz(ljnk - n]lk) - (K212)d lz(l]nk — njlk) . (3225)

From the relation

KO‘B'Y = _Q0457 + Qﬂ”ya - Q”yaﬁ 5 (3226)
we obtain
kSq
K = (K =—. 3.2.27
(K212)a = (K112)a 7 ( )
Hence the equation (3.2.25) becomes
kS,

V2
The equations (3.2.13) and (3.2.28) yield the tensor components of the

Contortion tensor and are given by

f

(K11%) = (Kb, = —kﬁSt : (3.2.29)
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For the given metric, the non vanishing components of the symmetric

Christoffel symbols are are given by

{h} — {11} - h2f2 {12} -

2
J (3.2.30)
{22} h 1 7{12} = {22} = 7

Thus the tensor components of the asymmetric connections becomes

(Cy')e = ];1 (P )e = ;2h1 ,(P12%)¢ = (Par®)s = % ,
(T12')e = J;f ;St () =L ik klj;st , (3.2.31)
(Cor')s = J;Q (C2”)e = % :

Due to equation (3.2.31), the expression for the Riemann curvature

tensor becomes

(Ri21?) = ——— + 2f,22 + (%)(%) / = f2h2+ l;;‘;f(hsm — Siho) .

From this equation, we obtain the covariant components of the Rie-

mann curvature tensor of a non-Riemannian space as

(Ri212)t = hhar — ffa2 — %f,1h,1 + %f,zhz - %(hsm — Sihya) .
(3.2.32)
This equation can also be written as
(Ruons)e = (Risws)e — (S0 +15:,) (3.2.33)
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where

f

R h
(Rig12)t = hhai — ffo2 — = f1ha + Ef,2h,2 :

f

The tensor components of the Ricci tensor and the Ricci scalar are

given by

(Ri1): = h™*(Riz2)s (R12)t =0,(Ra)t = —f *(Riz12)e ,  (3.2.34)

h k
(Ri1)e = % - if22 - ﬁflhl / f2h,2 - hg(hsw — Siho)
h k
(Ra2): = th 1+ ff22 + fgflh 7 fzhz + fh(hsm — Sitha) ,
(3.2.35)
and
1 k
R = [hfz 11— fh2f22_hf3f h1+fh3f2h2—m(h5t,2—5th,2)] -
(3.2.36)
We see from equations (3.2.35), (3.2.36) that
R
Ri; = 59 - (3.2.37)

This is true for any 2-space. This shows that the Ricci tensor and
the Ricci scalar terms cancel in the field equation of the Einstein-
Cartan theory of gravitation. In other words, in 2- dimensions space,
the Einstein tensor vanishes identically and from Einstein-Cartan field

equations, we get t;; = 0.
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Curvature of a non-Riemannian Space

Katkar [62] has obtained the formula for the Riemann curvature of

a non-Riemannian space in the form

119 0

K =K1+

where b = (gn;gir — 9i;9nk)P"q'P’q" is the determinant of the metric
tensor of the 2-dimensional surface determined by the orientations of
the two unit vectors p’ and ¢*, and

Rhijkphqipj q"
(gnigir. — 9i59n)P"4'P' q"

is the Riemann Curvature of Riemannian space, at a point, for the
orientations determined by the two unit vectors p’ and ¢* . The formula

(3.2.39) gives the curvature of a Riemannian space as

1 1

h_fzh7 fh2f22 + hfo h1 fghg . (3240)

K1 = —

f h3
Consequently, the curvature of a non-Riemannian space becomes

1 k

k=——mhn+ f22+hf3f 1hy — fh3f2h2+f2h2

hf2 (fSt2+ Sef2) -

(3.2.41)

fh2

We see that curvature of the non-Riemannian 2-space is influenced
by the torsion. In the absence of torsion, we see from the equations

(3.2.40) and (3.2.41) that k = k1. We also observe from the equations
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(3.2.36) and (3.2.41) that
K # —g : (3.2.42)

If the components of the spin tensor are zero, then the results (3.2.36)
and (3.2.42) reduce to the results of Riemann space.
From the tetrad components of the Riemann curvature tensor R,z,5 =
hoi ik ‘
Rhwke(a)e(ﬁ)e(ﬂy)e(é) , we obtain

1

(Ri212)a = f2h2(

Rigna):. (3.2.43)

Consequently, from the equation Ry, = Ram(geh(o‘)ei(ﬂ)ej(W)Bk(‘s), we

obtain the expression for the Riemannian curvature tensor of a non-

Riemannian space as

R = [ — ——h hy —
hijk = | e 11+fh2f22+hf3f 1 fhgfz 21
k
fhg(hstz Sth.2)) (gnjgik — 9ijgnk) -
(3.2.44)
This equation, due to the equation (3.2.36), becomes
Rpijk = ——(9ni9ik — 9ijgnk) - (3.2.45)

2

If the Riemann curvature tensor 12, of any non-Riemann space V,,,n >

2, satisfies the Bianchi identities (1.2.27), then we obtain

R = cexp K%) /Qh,-h de’ ] : (3.2.46)
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where c is a constant of integration. If thh — 0= c= R. Hence

R = Rexp Kn f 1) /thh dz'’ ] . (3.2.47)

Where as in the case of Riemannian space, we have

Rhijk = Hl(ghjgik - gz’jghk) . (3~2~48)

This gives R = n(n—1)k1, where k; is the constant Riemann curvature

of a Riemannian space. Hence we have finally,

R =n(1 —n)kiexp K%) /thh dx’ ] : (3.2.49)

Contracting the index h with k in the equation (3.2.44) we get

1 1 1 1 k

h_th’ll — szz — h_f?’f’lh’l + mfzhz — —=(hSi2 — Sth2)lgij -

Rij = IiE

(3.2.50)

This is nothing but R;; = %gij. This shows that the Einstein tensor

Gi]‘ = Rij — ggij vanishes identically.

3.3 Techniques of Differential Forms

The Katkar [61] has introduced a new operator d, on a non-Riemannian
space and applied to a form of any degree. It converts p — form to
p + 1 — form and is obtained by taking the covariant derivative of

an associated with p'"* ordered skew symmetric tensor with respect to
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the asymmetric connections. We note here that unlike the exterior
derivative operator in a Riemannian space, the repetition of the new

derivative operator d, on any form ¢ of any degree is not zero. i. e.,

d.2¢p # 0.

However, the operator d, satisfies all other properties of the exterior

derivative. For the scalar function ¢, the operator d, gives

dep = ¢ d.x" . (3.3.1)
Where for the scalar function ¢, we have

Qi =0 =0 . (3.3.2)

Hence we have d.¢ = d¢ and d.z' = dz’, where d is the usual exterior
derivative defined in a Riemannian space in which the connections are
the symmetric Christoffel symbols. However,the action of the repeated

operator d, on the scalar function ¢ gives
d*(d*gb) = _Qs;lQijld*xi A\ d*xj - Cb;kd*ka .
For the coordinate functions ¢ = ' , this equation becomes
.20 = —20, A doa) 3.3.3
*:c——§Qij LN dua (3.3.3)
Consequently, the above equation yields

1 , )
d.(d,¢) = —§¢;kQijd*x’ Ad.a? (3.3.4)
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The dyad equivalent of this equation is given by

1
d(du) = =567 Qas”0" A 07 (3.3.5)
where
by = (b;iei(’y) ;
: 109 109 1 ¢ _10¢
Consequently, we obtain
_ 0
¢ = 2\/_ [(f ¢ ! ¢)Qa5 +
¢ 90 (3.3.6)
-1vYY o ﬁ
+(f 1 o )Qa 210> n o7
From this equation, we readily find
k
dr = 2f2hst 0' A0, and dt=0. (3.3.7)

Now operating the new exterior derivative operator d, to the basis

I-from defined in the equation (3.2.3), we obtain

1
d.0' = 2(fa— ha) + kSi|0' A 0%
2\/§fh[ ] (3.3.8)
] 3.
d.0? = 2(fa+ha)+kSi|0' A O
2\/§fh |: (f72 71) t:l

From the Cartan’s first equation of structure of the non-Riemannian

space, we have

1
4,0 = —w5 NO° + Qo™ 07 A 07 (3.3.9)
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where
wo‘ﬁ = 7“5707 5 (3.3.10)
and

ey = VOaﬁw — K", (3.3.11)

where 7“3, are Ricci’s coefficients of rotation and are defined by

Vg = —e
o oY i ] o k ¢ ‘
ey = —€Vijep)e)’ — ik en)

where

70(167 = _e(a)i/je(ﬁ)ie(v)j ; (3.3.12)

are the Ricci’s rotation coefficients in the Riemannian space. From the

equation (3.3.12) we find

70111 = _6(1)i/j€(1)i6(1)j ;

70111 = lz’/jni I/ and 70112 = li/jninj .
We define
li/jni UV =g", li/jninj =0, (3.3.13)

where " and ¥ are the spin components . The components of the

Ricci’s coefficients of rotation are given by

Y =" = (KD, Y2 =" — (Kaba,
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k k
= 7111 = —7221 = (/‘60 + ﬁfh5t> y 7112 = —7222 = (VO + ﬂfh5t> .
(3.3.14)

Using the equations (3.3.14), we obtain the expression of the covariant

derivative of a basis vector of the dyad as

St kS
10) an

The equations (3.3

d (3.3.14) yield the components of connection

1-form as

k kt?
1 2 0 1 0 2
= —w?y = + S, | ot + + S, 16%. (3.3.16
Wi w2 (“ V2fh t) (V V2fh t) ( )

Also from the Caratn’s first equation of the structure (3.2.9), we obtain

d.0" = < 04 \/_fh ) O AG> d.6 = ( \/_fh )01 NS
(3.3.17)

Comparing the equations (3.3.8) and (3.3.17), we readily get

/10 1 O _

Hence the equation (3.3.16) becomes

1
N=—w=——[(h1+ fa+kS)0" + (f2—h1+EkS)O?] .
w1 ) ﬂfh |:< 1 f,2 t) (f72 )1 t) i|

(3.3.19)

The Cartan’s second equation of structure in the non-Riemannian

space, when the spin tensor is not u-orthogonal is given by Katkar
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[61]

Qag = d*wo‘ﬁ—i—wo‘g A w“5+
K Q o «@ o «@ ol pd
+ Z 2y 505’5716 + 7y 35570u - 5755016 0° NG .

(3.3.20)

From this we obtain
kS;
2v/2fh

On using equation (3.3.18) we get

Qll = —922 = d*wll - |:(/€O + I/O) + St] 91 N 92 .

2k
V2fh

O = —0% =dw! — Silf2+ kS 0" A 0> (3.3.21)

k
2f2h?
Operating the new exterior derivative operator d, to the equation

(3.3.19) we find

1 k
d., — —h h —=Sih
wh = [hf3f1 TP 11+fh2f2 fh3f2 2= 2t
k 1 A p2
thStg + 27202 Si(f2+ kSt)}Q ANl
(3.3.22)
Consequently, the equation (3.3.21) becomes
1 1 1 1
QY =-—0% = [_flhl — —hu+ 55 02— Sshut
354 2°0 29 3
n hg fh fh (3.3.23)
fhg(hStg—St )]91/\92 .
The components of the curvature 2- form are defined by
1
Ol = —§Raml AN (3.3.24)
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Q' = (R g 0" NO* . (3.3.25)

Comparing the corresponding coefficients of the equations (3.3.23) and

(3.3.25), we obtain the dyad component of the Riemannian curvature

tensor as
1 1 1 1 1
(R1212)d = (Rm )d = - —3f71h,1 — Tl + —Qf, 3f2 21
hf hf fh fh
k
fhg(msy2 Sihs)
(3.3.26)

Hence, the Riemann Curvature tensor of the Non-Riemannian 2-space

becomes
Rpiji = ! fihy — —zhu + ! —f2 f 2+
1 3.
fh3(h5t2 Sih2) | (gnjgix — Gijgnk) -
This on using the equation (3.2.36) we get
R
Ry, = _E(ghjgik — Gijgnk) - (3.3.28)

The result is equivalent to (3.2.45). We see from the equation (3.2.35)
that

Ry Rao

In the 2- dimensional space, Ricci tensor and the Curvature tensor has

only one independent component. We express the Riemann curvature
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tensor Rpi;r in terms of the Ricci tensor R;; alone as

Rpijk = — |9njRik — gnkRij — gij Rk + gir Ry | +
leglm
+ %(ghjgik — Gij9hk) - (3.3.30)

3.4 Conclusion

Introduction of dyad formalism facilitates the complexity of computa-
tion. A 2- dimensional non-Riemannian space is constructed with the
help of the dyad formalism. It is shown that the Einstein tensor of 2-
dimensional non-Riemannian vanishes, hence the corresponding space
contains no matter at all, so that there is no gravitational field either
but the curvature of the space is influenced by the torsion. The results

are corroborated by the method of differential forms.
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Chapter 4

Non-Static Spherically Symmetric Space-

Times in Einstein-Cartan Theory
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4.1 Introduction

Relativistic cosmology is the study of large scale structure of the phys-
ical world. Relativists construct mathematical models as the solutions
of the Einstein’s field equations that represents the universe as a whole
concentrating on its large scale features. Einstein’s general theory of
relativity is one cornerstones of modern theoretical physics and has
been enormously successful not just in describing all kinds of motion
and in describing gravitation as a manifestation of curvature of the
space-time but it has been served as a basis for different mathematical
models of the universe. It is still challenging problem to understand the
exact physical situation of the physical world at early stages evolution
of the universe.

In recent years there has been immense interest in constructing
the mathematical models in Einstein’s general theory of relativity and
also in the several alternative theories of gravitations which are of vital
importance for the better understanding of the large scale structure of
the universe.

It is only in the last few decades, the Einstein-Cartan theory has
caught the imagination of research workers for constructing models
with spin for the primary purpose of overcoming singularities. Kopczyn-
ski [72] has constructed a two parameters family of spherically symmet-

ric models without singularities in the frame work of Einstein-Cartan

140



theory of gravitation.

Spherically symmetric or cylindrically symmetric perfect fluid mod-
els with spin have been obtained by Prasanna [100], [101]. Non-singular
Bianchi type-I cosmological models incorporating spin in which a mag-
netic field is present have been obtained by Raychaudhari [105]. Some
spatially homogeneous Bianchi type VI, VII dust distributions with
spin have been discovered by Tsoubelis [131]. Many of the previously
known solutions reviewed by Kuchowicz [82] for Weyssenhoff fluids in
the Einstein-Cartan theory of gravitation have zero acceleration and
vorticity. Non-zero accelerating solutions in the framework of Einstein-
Cartan theory have been claimed by Griffiths and Jogia [42]. The au-
thors Tolman [130], Florides [31], 32],33], Eflinger [27], Kyle and Martin
[83], Whittaker [136], Shah [112], Vaidya [132], Wilson [137], Trautman
[125], Bonnor and Wickramasuriya [7], Bailyn and Eimerl [4], Traut-
man [126, 127, 128, 129], Omote [91], Isham et al. [53], Tafel [121],
Kopczynski [73], Adler [1], Krori and Barua [76], Nduka [87], Sing and
Yadav [119], Chakravarti and De [14], Mehra [85] , Pandey et al.[93],
Koppar et al. [74], Singh, P. and Griffiths, J. B.[I14], T Singh et al.
[116], Singh, T. and Prasad, U [117] C.J. G. Junevicus [56], Kuchowicz
[78, [79], 80, R1], W Arkuszewski et al. [3], Kuchowicz [82], N, Duka
[26], Raychaudhuri and Banerji [107], Singh and Yadav [118], Krori et
al. [75], Pandey and Prasad [92], M. L. Bedran and M. M. Som [5],
Nurgaliev and Ponomarev [88], Kalyanshetti and Waghmode [66], Ya-
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dav and Prasad [138], Kar and S SenGupta [57], Sharif and Igbal [113],
Katkar [59, [61], Katkar and Patil [60], Katkar and Phadatare [64] are
some of the research workers who have investigated several aspects of
the solutions of the Einstein-Cartan field equations.

Motivated by the above investigations, in this chapter, two different
classes of solutions of the field equations are obtained, when Weyssen-
hoff fluid is the source of gravitation. The material of the chapter is
organized as follows. In the Section 2, the non-static spherically sym-
metric metric is considered and the tetrad components of connection
1-form, curvature 2-form are derived. Consequently, the tetrad compo-
nents of the Riemann curvature tensor and Ricci tensor are derived. In
the Section 3 specific solutions are obtained. Finally some conclusions

are drawn in the last section.

4.2 Non-Static Spherically Symmetric
Metric

Consider the Non-static spherically symmetric metric in the form
ds® = e dt* — e\ dr? — B*(d6* + sin*0d¢®) | (4.2.1)

where \ , v and B are functions of r» and ¢ only. Define the tetrad

basis 0% for the metric (4.2.1) as

0 =—(e”dt + eMdr) |

1
V2
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0> =—(e"dt — eMdr) |

Sl

1
0> = — E(Bd@ — iBsinfde) (4.2.2)

where 0* is a complex conjugate of 63. Hence the metric (4.2.1) can be

written as
ds® = 20'0* — 26°6*, (4.2.3)

using equations (2.4.46) and (4.2.2) we obtain readily the components

of the basis vector fields as

1

l, =—— (—e*,0,0,€") |
(- 00e)
1

n, =——=(e7,0,0,e") , 424
2 (.0.0.0) 424
1

m; =——= (0, B,1Bsind,0) |,
Vol )

where m; is a complex conjugate of m;. The contra variant components
of the null basis vectors are obtain by raising the index by the metric

tensor as

I = ¢*l, = (e_’\, 0,0, 6_”) :

Sl

similarly, we obtain

n' :%( ~,0,0,e7") | (4.2.5)
1

m=— — OB 1B cosec@O )
— )
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The tetrad components of the equation (2.4.22) are given by
1
df = =5 F2Qas™0" A 0° . (4.2.6)

For the metric (4.2.1), this can be conveniently rewritten in the form

1 0
dzf - m[ - af (Qaﬂ Qa52) f(QOéﬁ =+ Qaﬂ )
—iB 'cosecl f(Qag Qaop’) + _”af(Qag + Q)] 0" N O

O
(4.2.7)

From this equation, we readily find the expressions for the repeated d,

derivative of the co-ordinate functions as

-
dr = o op”) 0% NG,
r 2\/—(Q5 Qﬂ)
d. 26 BI(Q + Qag') 0N O°
* 2\/— af af )
B~ Lcosect
¢ = 2\/— (Qﬁ Qﬂ)
d>’t = — wit + Qas2)0% N 6P, 4.2.8
2\/—(QB Qus’) (4.2.8)

Now operating d, to the equations (4.2.2) and using the equations
(4.2.8) we readily, get

1 ;o 1
d*el :_e—(x\—H/) (V o )\) 012 o _Qaﬁleaﬁ
V2 2 ’
1 . 1
1,67 __2 <€ Ay 4 e—uA) 912 562&5290&3 7
1 f)\B/ fz/B f)\B/ 7VB 23
d*93 ——2 [(6 E —|— e 5)913 (6 E (& E)Q -|—



1
+ B cotd 934] — §Qa5390‘5 :

d*94 :L |:<€—)\El + e—uE)eM o (e—/\g . €—V§)924_

V2 B B B B
1
— B~ tcoth 934} — §Qa549a5 : (4.2.9)
where we have used
68 = 9> AP

where the dot denotes partial derivative with respect to time 't and
the prime indicates partial derivative with respect to the coordinate
T’

From equations (2.4.70) and (4.2.9) we obtain after simplifying the

values of Newman-Penrose spin coefficients in Riemann space-time as

(4.2.10)

By virtue of the equations (1.3.30) and (4.2.10) from equations (2.4.69),

we obtain

/

Wiy = — {(e"\ul + e_”/.\)e1 + (6_/\V — e"’)\) 6% — 2k5003 — 2k§094} :

Sl -
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1 R R
w13 :ﬁ [2]{58091 + (6 E +e E + 21651)94} ,
1 ' :
Wog = — 7 [2ks00” + (e_A% — e‘”% —2ks1)0"] | (4.2.11)
1
Wyg = — 7 [2ks1(0" + 6%) + R 'cotf(0° — 6%)] .

Now by using equations (1.3.30), (4.2.10) and (4.2.11) we obtain from
the equations (2.4.85) the tetrad components of curvature 2-form.

These are listed below:
QY =— [6_2)\ (V" -\ + VIQ) — e ()\ —\+ )\2> + 4k*s050) 0+
+ [ke s0, + 2501") + ke (s0, + QSOg) — 2k%ss1] 0"+
+ [ke NS0, + 2501) + ke V(S0 + 2§Og) + 2k%5051] 0" —
— [ke”(soyr + 2s01") — ke " (s04 + 2502) + 2]{23051} 623 _
— [ke (o, + 2501) — ke ™ (S04 + 230%) — 2k%50s1] 0%+

/

B )
+ [kBcotf(so — 5p) + 4k$16_”\(§ —v)]e*, (4.2.12)
Oy = — [lce_A (S0 4 250V") + ke (s + 230}\) — 2k23051] 612+

k L
+ {ksi,e ™ + ksie™ + 2k%sT + % [eV'B+ e (2B + AB)| -

6_2>‘ » , , 6_2V . . ..
_ % (B —XNB +/B (B _ B /\B) ol
55 ( +v'B)+ 5B vB + } +
+ [,ICS()B*lCOte — ZkQS(ﬂ 623 — {k;slﬂde*A — ksye”" — 2]€28%+
—2\

+ 2k 5030 + ksoB Lot — 62—B <B” —~\NB — V/B/) —
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2v —(\v)

—623 (B—vB-AB) - S (A\B'+ B/ — B)+
k ) .
+ e @B —vB) - e (2B - AB) | }0*+
kso, o VE 2 34
+ [— = (e B’ — e 'B) — 2k%sys1] 0% | (4.2.13)
= [ke_)‘(S()r + 2s0v") — ke " (s0+ + 250A) — Zkzsosl} 612 —
— (2K%s} 4 ksg B 'cotf)0' + {ksl e N+ ksie”” + 2?52 —
o2\
— 2k%s30 + ksoB lcotl + E(B ~NB — V/B/)-F
6_21/ .. . . e_(/\'H/) . -y Y,
+ZB(B—DB—)\B)— (AB'+ Bv — B )+
k , .
+ % [e(2B' — V' B) + ¢ (2B — AB)] }0"—
k L
— {ksMe*)‘ — ksyse”” — 2K%s + % [67)\V/B —e (2B +AB)|+
672)\ p —2v . .. o4
“ (B =NB 4+ vB) - (B -vB+AB
+2B< NB +v 2B( UB + AB) } 6%+
k / :
+ [%(eAB +e7VB) + 2k*sos1]60°* (4.2.14)
= —2ke *(s1, + s10)0" + %(B/e_’\ — Be ™V + 2ks, B)013—
kso, : k , :
— %(B e — Be™” — 2ks; B)0M + %(B e+ Be™”
ksy, :
— 2ks; B)6® — g(B e+ Be™ + 2ks  B)0*+
1 _ 9 o,
+ o5l —e 2AB” 4+ e B? — 4k?s.°B?)6* . (4.2.15)

The expressions for Q'y, Q%4, Q% are obtained by interchanging the

suffixes 3 and 4 and taking the complex conjugate of the right hand
sides of the equations in (4.2.13), (4.2.14) and (4.2.15) respectively.
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4.2.1 Tetrad Components of Riemann-Cartan

Curvature Tensor

From the equation (2.4.65) we obtain

Qup = R12050" + Ri3050" + R1sap0" + Ro3ap0? + Rosapd®* + R3sapf™
(4.2.16)
where

Qaﬁ = —Qﬁa ; Ck,ﬁ = 1,2,3,4.

By giving different values to a, 8 = 1,2,3,4 in the equation (4.2.16)
and then equating the corresponding coefficients of basis 2-forms of

equations(4.2.12),(4.2.13),(4.2.14) and(4.2.15) we readily obtain the

tetrad components of Riemann-Cartan curvature tensor as

Rioyp = — [6_2)\ (V" — v+ V/2> — e W ()\ — v+ >\2> + 4k250§0} ,
.= A ! —v B 2

R1312 =ke (SQT + 2801/ ) + ke (SO,t + 2805) — 2k SoS1 ,

B
Ro319 = — [kei)‘(S()’r + 280V’) — ]{67”(80715 + QSOE) + 2]€28081],

B’ /
R3412 :kB_lcOte(So — 30) + 4]€31€_/\ (E — V) s

Rigi3 =ke ™ (S0 + 250v") — ke ™" (s04 + 230}\) — 2k%s081 |
Ri313 = — (2k23(2) + ksoBflcotH) :

Ry =/€317Te_)‘ + ksype”" + 2k%st — 2k%s050 + ksoB ' cotf+
6_2/\ / /
(B -NB - ’B)
3B ( ve )t

6—2V .

o (B—DB—)\B)—
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—(A ) : k
e ’ ’ S1 Y ’
——(\B'+ By — B) + 2L [e (28'—v'B)+

+e <2B — )\B) |,

k ..
Rogz = — ksie * + ksye” + 2k%s] — % [e /B —e (QB + )\B) |-

—2) —2u
—— (B = XNB +/'B

25 TV B)+35p
]{780

Raa13 =75 (e_)‘B/ — e_”B> + 2k%s5084 :
R1223 = — [k‘@_/\ (So,r + 280V’) -+ ke_”(so,t + 280}\) + 2]€28081} s

€

(B—pB+XB),

ksq ..
Rigoz =ksy e + ksye™” + 2k%st + f[ 'B+e V(2B + AB)] -

672)\

¢ (B -NB ’B’)
¥ ( ANB +v +

R2323 —kSOB 60759 — 2k280 ,

—2v

2B

(B—DBJFAB),

k
Royo3 = — ]€317T€_)\ + ]CSLtB_V + 2]4328% — 2k280§0 — %Cote—l—

_2>\ —2v . . . .
+ _zB (B” _NB - V’B’) + ‘;B (B B )\B) +
—(Atr) . : k
(& / / S1p
+— (AB’—i—By—B)—B[ <2B/—VB)
e (2B-AB)],
k , .
R34903 :g <€/\B — e”B) — 2k%s0s1 |
Riggy = — 2ke ™ (s1, + s10/)
k .
Rigss = ;0 <B e — BeV 4+ 2kslB) ,
ks )
Ros3q = B (B e "+ B@ — kalB) ,
1 .
Ryiz1 =3 [1 —e 2B 4B - 4k2512B2] , (4.2.17)
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and
Rag13 = Ri323 =0 .

The complex conjugates of above equations are obtained by interchang-
ing the suffixes 3 and 4 and taking the complex conjugates of the right

hand sides of the respective equations.

4.2.2 Tetrad Components of Ricci-Cartan Tensor

and Ricci-Cartan Curvature Scalar

The tetrad components of the Ricci-Cartan tensor and Ricci-Cartan

curvature scalar are defined by
Raﬁ — nyERyaﬁe 7R - naﬂRa/B )

= Raﬁ = Rla& + R2a61 - R3aﬁ4 — R4a53 . (4.2.18)

Using equations (4.2.17) we obtain from equations (4.2.18) expressions
for Ricci-Cartan tensors

—2)

Ry = kB cotf(sg + 50) + 4k*s1? — 4k*s050 + %(B" _\NB—
. —v i .. 2 ., ) .
—JB)+ GB (B =B —AB)+ 2o 0 (B —I/B—)\B> ,
—2)
Ry = Roy = —% [( "\ + 1/’2)B +B - \NB + VIB/]—I—

—2v

— (A= A+ )B4+ B -vB+3B],

+ 4k%s1% — 4k% 50350 +
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li

Ri3 = ke (Soﬂa + 2$0V/ + So%) — ke (So,t + 280).\ — SOE) ,

B
6_2)\ " ;o
Roy = —/{ZBilcOte(S() + go) + 4]62812 — 4k280§0 + ?(B — B —
;. 6721] . L .. 2_)\1/ ., , . .,
—VB)+ (BB -\B) - e WI(B v B - AB)

!

Rog = ke™ (SW + 280V/ + SOE> + ke™” (So,t + 230}\ + SOE) ,

B B
, B B
Ry = ke (So,r + 250 + SOE) + ke™” (so’t + 380E) :
, B B
R3y = ke (507,4 + 259V + SOE) — ke " (so,t + 3505) :
B : 6_2/\ " 0 o
Rsy = 2ksy " + 2ksie™” (2§ + )x) + ?(B —\A\B +vB+
BIQ —2v . L BQ 1
+ B)—eB (B=vB+AB+—) - = ,
B : 672>\ " o Y
Ry3 = —2ksi 67" — kale_”(ZE + )\) + ?(B —A\B +v B+
B e L. . B2 1
- B)— = (B—VB+AB+§)—§,
R33=0. (4.2.19)

The Ricci-Cartan curvature scalar is given by

12

—2A
R=2{ - —[(" =XV + ") B+2B"—2\B' + 2/'B + —]+

B
721/ .o . . .o . . .
+ 4k2s1% — dk2sg5 + = (A= Ao+ N°)B+2B — 2B+ 2)\B+
B? )
—|1+B7?%}. 4.2.20
+3 | +B7?%} ( )
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4.3 Einstein-Cartan’s Field Equations

We start with the tetrad representation of the field equations (1.2.48)
as
R

Rag — Enaﬂ = —/{tag , (4.3.1)

where R,p are the asymmetric components of Ricci-Cartan tensor and
tap are likewise asymmetric tetrad components of the energy momen-

tum tensor and are defined by
tag = tije(a)ie(g)j . (4.3.2)
From this, we find, by using equations (1.4.22) and (4.2.10)

1 1
t1 =log = §(P+p),t12 =191 = §(P —p),

! =)\
l34 =tys =p ,l31 =1l =1'¢ "5p,

ta1 =tag = Vle_)\go , (433)

and all other tetrad components of the energy-momentum tensor are
Zero.

Using equations (4.2.19), (4.2.20) and (4.3.3) in the equations (4.3.1),
the independent field equations of Einstein-Cartan theory of gravita-

tion are obtained below

—2)
kB_lcotQ(so +30) + 4k2s,% — 4k2s030 + %(B” —\B — V/B/)—I—
6—21/ . . .. 2 O (1 , .y k
+ B(B—J/B—AB)—FEG (B—VB—AB):—§(p—|-p),
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— 2 _ .
o—2) / 2 , B2

" o ’ B (& .. . .
—(B —\B B+ —) — B—-vB+AB+—)—
5 ( +v B + B) 5 ( vB+ A\B + B)
N k
B =—5(p—p),
e (SOT + 2501 + 30—/) —e 7 (S()t + 280\ — SOE) =0
’ B ’ B ’
—2\
— k?BilCOTfQ(S() + 50) + 4]€2812 — 4]€280§0 + %(BN —\B — I/,B/)—i—
6_2V . . .. 2 — () 1 , . ., k
+— (B—VB—AB>——6 (B VB =AB)=~S(p+p).
) B
e (Sor—i—ZSoy —|—S()—) <80t+280>\+30B) 0,
) B
e (so, + 380V + so— ) +e (30,,5 + 3805) =0,
e )\(Sor+3sol/ +50—) (50t+3$03) 0
B B ’
B 6_2)\ " o /A
2ksy 7" + 2ks1e”” (ZE + )\) — ?[B —AB +vB+

6721/

B
+ 4k?s12 — 4k2s¢5) = —kp |

+ B =NV +07)] + [ = Ao+ A)B+ B— B+ AB]+

6—2/\

B 2 1 ! i ! !
— 2ks1 e —2ksie "2 +A) — —[B —AB +vB+
’ B B
_2V .o . . .. . . .
+ B/ =X +0")] + (A= v+ \)B+ B - 0B+ \B]+

+ 41{32812 — 4k280§0 = —kp . (434)

We see from equations (4.3.4) that these equations are consistent pro-

vided that so = 0. Hence out of the sixteen field equations, there exists
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only five independent field equations and are given below:

1 2 B 2 B2
— =+ = —”(uB )——6_2V<B VB+—>—4k2s§:kp,

B?> B 2B B 2B
(4.3.5)
L _Z (g _y\B +B—/2 4 2w }\B+E —4Kk*s? =k
B B 2B) " B° 2B L
(4.3.6)
2 B?
_2’\[ —~AB —/B —|—B(V —)\/V/—i—vl)—?]—l—
I © . o B? 1
+e B—uB—AB—B(A—AquA)JrE +§=0, (4.3.7)
B —B/-BA=0, (4.3.8)
B .
S1t + 81 (25 + )\) =0. (439)
Solving the equation (4.3.9), we obtain
o)
S1 — hlﬁ , (4310)

where hy is an arbitrary constant.

4.4 Specific Solutions

Case A:
To solve the non-linear equations, we assume for simplicity sake

B = B(t) =t and A = A(t). This class of solutions is identified with the
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well-known Kantowski-Sachs class [65] of cosmological models. Hence

the equation (4.3.7) becomes

. . . 2 1 eV
To solve the equation (4.4.1), we define
yt)=e*, zt)=e . (4.4.2)
Then (4.4.1) may be written as
2 (%) + ty — 2
PO 2 G 1 I (4.4.3)
t(ty —y) t(ty —y)
This is linear equation in z, provided y is known. Hence its solution is
given by
t
of0) = exp-Fo){ [ eonlwltudu-+ef
where
/f pioy = 2T )
tty—y)
g 4.4.4
O A0

and ¢ being constant of integration.

The remaining equations (4.3.5) and (4.3.6) give p and p as

1
kp=—25—2 (1 — it) — 4k*s? (4.4.5)
1 Y 2.2
kp == 4o ol 2yt — 4k*s? (4.4.6)
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We choose y in such a way that equation (4.4.3) can be immediately

integrated. We assume that y satisfies the Cauchy equation
% +ty+ (1 —¢*)y=0. (4.4.7)

Casei: When -1 <¢<1

In this case the solution of the equation (4.4.7) is obtained as
e* =y = Ajcos(nlogt) + Assin(nlogt) | (4.4.8)

where n = /1 —¢* and Ay, Ay are arbitrary constants. Using this
value of y in the equation (4.4.3), we get
(n? + 1)[Ayicos(nlogt) + Assin(nlogt)]

(A1 + Agn)cos(nlogt) + (A1 — Agn)sin(nlogt)]
[Ajcos(nlogt) + Agsin(nlogt)]

r+2
:13-|—t

= -2 : . (449
t[(A1 — Asm)cos(nlogt) + (A + A1n)sin(nlogt)] ( )
We obtain the solution of this equation as
1 c , _
T =e ¥ = T + 3 [(Ain + Ag)sin(nlogt) + (A1 — Aan)cos(nlogt)] g
(4.4.10)

The metric (4.2.1) becomes

-1

1 c ‘ B
ds® = | - 2+ 1 tH [(Ain + As)sin(nlogt) + (A — Aan)cos(nlogt)) 2
- dt* — [Aycos(nlogt) + Assin(nlogt)] dr? — t*(d6* + sin*0de?).
(4.4.11)
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Now from equations (4.4.5) and (4.4.6), we obtain pressure and density

as

7’ c20P +1) + Ry
t2(772 + 1) t4 F13

Lkp—— _ G | e H
P= (772—|—1)F2 t4 F12F2

] — 4k*s3
] — 4k*s? (4.4.12)
where

Fy =(Ain + Ag)sin(nlogt) + (A — Aan)cos(nlogt) ,

G =(Av® — 2A9m)cos(nlogt) + (Aan® + 2A1m)sin(nlogt) |
Hy =(Ay + 249m)cos(nlogt) + (A2 — 2A1n)sin(nlogt)

Fy =Ajcos(nlogt) + Assin(nlogt) ,

G2 =(2A1 + Asn)cos(nlogt) + (2A2 — Ain)sin(nlogt)

and

hi
2 = t—j[FQ] 2 (4.4.13)

The kinematical parameters defined in the equation (1.4.27) using

equation (4.2.10), for the space-time metric (4.4.11) read as

0_1 C t2 1/2 G2
2R o2+l 2

1] ¢ 2 12 E
011 =099 = —012 = —034 = —5 — —
11 22 12 3= 35 FACR 7|
U =Us = U3 = Uy =0,
W34 = — W43 = —2]681 . (4414)
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Case ii : When ¢ =1

In this case from equation (4.4.7), we obtain the solution as
e* =y = By + Bylogt , (4.4.15)

where By and B, are arbitrary constants. For this value of y the

equation (4.4.3), becomes

2(By + Bslogt By + Bslogt
po 2Bt Belogh) o BitBlogt 6
t(BQ — Bglogt — Bl) t[BQ — Bl — BglOgt]
The solution of this equation yields
oy c _
e =g= —1+t—2[32(1—zogt) — B2, (4.4.17)

The metric (4.2.1) becomes

c -l
ds? = |—1+ t_Q[BQ(l — logt) — Bi] 2} dt* — (B + Bylogt)*dr*—

— t3(d6? + sin*0d¢?) . (4.4.18)

Now from equations (4.4.5) and (4.4.6), we obtain pressure and density

as
c _
kp :t_4[Bl + By(1 4 logt)][By — By(1 — logt)] > — 4k*s? |
2Bs c (B1 + 2Bs + Bslogt)
kp=— + —
t2(By + Baylogt)  t* | (By 4 Balogt)[B1 — Ba(1 — logt)]?
— 4k2s7 (4.4.19)
h _
and s7 :t_41 [By + Bologt] > . (4.4.20)
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By using equations (4.2.10) in (1.4.27) the tetrad components of the
kinematical parameters in the space-time metric (4.4.18) read as

2B + By (2logt + 1)]

1 _ 1/2
0 =— {c[Ba(1 — logt) — By] % — t*
t? {eBa ogt) ! J [ By + Bslogt

1 1/2
011 =022 = —012 = —034 = g{C[Bﬂl - lOQt) - Bl]_2 - t2}
By + Bs(logt — 1)
By + Bslogt

i =ty = i3 = 1y = 0 ,

W34 = — W43 = —2k81 . (4421)

Case iii : When ¢ < —1 and ¢ > 1

In this case, solution of the equation (4.4.7) is given by
er =y =Dit’ + Dyt | (4.4.22)

where 8 = \/¢?> — 1 and D1, Dy are arbitrary constants. For this value
of y the equation (4.4.3), becomes

(82 — 1)(D1t? + Dyt=?) (D1t% 4 Dot =)

B =)Dt — (B+ 1)Dat 7"~ “H[(B— 1)Dit? — (B+ 1) Dyt 7]
(4.4.23)
The solution of this equation yields
1 c -2
—2v __ _ B -

(& =T = ﬁ + t_2 [Dl(ﬁ - 1)t — DQ(B + 1)t ] (4424)

The metric (4.2.1) becomes
1 c 2]
2 3 81~ 2
ds* = 52_1+t—2[D1(5—1)t — Dy(B+1)t77] dt*—
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— (Dyt? + Dyt %)" dr® — 13(d6? + sin0de?) . (4.4.25)

Now from equations (4.4.5) and (4.4.6), we obtain pressure and density
as
T 1 ;2 K (26° =B —1)Dit’ + (26°+ B —1)Dot "]

P="p\p-1) "o [D1(8 = 1)tP — Do(B + 1)t=P]3

— 4k2s?

B (B+2)Dit? + (B —2) Dot ™" 2.2
- .y
kp t2(52 - 1) Dltﬁ + DQt_*B g i
d (1+28)D1t? + (1 —28) Dyt ™"

] , (4.4.26)

where in this case

h

§2 = t—4[D1t5 + Dot ™72 (4.4.27)

For the space-time metric (4.4.25), the kinematical parameters take

the form

1 , 2 "
7, :t_2 {C[Dl(ﬁ — 1)t5 — DQ(ﬁ + 1)15_6]_ —+ 52 — 1} .
. [D1(2 + B)t” + Dy(2 — 5)75—5]
Dltﬁ + DQt_ﬁ ’

1
011 =099 — —019 — —034 = @{C[Dl(ﬂ - 1)tﬂ - DQ(B + 1)757[3]724-

2 YY2[Di(1 = B)t5 + Do(1 + B)t7
52 —1 Dltﬂ + Dgt_ﬂ ’

iy =ty = i3 = 11y = 0 ,

_|_

W34 = — W43 = —2%81 . (4428)
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If we take the special case for which \ = d; (constant) then from
equation (4.4.1) we obtain
t2
ds® = (m> dt? — dydr® — t*(d6* + sin*0de?) . (4.4.29)
L —
Where d; is an arbitrary constant. The pressure and density are given
by
dy 2.2
kp=kp = i Ak"sy . (4.4.30)
The kinematical parameters for the metric (4.4.29) reduce to

2 1/2
(9 :t_Q [dl - t2:| y

1 1/2
O1l =02 = —012= 03 = 55 (di — ¢] / ;

iy =ty = 1ig = iy = 0 |,

W34 = — W43 = —2]{381 . (4431)

If the spin component s; = 0, our results agree with the result obtained
by Sharif and Igbal [I13].

Hence in all above cases in (A) our solutions are non-static and
have non-zero expansion, shear and rotation but zero acceleration.

Case B:

When B = B(r) = A = A(r) and v = v(r). In particular B(r) = r.
In this case the equation (4.3.7) gives

1 2

" ! 1 !/ !
v —Av —f—l/,2—;()\ tv)—==——. (4.4.32)
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To solve the equation (4.4.32), we define
y(r)=e"  z(r)=e?". (4.4.33)

Then (4.4.32) may be written as

o 20k —ry — 2
o4 2y Y y)x:_Qly |
r(ry +vy) r¥y +yr

(4.4.34)

This is linear equation in z, provided y is known. Hence its solution is

given by

ofr) = eapl= () { [ ennFOglriar+c}

where

2%y =1y —y) [
f(r) = TR F(r) = / Flu)du

2y

= 4.4.35
r2y +yr’ ( )

g(r) =

and c is constant of integration.

The remaining equations (4.4.5) and (4.4.6) gives p and p as

1 20 1
hp = ——+ e 2+ e A _4k%s? (4.4.36)
and
1 2)‘, —2)\ 1 —2\ 2 2

We choose y in such a manner that equation (4.4.34) can be immedi-

ately integrated. We assume that y satisfies the Cauchy equation

rly —ry +(1—¢)y=0. (4.4.38)
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Case i: When -1 <g< 1

In this case the solution of the equation (4.4.38) is obtained as
e =y=ar "+ agr' Y, (4.4.39)

where a; , as are arbitrary constants. For this value of y, the equation

(4.4.34) becomes

: 2(¢% — 2)(a1r* + as) 2(a1r? + ay)
x J—

r[(q + 2)a;r?a + (2 — q)ag]x B rl(qg+2)ar?t + (2 — q)as]
(4.4.40)

Solving this equation by using the Mathematical software " Mathemat-

ica 10”7, we obtain the value of x in the form

(2—q%) _o(2=d®)

1
- + e’ @0 [(2+ @)arr® + (2 — q)ag] @A,

€ :x:2—q

2

(4.4.41)

Hence the metric (4.2.1) becomes

ds® = [a17' ™ + agr' 2 dt? — r*(d6* + sin*0dp*)—

1 2-¢*) _p=a] ™
s+t @D [(24 q)air® + (2 - q)az] | dr?

2—q
(4.4.42)

Now from equations (4.4.36) and (4.4.37), we obtain pressure and den-

sity as

-1 [a1(3 4 29)r* 4 ax(3 — 2 1
N G UICES TR )| N
r r2(a1r?? 4 as) g —2
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(2—¢?) 2-4%)

+ o’ @0 (24 Qarr® + (2 — q)as] _2(4(12)] —dkst

1 1 1 9(2=d®) 5 _9(2=d?)
kp =5t ﬁ{qQ — team e [(2+ @)arr™? + (2 — @)ay] "G }
2(2 — ¢ 4q(2 — ¢*)ayr*
.P+ 2=d) al q?” ],MAAQ
2—q¢  (2-9l2+qar*+(2—q)ay]
and
h1 1 2-4%) 72(27112)
§7 = Y [2 — 7 + or? @ [(2+ q)arr™ + (2 — q)as) <4—q2)] :

(4.4.44)

The tetrad components of the kinematical parameters cited in the
equation (1.4.27) for the space-time metric (4.4.42) yield
6 =0,
Oap =0 y \ «, ﬁ .

1 (1 2 4 (1 —
b= — iy — [(+qwﬁ + ( qm1.

rv2 a7 + as
2-4%)

1 2-4%) —
(L o2 gar + el R
—dq

W34 = — W43 = —2]681 . (4445)

Case ii: When ¢ =1
In this case the solution of the equation (4.4.38) is given by

e’ =y ="bir’+by, (4.4.46)
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where by, by are arbitrary constants. For this value of y, the equation

(4.4.34) becomes

2([)17”2 + b2) blTQ + bz
F— = — : 4.4.47
o 7“(3[)17”2 + bz)x 7“(3517”2 + bz) ( )
Solving this equation we obtain the value of x in the form
D=1 ar” 4.4.48
e N=ux= +(3b1r2—|—b2)2/3' (4.4.48)
The metric (4.2.1) takes the form
2 2 2 2,2 20 102 20 72 cir’ - 2
ds” =[b1r° + by]“dt® — r°(dO* + sin“0d¢p”) — |1 + B0 & by dr*
(4.4.49)
with the pressure and density given by
4b2 C1 4Cb2T2 9 9
kp = — 4k
P 1 b0r®) (b 3028 (by + bar®)(by + Bbprf)2B oL
. Cl(3b1 + 5[)27“2) )
kp=— (b1 © 30 2)5 4k*sT | (4.4.50)
and
h 2
= 4 o (4.4.51)

— |1+
r (36172 + by)%/3
We record below the tetrad components of the kinematical parameters

for the space-time metric (4.4.49) as
6 =0,

o3 =0, V a,f.
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V2byr m cqr?
(b1 + bQTQ) (3b17“2 + b2)2/3 ’

W34 = — W43 = —2]{381 . (4452)

= — iy = —

Hence in all above cases in (B) our solutions are non-static and

have non-zero acceleration, rotation but zero shear and expansion.

Discussions

Two classes A and B of different solutions of the field equations in the
EC theory of gravitation are obtained when the Weyssenhoff fluid is the
source of gravitation and spin. Many of the previously known solutions
for Weyssenhoff fluid in EC theory of gravitation have zero acceleration
and vorticity (Kuchowicz [82]). Griffiths and Jogia [42] have claimed
some non-zero accelerated solutions. In this chapter we have applied
the techniques of differential forms and a class A of non-static solutions
with zero acceleration and a class B with non-zero acceleration are
obtained. Class A solutions are expanding, shearing and rotating,
while the class B solutions are rotating. In class A solutions, the non-
zero kinematical parameters, the pressure and the density diverge to
infinity, and vanish together at ¢ = 0 and at large ¢ respectively. Similar
phenomenon is observed in class B solutions at » = 0 and at large r
respectively. It can be seen that the rotation, the pressure and the

density are influenced by the spin of the fluid, while there is no such
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effect on the expansion, acceleration and the shear. In the absence of
the spin the result (4.4.29) coincides with the result obtained by Sharif

and Igbal [113], and the solution is irrotational.
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Chapter 5

A Static Spherically Symmetric Solutions

in Einstein-Cartan Theory of Gravitation
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5.1 Introduction

The well known Einstein’s general relativity theory provides a unified
description of gravity as the geometric property of space-time. The re-
cent detection of gravitational waves in the space-time as was predicted
by Einstein 100 years before cemented the status of general relativity,
besides other confirmations of Einstein’s predictions of deflection of
a ray of light by the gravitational field of the Sun and the perihelion
advances of the planet Mercury. In general relativity theory the under-
lying Riemannian space-time deals with the case where connections are
symmetric admitting a Riemann curvature tensor ]%hijk which satisfies
the properties
Rniyjte = Ryigry =0,
éhijk = Rjkhz’ ;
Rpiji + Ruji + Rurij = 0 (5.1.1)

Rpijia + Rpirij + Rpijr = 0

where fihijk is computed from symmetric Christoffel symbols in the
usual way. It is wel-known that vanishing of the divergence of Ein-
stein tensor in Einstein’s general relativity theory follows from the
Bianchi identities and from it follows the dynamical conservation laws.
It has been shown that the Einstein’s field equations evolve singulari-

ties which is rather unsatisfactory feature.

169



The successful geometrization of gravitation in Einstein’s general
relativity stimulated the interest of the great mathematician E. Cartan
[11, 12] who suggested a more general geometrical frame work incor-
porating the notion of torsion as well as curvature. The modification of
Einstein’s general relativity theory allowing space-time to have torsion
in addition to curvature is known as Einstein-Cartan theory of gravita-
tion. When cosmological models with torsion were first studied, it was
hoped that the inclusion of torsion would help to avoid singularities.
For a long time, Cartan’s modified theory of gravity was unfamiliar to
physicists and did not attract any attention. But the role of Cartan
was soon recognized, when the theory of gravitation with spin and tor-
sion was independently rediscovered by Sciama [I11] and Kibble [69].
Since then the Einstein-Cartan theory of gravitation gained the atten-
tion of researchers and become a very active field of research. Now
the theory has gained a strong theoretical ground both geometrically
and physically through the investigation of various authors like Tolman
[130], Kuchowicz [78], Trautman [129], Hehl [48], [49], Kerlick [67, 6],
Bohmer [6], Prasanna [100], Hehl and Collaborators [51], Singh, T.
and Yadav [115], Katkar [61], Katkar and Patil [60], Kalyanshetti and
Waghmode [66] in the form of viable rival theory to Einstein’s general
relativity theory.

In Einstein-Cartan theory of gravitation the underlying geometry

is non-Riemannian due to asymmetric connections arising from the
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presence of torsion in the space-time.

In this chapter a static spherically symmetric solution of Einstein-
Cartan field equations is obtained by using the techniques of differential
forms. The material of the chapter is organised as below. In the Section
2, the static spherically symmetric metric is considered and following
the tetrad algorithm the tetrad components of connection 1-forms,
curvature 2-forms, the Riemann curvature tensor and the Ricci tensor
are derived. A solutions of the field equations are obtained in the
Section 3, and the chapter is concluded along with some discussions in

the last Section 4.

5.1.1 The Kinematical Parameters

The kinematical parameters viz; the expansion 6, the acceleration vec-

tor 1, the shear tensor o;; and the rotation tensor W;; are respectively

defined as

and
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where h;; = gi; — usu; is the 3-dimension projection operator. We
use the definition of the covariant derivative (1.2.19) for the unit flow

vector u; and by virtue of equations (1.2.16), (1.2.49), (1.2.53) and
(1.2.55) find

It is obvious exercise to find the Newman-Penrose concomitants of the

kinematical parameters by using the equation (5.1.3) as

0=—("+& =" =7" = p" =" +u"+7") ,

E\H

W == [("+& +"+3) (G —n) = (P + R =’ —7)m,; —cc] |

[\DlH

0ij 6\/—{[ (VW +7 = =) = (0" + 7" — 1’ =) (lily + nim;—
— 2lny) — 2mmyy) + 3[(R' =7+ v — 7'~

—2(a"+ 3 )) (limj) — many)) +2@° — X)mym;| + c.e.}
Wi; zﬁ [(?O s 2(04O + BO)) (l[imj] + m[inj]) + c.c.+

+ 2(p0 - ﬁo + ,UO - ﬁo)m[zmj]] + kSZ] . (514)

5.2 Static Spherically Symmetric Metric

Consider a static spherically symmetric metric in the form

ds? = e’dt* — eMdr® — r*(d6? + sin*0do?) (5.2.1)
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where A and v are functions of r only. Define the tetrad basis 1-forms

6 for the metric (5.2.1) as

1 v A
91 :ﬁ(€2dt + €§d7") ,
1 v A
6 :E(wdt —e2dr) , (5.2.2)
1
03 = — —(rdf — irsinfdo) ,

V2

where 0* is a complex conjugate of 63. Hence the metric (5.2.1) can be

written as
ds* = 20'6% — 20°6*. (5.2.3)

Using equations (2.4.46) and (5.2.2) we obtain readily the components

of the basis vector fields as

1 A v
lz' = = (_627070762) )
V2
! (*0()”) (5.2.4)
n’l e 627 , 762 , VAN
V2
1
m; =——= (0, r,irsind,0) ,

§‘|

where m; is a complex conjugate of m;. The contravariant components
of the null basis vectors are obtain by raising the index by the metric

tensor as

. . 1 v
= g1, = E <6_;, 0,0, e_2> :



similarly, we obtain

. 1 A 1%
n' =— —6_2,0,0,6_2> : 5.2.5
7 (5.2.5)
1
m' =— — (0,771, ir tcosech,0) |
o |

where ™' is obtained from m'’ by taking its complex conjugate. The

tetrad form of the equation (2.4.22) becomes
1 (0%
Bf = =3 12Qus0" N0 (5.2.6)
We can also write this equation as

1 _
dif = =5 |DfQas" + AfQas® + 0/ Qas” +0fQas"| 07 AO", (5.27)

where

1 — —v
E(e A/zf,rﬂL€ /2f,t)7

1
V2
5f :f;z'mi = -

Af =fin' = —=(—e M2 f, +e " f,)
X (5.2.8)
(r_lf,g + ir_lcosea‘)f,qg) :

Of =fim' = ———=(r"1fg —ir ‘coseclf) .

S-S

Hence the equation (5.2.7) becomes

dzf - % e_A/Qf,r(Qaﬁl - Qa62) - T_lfﬁ(Qaﬁg + Qa64)_

—ir tcoseclf 4(Qup® — Qus®) + e P f1(Qas' + Qus®) |07 N 07 .
(5.2.9)
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It is evident from equations (5.2.9) that

)\

dir == 2= (Qus’ = Qus®) 9" 167,

d?0 =

(Qaﬂ "l_Qaﬁ )904/\96 )
f

ir—cosect

2v/2

v

Pt = — (005t + 0.52)0% A 6P,
: 2\/5(625 Qas”)

Now operating d. to the equations (5.2.2) and using the equations
(5.2.10) we readily get

1 1

40" = (—yeé> 12 5Qa 507
1
2

(5.2.10)

dip = (Qug® = Qup") 0° 167,

2v/2

1,
d*92 _ ! ,—%5 912 200[5
(2\/§V ’ ) 2
1 . 1
6= TR0 — 0% 4 reotd 6% = SQus™0
1

—Qus'0"" | (5.2.11)

1 A
dot = — [T_16_2<(914 —0*) —r~tcot 034} ~5

where we have used 0% = 9> A 07 .

Now from equations (5.2.11) and (2.4.70) we obtain, after equating
the corresponding coefficients and simplifying the values of NP spin

coefficients of Riemann space-time as



o’ = — Y = ——cot. (5.2.12)

By virtue of the equations (1.3.30) and (5.2.12), we find from the equa-

tions (2.4.69)
1
== [1/63(91 —0?) — dksof® — 4/{3094} ,
_ b Ly (ple 4
w13 ~7% 2ksof + (r e 2 4+ 2ks1)07|
2 (5.2.13)

1 A
Wo3 = — 7 [2/@3092 + (rte e — 2]681)94} :
1
wys = — —= [2ks1 (0" + 6%) + r~cotf(6° — 01)] .

V2

Now using equations (1.3.30), (5.2.12) and (5.2.13) we obtain from the
equation (2.4.85) the tetrad components of curvature 2-form. These

are listed below:

-

Qll _ [eT(QV” . XV/ + V/2) + 4k280§0] 912 + (k807r€_% + kSOVle_

N[>

— 2k25031)913 + (]{750,7»6_% + k?oy’e_% + 2k2§051)914 — (k3077ﬂ6_%+
A

+ ksov'e" 2 + 2k25031)923 — <l€§0’r6_/2\ + k?ou/e_% — 2/{:25051) 621+

+ [k?“lcot@(so —35) + 2]{:516*%(27’*1 — V/)} 0 (5.2.14)
—\
Oy = — (ksoﬂae_? + ksov'e 2 + 2k2$031) 612 + [Z—(X — v+
r

1
+ §k811/'e_; + k:sl,re_% + 2k2812:| o4 — (2]{72302 — ksor_lcote) 623 —

e‘Ar_l
_[4

1
AN+ ) — ékzsll/’e; + ksl,re*% + ks e 2 — 2k2s 24
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+ 2k%5030 + ksor_lcot€] 6% + (ksor_le_é — 2/<325051) 634,
(5.2.15)

0% = (l{rso,re_g + ksgv'e”? — 2k28051> 0'% — (2k%s + ksor~'cotd) 6" —

et ] ;A PN 1 -2 2.2
— 1 (>\+V)-|-§k81V6 2 —ksype 2 —2ksir e 2 —2k7s 7+
-A,.—1 1
+ 22505 — ksor—lcow] oM 4 [6 4T N =) — éksly’e_;—
— kslvre_% + 2k2312] 6% + (k:sor_le_% + 2k25031)934 , (5.2.16)

0Py = —e 2 (2ks1, + ksiv') 0" + ks (7“_16_3 + 2k81) 0" —
— ks (7“_16_3 — 2k51) 01 + ks (7“_16_g — 2k31) -
— k3 (7“_1@_3 + 2/<;51> 0+ [r?(1— e ) — 4k*s1?] 6° .
(5.2.17)

The expressions for Q'y, Q%4, Q% are obtained by interchanging the
suffixes 3 and 4 and taking the complex conjugate of the right hand
sides of the equations in (5.2.15), (5.2.16) and (5.2.17) respectively.

5.2.1 Tetrad Components of Riemann-Cartan

Curvature Tensor

From the equation (2.4.65) we obtain

Qus = Ri2050" + Ri3050" + R14ap0™ + Ro3as0™ + Roapt** + R3sast®*
(5.2.18)
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where

Qag = —an , Oz,ﬁ = 1,2,3,4.

By giving different values to a, 8 = 1,2,3,4 in the equation (5.2.18)
and then equating the corresponding coefficients of basis 2-forms of
equations (5.2.14), (5.2.15), (5.2.16) and (5.2.17) we readily obtain the
tetrad components of Riemann-Cartan curvature tensor as

e—)\

Rioo = — T (21/” — N+ V/2) — 4k%5,3, :

N[>

_A _
R1312 Zk’S(),re 2 + ]CS()VIB — 2]€28031 ,

Rosz19 = — (k:so’re_g + kSOV/G_% + 2k23051> :

Rsuip =kr~'coth (so — %) + 2ksie 2 (27’_1 — Vl) :

2 A
Ri913 =ksg e 2 + ksov'e™2 — 2k% sy ,

Ri313 = — (2]€288 + kSoT’ilcOte) ,

e Mt , 1 ;A _2 1 A
Riy3 = — 1 ()\ +V)—§/€S1I/€ 2 +/€$1,r6 2 + 2ksir e 2+
+ 2k251% — 2k% 50350 + ksor tcotl |
—\,.—1
1
Ros3 =5 4T (N =) - §/€S1V/6_3 — ksl,re_% + 2k%s1% |

1A
Rs413 =ksor le=3 4 2k25031 :

Ri993 = — (kSO’re_é\ + ksoule_% + 2]€28081> ,

6_/\7“_1

4
R2323 = — (2/628()2 - kSOT_lcOte) y

1
Rygo3 = N =)+ 516811/'6_; + ksue_% + 2k%s,2 |
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e_Ar_l

4
+ 2k%512 — 2k%s5035) — ksor tcotf |

1
Royo3 = — A+ )+ ikslule_g — kslﬂae_% — kalr_le_%wL

1 A
33423 :]CSOT’ 16 2 — 2k28081 ,

N\V

(2ks1, + ks
R1334 :kS ( e 2 +2k81) ,

Rioza = — e~

32334 ZkS (7’ e 2 — 2]€81> ,

R3434 =r ( ) — 4](3281 s (5219)
and
Ras13 = Ri323 = 0 .

The complex conjugates of above equations are obtained by interchang-
ing the suffixes 3 and 4 and taking the complex conjugates of the right

hand sides of the respective equations.

5.2.2 Tetrad Components of Ricci-Cartan Tensor

and Ricci-Cartan Curvature Scalar

The tetrad components of the Ricci-Cartan tensor and Ricci-Cartan

curvature scalar are defined by
Raﬂ = 77V€R1/a[36 7R = UaﬂRaB )

= Rap = Riap2 + Roap1 — Rzaps — Raaps - (5.2.20)
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Using equations (5.2.19) we obtain from equations (5.2.20) expres-

sions for Ricci-Cartan tensors

A 1 )\/ + I// 1 2 2 2

Ry=—e"r" ( ) + kr~cotf(sg + So) + 4k“s1* — 4k s0So

e 2 rle? 2.2 2
Rip=— - (QV” MY 4 ) e V= V) 4R — 4RSS0
Ris :kso’re_% + ksoe_%(yl + 1) — 4k?sgs

e 2 rle? 2.2 2
Ror=— - (QV” MY 4 ) (V=) 4 4Ry — 4R s0s0

)\/ /

Roy = — e 7! < ;_ v ) — krteotf(sy + 3g) + 4k*s,* — 4k*s05) |

Rog :kjs()’re*% + ksoe*%(y’ + 1Y) + 4kPsgs

Rs; :kso,re_% — kzsor_le_%(ul —r ),

R3o :kso’re_% — ksor_le_% (V’ — 7"_1) , (5.2.21)
1

R34 = — 7"_2 + 6_)\ [7“_2 — %()\, — V/)] y

R33 =0 .

The Ricci-Cartan curvature scalar is given by

Ny 12 Y
R=—¢ (V" A7 + v + 2u + 2r2> 4+ 2r7% 4 8k 53—

2 2 r

— 8k?503) - (5.2.22)
By virtue of the equations (5.2.12) the equations (5.1.4) reduce to

0 =0,
1 /
iLi =—F€ ;\V (lz — ’I'LZ) ,

2v/2
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O35 =0 y (5223)

Wij =2k [2symymg) + So(lmy) + myng) + c.c.] .

5.3 Field Equations and Solutions

To find the information of the pertaining space-time geometry, we con-
tinue to use tetrad formalism. Thus the tetrad form of the Einstein-
Cartan field equations (1.2.48) is given by

R
Raﬁ - 577&5 = —k?taﬂ , (5.3.1)

where the tetrad components of the energy momentum tensor (1.4.22)

are obtained as

1 1
tih =t ==(p+p), tia=ta==(p—n),

2 2
1,
{34 =ts3 = p , 7531=t32=§V€ 280 ,
1, a_
ty1 =tyo = §V e 28p, (532)

and the remaining tetrad components are zero.
Using above equations (5.2.21), (5.2.22) and (5.3.2) in equation
(5.3.1) the independent field equations for gravitation in Einstein-

Cartan theory are obtained as

Y ! k
—e ! (%) + 4k*s1% — 4k*s050 + kr~'cotf(sy + 3) = —5(,0 +p),
e e )| = S,



A

ksoﬂne_% + kspe™ 2 (V' + 7“_1) — 4k?sps1 =0,

2 2
ksoﬂae_% + ksoe_% (V/ + 7“_1) + 4k%s9s1 =0, (5.3.3)

N+ i
—e Mt ( i ) +4k%s1” — 4k%s950 — kr~leotf(so +50) = =5 (0 +p)

1
k‘some_% + §]€80€_/2\ (31/’ — 27’_1) =0,

e—A

- <2V“ AU+ 1/2) +

—le—A

2

r

(N = ') + 4k*s,? — 4k*s050 = —kp .

We see from equations (5.3.3) that these equations are consistent pro-
vided that sy = 0. Hence out of the seven field equations, there exists

only three independent field equations and are given below:

e M (V) = — ks P = kp (5.3.4)
e ! ()\' — 7“*1) +r7 —4k%s)® = kp (5.3.5)
" 12 / / I/ !
N 7 V=X VX (14 5
o~ — — =0. 5.3.6
) ( 2 i 4 i 2r 4 r2 T ( )

By Birkhoft’s theorem outside the field the solution is represented

by Schwarzschild metric and is given by

2m\ 9
ds? = — (1 - —m> dr® — r? (d6* + sin*0d¢?) + (1 _ _m> dt?
" r
(5.3.7)
where m is a constant associated with the mass of sphere. Hence we

use the boundary conditions

(€)ma = (€7, = (1 - —) , (5.35)

andp=0atr=a.
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5.4 Specific Solutions

The set of Einstein-Cartan field equations is highly non-linear and
is formidable to solve by any analytical method. Hence we restrict
ourselves to the following cases.
Case (I): We assume e’=A,2, where A; is an arbitrary constant.
We obtain from the assumed equation v = 2logA; , and hence from

equation (5.3.6) we have

A1
-2 —2

—+ = — =0.
e <2r+r2) r

Solving this equation we obtain
6_)\ =1+ A27”2 .

Hence the space-time metric (5.2.1) becomes

1

d? = — —
¥ (1—|—A27“2)

dr* —r* (d6” + sin®0d¢”) + A %dt* . (5.4.1)

Where the arbitrary constants A; and Ay can be determined by match-
ing the solutions at the boundary r = a to Schwarzschild exterior

solution. They are obtained as

om\ /2 om 1
A =128 Ay =2~
1 < CL) 5 2 CL3 R2

The pressure and density are given by
kp = — (48257 4 — kp = — (ak2s2 — 3 5.4.2
D= 51"‘@ ; pP=- Sl_ﬁ : (5.4.2)
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We also see in this case that the kinematical parameters 8, 4;, o;; vanish

and W;; = 4ksymym;

;- Hence we have non expanding, non-shearing,

non-accelerating and rotating solution. Our solutionis analogous to
the solution obtained by Prasanna [100].
Case (II): Now we take e~ =52, where B, is a constant.

. _ /
Here from assumed equation, we find e = B;%” and A = —v .

Hence the equation (5.3.6) becomes

v 1 1
B?eV | — + — — = —=0.
1€<2+2 7“2>+7“2 0

The solution of this equation is given by

AB;?
r

e M =1+ + BB*r? .

Hence the geometry of the space-time, in this case, is described by the

metric
B -1
ds? = — (1 422 B3r2> dr®—r? (d92 + Sin29dgb2) +
r

1 By AP
—(1+—+2B dt
+ B%< + 3r> ,

(5.4.3)
where the constants By, = AB;? and By = BB;? are specified by

matching the solution to the exterior Schwarzschild solution at the

boundary » = a. They are obtained as



Hence the pressure and density are given by
3am 3am
kp = — <4/<:25% + ?> . kp=— <4k25§ — —) : (5.4.4)

We see, in this case that, the expansion and the shear vanish while
acceleration and rotation are not. Hence the solution is rotating with
non-zero acceleration but expansion free and shear free with negative
pressure and density.

Case III: We now assume e * =1 — ]7%—22.
This gives

Hence the equation (5.3.6) reduces to

V//+V/2 1 r2 V/_O
2 4 R? o

Solving this equation, we obtain

1/2
Dy — D1 R? 1—74—2 :
2 1 R?

2

e/ =

1
4

Hence the metric (5.2.1) becomes

dt* . (5.4.5)
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where the constants Ds

=2 are specified by matching
the solution to the exterior Schwarzschlld solution at the boundary

r = a. Thus we have

om  a? 1 3 a® 1/2

The pressure and density in this case becomes

1/2
[31)3 (1-%) —D4]

2\ 1/2
Dy~ Dy (1-3)"

kp = (332 4k?s ) (5.4.8)

From the equations (5.2.23) we have § = 0, 0;; = 0 and u; # 0,

kp = — 4k*sT | (5.4.7)

Wi; # 0. Thus our solution in this case has the same interpretation as
solution determined in the case (II). The solution (5.4.5) is analogous
to the solution claimed by Prasanna [100]. We also notice that at the
boundary r = a, the pressure kp = —4k%s?. If however, in the absence
of spin, the pressure vanishes at » = a. This is a classical result of
Einstein theory of gravitation.

Case (IV): We assume e’”’?/ = Fj, where F is a constant.

Here, we have obtained from assumed equation
e’'v = Eqr .
Integrating we get

v =log (E17“2 + EQ) ,
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where Fs is another constant.
Consequently from the equation (5.3.6), we obtain

67/\ )\/ n 2(2E12T4 + 2E1E2T2 + E22) _ 2 E1T2 + Fy
T(E1T2 + EQ)(2E1T2 + Eg) 2E1T2 + Eg

r
Solving this equation, we obtain the solution as

A (Esr? +1) (Evr? + Es)
B (2E1’I“2 + EQ)

By substituting the values of ¢! and e” in equation (5.2.1) we get

(1 + %EerQ)

<1 + %ﬂ) (1+ E5r2)

ds? = — dr? —r? (d02 + sin29d¢2) +

E
+ B, (1 + —17"2) de* | (5.4.9)
Es

This metric is analogous to the metric obtained by Prasanna [I00]. The
arbitrary constants F3, E; and Es are determined by the boundary

conditions at » = a. They are given by

m 3m m
E1:—3, E2:<1——), E3:——3,
a a a

with the pressure and density given by

3m? 1—2—2 ) 5
=g (137"1+i—?r2)_4k 51 (5.4.10)
6 — dm _ 3m,2 19m2r2 _z
kp:%( B 26231 2)_ m7?“ : S| — 4k?sT .
@ \1 =20+ T a’ | (1 -2y 2mp2)
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The equation of state is obtain by eliminating r between the equations

(5.4.10) and (5.4.11) as

3m*a’k [a(p — 5p) — m(p — 9p) + 4p| — 4k*s7a® [2amp — 3p(4m — 3a)] +
+ 4k*p*a®(3m — a) = [18m*(a — 2m) + 12k*sim’a®(m — 4)+

+ 32k*sa’(m + 2)]. (5.4.12)
It follows from the equations(5.2.23) that the solution in this case is
accelerating as well as rotating with zero expansion and shear.

Case (V): We assume e” = Ar*" where A is a constant.

In this case assumed equation gives
v = logA + 2nlogr .
The equation (5.3.6) gives
) [X+2 <1—|—2n—n2>] 2
r n+1 r(n+1)

Solving this equation we obtain

Y (1—|—B(1+2nn2)r2N>
e = .

142n —n?

Now substituting the values of e* and e” in equation (5.2.1) we get

152 1+ 2n — n?
ST = —
1+ (1 +2n —n?)Br2N

) dr* — r* (d6” + sin®0d¢”) + Ar*"dt”

(5.4.13)
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with

N:<1—i—2n—n2) |
1+n

where the arbitrary constants A and B are specified by matching the
solution to the exterior Schwarzschild solution at the boundary r = a.

They are given by

A=a"" 1—2—m ., B= 1_2m_ L a2V
a a 14+ 2n —n?

(5.4.14)

Hence from equations (5.3.4) and (5.3.5) the pressure and density are

given by
kp = — 4k*s3 + l "’ +B(2n+1) rQn(lﬁ)
L2 \142n —n? ’
1 2n — n? 3+ 5n — 2n? 1-n
kp = — 4k%s? + = - B 2n(3%:)
P 81+r2<1—|—2n—n2> ( 1+n ) '
(5.4.15)
At r =a, p= 0 gives us n in terms of m , a and s; as
m om\ 9 9 9
n= (—) R R TR (5.4.16)
a a
We notice from equation (5.4.15) that when n = —1, the density p

becomes infinite and “* is given by

m 1+ 2k%s3a?
—=|—] - 5.4.17
a (1 + 4k?s3a? ( )
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Following the treatment of Tolman [I30] and Prasanna [100], we con-

sider the special case n = %, for which 2 becomes

m 1 4k%s2a?
— == | —= 5.4.18
a 4 (1 — 2/623%@2) ’ ( )

showing that mass and spin are linked up with the geometry, Ray-

chaudhuri [106]. Consequently,

a1 1 1 — 4k’sia” ,
a 2 \ 1 — 2k2s%a?

3 7 (1 —4k*s?a?

B=2|1- L (T2 N s 5.4.19
7[ 6(1—2]4;23%@2)}@ (5.4.19)
4

and

Hence, the metric (5.4.13) becomes
7
ds® = — — 7O = T (d0” + sin®0d”)+
14+ (575 [3- 1 (s )|
r 1 4k%s%a
— 1= ——555 )| a. 5.4.20
i a [ 2 < —2]€28%CL2>] ( )

The pressure and the density are given by

1
kp =— +2Br'/3 — 4k*s7

Tr?
and
3 10

Eliminating B between the equations (5.4.21) we readily get

r® (3kp + 5kp + 32k%s}) = 2 . (5.4.22)
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The equation of state is obtain by eliminating r between the equations

(5.4.21) and (5.4.22) as

(3kp — kp + 8k25?) (5kp + 3kp + 32k252) /=

7 (1 — 4k%s%q?
— 46 T8 — 2 [ — 217 ) | (5.4.23
(2)""a 6 \ 1 — 2k2s%a? ( )

It is evident from equations (5.2.23) that the solution in this case is
accelerating as well as rotating with zero expansion and shear. The
solution (5.4.20) matches with the solution of Prasanna [100] in the
absence of spin.

Conclusion: A class of five different static spherically symmetric
solutions propounded in the above five cases are all expansion free and
shear free. One of these solutions is rotating with zero acceleration,
while all other are rotating with non-zero acceleration. Our solution
match with solutions obtained by Prasanna [100]. We have also seen
that the pressure and the density have been influenced by the spin
of the matter. However, in the absence of spin the pressure vanishes
on the boundary and the result coincides with the standard result of
Einstein theory of gravitation. Using Goldberg Sachs theorem we claim

that the solutions are Petrov-type D.
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Chapter 6

Non-Static Conformally Flat Spherically
Symmetric Space-Times in Einstein-Cartan

Theory of Gravitation
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6.1 Introduction

Amongst the reported forty theories of gravitation, Einstein’s general
theory of relativity is considered as one of the most successful theory.
This theory describes the mysterious gravitational force in terms of
geometry of space-time. In spite of all its wel-known embrassing char-
acters and the string of success, it is still considered to be inadequate
as it does not satisfy certain desirable features. Hence there was hope
that there may be something beyond the Einstein’s general theory of
relativity yet to be found. In search of a new theory with the hope
that the new theory may satisfy the desirable features of the original
theory, several theories of gravitation have been proposed as alterna-
tives to Einstein’s theory of gravitation. All these modified theories of
gravitation have gained the attraction of researchers and good amount
of work has been done in these theories in the last more than four
decades. Amongst all these ramifications, Einstein-Cartan theory of
gravitation is the one proposed by Cartan [11, 12].

The historical development of the Einstein-Cartan theory of grav-
itation and the comprehensive account of the work done by various
researchers is exhibited in the previous chapters.

Cosmology is another branch of the theory of relativity in which
researchers work for the physical world as the solution of the field

equations. The aim of the study of cosmology is to understand the
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past, present and future of the universe and to know four mysterious
forces in nature, their interdependence and their consequences on the
universe.

In the purview of Einstein-Cartan theory of gravitation, several
authors have investigated different aspects of the solutions of the field
equations Einstein-Cartan theory of gravitation. Explicit solutions of
the Einstein’s field equations for static fluid spheres have been obtained
by Tolman [130] and noticed that some of these solutions can be used in
the investigations of Stellar Structure. By using Hehl’s approach and
Tolman’s technique three solutions have been presented by Prasanna
[100] with special reference to a perfect fluid distribution and shown
that a space-time metric similar to the Schwarzschild interior solution
will no longer represent a homogeneous fluid sphere in the presence of
spin density, and at the boundary of the fluid sphere the hydrostatic
pressure is discontinuous. Kuchowicz [77] has reviewed most of the
previously known solutions for Weyssenhoft fluids in Einstein-Cartan
theory of gravitation and addressed on the question as to whether
or not such models have singularities. All these solutions have zero
acceleration and vorticity. Some non-zero accelerated solutions have
been obtained by Griffiths and Jogia [42].

Singh and Yadav [119] have studied the Einstein-Cartan field equa-
tions for the interior of a fluid sphere in an analytic form by the method

of quadrature. Some other solutions have also been obtained under cer-
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tain assumptions. Several of these solutions may be applicable to the
investigations of Stellar interiors where high central density and pres-
sure are significant. Kalyanshetti and Waghmode [66] considered the
static, conformally flat spherically symmetric perfect-fluid distribution
in Einstein-Cartan theory and obtained the field equations. These field
equations are solved by adopting Hehl’s approach with the assumption
that the spins of the particles composing the fluid are all aligned in the
radial direction only and the reality conditions are discussed. Yadav
and Prasad [I38] have obtained general solution representing confor-
mally flat non-static spherically symmetric perfect fluid distribution
in Einstein-Cartan theory. The explicit expressions for pressure, den-
sity, expansion, rotation, shear and non-vanishing components of flow
vector have also been found. Sharif and Igbal [113] have investigated
solutions of the Einstein’s field equations for the case of a non-static
spherically symmetric perfect fluid using different equations of state.
The properties of some exact spherically symmetric perfect fluid solu-
tions which contain shear are obtained. Katkar [59] by adopting the
Newman-Penrose-Jogia-Griffith formalism, the field equations in Ein-
stein—Cartan theory for matter with spin creating torsion in space—time
are solved in a spherically symmetric space-time by assuming only one
non-vanishing component of spin. The exact solution might be the pro-
totype for more realistic models. Katkar and Patil [60] have obtained

exact solution of Einstein-Cartan field equations for static, conformally
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flat spherically symmetric space-time and it is proved to be Petrov-type
D.

In this chapter, non-static conformally flat, Petrov-type D, spheri-
cally symmetric solutions of the Einstein-Cartan field equations; when
Weyssenhoff fluid is the source of spin are obtained. In general the so-
lution is expanding, accelerating, rotating and non-shearing. However,
the dynamic solution is expanding and rotating with zero accelera-
tion and shear; whereas the static solution is accelerating and rotating
with zero expansion and shear. The work done in the chapter is or-
ganized as follows: In the Section 2, the non-static conformally flat
spherically symmetric metric is considered and the tetrad components
of connection 1-form, curvature 2-form are derived. Consequently, the
tetrad components of the Riemann curvature tensor and Ricci tensor
are derived and the components of expansion, acceleration, rotation
and shear tensor are obtained. In the Section 3, the Einstein-Cartan
field equations are formulated and solutions are obtained, the solution

is shown to be Petrov-type D and finally some conclusions are drawn.
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6.2 Non-Static Conformally Flat

Spherically Symmetric Metric

Consider the non-static conformally flat spherically symmetric space-

time in the form
ds® = e [dt* — dr® — r*(df” + sin®0d¢”)] | (6.2.1)

where g is a function of r and ¢ only. Define the tetrad basis 1-forms

6 for the metric (6.2.1) as

e
, €
W
6 = — e\/;(de —isinfdo) |

where 0" is a complex conjugate of 63. Hence the metric (6.2.1) can be

written as
ds® = 20'0* — 20°0* . (6.2.3)

Using the equation (6.2.2) we obtain readily the components of the
basis vector fields as

e

li =—=(-1,0,0,1) ,

5 (-1.0.0.1)
© (1,0,0,1 6.2.4
n; = y Uy Uy ) L
75 (10.0.1 (624
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T (0,1, isind, 0)
m; =—«= y Ly ) ’
V2

where m; is a complex conjugate of m;. The contravariant components

of the null basis vectors are obtain by raising the index by the metric

tensor as
I'=g*l = % (1,0,0,1) ,
similarly, we obtain
- eH
n' :% (—1,0,0,1) , (6.2.5)
m' = — et (0,1, icosect,0) .

V2

The tetrad form of the equation (2.4.22) becomes
2 1 « I6]
d.f = —5 ~Qap 0" NG| (6.2.6)

where (),57 are the tetrad components of the torsion tensor Qijk and

are given by

QOﬁW = kSaﬁu'y .

For coordinate functions x!, the equation (6.2.6) becomes

, 1 .
d.z' = — el Qas 0" A O (6.2.7)
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It is evident from equations (6.2.5) and (6.2.7) that

d.’r = N wil) 0°NO°
r 2\/—(Q6 — Qap’)
e My
d*2(9_ a a 90‘/\9ﬁ,
NG (Qﬁ + Qag’)

ir—te Hcosect

2\/5

d’t = — 27(%5 + Qus?)0* N OP.

Now operating d, to the equations (6.2.2) and using the equations

(6.2.8)

d*2¢ - (Qaﬂg - Qa54) 0% A (gﬁ )

(6.2.8) we readily, get

[ . 1 .
d*el :ﬁe : (:ul - :u) 02 — 5@0&519 b )
d 82 —LG_M ( /+ ')012 o lQ 29@5
¥ _\/§ K H 2 apf )
—u
d.0° == (o+ i + 171 0% + (o= =171 6%+
V2
1
+r ot 6% — éQaﬁ?’gaﬁ 7
—u
d0* =T (it g +r ) 0%+ (o — i —r 1) 6%
V2
1
—rleotd 6%] = 5Qas"0"" (6.2.9)
where we have used
07 =0 NO°

and the dot denotes partial derivative with respect to time 't and the

prime indicates partial derivative with respect to the coordinate 'r’.
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Now from equations (6.2.9) and (2.4.70) we obtain after simplifying

the values of NP spin coefficients in Riemann space-time as

HR=N=0"=r"=7"=10=0,
poz—g(,u-l-//-i-?“l) No:g(ﬂ_uf_rq)
V2 ’ V2 ’
— —p (6.2.10)
== (i) A = = (i — i)
2v/2 ’ 2v/2 ’

By virtue of the equations (6.2.10), (1.3.30), the equations (2.4.69)

reduces to
Wi = — % [G_M (,u + ,lL/) 91 —e M (,u - ,u') 92 - 2]€3093 - 2]€§094] )
W13 :% {2k3091 + [6_“ (,L'L + '+ 7“_1) -+ 2/4;51} «94} ,
1
Wo3 :E {—2k5002 + [e_“ (u —u - 7"_1) + kal} 94} : (6.2.11)
W3y = — % [2ks1(0" + 6%) + e M eotf(0° — 6)] .

Now using equations (1.3.30), (6.2.10) and (6.2.11), from equations
(2.4.85) we obtain the tetrad components of curvature 2-form. These

are listed below:

Qll _ [6—2u (,LL _ ,LL//) o 4k2$0§0] 912+
+ {ke™"[so, + s+ 250 (' + 1) | — 2k25031}913—|—

+ {k:e_’“‘ [EO,T + §0¢ + 250 (,u' + ,u) } + 2k2§081}914—
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— {2]€28081 + ke # [So,r — S0t + 250 (MI — /J) ] }923 + {2k2§0$1—
— ke # [50’7« — S0t + 2350 (0 — f1) } }924 + {4/6316_“7“_1—1—
+ ke 'r~cotf (so — So) }07* (6.2.12)

Ol = —{ke‘“ [30,7' + 804 + 280 (/1 + NIH + 2k25031}912 + {ksl,re_“%—

: e
+ ksye " 4 2k%sT + ksie " (3 + 1) + T<’u — =2
+ 2 — 1?01+ [ = 2628 + ksor e P eotf] 0% — {ksy e~

—2u

— ksyse " + ksor e Feot + 2k*sg5 — GT(,LL — 2+ p" — -

— 2fp) — ksie ™ (fu—p/ — 2r") — 2k%s7 }6* —

— [2K?sps1 + ksoe (1 — p' — )]0, (6.2.13)
0% = {ke_“ (S0 — S0t — 280 (0 — p')] — 2k2$081} 612 — [2k2s(2)+

+ ksorfle*“cote} o1 + {k:slﬂne’“ + ksie " + ksie (/;L + 1+

—2u /
+2r7h) — 2k?s080 + 2k*s] + ksor e Feotl + S 5 (i + 20 44" — =

—u* - 2i1p) 10" — {ksi e — ksye ! — 2k%sT — ksie " (3 — p') —

=)
— %(,u — " =2 r T — ,LL’Q) 10% + [2k%sos1 + ksoe " (At
+ ' +rh)]6* (6.2.14)

Oy = —2ke™ (s1, + s11) 0% + [2k7s0s1 — ksoe ™ (i — i/ —r1)] 0"+
+ [2K%5ps1 + kSpe * (i — i/ —r71)] 0 — [2kPsps1 — ksoe " (i + '+
+ 77 1)]0% — [2k%50s1 + kSoe " (ju+ g +r71)] 0%+ [ (i — p -
—2u'r7t) — 4k?s7] 6% (6.2.15)
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The expressions for Q'y, 024, Q% are obtained by interchanging the
suffixes 3 and 4 and taking the complex conjugate of the right hand
sides of the equations in (6.2.13), (6.2.14) and (6.2.15) respectively.

6.2.1 Tetrad Components of Riemann-Cartan

Curvature Tensor

From the equation (2.4.65) we obtain

Qup = R12050" + Ri3050" + R11ap0" + Ro3ap0 + Rosapd®* + R3sapf™
(6.2.16)
where

Qaﬁ = —Qﬁa , cv,ﬁ = 1,2,3,4.

By giving different values to a, 5 = 1,2,3,4 in the equation (6.2.16)
and then equating the corresponding coefficients of basis 2-forms of

equations(6.2.12), (6.2.13), (6.2.14) and(6.2.15) we readily obtain the

tetrad components of Riemann-Cartan curvature tensor as

Rigis =€ (ji — ") — 4k 5050

Riz12 =ke ™" [so, + S0+ + 250 (1 + f1)] — 2k*sgs1 |

Roz1p = — {ke ™ [so, — S04 + 250 (1 — f1)] + 2k28081} :
Rsy1o =4ksie "rt + ke Prteotl (sy — 5)

Risiz =ke " [so, — S04 — 250 (0 — i)] — 2k>sos1

Ri313 = — [2/{25(2) + ksorfle*“cotﬂ ,
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R1413 zksl,re_“ + kSl,tG_'u + /CSlG_‘U (,LL + ,u' + 27”_1) — 2]€280§0 + 2]?28%4—

e 2

16_MCO-[:9_|_T (M+2H/+M//_H2_MI2_2MM/> ’

+ ksor—

Roqiz =ksi e " — ksy e "+ 2k%s? + ksje " (31— p') +
—2u
+%;(ﬂ—ﬂ“ﬂwfhﬂf—ﬁﬁ7

Raqz =2k*sps1 + ksoe " (fn+p + 7’_1) :
Frzzs = = {k‘e_’“‘ [SO,T + S0+ + 280 (1 + 1) } + 2k28081} ;

Rz =ksi e + ks e " + 2k°sT + ksie " (3 + p') +
—2u
e

+j;(ﬂ—ﬁuﬂwrhﬂf—ﬁﬁ,
Roso3 = — [2]@‘23(2) — ksor_le_“cotﬂ :

Royog =ksi et — ks e + ksie™” (ﬂ —u - 27“*1) — 2k%s030 + 2]{:23%—
6_2M ’ )
— ko e P cotd + = (ji = 20 + " — (i = + 24 ) |
R3403 = — [2/{23031 + ksoe M (pn — ' — r’l)] ,
Rigzq = — 2ke " (s1, +s14)
R334 :2k23081 — kspe™* (,u — ,u/ — T'_l) ,
Rogsa = — [2Ksos1 — ksoe " (4 4/ +1r71)]

Ry3y =e 2 (ﬂQ - M/Q - 2#’7“_1> — 41{28% ; (6.2.17)
and

Rag13 = Ri323 = 0 .
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The complex conjugates of above equations are obtained by interchang-
ing the suffixes 3 and 4 and taking the complex conjugates of the right

hand sides of the respective equations.

6.2.2 Tetrad Components of Ricci-Cartan Tensor

and Ricci-Cartan Curvature Scalar

The tetrad components of the Ricci-Cartan tensor and Ricci-Cartan

curvature scalar are defined by
Raﬂ = nyeRl/aﬁe 7R = naﬂRaﬂ )

= Rag = Riap2 + Roap1 — R3aps — Raaps - (6.2.18)

Using equations (6.2.17) we obtain from equation (6.2.18) expres-

sions for Ricci-Cartan tensors

Ryy —e 2 (ﬂ o 4 — 2 — 2 — M’Q) + ke ot (so + 50) +
+ 4k%s,% — 4k 5430 ,

Ris =Ry = e 2 (2ﬂ — oy =2 r Tt 4 % — //2) + 4k*s3 — 4k*s03 |

Riz == Ry = ke " [so, — s0: — s (30— 3/ —r71)]

Ryy =e 2 (/l — 20+ — 242 — ;/2) — kr—te "coth (sg + 5o) +
+ 4k*s1% — 4k*s¢3

Rys == Ry = ke " [so, + sog + 50 3+ 3/ +771)]

Ray =2ksy e " + 6ksie " — e 2 (ji — " — dplr ™t + 2p* — 2% |
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Rys = — 2ksy e " — 6ksye i — e M (ji — p" — 4p'r ™ 4 2% — 2,LL/2) :
(6.2.19)

R33 =0 .
The Ricci-Cartan curvature scalar is given by

R =62 (;z — " =2t - ,LL/2> + 8k?s1? — 8k?505 . (6.2.20)

6.2.3 The Kinematical Parameters

By virtue of the equation (6.2.10), the kinematical parameters viz; the
expansion ¢, the acceleration vector ;, the shear tensor o;; and the

rotation tensor W;; defined in equation (1.4.27), take the form

0 =3e "1,
U :Le_MM/(li —n;)
NG ;
oi; =0 , (6.2.21)

M/ij :4k31m[imﬂ + 2]{350 (l[lm]] + m[lnj]) + c.c.

This will be of great use in the interpretations of the solutions obtained

below.

205



6.3 Einstein-Cartan’s Field Equations

We start with the tetrad representation of the field equations (1.2.48)

as

R
Raﬁ — Enaﬂ = —/{tag , (6.3.1)

where the tetrad components of the energy momentum tensor
taﬁ = tije(a)ie(ﬁ)j y (6.3.2)

are obtained by using equation (1.4.22) and (6.2.10) as

1 1
11 =tog = §(ﬂ+p) ; by = lo1 = §(P —p);
tyy =tz =p , t31 =tz = p'e V'sg (6.3.3)
ty =ty = p'e "5 ,
and all other tetrad components of the energy-momentum tensor are
ZEro.
Using above equations (6.2.19), (6.2.20) and (6.3.3) in equation
(6.3.1), the independent field equations for gravitation in Einstein-

Cartan theory are given by
e 2 ([L + 20+ " — =20 — ,u'2> + kr—te " coth (sg + 5o) +
+ 4k?s1% — 4k*s05) = —g(P +p) ,
e (" — ji— 2p* + 2//2 + 4prh) = —g(l) -p),

S0 — S0t — S0 (3 — 3 —r 1) =0,
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e ([L — 2 4 " — A 2 — ,u’2> — kr—te "coth (sg + 5) +

k
+ 4k*s,? — 4k*s05) = —5(,0 +p),

S0, + So0,t + S0 (3;1 +3u + 7“_1) =

0
S0, + S0,t + S0 (3,& + 4 + 7“_1) =0,
S0 — S04+ So (41 — 3+ 7’*1) =0

)

e (2 — 21" — 2ur 4 12 —
+ 4k%s,% — 4k%sy5) = —kp ,

e (2 — 2" — 2p'r 4+ 2 — %) — 2ksy e ! — 6ksie * i+

+ 4]€2812 - 4]{328050 = —]Cp .

+ 2k81’t€_u + 6]{5816_M,L'L—|—

(6.3.4)

We see from equations (6.3.4) that these equations are consistent pro-

vided that sy = 0. Hence out of the nine field equations (6.3.4), there

exists only five independent field equations these are given by

/.L,—/.L,LL, =0 )
'u// . MIQ . ,u'r_l =0,
s14+3s10 =0,

kp=e <2p; 3 42— 4#’7“‘1) 4R

— kp = 3e (,u’2 — 0+ 2,u'7“_1) + 4k*s7 .

The solution of equation (6.3.7) is given by
S1 = de 3 .
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where d is a constant of integration.
(I) General Case: When p = p(r,t). The general integral of the
equation (6.3.5) is given by

et =o(r)+¢({)+c, (6.3.11)

where ¢ and 1 are function of r and ¢ respectively and c is any arbitrary
constant independent of r and ¢. The solution (6.3.11) must satisfies

the equation (6.3.6). Hence we have

¢"(r) — 1czﬁ’(r) =0. (6.3.12)

r

Solving the equation (6.3.12) we obtain
¢(r) = arr® + ag (6.3.13)

where a; and as are constants of integration.

Also by integrating the equation (6.3.5) with respect to r we obtain
p(r,t) = In|p(r, t)A(t)| (6.3.14)

where A(t) is a constant of integration with respect to r and it may
involve the time ¢ explicitly., so that 1 % 0. Similarly, integrating the
equation (6.3.5) with respect to ¢, we obtain

w(r,t) = In|y' (r,t)B(r)| , (6.3.15)

where B(r) is a constant of integration with respect to t it may be a

function of r.
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From equations (6.3.14) and (6.3.15), we have
p(r,t) = In|fu(r, ) )] = In |p'(r, ) B(r)] .
From equation (6.3.11), we obtain

po=—eg(r), p=—e"(t),

(6.3.16)

p=— et (r) — et (r)], ji= —e[ih(t) — e"PA(t)]

i = (r)i(t)
From equations (6.3.11) and (6.3.16) we write
[@(r) + (1) + " = fu(r, ) A(t) = @/ (r, 1) B(r) .

This gives

This yields

gbl(r) - B_l(lr) )
and  (t) =— A1) .

Integrating the equation (6.3.20) with respect to r we get
o(r) = ayr’ + ay = —/B_l(r)dr + asg .
Differentiating the equation (6.3.22) we get

2a0;7 = — B~ (1),
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(6.3.18)

(6.3.19)

(6.3.20)
(6.3.21)

(6.3.22)



= B(r) =— S (6.3.23)

Similarly, from the equation (6.3.21), we obtain
Y(t) = —/A_l(t)dt +bs . (6.3.24)
We choose

A(t) (6.3.25)

:ﬁlt'

For this choice of A(t), the equation (6.3.24) gives
Y(t) = —bit* + by | (6.3.26)

where b1, by are constants of integration with respect to t. Thus the

general integral (6.3.11) becomes

e M =ayr? — bit? + as + by + ¢ |

= e M =aqr? —bit’ + ¢ , (6.3.27)
where ¢; = ay + by + ¢. Hence the metric (6.2.1) becomes
ds® = [a17* — bit? + c1] 2[dt* — dr? — r*(dO* + sin*0d¢?)] . (6.3.28)
The pressure and density become

]{p :4CL1(CL1 — bl)T2 + 8b1 (CLl — bl)t2 — 461(2&1 + bl) — 4]4328% ,
(6.3.29)

kp = — 12[)1(@1 - bl)tQ + 12&101 — 4]{32S% . (6330)

210



In the absence of time ¢, the solution (6.3.28) reduces to the solution
obtained by Katkar and Patil [60].
From these equations (6.3.29) and (6.3.30), we obtain

k(p + ,0) = 4@1(@1 — bl)T2 — 4b1(a1 - bl)tQ + 401(&1 - bl) - 8]628% .
(6.3.31)

Multiplying equation (6.3.29) by 3 and the equation (6.3.30) by 2 and
adding we get

k(3p + 2p) = 12a1(a; — by)r? — 12b1c; — 20k%s7 . (6.3.32)

Without loss of generality, we set ¢; = as + by + ¢ = 0. Consequently,
from equations (6.3.30) and (6.3.32), we find

k(3p + 2p) + 20k?s?
r2
kp + 4k*s3
t2

12@1(@1 — bl) =

, (6.3.33)

and — 12&1(@1 — bl) == (6334)

Solving the equations (6.3.33) and (6.3.34) for a; and b; we find

B [k(3p + 2p) + 20k2s3)t
2rv/3{[k(3p + 2p) + 20k2s3]t2 + r2[kp + 4k?s3]}
(kp + Ak2s2)r
9tV/3{[K(3p + 20) + 20K282e2 + 12 [kp + 4252}

5o (6.3.35)

by = (6.3.36)

Substituting these values of a; and b; in the equation (6.3.28) we get

211



4[(3p + 2p + 20ks)t2 + (p + 4ks?)r?]
3k (p+ p + 8ks?)? r2t2

— r(d6* + sin29d¢2)] . (6.3.37)

ds® = {dtQ — dr?-

If now g is a function of ¢ alone, in this case the space-time (6.2.1)

becomes
ds® = [~bit? + c| ?[dt?* — dr® — r?(d6? + sin*0d¢*)] . (6.3.38)
where ¢; = by + ¢, with pressure and density given by

—kp =e (21 + [i*) + 4k*s? | (6.3.39)
—kp = — 3e % 4 4k*s3 (6.3.40)

The constants by and ¢; are obtained by solving equations (6.3.39) and

(6.3.40) with the help of (6.3.27) as

1
by =——(kp + 4k>s2)V/? |
1 2\/§t( 10 1)

Cl = —

. (6.3.41)

3o+ AR 2 (3kp + 2kp + 20k?s7) .
1

Hence, the solution (6.3.38) reduces to

e 4[kp + 4K252)
| 3t2(kp + kp + 8k2s?)

2} [dt2 — dr® — r*(d0* + sin*0d¢?) | .

(6.3.42)
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6.3.1 Petrov classification of the solution

The free gravitational field is characterized by the completely trace
free Weyl curvature tensor Cj,;j;. It has 20 independent components
in the Einstein-Cartan theory of gravitation. These can be expressed
in terms of the five complex components of the Weyl tensor 14, (A =
0,1,2,3,4), nine components of a Hermitian 3 x 3 matrix © 45, (A, B =
0,1,2) and a real parameter x.[Jogia and Griffiths [55]].

We follow the notations of Jogia and Griffiths and found that

Yo =1 =YP3 =19 =0, O =0y =063 =0,
1 ,
Vo = — Z[Bke ™ (s1, + 1) + 2K7s1]

Opy =ike sy, + s1(u 4 4+ 2r7Y)] (6.3.43)
1k /
On :Eeiu(slm + s+ 250"
Oy =ike sy, — s1(ft—p — 2r )] |
1

6[3]{?€_M(31,7« + 31/~L/ — 2817"_1) — 2]{328%] .

X:

This is the Petrov-type D solution. For vanishing of spin s;, we see
that all the components of the Weyl tensor vanish and the space-time
metric reduces to the conformally flat space-time and the solution will
be Petrov-type 0.

Discussion

It is evident from the equations (6.2.21) that the non-static spheri-

cally symmetric solutions are expanding, accelerating and rotating but
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non-shearing. The solutions are proved to be Petrov-type D. However,
the dynamic solution (6.3.42) is expanding and rotating with zero ac-
celeration and shear; whereas the static solution is accelerating and
rotating with expansion free and shear free. We see that the spin of

the gravitating matter influences the geometry of space-times.
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