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PREFACE

Einstien’s general theory of relativity is one of the most beautiful

structures of theoretical physics which describes the mysterious grav-

itational force in terms of geometry. The success of general theory of

relativity is well known as it has passed every unambiguous test both

experimentally and observationally. The recent detection of gravita-

tional waves in the space-time as was predicted by Einstein 100 years

before cemented the status of general relativity, besides other confir-

mations of Einstein’s predictions of deflection of a ray of light and the

perihelion advances of the planet Mercury in the gravitational field of

the Sun. However, in spite of all the embracing characters and widely

recognized string of success of Einstein’s general theory of relativity, it

is considered to be still inadequate in the sense that it does not satisfy

certain desiderata of the theory of gravitation. For example, it does not

incorporate the intrinsic spin of the gravitating matter, it is not free

from singularities, it does not incorporate Mach principle etc. Hence,

there was a hope that there may be something beyond the Einstein’s

general theory of relativity yet to be found. To address such issues,

several theories of gravitation have been proposed as alternatives to

Einstein’s general theory of relativity with the hope that the modi-

fied theories may satisfy the desiderata of the theory of gravitation.

Any new theory of gravitation should be more general and better than
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the Einstein’s general theory of relativity and will have to include the

general theory of relativity within itself, satisfying the desiderata for

the theory of gravitation, explaining the four fundamental interactions

(strong interaction, electromagnetic interaction, weak interaction and

gravitational interaction) of nature and their interdependence. None

of the theory so far discovered has been completely successful, in the

sense that none satisfies the desiderata for the theory of gravitation but

all these modified theories of gravitation have gained the attraction of

researchers due to many reasons, such as incorporation of intrinsic spin

of gravitating matters, adaptability of quantum physics, understand-

ing of Mach principle etc. and good amount of work has been done

in these theories in the last more than four decades. Einstein-Cartan

theory of gravitation is one such modified theory of gravitation, pro-

posed by Cartan in 1923, by introducing spin- an intrinsic feature of

gravitating matter, in the theory. In recent years the Einstein-Cartan

theory of gravitation has geared up in receiving the wide attention of

researchers to study the role of intrinsic spin of gravitating matter and

to study some exact solutions of the field equations of Einstein-Cartan

theory of gravitation. The EC theory of gravitation is obtained from

Einstein’s general relativity by modifying the underlying Reimannian

geometry; in which the connections are not symmetric but are asym-

metric in character. Hence the underlying geometry of the EC theory

of gravitation is non-Riemann due to asymmetric connections arising
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from the presence of torsion in the space-time. The Riemannian Cur-

vature tensor of a non-Riemannian space, hence forth referred to it as

the Riemann-Cartan Curvature tensor. A non-Riemannian space with

asymmetric connections is characterized by the metric

ds2 = gijdx
idxj,

with Riemann-Cartan Curvature tensor Rhijk satisfying the properties

Rhijk = −Rihjk = −Rhikj ,

Rhijl 6= Rjhli ,

Rhijk +Rhjki +Rhkij 6= 0 ,

Rhijk;l +Rhikl;j +Rhilj;k 6= 0 ,

where semi colon (;) denotes the covariant derivative on a non-Riemann

space with respect to the asymmetric connections, and for a covariant

vector Ai, it is defined as

Ai;j = Ai,j − AkΓ
k
ji ,

where Γkji = {kij}−Kij
k, are the components of the asymmetric connec-

tions, {kij}- are the components of the symmetric Christoffel symbols

and Kij
k are the components of the contortion tensor satisfying the

property

Ki(jk) = 0 .
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The contortion tensor Kijk can be decomposed in to torsion tensor Qijk

as

Kijk = −Qijk +Qjki −Qkij .

Conversely

Qij
k = −1

2
(Kij

k −Kji
k) .

The Einstein-Cartan theory of gravitation reduces to Einstein’s theory

of gravitation in the absence of torsion. There are several investigations

who have investigated and studied several aspects of Einstein-Cartan

theory of gravitation. Some of them includes Tolman [130], Hehl and

his collaborators [50, 51], Trautman [125, 126, 127, 128, 129], Kuchow-

icz [77, 78, 79, 80, 81, 82], Kerlick [67, 68], Prasanna [100, 101], Kibble

[69], Sciama [111], Singh and Yadav [118, 119], Yadav and Prasad

[138], Sharif and Iqbal [113], Katkar [58, 59, 61] Katkar and Patil [60],

Katkar and Phadatare [63] and many more.

The thesis entitled “A Study of Spherically Symmetric Space-

times in Einstein-Cartan theory of Gravitation ”comprises six

chapters and deals with the study of geometry of the non-Riemannian

space and the study of some exact solutions of field equations when

Weyessenhoff fluid is the source of gravitation in the Einstein-Cartan

theory of gravitation. In order to make the thesis self explanatory, we

are presenting the review of the concepts, the mathematical tools of
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differential forms which form the background of our investigations in

the research work carried out in the thesis.

Mathematical Techniques of Differential

Forms:

Techniques of differential forms is another useful and most powerful an-

alytical tool of modern physics than the old tensor techniques. Instead

of forty christoffel symbols in tensor approach, there are only six com-

plex connection 1-forms. The use of the techniques of differential form

is well known in the literature as it reduces the complexity of compu-

tations. Katkar [61] has extended this technique on a non-Riemannian

space to study the geometry of a non-Riemannian space. We use d∗

to denote the exterior derivative in the non-Riemannian space-time of

EC theory of gravitation. This exterior covariant derivative operator

d∗ is connection dependent and hence obtained by taking the covariant

derivative with respect to the asymmetric connections of a differential

form. It satisfies all properties of the exterior derivative operator ’d’

of Riemannian space-time except the vanishing of repeated exterior

derivative d of a form of any degree.

The operator d∗ on a non-Riemannian space converts r-form to

r + 1-form. It is defined as

d∗ : ∧rT ∗p → ∧r+1T ∗p ,
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by

d∗ω̃ = ωi1i2...ir;kd∗x
k ∧ d∗xi1 ∧ d∗xi2 ∧ ... ∧ d∗xir−

− ωi1i2...ir
[ r∑
p=1

(−1)p−1d∗x
i1 ∧ ... ∧ d∗xip−1 ∧ d2∗xip ∧ ... ∧ d∗xir

]
,

(1)

for any ω̃ ∈ ∧rT ∗p . The operator d∗ satisfies the following properties

(i) d∗f = f,id∗x
i , (2)

(ii) d∗(ω̃ + σ̃) = d∗ω̃ + d∗σ̃ , (3)

(iii) d∗(fg) = d∗f · g + f · d∗g , (4)

(iv) d∗(ω̃ ∧ σ̃) = d∗ω̃ ∧ σ̃ + (−1)deg of ω̃ω̃ ∧ d∗σ̃ , (5)

(v) d∗(fω̃) = d∗f ∧ ω̃ + fd∗ω̃ , (6)

(vi) d∗(d∗ω̃) 6= 0 , for any form ω̃, of degree r ≥ 0 , (7)

(vii) d∗(d∗f ∧ d∗g) = d2∗f ∧ d∗g − d∗f ∧ d2∗g . (8)

Thus for a 0-form f , we obtain 1-form d∗f as

d∗f = f;id∗x
i ,

where for a differential function f , we have

f;i = f/i = f,i .

Thus in the case of a scalar function f , we have d∗f = df , and the

coordinate differentials d∗x
i form a basis of a space of 1-forms, such

that d∗x
i ∧ d∗xi = 0.
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Using the definition (1) we find

d2∗f = −f;ijd∗xi ∧ d∗xj − f;id2∗xi . (9)

Interchanging i↔ j in the equation (9) we get

d2∗f = f;jid∗x
i ∧ d∗xj − f;id2∗xi . (10)

Adding equations (9) and (10) we get

d2∗f = −1

2
(f;ij − f;ji)d∗xi ∧ d∗xj − f;kd2∗xk , (11)

where we have

f;ij − f;ji = 2f;kQij
k . (12)

Hence equation (11) becomes

d2∗f = −f;kQij
kd∗x

i ∧ d∗xj − f;kd2∗xk . (13)

If f is taken as a coordinate function xi, then we obtain from equation

(13)

d2∗x
k = −1

2
Qij

kd∗x
i ∧ d∗xj . (14)

Substituting this in the equation (13) we get

d2∗f = −1

2
f;kQij

kd∗x
i ∧ d∗xj . (15)

We also used a very familiar Newman-Penrose [89] null tetrad formal-

ism and its extension by Jogia and Griffiths [55], especially to find the
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solutions of the field equations in the Einstein-Cartan theory of gravi-

tation. The approach involves a complex null tetrad consisting of four

complex null vector fields

e(α)
i = (li, ni,mi,mi) ,

where li and ni are real vector fields and mi and mi are complex con-

jugates of each other form a basis at each point of the space-time. The

tetrad of the dual basis vector fields is given by

e(α)i = (ni, li,−mi,−mi) .

The basis vectors of the tetrad satisfy the orthonormality conditions

lin
i = −mim

i = 1 ,

and all other inner products are zero.

In our investigations we utilize tetrad components, as they make

field equations more transparent, instead of their tensor components.

Any vector or a tensor of any rank is expressed as a linear combinations

of its tetrad components and conversely. For example

Ai =Aαe
(α)

i ,

Aij =Aαβe
(α)

ie
(β)

j ,

and conversely, Aαβ = Aije(α)
ie(β)

j and so on.

Hence the tetrad components of the equation (15) becomes

d2∗f = −1

2
f;σQαβ

σθα ∧ θβ ,
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where θα = e(α)id∗x
i is a tetrad basis of the coordinate differentials

d∗x
i, which form a basis of the space of 1-forms.

In a non-Riemannian space, Katkar [61] has obtain the Cartan’s

equations of structure, which are used to study the essence of non-

Riemannian geometry and are thoroughly used throughout the the-

sis to facilitate the complex computation of the components of the

Riemann-Cartan curvature tensor. These equations are given by

d∗θ
α =− ω0α

β ∧ θβ −
1

2
Qβσ

αθβ ∧ θσ ,

Ωα
β =d∗ω

α
β + ωαε ∧ ωεβ +

1

2
γαβσQεδ

σθε ∧ θδ ,

where

ω0α
β = γ0αβσθ

σ ,

are the tetrad components of the connection 1-form in a Riemannian

space-time of Einstein’s general theory of relativity; and γ0αβσ are

the corresponding components of the Ricci’s coefficients of rotation;

and ωαβ , Ωα
β are the tetrad components of connection 1-form and

curvature 2-form respectively in the non-Riemannian space-time. They

are defined by

ωαβ = γαβσθ
σ ,

and

Ωα
β = −1

2
Rδεβ

αθδ ∧ θε.
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Contents of Chapters:

Chapter wise investigations and results obtained in the thesis are pre-

sented below.

In the Chapter 1 review of the literature and some basic con-

cepts, mathematical techniques exploited in the thesis exhibited. In

particular, results of the Einstein’s general theory of relativity and the

techniques of differential form are presented. The chapter is introduc-

tory and no original results are claimed in this chapter. Remaining

five chapters contain some original results.

In the Chapter 2, the inevitability of geometry in the development

of theory of gravitation is portrated. Vector identities and their invari-

ance in different theories of gravitation are accomplished. A technique

of differential forms, developed by Katkar [61] on a non-Riemannian

space, is presented. A formula for the curvature of a non-Riemannian

space is derived. A non-Riemannian 2- space is constructed and its

curvature is obtained. The results are corroborated by employing the

techniques of differential forms on a non-Riemannian space. Maxwell’s

equations in a more general form are derived.

General relativity has been considered as one of the most difficult

subject due to a great deal of complex mathematics. The complexity

of the mathematics reflects the complexity of describing space-time

curvature and some conceptual issues which are present and even more
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opaque in the physical 4- dimensions world. Hence in order to gain

insight in to these difficult conceptual issues Deser et al. [23, 24, 25]

in a series of papers, Giddings et al. [36], and Gott et al. [39, 40] have

examined general relativity in lower dimensional spaces and explored

some solutions. Studies of general relativity in lower dimensional space-

times have proved that solving Einstein’s field equations of general

relativity in a space-time of reduced dimensionality is rather simple

but yields some amusing results that are pedagogical and scientific

interests and yet are apparently unfamiliar to most physicists.

In the Chapter 3, we study Einstein-Cartan theory of relativity

in a 2-dimensional non-Riemannian space. An exposition of a new

dyad formalism, consisting of two real null vector fields is developed

and employed to construct a 2-dimensional non-Riemannian space. It

is claimed that the 2-dimensional non-Riemannian space contains no

matter at all; so that there is no gravitational field either.

It is shown that the torsion influences the curvature of the 2-

dimensional non-Riemannian space. The results are corroborated by

employing the techniques of differential form developed by Katkar [61].

The field equations of EC theory of gravitation are given by Hehl

et al. [50, 51]

Rij −
1

2
Rgij = −ktij , (1)

and Qij
k + δi

kQjl
l − δjkQil

l = kSij
k , (2)

xviii



where Sij
k is the spin angular momentum tensor. The spin density of

matter is described by an anti-symmetric tensor Sij and is related to

the source of torsion according to the equation

Sij
k = Siju

k . (3)

Frankel condition requires the intrinsic spin of a matter field to be

space-like in the rest frame of the fluid. This yields

Siju
j = 0 . (4)

The condition (4) implies that the torsion trace vanishes identically and

hence the field equations (2) reduces to an algebraic coupling between

spin and torsion according to

Qij
k = kSiju

k . (5)

In the Chapter 4, we consider the non-static spherically symmetric

metric in the form

ds2 = e2νdt2 − e2λdr2 −B2(dθ2 + sin2θdφ2) , (6)

and the field equations (1) and (2) are solved by using the techniques

of differential form on a non-Riemannian space, when Weyssenhoff

fluid is the source of gravitation and spin. Two classes A and B of

different solutions of the field equations in the EC theory of gravitation

are obtained when the Weyssenhoff fluid is the source of gravitation
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and spin. Many of the previously known solutions for Weyssenhoff

fluid in EC theory of gravitation have zero acceleration and vorticity

(Kuchowicz [82]). Griffiths and Jogia [42] have claimed some non-zero

accelerated solutions. In this chapter we have applied the techniques

of differential forms and a class A of non-static solutions with zero

acceleration and a class B with non-zero acceleration are obtained.

Class A solutions are expanding, shearing and rotating, while the class

B solutions are rotating. In class A solutions, the non-zero kinematical

parameters, the pressure and the density diverge to infinity, and vanish

together at t = 0 and at large t respectively. Similar phenomenon is

observed in class B solutions at r = 0 and at large r respectively.

It can be seen that the rotation, the pressure and the density are

influenced by the spin of the fluid, while there is no such effect on the

expansion, acceleration and the shear. In the absence of the spin our

result coincides with the result obtained by Sharif and Iqbal [[113]],

and the solution is irrotational.

In the Chapter 5, a static spherically symmetric space-time de-

scribed by the metric

ds2 = eνdt2 − eλdr2 − r2(dθ2 + sin2θdφ2) , (6)

is considered and the solution of the field equations when Weyssenhoff

fluid is the source of gravitation and spin is obtained. The solution is

proved to be rotating with non-zero acceleration, but zero expansion

and shear and it is free from singularity. The solution is proved to be

xx



of Petrov-type D. Our solution matches with the solution obtained by

Prasanna [100] in the absence of the spin.

The Chapter 6 is devoted to the investigation of solutions of

the field equations of EC theory of gravitation when the Weyssenhoff

fluid is the source of gravitation. In general, the non-static spherically

symmetric solution is expanding, accelerating and rotating but non-

shearing. However, the dynamic solution is proved to be expanding

and rotating with zero acceleration and shear, where as static solution

reduces to the solution obtained by Katkar and Patil [60]. This solution

is accelerating and rotating with expansion free and shear free. We

see that the spin of the gravitating matter influences the geometry of

space-times. The solutions are all Petrov type D.
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The following terminologies are used in the presentation of the en-

tire thesis.

1. Equations are numbered by (Chapter number.section.equation

number), e.g. (3.2.5) indicates fifth equation in second section of

third chapter.

2. References are listed at the end alphabetically and are referred

in the text shown in the square bracket.

Place: Kolhapur
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Mr. D. R. Phadatare
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Chapter 1

Theories of Gravitation
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1.1 Introduction

“The most valuable theory of my life...

The theory is of incomparable beauty ” .

... Albert Einstein 1915

It is reported that there are more than forty theories of gravitation.

Out of these only the one propounded by Einstein in 1915 is considered

as the most popular and successful theory, because of the apparent rea-

son that it has been verified both experimentally and observationally.

To know the ingenious work of Einstein, let us digress for a while to

see how the concept of our universe has been changing in keeping with

the pace of civilization.

Aristotle (390-332 B. C.):

A Greek philosopher and one of the most intellectual leaders of the

4th Century B.C.-Aristotle, only on the basis of experience and com-

monsense thought that the Earth was stationary at the centre of the

universe and the Sun, the Moon, the planets and the stars moved in a

circular orbits about the Earth, thus explaining why the Sun and the

stars systematically rise in the east and set in the west. Until the 17th

century Aristotle’s idea came to be regarded as absolute truth. Coper-

nicus (1473-1543) was the first man who challenged the ‘geocentric
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theory’of Aristotle and proposed an exactly a rival frame work called

the ‘heliocentric theory’. Nearly a century passed before this idea was

taken seriously, two astronomers- the German, Johannes Kepler and

Italian, Galileo Galilee started publicly to support Copernicus theory.

Only on the basis of observations Kepler modified Copernicus’s theory,

suggesting that the planets moved in elliptical orbit and discovered the

exact laws behind the movements of the planets. These laws are stated

as follows:

• The orbit of a planet is an ellipse.

• Arial velocity of the planet is constant.

• The square of the period of revolution of the planet is directly

proportional to the cube of the semi major axis of the ellipse.

But he did not find the cause responsible for such a well-defined move-

ment. However, he put forward lot many observational data before

Newton to find the exact reasons for the well-defined movement of

planets.

Newton (1642-1727):

Newton had a great belief that natural phenomena take place accord-

ing to some definite rules and those rules are well understood. He

invented calculus-the branch of mathematics and started using for the
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description of laws of nature. He defined 3-dimensions space and 1-

dimension time independent of each other, and assumed that space,

time and mass are absolute, that they are independent of the position

of the observers whether at rest or moving with uniform velocity rel-

ative to each other and establish a frame of reference with respect to

which he studied the laws of nature. The most original contributions

of Isaac Newton which essentially laid the foundations of physics were

(i) the laws of motion, which describe how matter moves under the

action of force and

(ii) the law of gravitation, which gives the force of attraction between

two masses.

The greatness of Newton was that he formulated these laws mathe-

matically. The Newton’s laws of motion are described by the equation

d2x

dt2
= g . (1.1.1)

This equation is referred as the Newton’s equation of motion for a par-

ticle falling freely under gravity. As the equation (1.1.1) is independent

of mass of a body, which implies that all bodies fall exactly in the same

way in the gravitational field, establishing gravitational field is truly a

democratic force, it pulls every thing equally irrespective of its mass

and composition. Galileo experimentally verified this by dropping two

bodies of same size but with different composition from Pisa Tower.
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Newton also expressed the law of gravitational attraction between two

masses m1 and m2, as directly proportional to the product of masses

and inversely proportional to the square of the distance between them.

Equivalently, he expressed the law mathematically as:

F =
Gm1m2

r2
n̂ , (1.1.2)

where G is the universal gravitational constant, n̂ is the unit vector

in the direction of the force, and r is the distance between the two

masses.

The success of Newton’s theory of gravitation, based on the New-

ton’s equation of motion and the inverse square law of gravitation, is

remarkable. With the help of these laws of motion and the law of

gravitation, Newton was not only able to describe the behaviour of the

falling apple but also the motion of the projectile on the Earth, the

movements of planets around the Sun, the motion of moon around the

Earth and so on. The law of gravitation also explains the phenomenon

of tides. Newton’s theory, even today applies in regions of weak field

and scientists use for planning the trajectories of spacecraft visiting

planets of the solar system. It works correctly in a domain where

the velocities of particles are very small as compare to the velocity of

light. However, though the Newton’s theory may work beautifully at

low speeds, it is considered as unsatisfactory as it breaks at speeds

approaching the velocity of light as it is evident from the fact that

Newton’s equations of motion and the inverse square law of force are
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covariant under Galilean transformation equations but not the laws of

electromagnetism described by Maxwell’s equations. This contradic-

tion has doubted the universality of Newton’s theory of gravitation,

which leads to the foundation of special theory of relativity. How-

ever, Newton’s laws ruled physics for more than two centuries. It took

Einstein to topple from the throne.

Einstein (1879-1955):

Einstein was also a genuine free thinker of 20th century and had a great

curiosity about nature. He lived in a deep faith-that there are laws of

nature to be discovered. His life long pursuit was to discover them. He

had a great belief that “the most incomprehensible thing about nature

is that it is comprehensible”. Latter it has been established in 1980s

by Alain Aspect and his team that the nature really does behave in

a non-commonsensical way. Einstein’s realism and his optimism are

illuminated by his remark“Subtle is a Lord, but malicious He is not”. It

means that “Nature hides her secret because of her essential loftiness,

but not by means of ruse”.

Einstein had written two separate theories of relativity, the first

one is known as the special theory of relativity and was published in

1905, while the second one is known as the general theory of relativity,

was published in 1915.
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Special Theory of Relativity

In order to explain the motion of fast moving particles, Einstein de-

veloped a new theory in 1905 called the special theory of relativity.

The theory of relativity forces us to change fundamentally our ideas

of space and time. There is no unique absolute time, but instead

each individual has his own personal measure of time that depends on

where he is and how he is moving. We must accept that time is not

completely separate from and independent of space, but is combined

with it to form structure called space-time. The combined space-time

structure is called Minkowski space-time. The 4-dimensions Minkowski

space-time is characterized by the flat metric given by

ds2 = ηijdx
idxj , (1.1.3)

where

xi =(x, y, z, ict) ,

and

ηij =1 when i = j = 1, 2, 3,

=− 1 when i = j = 4,

=0 when i 6= j .

(1.1.4)

The space-time is flat and hence this theory does not deal with gravi-

tation. The theory is based on two principles:
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(i) The laws of physics ( both for mechanics and electrodynamics),

and

(ii) the speed of light in free space

must be the same for all observers moving relative to each other with

uniform velocity. For this is to be true, space and time can no longer be

independent, but rather, they are interdependent of each other in such

a way as to keep the speed of light constant for all observations. The

special theory of relativity is ‘special’ in the sense that it is restricted

and only describes the behaviour of things moving in straight lines

at constant speed. The most remarkable and very strange results of

special theory of relativity are

• the length of a moving rod contracts in the direction of motion,

• mass of a moving particle varies with velocity,

• the moving clock slowed down its speed ,

• simultaneity is not an absolute concept.

Another most exciting result of special theory of relativity is mass and

energy equivalence relation.

E = mc2 , (1.1.5)

whose practical devastating power has been demonstrated during the

second world war in 1945. It is now understood that the conversion
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of mass into energy provides the energy source which keeps the Sun

and stars shining and is therefore the ultimate source of the energy on

which life on Earth depends. However, this theory is still considered

as restricted theory because it does not contain gravitational force

and deals only with inertial observers. The theory fails to study the

relativity of all kinds of motion and restricted to inertial observers

only. In view of these constraints Einstein in 1915 generalised the

special theory of relativity and put forth a new theory known as the

general theory of relativity.

General Theory of Relativity (1915)

A new theory which deals with all types of motion as well as gravitation

was needed. Einstein knew that the new theory of gravitation

• should be self-consistent and covariant,

• should resolve the conflict between Newtonian theory of gravita-

tion and the special theory of relativity,

• should reduce to special theory of relativity in the gravity free

limit, and

• should have the correct Newtonian limit in the sense that when

the velocities involved are very small as compared to the velocity
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of light and the gravitational field is weak then the theory should

reduce to Newton’s theory of gravitation.

He achieved this new theory of gravitation after ten years of his special

theory of relativity. The theory is called the general theory of relativity.

The name general theory of relativity actually has a double meaning.

It is general because it applies to accelerated motion and gravity not

just to objects moving in a straight line at constant speed. This is the

sense in which Einstein originally used the term. But it is also general

in the sense that it applies to every thing- the entire universe and all

it contains.

Constancy of velocity of light in free space is one of the radical

contributions of Einstein in developing special theory of relativity. In-

troduction of gravity in the general theory of relativity was ingenious.

The key question was how to make gravity interact with light so that

its velocity should not change.

In an attempt to achieve gravitational force so as to act on a mass-

less particle without changing its velocity, Einstein observed that the

gravitation is an interaction

• which can not be switched on and off at will,

• it is omnipresent,

• ever lasting and
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• universal.

Einstein identify this permanent character of gravitation as an intrin-

sic property of the non-Euclidean nature of space-time region, and

announced an astonishing result that

GRAVITATION = SPACE-TIME GEOMETRY.

This law of nature tells that the property of space-time which is

responsible for gravity is the curvature of space-time. After an un-

remitting labour in 1915, Einstein succeeded to formulate this law of

nature in the language of mathematics in the form

Rij −
1

2
Rgij = −kTij , (1.1.6)

where Rij is the Ricci tensor, R –the Ricci scalar, gij are the com-

ponents of the fundamental metric tensor, Tij is the stress-energy mo-

mentum tensor, which is the source of gravitation and k is the coupling

constant. In the history of science, general theory of relativity is the

only subject without any history entirely created by the efforts of one

man Albert Einstein. He described this period as follows: “The years

of searching in a dark for a truth that one feels but cannot express ”.

The following quote from John Gribbin’s book [43] specifies that the

theory of general relativity is too difficult to comprehend. “If Einstein

had not produced the special theory of relativity in 1905, some one

else would have done so within a short time, five years or so ”. “The
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General Theory of Relativity is the startling exception, may be the

only one in 20th century. It is agreed by the most eminent theoretical

physicists - Dirac has said so without qualification – that if Einstein

had not created the General Theory in 1915 no one else would have

done so, perhaps not until now, perhaps not for generations”.

Einstein’s theory goes beyond Newton’s theory, but contains New-

ton’s theory within itself. This theory gives a more accurate and com-

prehensive description of gravitation than the prevailing Newton’s the-

ory of gravitation. In its development, Einstein was guided by two

principles:

(i) the principle covariance and

(ii) the principle of equivalence.

Principle of covariance helped Einstein to write the physical laws in

covariant form so that their forms remain unaltered in all coordinate

systems. Equivalently, it means that the physical laws must be ex-

pressed in tensorial form. The principle of equivalence – an axiom of

indistinguishability between gravity and inertia leads to an intimate

relation between metric and gravitation. Einstein’s general theory of

relativity deals with gravitation, which is one of the four basic inter-

actions in nature which is responsible for most of the phenomena we

observe in nature. The success of general theory of relativity is well

known as it has passed every unambiguous test both experimentally

12



and observationally. The recent detection of gravitational waves in the

space-time as was predicted by Einstein 100 years before cemented the

status of general relativity, besides other confirmations of Einstein’s

predictions of deflection of a ray of light by the gravitational field of

the Sun and the perihelion advances of the planet Mercury.

However, in spite of widely recognized success of Einstein’s general

theory of relativity, it is considered to be inadequate in the sense that it

does not satisfy certain ‘desirable’ features of the theory of gravitation.

There was a hope that there may be some thing beyond the Einstein’s

theory of gravitation yet to be found. For example, understanding of

Mach’s principle, incorporation of intrinsic spin of gravitating matter,

adaptability of quantum mechanics should suggest the link between

gravitation and other interactions of physics etc are not substantiated

by general theory of relativity. The singularity problem and some

other unsatisfactory features exist in general relativity. To address

such issues there are several well-known classical theories of gravitation

other than Einstein’s general theory of relativity obtained by modifying

the Einstein’s original theory of gravitation. Any new theory of gravity

should be better than the Einstein’s general theory of relativity and will

have to include the general theory of relativity within itself, explaining

every thing that the general theory of relativity explains. Few of them

are

• Einstein-Cartan theory of gravitation,
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• Brans- Dicke Scalar tensor theory of gravitation,

• Bimetric theories gravitation,

• f(R) theory of gravitation,

• f(R, T ) theory of gravitation,

• Hoyle – Narlikar theory of gravitation,

• String theory,

• Theory of every thing.

These modified theories of gravitation have been extensively studied

by many authors with the hope to unify gravitation and many other

effects such as other interactions in nature. Einstein-Cartan theory of

gravitation is one such extended theory of gravitation in which spin-an

intrinsic feature of gravitating matter, is introduced. In recent years

the Einstein-Cartan theory of gravitation has geared up in receiving

the wide attention of researchers to study the role of intrinsic spin of

gravitating matter and to study some exact solutions of field equations

of Einstein-Cartan theory of gravitation.

The thesis entitled “A study of spherically symmetric space-times in

Einstein-Cartan theory of gravitation ”comprises six chapters and deals

with the study of geometry of the non-Riemannian space and the study

of some exact solutions of field equations when Weyessenhoff fluid is
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the source of gravitation in the Einstein-Cartan theory of gravitation.

In order to make the thesis self explanatory, we are presenting the

review of the concepts, the mathematical tools of differential forms

which form the background of our investigations in the research work

carried out in the thesis.

Einstein-Cartan Theory of Gravitation

The Einstein-Cartan theory of gravitation is based on 4-dimensions

Riemannian space-time with asymmetric connections. This space-

time is called non-Rimannian space-time. Non-Riemannian space with

asymmetric connection is exhibited by Eisenhart [29]. Cartan [11] was

the first author to introduce torsion into gravitational theory, in or-

der to get a possible connection between the intrinsic spin of matter

and anti-symmetric part of the affine connection. Cartan considered

geometries of space-time with non-symmetric affine connections Γkij,

defined by

Γkij = {kij} −Kij
k , (1.1.7)

where Kij
k is known as contorsion tensor, and {kij} are symmetric

Christoffel symbols. The theory of gravitation with spin and torsion

was independently rediscovered by Kibble [69] and Sciama [111]. Its

ramifications are due to Trautman [125, 127, 128] and Hehl [48, 49].

The basic difference between the Einstein-Cartan theory of gravitation
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and the general theory of relativity is that an affine connection com-

patible with the metric tensor is not necessarily symmetric in general,

and the asymmetric part of the connection is coupled with the intrinsic

spin of matter. The geometry of the space-time is thus not necessarily

Riemannian and both mass and spin are linked up with the geometry.

In Einstein’s theory of gravitation, mass directly influence the geom-

etry but spin has no such dynamical effect (Trautman [127, 128]). In

Einstein’s theory of relativity, singularities cannot be prevented (Hawk-

ing [45], Hawking and Ellis [46]), however, these can be prevented in

the Einstein-Cartan theory by direct influence of spin on the geometry

of space-time (Trautman [127], and Hehl, et al. [50]). The Einstein-

Cartan theory will reduce to the Einstein’s theory of gravitation in the

absence of torsion in the space-time geometry.

1.2 Mathematical Pre-requisite

1.2.1 Riemannian Space of Einstein Theory

of Gravitation

A space with symmetric connections (usually denoted by Christoffel

symbols {kij}) characterized by the pseudo Riemannian metric

ds2 = gijdx
idxj , (1.2.1)
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where gij are the symmetric components of the fundamental metric

tensor play the role of gravitational potentials, is called the Riemannian

space. If R̂h
ijk is the Riemann curvature tensor of Riemannian space,

then we have

R̂h
ijk = − ∂

∂xk
{hij}+

∂

∂xj
{hik} − {hkl}{lij}+ {hjl}{lik} , (1.2.2)

and

R̂h
ijk = ghpR̂

p
ijk . (1.2.3)

The Riemann curvature tensor of Riemannian space satisfies the fol-

lowing properties

R̂hijk = −R̂ihjk = −R̂hikj ,

(skew-symmetry in the first and the second pair of indices)

R̂hijk = R̂jkhi , (symmetry in the pair of indices)

and

R̂hijk + R̂hjki + R̂hkij = 0 .(cyclic property) (1.2.4)

It also satisfies the Bianchi identities

R̂hi[jk/l] = 0 , (1.2.5)

where slash (/) denotes the covariant derivative with respect to the

symmetric Christoffel symbols.

The contraction of the Bianchi identities yield the dynamical con-

servation laws

T ik/k = 0 , (1.2.6)
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through the Einstein field equations for gravitation in non-empty space-

time

R̂ij −
1

2
R̂gij = −kTij , (1.2.7)

where R̂ij = ghkR̂hijk = R̂k
ijk is the symmetric Ricci tensor, R̂ = gijR̂ij

is the Ricci curvature scalar, and Tij is the symmetric stress-energy

momentum tensor representing the source of gravitation.

1.2.2 Non-Riemann space of Einstein-Cartan The-

ory of Gravitation

A space with asymmetric connections characterized by the metric (1.2.1)

is called a non-Riemann space. The difference between a Riemannian

space and a non-Riemannian space is that the connections defined

on a Riemannian space are symmetric while those defined on a non-

Riemannian space are asymmetric. The non-Riemannian part is de-

fined by the torsion tensor Qjk
l defined by

Qjk
l =

1

2
(Γljk − Γlkj) . (1.2.8)

This shows that

Qjk
l = −Qkj

l . (1.2.9)

Here and in the following, we denote the symmetric Christoffel sym-

bols of first and second kinds by [ij, k] and {kij} respectively, while the
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asymmetric connections of first and the second kinds are denoted by

Γij,k and Γkij.

The calculus on a non-Riemannian space of Einstein-Cartan theory

of gravitation is developed with the help of covariant derivative with

respect to asymmetric connections. We denote, in the following, it by

a semi-comma(;) and for a covariant vector Ai (a contravariant vector

Ai) it is defined as

Ai;j = Ai,j − AkΓ
k
ij , (1.2.10)

and for contravariant vector Ai, we have

Ai
;j = Ai

,j + AkΓikj , (1.2.11)

where comma (,) denotes the partial differentiation.

At every point of a Einstein-Cartan space-time, there exists a Lorentz

metric gij which satisfies the metric postulate

gij;k = 0 .

Generalizing the definition (1.2.10) for the second rank tensor, we ob-

tain

gij,k = ghjΓ
h
ki + gihΓ

h
kj . (1.2.12)

By cyclic permutation of indices i, j, k in the equations (1.2.12) twice

in turn, we obtain two more equations

gjk,i = ghkΓ
h
ij + gjhΓ

h
ik , (1.2.13)
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and

gki,j = ghiΓ
h
jk + gkhΓ

h
ji . (1.2.14)

Adding equations (1.2.13) and (1.2.14) and subtracting the equation

(1.2.12) we obtain on using equation (1.2.8)

{lij} = Γlij −Qij
l + glkghjQik

k + glkgihQjk
h ,

where

{lij} = glk[ij, k] .

This becomes

Γlij = {lij} − (Qij
l +Qj

l
i −Ql

ij) ,

or

Γlij = {lij} −Kij
l , (1.2.15)

where

Kijk = −Qijk +Qjki −Qkij , (1.2.16)

is the contorsion tensor satisfying the property

Ki(jk) = 0 . (1.2.17)

Using the equation (1.2.15) in the equations (1.2.8) we get

Qij
l = −1

2
(Kij

l −Kji
l) . (1.2.18)
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By virtue of the equations (1.2.15), the definition of the covariant

derivative of a vector Ai becomes

Ai;j = Ai/j + AkKji
k . (1.2.19)

1.2.3 Ricci Identity in a non-Riemannian Space

Since covariant derivative increases the rank of a tensor by one. Thus,

if Ai is a covariant vector then it follows from the equation (1.2.19)

that Ai;j is a second rank covariant tensor. Hence taking the covariant

derivative of Ai;j with respect to asymmetric connections we obtain

Ai;jk =Ai,jk − Ah,kΓ
h
ji − Ah

∂Γhji
∂xk
− Ah,jΓ

h
ki − Ai;hΓ

h
kj+

+ AlΓ
l
jhΓ

h
ki + AlΓ

l
hiΓ

h
kj . (1.2.20)

Interchanging j ↔ k in the equation (1.2.20) we get one more equation.

Subtracting the result thus obtained from the equation (1.2.20), we get

Ai;jk − Ai;kj =Ah

[
−
∂Γhji
∂xk

+
∂Γhki
∂xj

+ ΓhjlΓ
l
ki − ΓljiΓ

h
kl

]
+

+ (Γhjk − Γhkj)(Ai,h − AlΓ
l
hi) ,

Ai;jk − Ai;kj =AhRkji
h + 2Ai;hQjk

h , (1.2.21)

where

Rkji
h =

[
−
∂Γhji
∂xk

+
∂Γhki
∂xj

+ ΓhjlΓ
l
ki − ΓljiΓ

h
kl

]
, (1.2.22)
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is the Riemann curvature tensor in a non-Riemannian space, we here

after called it as Riemann-Cartan curvature tensor. Using the equation

(1.2.15) in the equation (1.2.22) and simplifying the equation we obtain

Rkji
h =R̂kji

h +
∂Kji

h

∂xk
− ∂Kki

h

∂xj
− {hjl}Kki

l − {lki}Kjl
h+

+ {hkl}Kji
l + {lji}Kkl

h +Kjl
hKki

l −Kji
hKji

l . (1.2.23)

Using the definition of the covariant derivative of contortion tensor we

have

Kji;k
h =

∂Kji
h

∂xk
−Kli

hΓlkj −Kjl
hΓlki +Kji

lΓhkl . (1.2.24)

On using this equation we eliminate the partial derivative term from

the equation (1.2.23) and simplifying we get

Rkji
h = R̂kji

h +Kji
h
;k −Kki

h
;j + 2Kli

hQl
kj +Kji

lKkl
h −Kki

lKjl
h ,

(1.2.25)

where R̂kji
h is the Riemann curvature tensor in the Riemannian space-

time. From the equation (1.2.25) we observe that

Rkjih =−Rkjhi = −Rjkih ,

Rkjih 6=Rihkj . (1.2.26)

The cyclic property of the Riemann-Cartan curvature tensor in the

non-Riemannian space is not true. Its expression is obtain as

22



Rkji
h +Rjik

h +Rikj
h = 2(Qij

h
;k +Qjk

h
;j +Qki

h
;i)−

− 4(Qij
lQkl

h +Qjk
lQil

h +Qki
lQjl

h) . (1.2.27)

Similarly, the Ricci identity for the second rank covariant tensor Aij is

obtain in the form

Aij;kh − Aij;hk = ApjRhki
p + AipRhkj

p + 2Aij;pQkh
p . (1.2.28)

1.2.4 Generalized Bianchi identities for torsion and

curvature

In Einstein theory of gravitation Bianchi identities are obtained by in-

troducing a locally inertial coordinate system on a Riemannian space.

However, in a non-Riemannian space in which connections are asym-

metric, there does not exists locally inertial coordinate system. It can

be seen by considering a coordinate system xi in which the asymmet-

ric connections Γijk 6= 0 at a point xi = xi0. Define another coordinate

system xi such that

xi = (xi − xi0) +
1

2
(Γilm)0(x

l − xl0)(xm − xm0 ) , (1.2.29)

where the suffix zero indicates that the quantity is evaluated at the

pole xi0. Differentiating the equation partially with respect to xk we

get

∂xi

∂xk
= δik +

1

2

[
(Γilk)0 + (Γikl)0

]
(xl − xl0) ,
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⇒
(
∂xi

∂xk

)
0

= δik . (1.2.30)

We see that the Jacobin of the transformations J =
∣∣∣ ∂xi∂xk

∣∣∣ 6= 0 and hence

the transformation defined in the equation (1.2.29) is well defined.

Differentiating the equation (1.2.29) partially with respect to xj we

get

δij =
∂xi

∂xj
+

1

2
(Γilm)0

[
∂xl

∂xj
(xm − xm0 ) + (xl − xl0)

∂xm

∂xj

]
,

⇒ δij =
∂xi

∂xj
+

1

2

[
(Γilm)0 + (Γiml)0

] ∂xl
∂xj

(xm − xm0 ) . (1.2.31)

It follows from the equation that(
∂xi

∂xj

)
0

= δij .

Further differentiating the equation (1.2.31) partially with respect to

xk, we get

∂2xi

xjxk
= −1

2

[
(Γilm)0 + (Γiml)0

] [
(xm − xm0 )

∂2xl

xjxk
+
∂xl

∂xj
∂xm

∂xk

]
. (1.2.32)

Thus the values of the equation at the pole is given by(
∂2xi

xjxk

)
0

= −1

2

[
(Γilm)0 + (Γiml)0

](∂xl
∂xj

)
0

(
∂xm

∂xk

)
0

. (1.2.33)

Using the equation (1.2.15) in the equation (1.2.33) we get(
∂2xi

xjxk

)
0

= −
{
i
jk

}
0

+
1

2

[
(Kjk

i)0 + (Kkj
i)0
]
. (1.2.34)
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From the law of transformation of connections at the pole we have(
Γ
l
jk

)
0

=

(
∂xl

∂xi

)
0

(
∂xm

∂xj

)
0

(
∂xn

∂xk

)
0

(Γimn)0 +

(
∂2xi

xjxk

)
0

(
∂xl

∂xi

)
0

.

(1.2.35)

Using the equations (1.2.30) and (1.2.33) in the equation (1.2.35) we

get (
Γ
l
jk

)
0

= (Γljk)0 −
{
l
jk

}
0

+
1

2

[
(Kjk

l)0 + (Kkj
l)0
]
. (1.2.36)

Using the equation (1.2.10) we get(
Γ
l
jk

)
0

= −
{
Kjk

l
}
0

+
1

2

[
(Kjk

l)0 + (Kkj
l)0
]
,(

Γ
l
jk

)
0

= −1

2

[
(Kjk

l)0 − (Kkj
l)0
]
,

⇒
(

Γ
l
jk

)
0

=
(
Qjk

l
)
0
6= 0 . (1.2.37)

This shows that there does not exist in a non-Riemannian space, a

locally inertial coordinate system at a point and in its neighborhood.

In order to find the Bianchi identities in the non-Riemannian space,

we find the expression for the covariant derivative of Riemann-Cartan

curvature tensor as

Rkji
l
;h = Rkji

l
/h +Rpji

lKhk
p +Rkpi

lKhj
p +Rkjp

lKhi
p −Rkji

pKhp
l .

(1.2.38)
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By cyclic permutation of the indices k, j, h twice in turn in the equation

(1.2.38) we get two more equations. Thus we obtain

Rjhi
l
;k = Rjhi

l
/k +Rphi

lKkj
p +Rjpi

lKkh
p +Rjhp

lKki
p −Rjhi

pKkp
l ,

(1.2.39)

and

Rhki
l
;j = Rhki

l
/j +Rpki

lKjh
p +Rhpi

lKjk
p +Rhkp

lKji
p −Rhki

pKjp
l .

(1.2.40)

Adding equations (1.2.38), (1.2.39) and (1.2.40) we get

Rkji
l
;h +Rjhi

l
;k +Rhki

l
;j = −2

(
Rjpi

lQkh
p +Rpki

lQjh
p +Rhpi

lQjk
p
)
.

(1.2.41)

From this equation we obtain the relation(
Rik − 1

2
Rgik

)
;k

= gih
(
Rhp

lkQlk
p − 2RpkQkhp

)
. (1.2.42)

This shows that (
Rik − 1

2
Rgik

)
;k

6= 0 , (1.2.43)

where Rij is the Ricci-Cartan tensor obtained by contracting the index

h with k in the equation (1.2.25) we obtain

Rij = R̂ij +Kij
k
;k −Kkj

k
;i −Klj

kKki
l +Kij

lKkl
k . (1.2.44)

And the Ricci-Cartan curvature scalar is given by

R = gijRij = R̂ + 2Ki
ik
;k +Kl

ikkik
l +Ki

ilKkl
k . (1.2.45)
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However, in a Riemannian space-time of general relativity, we have(
Rik − 1

2
Rgik

)
/k

= 0 . (1.2.46)

Consequently, from Einstein’s field equations we have

T ik/k = 0 . (1.2.47)

These are called dynamical conservation laws. However, such conserva-

tion laws do not hold in the non-Riemannian space of Einstein-Cartan

theory of gravitation, as can be seen from the equation (1.2.43).

1.2.5 Field Equations in EC theory of Gravitation

The relevant field equations for curvature and spin are obtained from

the action principle by Hehl, et al. [50, 51]. Variation of the action

function with respect to the metric tensor gij yields the equation

Rij −
1

2
Rgij = −ktij , (1.2.48)

where Rij- is the Ricci-Cartan tensor, tij- is the energy momentum

tensor.

The equation (1.2.48) is not the same as that of the Einstein field

equation in Riemann space, because the Ricci-Cartan tensor here is

no longer symmetric but instead contains information about the tor-

sion tensor. The right hand side of the equation (1.2.48 ) cannot be

symmetric either, so that tij must also contain information about the
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spin tensor. Similarly, the variation of the action with respect to the

torsion tensor Qij
k yields a new equation

Qij
k + δi

kQjl
l − δjkQil

l = kSij
k , (1.2.49)

where Sij
k is the spin angular momentum tensor. The relation between

Sij
k and tij is defined by the equation

tij = T ij + (∇+ 2Qkl
l)(Sijk − Sjki + Skij) , (1.2.50)

where T ij is the stress-energy momentum tensor of matter,and

∇k = ∇̂k − 2Qkl
l . (1.2.51)

The field equation (1.2.48) is an algebraic in character relating to spin

angular momentum tensor. Therefore, one can obtain the torsion ten-

sor in terms of spin angular momentum tensor as

Qij
k = k

(
Sij

k − 1

2
δki Slj

l − 1

2
δkjSil

l

)
. (1.2.52)

The equations (1.2.48) and (1.2.49) together are called the field equa-

tions of Einstein-Cartan theory of gravitation.

1.2.6 The Spin Tensor

For the classical description of the spin tensor, Hehl et al.[51] have

decomposed the spin angular momentum tensor as

Sij
k = Siju

k , (1.2.53)
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where ui is the time-like 4-velocity vector; and Sij is the spin tensor

antisymmetric in character.

i.e.

Sij = −Sji . (1.2.54)

This spin tensor is orthogonal to the 4-velocity vector.

i.e.,

Siju
j = 0 . (1.2.55)

This shows that the intrinsic spin of a matter field is space-like in

the rest frame of the fluid. The condition (1.2.55) is usually called as

Frankel condition. With the help of this condition the field equation

(1.2.48) or (1.2.52) gives an algebraic coupling between the spin tensor

and torsion tensor as

Qij
k = kSiju

k . (1.2.56)

Thus the torsion contribution to Einstein-Cartan field equation is en-

tirely described by the spin tensor. Contracting the index j with k in

the equation (1.2.56) we see that the torsion trace vanishes.

i.e.

Qi = 0 , (1.2.57)

where Qi = 2Qik
k. Equivalently, it means that the Frankel condition

implies that the torsion trace vanishes identically. If however, if the
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spin tensor is not u-orthogonal, in this case the trace of the torsion

tensor does not vanish, but it is given by

Qik
k = −k

2
Siku

k . (1.2.58)

Substituting this in the field equation (1.2.49), we get

Qij
k =

k

2
[δi

kSjlu
l − δjkSjlul + 2Siju

k] . (1.2.59)

The square of the spin scalar is defined as

S2 =
1

2
SijS

ij ≥ 0 . (1.2.60)

1.3 Newman-Penrose-Jogia-Griffiths Null

Formalism

The Newman-Penrose [89] (NP) null tetrad formalism is widely used

and proved to be ’amazingly useful’ tool in many applications, mainly

in finding exact solutions of Einstein field equations. An excellent

review on the exact solutions can be found in the book of Kramer

Stephani, Herlt and MacCallum [71] and in the study of black holes

by S. Chandrashekhar [17]. The approach is extended by Jogia and

Griffiths [55] to deal with certain problems in Einstein-Cartan theory

of gravitation and also in other theories of gravitation that include

torsion. The formalism is widely known as Newman-Penrose-Jogia-

Griffiths (NPJG) formalism. Every chapter of the thesis exploits the
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NPJG formalism because of its suitability for computational work, its

easy adaptability to other formalism and its thorough utilization of

the Bianchi identities. The exposition of the NP formalism is avail-

able in the following books. Flaherty [30], Carmeli [10], Hawking and

Israel [54], Frolov [34], Held [52], Kramer, Stephani, Herlt and Mac-

Callum [71] and S. Chandrashekhar [17]. We describe below in brief

the formalism

At each point of a curve xi = xi(s) in a 4-dimensional non-Riemann

space-time, we introduce a tetrad consisting of four null vector fields.

Each vector of a tetrad has four components. A tetrad is denoted by

e(α). Thus we have

e(α)
i = (li, ni,mi,mi) , α = 1, 2, 3, 4. (1.3.1)

The vectors li and ni are real null vector fields, while mi and mi are

complex conjugate of each other. These vector fields satisfies the con-

ditions

lin
i = −mim

i = 1 , (1.3.2)

and all other inner products are zero. Greek letters are used to denote

tetrad components, while Lattin indices are used to denote tensor in-

dices. The vector fields of the tetrad form a basis at each point of the

curve. The tetrad of the dual basis vectors is given by

e(α)i = (ni, li,−mi,−mi) . (1.3.3)
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The basis vectors of the tetrad and its dual satisfy the properties

e(α)ie
(β)i = δβα , (1.3.4)

and

e(α)ie
(α)k = δki . (1.3.5)

The tensor indices are raised or lowered by using the metric tensor

gij = e(α)ie
(α)

j , (1.3.6)

while the tetrad indices are raised or lowered by using the tetrad com-

ponents of the metric tensor ηαβ given by

ηαβ = gije(α)
ie(β)

j . (1.3.7)

Consequently, the matrix of the tetrad components of the metric tensor

is given by

ηαβ = ηαβ =


0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0

 . (1.3.8)

Using equations (1.3.1) and (1.3.3), we obtain

gij = linj + nilj −mimj −mimj . (1.3.9)

This is called the completeness relation.
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1.3.1 NP Spin Coefficients

The Ricci rotation coefficients are defined by

γαβγ = −e(α)i;je(β)ie(γ)j , (1.3.10)

which is anti-symmetric in first two indices.

i.e.,

γαβγ = −γβαγ . (1.3.11)

By expanding covariant derivative in the equation (1.3.10) by using

the equation (1.2.19) we have the relation between the components of

the Ricci rotation coefficients γαβγ and the tetrad components of the

contortion tensor Kαβγ as follows:

γαβγ = −e(α)i/je(β)ie(γ)j − e(α)kKji
ke(β)

ie(γ)
j ,

⇒ γαβγ = γ0αβγ −Kγβα , (1.3.12)

where

Kαβγ = Kijke(α)
ie(β)

je(γ)
k , (1.3.13)

are the tetrad components of the contortion tensor. The contortion

components Kαβγ are the quantities by which the spin coefficients differ

from their values in a Riemannian manifold.

The applications of NP-Spin co-efficient formalism in figuring out

Einstein’s ambitious explanation of gravitation is liberally proclaimed
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in gravitation radiations (Sachs [108], [109], Goldberg and Sachs [37],

Goldberg [38], Newman, Tamburino, Unti [90], Pirani [99], Penrose

[97, 98], Zakharov [139], Brooker and Janis [8]), in electromagnetic

fields (Debney and Zund [20], [21],[22], Zund [140], [141], [142], Tariq

and Tupper [122], [123], Wallace and Zund [133]), in black holes (Price

[103], Teukolsky [124], Press and Teukolsky [102], Wald [134], Hawking

and Ellis [46], Hajicek [44], Chandrashekhar [15], [16], Carter [13]), in

shock waves (Papapetrou [94], [95]), in netrino radiation fields (Colli-

sion and Morris [19], Radhakrishna and Rao [104]).

According to Jogia and Griffiths, the 12 complex spin coefficients

and 12 complex tetrad components of contortion tensor (with subscript

1) are defined below for ready references.

κ = γ311 = li;jm
ilj , π = −γ421 = −ni;jmilj ,

ρ = γ314 = li;jm
imj , λ = −γ424 = −ni;jmimj ,

σ = γ313 = li;jm
imj , µ = −γ423 = −ni;jmimj ,

τ = γ312 = li;jm
inj , ν = −γ422 = −ni;jminj ,

ε =
1

2
(γ211 − γ431) =

1

2
(li;jn

ilj −mi;jm
ilj) ,

α =
1

2
(γ214 − γ434) =

1

2
(li;jn

imj −mi;jm
imj) ,

β =
1

2
(γ213 − γ433) =

1

2
(li;jn

imj −mi;jm
imj) ,

γ =
1

2
(γ212 − γ432) =

1

2
(li;jn

inj −mi;jm
inj) ,

κ1 = K131 = Kijkl
imjlk , π1 = −K142 = −Kijkl

imjnk ,
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ρ1 = K431 = Kijkm
imjlk , λ1 = −K442 = −Kijkm

imjnk ,

σ1 = K331 = Kijkm
imjlk , µ1 = −K342 = −Kijkm

imjnk ,

τ1 = K231 = Kijkn
imjlk , ν1 = −K242 = −Kijkn

imjnk ,

ε1 =
1

2
(K121 −K143) =

1

2
Kijkl

i(njlk −mjmk) ,

α1 =
1

2
(K421 −K443) =

1

2
Kijkm

i(njlk −mjmk) ,

β1 =
1

2
(K321 −K343) =

1

2
Kijkm

i(njlk −mjmk) ,

γ1 =
1

2
(K221 −K243) =

1

2
Kijkn

i(njlk −mjmk) . (1.3.14)

Then we have

κ = κ0 + κ1, ρ = ρ0 + ρ1, σ = σ0 + σ1 etc.

In Einstein-Cartan theory of gravitation the Ricci tensorRij is not

necessarily symmetric and hence it has 16 independent components.

These can be expressed in terms of the familiar nine components of a

Hermitian 3×3 matrix φAB, (A,B = 0, 1, 2) the three complex compo-

nents φA and the real parameter Λ. These are defined by (Jogia and

Griffiths [55]).

φ00 = −1

2
Rijl

ilj ,

φ01 = −1

4
Rij(l

imj +milj) ,

φ02 = −1

2
Rijm

imj ,

φ11 = −1

8
Rij(l

inj + nilj +mimj +mimj) ,

φ12 = −1

4
Rij(n

imj +minj) ,
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φ22 = −1

2
Rijn

inj ,

φ0 = −1

4
Rij(l

imj −milj) ,

φ1 = −1

4
Rij(l

inj − nilj −mimj +mimj) ,

φ2 = −1

4
Rij(m

inj − nimj) ,

Λ =
1

24
R . (1.3.15)

The 20 independent real components of the trace free curvature tensor

can be expressed in terms of five complex components, nine compo-

nents of the Hermitian matrix ΘAB(A,B = 0, 1, 2) and a real parameter

χ. These are defined by

ψ0 = −C1313 = −C1313l
hmiljmk ,

ψ1 = −1

2
(C1213 + C4313) = −1

2
Chijk(l

hni +mhmi)ljmk ,

ψ2 = −C4213 = −Chijkmhniljmk ,

ψ3 = −1

2
(C1242 + C4342) = −1

2
Chijk(l

hni +mhmi)mjnk ,

ψ4 = −C4242 = −Chijkmhnimjnk ,

Θ00 = −iC1314 = −Chijklhmiljmk ,

Θ01 = − i
2

(C1312 − C1343) = − i
2
Chijkl

hmi(ljnk +mjmk) ,

Θ02 = iC1323 = iChijkl
hminjmk ,

Θ11 =
i

4
(C1212 + C1243 − C4312 − C4343) =

=
i

4
Chijk(l

hni −mhmi)(ljnk +mjmk) ,
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Θ12 = − i
2

(C2312 + C2343) = − i
2
Chijkn

hmi(ljnk +mjmk) ,

Θ22 = −iC2423 = −iChijknhminjmk ,

χ = − i
2

(C1212 + C1234 + C1423) =

= − i
4
Chijk(l

hni +mhmi)(ljnk +mjmk)− iChijknhmiljmk .

(1.3.16)

Any arbitrary vector or tensor can be expressed in terms of its tetrad

components and conversely, thus we express

f;i =f;αe
(α)

i ,

and f;α =f;ie(α)
i .

We write

f;i = (f;1)tni + (f;2)tli − (f;3)tmi − (f;4)tmi ,

where the suffix t indicates the tetrad components of the quantity.

Thus we have

(f;1)t =f;il
i = Df ,

(f;2)t =f;in
i = ∆f ,

(f;3)t =f;im
i = δf ,

(f;4)t =f;im
i = δf .

(1.3.17)

Thus we have

f;i = Dfni + ∆fli − δfmi − δfmi . (1.3.18)
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1.3.2 Contortion tensor, Torsion tensor and Spin

angular momentum tensor

The tetrad formalism provides an algorithm for calculating the curva-

ture tensor of space-time in a form suitable for a variety of applica-

tions and providing additional information pertaining to the geometry

of space-time. Instead of the tensor components their tetrad compo-

nents with respect to the tetrad vectors are utilized and this makes the

Einstein field equations more transparent.

The contorsion tensor Kijk in terms of its tetrad components is

given by

Kijk = Kαβγei
(α)ej

(β)ek
(γ) , α , β , γ = 1, 2, 3, 4 . (1.3.19)

By expanding the right hand side of equation (1.3.19) by giving the

different values to α , β , γ , δ and using equations (1.3.14) we obtain

the expression

Kijk =2[(ε1 + ε1)nil[jnk] + (γ1 + γ1)lil[jnk] + (ε1 − ε1)nim[jmk]+

+ (γ1 − γ1)lim[jmk] + {λ1mil[jmk] − κ1nim[jnk] − π1nil[jmk]−

− τ 1lim[jnk] − ν1lil[jmk] + σ1mim[jnk] − (α1 + β1)mil[jnk]+

+ ρ1mim[jnk] + µ1mil[jmk] + (α1 − β1)mim[jmk]}+ c.c] ,

(1.3.20)

where c.c indicates the complex conjugate of the preceding term.
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Now the torsion tensor Qij
k in terms of its tetrad components is

given by

Qij
k = Qαβ

γei
(α)ej

(β)e(γ)
k , α, β, γ = 1, 2, 3, 4. (1.3.21)

By giving the different values to α, β, γ and using equation (1.2.18),

the equation (1.3.21) gives

Qij
k = −

[
K212l[inj]l

k −K121l[jnj]n
k + (K314 −K431)m[imj]n

k+

+ (K342 −K4321)m[imj]l
k +

{
(K124 −K214)l[inj]m

k+

+ (K142 −K421)l[inj]l
k + (K413 −K143)m[inj]m

k+

+K414m[inj]m
k +K141m[inj]n

k + (K421 −K241)l[imj]n
k−

−K242l[imj]l
k + (K243 −K423)l[imj]m

k −K424l[imj]m
k+

+K434m[inj]m
k

}
+ c.c

]
. (1.3.22)

Now using equations (1.3.14) we readily get

Qij
k = (γ1 + γ1)l[inj]l

k + (ε1 + ε1)l[jnj]n
k + (ρ1 − ρ1)m[imj]n

k+

+ (µ1 − µ1)m[imj]l
k +

[
(π1 − α1 − β1)m[inj]l

k − (π1 + τ 1)l[inj]l
k

+ (ρ1 − ε1 + ε1)m[inj]m
k + σ1m[inj]m

k − κ1m[inj]n
k

+ (τ 1 − α1 − β1)l[imj]n
k − ν1l[imj]l

k + (µ1 + γ1 − γ1)l[imj]m
k+

+ λ1l[imj]m
k + (α1 − β1)m[imj]m

k

]
+ c.c . (1.3.23)

Similarly, we obtain the expression

Sij
k =− 1

2k

[
− (µ1 + µ1)l[inj]l

k − (ρ1 + ρ1)l[inj]n
k + (µ1 − µ1)m[imj]l

k+
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+ (ρ1 − ρ1)m[imj]n
k +

{
ν1l[imj]l

k + (2α1 − π1)l[imj]n
k−

− κ1n[imj]n
k + (2β1 − τ 1)m[inj]l

k + (µ1 − 2γ1)l[imj]m
k+

+ (ρ1 − 2ε1)m[inj]m
k + (π1 + τ 1)l[inj]m

k + (π1 − τ 1)m[imj]m
k+

+ λ1m[ilj]m
k − σ1m[inj]m

k

}
+ c.c

]
. (1.3.24)

The spin tensor is expressed in terms of its three complex tetrad com-

ponents s0, s1 and s2 as

Sij = −2
[
(s1 + s1)l[inj] + (s1 − s1)m[imj] −

(
s0m[inj] + s2l[imj]

)
− c.c

]
,

(1.3.25)

where the complex tetrad components are defined by

s0 =S13 = Sijl
imj ,

s1 =
1

2
(S12 + S43) =

1

2
Sij
(
linj +mimj

)
, (1.3.26)

s2 =S32 = Sijm
inj .

We see that the Frenkel condition (1.2.55) is not identically true, but

it gives

s0 = s2 , s1 + s1 = 0 . (1.3.27)

This reduces the number of components of spin tensor from six to

three.

We define the time-like vector ui as ui = 1√
2
(li + ni) such that
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uiu
i = 1. Now multiplying equation (1.3.25) by ui we get

Siju
k =−

√
2

[
(s1 + s1)l[inj] + (s1 − s1)m[imj] −

(
s0m[inj] + s2l[imj]

)
−

− c.c
]
(lk + nk) . (1.3.28)

If Sij
k = Siju

k, then the corresponding coefficients of the equations

(1.3.24) and (1.3.28) must be identical. Hence equating the corre-

sponding coefficients, we obtain the relations

(ρ1 + ρ1) = (µ1 + µ1) = −
√

2k(s1 + s1) ,

(ρ1 − ρ1) = (µ1 − µ1) = −
√

2k(s1 − s1) ,

κ1 = 2β1 − τ1 = −
√

2ks0 ,

ν1 = 2α1 − π1 = −
√

2ks2 ,

µ1 − 2γ1 = 0 , ρ1 − 2ε1 = 0 , π1 + τ1 = 0 ,

π1 − τ 1 = 0 , λ1 = 0 , σ1 = 0 .

(1.3.29)

Now using equations (1.3.27) we obtain

π1 =τ1 = λ1 = σ1 = 0 ,

ρ1 =µ1 = 2ε1 = 2γ1 = −
√

2ks1 , (1.3.30)

ν1 =κ1 = 2α1 = 2β1 = −
√

2ks0 .

By virtue of the equations (1.3.27), the expression for Sij becomes

Sij = 2
[
2s1m[imj] + s0

(
l[imj] +m[inj]

)
+ c.c

]
. (1.3.31)
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1.4 Techniques of Differential Form in a

Riemannian space

The traditional approach of tensors makes heavy use of Christoffel

symbols which are forty in number and have no invariant significance

under the change of coordinates. Techniques of differential forms is

another useful and the most powerful analytical tool of modern math-

ematics. The use of differential forms can reduce the complexity of

computation. There are only six complex connection 1-forms which

take care the role of forty Christoffel symbols. In this chapter we have

presented this powerful technique on a Riemannian space in which the

connections are symmetric Christoffel symbols.

We assume here the readers are familiar with the exterior derivative

operator d , which maps r- form to (r + 1)- form. i.e.,

d : ∧rT ∗p → ∧r+1T ∗p ,

satisfying the following properties:

(i) df = f,idx
i ,

(ii) d(ω̃ + σ̃) = dω̃ + dσ̃ ,

(iii) d(ω̃ ∧ σ̃) = dω̃ ∧ σ̃ + (−1)deg of ω̃ω̃ ∧ dσ̃ ,

(iv) d(fω̃) = df ∧ ω̃ + fdω̃ ,

(v) d(dω̃) = 0 ,
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(vi) d(df ∧ dg) = 0 . (1.4.1)

Here T ∗p is a tangent space of 1 - forms, ∧rT ∗p is a set of all r-forms,

∧r+1T ∗p - is set of all (r+1)- forms, f and g are a differentiable functions

and are also called as 0-forms, ω̃, σ̃ are forms of any degree, and ∧ is

the wedge product and has the following properties.

(ω̃ + σ̃) ∧ α̃ = ω̃ ∧ α̃ + σ̃ ∧ α̃ ,

(ω̃ ∧ σ̃) ∧ α̃ = ω̃ ∧ (σ̃ ∧ α̃) ,

(ω̃ ∧ σ̃) = (−1)rpσ̃ ∧ ω̃ ,

(1.4.2)

where r, p are degrees of ω̃ and σ̃ respectively. It follows from the

property (v) of equation (1.4.1) that

d(dxi) = 0 . (1.4.3)

The operator d on any form raises the degree of the form by one.

Thus the operator d takes a 0-form f to a 1-form df , 1-form ω̃ to

2-from dω̃ and so on and in general any p -form to (p + 1) - form

for p ≥ 2. The exterior derivative is independent of the symmetric

Christoffel symbols hence it is performed on any p form by taking

either the partial derivative or covariant derivative of an associated pth

rank tensor. Because of this property of the exterior derivative d , it

subsumes ordinary gradient, curl and divergence when operated on a 0-

form f and 1-form ω̃ give the standard vector identities curl(gradf) =

0 and div(curlω) = 0 respectively in Riemannian space. Maxwell’s
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equations also take on a particularly simple and elegant form when

expressed in terms of the exterior derivative. Lie derivative is another

operator which is independent of the symmetric Christoffel symbols.

1.4.1 Cartan’s Equations of Structure in a

Riemannian Space

To understand the geometry of a Riemannian space, the Cartan’s equa-

tions of structure play a vital role. The Cartan’s equations of structure

facilitate the computation of Riemann curvature tensor. We will elab-

orate the generalization of these equations in a non-Riemannian space

in the Chapter 2. Hence a brief account of these equations in a Rie-

mannian space is presented below.

We denote V̂n as a Riemannian space with symmetric Christoffel

symbols and the metric

ds2 = gijdx
idxj , (1.4.4)

where gij is the metric tensor of a Riemannian space. Define a curve

in V̂n and at each point of the curve, one can construct a tetrad e(α)i,

α = 1, 2, 3, 4, consisting of four vector fields which form a basis at each

point of the curve. Each vector of the tetrad will have four components

denoted by the Lattin index i. Thus for a vector field ei, one can have

an associated basis 1-form θ defined by

θ = eidx
i .
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Thus corresponding to four basis vector fields e(α)i of the tetrad, we

have four basis 1-forms θα, defined by

θα = e(α)idx
i , (1.4.5)

where e(α)i is called the tetrad of dual basis vectors. The vector fields

of the tetrad and the dual tetrad satisfy the orthonormal conditions

e(α)ie(β)
i = δαβ , e(α)ke(α)

i = δik .

This gives

ηαβ = e(α)ie(β)
i = gije(α)

ie(β)
j , (1.4.6)

where ηαβ are called the tetrad components of the metric tensor gij.

Conversely, one can also express

gij = ηαβe
(α)

ie
(β)

j . (1.4.7)

Similarly, any vector or a tensor of any rank can be expressed as a

linear combination of its tetrad components and conversely.

Taking the usual exterior derivative of the equation (1.4.5) we get

dθα =e(α)i/jdx
j ∧ dxi . (1.4.8)

Or

dθα =e(α)i,jdx
j ∧ dxi ,
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as the term involving Christoffel symbol vanishes due to the symmetric

property of the Christoffel symbol and the skew-symmetric property

of the wedge product.

The Ricci’s rotation coefficients in a Riemannian space are denoted

by γ0αβγ and are defined as

γ0αβγ = −e(α)i/je(β)ie(γ)j . (1.4.9)

Solving the equation (1.4.9) and using the orthonormal conditions

(1.4.6), we obtain

e(α)i/j = −γ0αβγe(β)ie(γ)j .

Substituting this in the equations (1.4.8) we obtain

dθα =− γ0αβγθγ ∧ θβ , (1.4.10)

⇒ dθα = −ω0α
β ∧ θβ , (1.4.11)

where

ω0α
β =γ0αβγθ

γ , (1.4.12)

are the tetrad components of connection 1-forms in a Riemannian

space. The equation (1.4.11) is known as the Cartan’s first equation

of structure.

Using the equation (1.4.5), we write the equation(1.4.12) as

ω0α
β =γ0αβσe

(σ)
idx

i . (1.4.13)
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Taking the exterior derivative of (1.4.13) we get

dω0α
β =

1

2

[
− (γ0αβσe

(σ)
i)/j + (γ0αβσe

(σ)
j)/i
]
dxi ∧ dxj .

Eliminating the covariant derivative terms we obtain

Ω0α
β = dω0α

β + ω0α
ε ∧ ω0ε

β , (1.4.14)

where

Ω0α
β = −1

2
R̂α

βεδθ
ε ∧ θδ , (1.4.15)

are called tetrad components of curvature 2-forms in a Riemannian

space. The equation (1.4.14) is called the Cartan’s second equation of

structure.

We record below the expressions for the connection 1-forms from

equations (1.4.12) in terms of NP spin coefficients for our record for

the use in the thesis.

ω0
12 =−

[
(ε0 + ε0)θ1 + (γ0 + γ0)θ2 + (α0 + β0)θ3 + (α0 + β

0
)θ4
]
,

ω0
13 =−

[
κ0θ1 + τ 0θ2 + σ0θ3 + ρ0θ4

]
,

ω0
23 =π0θ1 + ν0θ2 + λ

0
θ3 + µ0θ4 , (1.4.16)

ω0
34 =(ε0 − ε0)θ1 + (γ0 − γ0)θ2 − (α0 − β0)θ3 + (α0 − β0

)θ4 .

Similarly, from the equation (1.4.10) we find

dθ1 =(γ0 + γ0)θ12 + (α0 + β0 − π0)θ13 + (α0 + β
0 − π0)θ14−

− ν0θ23 − ν0θ24 − (µ0 − µ0)θ34 ,
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dθ2 =(ε0 + ε0)θ12 + κ0θ13 + κ0θ14 + (τ 0 − α0 − β0)θ23+

+ (τ 0 − α0 − β0
)θ24 − (ρ0 − ρ0)θ34 ,

dθ3 =− (π0 + τ 0)θ12 − (ρ0 + ε0 − ε0)θ13 − σ0θ14 + (µ0 − γ0 + γ0)θ23+

+ λ0θ24 + (α0 − β0
)θ34 ,

dθ4 =− (π0 + τ 0)θ12 − σ0θ13 − (ρ0 − ε0 + ε0)θ14 + λ
0
θ23+

+ (µ0 + γ0 − γ0)θ24 − (α0 − β0)θ34 . (1.4.17)

1.4.2 Weyssenhoff Fluid

The Weyssenhoff fluid is a perfect fluid with spin, where the spin of

matter fields is the source of torsion in a Einstein-Cartan theory of

gravitation. We assume that the Einstein-Cartan space-time is filled

up with Weyssenhoff fluid, which is characterized by the canonical

energy momentum tensor, given by

tik = (p+ ρ)uiuk − pgik − uj 5h (uhSij)uk , (1.4.18)

where p is an isotropic pressure, ρ is the energy density of matter. We

simplify the equation (1.4.18) and write as

tik = (p+ ρ)uiuk − pgik + Sij;hu
juhuk + θ(Siju

j)uk , (1.4.19)

where θ = ui;i is the expansion scalar. Due to the Frankel’s condition

(1.2.55), the equation(1.4.19) reduces to

tik = (p+ ρ)uiuk − pgik − Siju̇juk , (1.4.20)
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where u̇i = ui;ku
k is the acceleration vector. The NP concomitants of

the equation (1.4.20) is given by

tik =
1

2
(p+ ρ)(lilk + link + nilk + nink)− p(link + nilk −mimk −mimk)−

− 1

2
√

2

{[
s0(τ

0 + τ 1 + κ0 + κ1 − ν0 − ν1 − π0 − π1)+

+ s0(τ
0 + τ1 + κ0 + κ1 − ν0 − ν1 − π0 − π1)

]
(lilk + link − nilk − nink)+

+ 2
[
s0(ε

0 + ε0 + ε1 + ε1 + γ0 + γ0 + γ1 + γ1)+

+ s1(τ
0 + τ 1 + κ0 + κ1 − ν0 − ν1 − π0 − π1)

]
(milk +mink) + c.c

}
.

(1.4.21)

By virtue of the equation (1.3.30) the equations (1.4.21) becomes

tik =
1

2

(
ρ+ p

)
(lilk + link + nink + nilk)− p(link + nilk −mimk −mimk)+

+
1

2
√

2

[
{s0(π0 + ν0 − κ0 − τ 0) + c.c}(lilk + link − nilk − nink)+

+ {2s1(π0 + ν0 − κ0 − τ 0)− 2s0(ε
0 + ε0 + γ0 + γ0)}(milk +mink)+

+ c.c
]
. (1.4.22)

1.4.3 Kinematical Parameters

In order to study the kinematics of time-like and space-like congruences

Greenberg [41] has introduced kinematical parameters for time-like

congruences and space-like congruences together with natural trans-

port laws. Radhakrishna et al. [70] has introduced ’complete’ optical

parameters for null-like congruences. The role of the kinematical pa-
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rameters is very crucial in the study of universe. The propagation

equations of these parameters are studied by Patil [96]. Below we ob-

tain the Newman-Penrose concomitants of the kinematical parameters

of the time-like vector field in order to study the solutions of the field

equations in Einstein-Cartan theory of gravitation. These are expan-

sion θ, the acceleration u̇i, the shear tensor σij, and the rotation tensor

Wij and are defined as

θ = ui;i , u̇i = ui;ju
j , σij = u(i;j) − u̇(iuj) −

1

3
θhij ,

and

Wij = u[i;j] − u̇[iuj] , (1.4.23)

where hij = gij − uiuj is the 3-dimensions projection operator and

uiu
i = 1.

We define ui = 1√
2
(li + ni). Hence the kinematical parameters

(1.4.23) become

θ =
1√
2

(li;i + ni;i) ,

u̇i =
1

2
(li;kl

k + li;kn
k + ni;kl

k + ni;kn
k) ,

σij =
1

2
√

2

[
(li;j + lj;i + ni;j + nj;i)− u̇i(li + nj)− (li + nj)u̇j

]
−

− 1

3
θhij ,
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and

Wij =
1

2
√

2

[
(li;j − lj;i) + (ni;j − nj;i)− u̇i(lj + nj) + (li + ni)u̇j

]
,

(1.4.24)

where

1

3
θhij =

θ

6

[
(linj + nilj)− 2(mimj +mimj)− (lilj + ninj)

]
. (1.4.25)

The expressions for the covariant derivative of the null vector fields and

their intrinsic derivatives along the tetrad vector fields are enumerated

in the appendix. Using these equations we readily obtain

θ =
1√
2

(
ε0 + ε0 + ε1 + ε1 − γ0 − γ0 − γ1 − γ1 − ρ0 − ρ0 − ρ1 − ρ1+

+ µ0 + µ0 + µ1 + µ1
)
,

u̇i =
1

2

[
(ε0 + ε0 + ε1 + ε1 + γ0 + γ0 + γ1 + γ1)(li − ni)−

− (τ 0 + τ 1 + κ0 + κ1 − ν0 − ν1 − π0 − π1)mi − c.c
]
,

σij =
1

6
√

2

[{
2(γ0 + γ0 + γ1 + γ1 − ε0 − ε0 − ε1 − ε1)−

− (ρ0 + ρ0 + ρ1 + ρ1 − µ0 − µ0 − µ1 − µ1)
}

(lilj + ninj−

− 2l(inj) − 2m(imj)) + 3
{(
κ0 + κ1 − τ 0 − τ 1 + ν0 + ν1−

− π0 − π1 − 2(α0 + β
0

+ α1 + β1)
)(
l(imj) −m(inj)

)
+

+ 2
(
σ0 + σ1 − λ0 − λ1

)
mimj

}
+ c.c

]
,

Wij =
1

2
√

2

[
2(ρ0 − ρ0 + ρ1 − ρ1 + µ0 − µ0 + µ1 − µ1)m[imj]−
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−
{

2(α0 + β
0

+ α1 + β1) + κ0 + κ1 − τ 0 − τ 1+

+ ν0 + ν1 − π0 − π1
}(

l[imj] +m[inj]
)
− c.c

]
. (1.4.26)

It should be noticed that, using the conditions (1.3.30), the equations

(1.4.26) can be rewritten as

θ =
1√
2

(
ε0 + ε0 − γ0 − γ0 − ρ0 − ρ0 + µ0 + µ0

)
,

u̇i =
1

2

[
(ε0 + ε0 + γ0 + γ0)(li − ni)− (τ 0 + κ0 − ν0 − π0)mi − c.c

]
,

σij =
1

6
√

2

[{
2(γ0 + γ0 − ε0 − ε0)− (ρ0 + ρ0 − µ0 − µ0)

}
·

·
(
lilj + ninj − 2l(inj) − 2m(imj)

)
+ 3

{(
κ0 − τ 0 + ν0 − π0−

− 2(α0 + β
0
)

)(
l(imj) −m(inj)

)
+ 2(σ0 − λ0)mimj

}
+ c.c

]
,

Wij =
1

2
√

2

[(
τ 0 + π0 − ν0 − κ0 + 4

√
2ks0 − 2(α0 + β

0
)

)(
l[imj]+

+m[inj]
)

+ c.c+ 2
(
ρ0 − ρ0 + µ0 − µ0 − 4

√
2ks1

)
m[imj]

]
.

(1.4.27)
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Appendix 1:

li;j =(γ0 + γ0 + γ1 + γ1)lilj − (α0 + β
0

+ α1 + β1)limj−

− (α0 + β0 + α1 + β1)limj + (ε0 + ε0 + ε1 + ε1)linj−

− (τ 0 + τ 1)milj + (σ0 + σ1)mimj + (ρ0 + ρ1)mimj−

− (κ0 + κ1)minj − (τ 0 + τ1)milj + (ρ0 + ρ1)mimj+

+ (σ0 + σ1)mimj − (κ0 + κ1)minj ,

ni;j =− (ε0 + ε0 + ε1 + ε1)ninj − (γ0 + γ0 + γ1 + γ1)nilj−

− (α0 + β0 + α1 + β1)nimj − (α0 + β
0

+ α1 + β1)nimj+

+ (π0 + π1)minj + (ν0 + ν1)milj − (λ
0

+ λ1)mimj−

− (µ0 + µ1)mimj + (π0 + π1)minj + (ν0 + ν1)milj−

− (µ0 + µ1)mimj − (λ0 + λ1)mimj ,

mi;j =− (κ0 + κ1)ninj − (τ 0 + τ1)nilj + (σ0 + σ1)nimj+

+ (ρ0 + ρ1)nimj + (π0 + π1)linj + (ν0 + ν1)lilj−

− (λ
0

+ λ1)limj − (µ0 + µ1)limj + (ε0 − ε0 + ε1 − ε1)minj+

+ (γ0 − γ0 + γ1 − γ1)milj + (α0 − β0 + α1 − β1)mimj−

− (α0 − β0
+ α1 − β1)mimj ,

mi;j =− (κ0 + κ1)ninj − (τ 0 + τ 1)nilj + (ρ0 + ρ1)nimj+

+ (σ0 + σ1)nimj + (π0 + π1)linj + (ν0 + ν1)lilj−

− (µ0 + µ1)limj − (λ0 + λ1)limj − (ε0 − ε0 + ε1 − ε1)minj+

− (γ0 − γ0 + γ1 − γ1)milj − (α0 − β0 + α1 − β1)mimj+

+ (α0 − β0
+ α1 − β1)mimj .
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Appendix 2: Intrinsic Derivatives of the tetrad vector fields.

li;jl
j =(ε0 + ε0 + ε1 + ε1)li − (κ0 + κ1)mi − (κ0 + κ1)mi ,

li;jn
j =(γ0 + γ0 + γ1 + γ1)li − (τ 0 + τ1)mi − (τ 0 + τ 1)mi ,

li;jm
j =(α0 + β0 + α1 + β1)li − (σ0 + σ1)mi − (ρ0 + ρ1)mi ,

li;jm
j =(α0 + β

0
+ α1 + β1)li − (ρ0 + ρ1)mi − (σ0 + σ1)mi ,

ni;jl
j =− (ε0 + ε0 + ε1 + ε1)ni + (π0 + π1)mi + (π0 + π1)mi ,

ni;jn
j =− (γ0 + γ0 + γ1 + γ1)ni + (ν0 + ν1)mi + (ν0 + ν1)mi ,

ni;jm
j =(α0 + β0 + α1 + β1)ni + (λ

0
+ λ1)mi + (µ0 + µ1)mi ,

ni;jm
j =(α0 + β

0
+ α1 + β1)ni + (µ0 + µ1)mi − (λ0 + λ1)mi ,

mi;jl
j =− (κ0 + κ1)ni + (π0 + π1)li + (ε0 − ε0 + ε1 − ε1)mi ,

mi;jn
j =− (τ 0 + τ1)ni + (ν0 + ν1)li + (γ0 − γ0 + γ1 − γ1)mi ,

mi;jm
j =− (σ0 + σ1)ni + (λ

0
+ λ1)li − (α0 − β0 + α1 − β1)mi ,

mi;jm
j =− (ρ0 + ρ1)ni + (µ0 + µ1)li + (α0 − β0

+ α1 − β1)mi ,

mi;jl
j =− (κ0 + κ1)ni + (π0 + π1)li − (ε0 − ε0 + ε1 − ε1)mi ,

mi;jn
j =− (τ 0 + τ 1)ni + (ν0 + ν1)li − (γ0 − γ0 + γ1 − γ1)mi ,

mi;jm
j =− (ρ0 + ρ1)ni + (µ0 + µ1)li + (α0 − β0 + α1 − β1)mi ,

mi;jm
j =− (σ0 + σ1)ni + (λ0 + λ1)li − (α0 − β0

+ α1 − β1)mi .
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Appendix 3: Metric Equations

∆li −Dni =(γ0 + γ0 + γ1 + γ1)l
i − (τ 0 + π0 + τ 1 + π1)m

i−

− (τ 0 + π0 + τ1 + π1)m
i + (ε0 + ε0 + ε1 + ε1)n

i ,

δli −Dmi =(α0 + β0 − π0 + α1 + β1 − π1)li−

− (ρ0 + ε0 − ε0 + ρ1 + ε1 − ε1)mi−

− (σ0 + σ1)m
i + (κ0 + κ1)n

i ,

δni −∆mi =− (ν0 + ν1)l
i + (µ0 − γ0 + γ0 + µ1 − γ1 + γ1)m

i+

+ (λ
0

+ λ1)m
i + (τ 0 − α0 − β0 + τ1 − α1 − β1)ni ,

δmi − δmi =(µ0 − µ0 + µ1 − µ1)li + (α0 − β0
+ α1 − β1)m

i−

− (α0 − β0 + α1 − β1)mi + (ρ0 − ρ0 + ρ1 − ρ1)ni .
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Chapter 2

A Geometry of a Non-Riemannian Space
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2.1 Introduction

The use of geometry in the development of science in general and

physics in particular is well known. The familiar geometry in which

parallel lines never meet or diverge, the angles of a triangle add up

to 180 degrees, geodesics are straight lines and so on is known as Eu-

clidean geometry and the space on which the geometry rest is called

Euclidean space. Newton considered Euclidean space as consisting of

3- dimensions and time as consisting of 1- dimension- the 4th dimen-

sion independent of space and developed Newtonian mechanics which

is well-known to all. Euclidean space is characterised by the metric

ds2 = ηijdx
idxj , i, j = 1, 2, 3, (2.1.1)

where xi = (x1, x2, x3) = (x, y, z) -space coordinates and

ηij =1, when i = j ,

=0, when i 6= j ,
(2.1.2)

is called Euclidean metric tensor.

By combining 3-dimensions space and 1- dimension time into a sin-

gle manifold is called the Minkowski space-time and the corresponding

geometry is called as pseudo Euclidean geometry. This is the kind

of geometry Einstein used in his geometrisation of the special the-

ory of relativity. The 4- dimensions Minkowski space-time is charac-

terised by the flat metric defined by the equation (2.1.1), but in which
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xi = (x1, x2, x3, x4) = (x, y, z, ict) the space-time coordinates and the

Minkowski metric tensor ηij is defined by

ηij =1, when i = j = 1, 2, 3 ,

=− 1, when i = j = 4 ,

=0, when i 6= j .

(2.1.3)

In non-relativistic classical mechanics, the use of Euclidean space

instead of space-time is appropriate, as time is treated as universal and

constant, being independent of the state of motion of an observer. In

relativistic contexts, the space-time is our universe. Time cannot be

separated from 3- dimensions space.

The first person to go beyond Euclid geometry and appreciate its

significance was Carl Friedrich Gauss. Alternate geometries are there-

fore known as non-Euclidean geometries. Non-Euclidean geometry was

independently discovered by the Russian Labochevsky, N. I. in 1829

and by a Hungarian Bolyai, J. The new geometry is known as ‘hyper-

bolic’ geometry, in which, the angles of a triangle always add up to

less than 180 degrees and many straight lines can be drawn parallel to

the given straight line through a point out side the straight line.

Bernhard Riemann realized the possibility of yet another geometry,

who comprehensively put across the notion of non- Euclidean geometry

in 1851, in which the angles of a triangles always add up to more than

180 degrees and all ‘lines of longitudes’ cross the equator at right angles

and must therefore all be parallel to one another, they all cross each
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other at poles. Hence no parallel lines exist on such a space.

Einstein uses 4- dimensions pseudo Riemannian space-time, in the

sense that the metric of the space-time is positive indefinite, with

symmetric connections, called the Christoffel symbols, and developed

General Theory of Relativity. Einstein’s special theory of relativity de-

scribes the way things move about in what is called ‘flat space-time’.

Einstein’s General Theory of Relativity describes how things move in

curved space-time, and the curvature in space-time is caused by the

presence of matter in the universe.

A Riemannian space-time on which the Riemannian geometry based

is characterized by the pseudo Riemannian metric defined by

ds2 = gijdx
idxj , (2.1.4)

where xi are the space-time coordinates of an event and gij are the

components of the Riemannian metric tensor, which are functions of

coordinates xi at the point and representing the gravitational poten-

tial. We see that the space, time and the gravity are all invisible.

The ingenuity of Einstein is that he unified all these invisible quanti-

ties into a concise formula given in the equation (2.1.4) and we call it

as Riemannian metric. The geometry on such a space-time is called

a Riemannian geometry. Riemannian geometry generalises Euclidean

geometry to spaces that are not necessarily flat, although they still

resemble Euclidean space at each point infinitesimally. As the conse-

quence of this theory, Einstein deduced that the ray of light bends, the

59



perihelion of the planet Mercury advances in the gravitational field

of the Sun and made invisible mathematics visible. This is perhaps

in consonance with the fictitious description of mathematics as our

invisible culture.

In the history of science, Einstein’s general theory of relativity is

considered to be the most successful theory of gravitation. However,

the success of general relativity is decidedly mixed. On one hand it

is highly successful which has passed every unambiguous test both ex-

perimentally and observationally. On the other hand it is inconsistent

with quantum mechanics, not free from singularities and not included

the spin of the gravitating matter and so on. To address such issues

there are several well known (more than forty theories of gravitation)

classical theories of gravitation other than Einstein’s general theory of

relativity.

Einstein-Cartan theory of gravitation is one such modified theory

of gravitation, in which the spin of the gravitating matter is intro-

duced, developed by Cartan with the hopes of avoiding singularities.

The underlying geometry for the Einstein-Cartan theory of gravita-

tion is non-Riemannian characterized by the metric (2.1.4) but where

in which the connections are asymmetric, through which the torsion is

introduced. The theory is also called as the torsion theory of gravita-

tion. Non-Riemannian geometry generalizes Riemannian geometry to

spaces in which covariant derivative of a tensor involves torsion term
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through asymmetric connections.

In this chapter, the technique of differential forms on non-Riemannian

space is presented and the essence of non-Riemannian geometry is stud-

ied. The material of this chapter is organised as follows. In each of the

above mentioned theory of gravitation, we discuss some of the vector

identities and their invariance characteristics in the Section 2 and 3.

A technique of differential forms, developed by Katkar [61] on a non-

Riemannian space, is presented in the Section 4. A formula for the

curvature of a non-Riemannian space is derived in the next section. A

non-Riemannian 2- space is constructed and its curvature is obtained.

The results are corroborated by employing the techniques of differ-

ential forms on a non-Riemannian space in the Section 5. Maxwell’s

equations in a more general form are derived in the last Section.

2.2 Gradient, Divergence and Curl in

3-dimension Euclidean Space

If f is a scalar function of coordinates in R3, then we are familiar with

the standard result

gradf =
∂f

∂x
i+

∂f

∂y
j +

∂f

∂z
k , (2.2.1)

where ∂f
∂x ,

∂f
∂y ,

∂f
∂z are the components of gradf with respect to the bases

indicated. Similarly, if F = F1i + F2j + F3k is a vector field in the
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3-dimensional Euclidean space, where F1, F2, F3 are the components of

the vector field with respect to the basis indicated then we have

divF =
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z
, (2.2.2)

curlF =

(
∂F3

∂y
− ∂F2

∂z

)
i+

(
∂F1

∂z
− ∂F3

∂x

)
j +

(
∂F2

∂x
− ∂F1

∂y

)
k ,

(2.2.3)

where
(
∂F3

∂y −
∂F2

∂z

)
,
(
∂F1

∂z −
∂F3

∂x

)
,
(
∂F2

∂x −
∂F1

∂y

)
are the components of the

curlF with respect to the basis indicated. In 3-dimension Euclidean

space we have the standard vector identities;

curl(gradf) = 0 and div(curlF ) = 0 , (2.2.4)

as the two rows of the determinant are identical.

In tensor notations we define the gradf, divF and curlF in a 3-

dimensional Euclidean space as

gradf =
∂f

∂xi
ηikek , divF =

∂F1

∂xk
ηik , and

divF =
∂F l

∂xk
ηikel ∧ ei ,

(2.2.5)

where ∧ is the wedge product of vectors. Wedge product of two vectors

is nothing but their vector product, and ηik is defined in the equation

(2.1.2). The tensor notations are useful to extend the definitions (2.2.5)

into the higher dimension spaces.

It is evident that definitions (2.2.5) are invariant under the coordi-
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nate transformations

xi
′

= ∧i
′

kx
k , (2.2.6)

where ∧i
′

k is the matrix of transformation. The matrix ∧i
′

k and its

inverse matrix of transformation ∧i′k satisfy the condition

∧i
′

h ∧i′ k = δkh . (2.2.7)

2.2.1 4-dimensional Euclidean space and time

In the 4-dimensional Euclidean space and time the definition (2.2.5) re-

mains the same, however, the two inertial frames in the Newtonian rel-

ativity are connected by the Galilean transformation equations, where

the matrix of Galilean transformation is given by

‖ ∧i
′

k ‖ =


1 0 0 −v

0 1 0 0

0 0 1 0

0 0 0 1

 , (2.2.8)

and v is the uniform velocity.

We see that the matrix of Galilean transformation equations is

the particular case of the matrix of the most general transformation.

Hence it is obvious that the gradf , divF and curlF are invariant

under Galilean transformation equations.
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2.2.2 4-dimensions Minkowski Space-Time of

Special Relativity

A space-time characterized by the metric (2.1.1) together with (2.1.3)

is called the Minkowski flat space-time. The metric can also be repre-

sented by

ds2 = (dx1)2 + (dx2)2 + (dx3)2 − (dx4)2 . (2.2.9)

We choose x4 = ct, where c is the velocity of light and t is time, so

that x4 = ct has the unit of length and (x1, x2, x3) = (x, y, z) are

space coordinates. In this notation the Minkowski metric becomes

ds2 = dx2+dy2+dz2−c2dt2. In the 4-dimension Minkowski space-time

of special relativity the gradf, divF and curlF are defined in the same

way as they are defined in the equation (2.2.5). The only difference

is in the definition of the metric tensor ηij which is defined in the

equation (2.1.3). The definitions (2.2.5) also invariant under Lorentz

transformations equations, as the matrix of Lorentz transformation

equations is given by

‖ ∧i
′

k ‖ =


γ 0 0 −γv

0 1 0 0

0 0 1 0

−γv
c2 0 0 γ

 , (2.2.10)

and γ = 1√
1− v2

c2

is the Lorentz factor.
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2.2.3 Exterior Derivative and the Vector

Quantities

In the Minkowski space-time (M , η), Amur and Christopher [2] have

expressed the gradf, divF and curlF in terms of exterior derivative as

(i) df ∧ ∗dX = (gradf)dV ,

(ii) dF ·∧∗dX = divFdV , where · indicates the dot product between

two vectors and ∧ denotes the wedge product,

(iii) −dF ∧ ∧∗dX = (curlF )dV , where double wedge products are

used to indicates the wedge product between differential forms

and vector product between vectors and dV = dx1∧dx2∧dx3∧dx4

is the 4-volume and ∗ is the Hodge star operator defined by

∗dxi = (−1)i−1dx1 ∧ dx2 ∧ ... ∧ dx̂i ∧ ...dxn , (2.2.11)

where cap over the differential dxi indicates that the term is to be

deleted from the expression and

dxi ∧ ∗dxk = ηikdV .

They have also shown that these definitions do not depend on any

particular coordinate frame.
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2.3 Gradient, divergence and Curl in a

Riemannian space of Einstein’s

General Relativity

The notion of partial derivative of a function from multi-variable cal-

culus is extended in a Riemannian space-time of Einstein’s general

theory of relativity to the notion of covariant derivative of a tensor

with symmetric connections. Furthermore, the covariant derivative

of a form of any degree is independent of symmetric connections as

the terms vanish due to the product of symmetric connections and the

skew-symmetric basis vectors. Consequently, we obtain in Riemannian

space, the covariant derivative of a form by taking either the partial

derivative or covariant derivative of the associated tensor.

The gradient, divergence and curl of a vector field in a Riemannian

space-time of General relativity are defined as

ˆgradf = f/i =
∂f

∂xi
= f,i ,

ˆdivAi = ˆdivA
i

= Ai
/i = gikAi/k =

1√
−g

∂

∂xi
(Ai√−g) ,

ˆcurlAi = Ai/j − Aj/i =
∂Ai

∂xj
− ∂Aj

∂xi
.

(2.3.1)

The curl of a vector is the tensor of covariant rank two. These def-

initions are invariant under the coordinate transformation from xi to

xi. We have used overhead cap to denote the terms in a Riemannian
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space.

2.3.1 The Vector Identities

We have the standard vector identities in vector calculus:

ˆcurl( ˆgradf) = 0 ,

and

d̂iv( ˆcurlAi) = 0 . (2.3.2)

However, in Riemannian space the curl of the gradient of a scalar

function f is defined as

ˆcurl( ˆgradf) = curl(f/i) = f/ij − f/ji =
∂2f

∂xi∂xj
− ∂2f

∂xj∂xi
,

⇒ ˆcurl( ˆgradf) = 0 .

Similarly

d̂iv( ˆcurlAi) = 0 . (2.3.3)

These identities are well expressed in the techniques of differential

forms viz., the exterior derivative. In fact the exterior derivative sub-

sumes the ordinary gradient, curl and the divergence and the two vector

identities ˆcurl( ˆgradf) = 0 and d̂iv( ˆcurlAi) = 0. The same is illustrated

below.
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2.3.2 Vector Identities in Exterior Derivative

In order to obtain the vector identities in terms of exterior derivative,

let f , ω̃ = ωidx
i, σ̃ = fdy ∧ dz + gdz ∧ dx + hdx ∧ dy be differential

forms of degree 0, 1 and 2 respectively. Then by applying the exterior

derivative to each one of these form, we obtain

df =f,idx
i ,

dω̃ =
1

2

(
∂ωi
∂xj
− ∂ωj
∂xi

)
dxj ∧ dxi ,

dσ̃ =

(
∂f

∂x
+
∂g

∂y
+
∂h

∂z

)
dx ∧ dy ∧ dz .

(2.3.4)

The coefficients of these equations are respectively called gradf , curlω

and divF with respect to a basis indicated. Now taking the exterior

derivative of 1-form df , defined above, we obtain the vector identities

in the form

d2f =
1

2
(f/ij − f/ji)dxj ∧ dxi =

1

2

(
∂2f

∂xi∂xj
− ∂2f

∂xj∂xi

)
dxj ∧ dxi ,

d2f =0⇔ ˆcurl( ˆgradf) ≡ 0 . (2.3.5)

Similarly, taking the exterior derivative of 2-form dω̃ we obtain

d2ω̃ =− 1

6

[
(ωi/jk − ωi/kj)− (ωj/ik − ωj/ki)+

+ (ωk/ij − ωk/ji)
]
dxi ∧ dxj ∧ dxk . (2.3.6)
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We see that the coefficients are the components of divergence of curl

of a vector. Thus we have

d2ω̃ = d̂iv( ˆcurlω̃)−1

6

[
(ωi/jk − ωi/kj)− (ωj/ik − ωj/ki)+

+ (ωk/ij − ωk/ji)
]
dxi ∧ dxj ∧ dxk . (2.3.7)

By using the Ricci Theorem ωi/jk − ωi/kj = ωhR̂
h
ijk we obtain

d2ω̃ = −1

6

[
ωhR̂

h
ijk − ωhR̂h

jik + ωhR̂
h
kji

]
dxi ∧ dxj ∧ dxk ,

d2ω̃ = −1

6

[
ωh

(
R̂h

ijk + R̂h
jki + R̂h

kij

)]
dxi ∧ dxj ∧ dxk ,

d2ω̃ = d̂iv( ˆcurlω̃) = 0 .

(2.3.8)

Hence the repeated exterior derivative operator in the Riemannian

space-time includes the vector identities

ˆcurl ˆgradf = 0 and also the d̂iv ˆcurlf = 0 ,

when applied to 0-form and 1-form respectively.

i. e.

d2f ≡ ˆcurl( ˆgradf) = 0 , d2ω̃ = d̂iv( ˆcurlω̃) = 0 .

We will prove, in the next section that, these identities do not hold

good in a non-Riemannian space.

69



2.4 Gradient, Divergence and Curl in a

Non-Riemannian Geometry

In a non-Rimennian space-time the gradient of a function, the diver-

gence of a vector field and the curl of a vector field are defined below:

Let f be a scalar function, then

gradf = f;i , (2.4.1)

where f;i = f/i = f,i.

Contracting the indices in the definition of covariant derivative of

a contravariant vector, we get

Ai
;i = Ai

/i − AkKik
i , (2.4.2)

⇒ divAi = d̂ivAi − AkKik
i . (2.4.3)

Using the relation between the contortion tensor and torsion tensor

(1.2.18), we obtain Kik
i = −2Qik

i. Hence the equation (2.4.3) becomes

divAi =d̂ivAi + 2AkQik
i , (2.4.4)

However, the Frankel condition suggests that torsion trace vanishes

identically. Hence, we have

divAi =d̂ivAi ,

Now the curl of a vector field Ai is defined by

curlAi =Ai;j − Aj;i = Ai/j − Aj/i + 2AkQij
k , (2.4.5)

70



⇒ curlAi = ˆcurlAi + 2AkQij
k ,

where

ˆcurlAi =Ai/j − Aj/i .

Replacing the arbitrary vectorAi by f;i in the above equation we get

curl(gradf) = ˆcurl( ˆgradf) + 2f;kQij
k , (2.4.6)

where

ˆcurl( ˆgradf) =0⇒ curl(gradf) = 2f;kQij
k . (2.4.7)

2.4.1 Techniques of Differential Forms in a

Non-Riemannian Space

Techniques of differential forms in a Riemannian space is wel-known in

the literature Israel, W [54], Spivak, Michael [120], Choquet Bruhat et

al. [18], Franders, Harley [35], Bernard Schutz [110]. Exterior deriva-

tive ’d’ defined in such a space is connection independent. Hence, it can

be obtained by taking either covariant derivative or the partial deriva-

tive (immaterial which) of an associated pth rank tensor of a form of

degree p ≥ 0. However, this is not true in a non-Riemannian space

as it involves asymmetric connections. Katkar [61] has introduced a

new operator d∗ and derived the Cartan’s equations of structure. The

operator d∗ is connection dependent and hence obtained by taking the
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covariant derivative with respect to asymmetric connections of a dif-

ferential form of any degree p ≥ 0. The operator d∗ is defined by

d∗ : ∧r T ∗p → ∧r+1T ∗p ,

d∗ω̃ = ωi1i2...ir;kd∗x
k ∧ d∗xi1 ∧ d∗xi2 ∧ ... ∧ d∗xir−

− ωi1i2...ir
[ r∑
p=1

(−1)p−1d∗x
i1 ∧ ... ∧ d∗xip−1 ∧ d2∗xip ∧ ... ∧ d∗xir

]
,

(2.4.8)

for any ω̃ ∈ ∧rT ∗p . Here the symbols ∧rT ∗p and ∧r+1T ∗p stand for the set

of all r-forms and (r + 1)-forms respectively. The exterior derivative

operator d∗ satisfies the following properties

(i) d∗f = f,id∗x
i ,

(ii) d∗(ω̃ + σ̃) = d∗ω̃ + d∗σ̃ ,

(iii) d∗(fg) = d∗f · g + f · d∗g ,

(iv) d∗(ω̃ ∧ σ̃) = d∗ω̃ ∧ σ̃ + (−1)deg of ω̃ω̃ ∧ d∗σ̃ , (2.4.9)

(v) d∗(fω̃) = d∗f ∧ ω̃ + fd∗ω̃ ,

(vi) d∗(d∗ω̃) 6= 0 , for any form ω̃, of degree r ≥ 0 ,

(vii) d∗(d∗f ∧ d∗g) = d2∗f ∧ d∗g − d∗f ∧ d2∗g .

and the coordinate differential d∗x
i form a basis of the space of 1-form,

such that d∗x
i ∧ d∗xi = 0.

We prove the last four properties as first three properties are obvi-

ous.
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Proof: We prove (iv) d∗(ω̃ ∧ σ̃) = d∗ω̃ ∧ σ̃ + (−1)deg of ω̃ω̃ ∧ d∗σ̃ ,

(a) we choose ω̃ = ωid∗x
j , σ̃ = σkd∗x

k be two 1-forms. Then by

using the definition (2.4.8), we have

d∗ω̃ = ωi;jd∗x
j ∧ d∗xi − ωid2∗xk , (2.4.10)

and

d∗σ̃ = σk;jd∗x
j ∧ d∗xk − σkd2∗xk . (2.4.11)

Consider the wedge product of ω̃ and σ̃ as

ω̃ ∧ σ̃ = ωiσkd∗x
i ∧ d∗xk . (2.4.12)

Taking the exterior derivative d∗ of (2.4.12) we obtain

d∗(ω̃ ∧ σ̃) =(ωi;jσk + ωiσk;j)d∗x
j ∧ d∗xi ∧ d∗xk−

− ωiσk(d2∗xi ∧ d∗xk − d∗xi ∧ d2∗xk) .

We rewrite this as

d∗(ω̃ ∧ σ̃) =(ωi;jd∗x
j ∧ d∗xi − ωid2∗xi) ∧ σkd∗xk−

− ωid∗xi ∧ (σk;jd∗x
j ∧ d∗xk − σkd2∗xk) .

Using equations (2.4.10) and (2.4.11), this is nothing but

d∗(ω̃ ∧ σ̃) = d∗ω̃ ∧ σ̃ + (−1)deg of ω̃ω̃ ∧ d∗σ̃ .
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(b) Now let ω̃ = ωijd∗x
i ∧ d∗xj, be 2-form and σ̃ a 1-form. Using

the definition (2.4.8), we have

d∗ω̃ = ωij;kd∗x
k ∧ d∗xi ∧ d∗xj − ωij(d2∗xi ∧ d∗xj − d∗xi ∧ d2∗xj) .

(2.4.13)

Consider

ω̃ ∧ σ̃ =(ωijσl)d∗x
i ∧ d∗xj ∧ d∗xl , (2.4.14)

⇒ d∗(ω̃ ∧ σ̃) =(ωij;kσl + ωijσl;k)d∗x
k ∧ d∗xi ∧ d∗xj ∧ d∗xl−

− ωijσl(d2∗xi ∧ d∗xj ∧ d∗xl − d∗xi ∧ d2∗xj ∧ d∗xl+

+ d∗x
i ∧ d∗xj ∧ d2∗xl) .

We write this as

d∗(ω̃ ∧ σ̃) =[ωij;kd∗x
k ∧ d∗xi ∧ d∗xj − ωij(d2∗xi ∧ d∗xj − d∗xl ∧ d2∗xj)]∧

∧ σld∗xl + ωijd∗x
i ∧ d∗xj ∧ [σl;kd∗x

k ∧ d∗xl − σld2∗xl] .

Using the equations (2.4.11) and (2.4.13) we get

d∗(ω̃ ∧ σ̃) = d∗ω̃ ∧ σ̃ + (−1)deg of ω̃ω̃ ∧ d∗σ̃ .

Thus the result is true for any form ω̃.

(v) Now we claim that

d∗(fω̃) = d∗f ∧ ω̃ + fd∗ω̃ .

Let ω̃ = ωid∗x
i be a 1-form, and f be a scalar
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⇒ fω̃ = fωid∗x
i, is a 1-form. Using the definition (2.4.8), we

obtain

d∗(fω̃) =(f;jωi + fωi;j)d∗x
j ∧ d∗xi − fωid2∗xi ,

⇒ d∗(fω̃) =f;jd∗x
j ∧ ωid∗xi + f(ωi;jd∗x

j ∧ d∗xi − ωid2∗xi) ,

⇒ d∗(fω̃) =d∗f ∧ ω̃ + fd∗ω̃ .

(vi) Claim: We prove d2∗ω̃ 6= 0 for any form ω̃ of degree r ≥ 0.

(a) Let f be a differentiable function of coordinates. Then by defi-

nition,

d∗f = f;id∗x
i , (2.4.15)

where for a differential function f , we have

f;i = f/i = f,i . (2.4.16)

Thus in the case of a scalar function f , we have d∗f = df . Taking

the exterior derivative of (2.4.15) and using the definitions (2.4.1), we

obtain

d2∗f = f;ijd∗x
j ∧ d∗xi − f;id2∗xi . (2.4.17)

Interchanging i in to j in the equations (2.4.17) and adding the result

thus obtain to the equation (2.4.17), we get

d2∗f =
1

2
(f;ij − f;ji)d∗xj ∧ d∗xi − f;id2∗xi . (2.4.18)
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It follows from the definition (1.2.19) that

f;ij − f;ji = 2f;kQij
k . (2.4.19)

Hence the equation (2.4.18) becomes

d2∗f = f;kQij
kd∗x

j ∧ d∗xi − f;id2∗xi . (2.4.20)

For the co-ordinate functions xi, we find from the equation (2.4.8)

d2∗x
k =

1

2
Qij

kd∗x
j ∧ d∗xi . (2.4.21)

Consequently, the equation (2.4.20) becomes

d2∗f =
1

2
f;kQij

kd∗x
j ∧ d∗xi . (2.4.22)

We see from equations (2.4.7) and (2.4.22) that

d2∗f =
1

4
curl(gradf) =

1

2
f;kQij

kd∗x
j ∧ d∗xi . (2.4.23)

Consequently, we see that d2∗f 6= 0, and hence curl(gradf) 6= 0 in a

non-Riemannian space.

(b) Let ω̃ = ωid∗x
i, be a 1-form. By definition, we have therefore

d∗ω̃ = ωi;jd∗x
j ∧ d∗xi − ωid2∗xi .

Using the equations (2.4.21), we get

d∗ω̃ = −ωi;jd∗xi ∧ d∗xj +
1

2
ωkQij

kd∗x
i ∧ d∗xj . (2.4.24)
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Interchanging i and j, in the equation (2.4.24) we get

d∗ω̃ = ωj;id∗x
i ∧ d∗xj +

1

2
ωkQij

kd∗x
i ∧ d∗xj . (2.4.25)

Adding equations (2.4.24) and (2.4.25) we obtain

d∗ω̃ = −1

2

[
(ωi;j − ωj;i)− ωhQij

h
]
d∗x

i ∧ d∗xj . (2.4.26)

This can also be written as

d∗ω̃ = dω̃ − 1

2
ωhQij

hd∗x
i ∧ d∗xj , (2.4.27)

where

dω̃ = −1

2
(ωi;j − ωj;i)d∗xi ∧ d∗xj , (2.4.28)

representing exterior derivative of 1-form in a Riemann space. Tak-

ing the exterior derivative d∗ of the equation (2.4.26) and using the

definition (2.4.8), we get

d2∗ω̃ =− 1

2

[
(ωi;jk − ωj;ik)−

(
ωhQij

h
)
;k

]
d∗x

i ∧ d∗xj ∧ d∗xk+

+
1

2

[
(ωi;j − ωj;i)− ωhQij

h
](
d2∗x

i ∧ d∗xj − d∗xi ∧ d2∗xj
)
.

Using the equation (2.4.21) we obtain

d2∗ω̃ =− 1

2

[
(ωi;jk − ωj;ik)−

(
ωhQij

h
)
;k
−

−
(
ωi;l − ωl;i − ωhQil

h
)
Qjk

l
]
d∗x

i ∧ d∗xj ∧ d∗xk . (2.4.29)
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By cyclic permutation of indices i, j, k twice in turn in the equation

(2.4.29), we write two more equations

d2∗ω̃ =− 1

2

[
(ωj;ki − ωk;ji)−

(
ωhQjk

h
)
;i
−

−
(
ωj;l − ωl;j − ωhQjl

h
)
Qki

l
]
d∗x

i ∧ d∗xj ∧ d∗xk , (2.4.30)

and

d2∗ω̃ =− 1

2

[
(ωk;ij − ωi;kj)−

(
ωhQki

h
)
;j
−

−
(
ωk;l − ωl;k − ωhQkl

h
)
Qij

l
]
d∗x

i ∧ d∗xj ∧ d∗xk . (2.4.31)

Adding equations (2.4.29), (2.4.30) and (2.4.31) and then using the

Ricci identity (1.2.21) and then the cyclic property (1.2.27) we obtain

after simplifying

d2∗ω̃ = −1

6

[
ωh
{

(Qij
h
;k +Qjk

h
;i +Qki

h
;j)− 3(Qij

lQkl
h +Qjk

lQil
h+

+Qki
lQjl

h)
}

+Qij
hωk;h +Qjk

hωi;h +Qki
hωj;h

]
d∗x

i ∧ d∗xj ∧ d∗xk .

(2.4.32)

As we know the repeated exterior derivative of 1-form subsumes the

div(curlω̃), we see from the equation (2.4.25) that d2∗ω̃ 6= 0, due to the

presence of torsion in the space. Consequently, we have

div(curlω̃) 6= 0 ,

in a non-Riemannian space.
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(c) Let ω̃ = ωijd∗x
i ∧ d∗xj be a 2-form, where ωij = −ωji. Using

the definition (2.4.8), we find

d∗ω̃ = ωij;kd∗x
i ∧ d∗xj ∧ d∗xk − ωij(d2∗xi ∧ d∗xj − d∗xi ∧ d2∗xj) .

Using the equation (2.4.21) we obtain

d∗ω̃ = (ωij;k + ωlkQij
l)d∗x

i ∧ d∗xj ∧ d∗xk . (2.4.33)

By cyclic permutation of indices i, j, k twice in turn in the equation

(2.4.33), we obtain two more equations as

d∗ω̃ = (ωjk;i + ωliQjk
l)d∗x

i ∧ d∗xj ∧ d∗xk , (2.4.34)

and

d∗ω̃ = (ωki;j + ωljQki
l)d∗x

i ∧ d∗xj ∧ d∗xk . (2.4.35)

Adding equations (2.4.33), (2.4.34) and (2.4.35) we get

d∗ω̃ =
1

3

[
(ωij;k + ωjk;i + ωki;j) + (ωlkQij

l + ωliQjk
l+

+ ωljQki
l)

]
d∗x

i ∧ d∗xj ∧ d∗xk . (2.4.36)

One can also write the equation (2.4.36) as

d∗ω̃ =dω̃ − 1

3

(
ωlkQij

l + ωliQjk
l + ωljQki

l

)
d∗x

i ∧ d∗xj ∧ d∗xk .

(2.4.37)
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where

dω̃ =
1

3
(ωij;k + ωjk;i + ωki;j)d∗x

i ∧ d∗xj ∧ d∗xk . (2.4.38)

Taking the exterior derivative d∗ of the equation (2.4.36) and following

the same procedure elaborated in (b), we obtain after simplifying

d∗
2ω̃ =

1

12

[
ωij;kh − ωij;hk + ωjk;ih − ωjk;hi + ωki;jh − ωki;hj+

+ ωkh;ij − ωkh;ji + ωhi;kj − ωhi;jk + ωjh;ki − ωjh;ik −Qij
lωkh;l+

+Qjk
lωhi;l +Qki

lωhj;l −Qkh
lωij;l +Qhi

lωjk;l −Qjh
lωki;l+

+ ωlk(Qij
l
;k −Qhj

l
;i +Qhi

l
;j +Qpj

lQhi
p +Qip

lQhj
p +Qhp

lQji
p)+

+ ωli(Qjk
l
;h −Qjh

l
;k +Qkh

l
;j +Qpk

lQij
p +Qjp

lQhk
p +Qph

lQjk
p)+

+ ωlj(Qki
l
;h −Qkh

l
;i −Qhi

l
;k +Qkp

lQhi
p +Qpi

lQhk
p +Qhp

lQik
p)+

+ ωlh(−Qjk
l
;i +Qik

l
;j −Qij

l
;k +Qip

lQjk
p +Qpk

lQji
p +Qjp

lQki
p)

]
·

· d∗xh ∧ d∗xi ∧ d∗xj ∧ d∗xk . (2.4.39)

Using the Ricci identity (1.2.28) and then the cyclic property (1.2.27),

we obtain after simplifying

d∗
2ω̃ =

1

6

[
2ωlj

{
(Qik

l
;h +Qkh

l
;i +Qhi

p
;k)−

− 3(Qik
pQhp

l +Qkh
pQip

l +Qhi
pQkp

l)
}

+

+Qih
lωjk;l +Qki

lωjh;l +Qjh
lωki;l

]
d∗x

h ∧ d∗xi ∧ d∗xj ∧ d∗xk .

(2.4.40)
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This shows that d∗
2ω̃ 6= 0, for any ω̃.

Note: In the absence of torsion term the results reduce to d∗
2ω̃ = 0.

(vii) Now we claim d∗(d∗f ∧ d∗g) 6= 0.

Let f and g be two 0-forms, then d∗f and d∗g are 1-forms defined

respectively by

d∗f = f;id∗x
i and d∗g = g;kd∗x

k .

Then

d∗f ∧ d∗g =
1

2
(f;ig;k − f;kg;i)d∗xi ∧ d∗xk , is a 2-form

Consider d∗(d∗f ∧ d∗g) = d2∗f ∧ d∗g − d∗f ∧ d2∗g .

Using the equation (2.4.22), we obtain

d∗(d∗f ∧ d∗g) =
1

2
(f;kg;l − f;lg;k)Qij

ld∗x
i ∧ d∗xj ∧ d∗xk , (2.4.41)

By cyclic permutation of the indices i, j, k twice in turn in the equation

(2.4.41) we obtain the following two equations

d∗(d∗f ∧ d∗g) =
1

2
(f;ig;l − f;lg;i)Qjk

ld∗x
i ∧ d∗xj ∧ d∗xk , (2.4.42)

and

d∗(d∗f ∧ d∗g) =
1

2
(f;jg;l − f;lg;j)Qki

ld∗x
i ∧ d∗xj ∧ d∗xk , (2.4.43)

Adding equations (2.4.41), (2.4.42) and (2.4.43) we get
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d∗(d∗f ∧ d∗g) =
1

6

[
(f;kg;l − f;lg;k)Qij

l + (f;ig;l − f;lg;i)Qjk
l+

+ (f;jg;l − f;lg;j)Qki
l
]
d∗x

i ∧ d∗xj ∧ d∗xk . (2.4.44)

This is a 3-form. Unlike the identity in the Riemann space of ET of

gravitation d(df ∧ dg) = 0, it is not zero in the non-Riemannian space

of Einstein-Cartan theory of gravitation.

2.4.2 Cartan’s Equations of Structure in a

Non-Riemann Space

The essence of Riemannian geometry is studied through the Cartan’s

equations of structure. In this section, we summerise Cartan’s equa-

tions of structure in a in a non-Riemannian space derived by Katkar

[61]. We hope that these equations will be of immense use in the

study of the essence of non-Riemannian geometry and also provide

a technique of computation of the components of Riemannian curva-

ture tensor which latter can be used to find the solutions of the field

equations of the Einstein-Cartan theory of gravitation.

Let Vn be a non-Riemann space with metric defined by

ds2 = gijdx
idxj , (2.4.45)

where gij are the components of the metric tensor and the connections

involved are asymmetric. Let xi = xi(s) be a curve in Vn and s is a

82



parameter of the curve. At each point of the curve, we construct a

tetrad e(α), α = 1, 2, 3, 4, consisting of four vector fields which form a

basis at each point. If θα are four basis 1-form corresponding to four

basis vector fields e(α)i, then we have

θα = e(α)id∗x
i , (2.4.46)

Applying the derivative operator d∗ to the equation (2.4.46), we get

d∗θ
α = e(α)i;jd∗x

j ∧ d∗xi − e(α)id2∗xi . (2.4.47)

Using the equation (2.4.21), we get

d∗θ
α =

(
e(α)i;j −

1

2
Qij

ke(α)k
)
d∗x

j ∧ d∗xi . (2.4.48)

However, from the equation (2.4.46), we find

d∗x
i = θαe(α)

i . (2.4.49)

Using the equation (2.4.49) in the equation (2.4.48), we get

d∗θ
α =

(
− e(α)i;je(β)ie(σ)j +

1

2
Qij

ke(β)
ie(σ)

je(α)k

)
θβ ∧ θσ .

Using the equation (1.3.10), we write this equation as

d∗θ
α =

(
γαβσ +

1

2
Qβσ

α

)
θβ ∧ θσ , (2.4.50)

where

Qβσ
α = Qij

ke(β)
ie(σ)

je(α)k , (2.4.51)
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are the tetrad components of the torsion tensor Qij
k. We write this

equation as

d∗θ
α = −ωαβ ∧ θβ +

1

2
Qβσ

αθβ ∧ θσ , (2.4.52)

where

ωαβ = γαβσθ
σ , (2.4.53)

are the tetrad components of connection 1-form of a non-Riemann

space Vn and γαβσ are defined in the equation (1.3.12). Using the

equation (1.3.12) we write the equation (2.4.53) as

ωαβ =γ0αβσθ
σ −Kσβ

αθσ ,

⇒ ωαβ =ω0α
β −Kσβ

αθσ , (2.4.54)

where

ω0α
β =γ0αβσθ

σ , (2.4.55)

are the tetrad components of connection 1-form of a Riemann space.

Using the equations (1.2.16) and (2.4.54) in the equation (2.4.52) we

obtain

d∗θ
α = dθα − 1

2
Qβσ

α θβ ∧ θσ , (2.4.56)

where

dθα = −ω0α
β ∧ θβ . (2.4.57)
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The equations (2.4.56) and (2.4.57) are called the Cartan’s first equa-

tions of structure with respect to a non-Riemann space and a Riemann

space respectively.

To arrive at the Cartan’s second equation of structure in a non-

Riemann space, we first write the equation (2.4.53) by using (2.4.46)

as

ωαβ = γαβσe
(σ)

id∗x
i . (2.4.58)

Operating the derivative d∗ to the equation (2.4.58) and using the

definition (2.4.8) and (2.4.21), we find

d∗ω
α
β = −1

2

[
(γαβσe

(σ)
i);j − (γαβσe

(σ)
j);i − (γαβσe

(σ)
k)Qij

k
]
d∗x

i ∧ d∗xj .

(2.4.59)

From the equation (1.3.10), we find

e(α)k;i = −γαβσe(β)ke(σ)i . (2.4.60)

Differentiating the equations (2.4.60) covariantly with respect to xj,

we get

e(α)k;ij =
[
− (γαβσe

(σ)
i);j + γαεσγ

ε
βδe

(σ)
ie

(δ)
j

]
e(β)k ,

⇒ (γαβσe
(σ)

i);j =− e(α)k;ije(β)k + γαεσγ
ε
βδe

(σ)
ie

(δ)
j . (2.4.61)

Substituting this equation in the equation (2.4.59), we get
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d∗ω
α
β =

1

2

[
(e(α)k;ij − e(α)k;ji)e(β)k − γαεσγεβδ(e(σ)ie(δ)j − e(δ)ie(σ)j)+

+ γαβσQij
ke(σ)k

]
d∗x

i ∧ d∗xj . (2.4.62)

Using the Ricci identity (1.2.21) and the equations (2.4.49) and (2.4.63)

in the equation (2.4.62), we obtain

d∗ω
α
β = −1

2
Rδεβ

αθδ ∧ θε + ωεβ ∧ ωαε +
1

2
γαβσQεδ

σθδ ∧ θε , (2.4.63)

where

Rδεβ
α = Rjik

he(α)he(δ)
je(ε)

ie(β)
k , (2.4.64)

are the tetrad components of the Riemann curvature tensor in a non-

Riemannian space. If Ωα
β is the curvature 2-form then it is defined

by

Ωα
β = −1

2
Rδεβ

αθδ ∧ θε . (2.4.65)

Hence the equation (2.4.63) becomes

Ωα
β = d∗ω

α
β + ωαε ∧ ωεβ +

1

2
γαβσQεδ

σ θε ∧ θδ . (2.4.66)

This is known as the Cartan’s second equation of structure in a non-

Riemannian space.

These Cartan’s equations of structure in a more general form can

hopefully be used in the following chapters to find the solutions of the

field equations of Einstein-Cartan theory of gravitation.
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2.4.3 Tetrad Components of Connection 1-form

and Curvature 2-form

The Cartan’s equations of structure will be used as a technique to

compute 36 tetrad components of Riemann curvature tensor in a non-

Riemannian space-time of Einstein-Cartan theory of gravitation. For

computational purpose, we present below the expressions for the tetrad

components of connection 1-forms and curvature 2-forms.

From the definition of connection 1-form (2.4.53), we recall

ωαβ = γαβσθ
σ . (2.4.67)

Using the equation (1.3.12) in the equations (2.4.67) and expanding

the summation, we get

ωαβ =(γ0αβ1 +K1αβ)θ1 + (γ0αβ2 +K2αβ)θ2 + (γ0αβ3 +K3αβ)θ3+

+ (γ0αβ4 +K4αβ)θ4 . (2.4.68)

By giving different values to α, β = 1, 2, 3, 4 and using the equation

(1.3.14), we readily obtain the expressions for connection 1-form as

ω12 = ω2
2 = −

[
(ε0 + ε0 + ε1 + ε1)θ

1 + (γ0 + γ0 + γ1 + γ1)θ
2+

+ (α0 + β0 + α1 + β1)θ
3 + (α0 + β

0
+ α1 + β1)θ

4
]
,

ω13 = ω2
3 = −

[ (
κ0 + κ1

)
θ1 +

(
τ 0 + τ1

)
θ2 +

(
σ0 + σ1

)
θ3+

+
(
ρ0 + ρ1

)
θ4
]
,
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ω23 = ω1
3 =

(
π0 + π1

)
θ1 +

(
ν0 + ν1

)
θ2 +

(
λ
0

+ λ1

)
θ3+

+
(
µ0 + µ1

)
θ4 ,

ω34 = −ω4
4 =

[ (
ε0 − ε0 + ε1 − ε1

)
θ1 +

(
γ0 − γ0 + γ1 − γ1

)
θ2−

−
(
α0 − β0 + α1 − β1

)
θ3 +

(
α0 − β0

+ α1 − β1

)
θ4
]
.

(2.4.69)

Similarly Cartan’s first equation of structure (2.4.56) on using (1.3.14)

yields

d∗θ
1 =(γ0 + γ0)θ12 + (α0 + β0 − π0)θ13 + (α0 + β

0 − π0)θ14−

− ν0θ23 − ν0θ24 + (µ0 − µ0)θ34 − 1

2
Qαβ

1θαβ ,

d∗θ
2 =(ε0 + ε0)θ12 + κ0θ13 + κ0θ14 − (α0 + β0 − τ 0)θ23−

− (α0 + β
0 − τ 0)θ24 − (ρ0 − ρ0)θ34 − 1

2
Qαβ

2θαβ ,

d∗θ
3 =− (τ 0 + π0)θ12 − (ρ0 + ε0 − ε0)θ13 − σ0θ14−

− (γ0 − γ0 − µ0)θ23 + λ0θ24 + (α0 − β0
)θ34 − 1

2
Qαβ

3θαβ ,

d∗θ
4 =− (τ 0 + π0)θ12 − σ0θ13 + (ε0 − ε0 − ρ0)θ14 + λ

0
θ23+

+ (γ0 − γ0 + µ0)θ24 −
(
α0 − β0

)
θ34 − 1

2
Qαβ

4θαβ. (2.4.70)

To find the tetrad components of curvature 2-form in a non-Riemannian

space, we first record here the tetrad components of the torsion tensor

Qij
k. We start from the equation (1.2.52) the decomposition of the
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spin angular momentum tensor Sij
k into spin tensor Sij as

Sij
k = Siju

k . (2.4.71)

We assume in the following that the frenkel condition (1.2.54) does not

hold true.

i. e. Siju
j 6= 0 . (2.4.72)

Contracting j with k in the Einstein-Cartan field equation (1.2.48),

and using equations (2.4.71), (2.4.72) we get

Qik
k = −k

2
Siku

k . (2.4.73)

Substituting this value in the field equation (1.2.48), we get

Qij
k =

k

2

[
δkiSjlu

l − δkjSilul + 2Siju
k
]
. (2.4.74)

Multiplying the equation (2.4.74) by e(α)
ie(β)

je(γ)k we get

2Qαβ
γ = k

[
δα

γSβσu
σ − δβγSασuσ + 2Sαβu

γ
]
, (2.4.75)

where uσ = uiei
(σ), are the tetrad components of the unit time-like

vector ui. For the Newman-Penrose null tetrad defined in the equation

(1.3.3) and for the choice of the time-like vector ui = 1√
2
(li + ni), such

that uiu
i = 1, we have the tetrad components of the time-like vector

ui are given by

uσ =
1√
2

(1, 1, 0, 0) . (2.4.76)
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From the equation (2.4.75) by giving the values 1, 2, 3, 4 to γ we obtain

four equations given by

2Qαβ
1 =

k√
2

[δα
1Sβ1 + δα

1Sβ2 − δβ1Sα1 − δβ1Sα2 + 2
√

2Sαβ] ,

2Qαβ
2 =

k√
2

[δα
2Sβ1 + δα

2Sβ2 − δβ2Sα1 − δβ2Sα2 + 2
√

2Sαβ] ,

2Qαβ
3 =

k√
2

[δα
3Sβ1 + δα

3Sβ2 − δβ3Sα1 − δβ3Sα2] ,

2Qαβ
4 =

k√
2

[δα
4Sβ1 + δα

4Sβ2 − δβ4Sα1 − δβ4Sα2] . (2.4.77)

Now giving different values to Greek indices α and β = 1, 2, 3, 4 in the

equations (2.4.77) and using equations (1.3.26), we obtain the tetrad

components Qαβ
γ in terms of 12 complex contortion components which

we record as

Q12
1 =

k

2
√

2
S12 = −1

2
(γ1 + γ1) =

k

2
√

2
(s1 + s1) ,

Q13
1 =

k

2
√

2
(S13 − S23) = −1

2
(−π1 + α1 + β1) =

k

2
√

2
(s0 + s2) ,

Q23
1 =

k√
2
S23 =

1

2
ν1 = − k√

2
s2 ,

Q34
1 =

k√
2
S34 =

1

2
(µ1 − µ1) = − k√

2
(s1 − s1) ,

Q12
2 =

k

2
√

2
S12 = −1

2
(ε1 + ε1) =

k

2
√

2
(s1 + s1) ,

Q13
2 =

k√
2
S13 = −1

2
κ1 =

k√
2
s0 ,

Q23
2 =− k

2
√

2
(S13 − S23) = −1

2
(τ1 − α1 − β1) = − k

2
√

2
(s0 + s2) ,

Q34
2 =

k√
2
S34 =

1

2
(ρ1 − ρ1) = − k√

2
(s1 − s1) ,

90



Q13
3 =− k

2
√

2
S12 =

1

2
(ε1 − ε1 + ρ1) = − k

2
√

2
(s1 + s1) ,

Q23
3 =

k

2
√

2
S12 =

1

2
(γ1 − γ1 − µ1) =

k

2
√

2
(s1 + s1) ,

Q34
3 =− k

2
√

2
(S13 + S23) = −1

2
(α1 − β1) = − k

2
√

2
(s0 − s2) ,

Q34
4 =

k

2
√

2
(S13 + S23) =

1

2
(α1 − β1) =

k

2
√

2
(s0 − s2) ,

Q12
3 =0 , Q12

4 = 0 , Q13
4 = 0 , Q23

4 = 0 .

(2.4.78)

From equations (2.4.78) we have

γ1 + γ1 = − k√
2

(s1 + s1) , π1 − (α1 + β1) =
k√
2

(s0 + s2) ,

ν1 = −k
√

2s2 , µ1 − µ1 = −k
√

2(s1 − s1) ,

ε1 + ε1 = − k√
2

(s1 + s1) , κ1 = −k
√

2s0 ,

τ1 − (α1 + β1) =
k√
2

(s0 + s2) , π1 + τ 1 = 0 ,

ε1 − ε1 + ρ1 = − k√
2

(s1 + s1) , ρ1 − ρ1 = −
√

2k(s1 − s1) ,

γ1 − γ1 − µ1 =
k√
2

(s1 + s1) , α1 − β1 =
k√
2

(s0 − s2) ,

π1 + τ1 = 0 , α1 − β1 =
k√
2

(s0 − s2) ,

σ1 = 0 , λ1 = 0 .

(2.4.79)
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Now solving equations in (2.4.79) by using equations (1.3.27) we obtain

ρ1 =µ1 = 2ε1 = 2γ1 = −
√

2ks1 ,

ν1 =2α1 = −
√

2ks0 ,

κ1 =2β1 = −
√

2ks0 ,

and

π1 =τ1 = λ1 = σ1 = 0 . (2.4.80)

Using the equation (2.4.75) in the Cartan’s second equation of struc-

ture (2.4.66), we get

Ωα
β =d∗ω

α
β + ωαε ∧ ωεβ +

k

4

[
2γαβσSεδu

σ+

+ γαβεSδσu
σ − γαβδSεσuσ

]
θβ ∧ θσ . (2.4.81)

By giving different values to ε, δ = 1, 2, 3, 4 in the equation (2.4.81)

and using the equation (1.3.26) we obtain

Ωα
β =d∗ω

α
β + ωαε ∧ ωεβ +

k

2
√

2

[
(s1 + s1)(γ

α
β1 + γαβ2)θ

12+

+ {γαβ1(s0 + s2) + 2s0γ
α
β2 − (s1 + s1)γ

α
β3}θ13+

+ {γαβ1(s0 + s2) + 2s0γ
α
β2 − (s1 + s1)γ

α
β4}θ14+

+ {−2s2γ
α
β1 − γαβ2(s0 + s2) + (s1 + s1)γ

α
β3}θ23+

+ {−2s2γ
α
β1 − γαβ2(s0 + s2) + (s1 + s1)γ

α
β4}θ24+

+
{
− 2(s1 − s1)(γαβ1 + γαβ2)− γαβ3(s0 − s2)+

+ γαβ4(s0 − s2)
}
θ34
]
.

(2.4.82)
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By giving the values to α, β = 1, 2, 3, 4 in equation (2.4.82), we obtain

Ω1
1 =d∗ω

1
1 + ω1

ε ∧ ωε1 +
k

2
√

2

[
(s1 + s1)(γ

1
11 + γ112)θ

12+

+ {γ111(s0 + s2) + 2s0γ
1
12 − (s1 + s1)γ

1
13}θ13+

+ {γ111(s0 + s2) + 2s0γ
1
12 − (s1 + s1)γ

1
14}θ14+

+ {−2s2γ
1
11 − γ112(s0 + s2) + (s1 + s1)γ

1
13}θ23+

+ {−2s2γ
1
11 − γ112(s0 + s2) + (s1 + s1)γ

1
14}θ24+

+
{
− 2(s1 − s1)(γ111 + γ112)− γ113(s0 − s2) + γ114(s0 − s2)

}
θ34
]
,

Ω1
3 =d∗ω

1
3 + ω1

ε ∧ ωε3 +
k

2
√

2

[
(s1 + s1)(γ

1
31 + γ132)θ

12+

+ {γ131(s0 + s2) + 2s0γ
1
32 − (s1 + s1)γ

1
33}θ13+

+ {γ131(s0 + s2) + 2s0γ
1
32 − (s1 + s1)γ

1
34}θ14+

+ {−2s2γ
1
31 − γ132(s0 + s2) + (s1 + s1)γ

1
33}θ23+

+ {−2s2γ
1
31 − γ132(s0 + s2) + (s1 + s1)γ

1
34}θ24+

+
{
− 2(s1 − s1)(γ131 + γ132)− γ133(s0 − s2) + γ134(s0 − s2)

}
θ34
]
,

Ω2
3 =d∗ω

2
3 + ω2

ε ∧ ωε3 +
k

2
√

2

[
(s1 + s1)(γ

2
31 + γ232)θ

12+

+ {γ231(s0 + s2) + 2s0γ
2
32 − (s1 + s1)γ

2
33}θ13+

+ {γ231(s0 + s2) + 2s0γ
2
32 − (s1 + s1)γ

2
34}θ14+

+ {−2s2γ
2
31 − γ232(s0 + s2) + (s1 + s1)γ

2
33}θ23+

+ {−2s2γ
2
31 − γ232(s0 + s2) + (s1 + s1)γ

2
34}θ24+

+
{
− 2(s1 − s1)(γ231 + γ232)− γ233(s0 − s2) + γ234(s0 − s2)

}
θ34
]
,
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Ω3
3 =d∗ω

3
3 + ω3

ε ∧ ωε3 +
k

2
√

2

[
(s1 + s1)(γ

3
31 + γ332)θ

12+

+ {γ331(s0 + s2) + 2s0γ
3
32 − (s1 + s1)γ

3
33}θ13+

+ {γ331(s0 + s2) + 2s0γ
3
32 − (s1 + s1)γ

3
34}θ14+

+ {−2s2γ
3
31 − γ332(s0 + s2) + (s1 + s1)γ

3
33}θ23+

+ {−2s2γ
3
31 − γ332(s0 + s2) + (s1 + s1)γ

3
34}θ24+

+
{
− 2(s1 − s1)(γ331 + γ332)− γ333(s0 − s2)+

+ γ334(s0 − s2)
}
θ34
]
. (2.4.83)

From equations (1.3.12) and (1.3.14) we find

γ111 =γ211 = ε0 + ε0 + ε1 + ε1 , γ112 = γ212 = γ0 + γ0 + γ1 + γ1 ,

γ113 =γ213 = α0 + β0 + α1 + β1 , γ131 = γ231 = π0 + π1 ,

γ132 =γ232 = ν0 + ν1 , γ133 = γ233 = λ
0

+ λ1 ,

γ134 =γ234 = µ0 + µ1 , γ221 = γ121 = −(ε0 + ε0 + ε1 + ε1) ,

γ222 =γ122 = −(γ0 + γ0 + γ1 + γ1) ,

γ223 =γ123 = −(α0 + β0 + α1 + β1) ,

γ231 =γ131 = −(κ0 + κ1) , γ232 = γ132 = −(τ 0 + τ1) ,

γ233 =γ133 = −(σ0 + σ1) , γ234 = γ134 = −(ρ0 + ρ1) ,

γ311 =− γ411 = −(κ0 + κ1) , γ312 = −γ412 = −(τ 0 + τ 1) ,

γ313 =− γ413 = −(ρ0 + ρ1) , γ314 = −γ414 = −(σ0 + σ1) ,

γ321 =− γ421 = −(π0 + π1) , γ322 = −γ422 = −(ν0 + ν1) ,

γ323 =− γ423 = (µ0 + µ1) , γ324 = −γ424 = (λ0 + λ1) ,
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γ331 =− γ431 = (ε0 − ε0 + ε1 − ε1) ,

γ332 =− γ432 = (γ0 − γ0 + γ1 − γ1) ,

γ333 =− γ433 = −(α0 − β0 + α1 − β1) ,

γ334 =− γ434 = −(α0 − β0
+ α1 − β1) , (2.4.84)

and γ121, γ
1
23, γ

1
22, γ

2
11, γ

2
12, γ

2
13, γ

3
41, γ

3
42, γ

3
43, γ

3
44 are all zero. All

other Ricci’s coefficients of rotation namely γ114, γ
1
41, γ

1
42, γ

1
43, γ

1
44, γ

2
24,

γ241, γ
2
42, γ

2
43, γ

2
44, γ

4
11, γ

4
12, γ

4
13, γ

4
14, γ

4
22, γ

4
23, γ

4
24, γ

4
41, γ

4
42, γ

4
43, γ

4
44,

are complex conjugates and are obtain by interchanging 3 and 4 and

taking the complex conjugate of the respective terms.

Now using equations (2.4.84) and (1.3.27) in equations (2.4.83), we

obtain

Ω1
·1 = d∗ω

1
·1 + ω1

·3 ∧ ω3
·1 + ω1

·4 ∧ ω4
·1 +

k√
2

[
s0
(
ε0 + ε0 + γ0 + γ0+

+ ε1 + ε1 + γ1 + γ1
)
(θ13 − θ23) + s0

(
ε0 + ε0 + γ0 + γ0+

+ ε1 + ε1 + γ1 + γ1
)
(θ14 − θ24)− 2s1

(
ε0 + ε0 + γ0 + γ0+

+ ε1 + ε1 + γ1 + γ1
)
θ34
]
,

Ω1
·3 = d∗ω

1
·3 + ω1

·1 ∧ ω1
·3 + ω1

·3 ∧ ω3
·3+

+
k√
2

[
s0
(
ν0 + ν1 + π0 + π1

)
(θ13 − θ23)+

+ s0
(
ν0 + ν1 + π0 + π1

)
(θ14 − θ24)−

− 2s1
(
ν0 + ν1 + π0 + π1

)
θ34
]
,
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Ω2
·3 = d∗ω

2
·3 + ω2

·2 ∧ ω2
·3 + ω2

·3 ∧ ω3
·3−

− k√
2

[
s0(κ

0 + κ1 + τ 0 + τ1)(θ
13 − θ23)+

+ s0(κ
0 + κ1 + τ 0 + τ1)(θ

14 − θ24)− 2s1(κ
0 + κ1 + τ 0 + τ1)θ

34
]
,

Ω3
·3 = d∗ω

3
·3 + ω3

·1 ∧ ω1
·3 + ω3

·2 ∧ ω2
·3 +

k√
2

[
s0
(
ε0 − ε0 + γ0 − γ0+

+ ε1 − ε1 + γ1 − γ1
)
(θ13 − θ23) + s0

(
ε0 − ε0 + γ0 − γ0+

+ ε1 − ε1 + γ1 − γ1
)
(θ14 − θ24)− 2s1

(
ε0 − ε0 + γ0 − γ0+

+ ε1 − ε1 + γ1 − γ1
)
θ34
]
.

(2.4.85)

2.5 Curvature of a Non-Riemannian Space

The formula for the Riemann curvature for a Riemannian space is

well known in the literature[28, 135]. Following the same procedure

we find in this section, a new formula for the Riemannian Curvature

of a non-Riemannian space. We first establish the relation between

the asymmetric connections of a non-Riemannian subspace Vn and an

enveloping non-Riemannian space Vm. Let the metrics of Vn and Vm

be respectively given by

ds2 = gijdx
idxj , (2.5.1)

and

ds2 = aαβdy
αdyβ , (2.5.2)
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where gij and aαβ are the metric tensors of Vn and Vm respectively such

that

gij = aαβy
α
;iy

β
;j . (2.5.3)

From this we obtain the relation

(Γij,k)g = −(Kijk)g +
[
(Γαβ,γ)a + (Kαβγ)a

]
yα,iy

β
,jy

γ
,k + aαβy

α
,ijy

β
,k .

(2.5.4)

We use this relation to find the expression for the Riemann curvature

of a non-Riemann space Vn.

2.5.1 Formula for Riemann Curvature of a Vn

Following the method of Weatherburn [135], we obtain in this sec-

tion, an expression for the Riemannian-Cartan curvature of a non-

Riemannian space. We first construct a 2-dimensional geodesic surface

S1, through a point P of Vn, determined by the orientations of the two

unit vectors pi and qi. The Gussian curvature of this surface at a point

is called the Riemannian-Cartan curvature of Vn at that point, for the

orientation determined by two vectors pi and qi. It is given by

κ = κ1 +
1

b

[
∂

∂u1
(K212)b −

∂

∂u2
(K112)b

]
, (2.5.5)

where b is the determinant of the metric tensor of the 2-dimensional

surface S1. It is given by

b = (ghjgik − gijghk) phqipjqk ,
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and

κ1 =
R̂hijkp

hqipjqk

(ghjgik − gijghk) phqipjqk
, (2.5.6)

is the Riemann-Cartan Curvature, at a point, of a Riemannian space.

The formula (2.5.5) determines the Riemann-Cartan curvature of a

non-Riemannian space Vn at a point. The quantities (K212)b and

(K112)b are the tensor components of contortion tensor of 2-dimensional

surface S1.

In order to construct an example of a 2-dimensional non-Riemannian

space, we first develop below the null dyad formalism in a 2-dimensions

Riemannian space.

2.5.2 Dyad Formalism in a V2

In the following we introduce, to work in a 2-dimensional space, two

null vector formalism. Hereafter we refer to it as the dyad formalism.

Let C be a curve defined in V2. At each point of the curve we define a

dyad of basis vectors as

e(α)i = (mi,mi) , (2.5.7)

where mi and mi are complex conjugate null vector fields satisfying

the orthonormality conditions

mim
i =mim

i = 0 ,

mim
i =1 .

(2.5.8)
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Here the Latin indices are used to denote the tensor indices while the

Greek indices are used to denote the dyad indices. The dyad of the

dual basis vectors is given by

e(α)i = (mi,mi) , (2.5.9)

where the basis vectors and the dual basis vectors of the dyad satisfy

the conditions

e(α)ie(α)
k = δi

k , and e(α)ie(β)
i = δαβ . (2.5.10)

Consequently, we express the dyad components of the metric tensor

gij as

ηαβ = gije(α)
ie(β)

j . (2.5.11)

This gives

ηαβ = ηαβ =

0 1

1 0

 . (2.5.12)

Hence the metric tensor in terms of the basis vectors is defined as

gij = mimj +mimj . (2.5.13)

Let Sij
k be the spin angular momentum tensor. Hehl et al. [51] have

split up this tensor in to spin tensor Sij in the form

Sij
k = Siju

k . (2.5.14)
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The spin tensor is anti-symmetric; hence it has just one independent

component in the 2-dimension space. We express the spin tensor as a

linear combination of the basis vectors of the dyad as

Sij =Sαβe
(α)

ie
(β)

j ,

Sij =(S12)d(mimj −mimj) ,

Sij =Sd(mimj −mimj) , (2.5.15)

where Sd = (S12)d is the dyad component of spin tensor. In general it

is a function of coordinates. For the choice of the time-like vector field

ui =
1√
2

(mi +mi) ,

such that uiui = 1, we have from equations (2.5.14) and (2.5.15) that

Sik
k = Siju

k =
Sd√

2
(mimj −mimj)(m

k +mk) . (2.5.16)

We see from this equation that

Sik
k = Siku

k =
Sd√

2
(mi −mi) 6= 0 . (2.5.17)

We express the torsion tensor Qij
k in terms of its dyad components as

Qij
k = Qαβ

γe(α)ie
(β)

je(γ)
k .

This leads to

Qij
k =

kSd

2
√

2
(mimj −mimj)(m

k +mk) . (2.5.18)
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Similarly, we obtain an expression for the contortion tensor Kij
k

Kij
k =

kSd√
2

(mimjm
k −mimjm

k +mimjm
k −mimjm

k) . (2.5.19)

Consider now, the 2-dimensional space V2 characterized by the metric

ds2 = r2dθ2 + r2sin2θdφ2 . (2.5.20)

We define the basis 1-forms as

θ1 =
1√
2

(rdθ + irsinθdφ), θ2 =
1√
2

(rdθ − irsinθdφ) . (2.5.21)

Hence the metric (2.5.20) becomes

ds2 = 2θ1θ2 . (2.5.22)

The equation θα = e(α)idx
i yields

mi =
1√
2

(r,−irsinθ) , mi =
1√
2

(r, irsinθ) ,

mi =
1√
2

(1

r
,− i

rsinθ

)
, mi =

1√
2

(1

r
,

i

rsinθ

)
. (2.5.23)

From equations (2.5.15) and (2.5.23), the tensor components of the

spin tensor is obtain as

St = −ir2sinθSd ,

where St = (S12)t and it is a function of θ and φ. From this we find

Sd =
i

r2
cosecθSt . (2.5.24)
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Thus the tensor components of the asymmetric connection become

(Γ11
1)t =0 , (Γ21

1)t = 0 , (Γ22
2)t = 0 ,

(Γ12
1)t =

(
k

r

)
St , (Γ21

2)t = (Γ12
2)t = cotθ , (2.5.25)

(Γ22
1)t =− sinθcosθ , (Γ11

2)t = −
(
k

r

)
cosec2θSt .

The non-vanishing tensor component of the curvature tensor of a non-

Riemannian space is

(R1212)t = r2sin2θ − (kr)St,2 . (2.5.26)

The tensor components of the Ricci tensor become

(R11)t = −1 +

(
K

r

)
cosec2θSt,2 , (R22)t = −sin2θ +

(
K

r

)
St,2 ,

(2.5.27)

and the Ricci scalar takes the form

R = − 2

r2
+ 2

(
k

r3

)
cosec2θSt,2 . (2.5.28)

Finally, the expression for the curvature of a non-Riemannian sphere

becomes

κ =
1

r2
−
(
k

r3

)
cosec2θSt,2 , (2.5.29)

κ =κ1 −
(
k

r3

)
cosec2θSt,2 , (2.5.30)

where St = St(θ, φ) and κ1 = 1
r2 is the constant curvature of a Rieman-

nian sphere. We see from the equation (2.5.29) that the curvature of
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the non-Riemannian sphere is a function of coordinates. It shows that

∂κ
∂xi 6= 0. It follows from the equation(2.5.29) that torsion influences

the curvature of the non-Riemannian sphere. We further note that,

in the absence of spin tensor or if the component of the spin tensor is

only a function θ, then, the Riemann curvature of a non-Riemannian

sphere is the same as that of Riemannian sphere. However, if the

component of the spin tensor is a function of φ, then we see from

the equation (2.5.30) that the torsion influences the curvature of the

non-Riemannian sphere. For the choice St = φ, we have St,2 = 1.

Consequently, from the equation (2.5.29) we obtain

κ =
1

r2
−
(
k

r3

)
cosec2θ . (2.5.31)

As k = 8πG
c4 , where G = 6.66 × 10−11m3/kg/sec2, c = 3 × 108m/sec,

then the value of the constant k = 2.0667378×10−43. At a point θ = π
2

of the sphere, the curvature of the non-Riemannian sphere becomes

κ =
1

r2
− 1

r3
(2.0667378× 10−43) . (2.5.32)

We see from the equation (2.5.32) that the curvature of the non-

Riemannian sphere at a point θ = π
2 of the sphere differ from the

curvature of a Riemannian sphere by an infinitesimal amount.

The dyad equivalent of the equation (2.4.15) is given by

d∗(d∗f) = −1

2
f;γQαβ

γθα ∧ θβ , (2.5.33)
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where

f;γ = f;ie(γ)
i . (2.5.34)

Consequently, we obtain

d2∗f =− 1

2
√

2

[(
1

r

∂f

∂θ
− i

r
cosecθ

∂f

∂φ

)
Qαβ

1+

+

(
1

r

∂f

∂θ
+
i

r
cosecθ

∂f

∂φ

)
Qαβ

2

]
θα ∧ θβ . (2.5.35)

Using this equation we readily find

d2∗θ = − k

2r
Sdθ

1 ∧ θ2 and d2∗φ = 0 . (2.5.36)

Now operating the new exterior derivative operator d∗ to the basis

1-form defined in the equation (2.5.21), we obtain

d∗θ
1 =− 1√

2

(
kSd
2

+
1

r
cotθ

)
θ1 ∧ θ2 ,

and

d∗θ
2 =− 1√

2

(
kSd
2
− 1

r
cotθ

)
θ1 ∧ θ2 . (2.5.37)

We define

mi/jm
imj = κ0 ,mi/jm

imj = −κ0 , (2.5.38)

where κ0 is the spin component. We obtain the expression of the

covariant derivative of a basis vector of the dyad as

mi;j =

(
κ0 − ikcosecθ

r2
√

2
St

)
mimj −

(
κ0 +

ikcosecθ

r2
√

2
St

)
mimj .

(2.5.39)

104



The equation (2.4.53) yields the components of connection 1-form as

ω1
1 = −ω2

2 = −
(
kSd√

2
+ κ0

)
θ1 −

(
kSd√

2
− κ0

)
θ2 . (2.5.40)

Also from the Cartan’s first equation of the structure (2.4.52), we have

d∗θ
1 =

(
κ0 − kSd

2
√

2

)
θ1 ∧ θ2 ,

and

d∗θ
2 =−

(
κ0 +

kSd

2
√

2

)
θ1 ∧ θ2 . (2.5.41)

Comparing the corresponding coefficients of the equations (2.5.37) and

(2.5.41), we readily get

κ0 = κ0 = −cotθ
r
√

2
. (2.5.42)

Hence the equation (2.5.40) becomes

ω1
1 = −ω2

2 = − 1√
2

(
kSd −

cotθ

r

)
θ1 − 1√

2

(
kSd +

cotθ

r

)
θ2 .

(2.5.43)

Now using equation (2.5.43) in the Cartan’s second equation of struc-

ture (2.4.81), we obtain

Ω1
1 = −Ω2

2 =

(
ik

rsinθ
Sd,2 +

1

r2

)
θ1 ∧ θ2 . (2.5.44)

Also the components of the curvature 2-form using equation (2.4.65)

defined by

Ω1
1 = −(R121

1)dθ
1 ∧ θ2 . (2.5.45)
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Comparing the corresponding coefficients of the equations (2.5.44) and

(2.5.45), we obtain the dyad component of the Riemannian curvature

tensor as

(R1212)d = −
(

ik

rsinθ
Sd,2 +

1

r2

)
. (2.5.46)

We express the Riemannian curvature tensor in terms of its dyad com-

ponents as

Rhijk = Rαβγδe
(α)

he
(β)

ie
(γ)

je
(δ)

k .

This becomes

Rhijk =

(
k

r3
cosec2θSt,2 −

1

r2

)(
mhmimjmk −mhmimjmk−

−mhmimjmk +mhmimjmk

)
. (2.5.47)

We write this equation as

Rhijk =κ(ghjgik − gijghk) , (2.5.48)

where

κ =
1

r2
− k

r3
cosec2θSt,2 , (2.5.49)

is the Riemann curvature and Rhijk is the Riemann curvature tensor of

the non-Riemannian sphere V2. The sphere is non-Riemannian because

the curvature tensor of the sphere contains torsion term and satisfies

the identities (1.2.27), (1.2.40) and (1.2.41). We see that the equation
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(2.5.48) is the same as that of the equation R̂hijk = κ1(ghjgik− gijghk).

But the corresponding space is not homogeneous, as Rhijk involves

torsion κ is not constant.

If the Riemann curvature tensor of a non-Riemannian Vn, n > 2,

satisfies the equation (2.5.48), then it readily follows from the Bianchi

identities (1.2.40) that

κ;i
κ

=

(
4

n− 1

)
Qki

k ,

or

κ =cexp

[(
4

n− 1

)∫
Qki

kdxi
]
, (2.5.50)

where c is a constant of integration. If Qki
k = 0, then c = κ1- the

constant Riemann curvature of the Riemannian space Vn, for n > 2.

Thus we have

κ = κ1exp

[(
4

n− 1

)∫
Qki

kdxi
]
. (2.5.51)

In case of 2-dimensional non-Riemannian space, it is remarkable to

note that the curvature of a non-Riemannian sphere determined in the

equation (2.5.49) is exactly same as the curvature determined from the

formula (2.5.5) in the equation (2.5.29).

Using the equation (2.5.23) in the equation (2.5.45) we obtain the

tensor component of the Riemann curvature tensor as

(R1212)t = r2sin2θ − (kr)St,2 . (2.5.52)
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This is also exactly the same as the equation (2.5.26). Consequently,

the result (2.5.38) for the Riemannian curvature at a point of a non-

Riemannian sphere of radius r is corroborated. Contracting the index

h with k in the equation (2.5.47) we obtain the expression for the Ricci

tensor as

Rij =

(
k

r3
cosec2θSt,2 −

1

r2

)
(mimj +mimj) . (2.5.53)

This gives

R = 2

(
k

r3
cosec2θSt,2 −

1

r2

)
. (2.5.54)

From equations (2.5.49) and (2.5.54) we have

κ = −R
2
. (2.5.55)

We see that the scalar curvature R is not constant, hence the Riemann

curvature κ of the non-Riemannian sphere is not constant.

From equations (2.5.13), (2.5.53) and (2.5.54) we obtain

Rij =
R

2
gij . (2.5.56)

We see from the equations (2.5.53) and (2.5.54) that Rij and R are

the Ricci tensor and the Ricci curvature scalar of the non-Riemannian

space that involve spin term.

2.5.3 Geodesics on a non-Riemannian Sphere

Let ti = dxi

ds be the unit tangent vector field to a curve C in a non-

Riemannian space Vn. Then the intrinsic derivative of the unit tangent
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vector ti in the direction of the curve is called the geodesic curvature

vector and it is given by pi = ti;k
dxk

ds . A geodesic in Vn is a curve whose

geodesic curvature vector at each point of the curve is identically zero.

Thus

pi = 0⇒ ti;k
dxk

ds
= 0 .

This leads to the geodesic equation in a non-Riemannian space Vn

d2xi

ds2
+ {ijk}

dxj

ds

dxk

ds
−Kkj

idx
j

ds

dxk

ds
= 0 . (2.5.57)

The non vanishing components of the symmetric Christoffel symbols

and the tensor components of the contortion tensor are given by

{122} =− sinθcosθ , {212} = cotθ ,

(K12
1)t =−

(
k

r

)
St , (K11

2)t =

(
k

r

)
cosec2θSt . (2.5.58)

By virtue of the equations (2.5.58), the geodesics on a non-Riemannian

sphere of constant radius r become

d2θ

ds2
− sinθcosθ

(
dφ

ds

)2

+
k

r
St
dθ

ds

dφ

ds
= 0 , (2.5.59)

d2φ

ds2
+ 2cotθ

dθ

ds

dφ

ds
− k

r
Stcosec

2θ

(
dθ

ds

)2

= 0 . (2.5.60)

From the metric equation (2.5.20) we have(
dθ

ds

)2

=
1

r2
− sin2θ

(
dφ

ds

)2

, (2.5.61)
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where r and K are constants. These non-linear second order ordinary

differential equations of geodesics are solved numerically by using soft-

ware MATHEMATICA 10 and the graphs of the geodesics are drawn.

The command ”NDSolve” based on explicit Runge-Kutta method is

used. If St = θ, then we observe that the equations of geodesics on the

non-Riemannian sphere are the great circles. Also, if St = φ then the

geodesics on the non-Riemannian sphere are indistinguishable from the

great circles as it is also evident from the equation (2.5.32) that the

curvature of the non-Riemannian sphere differs from the curvature of

the Riemannian sphere by an infinitesimal amount.

Some Useful Results in Einstein-Cartan Theory

Let φ be a scalar function of co-ordinates defined in a non-Riemannian

space of Einstein-Cartan theory of gravitation. Then we have

φ;i = φ/i = φ,i . (2.5.62)

Taking the covariant derivative of the equation (2.5.62) with respect

to the asymmetric connections, we obtain

φ;ij = φ/ij + φ;kKji
k .

This gives

φ;ij − φ;ji = φ;k
(
Kji

k −Kij
k
)
. (2.5.63)
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Multiplying the equation (2.5.63) by e(α)
ie(β)

j, we get

(
φ;ij − φ;ji

)
e(α)

ie(β)
j = φ;σ

(
Kβα

σ −Kαβ
σ
)
, (2.5.64)

where

φ;σ = φ;ie(σ)
i .

By giving different values to α and β from 1, 2, 3, 4, and using the

equations (1.3.14) and (1.3.17), we obtain the equations.

(
φ;ij − φ;ji

)
limj =− (α1 + β1 − π1)Dφ− κ1∆φ+ (ρ1 + ε1 − ε1)δφ+

+ σ1δφ ,(
φ;ij − φ;ji

)
linj =− (γ1 + γ1)Dφ− (ε1 + ε1)∆φ+ (π1 + τ 1)δφ+

+ (π1 + τ1)δφ ,(
φ;ij − φ;ji

)
minj =− ν1Dφ+ (τ1 − α1 − β1)∆φ+ (µ1 − γ1 + γ1)δφ+

+ λ1δφ ,(
φ;ij − φ;ji

)
mimj =(µ1 − µ1)Dφ+ (ρ1 − ρ1)∆φ− (α1 − β1)δφ+

+ (α1 − β1)δφ . (2.5.65)

We see from the equations (2.5.65) that, in the absence of torsion,

these equations are identically zero as was expected on a Riemannian

space of Einstein’s theory of gravitation.
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2.6 Maxwell’s Equations in Einstein-Cartan

Theory of Gravitation

The Maxwell’s equations in Einstein-Cartan theory of gravitation are

defined as

F ij
;j =0 , and (2.6.1)

F[ij;k] =0 , (2.6.2)

where the covariant derivative is defined with respect to asymmetric

connections. Tetrad components of the Maxwell’s equations are ob-

tained as follows:

The tetrad components of the electromagnetic field tensor are de-

fined by

F αβ = F ije(α)ie
(β)

j . (2.6.3)

From this we obtain

F αβ
;γ =

(
F ije(α)ie

(β)
j

)
;k
e(γ)

k ,

F αβ
;γ =F ij

;ke
(α)

ie
(β)

je(γ)
k + F ije(α)i;ke(γ)

ke(β)j + F ije(α)ie
(β)

j;ke(γ)
k .

Using equation (2.4.60), we get

F αβ
;γ = F ij

;ke
(α)

ie
(β)

je(γ)
k − γασγF ije(σ)ie

(β)
j − γβσγF ije(α)ie

(σ)
j .

(2.6.4)
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Contracting β with γ in the equation (2.6.4) we get

F αβ
;β =F ij

;ke
(α)

iδ
k
j − γασβF σβ − γβσβF ασ ,

⇒ F ij
;je

(α)
i =F αβ

;β + F βσγαβσ + F ασγβσβ , (2.6.5)

Thus F ij
;je

(α)
i =0⇒ F αβ

;β + F βσγαβσ + F ασγβσβ = 0 . (2.6.6)

Expanding the summations defined, in the equation (2.6.6), over the

repeated indices we get

F α1
;1 + F α2

;2 + F α3
;3 + F α4

;4 + F 12(γα12 − γα21) + F 13(γα13 − γα31)+

+ F 14(γα14 − γα41) + F 23(γα23 − γα32) + F 24(γα24 − γα42)+

+ F 34(γα34 − γα43) + F α1(γ111 + γ212 + γ313 + γ414)+

+ F α2(γ121 + γ222 + γ323 + γ424) + F α3(γ131 + γ232 + γ333 + γ434)+

+ F α4(γ141 + γ242 + γ343 + γ444) = 0 . (2.6.7)

Now by giving α = 1 in the equation (2.6.7) we get

F 12
;2 + F 13

;3 + F 14
;4 − F 12(γ423 + γ324) + F 13(γ213 + γ132 − γ433)+

+ F 14(γ214 + γ142 − γ344)− F 23γ232 − F 24γ242 + F 34(γ234 − γ243) = 0 .

(2.6.8)

The equations

F εσ = ηεαησβFαβ ,

yields

F 12 =− F12 , F
13 = −F24 , F

14 = −F23 ,
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F 23 =− F14 , F
24 = −F13 , F

34 = −F34 . (2.6.9)

Define the tetrad components of the electromagnetic field tensor

φ0 =F13 = Fijl
imj ,

φ1 =
1

2
(F12 − F34) =

1

2
Fij(l

inj −mimj) ,

φ2 =− F24 = −Fijnimj , (2.6.10)

where

Fij =2
[
− 2Reφ1l[inj] + 2iImφ1m[imj] + (φ2l[imj] + φ0m[inj]) + c.c.

]
.

(2.6.11)

Using equations (2.6.9) and (2.6.10) in the equation (2.6.8) we obtain

δφ2 −∆φ1 = −(ν0 + ν1)φ0 + 2(µ0 + µ1)φ1 + (τ 0 + τ1 − 2β0 − 2β1)φ2 .

Similarly, by giving α = 2, 3, 4 in the equation (2.6.7) we obtain the

equations

Dφ1 − δφ0 =(π0 + π1 − 2α0 − 2α1)φ0 + 2(ρ0 + ρ1)φ1 − (κ0 + κ1)φ2 ,

Dφ2 − δφ1 = −(λ0 + λ1)φ0 + 2(π0 + π1)φ1 + (ρ0 + ρ1 − 2ε0 − 2ε1)φ2 ,

and

δφ1 −∆φ0 =(µ0 + µ1 − 2γ0 − 2γ1)φ0 + 2(τ 0 + τ1)φ1 − (σ0 + σ1)φ2 .

(2.6.12)

The Maxwell’s equations for different fields characterized by Debney

and Zund [20, 21] reduce to
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(I) Type A field (φ1 6= 0 , φ0 = φ2 = 0)

Dφ1 =2(ρ0 + ρ1)φ1 , ∆φ1 = −2(µ0 + µ1)φ1 ,

δφ1 =2(τ 0 + τ1)φ1 , δφ1 = −2(π0 + π1)φ1 . (2.6.13)

(II) Type B field (φ2 6= 0 , φ0 = φ1 = 0)

Dφ2 = (ρ0 + ρ1 − 2ε0 − 2ε1)φ2 ,

δφ2 = (τ 0 + τ1 − 2β0 − 2β1)φ2 ,

(σ0 + σ1) = 0 , (κ0 + κ1) = 0 . (2.6.14)

(III) Type C field (φ0 6= 0 , φ1 = φ2 = 0)

∆φ0 = −(µ0 + µ1 − 2γ0 − 2γ1)φ0 ,

δφ0 = −(π0 + π1 − 2α0 − 2α1)φ0 ,

(λ0 + λ1) = 0 , (ν0 + ν1) = 0 . (2.6.15)

On using the equations (1.3.29) we obtain the Maxwell’s equations in

the form

Dφ1 − δφ0 = (π0 − 2α0 +
√

2ks2)φ0 + 2(ρ0 −
√

2ks1)φ1 − (κ0 −
√

2ks0)φ2 ,

∆φ1 − δφ2 = (ν0 −
√

2ks2)φ0 + 2(µ0 −
√

2ks1)φ1 − (τ 0 − 2β0 −
√

2ks0)φ2 ,

δφ1 −∆φ0 = (µ0 − 2γ0)φ0 + 2τ 0φ1 − σ0φ2 ,

Dφ2 − δφ1 = −λ0φ0 + 2π0φ1 + (ρ0 − 2ε0)φ2 . (2.6.16)

Similarly, to find the tetrad components of the Maxwell’s equation

(2.6.2), we start with the equation
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Fαβ =Fije(α)
ie(β)

j , (2.6.17)

⇒ Fαβ;γ =(Fije(α)
ie(β)

j);ke(γ)
k .

By virtue of the equation (2.4.60), the above equation reduces to

Fαβ;γ = Fij;ke(α)
ie(β)

je(γ)
k + Fσβγ

σ
αγ + Fασγ

σ
βγ ,

⇒ Fij;ke(α)
ie(β)

je(γ)
k = Fαβ;γ − Fασγσβγ − Fσαγσαγ . (2.6.18)

Similarly, we obtain

Fjk;ie(α)
ie(β)

je(γ)
k =Fβγ;α − Fβσγσγα − Fσγγσβα , (2.6.19)

and

Fki;je(α)
ie(β)

je(γ)
k =Fγα;β − Fγσγσαβ − Fσαγσγβ . (2.6.20)

Adding equations (2.6.18), (2.6.19) and (2.6.20) we get

(Fij;k + Fjk;i + Fki;j)e(α)
ie(β)

je(γ)
k = Fαβ;γ + Fβγ;α + Fγα;β−

− Fασ(γσβγ − γσγβ)− Fσβ(γσαγ − γσγα)− Fσγ(γσβα − γσαβ) .

Using equations (2.6.2) and (1.3.12), we get

Fαβ;γ + Fβγ;α + Fγα;β =Fαση
σε(γ0εβγ − γ0εγβ +Kβγε −Kγβε)+

+ Fσβη
σε(γ0εαγ − γ0εγα +Kαγε −Kγαε)+

+ Fσγη
σε(γ0εβα − γ0εαβ +Kβαε −Kαβε) .

Expanding the double summations defined on the right hand side of

the above equation, we obtain
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Fαβ;γ + Fβγ;α + Fγα;β = Fα1(γ
0
2βγ − γ02γβ +Kβγ2 −Kγβ2)+

+ Fα2(γ
0
1βγ − γ01γβ +Kβγ1 −Kγβ1)− Fα3(γ04βγ − γ04γβ +Kβγ4−

−Kγβ4)− Fα4(γ03βγ − γ03γβ +Kβγ3 −Kγβ3) + F1β(γ02αγ − γ02γα+

+Kαγ2 −Kγα2) + F2β(γ01αγ − γ01γα +Kαγ1 −Kγα1)− F3β(γ04αγ−

− γ04γα +Kαγ4 −Kγα4)− F4β(γ03αγ − γ03γα +Kαγ3 −Kγα3)+

+ F1γ(γ
0
2βα − γ02αβ +Kβα2 −Kαβ2) + F2γ(γ

0
1βα − γ01αβ +Kβα1−

−Kαβ1)− F3γ(γ
0
4βα − γ04αβ +Kβα4 −Kαβ4)− F4γ(γ

0
3βα−

− γ03αβ +Kβα3 −Kαβ3) . (2.6.21)

By giving different values to α , β , γ from 1, 2, 3, 4 and using equa-

tions (1.3.29), (2.6.9) and (2.6.10) we readily obtain the same set of

Maxwell’s equations derived in (2.6.16).

2.7 Conclusion

A technique of differential form on a non-Riemannian space is devel-

oped with the help of the new derivative operator d∗ introduced by

Katkar [61] and Cartan’s equations of structure are derived in a more

general form. This new technique will definitely be used to study the

indispensable qualities of the non-Riemannian geometry and will also

be exploited to find the solutions of the field equations of the Einstein-

Cartan’s theory of gravitation. The new derivative operator d∗ and
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the Cartan’s equations of structure in the non-Riemannian space will

form basis for development of the non-Riemannian geometry.
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Chapter 3

Einstein-Cartan Relativity in

2-Dimensional Non-Riemannian Space
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3.1 Introduction

Einstein’s theory of general relativity is one of the cornerstones of

modern theoretical physics and has been considered as one of the most

beautiful structures of theoretical physics not just in its conceptual

ingenuity and mathematical elegance but also in its ability to explain

real physical phenomena. It is the most successful theory of gravita-

tion in which the gravitation as a universal force can be described by

a curvature of space-time consisting of three spatial dimensions and

one time that has led Einstein to formulate his famous field equations

of general relativity which are non-linear second order partial differ-

ential equations. General relativity has been considered as one of the

most difficult subject due to a great deal of complex mathematics.

The complexity of the mathematics reflects the complexity of describ-

ing space-time curvature and some conceptual issues which are present

and even more opaque in the physical 4- dimensions world. Hence in

order to gain insight in to these difficult conceptual issues Deser et al.

[23, 24, 25] in a series of papers, Giddings et al. [36], and Gott et al.

[39, 40] have examined general relativity in lower dimensional spaces

and explored some solutions. Studies of general relativity in lower di-

mensional space-times have proved that solving Einstein’s field equa-

tions of general relativity in a space-time of reduced dimensionality is

rather simple but yields some amusing results that are pedagogical and
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scientific interests and yet are apparently unfamiliar to most physicists.

A.D. Boozer [9] and R. D. Mellinger Jr. [84] have examined the

general relativity in (1+1) dimensions. Einstein-Cartan theory of grav-

itation is one of the extensions of the general theory of relativity de-

veloped by Cartan [12] in a non-Riemannian space-time. It is only in

the last couple of decades, the Einstein-Cartan theory has caught the

imagination of researchers for constructing models with spin for the

primary purpose of overcoming singularities. In this chapter we intend

to study the Einstein-Cartan theory of relativity in a 2-dimensional

non-Riemannian space.

The material of the chapter is organized as follows. In the Section

2, an exposition of a new dyad formalism, consisting of two real null

vector fields is given and we have employed this dyad formalism and

constructed a 2-dimensional non-Riemannian space and shown that

the 2-dimensional non-Riemannian space contains no matter at all, so

that there is no gravitational field either but torsion influences the

curvature of the 2- dimensional non-Riemannian space.

In the Section 3, the results obtained in the Section 2 are corrob-

orated by employing the techniques of differential form developed by

Katkar in [61]. Some conclusions are drawn in the last section.
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3.2 Dyad Formalism:

Consider a 2-dimensional space characterized by an indefinite metric

ds2 = f 2(x, t)dx2 − h2(x, t)dt2 , (3.2.1)

where

g11 = f 2, g22 = −h2, g = −f 2h2 ,

g11 = f−2, g22 = −h−2 . (3.2.2)

We define a basis 1-form as

θ1 =
1√
2

[f(x, t)dx+ h(x, t)dt] , θ2 =
1√
2

[f(x, t)dx− h(x, t)dt] .

(3.2.3)

In terms of the basis 1-forms the metric (3.2.1) becomes

ds2 = 2θ1θ2 . (3.2.4)

In order to construct a 2- dimensional non-Riemann space, we intro-

duce, in the following two null vector formalism. This formalism facil-

itates to introduce torsion in to the space and the space becomes non-

Riemannian.

Consider a curve in a space. At each point of the curve, we define

a dyad of basis vectors as

e(α)i = (li, ni) . (3.2.5)
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Where li and ni are real null vector fields satisfying the ortho-normality

conditions

lil
i = nin

i = 0 ,

lin
i = 1 . (3.2.6)

Here the Latin indices are used to denote the tensor indices while the

Greek indices are used to denote the dyad indices. Any vector (or

tensor) can always be expressed in terms of the dyad components of

the vector (tensor) and vice versa. Thus we express

Aα = Aie(α)
i , Aαβ = Aije(α)

ie(β)
j ,

Ai = Aαe
(α)

i , Aij = Aαβe
(α)

ie
(β)

j ,
(3.2.7)

where e(α)i is the dyad of the dual basis vectors satisfying the conditions

e(α)ie(α)
k = δki , and e(α)ie(β)

i = δαβ . (3.2.8)

This gives

e(α)i = (ni, li) . (3.2.9)

Consequently, we express the dyad components of the metric tensor

gij as

ηαβ = gije(α)
ie(β)

j . (3.2.10)

This gives

ηαβ = ηαβ =

 0 1

1 0

 . (3.2.11)
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Hence the metric tensor in terms of the basis vectors is defined as

gij = linj + nilj . (3.2.12)

The tetrad indices can be raised and lowered by the dyad components

of the metric tensor ηαβ, while the tensor indices are raised and lowered

by the metric tensor gij. The equation

θα = ei
(α)dxi ,

yields

li =
1√
2

(f,−h) , ni =
1√
2

(f, h) ,

li =
1√
2

(f−1, h−1) , ni =
1√
2

(f−1,−h−1) . (3.2.13)

The spin tensor is anti-symmetric; hence it has just one independent

component in the 2-dimension space. We express the spin tensor as a

linear combination of the basis vectors of the dyad as

Sij = Sαβe
(α)

ie
(β)

j .

Sij = (−S12)d(linj − nilj) ,

Sij = Sd(linj − nilj) ,

(3.2.14)

where Sd = (−S12)d is the dyad component of spin tensor. In general it

is a function of coordinates. The tensor component of the spin tensor

is obtain from equations (3.2.13) and(3.2.14) as

Sd =
1

fh
St . (3.2.15)
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Similarly, we express the spin angular momentum tensor in terms of

the basis vectors of the dyad as

Sij
k = −

[
(S12

1)dl
k + (S12

2)dn
k
]

(linj − nilj) . (3.2.16)

For the choice of the time like vector field ui = 1√
2
(li + ni) such that

uiui = 1, we have from the equations (3.2.14)

Siju
k =

[( Sd√
2

)
lk +

( Sd√
2

)
nk
]

(linj − nilj) . (3.2.17)

It follows from the equations (1.2.52), (3.2.16) and (3.2.17) that

(S12
1)d = (S12

2)d = −
( Sd√

2

)
. (3.2.18)

Hence we have from equations (3.2.16),(3.2.17) and(3.2.18)

Sij
k = Siju

k =
1√
2
Sd(linj − nilj)(lk + nk) . (3.2.19)

We express the torsion tensor Qij
k in terms of its dyed components as

Qij
k = Qαβ

γei
(α)ei

(β)ek(γ) . (3.2.20)

This yields

Qij
k =

[
−(Q12

1)d l
k − (Q12

2)d n
k
]

(linj − nilj) . (3.2.21)

We approximate the values of the dyad components of torsion tensor

to the dyad components of the spin tensor as

(Q12
1)d = (Q122)d = − kSd

2
√

2
, (Q12

2)d = (Q121)d = − kSd
2
√

2
. (3.2.22)
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Consequently, the equation (3.2.21) becomes

Qij
k =

kSd

2
√

2
(linj − nilj)(lk + nk) . (3.2.23)

Similarly, the tensor components of Contortion tensor are obtain from

the equations (3.2.13) and (3.2.21) as

(Q12
1)t = (Q122)t =

kSt
2f

, (Q12
2)t = (Q121)t = 0 . (3.2.24)

We now express the contortion tensor Kij
k as the linear combinations

of the basis vectors of the dyad as

Kijk = −(K112)d ni(ljnk − njlk)− (K212)d li(ljnk − njlk) . (3.2.25)

From the relation

Kαβγ = −Qαβγ +Qβγα −Qγαβ , (3.2.26)

we obtain

(K212)d = (K112)d =
kSd√

2
. (3.2.27)

Hence the equation (3.2.25) becomes

Kijk =
kSd√

2
(ljnk − njlk)(li + ni) . (3.2.28)

The equations (3.2.13) and (3.2.28) yield the tensor components of the

Contortion tensor and are given by

(K11
2)t = (K12

1)t = −k f
h2
St . (3.2.29)
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For the given metric, the non vanishing components of the symmetric

Christoffel symbols are are given by

{111} =
f,1
f
, {211} =

f

h2
f,2 , {112} =

f,2
f
,

{122} =
h

f 2
h,1 , {212} =

h,1
h
, {222} =

h,2
h
.

(3.2.30)

Thus the tensor components of the asymmetric connections becomes

(Γ11
1)t =

f,1
f
, (Γ22

1)t =
h

f 2
h,1 , (Γ12

2)t = (Γ21
2)t =

h,1
h
,

(Γ12
1)t =

f,2
f
− k

f
St , (Γ11

2)t =
f

h2
f,2 + k

f

h2
St ,

(Γ21
1)t =

f,2
f
, (Γ22

2)t =
h,2
h
.

(3.2.31)

Due to equation (3.2.31), the expression for the Riemann curvature

tensor becomes

(R121
2)t = −h,11

h
+
f

h2
f,22 + (

h,1
h

)(
f,1
f

)− f

h3
f,2h,2 +

kf

h3
(hSt,2 − Sth,2) .

From this equation, we obtain the covariant components of the Rie-

mann curvature tensor of a non-Riemannian space as

(R1212)t = hh,11 − ff,22 −
h

f
f,1h,1 +

f

h
f,2h,2 −

kf

h
(hSt,2 − Sth,2) .

(3.2.32)

This equation can also be written as

(R1212)t = (R̂1212)t −
k

t2
(St + tSt,t) , (3.2.33)
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where

(R̂1212)t = hh,11 − ff,22 −
h

f
f,1h,1 +

f

h
f,2h,2 .

The tensor components of the Ricci tensor and the Ricci scalar are

given by

(R11)t = h−2(R1212)t , (R12)t = 0 , (R22)t = −f−2(R1212)t , (3.2.34)

(R11)t =
h,11
h
− f

h2
f,22 −

1

fh
f,1h,1 +

f

h3
f,2h,2 −

kf

h3
(hSt,2 − Sth,2) ,

(R22)t = − h

f 2
h,11 +

1

f
f,22 +

h

f 3
f,1h,1 −

1

fh
f,2h,2 +

k

fh
(hSt,2 − Sth,2) ,

(3.2.35)

and

R = 2[
1

hf 2
h,11 −

1

fh2
f,22 −

1

hf 3
f,1h,1 +

1

fh3
f,2h,2 −

k

fh3
(hSt,2 − Sth,2)] .

(3.2.36)

We see from equations (3.2.35), (3.2.36) that

Rij =
R

2
gij . (3.2.37)

This is true for any 2-space. This shows that the Ricci tensor and

the Ricci scalar terms cancel in the field equation of the Einstein-

Cartan theory of gravitation. In other words, in 2- dimensions space,

the Einstein tensor vanishes identically and from Einstein-Cartan field

equations, we get tij = 0.
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Curvature of a non-Riemannian Space

Katkar [62] has obtained the formula for the Riemann curvature of

a non-Riemannian space in the form

κ = κ1 +
1

b

[
∂

∂u1
(K212)t −

∂

∂u2
(K112)t

]
, (3.2.38)

where b = (ghjgik − gijghk)p
hqipjqk is the determinant of the metric

tensor of the 2-dimensional surface determined by the orientations of

the two unit vectors pi and qi, and

κ1 =
R̂hijkp

hqipjqk

(ghigik − gijghk)phqipjqk
, (3.2.39)

is the Riemann Curvature of Riemannian space, at a point, for the

orientations determined by the two unit vectors pi and qi . The formula

(3.2.39) gives the curvature of a Riemannian space as

κ1 = − 1

hf 2
h,11 +

1

fh2
f,22 +

1

hf 3
f,1h,1 −

1

fh3
f,2h,2 . (3.2.40)

Consequently, the curvature of a non-Riemannian space becomes

κ = − 1

hf 2
h,11 +

1

fh2
f,22 +

1

hf 3
f,1h,1 −

1

fh3
f,2h,2 +

k

f 2h2
(fSt,2 + Stf,2) .

(3.2.41)

We see that curvature of the non-Riemannian 2-space is influenced

by the torsion. In the absence of torsion, we see from the equations

(3.2.40) and (3.2.41) that κ = κ1. We also observe from the equations
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(3.2.36) and (3.2.41) that

κ 6= −R
2
. (3.2.42)

If the components of the spin tensor are zero, then the results (3.2.36)

and (3.2.42) reduce to the results of Riemann space.

From the tetrad components of the Riemann curvature tensorRαβγδ =

Rhijke
h
(α)e

i
(β)e

j
(γ)e

k
(δ) , we obtain

(R1212)d =
1

f 2h2
(R1212)t. (3.2.43)

Consequently, from the equation Rhijk = Rαβγδeh
(α)ei

(β)ej
(γ)ek

(δ), we

obtain the expression for the Riemannian curvature tensor of a non-

Riemannian space as

Rhijk =
[
− 1

hf 2
h,11 +

1

fh2
f,22 +

1

hf 3
f,1h,1 −

1

fh3
f,2h,2+

+
k

fh3
(hSt,2 − Sth,2)

]
(ghjgik − gijghk) .

(3.2.44)

This equation, due to the equation (3.2.36), becomes

Rhijk = −R
2

(ghjgik − gijghk) . (3.2.45)

If the Riemann curvature tensorRhijk of any non-Riemann space Vn, n >

2, satisfies the Bianchi identities (1.2.27), then we obtain

R = cexp

[(
4

n− 1

)∫
Qhi

h dxi
]
, (3.2.46)
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where c is a constant of integration. If Qhi
h = 0⇒ c = R̂. Hence

R = R̂exp

[(
4

n− 1

)∫
Qhi

h dxi
]
. (3.2.47)

Where as in the case of Riemannian space, we have

R̂hijk = κ1(ghjgik − gijghk) . (3.2.48)

This gives R̂ = n(n−1)κ1, where κ1 is the constant Riemann curvature

of a Riemannian space. Hence we have finally,

R = n(1− n)κ1exp

[(
4

n− 1

)∫
Qhi

h dxi
]
. (3.2.49)

Contracting the index h with k in the equation (3.2.44) we get

Rij = [
1

hf 2
h,11 −

1

fh2
f,22 −

1

hf 3
f,1h,1 +

1

fh3
f,2h,2 −

k

fh3
(hSt,2 − Sth,2)]gij .

(3.2.50)

This is nothing but Rij = R
2 gij. This shows that the Einstein tensor

Gij = Rij − R
2 gij vanishes identically.

3.3 Techniques of Differential Forms

The Katkar [61] has introduced a new operator d∗ on a non-Riemannian

space and applied to a form of any degree. It converts p − form to

p + 1 − form and is obtained by taking the covariant derivative of

an associated with pth ordered skew symmetric tensor with respect to
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the asymmetric connections. We note here that unlike the exterior

derivative operator in a Riemannian space, the repetition of the new

derivative operator d∗ on any form φ of any degree is not zero. i. e.,

d∗
2φ 6= 0.

However, the operator d∗ satisfies all other properties of the exterior

derivative. For the scalar function φ, the operator d∗ gives

d∗φ = φ;id∗x
i . (3.3.1)

Where for the scalar function φ, we have

φ;i = φ/i = φ,i . (3.3.2)

Hence we have d∗φ = dφ and d∗x
i = dxi, where d is the usual exterior

derivative defined in a Riemannian space in which the connections are

the symmetric Christoffel symbols. However,the action of the repeated

operator d∗ on the scalar function φ gives

d∗(d∗φ) = −φ;lQij
ld∗x

i ∧ d∗xj − φ;kd∗2xk .

For the coordinate functions φ = xi , this equation becomes

d∗
2xk = −1

2
Qij

kd∗x
i ∧ d∗xj . (3.3.3)

Consequently, the above equation yields

d∗(d∗φ) = −1

2
φ;kQij

kd∗x
i ∧ d∗xj . (3.3.4)
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The dyad equivalent of this equation is given by

d∗(d∗φ) = −1

2
φ;γQαβ

γθα ∧ θβ , (3.3.5)

where

φ;γ = φ;ie
i
(γ) ,

i. e. (φ;1)d =
1√
2

(
f−1

∂φ

∂x
+ h−1

∂φ

∂t

)
, (φ;2)d =

1√
2

(
f−1

∂φ

∂x
− h−1∂φ

∂t

)
.

Consequently, we obtain

d∗
2φ =− 1

2
√

2

[
(f−1

∂φ

∂x
+ h−1

∂φ

∂t
)Qαβ

1+

+ (f−1
∂φ

∂x
− h−1∂φ

∂t
)Qαβ

2
]
θα ∧ θβ .

(3.3.6)

From this equation, we readily find

d∗
2x =

k

2f 2h
St θ

1 ∧ θ2, and d∗
2t = 0 . (3.3.7)

Now operating the new exterior derivative operator d∗ to the basis

1-from defined in the equation (3.2.3), we obtain

d∗θ
1 =

1

2
√

2fh

[
2(f,2 − h,1) + kSt

]
θ1 ∧ θ2 ,

d∗θ
2 =

1

2
√

2fh

[
2(f,2 + h,1) + kSt

]
θ1 ∧ θ2 .

(3.3.8)

From the Cartan’s first equation of structure of the non-Riemannian

space, we have

d∗θ
(α) = −ωαβ ∧ θβ +

1

2
Qσβ

α θσ ∧ θβ , (3.3.9)
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where

ωαβ = γαβγθ
γ , (3.3.10)

and

γαβγ = γ0αβγ −Kγβ
α , (3.3.11)

where γαβγ are Ricci’s coefficients of rotation and are defined by

γαβγ = −e(α)i;je(β)ie(γ)j ,

γαβγ = −e(α)i/je(β)ie(γ)j − e(α)kKji
ke(β)

ie(γ)
j ,

where

γ0αβγ = −e(α)i/je(β)ie(γ)j , (3.3.12)

are the Ricci’s rotation coefficients in the Riemannian space. From the

equation (3.3.12) we find

γ0111 = −e(1)i/je(1)ie(1)j ,

γ0111 = li/jn
i lj and γ0112 = li/jn

inj .

We define

li/jn
i lj = κ0 , li/jn

inj = ν0 , (3.3.13)

where κ0 and ν0 are the spin components . The components of the

Ricci’s coefficients of rotation are given by

γ111 = γ0111 − (K11
1)d , γ112 = γ0112 − (K21

1)d ,
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⇒ γ111 = −γ221 =

(
κ0 +

k√
2fh

St

)
, γ112 = −γ222 =

(
ν0 +

k√
2fh

St

)
.

(3.3.14)

Using the equations (3.3.14), we obtain the expression of the covariant

derivative of a basis vector of the dyad as

li;j =

(
ν0 +

kSt√
2fh

)
lilj +

(
κ0 +

kSt√
2fh

)
linj . (3.3.15)

The equations (3.3.10) and (3.3.14) yield the components of connection

1-form as

ω1
1 = −ω2

2 =

(
κ0 +

k√
2fh

St

)
θ1 +

(
ν0 +

kt2√
2fh

St

)
θ2 . (3.3.16)

Also from the Caratn’s first equation of the structure (3.2.9), we obtain

d∗θ
1 =

(
ν0 +

k

2
√

2fh
St

)
θ1 ∧ θ2 , d∗θ

2 =

(
κ0 +

k

2
√

2fh
St

)
θ1 ∧ θ2 .

(3.3.17)

Comparing the equations (3.3.8) and (3.3.17), we readily get

κ0 =
1√
2fh

(f,2 + h,1) , ν
0 =

1√
2fh

(f,2 − h,1) . (3.3.18)

Hence the equation (3.3.16) becomes

ω1
1 = −ω2

2 =
1√
2fh

[
(h,1 + f,2 + kSt)θ

1 + (f,2 − h,1 + kSt)θ
2
]
.

(3.3.19)

The Cartan’s second equation of structure in the non-Riemannian

space, when the spin tensor is not u-orthogonal is given by Katkar
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[61]

Ωα
β = d∗ω

α
β+ωασ ∧ ωσβ+

+
K

4

[
2γαβσSδγu

σ + γαβδSγσu
σ − γαβγSδσuσ

]
θδ ∧ θγ .

(3.3.20)

From this we obtain

Ω1
1 = −Ω2

2 = d∗ω
1
1 −

kSt

2
√

2fh

[
(κ0 + ν0) +

2k√
2fh

St

]
θ1 ∧ θ2 .

On using equation (3.3.18) we get

Ω1
1 = −Ω2

2 = d∗ω
1
1 −

k

2f 2h2
St [f,2 + kSt] θ

1 ∧ θ2 . (3.3.21)

Operating the new exterior derivative operator d∗ to the equation

(3.3.19) we find

d∗ω
1
1 =

[
1

hf 3
f,1h,1 −

1

hf 2
h,11 +

1

fh2
f,22 −

1

fh3
f,2h,2 −

k

fh3
Sth,2+

+
k

fh2
St,2 +

k

2f 2h2
St(f,2 + kSt)

]
θ1 ∧ θ2 .

(3.3.22)

Consequently, the equation (3.3.21) becomes

Ω1
1 = −Ω2

2 =

[
1

hf 3
f,1h,1 −

1

hf 2
h,11 +

1

fh2
f,22 −

1

fh3
h,11+

+
k

fh3
(hSt,2 − Sth,2)

]
θ1 ∧ θ2 .

(3.3.23)

The components of the curvature 2- form are defined by

Ω1
1 = −1

2
Rαβ1

1 θα ∧ θβ , (3.3.24)
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Ω1
1 = −(R121

1)d θ
1 ∧ θ2 . (3.3.25)

Comparing the corresponding coefficients of the equations (3.3.23) and

(3.3.25), we obtain the dyad component of the Riemannian curvature

tensor as

(R1212)d = (R121
1)d = −

[
1

hf 3
f,1h,1 −

1

hf 2
h,11 +

1

fh2
f,22 −

1

fh3
f,2h,2+

+
k

fh3
(hSt,2 − Sth,2)

]
.

(3.3.26)

Hence, the Riemann Curvature tensor of the Non-Riemannian 2-space

becomes

Rhijk =

[
1

hf 3
f,1h,1 −

1

hf 2
h,11 +

1

fh2
f,22 −

1

fh3
f,2h,2+

+
k

fh3
(hSt,2 − Sth,2)

]
(ghjgik − gijghk) .

(3.3.27)

This on using the equation (3.2.36) we get

Rhijk = −R
2

(ghjgik − gijghk) . (3.3.28)

The result is equivalent to (3.2.45). We see from the equation (3.2.35)

that

R11

f 2
= −R22

h2
. (3.3.29)

In the 2- dimensional space, Ricci tensor and the Curvature tensor has

only one independent component. We express the Riemann curvature
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tensor Rhijk in terms of the Ricci tensor Rij alone as

Rhijk =−
[
ghjRik − ghkRij − gijRhk + gikRhj

]
+

+
(Rlmg

lm)

2
(ghjgik − gijghk) . (3.3.30)

3.4 Conclusion

Introduction of dyad formalism facilitates the complexity of computa-

tion. A 2- dimensional non-Riemannian space is constructed with the

help of the dyad formalism. It is shown that the Einstein tensor of 2-

dimensional non-Riemannian vanishes, hence the corresponding space

contains no matter at all, so that there is no gravitational field either

but the curvature of the space is influenced by the torsion. The results

are corroborated by the method of differential forms.
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Chapter 4

Non-Static Spherically Symmetric Space-

Times in Einstein-Cartan Theory
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4.1 Introduction

Relativistic cosmology is the study of large scale structure of the phys-

ical world. Relativists construct mathematical models as the solutions

of the Einstein’s field equations that represents the universe as a whole

concentrating on its large scale features. Einstein’s general theory of

relativity is one cornerstones of modern theoretical physics and has

been enormously successful not just in describing all kinds of motion

and in describing gravitation as a manifestation of curvature of the

space-time but it has been served as a basis for different mathematical

models of the universe. It is still challenging problem to understand the

exact physical situation of the physical world at early stages evolution

of the universe.

In recent years there has been immense interest in constructing

the mathematical models in Einstein’s general theory of relativity and

also in the several alternative theories of gravitations which are of vital

importance for the better understanding of the large scale structure of

the universe.

It is only in the last few decades, the Einstein-Cartan theory has

caught the imagination of research workers for constructing models

with spin for the primary purpose of overcoming singularities. Kopczyn-

ski [72] has constructed a two parameters family of spherically symmet-

ric models without singularities in the frame work of Einstein-Cartan
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theory of gravitation.

Spherically symmetric or cylindrically symmetric perfect fluid mod-

els with spin have been obtained by Prasanna [100, 101]. Non-singular

Bianchi type-I cosmological models incorporating spin in which a mag-

netic field is present have been obtained by Raychaudhari [105]. Some

spatially homogeneous Bianchi type VI, VII dust distributions with

spin have been discovered by Tsoubelis [131]. Many of the previously

known solutions reviewed by Kuchowicz [82] for Weyssenhoff fluids in

the Einstein-Cartan theory of gravitation have zero acceleration and

vorticity. Non-zero accelerating solutions in the framework of Einstein-

Cartan theory have been claimed by Griffiths and Jogia [42]. The au-

thors Tolman [130], Florides [31, 32, 33], Eflinger [27], Kyle and Martin

[83], Whittaker [136], Shah [112], Vaidya [132], Wilson [137], Trautman

[125], Bonnor and Wickramasuriya [7], Bailyn and Eimerl [4], Traut-

man [126, 127, 128, 129], Omote [91], Isham et al. [53], Tafel [121],

Kopczynski [73], Adler [1], Krori and Barua [76], Nduka [87], Sing and

Yadav [119], Chakravarti and De [14], Mehra [85] , Pandey et al.[93],

Koppar et al. [74], Singh, P. and Griffiths, J. B.[114], T Singh et al.

[116], Singh, T. and Prasad, U [117] C.J. G. Junevicus [56], Kuchowicz

[78, 79, 80, 81], W Arkuszewski et al. [3], Kuchowicz [82], N, Duka

[26], Raychaudhuri and Banerji [107], Singh and Yadav [118], Krori et

al. [75], Pandey and Prasad [92], M. L. Bedran and M. M. Som [5],

Nurgaliev and Ponomarev [88], Kalyanshetti and Waghmode [66], Ya-
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dav and Prasad [138], Kar and S SenGupta [57], Sharif and Iqbal [113],

Katkar [59, 61], Katkar and Patil [60], Katkar and Phadatare [64] are

some of the research workers who have investigated several aspects of

the solutions of the Einstein-Cartan field equations.

Motivated by the above investigations, in this chapter, two different

classes of solutions of the field equations are obtained, when Weyssen-

hoff fluid is the source of gravitation. The material of the chapter is

organized as follows. In the Section 2, the non-static spherically sym-

metric metric is considered and the tetrad components of connection

1-form, curvature 2-form are derived. Consequently, the tetrad compo-

nents of the Riemann curvature tensor and Ricci tensor are derived. In

the Section 3 specific solutions are obtained. Finally some conclusions

are drawn in the last section.

4.2 Non-Static Spherically Symmetric

Metric

Consider the Non-static spherically symmetric metric in the form

ds2 = e2νdt2 − e2λdr2 −B2(dθ2 + sin2θdφ2) , (4.2.1)

where λ , ν and B are functions of r and t only. Define the tetrad

basis θα for the metric (4.2.1) as

θ1 =
1√
2

(eνdt+ eλdr) ,
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θ2 =
1√
2

(eνdt− eλdr) ,

θ3 =− 1√
2

(Bdθ − iBsinθdφ) , (4.2.2)

where θ4 is a complex conjugate of θ3. Hence the metric (4.2.1) can be

written as

ds2 = 2θ1θ2 − 2θ3θ4, (4.2.3)

using equations (2.4.46) and (4.2.2) we obtain readily the components

of the basis vector fields as

li =
1√
2

(
−eλ, 0, 0, eν

)
,

ni =
1√
2

(
eλ, 0, 0, eν

)
, (4.2.4)

mi =
1√
2

(0, B, iBsinθ, 0) ,

where mi is a complex conjugate of mi. The contra variant components

of the null basis vectors are obtain by raising the index by the metric

tensor as

li = giklk =
1√
2

(
e−λ, 0, 0, e−ν

)
,

similarly, we obtain

ni =
1√
2

(
−e−λ, 0, 0, e−ν

)
, (4.2.5)

mi =− 1√
2

(
0, B−1, iB−1cosecθ, 0

)
.
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The tetrad components of the equation (2.4.22) are given by

d2∗f = −1

2
f;γQαβ

γθα ∧ θβ . (4.2.6)

For the metric (4.2.1), this can be conveniently rewritten in the form

d2∗f =− 1

2
√

2

[
e−λ

∂f

∂r
(Qαβ

1 −Qαβ
2)−B−1∂f

∂θ
(Qαβ

3 +Qαβ
4)−

− iB−1cosecθ∂f
∂φ

(Qαβ
3 −Qαβ

4) + e−ν
∂f

∂t
(Qαβ

1 +Qαβ
2)
]
θα ∧ θβ .

(4.2.7)

From this equation, we readily find the expressions for the repeated d∗

derivative of the co-ordinate functions as

d∗
2r =− e−λ

2
√

2

(
Qαβ

1 −Qαβ
2
)
θα ∧ θβ ,

d∗
2θ =

B−1

2
√

2

(
Qαβ

3 +Qαβ
4
)
θα ∧ θβ ,

d∗
2φ =

iB−1cosecθ

2
√

2

(
Qαβ

3 −Qαβ
4
)
θα ∧ θβ ,

d∗
2t =− e−ν

2
√

2
(Qαβ

1 +Qαβ
2)θα ∧ θβ. (4.2.8)

Now operating d∗ to the equations (4.2.2) and using the equations

(4.2.8) we readily, get

d∗θ
1 =

1√
2
e−(λ+ν)

(
ν
′ − λ̇

)
θ12 − 1

2
Qαβ

1θαβ ,

d∗θ
2 =

1√
2

(
e−λν

′
+ e−νλ̇

)
θ12 − 1

2
Qαβ

2θαβ ,

d∗θ
3 =

1√
2

[(
e−λ

B′

B
+ e−ν

Ḃ

B

)
θ13 −

(
e−λ

B′

B
− e−ν Ḃ

B

)
θ23+
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+B−1cotθ θ34
]
− 1

2
Qαβ

3θαβ ,

d∗θ
4 =

1√
2

[(
e−λ

B′

B
+ e−ν

Ḃ

B

)
θ14 −

(
e−λ

B′

B
− e−ν Ḃ

B

)
θ24−

−B−1cotθ θ34
]
− 1

2
Qαβ

4θαβ , (4.2.9)

where we have used

θαβ = θα ∧ θβ ,

where the dot denotes partial derivative with respect to time ’t’ and

the prime indicates partial derivative with respect to the coordinate

’r’.

From equations (2.4.70) and (4.2.9) we obtain after simplifying the

values of Newman-Penrose spin coefficients in Riemann space-time as

κ0 =λ0 = σ0 = π0 = τ 0 = ν0 = 0 ,

ρ0 =− 1√
2

(
e−λ

B′

B
+ e−ν

Ḃ

B

)
, µ0 = − 1√

2

(
e−λ

B′

B
− e−ν Ḃ

B

)
ε0 =

1

2
√

2

(
e−λν

′
+ e−νλ̇

)
, γ0 =

1

2
√

2

(
e−λν

′ − e−νλ̇
)
,

α0 =− β0 =
B−1

2
√

2
cotθ.

(4.2.10)

By virtue of the equations (1.3.30) and (4.2.10) from equations (2.4.69),

we obtain

ω12 =− 1√
2

[(
e−λν

′
+ e−νλ̇

)
θ1 +

(
e−λν

′ − e−νλ̇
)
θ2 − 2ks0θ

3 − 2ks0θ
4
]
,
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ω13 =
1√
2

[
2ks0θ

1 +
(
e−λ

R′

R
+ e−ν

Ṙ

R
+ 2ks1

)
θ4
]
,

ω23 =− 1√
2

[
2ks0θ

2 +
(
e−λ

R′

R
− e−ν Ṙ

R
− 2ks1

)
θ4
]
, (4.2.11)

ω34 =− 1√
2

[
2ks1(θ

1 + θ2) +R−1cotθ(θ3 − θ4)
]
.

Now by using equations (1.3.30), (4.2.10) and (4.2.11) we obtain from

the equations (2.4.85) the tetrad components of curvature 2-form.

These are listed below:

Ω1
1 = −

[
e−2λ

(
ν ′′ − λ′ν ′ + ν ′

2
)
− e−2ν

(
λ̈− λ̇ν̇ + λ̇2

)
+ 4k2s0s0

]
θ12+

+
[
ke−λ(s0,r + 2s0ν

′) + ke−ν(s0,t + 2s0
Ḃ

B
)− 2k2s0s1

]
θ13+

+
[
ke−λ(s0,r + 2s0ν

′) + ke−ν(s0,t + 2s0
Ḃ

B
) + 2k2s0s1

]
θ14−

−
[
ke−λ(s0,r + 2s0ν

′)− ke−ν(s0,t + 2s0
Ḃ

B
) + 2k2s0s1

]
θ23−

−
[
ke−λ(s0,r + 2s0ν

′)− ke−ν(s0,t + 2s0
Ḃ

B
)− 2k2s0s1

]
θ24+

+
[
kB−1cotθ(s0 − s0) + 4ks1e

−λ(
B′

B
− ν ′)

]
θ34 , (4.2.12)

Ω1
3 = −

[
ke−λ (s0,r + 2s0ν

′) + ke−ν(s0,t + 2s0λ̇) + 2k2s0s1
]
θ12+

+
{
ks1,re

−λ + ks1,te
−ν + 2k2s21 +

ks1
B

[
e−λν ′B + e−ν(2Ḃ + λ̇B)

]
−

− e−2λ

2B
(B” − λ′B ′ + ν ′B

′
) +

e−2ν

2B

(
B̈ − ν̇Ḃ + λ̇Ḃ

)}
θ14+

+
[
ks0B

−1cotθ − 2k2s20
]
θ23 −

{
ks1,re

−λ − ks1,te−ν − 2k2s21+

+ 2k2s0s0 + ks0B
−1cotθ − e−2λ

2B

(
B” − λ′B ′ − ν ′B ′

)
−

146



− e−2ν

2B
(B̈ − ν̇Ḃ − λ̇Ḃ)− e−(λ+ν)

B
(λ̇B′ + Ḃν

′ − Ḃ ′)+

+
ks1
B

[
e−λ(2B′ − ν ′B)− e−ν

(
2Ḃ − λ̇B

) ]}
θ24+

+
[ks0
B

(e−λB
′ − e−νḂ)− 2k2s0s1

]
θ34 , (4.2.13)

Ω2
3 =

[
ke−λ(s0,r + 2s0ν

′)− ke−ν(s0,t + 2s0λ̇)− 2k2s0s1
]
θ12−

− (2k2s20 + ks0B
−1cotθ)θ13 +

{
ks1,re

−λ + ks1,te
−ν + 2k2s21−

− 2k2s0s0 + ks0B
−1cotθ +

e−2λ

2B
(B” − λ′B ′ − ν ′B ′)+

+
e−2ν

2B
(B̈ − ν̇Ḃ − λ̇Ḃ)− e−(λ+ν)

B
(λ̇B′ + Ḃν

′ − Ḃ ′)+

+
ks1
B

[
e−λ(2B′ − ν ′B) + e−ν(2Ḃ − λ̇B)

]}
θ14−

−
{
ks1,re

−λ − ks1,te−ν − 2k2s21 +
ks1
B

[
e−λν ′B − e−ν(2Ḃ + λ̇B)

]
+

+
e−2λ

2B

(
B” − λ′B ′ + ν ′B

′
)
− e−2ν

2B
(B̈ − ν̇Ḃ + λ̇Ḃ)

}
θ24+

+
[ks0
B

(
e−λB

′
+ e−νḂ

)
+ 2k2s0s1

]
θ34 , (4.2.14)

Ω3
3 = −2ke−λ(s1,r + s1ν

′)θ12 +
ks0
B

(B
′
e−λ − Ḃe−ν + 2ks1B)θ13−

− ks0
B

(B
′
e−λ − Ḃe−ν − 2ks1B)θ14 +

ks0
B

(
B
′
e−λ + Ḃe−ν−

− 2ks1B
)
θ23 − ks0

B
(B

′
e−λ + Ḃe−ν + 2ks1B)θ24+

+
1

B2
[1− e−2λB′2 + e−2νḂ2 − 4k2s1

2B2]θ34 . (4.2.15)

The expressions for Ω1
4,Ω

2
4,Ω

4
4 are obtained by interchanging the

suffixes 3 and 4 and taking the complex conjugate of the right hand

sides of the equations in (4.2.13), (4.2.14) and (4.2.15) respectively.
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4.2.1 Tetrad Components of Riemann-Cartan

Curvature Tensor

From the equation (2.4.65) we obtain

Ωαβ = R12αβθ
12+R13αβθ

13+R14αβθ
14+R23αβθ

23+R24αβθ
24+R34αβθ

34 ,

(4.2.16)

where

Ωαβ = −Ωβα , α, β = 1, 2, 3, 4.

By giving different values to α, β = 1, 2, 3, 4 in the equation (4.2.16)

and then equating the corresponding coefficients of basis 2-forms of

equations(4.2.12),(4.2.13),(4.2.14) and(4.2.15) we readily obtain the

tetrad components of Riemann-Cartan curvature tensor as

R1212 =−
[
e−2λ

(
ν ′′ − λ′ν ′ + ν ′

2
)
− e−2ν

(
λ̈− λ̇ν̇ + λ̇2

)
+ 4k2s0s0

]
,

R1312 =ke−λ(s0,r + 2s0ν
′) + ke−ν(s0,t + 2s0

Ḃ

B
)− 2k2s0s1 ,

R2312 =−
[
ke−λ(s0,r + 2s0ν

′)− ke−ν(s0,t + 2s0
Ḃ

B
) + 2k2s0s1

]
,

R3412 =kB−1cotθ(s0 − s0) + 4ks1e
−λ
(
B′

B
− ν ′

)
,

R1213 =ke−λ (s0,r + 2s0ν
′)− ke−ν(s0,t + 2s0λ̇)− 2k2s0s1 ,

R1313 =−
(
2k2s20 + ks0B

−1cotθ
)
,

R1413 =ks1,re
−λ + ks1,te

−ν + 2k2s21 − 2k2s0s0 + ks0B
−1cotθ+

+
e−2λ

2B

(
B” − λ′B ′ − ν ′B ′

)
+
e−2ν

2B

(
B̈ − ν̇Ḃ − λ̇Ḃ

)
−
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− e−(λ+ν)

B
(λ̇B′ + Ḃν

′ − Ḃ ′) +
ks1
B

[
e−λ

(
2B′ − ν ′B

)
+

+ e−ν
(

2Ḃ − λ̇B
) ]

,

R2413 =− ks1,re−λ + ks1,te
−ν + 2k2s21 −

ks1
B

[
e−λν ′B − e−ν

(
2Ḃ + λ̇B

) ]
−

− e−2λ

2B
(B” − λ′B ′ + ν ′B

′
) +

e−2ν

2B

(
B̈ − ν̇Ḃ + λ̇Ḃ

)
,

R3413 =
ks0
B

(
e−λB

′
+ e−νḂ

)
+ 2k2s0s1 ,

R1223 =−
[
ke−λ (s0,r + 2s0ν

′) + ke−ν(s0,t + 2s0λ̇) + 2k2s0s1

]
,

R1423 =ks1,re
−λ + ks1,te

−ν + 2k2s21 +
ks1
B

[
e−λν ′B + e−ν(2Ḃ + λ̇B)

]
−

− e−2λ

2B

(
B” − λ′B ′ + ν ′B

′
)

+
e−2ν

2B

(
B̈ − ν̇Ḃ + λ̇Ḃ

)
,

R2323 =ks0B
−1cotθ − 2k2s20 ,

R2423 =− ks1,re−λ + ks1,te
−ν + 2k2s21 − 2k2s0s0 −

ks0
B
cotθ+

+
e−2λ

2B

(
B” − λ′B ′ − ν ′B ′

)
+
e−2ν

2B

(
B̈ − ν̇Ḃ − λ̇Ḃ

)
+

+
e−(λ+ν)

B

(
λ̇B′ + Ḃν

′ − Ḃ ′
)
− ks1

B

[
e−λ

(
2B′ − ν ′B

)
−

− e−ν
(

2Ḃ − λ̇B
) ]

,

R3423 =
ks0
B

(
e−λB

′ − e−νḂ
)
− 2k2s0s1 ,

R1234 =− 2ke−λ (s1,r + s1ν
′) ,

R1334 =
ks0
B

(
B
′
e−λ − Ḃe−ν + 2ks1B

)
,

R2334 =
ks0
B

(
B
′
e−λ + Ḃe−ν − 2ks1B

)
,

R3434 =
1

B2

[
1− e−2λB′2 + e−2νḂ2 − 4k2s1

2B2
]
, (4.2.17)
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and

R2313 = R1323 = 0 .

The complex conjugates of above equations are obtained by interchang-

ing the suffixes 3 and 4 and taking the complex conjugates of the right

hand sides of the respective equations.

4.2.2 Tetrad Components of Ricci-Cartan Tensor

and Ricci-Cartan Curvature Scalar

The tetrad components of the Ricci-Cartan tensor and Ricci-Cartan

curvature scalar are defined by

Rαβ = ηνεRναβε , R = ηαβRαβ ,

⇒ Rαβ = R1αβ2 +R2αβ1 −R3αβ4 −R4αβ3 . (4.2.18)

Using equations (4.2.17) we obtain from equations (4.2.18) expressions

for Ricci-Cartan tensors

R11 = kB−1cotθ(s0 + s0) + 4k2s1
2 − 4k2s0s0 +

e−2λ

B

(
B
′′ − λ′B ′−

− ν ′B ′
)

+
e−2ν

B
(B̈ − ν̇Ḃ − λ̇Ḃ) +

2

B
e−(λ+ν)

(
Ḃ
′ − ν ′Ḃ − λ̇B ′

)
,

R12 = R21 = −e
−2λ

B

[(
ν ′′ − λ′ν ′ + ν ′

2)
B +B

′′ − λ′B ′ + ν
′
B
′]

+

+ 4k2s1
2 − 4k2s0s0 +

e−2ν

B

[(
λ̈− λ̇ν̇ + λ̇2

)
B + B̈ − ν̇Ḃ + λ̇Ḃ

]
,
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R13 = ke−λ
(
s0,r + 2s0ν

′
+ s0

B
′

B

)
− ke−ν

(
s0,t + 2s0λ̇− s0

Ḃ

B

)
,

R22 = −kB−1cotθ(s0 + s0) + 4k2s1
2 − 4k2s0s0 +

e−2λ

B

(
B
′′ − λ′B ′−

− ν ′B ′
)

+
e−2ν

B

(
B̈ − ν̇Ḃ − λ̇Ḃ

)
− 2

B
e−(λ+ν)

(
Ḃ
′ − ν ′Ḃ − λ̇B ′

)
,

R23 = ke−λ
(
s0,r + 2s0ν

′
+ s0

B
′

B

)
+ ke−ν

(
s0,t + 2s0λ̇+ s0

Ḃ

B

)
,

R31 = ke−λ
(
s0,r + 2s0ν

′
+ s0

B
′

B

)
+ ke−ν

(
s0,t + 3s0

Ḃ

B

)
,

R32 = ke−λ
(
s0,r + 2s0ν

′
+ s0

B
′

B

)
− ke−ν

(
s0,t + 3s0

Ḃ

B

)
,

R34 = 2ks1,te
−ν + 2ks1e

−ν(2Ḃ
B

+ λ̇
)

+
e−2λ

B

(
B
′′ − λ′B ′ + ν

′
B
′
+

+
B′2

B

)
− e−2ν

B

(
B̈ − ν̇Ḃ + λ̇Ḃ +

Ḃ2

B

)
− 1

B2
,

R43 = −2ks1,te
−ν − 2ks1e

−ν(2Ḃ
B

+ λ̇
)

+
e−2λ

B

(
B
′′ − λ′B ′ + ν

′
B
′
+

+
B′2

B

)
− e−2ν

B

(
B̈ − ν̇Ḃ + λ̇Ḃ +

Ḃ2

B

)
− 1

B2
,

R33 = 0 . (4.2.19)

The Ricci-Cartan curvature scalar is given by

R = 2
{
− e−2λ

B

[(
ν ′′ − λ′ν ′ + ν ′

2)
B + 2B

′′ − 2λ
′
B
′
+ 2ν

′
B
′
+
B′2

B

]
+

+ 4k2s1
2 − 4k2s0s0 +

e−2ν

B

[
(λ̈− λ̇ν̇ + λ̇2)B + 2B̈ − 2ν̇Ḃ + 2λ̇Ḃ+

+
Ḃ2

B

]
+B−2

}
. (4.2.20)

151



4.3 Einstein-Cartan’s Field Equations

We start with the tetrad representation of the field equations (1.2.48)

as

Rαβ −
R

2
ηαβ = −ktαβ , (4.3.1)

where Rαβ are the asymmetric components of Ricci-Cartan tensor and

tαβ are likewise asymmetric tetrad components of the energy momen-

tum tensor and are defined by

tαβ = tije(α)
ie(β)

j . (4.3.2)

From this, we find, by using equations (1.4.22) and (4.2.10)

t11 =t22 =
1

2
(ρ+ p), t12 = t21 =

1

2
(ρ− p),

t34 =t43 = p , t31 = t32 = ν ′e−λs0 ,

t41 =t42 = ν ′e−λs0 , (4.3.3)

and all other tetrad components of the energy-momentum tensor are

zero.

Using equations (4.2.19), (4.2.20) and (4.3.3) in the equations (4.3.1),

the independent field equations of Einstein-Cartan theory of gravita-

tion are obtained below

kB−1cotθ(s0 + s0) + 4k2s1
2 − 4k2s0s0 +

e−2λ

B

(
B
′′ − λ′B ′ − ν ′B ′

)
+

+
e−2ν

B

(
B̈ − ν̇Ḃ − λ̇Ḃ

)
+

2

B
e−(λ+ν)(Ḃ

′ − ν ′Ḃ − λ̇B ′) = −k
2

(ρ+ p) ,
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e−2λ

B

(
B
′′ − λ′B ′ + ν

′
B
′
+
B′2

B

)
− e−2ν

B
(B̈ − ν̇Ḃ + λ̇Ḃ +

Ḃ2

B
)−

−B−2 = −k
2

(ρ− p) ,

e−λ
(
s0,r + 2s0ν

′
+ s0

B
′

B

)
− e−ν

(
s0,t + 2s0λ̇− s0

Ḃ

B

)
= 0 ,

− kB−1cotθ(s0 + s0) + 4k2s1
2 − 4k2s0s0 +

e−2λ

B
(B

′′ − λ′B ′ − ν ′B ′)+

+
e−2ν

B

(
B̈ − ν̇Ḃ − λ̇Ḃ

)
− 2

B
e−(λ+ν)(Ḃ

′ − ν ′Ḃ − λ̇B ′) = −k
2

(ρ+ p) ,

e−λ
(
s0,r + 2s0ν

′
+ s0

B
′

B

)
+ e−ν

(
s0,t + 2s0λ̇+ s0

Ḃ

B

)
= 0 ,

e−λ
(
s0,r + 3s0ν

′
+ s0

B
′

B

)
+ e−ν

(
s0,t + 3s0

Ḃ

B

)
= 0 ,

e−λ
(
s0,r + 3s0ν

′
+ s0

B
′

B

)
− e−ν

(
s0,t + 3s0

Ḃ

B

)
= 0 ,

2ks1,te
−ν + 2ks1e

−ν(2Ḃ
B

+ λ̇
)
− e−2λ

B

[
B
′′ − λ′B ′ + ν

′
B
′
+

+B
(
ν
′′ − λ′ν ′ + ν

′2)]
+
e−2ν

B

[
(λ̈− λ̇ν̇ + λ̇2)B + B̈ − ν̇Ḃ + λ̇Ḃ

]
+

+ 4k2s1
2 − 4k2s0s0 = −kp ,

− 2ks1,te
−ν − 2ks1e

−ν(2
Ḃ

B
+ λ̇)− e−2λ

B

[
B
′′ − λ′B ′ + ν

′
B
′
+

+B(ν
′′ − λ′ν ′ + ν

′2
)
]

+
e−2ν

B

[
(λ̈− λ̇ν̇ + λ̇2)B + B̈ − ν̇Ḃ + λ̇Ḃ

]
+

+ 4k2s1
2 − 4k2s0s0 = −kp . (4.3.4)

We see from equations (4.3.4) that these equations are consistent pro-

vided that s0 = 0. Hence out of the sixteen field equations, there exists
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only five independent field equations and are given below:

− 1

B2
+

2

B
e−2λ

(
ν
′
B
′
+
B′2

2B

)
− 2

B
e−2ν

(
B̈ − ν̇Ḃ +

Ḃ2

2B

)
− 4k2s21 = kp ,

(4.3.5)

1

B2
− 2

B
e−2λ

(
B
′′ − λ′B ′ + B′2

2B

)
+

2

B
e−2ν

(
λ̇Ḃ +

Ḃ2

2B

)
− 4k2s21 = kρ ,

(4.3.6)

e−2λ
[
B
′′ − λ′B ′ − ν ′B ′ +B

(
ν
′′ − λ′ν ′ + ν

′2
)
− B

′2

B

]
+

+ e−2ν
[
B̈ − ν̇Ḃ − λ̇Ḃ −B(λ̈− λ̇ν̇ + λ̇2) +

Ḃ2

B

]
+

1

B
= 0 , (4.3.7)

Ḃ
′ − Ḃν ′ −B ′λ̇ = 0 , (4.3.8)

s1,t + s1

(
2
Ḃ

B
+ λ̇

)
= 0 . (4.3.9)

Solving the equation (4.3.9), we obtain

s1 = h1
e−λ

B2
, (4.3.10)

where h1 is an arbitrary constant.

4.4 Specific Solutions

Case A:

To solve the non-linear equations, we assume for simplicity sake

B = B(t) = t and λ = λ(t). This class of solutions is identified with the
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well-known Kantowski-Sachs class [65] of cosmological models. Hence

the equation (4.3.7) becomes

λ̈− λ̇ν̇ + λ̇2 +
1

t
(λ̇+ ν̇)− 1

t2
=
e2ν

t2
. (4.4.1)

To solve the equation (4.4.1), we define

y(t) = eλ , x(t) = e−2ν . (4.4.2)

Then (4.4.1) may be written as

ẋ+

[
2
(
t2ÿ + tẏ − y

)
t (tẏ − y)

]
x =

2y

t (tẏ − y)
. (4.4.3)

This is linear equation in x, provided y is known. Hence its solution is

given by

x(t) = exp[−F (t)]

{∫ t

exp[F (u)]g(u)du+ c

}
,

where

F (t) =

∫ t

f(u)du , f(t) =
2
(
t2ÿ + tẏ − y

)
t (tẏ − y)

,

g(t) =
2y

t (tẏ − y)
, (4.4.4)

and c being constant of integration.

The remaining equations (4.3.5) and (4.3.6) give p and ρ as

kp =− 1

t2
− x

t2

(
1 +

ẋ

x
t

)
− 4k2s21 , (4.4.5)

kρ =
1

t2
+
x

t2

(
1 + 2

ẏ

y
t

)
− 4k2s21 . (4.4.6)
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We choose y in such a way that equation (4.4.3) can be immediately

integrated. We assume that y satisfies the Cauchy equation

t2ÿ + tẏ + (1− q2)y = 0 . (4.4.7)

Case i : When −1 < q < 1

In this case the solution of the equation (4.4.7) is obtained as

eλ = y = A1cos(ηlogt) + A2sin(ηlogt) , (4.4.8)

where η =
√

1− q2 and A1, A2 are arbitrary constants. Using this

value of y in the equation (4.4.3), we get

ẋ+2
(η2 + 1)[A1cos(ηlogt) + A2sin(ηlogt)]

t[(A1 + A2η)cos(ηlogt) + (A1 − A2η)sin(ηlogt)]
x =

= −2
[A1cos(ηlogt) + A2sin(ηlogt)]

t[(A1 − A2η)cos(ηlogt) + (A2 + A1η)sin(ηlogt)]
. (4.4.9)

We obtain the solution of this equation as

x =e−2ν = − 1

η2 + 1
+
c

t2
[
(A1η + A2)sin(ηlogt) + (A1 − A2η)cos(ηlogt)

]−2
.

(4.4.10)

The metric (4.2.1) becomes

ds2 =

[
− 1

η2 + 1
+
c

t2
[
(A1η + A2)sin(ηlogt) + (A1 − A2η)cos(ηlogt)

]−2]−1·
· dt2 −

[
A1cos(ηlogt) + A2sin(ηlogt)

]2
dr2 − t2(dθ2 + sin2θdφ2).

(4.4.11)
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Now from equations (4.4.5) and (4.4.6), we obtain pressure and density

as

kp =− η2

t2(η2 + 1)
+
c

t4

[
2(η2 + 1) + F1

F1
3

]
− 4k2s21 ,

kρ =
1

t2

[
G1

(η2 + 1)F2

]
+
c

t4

[
H1

F1
2F2

]
− 4k2s21 , (4.4.12)

where

F1 =(A1η + A2)sin(ηlogt) + (A1 − A2η)cos(ηlogt) ,

G1 =(A1η
2 − 2A2η)cos(ηlogt) + (A2η

2 + 2A1η)sin(ηlogt) ,

H1 =(A1 + 2A2η)cos(ηlogt) + (A2 − 2A1η)sin(ηlogt) ,

F2 =A1cos(ηlogt) + A2sin(ηlogt) ,

G2 =(2A1 + A2η)cos(ηlogt) + (2A2 − A1η)sin(ηlogt) ,

and

s21 =
h1
t4

[F2]
−2 . (4.4.13)

The kinematical parameters defined in the equation (1.4.27) using

equation (4.2.10), for the space-time metric (4.4.11) read as

θ =
1

t2

[
c

F1
2 −

t2

η2 + 1

]1/2[
G2

F2

]
,

σ11 =σ22 = −σ12 = −σ34 =
1

3t2

[
c

F1
2 −

t2

η2 + 1

]1/2[
F1

F2

]
,

u̇1 =u̇2 = u̇3 = u̇4 = 0 ,

W34 =−W43 = −2ks1 . (4.4.14)
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Case ii : When q = 1

In this case from equation (4.4.7), we obtain the solution as

eλ = y = B1 +B2logt , (4.4.15)

where B1 and B2 are arbitrary constants. For this value of y the

equation (4.4.3), becomes

ẋ− 2(B1 +B2logt)

t(B2 −B2logt−B1)
x = 2

B1 +B2logt

t[B2 −B1 −B2logt]
. (4.4.16)

The solution of this equation yields

e−2ν = x = −1 +
c

t2
[B2(1− logt)−B1]

−2 . (4.4.17)

The metric (4.2.1) becomes

ds2 =
[
−1 +

c

t2
[B2(1− logt)−B1]

−2
]−1

dt2 − (B1 +B2logt)
2dr2−

− t2(dθ2 + sin2θdφ2) . (4.4.18)

Now from equations (4.4.5) and (4.4.6), we obtain pressure and density

as

kp =
c

t4
[B1 +B2(1 + logt)][B1 −B2(1− logt)]−3 − 4k2s21 ,

kρ =− 2B2

t2(B1 +B2logt)
+
c

t4

[
(B1 + 2B2 +B2logt)

(B1 +B2logt)[B1 −B2(1− logt)]2

]
−

− 4k2s21 , (4.4.19)

and s21 =
h1
t4

[B1 +B2logt]
−2 . (4.4.20)
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By using equations (4.2.10) in (1.4.27) the tetrad components of the

kinematical parameters in the space-time metric (4.4.18) read as

θ =
1

t2
{
c[B2(1− logt)−B1]

−2 − t2
}1/2 [2B1 +B2(2logt+ 1)

B1 +B2logt

]
,

σ11 =σ22 = −σ12 = −σ34 =
1

3t2

{
c[B2(1− logt)−B1]

−2 − t2
}1/2

·

·
[
B1 +B2(logt− 1)

B1 +B2logt

]
,

u̇1 =u̇2 = u̇3 = u̇4 = 0 ,

W34 =−W43 = −2ks1 . (4.4.21)

Case iii : When q < −1 and q > 1

In this case, solution of the equation (4.4.7) is given by

eλ = y = D1t
β +D2t

−β , (4.4.22)

where β =
√
q2 − 1 and D1, D2 are arbitrary constants. For this value

of y the equation (4.4.3), becomes

ẋ+ 2
(β2 − 1)(D1t

β +D2t
−β)

t[(β − 1)D1tβ − (β + 1)D2t−β]
x = 2

(D1t
β +D2t

−β)

t[(β − 1)D1tβ − (β + 1)D2t−β]
.

(4.4.23)

The solution of this equation yields

e−2ν = x =
1

β2 − 1
+
c

t2
[
D1(β − 1)tβ −D2(β + 1)t−β

]−2
. (4.4.24)

The metric (4.2.1) becomes

ds2 =

[
1

β2 − 1
+
c

t2
[
D1(β − 1)tβ −D2(β + 1)t−β

]−2]−1
dt2−
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−
(
D1t

β +D2t
−β)2 dr2 − t2(dθ2 + sin2θdφ2) . (4.4.25)

Now from equations (4.4.5) and (4.4.6), we obtain pressure and density

as

kp = − 1

t2

(
β2

β2 − 1

)
+
c

t4

[
(2β2 − β − 1)D1t

β + (2β2 + β − 1)D2t
−β

[D1(β − 1)tβ −D2(β + 1)t−β]3

]
−

− 4k2s21 ,

kρ =
β

t2(β2 − 1)

[
(β + 2)D1t

β + (β − 2)D2t
−β

D1tβ +D2t−β

]
− 4k2s21+

+
c

t4

[
(1 + 2β)D1t

β + (1− 2β)D2t
−β

(D1tβ +D2t−β)[D1(β − 1)tβ −D2(β + 1)t−β]2

]
, (4.4.26)

where in this case

s21 =
h1
t4

[D1t
β +D2t

−β]−2 . (4.4.27)

For the space-time metric (4.4.25), the kinematical parameters take

the form

θ =
1

t2

{
c[D1(β − 1)tβ −D2(β + 1)t−β]−2 +

t2

β2 − 1

}1/2

·

·
[
D1(2 + β)tβ +D2(2− β)t−β

D1tβ +D2t−β

]
,

σ11 =σ22 = −σ12 = −σ34 =
1

3t2

{
c[D1(β − 1)tβ −D2(β + 1)t−β]−2+

+
t2

β2 − 1

}1/2 [
D1(1− β)tβ +D2(1 + β)t−β

D1tβ +D2t−β

]
,

u̇1 =u̇2 = u̇3 = u̇4 = 0 ,

W34 =−W43 = −2ks1 . (4.4.28)
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If we take the special case for which λ = d3 (constant) then from

equation (4.4.1) we obtain

ds2 =

(
t2

d1 − t2

)
dt2 − d2dr2 − t2(dθ2 + sin2θdφ2) . (4.4.29)

Where d1 is an arbitrary constant. The pressure and density are given

by

kp = kρ =
d1
t4
− 4k2s21 . (4.4.30)

The kinematical parameters for the metric (4.4.29) reduce to

θ =
2

t2
[
d1 − t2

]1/2
,

σ11 =σ22 = −σ12 = −σ34 =
1

3t2
[
d1 − t2

]1/2
,

u̇1 =u̇2 = u̇3 = u̇4 = 0 ,

W34 =−W43 = −2ks1 . (4.4.31)

If the spin component s1 = 0, our results agree with the result obtained

by Sharif and Iqbal [113].

Hence in all above cases in (A) our solutions are non-static and

have non-zero expansion, shear and rotation but zero acceleration.

Case B:

When B = B(r)⇒ λ = λ(r) and ν = ν(r). In particular B(r) = r.

In this case the equation (4.3.7) gives

ν
′′ − λ′ν ′ + ν ′2 − 1

r
(λ
′
+ ν

′
)− 1

r2
= −e

2λ

r2
. (4.4.32)
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To solve the equation (4.4.32), we define

y(r) = eν x(r) = e−2λ . (4.4.33)

Then (4.4.32) may be written as

x
′
+

2(r2y
′′ − ry′ − y)

r(ry′ + y)
x = − 2y

r2y′ + yr
. (4.4.34)

This is linear equation in x, provided y is known. Hence its solution is

given by

x(r) = exp[−F (r)]

{∫ r

exp[F (r)]g(r)dr + c

}
,

where

f(r) =
2(r2y

′′ − ry′ − y)

r(ry′ + y)
, F (r) =

∫ r

f(u)du ,

g(r) =− 2y

r2y′ + yr
, (4.4.35)

and c is constant of integration.

The remaining equations (4.4.5) and (4.4.6) gives p and ρ as

kp = − 1

r2
+

2ν
′

r
e−2λ +

1

r2
e−2λ − 4k2s21 , (4.4.36)

and

kρ =
1

r2
+

2λ
′

r
e−2λ − 1

r2
e−2λ − 4k2s21 . (4.4.37)

We choose y in such a manner that equation (4.4.34) can be immedi-

ately integrated. We assume that y satisfies the Cauchy equation

r2y
′′ − ry′ + (1− q2)y = 0 . (4.4.38)
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Case i: When −1 < q < 1

In this case the solution of the equation (4.4.38) is obtained as

eν = y = a1r
1+q + a2r

1−q , (4.4.39)

where a1 , a2 are arbitrary constants. For this value of y, the equation

(4.4.34) becomes

x
′
+

2(q2 − 2)(a1r
2q + a2)

r[(q + 2)a1r2q + (2− q)a2]
x = − 2(a1r

2q + a2)

r[(q + 2)a1r2q + (2− q)a2]
.

(4.4.40)

Solving this equation by using the Mathematical software ”Mathemat-

ica 10”, we obtain the value of x in the form

e−2λ = x =
1

2− q2
+ cr2

(2−q2)
(2−q)

[
(2 + q)a1r

2q + (2− q)a2
]−2 (2−q2)

(4−q2) .

(4.4.41)

Hence the metric (4.2.1) becomes

ds2 = [a1r
1+q + a2r

1−q]2dt2 − r2(dθ2 + sin2θdφ2)−

−
[

1

2− q2
+ cr2

(2−q2)
(2−q)

[
(2 + q)a1r

2q + (2− q)a2
]−2 (2−q2)

(4−q2)

]−1
dr2 .

(4.4.42)

Now from equations (4.4.36) and (4.4.37), we obtain pressure and den-

sity as

kp =
−1

r2
+

[a1(3 + 2q)r2q + a2(3− 2q)]

r2(a1r2q + a2)

[
− 1

q2 − 2
+

163



+ cr2
(2−q2)
(2−q)

[
(2 + q)a1r

2q + (2− q)a2
]−2 (2−q2)

(4−q2)

]
− 4k2s21 ,

kρ =
1

r2
+

1

r2

{
1

q2 − 2
+ cr2

(2−q2)
(2−q)

[
(2 + q)a1r

2q + (2− q)a2
]−2 (2−q2)

(4−q2)

}
·

·
[
1 +

2(2− q2)
2− q

− 4q(2− q2)a1r2q

(2− q)[(2 + q)a1r2q + (2− q)a2]

]
, (4.4.43)

and

s21 =
h1
r4

[
1

2− q2
+ cr2

(2−q2)
(2−q)

[
(2 + q)a1r

2q + (2− q)a2
]−2 (2−q2)

(4−q2)

]
.

(4.4.44)

The tetrad components of the kinematical parameters cited in the

equation (1.4.27) for the space-time metric (4.4.42) yield

θ =0 ,

σαβ =0 , ∀ α, β .

u̇1 =− u̇2 = − 1

r
√

2

[
(1 + q)a1r

2q + (1− q)a2
a1r2q + a2

]
·

·
{

1

2− q2
+ cr2

(2−q2)
(2−q)

[
(2 + q)a1r

2q + (2− q)a2
]−2 (2−q2)

(4−q2)

}
,

W34 =−W43 = −2ks1 . (4.4.45)

Case ii: When q = 1

In this case the solution of the equation (4.4.38) is given by

eν = y = b1r
2 + b2 , (4.4.46)
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where b1, b2 are arbitrary constants. For this value of y, the equation

(4.4.34) becomes

x′ − 2(b1r
2 + b2)

r(3b1r2 + b2)
x = −2

b1r
2 + b2

r(3b1r2 + b2)
. (4.4.47)

Solving this equation we obtain the value of x in the form

e−2λ = x = 1 +
c1r

2

(3b1r2 + b2)2/3
. (4.4.48)

The metric (4.2.1) takes the form

ds2 =[b1r
2 + b2]

2dt2 − r2(dθ2 + sin2θdφ2)−
[
1 +

c1r
2

(3b1r2 + b2)2/3

]−1
dr2 ,

(4.4.49)

with the pressure and density given by

kp =
4b2

(b1 + b2r2)
+

c1
(b1 + 3b2r2)2/3

+
4cb2r

2

(b1 + b2r2)(b1 + 3b2r2)2/3
− 4k2s21 ,

kρ =− c1(3b1 + 5b2r
2)

(b1 + 3b2r2)5/3
− 4k2s21 , (4.4.50)

and

s21 =
h1
r4

[
1 +

c1r
2

(3b1r2 + b2)2/3

]
. (4.4.51)

We record below the tetrad components of the kinematical parameters

for the space-time metric (4.4.49) as

θ =0 ,

σαβ =0 , ∀ α, β .
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u̇1 =− u̇2 = −
√

2b1r

(b1 + b2r2)

[
1 +

c1r
2

(3b1r2 + b2)2/3

]
,

W34 =−W43 = −2ks1 . (4.4.52)

Hence in all above cases in (B) our solutions are non-static and

have non-zero acceleration, rotation but zero shear and expansion.

Discussions

Two classes A and B of different solutions of the field equations in the

EC theory of gravitation are obtained when the Weyssenhoff fluid is the

source of gravitation and spin. Many of the previously known solutions

for Weyssenhoff fluid in EC theory of gravitation have zero acceleration

and vorticity (Kuchowicz [82]). Griffiths and Jogia [42] have claimed

some non-zero accelerated solutions. In this chapter we have applied

the techniques of differential forms and a class A of non-static solutions

with zero acceleration and a class B with non-zero acceleration are

obtained. Class A solutions are expanding, shearing and rotating,

while the class B solutions are rotating. In class A solutions, the non-

zero kinematical parameters, the pressure and the density diverge to

infinity, and vanish together at t = 0 and at large t respectively. Similar

phenomenon is observed in class B solutions at r = 0 and at large r

respectively. It can be seen that the rotation, the pressure and the

density are influenced by the spin of the fluid, while there is no such
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effect on the expansion, acceleration and the shear. In the absence of

the spin the result (4.4.29) coincides with the result obtained by Sharif

and Iqbal [113], and the solution is irrotational.
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Chapter 5

A Static Spherically Symmetric Solutions

in Einstein-Cartan Theory of Gravitation
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5.1 Introduction

The well known Einstein’s general relativity theory provides a unified

description of gravity as the geometric property of space-time. The re-

cent detection of gravitational waves in the space-time as was predicted

by Einstein 100 years before cemented the status of general relativity,

besides other confirmations of Einstein’s predictions of deflection of

a ray of light by the gravitational field of the Sun and the perihelion

advances of the planet Mercury. In general relativity theory the under-

lying Riemannian space-time deals with the case where connections are

symmetric admitting a Riemann curvature tensor R̂hijk which satisfies

the properties

R̂(hi)jk = R̂hi(jk) = 0 ,

R̂hijk = R̂jkhi ,

R̂hijk + R̂hjki + R̂hkij = 0 , (5.1.1)

R̂hijk;l + R̂hikl;j + R̂hilj;k = 0 ,

where R̂hijk is computed from symmetric Christoffel symbols in the

usual way. It is wel-known that vanishing of the divergence of Ein-

stein tensor in Einstein’s general relativity theory follows from the

Bianchi identities and from it follows the dynamical conservation laws.

It has been shown that the Einstein’s field equations evolve singulari-

ties which is rather unsatisfactory feature.
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The successful geometrization of gravitation in Einstein’s general

relativity stimulated the interest of the great mathematician E. Cartan

[11, 12] who suggested a more general geometrical frame work incor-

porating the notion of torsion as well as curvature.The modification of

Einstein’s general relativity theory allowing space-time to have torsion

in addition to curvature is known as Einstein-Cartan theory of gravita-

tion. When cosmological models with torsion were first studied, it was

hoped that the inclusion of torsion would help to avoid singularities.

For a long time, Cartan’s modified theory of gravity was unfamiliar to

physicists and did not attract any attention. But the role of Cartan

was soon recognized, when the theory of gravitation with spin and tor-

sion was independently rediscovered by Sciama [111] and Kibble [69].

Since then the Einstein-Cartan theory of gravitation gained the atten-

tion of researchers and become a very active field of research. Now

the theory has gained a strong theoretical ground both geometrically

and physically through the investigation of various authors like Tolman

[130], Kuchowicz [78], Trautman [129], Hehl [48, 49], Kerlick [67, 68],

Bohmer [6], Prasanna [100], Hehl and Collaborators [51], Singh, T.

and Yadav [115], Katkar [61], Katkar and Patil [60], Kalyanshetti and

Waghmode [66] in the form of viable rival theory to Einstein’s general

relativity theory.

In Einstein-Cartan theory of gravitation the underlying geometry

is non-Riemannian due to asymmetric connections arising from the
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presence of torsion in the space-time.

In this chapter a static spherically symmetric solution of Einstein-

Cartan field equations is obtained by using the techniques of differential

forms. The material of the chapter is organised as below. In the Section

2, the static spherically symmetric metric is considered and following

the tetrad algorithm the tetrad components of connection 1-forms,

curvature 2-forms, the Riemann curvature tensor and the Ricci tensor

are derived. A solutions of the field equations are obtained in the

Section 3, and the chapter is concluded along with some discussions in

the last Section 4.

5.1.1 The Kinematical Parameters

The kinematical parameters viz; the expansion θ, the acceleration vec-

tor u̇i, the shear tensor σij and the rotation tensor Wij are respectively

defined as

θ =ui;i ,

u̇i =ui;ku
k ,

σij =u(i;j) − u̇(iuj) +
1

3
θhij ,

and

Wij = u[i;j] − u̇[iuj] , (5.1.2)

171



where hij = gij − uiuj is the 3-dimension projection operator. We

use the definition of the covariant derivative (1.2.19) for the unit flow

vector ui and by virtue of equations (1.2.16), (1.2.49), (1.2.53) and

(1.2.55) find

ui;j = ui/j + kSij . (5.1.3)

It is obvious exercise to find the Newman-Penrose concomitants of the

kinematical parameters by using the equation (5.1.3) as

θ =
1√
2

(
ε0 + ε0 − γ0 − γ0 − ρ0 − ρ0 + µ0 + µ0

)
,

u̇i =
1

2

[
(ε0 + ε0 + γ0 + γ0)(li − ni)− (τ 0 + κ0 − ν0 − π0)mi − c.c.

]
,

σij =
1

6
√

2

{[
2(γ0 + γ0 − ε0 − ε0)− (ρ0 + ρ0 − µ0 − µ0)

](
lilj + ninj−

− 2l(inj) − 2m(imj)

)
+ 3
[(
κ0 − τ 0 + ν0 − π0−

− 2(α0 + β
0
)
)(
l(imj) −m(inj)

)
+ 2(σ0 − λ0)mimj

]
+ c.c.

}
,

Wij =
1

2
√

2

[(
τ 0 + π0 − κ0 − ν0 − 2(α0 + β

0
)
)(
l[imj] +m[inj]

)
+ c.c.+

+ 2
(
ρ0 − ρ0 + µ0 − µ0

)
m[imj]

]
+ kSij . (5.1.4)

5.2 Static Spherically Symmetric Metric

Consider a static spherically symmetric metric in the form

ds2 = eνdt2 − eλdr2 − r2(dθ2 + sin2θdφ2) , (5.2.1)
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where λ and ν are functions of r only. Define the tetrad basis 1-forms

θα for the metric (5.2.1) as

θ1 =
1√
2

(e
ν
2dt+ e

λ
2dr) ,

θ2 =
1√
2

(e
ν
2dt− e

λ
2dr) ,

θ3 =− 1√
2

(rdθ − irsinθdφ) ,

(5.2.2)

where θ4 is a complex conjugate of θ3. Hence the metric (5.2.1) can be

written as

ds2 = 2θ1θ2 − 2θ3θ4. (5.2.3)

Using equations (2.4.46) and (5.2.2) we obtain readily the components

of the basis vector fields as

li =
1√
2

(
−e

λ
2 , 0, 0, e

ν
2

)
,

ni =
1√
2

(
e
λ
2 , 0, 0, e

ν
2

)
, (5.2.4)

mi =
1√
2

(0, r, irsinθ, 0) ,

where mi is a complex conjugate of mi. The contravariant components

of the null basis vectors are obtain by raising the index by the metric

tensor as

li = giklk =
1√
2

(
e−

λ
2 , 0, 0, e−

ν
2

)
,
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similarly, we obtain

ni =
1√
2

(
−e−

λ
2 , 0, 0, e−

ν
2

)
, (5.2.5)

mi =− 1√
2

(
0, r−1, ir−1cosecθ, 0

)
,

where mi is obtained from mi by taking its complex conjugate. The

tetrad form of the equation (2.4.22) becomes

d2∗f = −1

2
f,γQαβ

γθα ∧ θβ , (5.2.6)

We can also write this equation as

d2∗f = −1

2

[
DfQαβ

1 + ∆fQαβ
2 + δfQαβ

3 + δfQαβ
4

]
θα ∧ θβ , (5.2.7)

where

Df =f;il
i =

1√
2

(e−λ/2f,r + e−ν/2f,t) ,

∆f =f;in
i =

1√
2

(−e−λ/2f,r + e−ν/2f,t) ,

δf =f;im
i = − 1√

2
(r−1f,θ + ir−1cosecθf,φ) ,

δf =f;im
i = − 1√

2
(r−1f,θ − ir−1cosecθf,φ) .

(5.2.8)

Hence the equation (5.2.7) becomes

d2∗f =− 1

2
√

2

[
e−λ/2f,r(Qαβ

1 −Qαβ
2)− r−1f,θ(Qαβ

3 +Qαβ
4)−

− ir−1cosecθf,φ(Qαβ
3 −Qαβ

4) + e−ν/2f,t(Qαβ
1 +Qαβ

2)

]
θα ∧ θβ .

(5.2.9)
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It is evident from equations (5.2.9) that

d2∗r =− e−
λ
2

2
√

2

(
Qαβ

1 −Qαβ
2
)
θα ∧ θβ ,

d2∗θ =
r−1

2
√

2

(
Qαβ

3 +Qαβ
4
)
θα ∧ θβ ,

d2∗φ =
ir−1cosecθ

2
√

2

(
Qαβ

3 −Qαβ
4
)
θα ∧ θβ ,

d2∗t =− e−
ν
2

2
√

2
(Qαβ

1 +Qαβ
2)θα ∧ θβ.

(5.2.10)

Now operating d∗ to the equations (5.2.2) and using the equations

(5.2.10) we readily get

d∗θ
1 =

(
1

2
√

2
ν ′e−

λ
2

)
θ12 − 1

2
Qαβ

1θαβ ,

d∗θ
2 =

(
1

2
√

2
ν ′e−

λ
2

)
θ12 − 1

2
Qαβ

2θαβ ,

d∗θ
3 =

1√
2

[
r−1e−

λ
2 (θ13 − θ23) + r−1cotθ θ34

]
− 1

2
Qαβ

3θαβ ,

d∗θ
4 =

1√
2

[
r−1e−

λ
2 (θ14 − θ24)− r−1cotθ θ34

]
− 1

2
Qαβ

4θαβ , (5.2.11)

where we have used θαβ = θα ∧ θβ .

Now from equations (5.2.11) and (2.4.70) we obtain, after equating

the corresponding coefficients and simplifying the values of NP spin

coefficients of Riemann space-time as

κ0 =λ0 = σ0 = π0 = τ 0 = ν0 = 0 ,

ρ0 =µ0 = − 1√
2
r−1e−

λ
2 ,
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ε0 =γ0 =
1

4
√

2
ν ′e−

λ
2 ,

α0 =− β0 =
r−1

2
√

2
cotθ. (5.2.12)

By virtue of the equations (1.3.30) and (5.2.12), we find from the equa-

tions (2.4.69)

ω12 =− 1

2
√

2

[
ν ′e−

λ
2 (θ1 − θ2)− 4ks0θ

3 − 4ks0θ
4
]
,

ω13 =
1√
2

[
2ks0θ

1 + (r−1e−
λ
2 + 2ks1)θ

4
]
,

ω23 =− 1√
2

[
2ks0θ

2 + (r−1e−
λ
2 − 2ks1)θ

4
]
,

ω34 =− 1√
2

[
2ks1(θ

1 + θ2) + r−1cotθ(θ3 − θ4)
]
.

(5.2.13)

Now using equations (1.3.30), (5.2.12) and (5.2.13) we obtain from the

equation (2.4.85) the tetrad components of curvature 2-form. These

are listed below:

Ω1
1 = −

[
e−λ

4
(2ν ′′ − λ′ν ′ + ν ′

2
) + 4k2s0s0

]
θ12 +

(
ks0,re

−λ2 + ks0ν
′e−

λ
2−

− 2k2s0s1
)
θ13 +

(
ks0,re

−λ2 + ks0ν
′e−

λ
2 + 2k2s0s1

)
θ14 −

(
ks0,re

−λ2 +

+ ks0ν
′e−

λ
2 + 2k2s0s1

)
θ23 −

(
ks0,re

−λ2 + ks0ν
′e−

λ
2 − 2k2s0s1

)
θ24+

+
[
kr−1cotθ(s0 − s0) + 2ks1e

−λ2 (2r−1 − ν ′)
]
θ34 , (5.2.14)

Ω1
3 = −

(
ks0,re

−λ2 + ks0ν
′e−

λ
2 + 2k2s0s1

)
θ12 +

[
e−λ

4r
(λ′ − ν ′)+

+
1

2
ks1ν

′e−
λ
2 + ks1,re

−λ2 + 2k2s1
2

]
θ14 −

(
2k2s0

2 − ks0r−1cotθ
)
θ23−

−
[
e−λr−1

4
(λ′ + ν ′)− 1

2
ks1ν

′e−
λ
2 + ks1,re

−λ2 + 2ks1r
−1e−

λ
2 − 2k2s1

2+

176



+ 2k2s0s0 + ks0r
−1cotθ

]
θ24 +

(
ks0r

−1e−
λ
2 − 2k2s0s1

)
θ34,

(5.2.15)

Ω2
3 =

(
ks0,re

−λ2 + ks0ν
′e−

λ
2 − 2k2s0s1

)
θ12 −

(
2k2s20 + ks0r

−1cotθ
)
θ13−

−
[
e−λr−1

4
(λ′ + ν ′) +

1

2
ks1ν

′e−
λ
2 − ks1,re−

λ
2 − 2ks1r

−1e−
λ
2 − 2k2s1

2+

+ 2k2s0s0 − ks0r−1cotθ
]
θ14 +

[
e−λr−1

4
(λ′ − ν ′)− 1

2
ks1ν

′e−
λ
2−

− ks1,re−
λ
2 + 2k2s1

2

]
θ24 +

(
ks0r

−1e−
λ
2 + 2k2s0s1

)
θ34 , (5.2.16)

Ω3
3 = −e−

λ
2 (2ks1,r + ks1ν

′) θ12 + ks0

(
r−1e−

λ
2 + 2ks1

)
θ13−

− ks0
(
r−1e−

λ
2 − 2ks1

)
θ14 + ks0

(
r−1e−

λ
2 − 2ks1

)
θ23−

− ks0
(
r−1e−

λ
2 + 2ks1

)
θ24 +

[
r−2(1− e−λ)− 4k2s1

2
]
θ34 .

(5.2.17)

The expressions for Ω1
4,Ω

2
4,Ω

4
4 are obtained by interchanging the

suffixes 3 and 4 and taking the complex conjugate of the right hand

sides of the equations in (5.2.15), (5.2.16) and (5.2.17) respectively.

5.2.1 Tetrad Components of Riemann-Cartan

Curvature Tensor

From the equation (2.4.65) we obtain

Ωαβ = R12αβθ
12+R13αβθ

13+R14αβθ
14+R23αβθ

23+R24αβθ
24+R34αβθ

34 ,

(5.2.18)

177



where

Ωαβ = −Ωβα , α, β = 1, 2, 3, 4.

By giving different values to α, β = 1, 2, 3, 4 in the equation (5.2.18)

and then equating the corresponding coefficients of basis 2-forms of

equations (5.2.14), (5.2.15), (5.2.16) and (5.2.17) we readily obtain the

tetrad components of Riemann-Cartan curvature tensor as

R1212 =− e−λ

4

(
2ν ′′ − λ′ν ′ + ν ′

2
)
− 4k2s0s0 ,

R1312 =ks0,re
−λ2 + ks0ν

′e−
λ
2 − 2k2s0s1 ,

R2312 =−
(
ks0,re

−λ2 + ks0ν
′e−

λ
2 + 2k2s0s1

)
,

R3412 =kr−1cotθ (s0 − s0) + 2ks1e
−λ2
(

2r−1 − ν ′
)
,

R1213 =ks0,re
−λ2 + ks0ν

′e−
λ
2 − 2k2s0s1 ,

R1313 =− (2k2s20 + ks0r
−1cotθ) ,

R1413 =− e−λr−1

4
(λ′ + ν ′)− 1

2
ks1ν

′e−
λ
2 + ks1,re

−λ2 + 2ks1r
−1e−

λ
2 +

+ 2k2s1
2 − 2k2s0s0 + ks0r

−1cotθ ,

R2413 =
e−λr−1

4
(λ′ − ν ′)− 1

2
ks1ν

′e−
λ
2 − ks1,re−

λ
2 + 2k2s1

2 ,

R3413 =ks0r
−1e−

λ
2 + 2k2s0s1 ,

R1223 =−
(
ks0,re

−λ2 + ks0ν
′e−

λ
2 + 2k2s0s1

)
,

R1423 =
e−λr−1

4
(λ′ − ν ′) +

1

2
ks1ν

′e−
λ
2 + ks1,re

−λ2 + 2k2s1
2 ,

R2323 =−
(
2k2s0

2 − ks0r−1cotθ
)
,
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R2423 =− e−λr−1

4
(λ′ + ν ′) +

1

2
ks1ν

′e−
λ
2 − ks1,re−

λ
2 − 2ks1r

−1e−
λ
2 +

+ 2k2s1
2 − 2k2s0s0 − ks0r−1cotθ ,

R3423 =ks0r
−1e−

λ
2 − 2k2s0s1 ,

R1234 =− e−
λ
2 (2ks1,r + ks1ν

′) ,

R1334 =ks0

(
r−1e−

λ
2 + 2ks1

)
,

R2334 =ks0

(
r−1e−

λ
2 − 2ks1

)
,

R3434 =r−2
(
1− e−λ

)
− 4k2s1

2 , (5.2.19)

and

R2313 = R1323 = 0 .

The complex conjugates of above equations are obtained by interchang-

ing the suffixes 3 and 4 and taking the complex conjugates of the right

hand sides of the respective equations.

5.2.2 Tetrad Components of Ricci-Cartan Tensor

and Ricci-Cartan Curvature Scalar

The tetrad components of the Ricci-Cartan tensor and Ricci-Cartan

curvature scalar are defined by

Rαβ = ηνεRναβε , R = ηαβRαβ ,

⇒ Rαβ = R1αβ2 +R2αβ1 −R3αβ4 −R4αβ3 . (5.2.20)
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Using equations (5.2.19) we obtain from equations (5.2.20) expres-

sions for Ricci-Cartan tensors

R11 =− e−λr−1
(λ′ + ν ′

2

)
+ kr−1cotθ(s0 + s0) + 4k2s1

2 − 4k2s0s0 ,

R12 =− e−λ

4

(
2ν ′′ − λ′ν ′ + ν ′

2
)

+
r−1e−λ

2
(λ′ − ν ′) + 4k2s1

2 − 4k2s0s0 ,

R13 =ks0,re
−λ2 + ks0e

−λ2 (ν ′ + r−1)− 4k2s0s1 ,

R21 =− e−λ

4

(
2ν ′′ − λ′ν ′ + ν ′

2
)

+
r−1e−λ

2
(λ′ − ν ′) + 4k2s1

2 − 4k2s0s0 ,

R22 =− e−λr−1
(
λ′ + ν ′

2

)
− kr−1cotθ(s0 + s0) + 4k2s1

2 − 4k2s0s0 ,

R23 =ks0,re
−λ2 + ks0e

−λ2 (ν ′ + r−1) + 4k2s0s1 ,

R31 =ks0,re
−λ2 − ks0r−1e−

λ
2 (ν ′ − r−1) ,

R32 =ks0,re
−λ2 − ks0r−1e−

λ
2

(
ν ′ − r−1

)
, (5.2.21)

R34 =− r−2 + e−λ
[
r−2 − r−1

2
(λ′ − ν ′)

]
,

R33 =0 .

The Ricci-Cartan curvature scalar is given by

R =− e−λ
(
ν ′′ − λ′ν ′

2
+
ν ′2

2
+ 2

(ν ′ − λ′)
r

+ 2r−2

)
+ 2r−2 + 8k2s21−

− 8k2s0s0 . (5.2.22)

By virtue of the equations (5.2.12) the equations (5.1.4) reduce to

θ =0 ,

u̇i =
1

2
√

2
e−

λ
2ν
′
(li − ni) ,
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σij =0 , (5.2.23)

Wij =2k[2s1m[imj] + s0(l[imj] +m[inj]) + c.c.] .

5.3 Field Equations and Solutions

To find the information of the pertaining space-time geometry, we con-

tinue to use tetrad formalism. Thus the tetrad form of the Einstein-

Cartan field equations (1.2.48) is given by

Rαβ −
R

2
ηαβ = −ktαβ , (5.3.1)

where the tetrad components of the energy momentum tensor (1.4.22)

are obtained as

t11 =t22 =
1

2
(ρ+ p), t12 = t21 =

1

2
(ρ− p),

t34 =t43 = p , t31 = t32 =
1

2
ν ′e−

λ
2 s0 ,

t41 =t42 =
1

2
ν ′e−

λ
2 s0 , (5.3.2)

and the remaining tetrad components are zero.

Using above equations (5.2.21), (5.2.22) and (5.3.2) in equation

(5.3.1) the independent field equations for gravitation in Einstein-

Cartan theory are obtained as

− e−λr−1
(
λ′ + ν ′

2

)
+ 4k2s1

2 − 4k2s0s0 + kr−1cotθ(s0 + s0) = −k
2

(ρ+ p) ,

− r−2 + e−λ
[
r−2 − r−1

2
(λ′ − ν ′)

]
= −k

2
(ρ− p) ,
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ks0,re
−λ2 + ks0e

−λ2
(
ν ′ + r−1

)
− 4k2s0s1 = 0 ,

− e−λr−1
(
λ′ + ν ′

2

)
+ 4k2s1

2 − 4k2s0s0 − kr−1cotθ(s0 + s0) = −k
2

(ρ+ p) ,

ks0,re
−λ2 + ks0e

−λ2
(
ν ′ + r−1

)
+ 4k2s0s1 = 0 , (5.3.3)

ks0,re
−λ2 +

1

2
ks0e

−λ2
(
3ν ′ − 2r−1

)
= 0 ,

− e−λ

4

(
2ν ′′ − λ′ν ′ + ν ′

2
)

+
r−1e−λ

2
(λ′ − ν ′) + 4k2s1

2 − 4k2s0s0 = −kp .

We see from equations (5.3.3) that these equations are consistent pro-

vided that s0 = 0. Hence out of the seven field equations, there exists

only three independent field equations and are given below:

e−λr−1
(
ν ′ + r−1

)
− r−2 − 4k2s1

2 = kp , (5.3.4)

e−λr−1
(
λ′ − r−1

)
+ r−2 − 4k2s1

2 = kρ , (5.3.5)

e−λ

(
ν ′′

2
+
ν ′2

4
+
ν ′ − λ′

2r
− ν ′λ′

4
− (1 + rν ′)

r2

)
+ r−2 = 0 . (5.3.6)

By Birkhoff’s theorem outside the field the solution is represented

by Schwarzschild metric and is given by

ds2 = −
(

1− 2m

r

)−1
dr2 − r2

(
dθ2 + sin2θdφ2

)
+

(
1− 2m

r

)
dt2 ,

(5.3.7)

where m is a constant associated with the mass of sphere. Hence we

use the boundary conditions

(eν)r=a =
(
e−λ
)
r=a

=

(
1− 2m

a

)
, (5.3.8)

and p = 0 at r = a .
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5.4 Specific Solutions

The set of Einstein-Cartan field equations is highly non-linear and

is formidable to solve by any analytical method. Hence we restrict

ourselves to the following cases.

Case (I): We assume eν=A1
2, where A1 is an arbitrary constant.

We obtain from the assumed equation ν = 2logA1 , and hence from

equation (5.3.6) we have

e−λ
(
λ
′

2r
+

1

r2

)
− r−2 = 0 .

Solving this equation we obtain

e−λ = 1 + A2r
2 .

Hence the space-time metric (5.2.1) becomes

ds2 =− 1

(1 + A2r2)
dr2 − r2

(
dθ2 + sin2θdφ2

)
+ A1

2dt2 . (5.4.1)

Where the arbitrary constants A1 and A2 can be determined by match-

ing the solutions at the boundary r = a to Schwarzschild exterior

solution. They are obtained as

A1 =

(
1− 2m

a

)1/2

, A2 = −2m

a3
= − 1

R2
.

The pressure and density are given by

kp =−
(

4k2s21 +
1

R2

)
, kρ = −

(
4k2s21 −

3

R2

)
. (5.4.2)
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We also see in this case that the kinematical parameters θ, u̇i, σij vanish

and Wij = 4ks1m[imj]. Hence we have non expanding, non-shearing,

non-accelerating and rotating solution. Our solutionis analogous to

the solution obtained by Prasanna [100].

Case (II): Now we take e−(λ+ν)=B1
2, where B1 is a constant.

Here from assumed equation, we find e−λ = B1
2eν and λ

′
= −ν ′.

Hence the equation (5.3.6) becomes

B1
2eν

(
ν
′′

2
+
ν ′2

2
− 1

r2

)
+

1

r2
= 0 .

The solution of this equation is given by

e−λ = 1 +
AB1

2

r
+BB1

2r2 .

Hence the geometry of the space-time, in this case, is described by the

metric

ds2 = −
(

1 +
B2

r
+B3r

2

)−1
dr2−r2

(
dθ2 + sin2θdφ2

)
+

+
1

B2
1

(
1 +

B2

r
+B3r

2

)
dt2 ,

(5.4.3)

where the constants B2 = AB1
2 and B3 = BB1

2 are specified by

matching the solution to the exterior Schwarzschild solution at the

boundary r = a. They are obtained as

B2 = −m , B3 = −m
a3

.
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Hence the pressure and density are given by

kp =−
(

4k2s21 +
3m

a3

)
, kρ = −

(
4k2s21 −

3m

a3

)
. (5.4.4)

We see, in this case that, the expansion and the shear vanish while

acceleration and rotation are not. Hence the solution is rotating with

non-zero acceleration but expansion free and shear free with negative

pressure and density.

Case III: We now assume e−λ = 1− r2

R2 .

This gives

λ
′
=

2r

R2

(
1− r2

R2

)−1
.

Hence the equation (5.3.6) reduces to(
ν ′′

2
+
ν ′2

4

)(
1− r2

R2

)
− ν

′

2r
= 0 .

Solving this equation, we obtain

eν =
1

4

[
D2 −D1R

2

(
1− r2

R2

)1/2
]2

.

Hence the metric (5.2.1) becomes

ds2 =− 1(
1− r2

R2

)dr2 − r2 (dθ2 + sin2θdφ2
)

+

+

[
D4 −D3

(
1− r2

R2

)1/2
]2
dt2 . (5.4.5)
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where the constants D3 = D1R
2

2 and D4 = D2

2 are specified by matching

the solution to the exterior Schwarzschild solution at the boundary

r = a. Thus we have

2m

r
=
a2

R2
, D3 =

1

2
, D4 =

3

2

(
1− a2

R2

)1/2

. (5.4.6)

The pressure and density in this case becomes

kp =

1
R2

[
3D3

(
1− r2

R2

)1/2
−D4

]
D4 −D3

(
1− r2

R2

)1/2 − 4k2s21 , (5.4.7)

kρ =

(
3

R2
− 4k2s21

)
. (5.4.8)

From the equations (5.2.23) we have θ = 0, σij = 0 and u̇i 6= 0,

Wij 6= 0. Thus our solution in this case has the same interpretation as

solution determined in the case (II). The solution (5.4.5) is analogous

to the solution claimed by Prasanna [100]. We also notice that at the

boundary r = a, the pressure kp = −4k2s21. If however, in the absence

of spin, the pressure vanishes at r = a. This is a classical result of

Einstein theory of gravitation.

Case (IV): We assume eν ν
′

r = E1, where E1 is a constant.

Here, we have obtained from assumed equation

eνν
′
= E1r .

Integrating we get

ν = log
(
E1r

2 + E2

)
,
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where E2 is another constant.

Consequently from the equation (5.3.6), we obtain

e−λ
[
λ
′
+

2(2E1
2r4 + 2E1E2r

2 + E2
2)

r(E1r2 + E2)(2E1r2 + E2)

]
=

2

r

(
E1r

2 + E2

2E1r2 + E2

)
.

Solving this equation, we obtain the solution as

e−λ =

(
E3r

2 + 1
) (
E1r

2 + E2

)
(2E1r2 + E2)

.

By substituting the values of eλ and eν in equation (5.2.1) we get

ds2 =−

(
1 + 2E1

E2
r2
)

(
1 + E1

E2
r2
)

(1 + E3r2)
dr2 − r2

(
dθ2 + sin2θdφ2

)
+

+ E2

(
1 +

E1

E2
r2
)
dt2 . (5.4.9)

This metric is analogous to the metric obtained by Prasanna [100]. The

arbitrary constants E3, E1 and E2 are determined by the boundary

conditions at r = a. They are given by

E1 =
m

a3
, E2 =

(
1− 3m

a

)
, E3 = −m

a3
,

with the pressure and density given by

kp =
3m2

a4

(
1− r2

a2

1− 3m
a + 2m

a3 r
2

)
− 4k2s21 , (5.4.10)

kρ =
m

a3

(
6− 9m

a −
3m
a3 r

2

1− 3m
a + 2m

a3 r
2

)
− 12m2r2

a7

[
1− r2

a2(
1− 3m

a + 2m
a3 r

2
)2
]
− 4k2s21 .

(5.4.11)
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The equation of state is obtain by eliminating r between the equations

(5.4.10) and (5.4.11) as

3m2a3k [a(ρ− 5p)−m(ρ− 9p) + 4p]− 4k3s21a
6 [2amρ− 3p(4m− 3a)] +

+ 4k2p2a6(3m− a) =
[
18m3(a− 2m) + 12k2s21m

2a3(m− 4)+

+ 32k4s41a
7(m+ 2)

]
. (5.4.12)

It follows from the equations(5.2.23) that the solution in this case is

accelerating as well as rotating with zero expansion and shear.

Case (V): We assume eν = Ar2n, where A is a constant.

In this case assumed equation gives

ν = logA+ 2nlogr .

The equation (5.3.6) gives

e−λ
[
λ
′
+

2

r

(
1 + 2n− n2

n+ 1

)]
=

2

r(n+ 1)
.

Solving this equation we obtain

e−λ =

(
1 +B

(
1 + 2n− n2

)
r2N

1 + 2n− n2

)
.

Now substituting the values of eλ and eν in equation (5.2.1) we get

ds2 = −
(

1 + 2n− n2

1 + (1 + 2n− n2)Br2N

)
dr2 − r2

(
dθ2 + sin2θdφ2

)
+ Ar2ndt2 ,

(5.4.13)
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with

N =

(
1 + 2n− n2

1 + n

)
,

where the arbitrary constants A and B are specified by matching the

solution to the exterior Schwarzschild solution at the boundary r = a.

They are given by

A =a−2n
(

1− 2m

a

)
, B =

(
1− 2m

a
− 1

1 + 2n− n2

)
a−2N .

(5.4.14)

Hence from equations (5.3.4) and (5.3.5) the pressure and density are

given by

kp =− 4k2s21 +
1

r2

(
n2

1 + 2n− n2

)
+B (2n+ 1) r2n(

1−n
1+n) ,

kρ =− 4k2s21 +
1

r2

(
2n− n2

1 + 2n− n2

)
−B

(
3 + 5n− 2n2

1 + n

)
r2n(

1−n
1+n) .

(5.4.15)

At r = a, p = 0 gives us n in terms of m , a and s1 as

n =
(m
a

)(
1− 2m

a

)−1
+ 2k2s21a

2 . (5.4.16)

We notice from equation (5.4.15) that when n = −1, the density ρ

becomes infinite and m
a is given by

m

a
=

(
1 + 2k2s21a

2

1 + 4k2s21a
2

)
. (5.4.17)
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Following the treatment of Tolman [130] and Prasanna [100], we con-

sider the special case n = 1
2 , for which m

a becomes

m

a
=

1

4

(
1− 4k2s21a

2

1− 2k2s21a
2

)
, (5.4.18)

showing that mass and spin are linked up with the geometry, Ray-

chaudhuri [106]. Consequently,

A =
1

a

[
1− 1

2

(
1− 4k2s21a

2

1− 2k2s21a
2

)]
,

and

B =
3

7

[
1− 7

6

(
1− 4k2s21a

2

1− 2k2s21a
2

)]
a−7/3 . (5.4.19)

Hence, the metric (5.4.13) becomes

ds2 = − 7

4 + ( ra)
7/3
[
3− 7

2

(
1−4k2s21a2
1−2k2s21a2

)]dr2 − r2(dθ2 + sin2θdφ2)+

+
r

a

[
1− 1

2

(
1− 4k2s21a

2

1− 2k2s21a
2

)]
dt2 . (5.4.20)

The pressure and the density are given by

kp =
1

7r2
+ 2Br1/3 − 4k2s21 ,

and

kρ =
3

7r2
− 10

3
Br1/3 − 4k2s21 . (5.4.21)

Eliminating B between the equations (5.4.21) we readily get

r2
(
3kρ+ 5kp+ 32k2s21

)
= 2 . (5.4.22)
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The equation of state is obtain by eliminating r between the equations

(5.4.21) and (5.4.22) as

(
3kp− kρ+ 8k2s21

) (
5kp+ 3kρ+ 32k2s21

)1/6
=

= 4(2)1/6a−7/3
[
1− 7

6

(
1− 4k2s21a

2

1− 2k2s21a
2

)]
. (5.4.23)

It is evident from equations (5.2.23) that the solution in this case is

accelerating as well as rotating with zero expansion and shear. The

solution (5.4.20) matches with the solution of Prasanna [100] in the

absence of spin.

Conclusion: A class of five different static spherically symmetric

solutions propounded in the above five cases are all expansion free and

shear free. One of these solutions is rotating with zero acceleration,

while all other are rotating with non-zero acceleration. Our solution

match with solutions obtained by Prasanna [100]. We have also seen

that the pressure and the density have been influenced by the spin

of the matter. However, in the absence of spin the pressure vanishes

on the boundary and the result coincides with the standard result of

Einstein theory of gravitation. Using Goldberg Sachs theorem we claim

that the solutions are Petrov-type D.
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Chapter 6

Non-Static Conformally Flat Spherically

Symmetric Space-Times in Einstein-Cartan

Theory of Gravitation
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6.1 Introduction

Amongst the reported forty theories of gravitation, Einstein’s general

theory of relativity is considered as one of the most successful theory.

This theory describes the mysterious gravitational force in terms of

geometry of space-time. In spite of all its wel-known embrassing char-

acters and the string of success, it is still considered to be inadequate

as it does not satisfy certain desirable features. Hence there was hope

that there may be something beyond the Einstein’s general theory of

relativity yet to be found. In search of a new theory with the hope

that the new theory may satisfy the desirable features of the original

theory, several theories of gravitation have been proposed as alterna-

tives to Einstein’s theory of gravitation. All these modified theories of

gravitation have gained the attraction of researchers and good amount

of work has been done in these theories in the last more than four

decades. Amongst all these ramifications, Einstein-Cartan theory of

gravitation is the one proposed by Cartan [11, 12].

The historical development of the Einstein-Cartan theory of grav-

itation and the comprehensive account of the work done by various

researchers is exhibited in the previous chapters.

Cosmology is another branch of the theory of relativity in which

researchers work for the physical world as the solution of the field

equations. The aim of the study of cosmology is to understand the
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past, present and future of the universe and to know four mysterious

forces in nature, their interdependence and their consequences on the

universe.

In the purview of Einstein-Cartan theory of gravitation, several

authors have investigated different aspects of the solutions of the field

equations Einstein-Cartan theory of gravitation. Explicit solutions of

the Einstein’s field equations for static fluid spheres have been obtained

by Tolman [130] and noticed that some of these solutions can be used in

the investigations of Stellar Structure. By using Hehl’s approach and

Tolman’s technique three solutions have been presented by Prasanna

[100] with special reference to a perfect fluid distribution and shown

that a space-time metric similar to the Schwarzschild interior solution

will no longer represent a homogeneous fluid sphere in the presence of

spin density, and at the boundary of the fluid sphere the hydrostatic

pressure is discontinuous. Kuchowicz [77] has reviewed most of the

previously known solutions for Weyssenhoff fluids in Einstein-Cartan

theory of gravitation and addressed on the question as to whether

or not such models have singularities. All these solutions have zero

acceleration and vorticity. Some non-zero accelerated solutions have

been obtained by Griffiths and Jogia [42].

Singh and Yadav [119] have studied the Einstein-Cartan field equa-

tions for the interior of a fluid sphere in an analytic form by the method

of quadrature. Some other solutions have also been obtained under cer-
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tain assumptions. Several of these solutions may be applicable to the

investigations of Stellar interiors where high central density and pres-

sure are significant. Kalyanshetti and Waghmode [66] considered the

static, conformally flat spherically symmetric perfect-fluid distribution

in Einstein-Cartan theory and obtained the field equations. These field

equations are solved by adopting Hehl’s approach with the assumption

that the spins of the particles composing the fluid are all aligned in the

radial direction only and the reality conditions are discussed. Yadav

and Prasad [138] have obtained general solution representing confor-

mally flat non-static spherically symmetric perfect fluid distribution

in Einstein-Cartan theory. The explicit expressions for pressure, den-

sity, expansion, rotation, shear and non-vanishing components of flow

vector have also been found. Sharif and Iqbal [113] have investigated

solutions of the Einstein’s field equations for the case of a non-static

spherically symmetric perfect fluid using different equations of state.

The properties of some exact spherically symmetric perfect fluid solu-

tions which contain shear are obtained. Katkar [59] by adopting the

Newman-Penrose-Jogia-Griffith formalism, the field equations in Ein-

stein–Cartan theory for matter with spin creating torsion in space–time

are solved in a spherically symmetric space-time by assuming only one

non-vanishing component of spin. The exact solution might be the pro-

totype for more realistic models. Katkar and Patil [60] have obtained

exact solution of Einstein-Cartan field equations for static, conformally
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flat spherically symmetric space-time and it is proved to be Petrov-type

D.

In this chapter, non-static conformally flat, Petrov-type D, spheri-

cally symmetric solutions of the Einstein-Cartan field equations; when

Weyssenhoff fluid is the source of spin are obtained. In general the so-

lution is expanding, accelerating, rotating and non-shearing. However,

the dynamic solution is expanding and rotating with zero accelera-

tion and shear; whereas the static solution is accelerating and rotating

with zero expansion and shear. The work done in the chapter is or-

ganized as follows: In the Section 2, the non-static conformally flat

spherically symmetric metric is considered and the tetrad components

of connection 1-form, curvature 2-form are derived. Consequently, the

tetrad components of the Riemann curvature tensor and Ricci tensor

are derived and the components of expansion, acceleration, rotation

and shear tensor are obtained. In the Section 3, the Einstein-Cartan

field equations are formulated and solutions are obtained, the solution

is shown to be Petrov-type D and finally some conclusions are drawn.
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6.2 Non-Static Conformally Flat

Spherically Symmetric Metric

Consider the non-static conformally flat spherically symmetric space-

time in the form

ds2 = e2µ
[
dt2 − dr2 − r2(dθ2 + sin2θdφ2)

]
, (6.2.1)

where µ is a function of r and t only. Define the tetrad basis 1-forms

θα for the metric (6.2.1) as

θ1 =
eµ√

2
(dt+ dr) ,

θ2 =
eµ√

2
(dt− dr) ,

θ3 =− eµr√
2

(dθ − isinθdφ) ,

(6.2.2)

where θ4 is a complex conjugate of θ3. Hence the metric (6.2.1) can be

written as

ds2 = 2θ1θ2 − 2θ3θ4 . (6.2.3)

Using the equation (6.2.2) we obtain readily the components of the

basis vector fields as

li =
eµ√

2
(−1, 0, 0, 1) ,

ni =
eµ√

2
(1, 0, 0, 1) , (6.2.4)
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mi =
eµr√

2
(0, 1, isinθ, 0) ,

where mi is a complex conjugate of mi. The contravariant components

of the null basis vectors are obtain by raising the index by the metric

tensor as

li = giklk =
e−µ√

2
(1, 0, 0, 1) ,

similarly, we obtain

ni =
e−µ√

2
(−1, 0, 0, 1) , (6.2.5)

mi =− e−µr−1√
2

(0, 1, icosecθ, 0) .

The tetrad form of the equation (2.4.22) becomes

d∗
2f = −1

2
f,γQαβ

γθα ∧ θβ , (6.2.6)

where Qαβ
γ are the tetrad components of the torsion tensor Qij

k and

are given by

Qαβ
γ = kSαβu

γ .

For coordinate functions xi, the equation (6.2.6) becomes

d∗
2xi = −1

2
ei(γ)Qαβ

γθα ∧ θβ . (6.2.7)
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It is evident from equations (6.2.5) and (6.2.7) that

d∗
2r =− e−µ

2
√

2

(
Qαβ

1 −Qαβ
2
)
θα ∧ θβ ,

d∗
2θ =

e−µr−1

2
√

2

(
Qαβ

3 +Qαβ
4
)
θα ∧ θβ ,

d∗
2φ =

ir−1e−µcosecθ

2
√

2

(
Qαβ

3 −Qαβ
4
)
θα ∧ θβ ,

d∗
2t =− e−µ

2
√

2
(Qαβ

1 +Qαβ
2)θα ∧ θβ.

(6.2.8)

Now operating d∗ to the equations (6.2.2) and using the equations

(6.2.8) we readily, get

d∗θ
1 =

1√
2
e−µ (µ′ − µ̇) θ12 − 1

2
Qαβ

1θαβ ,

d∗θ
2 =

1√
2
e−µ (µ′ + µ̇) θ12 − 1

2
Qαβ

2θαβ ,

d∗θ
3 =

e−µ√
2

[ (
µ̇+ µ′ + r−1

)
θ13 +

(
µ̇− µ′ − r−1

)
θ23+

+ r−1cotθ θ34
]
− 1

2
Qαβ

3θαβ ,

d∗θ
4 =

e−µ√
2

[ (
µ̇+ µ′ + r−1

)
θ14 +

(
µ̇− µ′ − r−1

)
θ24−

− r−1cotθ θ34
]
− 1

2
Qαβ

4θαβ , (6.2.9)

where we have used

θαβ = θα ∧ θβ ,

and the dot denotes partial derivative with respect to time ’t’ and the

prime indicates partial derivative with respect to the coordinate ’r’.
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Now from equations (6.2.9) and (2.4.70) we obtain after simplifying

the values of NP spin coefficients in Riemann space-time as

κ0 =λ0 = σ0 = π0 = τ 0 = ν0 = 0 ,

ρ0 =− e−µ√
2

(
µ̇+ µ′ + r−1

)
, µ0 =

e−µ√
2

(
µ̇− µ′ − r−1

)
,

ε0 =
e−µ

2
√

2
(µ̇+ µ′) , γ0 = − e

−µ

2
√

2
(µ̇− µ′) ,

α0 =− β0 =
e−µ

2
√

2
r−1cotθ.

(6.2.10)

By virtue of the equations (6.2.10), (1.3.30), the equations (2.4.69)

reduces to

ω12 =− 1√
2

[
e−µ (µ̇+ µ′) θ1 − e−µ (µ̇− µ′) θ2 − 2ks0θ

3 − 2ks0θ
4
]
,

ω13 =
1√
2

{
2ks0θ

1 +
[
e−µ

(
µ̇+ µ′ + r−1

)
+ 2ks1

]
θ4
}
,

ω23 =
1√
2

{
−2ks0θ

2 +
[
e−µ

(
µ̇− µ′ − r−1

)
+ 2ks1

]
θ4
}
, (6.2.11)

ω34 =− 1√
2

[
2ks1(θ

1 + θ2) + r−1e−µcotθ(θ3 − θ4)
]
.

Now using equations (1.3.30), (6.2.10) and (6.2.11), from equations

(2.4.85) we obtain the tetrad components of curvature 2-form. These

are listed below:

Ω1
1 =

[
e−2µ (µ̈− µ′′)− 4k2s0s0

]
θ12+

+
{
ke−µ

[
s0,r + s0,t + 2s0 (µ′ + µ̇)

]
− 2k2s0s1

}
θ13+

+
{
ke−µ

[
s0,r + s0,t + 2s0 (µ′ + µ̇)

]
+ 2k2s0s1

}
θ14−
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−
{

2k2s0s1 + ke−µ
[
s0,r − s0,t + 2s0 (µ′ − µ̇)

]}
θ23 +

{
2k2s0s1−

− ke−µ
[
s0,r − s0,t + 2s0 (µ′ − µ̇)

]}
θ24 +

{
4ks1e

−µr−1+

+ ke−µr−1cotθ (s0 − s0)
}
θ34 , (6.2.12)

Ω1
3 = −

{
ke−µ

[
s0,r + s0,t + 2s0 (µ̇+ µ′)

]
+ 2k2s0s1

}
θ12 +

{
ks1,re

−µ+

+ ks1,te
−µ + 2k2s21 + ks1e

−µ (3µ̇+ µ′) +
e−2µ

2

(
µ̈− µ′′ − 2µ′r−1+

+ µ̇2 − µ′2
)}
θ14 +

[
− 2k2s20 + ks0r

−1e−µcotθ
]
θ23 −

{
ks1,re

−µ−

− ks1,te−µ + ks0r
−1e−µcotθ + 2k2s0s0 −

e−2µ

2

(
µ̈− 2µ̇

′
+ µ′′ − µ̇2−

− µ′2 + 2µ̇µ′
)
− ks1e−µ

(
µ̇− µ′ − 2r−1

)
− 2k2s21

}
θ24−

−
[
2k2s0s1 + ks0e

−µ(µ̇− µ′ − r−1)
]
θ34 , (6.2.13)

Ω2
3 =

{
ke−µ [s0,r − s0,t − 2s0 (µ̇− µ′)]− 2k2s0s1

}
θ12 −

[
2k2s20+

+ ks0r
−1e−µcotθ

]
θ13 +

{
ks1,re

−µ + ks1,te
−µ + ks1e

−µ(µ̇+ µ′+

+ 2r−1
)
− 2k2s0s0 + 2k2s21 + ks0r

−1e−µcotθ +
e−2µ

2

(
µ̈+ 2µ̇

′
+ µ′′ − µ̇2−

− µ′2 − 2µ̇µ′
)}
θ14 −

{
ks1,re

−µ − ks1,te−µ − 2k2s21 − ks1e−µ (3µ̇− µ′)−

− e−2µ

2

(
µ̈− µ′′ − 2µ′r−1 + µ̇2 − µ′2

)}
θ24 +

[
2k2s0s1 + ks0e

−µ(µ̇+

+ µ′ + r−1
)]
θ34 , (6.2.14)

Ω3
3 = −2ke−µ (s1,r + s1µ

′) θ12 +
[
2k2s0s1 − ks0e−µ

(
µ̇− µ′ − r−1

)]
θ13+

+
[
2k2s0s1 + ks0e

−µ (µ̇− µ′ − r−1)] θ14 − [2k2s0s1 − ks0e−µ(µ̇+ µ′+

+ r−1
)]
θ23 −

[
2k2s0s1 + ks0e

−µ (µ̇+ µ′ + r−1
)]
θ24 +

[
e−2µ

(
µ̇2 − µ′2−

− 2µ′r−1
)
− 4k2s21

]
θ34 . (6.2.15)
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The expressions for Ω1
4,Ω

2
4,Ω

4
4 are obtained by interchanging the

suffixes 3 and 4 and taking the complex conjugate of the right hand

sides of the equations in (6.2.13), (6.2.14) and (6.2.15) respectively.

6.2.1 Tetrad Components of Riemann-Cartan

Curvature Tensor

From the equation (2.4.65) we obtain

Ωαβ = R12αβθ
12+R13αβθ

13+R14αβθ
14+R23αβθ

23+R24αβθ
24+R34αβθ

34 ,

(6.2.16)

where

Ωαβ = −Ωβα , α, β = 1, 2, 3, 4.

By giving different values to α, β = 1, 2, 3, 4 in the equation (6.2.16)

and then equating the corresponding coefficients of basis 2-forms of

equations(6.2.12), (6.2.13), (6.2.14) and(6.2.15) we readily obtain the

tetrad components of Riemann-Cartan curvature tensor as

R1212 =e−2µ (µ̈− µ′′)− 4k2s0s0 ,

R1312 =ke−µ [s0,r + s0,t + 2s0 (µ′ + µ̇)]− 2k2s0s1 ,

R2312 =−
{
ke−µ [s0,r − s0,t + 2s0 (µ′ − µ̇)] + 2k2s0s1

}
,

R3412 =4ks1e
−µr−1 + ke−µr−1cotθ (s0 − s0) ,

R1213 =ke−µ [s0,r − s0,t − 2s0 (µ̇− µ′)]− 2k2s0s1 ,

R1313 =−
[
2k2s20 + ks0r

−1e−µcotθ
]
,
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R1413 =ks1,re
−µ + ks1,te

−µ + ks1e
−µ (µ̇+ µ′ + 2r−1

)
− 2k2s0s0 + 2k2s21+

+ ks0r
−1e−µcotθ +

e−2µ

2

(
µ̈+ 2µ̇

′
+ µ′′ − µ̇2 − µ′2 − 2µ̇µ′

)
,

R2413 =ks1,te
−µ − ks1,re−µ + 2k2s21 + ks1e

−µ (3µ̇− µ′) +

+
e−2µ

2

(
µ̈− µ′′ − 2µ′r−1 + µ̇2 − µ′2

)
,

R3413 =2k2s0s1 + ks0e
−µ (µ̇+ µ′ + r−1

)
,

R1223 =−
{
ke−µ

[
s0,r + s0,t + 2s0 (µ̇+ µ′)

]
+ 2k2s0s1

}
,

R1423 =ks1,te
−µ + ks1,re

−µ + 2k2s21 + ks1e
−µ (3µ̇+ µ′) +

+
e−2µ

2

(
µ̈− µ′′ − 2µ′r−1 + µ̇2 − µ′2

)
,

R2323 =−
[
2k2s20 − ks0r−1e−µcotθ

]
,

R2423 =ks1,te
−µ − ks1,re−µ + ks1e

−µ (µ̇− µ′ − 2r−1
)
− 2k2s0s0 + 2k2s21−

− ks0r−1e−µcotθ +
e−2µ

2

(
µ̈− 2µ̇

′
+ µ′′ − µ̇2 − µ′2 + 2µ̇µ′

)
,

R3423 =−
[
2k2s0s1 + ks0e

−µ(µ̇− µ′ − r−1)
]
,

R1234 =− 2ke−µ (s1,r + s1µ
′) ,

R1334 =2k2s0s1 − ks0e−µ
(
µ̇− µ′ − r−1

)
,

R2334 =−
[
2k2s0s1 − ks0e−µ

(
µ̇+ µ′ + r−1

)]
,

R3434 =e−2µ
(
µ̇2 − µ′2 − 2µ′r−1

)
− 4k2s21 , (6.2.17)

and

R2313 = R1323 = 0 .
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The complex conjugates of above equations are obtained by interchang-

ing the suffixes 3 and 4 and taking the complex conjugates of the right

hand sides of the respective equations.

6.2.2 Tetrad Components of Ricci-Cartan Tensor

and Ricci-Cartan Curvature Scalar

The tetrad components of the Ricci-Cartan tensor and Ricci-Cartan

curvature scalar are defined by

Rαβ = ηνεRναβε , R = ηαβRαβ ,

⇒ Rαβ = R1αβ2 +R2αβ1 −R3αβ4 −R4αβ3 . (6.2.18)

Using equations (6.2.17) we obtain from equation (6.2.18) expres-

sions for Ricci-Cartan tensors

R11 =e−2µ
(
µ̈+ 2µ̇′ + µ′′ − µ̇2 − 2µ̇µ′ − µ′2

)
+ kr−1e−µcotθ (s0 + s0) +

+ 4k2s1
2 − 4k2s0s0 ,

R12 =R21 = e−2µ
(

2µ̈− 2µ′′ − 2µ′r−1 + µ̇2 − µ′2
)

+ 4k2s21 − 4k2s0s0 ,

R13 = = R32 = ke−µ
[
s0,r − s0,t − s0

(
3µ̇− 3µ′ − r−1

)]
,

R22 =e−2µ
(
µ̈− 2µ̇′ + µ′′ − µ̇2 + 2µ̇µ′ − µ′2

)
− kr−1e−µcotθ (s0 + s0) +

+ 4k2s1
2 − 4k2s0s0 ,

R23 = = R31 = ke−µ
[
s0,r + s0,t + s0

(
3µ̇+ 3µ′ + r−1

)]
,

R34 =2ks1,te
−µ + 6ks1e

−µµ̇− e−2µ(µ̈− µ′′ − 4µ′r−1 + 2µ̇2 − 2µ′
2
) ,
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R43 =− 2ks1,te
−µ − 6ks1e

−µµ̇− e−2µ(µ̈− µ′′ − 4µ′r−1 + 2µ̇2 − 2µ′
2
) ,

(6.2.19)

R33 =0 .

The Ricci-Cartan curvature scalar is given by

R =6e−2µ
(
µ̈− µ′′ − 2µ′r−1 + µ̇2 − µ′2

)
+ 8k2s1

2 − 8k2s0s0 . (6.2.20)

6.2.3 The Kinematical Parameters

By virtue of the equation (6.2.10), the kinematical parameters viz; the

expansion θ, the acceleration vector u̇i, the shear tensor σij and the

rotation tensor Wij defined in equation (1.4.27), take the form

θ =3e−µµ̇ ,

u̇i =
1√
2
e−µµ′(li − ni) ,

σij =0 , (6.2.21)

Wij =4ks1m[imj] + 2ks0
(
l[imj] +m[inj]

)
+ c.c.

This will be of great use in the interpretations of the solutions obtained

below.
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6.3 Einstein-Cartan’s Field Equations

We start with the tetrad representation of the field equations (1.2.48)

as

Rαβ −
R

2
ηαβ = −ktαβ , (6.3.1)

where the tetrad components of the energy momentum tensor

tαβ = tije(α)
ie(β)

j , (6.3.2)

are obtained by using equation (1.4.22) and (6.2.10) as

t11 =t22 =
1

2
(ρ+ p) , t12 = t21 =

1

2
(ρ− p),

t34 =t43 = p , t31 = t32 = µ′e−µs0 , (6.3.3)

t41 =t42 = µ′e−µs0 ,

and all other tetrad components of the energy-momentum tensor are

zero.

Using above equations (6.2.19), (6.2.20) and (6.3.3) in equation

(6.3.1), the independent field equations for gravitation in Einstein-

Cartan theory are given by

e−2µ
(
µ̈+ 2µ̇′ + µ′′ − µ̇2 − 2µ̇µ′ − µ′2

)
+ kr−1e−µcotθ (s0 + s0) +

+ 4k2s1
2 − 4k2s0s0 = −k

2
(ρ+ p) ,

e−2µ(µ′′ − µ̈− 2µ̇2 + 2µ′
2

+ 4µ′r−1) = −k
2

(ρ− p) ,

s0,r − s0,t − s0
(
3µ̇− 3µ′ − r−1

)
= 0 ,
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e−2µ
(
µ̈− 2µ̇′ + µ′′ − µ̇2 + 2µ̇µ′ − µ′2

)
− kr−1e−µcotθ (s0 + s0) +

+ 4k2s1
2 − 4k2s0s0 = −k

2
(ρ+ p) ,

s0,r + s0,t + s0
(
3µ̇+ 3µ′ + r−1

)
= 0 ,

s0,r + s0,t + s0
(
3µ̇+ 4µ′ + r−1

)
= 0 ,

s0,r − s0,t + s0
(
4µ′ − 3µ̇+ r−1

)
= 0 ,

e−2µ(2µ̈− 2µ′′ − 2µ′r−1 + µ̇2 − µ′2) + 2ks1,te
−µ + 6ks1e

−µµ̇+

+ 4k2s1
2 − 4k2s0s0 = −kp ,

e−2µ(2µ̈− 2µ′′ − 2µ′r−1 + µ̇2 − µ′2)− 2ks1,te
−µ − 6ks1e

−µµ̇+

+ 4k2s1
2 − 4k2s0s0 = −kp . (6.3.4)

We see from equations (6.3.4) that these equations are consistent pro-

vided that s0 = 0. Hence out of the nine field equations (6.3.4), there

exists only five independent field equations these are given by

µ̇′ − µ̇µ′ = 0 , (6.3.5)

µ′′ − µ′2 − µ′r−1 = 0 , (6.3.6)

s1,t + 3s1µ̇ = 0 , (6.3.7)

− kp = e−2µ
(

2µ̈− 3µ′
2

+ µ̇2 − 4µ′r−1
)

+ 4k2s21 , (6.3.8)

− kρ = 3e−2µ
(
µ′

2 − µ̇2 + 2µ′r−1
)

+ 4k2s21 . (6.3.9)

The solution of equation (6.3.7) is given by

s1 = de−3µ . (6.3.10)
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where d is a constant of integration.

(I) General Case: When µ = µ(r, t). The general integral of the

equation (6.3.5) is given by

e−µ = φ(r) + ψ(t) + c , (6.3.11)

where φ and ψ are function of r and t respectively and c is any arbitrary

constant independent of r and t. The solution (6.3.11) must satisfies

the equation (6.3.6). Hence we have

φ′′(r)− 1

r
φ′(r) = 0 . (6.3.12)

Solving the equation (6.3.12) we obtain

φ(r) = a1r
2 + a2 , (6.3.13)

where a1 and a2 are constants of integration.

Also by integrating the equation (6.3.5) with respect to r we obtain

µ(r, t) = ln |µ̇(r, t)A(t)| , (6.3.14)

where A(t) is a constant of integration with respect to r and it may

involve the time t explicitly., so that µ̇ 6= 0. Similarly, integrating the

equation (6.3.5) with respect to t, we obtain

µ(r, t) = ln |µ′(r, t)B(r)| , (6.3.15)

where B(r) is a constant of integration with respect to t it may be a

function of r.

208



From equations (6.3.14) and (6.3.15), we have

µ(r, t) = ln |µ̇(r, t)A(t)| = ln |µ′(r, t)B(r)| . (6.3.16)

From equation (6.3.11), we obtain

µ
′
=− eµφ′(r) , µ̇ = −eµψ̇(t) ,

µ
′′

=− eµ[φ
′′
(r)− eµφ′2(r)] , µ̈ = −eµ[ψ̈(t)− eµψ̇2(t)] ,

µ̇′ =e2µφ′(r)ψ̇(t) . (6.3.17)

From equations (6.3.11) and (6.3.16) we write

[φ(r) + ψ(t) + c]−1 = µ̇(r, t)A(t) = µ′(r, t)B(r) . (6.3.18)

This gives

A(t)ψ̇(t) = B(r)φ′(r) = −1 . (6.3.19)

This yields

φ′(r) =−B−1(r) , (6.3.20)

and ψ̇(t) =− A−1(t) . (6.3.21)

Integrating the equation (6.3.20) with respect to r we get

φ(r) = a1r
2 + a2 = −

∫
B−1(r)dr + a3 . (6.3.22)

Differentiating the equation (6.3.22) we get

2a1r =−B−1(r) ,
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⇒ B(r) =− 1

2a1r
. (6.3.23)

Similarly, from the equation (6.3.21), we obtain

ψ(t) = −
∫
A−1(t)dt+ b3 . (6.3.24)

We choose

A(t) =
1

2b1t
. (6.3.25)

For this choice of A(t), the equation (6.3.24) gives

ψ(t) = −b1t2 + b2 , (6.3.26)

where b1, b2 are constants of integration with respect to t. Thus the

general integral (6.3.11) becomes

e−µ =a1r
2 − b1t2 + a2 + b2 + c ,

⇒ e−µ =a1r
2 − b1t2 + c1 , (6.3.27)

where c1 = a2 + b2 + c. Hence the metric (6.2.1) becomes

ds2 = [a1r
2 − b1t2 + c1]

−2[dt2 − dr2 − r2(dθ2 + sin2θdφ2)] . (6.3.28)

The pressure and density become

kp =4a1(a1 − b1)r2 + 8b1(a1 − b1)t2 − 4c1(2a1 + b1)− 4k2s21 ,

(6.3.29)

kρ =− 12b1(a1 − b1)t2 + 12a1c1 − 4k2s21 . (6.3.30)
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In the absence of time t, the solution (6.3.28) reduces to the solution

obtained by Katkar and Patil [60].

From these equations (6.3.29) and (6.3.30), we obtain

k(p+ ρ) = 4a1(a1 − b1)r2 − 4b1(a1 − b1)t2 + 4c1(a1 − b1)− 8k2s21 .

(6.3.31)

Multiplying equation (6.3.29) by 3 and the equation (6.3.30) by 2 and

adding we get

k(3p+ 2ρ) = 12a1(a1 − b1)r2 − 12b1c1 − 20k2s21 . (6.3.32)

Without loss of generality, we set c1 = a2 + b2 + c = 0. Consequently,

from equations (6.3.30) and (6.3.32), we find

12a1(a1 − b1) =
k(3p+ 2ρ) + 20k2s21

r2
, (6.3.33)

and − 12a1(a1 − b1) =
kρ+ 4k2s21

t2
. (6.3.34)

Solving the equations (6.3.33) and (6.3.34) for a1 and b1 we find

a1 =
[k(3p+ 2ρ) + 20k2s21]t

2r
√

3
{

[k(3p+ 2ρ) + 20k2s21]t
2 + r2[kρ+ 4k2s21]

}1/2 , (6.3.35)

b1 =− (kρ+ 4k2s21)r

2t
√

3
{

[k(3p+ 2ρ) + 20k2s21]t
2 + r2[kρ+ 4k2s21]

}1/2 . (6.3.36)

Substituting these values of a1 and b1 in the equation (6.3.28) we get
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ds2 =
4[(3p+ 2ρ+ 20ks21)t

2 + (ρ+ 4ks21)r
2]

3k (p+ ρ+ 8ks21)
2
r2t2

[
dt2 − dr2−

− r2(dθ2 + sin2θdφ2)

]
. (6.3.37)

If now µ is a function of t alone, in this case the space-time (6.2.1)

becomes

ds2 = [−b1t2 + c1]
−2[dt2 − dr2 − r2(dθ2 + sin2θdφ2)] . (6.3.38)

where c1 = b2 + c, with pressure and density given by

−kp =e−2µ(2µ̈+ µ̇2) + 4k2s21 , (6.3.39)

−kρ =− 3e−2µµ̇2 + 4k2s21 . (6.3.40)

The constants b1 and c1 are obtained by solving equations (6.3.39) and

(6.3.40) with the help of (6.3.27) as

b1 =
1

2
√

3t
(kρ+ 4k2s21)

1/2 ,

c1 =− t

2
√

3(kρ+ 4k2s21)
1/2

(3kp+ 2kρ+ 20k2s21) .
(6.3.41)

Hence, the solution (6.3.38) reduces to

ds2 =

{
4[kρ+ 4k2s21]

3t2(kp+ kρ+ 8k2s21)
2

}[
dt2 − dr2 − r2(dθ2 + sin2θdφ2)

]
.

(6.3.42)
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6.3.1 Petrov classification of the solution

The free gravitational field is characterized by the completely trace

free Weyl curvature tensor Chijk. It has 20 independent components

in the Einstein-Cartan theory of gravitation. These can be expressed

in terms of the five complex components of the Weyl tensor ψA, (A =

0, 1, 2, 3, 4), nine components of a Hermitian 3×3 matrix ΘAB, (A,B =

0, 1, 2) and a real parameter χ.[Jogia and Griffiths [55]].

We follow the notations of Jogia and Griffiths and found that

ψ0 =ψ1 = ψ3 = ψ4 = 0 , Θ01 = Θ02 = Θ21 = 0 ,

ψ2 =− 1

3
[3ke−µ(s1,r + s1µ

′
) + 2k2s21] ,

Θ00 =ike−µ[s1,r + s1(µ̇+ µ
′
+ 2r−1)] , (6.3.43)

Θ11 =
ik

2
e−µ(s1,r + s1µ

′
+ 2s1r

−1) ,

Θ22 =ike−µ[s1,r − s1(µ̇− µ
′ − 2r−1)] ,

χ =− i

6
[3ke−µ(s1,r + s1µ

′ − 2s1r
−1)− 2k2s21] .

This is the Petrov-type D solution. For vanishing of spin s1, we see

that all the components of the Weyl tensor vanish and the space-time

metric reduces to the conformally flat space-time and the solution will

be Petrov-type 0.

Discussion

It is evident from the equations (6.2.21) that the non-static spheri-

cally symmetric solutions are expanding, accelerating and rotating but
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non-shearing. The solutions are proved to be Petrov-type D. However,

the dynamic solution (6.3.42) is expanding and rotating with zero ac-

celeration and shear; whereas the static solution is accelerating and

rotating with expansion free and shear free. We see that the spin of

the gravitating matter influences the geometry of space-times.
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