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Abstract

Recently, it has been proposed to relate properties of primordial scalar perturbations to

the conformal invariance of some very early Universe models. A concrete realization of this

idea is given in the context of the conformal rolling scenario. The main ingredient of the

latter is the complex scalar field conformally coupled to gravity and rolling down the negative

quartic potential. During the conformal rolling, phase perturbations acquire flat power

spectrum, which can be converted into adiabatic perturbations at some later epoch by one

of another mechanism. There are two sub-scenarios of the model depending on the behavior

of the cosmologically interesting modes by the end of the rolling: one with superhorizon

modes and the other with subhorizon ones. In the latter case, phase perturbations proceed

to evolve at the intermediate stage between conformal rolling and conventional epoch. This

evolution results into the small negative tilt, statistical anisotropy of all even multipoles

starting from quadrupole of general structure and non-Gaussianity of the peculiar form. The

signatures of the former sub-scenario are the quadrupole statistical anisotropy of both general

and quadrupole types and the non-Gaussianity with a (fairly mild) singularity in the folded

limit. We review analogous predictions in the context of the inflation and conclude that the

conformal rolling scenario can be descriminated from the inflation in future experiments. We

also discuss the novel cosmological scenario of the early Universe, where the potential role

of conformal symmetries is understood from a much broader prospective. In this picture,

proposed by Hinterbichler and Khoury, conformal rolling scenario is just a particular case in

a myriad of possible models. We review the main novelties and assumptions of the general

setup, and show that predictions made in the framework of the conformal rolling scenario

hold for a broad class of models, e.g. the Galilean Genesis.

Starting from the particular prediction, the statistical anisotropy, we constrain the unique

parameter h2 of the conformal rolling scenario. For this purpose, we employ the quadratic

maximum likelihood method, and apply it to the search of the statistical anisotropy in the

seven-year WMAP data. We confirm the large quadrupole anisotropy detected in V and

W bands, which has been argued to originate from systematic effects rather than from

cosmology. We construct an estimator for the parameter h2. In the case of the sub-scenario

with the intermediate stage we set an upper limit h2 < 0.045 at the 95% confidence level. The

constraint on h2 is much weaker in the case of another sub-scenario, where the intermediate

stage is absent. We also comment on the statistical anisotropy recently detected in the CMB

low multipoles. This anomaly is unlikely to be explained by the primordial physics. On the

other hand, the uncounted foregrounds appear to be a natural source of the low multipoles

correlations. We show that the strong quadrupole-octupole anomaly is, in principle, resolved

by the account of the Kuiper belt. Simultaneously, the latter can provide the resolution to

the parity asymmetry.
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Foreword

The present thesis collects the work of three publications by the author concerning theoretical

and observational properties of the conformal rolling scenario, as well as the investigations of

the statistical anisotropy in the CMB sky. All the results are original, unless otherwise stated.

Chapters 4 and 6 are fully based on my articles [23, 112, 146] written with collaborators.

In the Chapter 2, I review the state of affairs in the inflation and ekpyrotic models. The

Chapter 3 is essentially the introduction to the topic of the conformal rolling scenario, while

the Chapter 5 has been added to complete the discussion on the possible role of conformal

symmetries in the theory of (very) early Universe.
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1 Introduction

1.1 Problems of Hot Big Bang theory

With the advent of the WMAP data, the standard Big Bang theory has become the subject

of rigorous experimental tests. As a result, the six-parametric ΛCDM model has been estab-

lished as the best fit of the cosmological evolution starting from approximately 1s and till

nowadays. In this picture, the Universe started from the extremely hot state and relatively

small sizes in the far past. At these early times the radiation dominated epoch occured,

which subsequently turned into the stage driven by the non-relativistic particles. Today, we

live in the Universe undergoing the accelerated expansion with the almost constant Hubble

rate. The content of the present Universe is quite well established, as well as some key

properties like the homogeneity, the isotropy and flatness [1]. They are encoded in the form

of the Friedmann–Robertson–Walker metric,

ds2 = dt2 − a2(t)dx2 ,

where a(t) is the scale factor. Clearly, these properties should be viewed as statistical, i.e.

obtained as the average over the cosmological scales. The reality tells us that the Universe

is locally inhomogeneous. These inhomogeneities start to emerge at distances as large as

∼ 100 Mpc, and result from the evolution of the cosmological perturbations. Assumed

to be particularly small at the beginning of the hot epoch, they become enhanced during

the evolution and move towards the Jeans instability at some point. This is essentially the

mechanism of the structure formation. Cosmological perturbations are also interesting from

the purely theoretical point of view. Indeed, their properties encoding the information about

the far past epochs, are imprinted in the temperature fluctuations of the relic photons. The

latter decouple from the baryons at the time t ≈ 350000 years, and since this point on travel

unaffected by interactions with the matter. Thus, study of the relic photons provides us with

a deep insight into the properties of the cosmological perturbations at the early times. In

particular, the prediction of the Big Bang theory about the oscillations in the baryon-photon

plasma preceding the last scattering of photons was found to be in a remarkable agreement

with the CMB data.

Though the tremendous success of the standard cosmology, there are several issues left

unaddressed in the conventional picture. Probably, the most puzzling one is the nature of

the dark energy driving the present accelerated expansion of the Universe. Formally, this

amounts to adding the term with the positive Λ-constant to the Einstein–Hilbert action. This

simple phenomenological construction, however, fails to explain the extremely small density

associated with the dark energy as compared to the densities of the four known forces. If the

dark energy is some uncounted fifth force or the General Relativity is inconcistent at large

scales, is still unclear, though many proposals have been made on these issues. In particular,
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it is unclear if the dark energy is indeed the constant or it is rather characterized in terms

of some dynamical field, quintessence. Thus, we are in the situation, that no particular

predictions about the future evolution of the Universe can be made.

The second problem is about the unnatural initial conditions set by hands at the be-

ginning of the hot epoch. First, even the properties of the homogeneity and isotropy ob-

served with a high accuracy, appear to be problematic for the Big Bang theory, since they

require a huge fine-tuning of the initial data. The size of the Universe visible today is

lH,0 ≈ 1.4 · 104Mpc. Let us draw back the evolution of the Universe to the times, when the

last scattering of the photons occured. The size of the causally connected area at these times

is

lH,1 = a(t1)

∫ t1

tPl

dt

a(t)
.

Due to the expansion of the Universe, this size measured today is given by

lH,1 = a(t1)

∫ t1

tPl

dt

a(t)
,

which is rather small compared to the size of the visible Universe,

lH,0
lH,1(t0)

∼ 35 .

In particular, this implies that the CMB sphere visible today consists of the(
lH,0

lH,1(t, 0)

)2

∼ 1000

patches, which have been disconnected at the times, when the last scattering occured. Thus,

one naturally expects that the temperature anisotropies detected should be of the order

unity, δT (n)/T0 ∼ 1. This natural prediction of the standard Big Bang theory is in a sharp

contrast with the CMB data: δT (n)/T0 ∼ 10−5.

From the viewpoint of the Big Bang theory, it is also challenging to explain, why the

Universe is so flat. The general background metric in the homogeneous and isotropic Universe

is given by

ds2 = dt2 − a2(t)

(
dr2

1− κr2
+ r2dΩ2

2

)
,

where κ = −1, 0, 1 for an open, flat or closed Universe. According to the ΛCDM model,

the Universe is filled with the radiation, which energy density scales as ρr ∼ a−4, the non-

relativistic matter with ρm ∼ a−3 and the vacuum energy with the constant energy density. In

the open and the closed Universes there is the additional contribution coming from the non-

zero spatial curvature. Combining altogether, one writes the standard Friedmann equation

H2 =
8πG

3
ρ− κ

a2
(1)
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as follows

H2 = H2
0

(
Ωrad

(a0

a

)4

+ Ωm

(a0

a

)3

+ ΩΛ + Ωcurv

(a0

a

)2
)
,

where H0 is the Hubble parameter measured today; Ωcurv is the current fractional contribu-

tion of the curvature given by

Ωcurv = − κ

a2
0H

2
0

.

It is strongly constrained by the seven-year WMAP data [1],

−0.0178 < Ωcurv < 0.0063 .

As it follows, going backwards in time, the contribution of the curvature falls down during

the radiation and matter dominated stages. Thus, the prediction of the standard Big Bang

is that the contribution of the spatial curvature should be extremely small at early times.

Say, at the Planckian times it is estimated as |Ωcurv| . 10−60. In the conventional cosmology,

this tiny value is set by hands, which sounds very unnatural.

One more puzzle of the Big Bang theory is the entropy problem. The latter states that

to achieve the present value of the entropy in the Universe, one should set the initial large

value of the entropy by hands. This follows from the fact that the Universe is roughly in

the equilibristic states at all the stages of the standard evolution. Thus, its entropy remains

roughly constant. This translates into the large entropy of the small patch, from which the

Universe has grown up.

The main focus of this thesis is, however, the problem of primordial scalar perturbations.

Namely, there is no built-in mechanism for the structure formation in the Universe at later

epochs, i.e. one sets the “seeds” of future structures “by hands”. It sounds very unnatural,

especially taking into account rather unusual properties of these “seeds”. With a high accu-

racy, the latter are characterized by the unique quantity ζ(x), which remains frozen out at

the superhorizon scales. In this situation, one deals with the adiabatic initial conditions1.

Moreover, these primordial scalar perturbations are characterized by the flat power spec-

trum. To clarify this property, we introduce the correlation function of the product of two

perturbations ζ,

〈ζ(x)ζ(y)〉 =
1

(2π)3

∫
d3keik(x−y)Pζ(k) . (2)

The function Pζ(k) is the power spectrum of the primordial scalar perturbations. The flatness

of the spectrum implies the particular dependence on the momentum k, i.e. Pζ(k) ∼ k−3. It

is convenient to introduce the power spectrum Pζ(k) defined by

Pζ(k) =
k3

2π2
Pζ(k) . (3)

1We give a more rigorous definition of the adiabatic initial conditions in the Appendix A.
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With these notations the flatness implies the independence of the power spectrum on the

momentum k, i.e. Pζ(k) = const. The correlation function (2) taken at different equal

spatial points x = y is then reduced to

〈ζ2(x)〉 =

∫
dk

k
Pζ(k) . (4)

We prefer to work in terms of the power spectrum Pζ in what follows, unless the opposite is

stated.

The problems mentioned above tell us clearly that the conventional cosmology is incom-

plete. There are several other (not so strong, however) features indicating the non-trivial

extension of the ΛCDM model. We comment on some of them in the end of the Section 1.3,

after we clarify basic notations of the CMB physics.

1.2 Models of (very) early Universe

1.2.1 Inflation

To address the problems of the unnatural initial conditions, one assumes that there must

have been some epoch preceding the conventional Hot Big Bang. The most well-known

candidate in this regard is the inflation, i.e. the epoch of the rapid accelerated expansion

of the Universe. In this picture, the Universe observed today is just a small patch in the

huge region, which became causally connected before the radiation dominated era started.

The flatness is also addressed in the most elegant way. During the accelerated expansion

the contribution of the spatial curvature falls down rapidly. Thus, we are left with the

significantly flat Universe by the beginning of the conventional epoch.

Historically, the first model of the inflation was proposed by Starobinsky in [2]. Inter-

estingly, his model addressed the problem of the conformal anomaly in the quantum gravity

rather than the standard cosmological problems. Further, Mukhanov and Chibisov consid-

ered the mechanism responsible for the production of adiabatic perturbations and resulted

with a flat spectrum [3]. The simple inflationary scenario with the scalar fields was proposed

by Alan Guth in [4]. Guth’s model played a profound role in establishing the inflation as

the major cosmological paradigm. According to his scenario, inflation is an exponential ex-

pansion of the Universe in a supercooled false vacuum. Being metastable, the false vacuum

decays into the bubbles of the true vacuum. The latter collide, and the Universe becomes

hot. Later on it was understood that this simple picture dubbed as the “old inflation” suf-

fered from the “graceful exit problem”. The latter was avoided in the healthier scenario

reffered to as the “new inflation” [5]. Still it suffered from the articficial assumptions about

the thermodynamical equilibrium at the beginning of the inflation. These problems are ab-

sent in the chaotic scenario [6], which operates under rather general assumptions about the
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underlying theory of the Nature at very early times and under very general initial conditions.

The simplest versions of the chaotic inflation rely on the unique scalar field referred to as

the inflaton. The special requirement to the form of the inflaton potential is that it should

be flat enough, i.e. it obeys the so called slow roll conditions. The latter ensure that the

Universe undergoes the epoch of the approximately de Sitter expansion, and this background

is the dynamical attractor. The inflaton fluctuations evolving on the de Sitter background

acquire the flat power spectrum, while the small deviations from the pure de Sitter encoded

in the slow roll parameters leads to the slightly tilted spectrum [3, 7, 8]. Remarkably, the

flat power spectrum of the primordial scalar perturbations has been confirmed in the exper-

imental data, as well as the small tilt. Since this time on, the inflation became the leading

candidate on the role of the very early Universe theory. Though the obvious success of the

inflation, one should be careful, when treating it as the experimental fact. First, one needs

to check if the desired properties of primordial perturbations are obtained in alternative

frameworks.

Finally, the inflation also addresses the problem of the entropy. Once the inflaton field

moves towards the minimum of its potential, the inflation finishes. At this time, the inflaton

starts to oscillate around the minimum decaying into conventional particles. Since this

process is highly non-equilibristic, the entropy grows and rapidly reaches the values required

by the conventional cosmology. This process is referred to as the reheating and has been

elaborated in the articles [9].

1.2.2 Bouncing and collapsing Universe

Searching for alternatives to the inflation, one naturally (but not necessarily) assumes that

there has been the contracting stage previously to the standard Big Bang. This picture of

the Universe immediately encounters several problems. First, the turn from the contraction

to the expansion appears to be very problematic from the viewpoint of the quantum field

theory. Indeed, at the contracting stage the Hubble parameter is negative, while it is positive

during the expansion. Thus, to achieve the bounce, one claims that the derivative of the

Hubble parameter is positive. This implies that the Universe must be dominated by the

phantom energy near the bounce. Let us show this explicitly. Taking the derivative of the

left and right handsides of the Friedmann equation and using the conservation law

ρ̇+ 3H(ρ+ p) = 0 ,

one obtains

Ḣ = −4πG(ρ+ p) .
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As it follows, Ḣ > 0 implies p < −ρ. Note that the inequality p ≥ −ρ, the Null Energy

Condition (NEC)2, is hardly violated in the quantum field theory. The naive way to construct

the matter with the phantom properties is to consider the scalar field with the negative kinetic

term,

L = −1

2
(∂µφ)2 − V (φ) .

This naive theory, however, suffers from the ghost instabilities, i.e. one can infinitely lower

the energy of the system by creating particles.

In the pre-Big Bang scenario (for a review see [10]) it is assumed that the transition occurs

at energies so high that the effects of the quantum gravity become important. However, the

theory of the quantum gravity or the superstring theory replacing the latter are not developed

to address this issue. In particular, they fail to answer if the bounce is possible in principle.

A very interesting proposal on the possibility of the NEC violation without the obvious

pathologies has been made in the framework of the ghost condensate models [11]. Though

they seem to suffer from several conceptual problems [12], they set the belief that the smooth

bounce can be achieved in terms of some healthy theory. The ghost condensate phase has

been incorporated as the necessary ingredient in some early Universe models. One example

is represented in the starting-the-Universe picture [13]. It is also used in some versions of

the ekpyrotic scenario [14], to which brief discussion we turn now, while postponing a more

thorough analysis until the next Chapter.

The ekpyrotic models appeared first in the higher dimensional braneworld picture [15].

They, however, admit a four-dimensional description at the times far from the bounce. The

ekpyrotic phase is then realized as the period of the slow contraction, when the Universe is

driven by the matter with the super-stiff equation of state. Introducing the matter with this

strange property is favored in a view of the other problem of bouncing cosmologies. Once the

Universe contracts, it becomes more and more anisotropic. These anisotropies grow rapidly

as the scale factor decreases, i.e. their energy density scales as ρσ ∼ 1/a6. This is the result

from the article by Belinsky, Khalatnikov and Lifshitz [16]. Note that the energy density

of the matter obeying the equation of state p = wρ scales as ρ ∼ a−2(1+3w). Nothing to

say that the contribution of the standard matter, relativistic or non-relativistic, becomes

completely negligible as compared to the anisotropies at some point of the evolution. Thus,

even if one managed to provide the transition through the bounce, it does not guarantee

that the Universe is homogeneous and isotropic at the beginning of the conventional epoch.

The problem is avoided, if the Universe is driven by the matter with w > 1 [17]. This is

the case of the ekpyrotic phase. Consequently, the Universe smoothens provided that the

contracting stage is long enough.

2The covariant formulation of the NEC is Tµνn
µnν ≥ 0, where Tµν is the energy-momentum tensor, and

nµ is any non-spacelike vector.
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The latter is also the requirement for the horizon problem to be resolved, in the sense

that the Universe may become causally connected at large distances. Furthermore, during

the ekpyrotic phase, the contribution of the spatial curvature falls down as compared to

one of the dominating matter. Thus, if the duration of the slow contraction is long enough,

the Universe becomes essentially flat. Hence, the flatness problem is also addressed in the

ekpyrotic scenario. The conversion of the energy density during the ekpyrotic phase into the

conventional matter can be designed in the same way as in the inflation. Thus, the entropy

problem obtains the solution. The creation of the primordial scalar perturbations with the

flat spectrum is rather challenging (but not impossible!) in the ekpyrotic models. We discuss

this issue in details in the next Chapter. Here we just note, that even if the flatness of the

spectrum is ensured, one cannot be sure that this property survives through the bounce. In

this sense, the ekpyrotic models are currently at the stage of the development.

1.2.3 (Pseudo)-Conformal Universe

Our main concern in this thesis is the conformal rolling scenario first proposed in [18] and

further developed in [19, 20, 21, 22, 23]. This model has been designed to address the problem

of primordial scalar perturbations solely. The main assumption behind the conformal rolling

scenario is that there must be some relation between the flatness of the primordial spectrum

and conformal symmetries inherent in the early Universe theory [24]. The conformal rolling

scenario is the concrete realization of this idea. Its basic ingredient is the complex scalar

field φ conformally coupled to the gravity. During the evolution, it rolls down the slope of

the negative quartic potential developing perturbations in the radial direction and in the

orthogonal one. The latter, phase perturbations, are argued to acquire the flat spectrum

before the conformal rolling stops. Once the phase perturbations are superhorizon at this

point, they remain frozen out until the beginning of the hot epoch, when phase perturba-

tions get converted into adiabatic ones. The particular predictions of this sub-scenario are

the non-Gaussianity in the trispectrum and the quadrupole statistical anisotropy. If phase

perturbations are still subhorizon at the end of the rolling, they proceed to evolve. In that

case, the intermediate stage between the conformal rolling and the hot epoch is required.

The evolution at the intermediate stage results into the trispectrum of a rather peculiar form

and the statistical anisotropy of all even multipoles.

The other cosmological scenario incorporating conformal symmetries is the Galilean Gen-

esis [25]. This model is based on the drastically different Lagrangian as compared to the

conformal rolling scenario. However, the result is again the flat spectrum of the relevant

perturbations. Note that the Galilean Genesis is also interesting in the different context.

Due to the non-trivial higher derivetive structure, it allows for the strong violation of the

NEC condition. This is to be compared with the ghost condensate, where this violation is

rather mild [11]. The price is, however, superluminality.
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Further, it has been understood by Hinterbichler and Khoury [26] that the similarity

in the predictions of two different models is not the coincidence. They showed that the

flatness of the spectrum of the primordial scalar perturbations is ensured provided that a

few assumptions are satisfied: i) the background metric of the Universe is nearly of the

Minkowski type; ii) the Universe is in the CFT state with a high accuracy, and among

the field content of the Universe there are scalars with different conformal weights; iii) the

conformal symmetry is spontaneously broken by the time-dependent values of the field(s)

with the non-zero conformal weight(s); iv) there is a field with the zeroth conformal weight,

which acquires the flat spectrum once the first three conditions are satisfied. These conditions

are not restrictive at all, and in fact the speech is about the large class of models, of which the

conformal rolling scenario and the Galilean Genesis are the particular cases. The models from

this class represent the idea of the (pseudo)-Conformal Universe3. In particular, Hinterbichler

and Khoury considered the dynamical scenario with the negative quartic potential, akin

to the conformal rolling scenario. Interestingly, they resulted with the slowly contracting

Universe, which is in the certain sense the incarnation of the ekpyrotic phase. More generally,

the background evolution in the models of the (pseudo)-Conformal Universe is either the slow

contraction or the slow expansion as represented in the Galilean Genesis. In any case, the

Minkowskian evolution is the dynamical attractor of the (pseudo)-Conformal Universe.

1.3 Statistical properties of CMB

Since the growing number of early Universe models, it is of the particular importance to

descriminate between them. The CMB data provides us with the opportunity to probe the

primordial physics. In the 90’s the COBE experiments supported the (nearly) flat spectrum

of primordial scalar perturbations. The era of the precision cosmology started with the

advent of the WMAP data, when it became possible to test the most intriguing puzzles of

the Universe. Among the most fascinating results, the ΛCDM model has been established

as the major paradigm of the cosmology starting from one second. Also, the non-Gaussian

properties of primordial perturbations have been tested with the unprecedented accuracy.

The main idea, how one can probe the primordial physics from the CMB data is as

follows. The CMB sphere is nothing but the sphere of the last scattering of photons. The

latter decoupled at some initial stages of the conventional evolution of the Universe, i.e.

deep in the matter dominated stage. At these early times the cosmologically interesting

modes were essentially unaffected by the Jeans instability. Thus, they obeyed the linearized

equations of motion and did not mix with each other. This allowed them to make a direct

imprint on the CMB.

3The part “pseudo” stands for the slight violation of the conformal invariance by the gravitational effects.

This, however, does not affect the main idea.
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Among the signatures of the primordial physics in the CMB sky, the scalar tilt, tensor

perturbations and the non-Gaussianity are ones most commonly discussed. The former

implies that that the power of the primordial scalar perturbations may depend slightly on

the wavenumber k. In fact, the small red tilt is even favored by the seven-year WMAP

data [1],

ns = 0.968± 0.012

at the 68% confidence level, while the scale-invariant spectrum is ruled out at the 99.5%

confidence level. Note that the slight violation of the scale invariance of the spectrum

naturally arises within the inflation. Sometimes viewed as the strong argument in the support

of the inflation, one should be aware that the red tilted spectrum may be easily predicted by

the alternative frameworks. In this sense, the detection of the primordial tensor perturbations

would be a much stronger argument in favor of the inflation. The reason is that the inflation

predicts tensor modes, which can be as large as the current observational constraint. On the

opposite, the common prediction of the alternative frameworks is the strongly blue tilted

spectrum of the tensor perturbations. In particular, this implies they are suppressed at the

cosmological scales.

One more standard prediction of the inflation is the tiny level of the non-Gaussianities of

the primordial perturbation ζ(x). More precisely, this concerns the slow roll inflation driven

by the scalar with the canonical kinetic term [27]. Large non-Gaussianities may arise in

more complicated inflationary frameworks as well as in the alternative ones. Thus, the level

of non-Gaussianities itself cannot descriminate between the models of the early Universe.

However, it is a useful tool in a view of descriminating from the simplest versions of the

inflation. In this sense, the best motivated non-Gaussianity is one of the local type defined

in the real space by

ζ = ζg +
3

5
fNL(ζ2

g − 〈ζ2
g 〉) , (5)

where ζg is the Gaussian field, and fNL is the constant, which measures the non-Gaussianity.

The parameter fNL is constrained by the seven-year WMAP data [1],

−11 < fNL < 74 (6)

at the 95% confidence level. With the advent of the PLANCK data, this constraint is

promised to be improved up to |fNL| ' 5 (in the case of the non-observation).

In principle, the non-Gaussianity may have the non-trivial shape. Namely, the three-point

function 〈ζk1ζk2ζk2〉 may have a peculiar dependence with respect to the peculiar dependence

on the momenta k1, k2 and k3. Due to the translational invariance, the latter satisfy the

triangle relation k1 + k2 + k3 = 0. According to this, one naturally deals with the following

configurations in the momentum space:

i) the squeezed configuration with one of the momenta, say, k3 much less than the other two;
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ii) the equilateral one with three momenta of the same order of magnitude.

There is its own physics standing behind each of the configurations. Thus, testing the shape

of the primordial bispectrum provides us with a powerful tool to probe the models of the

early Universe.

More interesting observables are given by the connected part of the four-point function,

the trispectrum. This is clear from the fact that the number of possible non-trivial configu-

rations is larger in this case. Note, however, that the price for this diversity of the potential

signatures is the lower sensitivity of the experiments.

One more potential observable in the CMB sky is the statistical anisotropy. This implies

the correlation of the CMB coefficients alm defined by

alm =

∫
dΩnδT (n)Y ?

lm(n) .

Nowadays it is assumed that the covariance of the coefficients alm,

〈almal′m′〉 = Clm;l′m′ ,

is diagonal, i.e. Clm;l′m′ = Clδll′δmm′ . Violation of this property implies the statistical

anisotropy. From the viewpoint of the early Universe physics this means the direction-

dependence of the primordial power spectrum. However, the origin of the statistical anisotropy

can be completely different. To clarify the situation, it is reasonable to divide the range of

multipole numbers into low l’s corresponding to l . 30 and large l ∼ 100. In particular,

this separation is justified from the viewpoint of several CMB anomalies observed at the

2.5σ-4σ confidence level in the WMAP data. These are the low quadrupole power, the

quadrupole-octupole alignment, the “axis of evil”, cold spots, parity asymmetry and oth-

ers [28, 29, 30, 31, 32, 33, 34, 35, 36, 37]. Some of them, e.g. the quadrupole-octupole strong

correlation indicate that the statistical anisotropy is broken at low multipoles. If this and

other anomalies have the cosmological origin and, thus, indicate the non-trivial extension of

the conventional ΛCDM model, or they are due to the residuals of the foregrounds [38], or,

perhaps, one deals with yet unknown systematic errors, is still not clear. In this thesis, we

elaborate on the second opportunity, i.e. we assume that the quardrupole-octupole alignment

(and, simultaneously, the parity asymmetry) is explained by the uncounted foregrounds. On

the other hand, we insist that the statistical anisotropy at higher multipoles, if not due to

the systematics, is most likely to be described in terms of the primordial physics.

Statistical anisotropy of CMB is going to be the key observable for us in what follows.

1.4 Organization of the thesis

This thesis is organized as follows. In the Chapter 2 we give a brief overview of the inflation.

This we do for several reasons. First, the inflation provides with the best established mecha-

nism of the primordial perturbations creation. Second, several ideas conventionally discussed
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in infaltion are in fact generic ones and applied in different frameworks. In particular, this

concerns the mechanisms of converting isocurvature perturbations into the adiabatic ones,

as in the curvaton models. Thirdly and most importantly, we have to give the picture of

inflationary predictions, as broad as possible. These are to be compared with ones of the

conformal rolling scenario. In the end of the Chapter 2 we discuss the state of affairs in the

ekpyrotic models as one of the most widely developed alternatives to inflation nowadays.

In the Chapter 3, we turn to the topic of the primary interest, namely the conformal

rolling scenario. There we discuss the basic ideas underlying this model. At some point

it is natural to divide the model in two sub-scenarios depending on the evolution of the

cosmological modes by the end of the rolling. These are referred to as the sub-scenario A

with superhorizon modes by the end of rolling and the sub-scenario B with subhorizon ones.

The behaviour of the relevant perturbations in the former sub-scenario is fully captured by

the dynamics at the conformal rolling, and we discuss it therein. On the other side, the sub-

scenario B requires some additional assumptions and results into the different predictions.

Thus, it makes the sense to consider it in the separate Chapter.

As pointed out above, the conformal rolling scenario is just the particular case in the

myriad of ways to realize the flatness of the spectrum using the conformal symmetries. Thus,

our discussion would be incomplete without a brief review of the general setup. We fill in

this gap in the Chapter 5. There we also discuss the dynamical models of the Universe and

the set of possible predictions. In particular, we show that the most important signatures of

the conformal rolling scenario are in fact generic for a much broader class of models.

In the Chapter 6 we discuss the signatures of the conformal rolling scenario in the CMB

sky. From the non-observation of the (cosmological) statistical anisotropy, we establish the

first constraint on the parameter of the conformal rolling scenario. There we also discuss the

non-primordial sources of the statistical anisotropy in low multipoles. We consider the par-

ticular model, which could stand for the strong quadrupole-octupole correlations. The basic

ingredient of this model is the Kuiper belt treated as the new foreground. Simultaneously,

we address the problem of the parity asymmetry recently observed in the WMAP data.
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2 Perturbations in inflation and ekpyrotic models

2.1 Single-field slow roll inflation

Nowadays, the inflation is realized in a very broad range of models. We will mostly focus on

the particular class of models representing the inflationary paradigm in a very simple way,

i.e. ones obeying the slow roll conditions [2, 5, 6]. Assume that the Universe is dominated

by the scalar field φ. During the evolution, it slowly rolls down the slope of its potential

V (φ). Then, under rather general conditions, namely, slow roll conditions, the Universe

undergoes the period of a rapid (approximately) de Sitter expansion. Despite the simplicity,

the slow roll inflation provides the solution to (almost) all problems of the Hot Big Bang

as outlined in the Introduction. In particular, it provides the mechanism for the primordial

scalar perturbations creation with (almost) flat power spectrum. The latter property has

been favored by the COBE and WMAP missions, and established inflation as the most

promising candidate on the role of very early Universe theory. For the time being, we will

specify to the single-field versions of the slow roll models, of which the “new inflation” [5],

chaotic inflation [6] and even historically first Starobinsky’s model [2] are the particular

examples4.

To achieve the accelerated expansion, the evolution of the Universe should be driven by

the matter with the negative pressure, or, more precisely,

p < −1

3
ρ .

Let us show, how this requirement can be satisfied in the model with the single scalar field.

The action for the latter is given by

S =

∫
d4x
√−g

(
1

2
gµν∂µφ∂νφ− V (φ)

)
.

In this Section, we focus on the classical evolution of the field φ. Assuming that the latter is

homogeneous and provided that the metric is spatially flat, we obtain the following equation

of motion,

φ̈+ 3Hφ̇+ Vφ = 0 . (7)

The energy-momentum tensor is given by

T µν = gµλ∂λφ∂νφ− δµν
(

1

2
gλρ∂λφ∂ρφ− V (φ)

)
4The R2-based model of Starobinsky admits the effective description in terms of the scalar field (referred

to as scalaron) with the exponential potential. In this treatment, it represents the example of the large-field

slow roll inflation.
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In particular, the energy density of the homogeneous field φ simply reads from this energy-

momentum tensor,

ρ ≡ T 0
0 =

1

2
φ̇2 + V (φ) ,

while the pressure is given by

p =
1

2
φ̇2 − V (φ) .

The second equation, which describes the evolution of the field φ, is the Friedmann law,

H2 =
8π

3M2
Pl

(
1

2
φ̇2 + V (φ)

)
.

As it follows from the latter, if the potential term dominates upon the kinetic one,

φ̇2

2V (φ)
� 1 , (8)

the equation of state is of the vacuum type, i.e. p ≈ −ρ, and the Universe undergoes the

period of the (approximately) de Sitter expansion. The slow roll inflation also implies that

the second term in the Eq. (7) (Hubble-“friction”) dominates upon the first one,

φ̈

3Hφ̇
� 1 . (9)

With this condition obeyed, the de Sitter background turns out to be the dynamical attractor

of the equations of motion. If the requirements (8) and (9) are satisfied, the system of

equations takes the following simple form,

φ̇ = − 1

3H
Vφ (10)

and

H =
1

MPl

(
8πV

3

)1/2

. (11)

It is convenient to express the conditions (8) and (9) as the restrictions on the form of the

potential V (φ). For this purpose, we substitute the Hubble parameter from the Eq. (11) into

the Eq. (10) and use the requirement (8). This gives

ε ≡ M2
Pl

16π

(
Vφ
V

)2

� 1 . (12)

Providing similar manipulations, we obtain the second condition

η =
M2

Pl

8π

Vφφ
V
� 1 . (13)
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In literature, the conditions (12) and (13) are dubbed as the slow roll conditions, while the

parameters ε and η are referred to as the slow roll parameters. In particular, the condi-

tions (12) and (13) imply that the slow roll inflation occurs provided the potential V (φ) is

sufficiently flat. In what follows, we will also use the expressions for the derivatives of the

Hubble parameter and the inflaton field in terms of the slow roll parameters,

φ̇2

2V
=
ε

3
,

Ḣ

H2
= −ε , φ̈

Hφ̇
= ε− η .

Now, let us show how the cosmological problems are resolved within the slow roll inflation.

In this Section, we consider the horizon and flatness problems. For concreteness, we specify

to the chaotic inflation [6], and the power law potential

V = gφn .

For this type of the potential the slow roll conditions are always obeyed provided that the

values of the inflaton are very large,

φ� nMPl

4
√

3π
.

Let us discuss the realistic scenario of the beginning of inflation in this particular setup.

It is natural to assume that at very early times the Universe is highly inhomogeneous and

curved at Planckian scales. Assume further that we know the underlying theory of Nature

at these superhigh energies, and that there is the scalar φ with flat potential among the

field content of the theory. The field φ is, generally speaking, inhomogeneous, and there

is also the contribution of the curvature to the Friedmann equation. However, both these

contributions scale as 1/a2. The natural expectation is that some region of the Universe has

the size larger than Planckian. As a result, the contribution of the gradient terms and of the

curvature become smaller than the potential term. This region starts to expand and rapidly

tends to the inflationary regime. We live in one of these bubbles.

During the inflation, the scale factor grows exponentially. Take, for instance, the time,

when the field value equals to some φ. Since this time and until the end of inflation, the

scale factor grows in eNe times, where Ne is the so called number of e-folds defined by

Ne(φ) =

∫ te

tφ

H(t)dt .

After the chain of the algebraic manipulations,

Ne(φ) =

∫ φe

φ

H(φ)
dφ

φ̇
=

∫ φ

φe

3H2dφ

Vφ
=

8π

M2
Pl

∫ φ

φe

V

Vφ
dφ ,
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we obtain the expression for the number of e-folds

Ne(φ) =
4π

n

φ2

M2
Pl

(still the power law potentials are considered). At the beginning of inflation, the natural

value of the potential density is of the Planckian order, V (φi) ∼M4
Pl. Then, the initial value

of the inflaton field is estimated as φi ∼ g−1/nM
4/n
P l . The total number of e-folds then reads

N (tot)
e =

4π

n

(
M

(4−n)
Pl

g

)2/n

.

Taking the conreteness the quartic potential, V (φ) = λφ4, we obtain

N (tot)
e ' 2π√

λ

The inflationary mechanism of the primordial perturbations creation requires a particularly

small value of the coupling constant, i.e. λ ∼ 10−13. This will become clear in what follows.

Then, the number of e-folds is estimated as N
(tot)
e ∼ 107. Given this large value, the Universe

becomes causally connected at distances much exceeding the current visible size. Thus, the

horizon problem is addressed in the extremely successful way. Simultaneously, the inflation

resolves the flatness problem. The contribution of the spatial curvature scales as 1/a2 during

the inflation and, hence, falls down rapidly. Thus, we are left with the significantly flat

Universe, before the conventional hot epoch starts. Note, that in the inflationary framework

the present constraint on the spatial curvature appears to be very conservative. Hence, any

deviation from the flatness will be a serious challenge for inflationary models.

2.2 Primordial perturbations during inflation

The merit of inflation is that it provides the mechanism for the primordial scalar perturba-

tions creation. This issue has been first addressed by Mukhanov and Chibisov in [3] and

further elaborated in [7, 8]. We discuss the fluctuation of the inflaton on the homogeneous

background,

φ(x, t) = φ(t) + ϕ(x, t) ,

where ϕ(x, t) is the inflaton fluctuation. It is instructive to study the evolution of the

perturbations at the qualitative level first. We perform the quantitave analysis in the end of

this Section.

During the inflation, the Hubble parameter varies very slowly with the time. Thus, in the

zeroth order in the slow roll parameters ε and η, we are allowed to consider the background
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space-time with the pure de-Sitter metric. Also, in this approximation, we can neglect the

effective mass of the inflaton.

In general, quantization procedure in curved space-time is involved. But the things

are not so complicated if the background metric is spatially flat. The reason is that in the

conformal time the spatially flat metric is conformally related to the Minkowski one. Remind

that the conformal time is defined by

a(η)dη = dt .

With this notation, the metric of every spatially flat space-time takes the form

ds2 = a2(η)(dη2 − dx2) .

In the particular case of the de Sitter space-time, the scale factor is given by

a(η) = − 1

Hη
, H = const ,

with the understanding that the conformal time is negative, η < 0.

We should be aware of the potential problem with the evolution on the time-dependent

curved background. The difficulty is that the vacuum state may be ill-defined in this case.

Indeed, the background time-dependent metric can be viewed as the external field. It is

well-known that presence of the latter may lead to the particle creation and annihilation.

However, we are on the safe side, since the effects of the background de Sitter metric become

weak in the asymptotic past. This is true if we consider the modes with the momenta k,

which are subhorizon at very early times. The reason is that the corresponding wavelengths

are much smaller than the horizon size and, thus, the effects of the space-time curvature are

negligible. In particular, this implies that at very early times we can work on the effectively

Minkowski background. The vacuum in this case is well-defined, at least for the modes

with small wavelengths (as compared to the horizon size at this time). We assume that this

asymptotic past exists at least for all cosmologically interesting modes.

The action for the massless scalar field on the spatially flat background is given by

Sϕ =
1

2

∫
d4xa2(η)[(∂ηϕ)2 − (∂iϕ)2] . (14)

To establish the closer relation to the Minkowski space-time, we introduce the field χ,

χ = a(η)ϕ . (15)

In terms of the new variable χ the action (14) takes the form

Sχ =
1

2

∫
d3xdη

[
χ′2 − (∂iχ)2 +

a′′

a
χ2

]
, (16)
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The equation of motion for the field χ reads

χ′′ + k2χ− 2

η2
χ = 0 . (17)

In the asymptotic past, η → −∞ the third term on the left hand side is negligible. Then,

at very early times the field χ behaves as the free massless scalar field on the Minkowski

background. With this said, the quantization of the field χ is the straightforward procedure.

We write

χ(x, η) =

∫
d3k

(2π)3/2

(
e−ikxχ

(+)
k A†k + eikxχ

(−)
k Ak

)
, (18)

where A†k and Ak are the creation and the annihilation operators obeying the canonical

commutation relation,

[Ak, A
†
k] = δ(k− k′) .

The amplitudes χ
(−)
k and χ

(+)
k are the negative and positive frequency solutions of the

Eq. (17), respectively. The reality of the field χ(x, η) implies that

χ
(−)
k = [χ

(+)
k ]? .

In the WKB approximation the negative frequency solution in the asymptotic past is given

by

χ
(−)
k (η) =

1√
2wk

e−i
∫ η wkdη ,

where wk =
√
k2 − 2

η2
. Taking into account only the leading non-trivial term, we write

χ
(−)
k =

1√
2k
e−ikη

(
1− i

kη

)
.

At all the times we can write the general solution,

χ
(−)
k =

√−η(C1H3/2(−kη) + C2H
?
3/2(−kη)) .

This general solution respects the early times asymptotics. provided that C1 = −
√

πk
4

and

C2 = 0. Here we used the behaviour of the Hankel function Hβ(x) at x→∞,

Hβ(x)→
√

2

πx
exp

[
i

(
x− βπ

2
− π

4

)]
, (19)

where the upper sign in the argument of the exponent corresponds to the first Hankel func-

tion, and vice versa. In the opposite regime, x→ 0, the asymptotics of the Hankel function

reads

Hβ → −
i

π
Γ(β)

(x
2

)−β
. (20)
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As it follows from the latter, after the mode with momentum k exits the horizon, i.e. in the

regime k|η| � 1, the amplitude is given by

χ
(−)
k = − 1√

2k

(
i

kη

)
.

Substituting this late-time solution into the expression (18), and using the relation between

the fields χ and ϕ, we obtain the late time solution for the latter in the form

ϕ(x, η) =

∫
d3k

(2π)3/2
√

2k

H

k
(e−ikxÃ†k + eikxÃk) , (21)

where the operators Ãk and Ã†k differ from Ak and A†k by the irrelevant phase factors.

From (21), it is straightforward to compute the power spectrum of the inflaton fluctuations

in the superhorizon regime,

〈φ2(x)〉 =

∫
dk

k

H2

(2π)2
,

where the integration is performed over the superhorizon modes. This implies the following

amplitude of the inflaton fluctuations

∆φ =
√
Pφ =

H

2π
.

In the superhorizon regime, the amplitude of the inflaton fluctuations stays constant until

the time, when it reenters the horizon at the Big Bang stage. Though the amplitude stays

constant behind the horizon, the corresponding wavelengths grow exponentially during the

inflation. Now, let us estimate the minimal duration of the inflation provided the flatness of

the power spectrum is satisfied for all cosmologically interesting modes. The mode with the

conformal momentum k becomes superhorizon provided that

k

a(ηk)
∼ H ,

where ηk is the time of the horizon exit. Our aim is to estimate the minimal number of

e-folds Nmin
e = ln ae

a(ηk)
starting from the time ηk and until the end of the inflation. To do it,

let us perform physical momentum at the time ηk as follows,

k

a(ηk)
=

k

a0

a0

areh

areh
ae

ae
a(ηk)

,

where ae is the scale factor at the end of the inflation, areh is some characteristic value of

the scale factor during the reheating, and a0 is the present scale today. Assume that the
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Hubble parameter is not much smaller than the Planck mass during the inflation. Then, the

estimate for the minimal number of e-folds takes the form,

ln
ae

a(ηk)
' ln

MPl

q0

− ln
a0

areh
− ln

areh
ae

,

where q0 is the physical momentum corresponding to the conformal momentum k measured

today. To simplify the estimates assume that the scale factor does not change significantly

from the end of the inflation and until the end of the reheating. Note also that the tem-

perature during the Big Bang scales as T ∼ 1/a. Assuming further that the temperature of

the reheating can be as large as the Planck mass, i.e. Treh ∼ MPl, we obtain the following

estimate for the minimal number of e-folds during the inflation,

Nmin
e = ln

ae
a(ηk)

∼ ln
T0

q0

∼ 60 .

Here we used some characteristic momentum q0 = 0.002Mpc−1. In our estimates we com-

pletely neglected the evolution during the reheating. However, more correct estimates are

not much different from the one given above,

Nmin
e ' 50− 60 .

Now, let us estimate the primordial density perturbations generated by the inflationary

mechanisms. To do it, we use the picture of the local Universes. At the inflationary stage,

different patches of the Universe with size larger than the de Sitter horizon evolve like

separate Universes. Due to the perturbations of the inflaton with wavelengths larger than

the de Sitter horizon, the full inflaton field is approximately homogeneous in each patch, but

takes slightly different values in different patches. Hence, different patches undergo different

stages of the evolution. The time delay is given by

φ̇δt = δφ . (22)

Due to this time delay, “local Universes” exit the inflation at slightly different time. Then, the

energy density in these patches is different: in those regions, which exit the inflation earlier,

the energy density is lower, and vice versa. It is this physical mechanism which stands

for the primordial density perturbations formation. The estimate of the energy density

perturbations in these regions is given by

δρ ∼ ρ̇δt . (23)

After the exit from the inflation, the energy density decreases accordingly to

ρ̇ ∼ −Hρ ,
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Substituting the latter into the (23) and using (22), we obtain for the energy density per-

turbations,
δρ

ρ
∼ H

φ̇
δφ .

This estimate is in a remarkable agreement with the correct result. Note, however, that

the perturbation of the energy-density is gauge-dependent with respect to the associated

fluctuations of the metric. Commonly, the curvature perturbation ζ is used for the gauge-

invariant description of the primordial fluctuations [43, 8, 44]. For details and definitions,

we refer the reader to the Appendix A, or (more prefferably), to very nice reviews and

textbooks [39, 40, 41, 42]. Here we just recall that in the general theory of one scalar field

with the canonical kinetic term, the combination

u = a

(
ϕ− aφ′

a′
Ψ

)
,

dubbed as the Mukhanov–Sasaki variable [45], is gauge-invariant. Here Ψ is the scalar

potential referred to the excitation of the spatial metric. The quantity u satisfies the equation

u′′ −∆u− z′′

z
u = 0 , (24)

where

z =
a2φ′

a′
. (25)

It is straightforward to show that in the slow roll approximation z′′/z = 2/η2, and, therefore,

the Eq. (24) coincides with one of the massless scalar field on the de Sitter background. Thus,

following the same evolution and starting from the vacuum initial conditions, we simply write

down the answer for the amplitude of u/a in the superhorizon regime,

Pu/a =
H

2π
.

Furthemore, in the superhorizon regime the curvature perturbation ζ and the Mukhanov–

Sasaki variable are related to each other by

u = −zζ .

The power spectrum for the quantity ζ then reads

Pζ =
H2

2π|φ̇|
. (26)

The curvature perturbations ζ stays frozen out until the end of the inflation, survives through

the reheating and serves as the initial condition for the scalar perturbations at the beginning

of the conventional hot epoch.
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If we go beyond the approximation of the massless scalar field evolving on the de Sitter

background, the power spectrum becomes slightly tilted. To show this, we replace the power

spectrum obtained above with the following one,

Pζ → Pζ(k) =
H2
k

2π|φ̇c(ηk)|
. (27)

The subscript k here implies that the Hubble parameter is different at times, when different

modes k exit the horizon. Clearly, this effect is described in terms of the slow roll parameter

ε = − Ḣ
H2 . The second effect captured by the formula (27) is the variation of the inflaton

derivative. This is due to the non zero effective mass of the inflaton, Vφφ, and described in

terms of the slow roll parameter η. The deviation from the flatness is normally characterized

by the scalar tilt defined as follows

ns − 1 =
d lnPζ
d ln k

.

After not very tricky calculations, one obtains the following expression for the spectral

tilt [39, 40, 41, 42]:

ns − 1 = 2η − 6ε .

The last term on the right hand side is always negative, since ε > 0. Thus, taken separately

it sources the red spectrum. On the other hand, the first term may be either positive or

negative in dependence of the effecive mass squared of the inflaton, and stands for the blue

or red tilt, respectively.

The slightly tilted spectrum of primordial scalar perturbations is the most well-known

prediction of the inflation. It is, however, not a particularly strong signature, since it is easily

achieved in the alternative frameworks, e.g. models of the (pseudo)-Conformal Universe [19,

26]. It appears that tensor perturbations are much more interesting in this regard.

2.2.1 Tensor perturbations

One more issue commonly discussed within the inflation, is the creation of primordial tensor

perturbations. Though this issue is out of the scope of this thesis, it is of the particular

importance from the observational point of view. In fact, primordial tensor perturbations

serve as the potential “anti-smoking gun” for a broad row of cosmological models. As we will

see shortly, the standard inflation predicts the tensor perturbations, which may be naturally

of the detectable size. This may not be the case in different cosmological frameworks. In

particular, the tiny tensor perturbations are naturally predicted by curvaton mechanisms

(see discussion in Section 2.3 and references therein), or in the frameworks alternative to the

inflation.
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During inflation, the tensor perturbations satify the same equation as the Mukhanov–

Sasaki variable. Then, if they start from the vacuum initial state in the de Sitter space-

time, they follow the same evolution. Consequently, in the superhorizon horizon regime

they acquire the flat spectrum. First this has been shown in the context of Starobinsky’s

model [2].

We decompose the tensor perturbation hTTij as follows

hTTij =
∑
A=1,2

eAijh
A ,

where eAij are the basic symmetric traceless tensors, see Appendix A for more details. Note

that the fields hA are not canonically normalized. Thus, it is more convenient to work with

the field, φA =

√
M2
Pl

32π
hA, or, more precisely with the variable φ̃A = a(η)φA. Since the

fields φ̃A’s are canonically normalized and obey the same equation as the field χ, the power

spectrum of the fields φA in the superhorizon regime reads

PφA(k) =
H2
k

(2π)2
.

Returning to the variables hA, we obtain the power spectrum of tensor perturbations,

PT =
16

π

H2
k

M2
Pl

.

Here we take into account the fact that there are two tensor polarizations. As it follows, the

tensor perturbations have flat power spectrum to the zeroth order in the slow roll parameters.

With the slow roll conditions obeyed, one writes the power spectrum as follows,

PT =
128

3

V

M4
Pl

,

and the tensor-to-scalar ratio reads,

r ≡ PTPR
=

1

π

M2
PlV

2
φ

V 2
= 16ε .

The present constraint is [1]

r < 0.20

at the 95% confidence level. As it follows, the small (relatively large) parameter ε implies in

turn the small (relatively large) magnitude of the tensor perturbations. This correspondence

existing in the minimal versions of the inflation does not necessarily hold in more complicated

scenarios, e.g. ones incorporating higher derivative terms [59, 60, 61].
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The power spectrum of tensor perturbations is also slightly tilted. In the minimal infla-

tion, the tensor tilt is given by,

nT ≡
d lnPT
d ln k

∣∣∣∣
k=k?

= −2ε .

This provides us with the model-independent prediction of the single field slow roll inflation-

ary models,

nT = −r
8
.

The detection of the tensor perturbations with parameters obeying this relation, will be

a strong argument in favor of the inflation in its minimal versions. More generally, the

observation of any primordial tensor perturbations would be a very big problem for the

alternative frameworks. In particular, this concerns the conformal rolling scenario and other

models of the (pseudo)-Conformal Universe.

2.3 Curvaton model

2.3.1 Basic ideas

So far we discussed the single-field slow roll inflation. The attractive feature of this type

of models is that the problems of the Hot Big Bang are resolved in the unique manner,

i.e. by introducing the single field, the inflaton. In this framework, the Hot Big Bang

starts from the initial conditions described in terms of the adiabatic perturbation ζ, which

obeys the essentially Gaussian statistics. Though these properties are favored by the current

experiments, even small deviations from the adiabaticity and Gaussianity detected in the

forthcoming PLANCK data, would be a strong argument against the simplest models of

inflation. This is one of the motivations to develope alternative mechanisms of primordial

perturbations creation. In this Section we focus on the simple mechanism provided in the

curvaton scenario [46, 47, 49, 48]; our discussion will mostly follow the Refs. [47, 49, 50].

Note that our main motivation here is somewhat different from one mentioned above. As it

will become clear shortly, the ideas, which appeared first in the context of curvaton models,

are generic ones in the sense that they do not rely on the assumption of the inflationary

stage. In particular, this concerns the important issue of conversion entropic perturbations

into adiabatic ones. We will encounter this problem in the context of the conformal rolling

scenario. Moreover, it appers in almost all known alternatives to the inflation. The reason

is that relevant perturbations are commonly generated by the subdominant field(s) there

and, therefore, they are of the isocurvature type at the very beginning of the conventional

cosmological epoch. The purpose of the discussion below is to ensure the reader that this

situation is not hopeless at all.
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Let us assume that primordial cosmological perturbations are produced from fluctuations

of the scalar field σ (different from the inflaton) during a period of inflation, in the case when

the perturbations of the inflaton are considered to be negligible. The curvaton is supposed to

be the subdominant component of the Universe during the inflation. Hence, its fluctuations

are initially of the isocurvature type. To do not go into contradiction with the experimental

data, one should think of the mechanism converting isocurvature perturbations into adiabatic

ones. We postpone this discussion until the next Subsection. Here we focus on the evolution

of the curvaton during the inflation. The unperturbed curvaton field satisfies the equation

of motion

σ′′ + 2
a′

a
σ′ + a2Vσ = 0 .

Next, we expand the curvaton field up to the first order in the perturbations around the

homogeneous background as

σ(x, η) = σ(η) + δσ(x, η) ,

The linear perturbations satisfy the following equation on the large scales

δσ′′ + 2
a′

a
δσ′ + a2Vσσδσ = 0 .

This is essentially the same equation as of the inflaton fluctuation on the superhorizon scales5.

Hence, the fluctuation δσ on superhorizon scales will be Gaussian distributed and they will

have a nearly scale-invariant spectrum

Pδσ ≈
H2
k

(2π)2
.

This is true provided that the effective mass of the curvaton is small as compared to the

Hubble parameter during the inflation, i.e. m2
eff = Vσσ � H2. The subscript k denotes that

the Hubble parameter may vary between the horizon-exit of modes with different momenta

k. The spectral tilt is then given by

nσ − 1 ≡ d lnPσ
d ln k

= 2
Ḣ

H2
+

2

3

Vσσ
H2

.

We assume that this spectral tilt is inherited by the adiabatic perturbations generated after

the curvaton decay. For the quadratic potential we then obtain the slightly blue spectrum

of primordial perturbations. This may not be the case for the general potential since the

effective mass-squared m2
eff = Vσσ may be either positive or negative.

5To establish the better correspondence with the discussion in Section 2.2, one chooses to work with the

variable δσ̃ = aδσ.
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2.3.2 Conversion into adiabatic perturbations

After the end of the inflation the curvaton perturbation δσ the classical value σ and, hence,

their ratio δσ/σc stay constant for some time. Once the Hubble parameter drops below the

mass of the curvaton meff , the oscillations about the minimum of the potential V (σ) (taken,

say, at σ = 0) start. Provided that the potential is quadratic, the curvaton perturbation

to its classical value ratio stays constant in the oscillatory regime, since they obey one and

the same equation in this case. Even if the curvaton potential is not quadratic, after some

Hubble times one can make the approximation V ≈ 1
2
m2σ2. The fractional field perturbation

then has some constant value (
δσ

σ

)
= q

(
δσ

σ

)
?

,

where the constant q equals to unity in the case of the initially quadratic potential, while

in the opposite case q < 1. For simplicity, we will always assume that q = 1. The energy

density in the oscillating field is given by

ρσ(η,x) =
1

2
m2
σσ

2(x, η) ,

where σ(x, η) is the amplitude of the oscillation. We define the fractional energy density

keeping also the quadratic term,

δρσ
ρσ
≈ 2

δσ

σ
+

(δσ)2

σ2
. (28)

The non-linear term may not be particularly small, thus giving rise to the significant non-

Gaussianity.

During the oscillatory stage, the energy density of the curvaton field scales as non-

relativistic matter ρσ ∼ a−3. This observation is crucial from the viewpoint of convert-

ing isocurvature perturbations into adiabatic ones. Indeed, since the radiation scales with

the scale factor as ργ ∼ a−4, the curvaton field may give the significant contribution to

the total energy density or even dominate the latter at some point. Thus, its isocurvature

perturbations may be converted into adiabatic ones.

Let us study this mechanism in more details. The convenient way to do it is to introduce

the gauge-invariant curvature perturbation ζi associated with each individual energy density

component. The weighted sum during the oscillations of the curvaton field can be written

as follows,

ζ = (1− f)ζγ + fζσ , (29)

where the quantity f is given by

f =
ρ′σ
ρ′

=
3ρσ

4ργ + 3ρσ
.
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Let us work in the approximation of the sudden decay of the curvaton field, i.e. we assume

that the decay effects can be neglected right until some point in time, when the decay

width Γ becomes of the order of the Hubble parameter. At this point, all the energy of the

curvaton field instantaneously gets converted into the energy of the radiation. Before the

sudden decay, the curvaton and the radiation energy densities satisfy the energy conservation

equation separately,

ρ′γ = −4
a′

a
ργ , ρ′σ = −3

a′

a
ρσ ,

and the curvature perturbation ζi of each component remains constant on superhorizon scales

until the decay of the curvaton. In the curvaton scenario, the inflaton field is supposed to

give a negligible contribution to the primordial scalar perturbations formation. Under this

assumption, the initial curvature perturbation in radiation is negligible. Then, well before

the epoch of the curvaton decay, the total curvature perturbation is given by

ζtot = fζ inσ , ζγ = 0 .

Before the oscillations start, the contribution of the curvaton field to the total energy density

is small. Hence, the quanity f is also small. Thus, the perturbations at this stage are of

the purely isocurvature type, i.e. the total curvature perturbation is negligible. They evolve

in the superhorizon regime due to the evolution of the quanity f . During the oscillatory

regime, the contribution of the curvaton field to the total energy density grows. Hence, the

quantity f also grows. Extrapolating the Eq. (29) to the time of the curvaton decay, we

obtain the total curvature perturbation at this time,

ζtot = fDζ
in
σ . (30)

After the curvaton decay, the total energy density is due to the radiation solely. Thus, it is of

the adiabatic type and characterized by the unique curvature perturbation ζ. Strictly speak-

ing, the sudden decay approximation is applied provided that the curvaton field dominates

the evolution of the Universe at the time of the decay, i.e. provided that the decay constant

fD ≈ 1. This is the result of the numerical calculations made in [50]. In the opposite case,

the constant fD should be replaced by the ratio

r ≈
(
ρσ
ρ

)
D

defined at the time of the decay.

2.3.3 Non-Gaussianity in curvaton scenario

It is interesting to speculate about the possible values of the parameter r. At the theoretical

level, it can be arbitrarily small. This corresponds to the case of the arbitrarily large curvaton
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perturbation. Going into the particularly small values of r, however, strikes the observational

constraint, see (6). Indeed, shortly we will see that the small parameter r implies the large

non-Gaussianity, namely fNL ∼ 1
r
.

In more details, the initial curvature perturbation corresponding to the curvaton field

evaluated on the unperturbed hypersurfaces (Ψ = 0) is given by

ζσ =
1

3

δρσ
ρσ

. (31)

Now, we substitute the fractional energy density from the Eq. (28) and keep only the linaer

term for the time being. This results into the purely Gaussian total curvature perturbation

ζg =
2r

3

δσ

σ
.

Here we made use of the Eq. (30), where we replaced the decay constant fD by the ratio r.

Expressing the relative curvaton perturbation from this formula and substituting it into the

Eq. (28), and then substitung the relative energy density perturbation with the non-linear

term included back into the formula (31) and again making use of the Eq. (30), we obtain

ζ = ζg +
3

4r
ζ2
g .

Comparing the latter formula with the Eq. (5), one finally obtains the non-Gaussianity

parameter [49]

fNL =
5

4r
.

Thus, very small values of r (and, in turn, very large curvaton perturbation) are in a con-

tradiction with the experimantal data. The “disadvantage” of this result is that curvaton

fluctuations are not allowed to be arbitrarily large, since the constraint (6). In the Chap-

ter 3, this will turn into the constraint on the unique parameter of the conformal rolling

scenario. The pleasant feature is that the non-Gaussianities generated by the curvaton (or

analogous) mechanisms can serve as the descriminator between models of the early Universe,

i.e between minimal versions of inflation and different frameworks. We will strengthen this

statement in the following Section, where a bit broader picture of the possible primordial

non-Gaussianities is given.

2.4 Shapes and magnitudes of non-Gaussianities during inflation:

general case

2.4.1 Bispectrum

It may happen so that no significant tensor modes are detected in the PLANCK experiment.

The scalar tilt appears to be a very weak descriminator between the models of the early
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Universe. Hopefully, there are other interesting signatures: the non-Gaussianity and the

statistical anisotropy. In this Section we focus on the former one.

Clearly, the non-Gaussianity in the spectrum of primordial perturbations originates from

the non-linearities in the equations of motion of fields sourcing the adiabatic mode. If these

non-linearities are suppressed, the spectrum of resulting perturbations is Gaussian with a

high accuracy. This is the case, e.g. of the minimal inflationary models [27]. On the other

side, non-linearities, and, hence, non-Gaussianities can be large enough in the curvaton

scenario. These two examples, however, do not give the complete picture of non-linearities,

which may arise in the inflationary framework. Any thorough discussion of this issue could

be the subject of the separate thesis. Here we just give a very brief picture of the possible

non-Gaussianities generated by the inflationary mechanisms.

It is instructive to start with the simplest models of the inflation. To calculate the

non-Gaussianities there, one expands the cosmological perturbation theory up to the second

order in the inflaton-metric fluctuations. This analysis is very involved, and we refer the

interested reader to a very nice summary on these issues in [51]. We will, however, show on

rather general grounds that non-Gaussianity in the single-field slow roll inflation is tiny. In

particular, the magnitude of the non-Gaussianity is well below the sensitivity of the WMAP

and PLANCK experiments. In the first iteration, one naively estimates the level of non-

linearities accounting for the inflaton fluctuations only. This, however, leads to a wrong

estimate: the parameter of the non-Gaussianity reads in this case fNL = O(ε2, η2), [52]. The

leading contribution comes from the non-linearities in the fluctuations of the metric, and

estimated as fNL = O(ε, η), [53]. There is an elegant way to demonstrate this statement

following the argument presented by Maldacena in his work [27]. For this purpose, let us

specify to the so called squeezed limit, which implies that one of the three momenta, say

k1, is much smaller than the other two. Then, k2 ∼ k3. The fluctuation ζk1 is frozen by

the time the other two momenta cross the horizon. So, its only effect is to rescale the other

two momenta, so that we get a contribution propotional to the violation in scale invariance

of the two-point function with large momenta. Thus, we conclude that the effect should be

propotional to the tilt of the scalar perturbations,

〈ζk1ζk2ζk3〉 ∼ 〈ζk1ζ−k1〉k
d

dk
〈ζk2ζk3〉 = −(ns − 1)〈ζk2ζk3〉〈ζk1ζ−k1〉 .

To avoid the confusion, note that the non-Gaussianity of the standard inflation is not cap-

tured fully by the squeezed limit. However, the result for the full bispectrum is in agreement

with the estimate fNL = O(ε, η). The qualification here is that the non-Gaussianity in the

minimal inflation is not of the local type, but has a more generic structure. Hence, the pa-

rameter fNL is not a constant but a function of the momenta k1 and k2. Note also that the

primordial non-Gaussianity calculated in [27] is not the one, which could be, in principle,

measured in the CMB experiments. There is also the contribution due to the non-linear
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Figure 1: The momenta ki describing the bispectrum satisfy the triangle relation: k1 + k2 +

k3 = 0. Three interesting configurations with respect to the triangle relation are: a) the

squeezed configuration; b) the equilateral one; c) the flattened triangle.

evolution of the gravitational potentials at the conventional cosmological epoch resulting

into the significant improvement of the parameter fNL, so that the latter is estimated as

fNL ∼ 1 at the times of the last scattering. Still, this value is below the sensitivity of the

PLANCK experiments, |fNL| ' 5. Clearly also, this improvement is inherent to the physics

at the hot epoch rather than to any features of the primordial physics. Thus, it is not the

descriminator between the early Universe models at all. In what follows, we focus on the

primordial non-Gaussianities.

In principle, the non-Gaussianity may have a rich structure as in the minimal versions of

the inflation and a large value as in the curvaton models. The general form of the three-point

function in the Fourier representation is given by

〈ζk1ζk2ζk3〉 = (2π)3δ

(∑
i

ki

)
Fζ(k1,k2,k3) .

The δ-function standing here preserves the translation invariance; Fζ(k1,k2,k3) is the bis-

pectrum. As it follows, all the possible configurations in the momentum space satisfy the

triangle relation k1 + k2 + k3 = 0. Thus, it is possible to describe the trispectrum in terms

of the variables k1, k2 and k3. Interesting configurations following from the triangle relation

appear in the limits listed below:

i) the squeezed limit, when one of the three momenta, say k3, is much less than the other

two;

ii) equilateral one, when all three momenta have equal magnitude;

iii) flattened triangle, which corresponds the degenerate configuration with k1 = k2 = 1
2
k3 .

This classification is well motivated from the physical point of view. Accordingly to [54], the

squeezed bispectrum corresponds to the situation, when the evolution outside the horizon

dominates. This situation is natural in the context of the curvaton models [46, 47, 48], the

inflation with multiple light scalars (see e.g. [57] and references therein) or in the modulated

decay scenario [56, 55]. The equilateral configuration corresponds to the non-Gaussianity
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generated at the horizon-crossing. The flattened triangle configuration is less widely dis-

cussed, and it corresponds to the non-Gaussianity generated in the subhorizon regime [62].

This occurs, if the inflaton fluctuations start from initial conditions different from the vacuum

ones. The consistensy of this scenario is questionable, and we omit it in our discussion.

In line with the classification of Babich, Creminelli and Zaldarriaga [54], the local type

bispectrum peaks in the squeezed limit. Indeed, once we go into the Fourier space, the

Eq. (5) implies the function Fζ of the form

F (k1,k2,k3) ∝
fNLP2

ζ

Π3
i=1k

3
i

·
∑
i

k3
i .

The dependence on the momenta ki encoded in this formula, translates into the enhancement

of the bispectrum Fζ(k1, k2, k3) in the squeezed limit, in accord with the expectations of the

Ref. [54].

The equilateral configuration is provided, once the correlation is among the modes with

comparable wavelengths, which exit the horizon nearly at the same time. This opportunity

is realized if the non-Gaussianity is generated by derivative interactions: these interactions

become exponentially irrelevant, when the modes exit the horizon because both time and

spatial derivatives become small, so that all the correlation is among the modes freezing

almost at the same time. The examples of this type are obtained if we add higher derivative

operators [58]. Provided that the latter are crucial for the inflaton dynamics as is the case of

the k-inflation [59], the DBI inflation [61] or the ghost inflation [60], one’s natural prediction

is the non-Gaussianity peaking in the equilateral limit. On the other hand, the corresponding

bispectrum is suppressed in the squeezed limit. This statement is true for the generic single-

field inflation and holds if no other fields apart from the inflaton play a significant role in

the primordial perturbations creation [63]. The reason is essentially the same as in the

minimal versions of the inflation. Thus, the suppression is again of the order of the scalar

tilt. Consequently, the behaviour of the bispectrum in the squeezed limit is the key to

understanding if the primordial seeds of the structure formation are sourced by the (unique)

inflaton field or not. So, the enhancement of the squeezed configuration would imply the

presence of the additional degrees of freedom like those of the curvaton models [46, 47, 49],

modulated decay scenario [56, 55] etc. This opportunity is also natural in the alternative

frameworks. On the other hand, the detection of the equilateral type bispectrum (suppressed

in the other limits) in the future experiments would be a strong argument in favor of the

inflation. Indeed, in most alternative frameworks, e.g. ones we consider in this thesis, the

three-point function peaks at best at the squeezed configuration. This is clear from the

discussion above: the equilateral bispectrum implies the low correlation between modes with

different momenta. This opportunity is natural, once the scale factor changes rapidly, i.e. in

the inflation.
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2.4.2 Trispectrum

The richer phenomenolgy is given, once we turn to the non-Gaussianity in the four-point

function of the primordial fluctuations. Commonly it is described in terms of the function

Tζ , the trispectrum, defined from

〈ζ(k1)ζ(k2)ζ(k3)ζ(k4)〉c = (2π)3δ(k1 + k2 + k3 + k4)Tζ(k1,k2,k3,k4) ,

where only the connected part of the four-point function on the left hand side is considered.

Unlike the bispectrum, the trispectrum typically depends on the relative orientations of the

ki in addition to their magnitudes. It is convenient to use the momenta k1, k2, k3, k4,

k12 = |k1 + k2| and k14 = |k1 + k4| as the independent variables. In what follows, it is more

convenient to work with the trispectra T defined from,

T (k1, k2, k3, k4, k12, k14) =
P3
ζ

Π4
i=1k

3
i

T (k1, k2, k3, k4, k12, k14) .

The configurations of interest are listed below [64].

• Squeezed limit configuration. In this case, one of the external momenta is small as

compared to the others, say, k1 � k2 ∼ k3 ∼ k4.

• Equilateral configuration: all the external momenta have the same magnitude, i.e.

k = k1 = k2 = k3 = k4.

• Folded limit configuration corresponds to the situation, when two momenta with the

equal magnitude have the opposite direction, say, k12 → 0, and, respectively, k1 = k2,

k3 = k4.

• Specialized planar limit configuration. In this case, one has k1 = k3 = k14, and

k12 =

[
k2

1 +
k2k4

2k2
1

(
k2k4 +

√
(4k2

1 − k2
2)(4k2

1 − k2
4)

)]1/2

.

• Near double limit configuration: the tetahedron is now a planar quadrangle and k3 =

k4 = k12.

Let us look at the local type non-Gaussianities from the viewpoint of these configurations.

Commonly, the following parametrization is used to describe the locally non-Gaussian per-

turbation in the real space [65, 66]

ζ = ζg +
3

5
fNL(ζ2

g − 〈ζ2
g 〉) +

9

25
gNL(ζ3

g − 3ζg〈ζ2
g 〉) ,
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where fNL and gNL are generically independent parameters. We separate the reduced trispec-

trum into the sum of two contributions [69],

T localζ = f 2
NLT local1 + gNLT local2 .

In the momentum representation,

T local1 =
9

50

(
k3

1k
3
3 + k3

1k
3
4 + k3

2k
3
3 + k3

2k
3
4

k3
12

+ {k2 ↔ k3}+ {k2 ↔ k4}
)
.

and

T local2 =
27

100

4∑
i=1

k3
i .

There are two interesting degenerate configurations, where a non-Gaussianity of the local

form maximizes the trispectrum. The first is again the squeezed limit, with one of the three

momenta taken to zero. In this limit, the quadrilateral, formed by the momentum vectors

ki degenerates into a triangle. For instance, taking k4 � k1, k2, k3 one obtains

T localζ =

(
9

25
f 2
NL +

27

100
gNL

)∑
i

k3
i .

Thus, τNL and gNL contribute equally to the trispectrum in this limit. The second interesting

limit occurs, when the magnitude of the sum of two momenta is taken to zero, so that

kij = |ki + kj| → 0 for some i 6= j, i.e. in the folded case. The local trispectrum simplifies

in this limit. By taking k12 � k1 ≈ k2, k3 ≈ k4 one obtains

T localζ (k1,k2,k3,k4) =
18

25

k3
2k

3
4

k3
12

f 2
NL .

Thus, only fNL contributes to the trispectrum in this limit.

Once again, the trispectrum of the local type is the natural prediction of models, where

the fields different from the inflaton play a significant role in the primordial scalar perturba-

tions creation, as it occurs in the curvaton scenario or by the modulated decay mechanisms.

Clearly, the trispectrum generated in this way does not necessarily rely on the assumptions

of the de Sitter expansion. Hence, common predictions may arise in the different frameworks.

Interested in the intrinsic large non-Gaussianities, one again turns to the inflation incorpo-

rating higher derivative terms6 [68]. To account properly for the possible non-linearities in

that case, the effective field theory approach is commonly employed. For the inflation, it

6As in the case of the bispectrum, non-Gaussianities at the level of the four-point function are of the

undetectable size for the minimal versions of inflation and, thus, the object of the purely theoretical consid-

erations [67].
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has been proposed in [70] and further extended in [64, 71, 72, 73, 74, 75]. Basing on this

approach, generic conclusions have been made. In particular, the trispectrum of the single-

field inflation must be finite in the folded limit, k12 → 0, see [64]. This is in contrast to the

predictions of the conformal rolling scenario 7 [21, 22], where the trispectrum has a (fairly

mild) singularity as k12 → 0. On the other hand, the trispectrum there is distinct from one

of the local type. We postpone the further discussion until the next Chapter.

2.5 Statistical anisotropy

In a view of the future results, let us discuss the issue of the statistical anisotropy, which

may appear in the context of the inflation. Remind that at the level of the primordial scalar

perturbations, the violation of the statistical isotropy implies the direction dependence of

their power spectrum. This translates into the non-zero correlations of the CMB tempera-

ture coefficients alm with different l’s. To generate the primordial statistical anisotropy, one

naturally assumes that the rotational invariance is partially broken during the inflation [76].

Then, the inflaton fluctuations evolving on this background acquire the direction dependent

spectrum. Note, however, that the anisotropic (“hairy”) background is hardly achieved dur-

ing the inflation. First of all, it is challenging because of the cosmic no-hair conjecture [77].

The latter states that the initially expanding homogeneous cosmological models in the pres-

ence of a positive cosmological constant will rapidly approach a de Sitter solution, if the

other matter fields obey the dominant and the strong energy conditions. Therefore, the

statistical isotropy is favored by the inflation. There is, however, a line of researches showing

that the cosmic non-hair theorem may be avoided in the inflationary framework, see e.g. [78]

and references therein.

Indeed, several proposals have been made in literature, where the statistical anisotropy

is achieved by introducing vector fields [79, 80, 81, 82]. In this framework, the issue of

the statistical anisotropy is akin to the problem of generating primordial magnetic fields

during the inflation. Originally, this issue was discussed in [84] (see also [83]), and it was

argued there that only tiny magnetic fields can be generated by the inflationary mechanisms.

Further, it was understood that this statement can be circuvemented [85], see also [86] for

more recent discussions. Interestingly, the backreation of generated vector fields may affect

the background, so that it may become slightly anisotropic. Consequently, the inflaton

fluctuations may acquire the direction-dependent power spectrum. The qualification here

is that vector fields must have rather peculiar properties in order to source the statistical

anisotropy. Clearly, the standard Maxwellian fields are not appropriate for this purpose,

since their contribution falls rapidly in the inflationary Universe, thus, leaving the negligible

imprint on the background evolution. The example of statistical isotropy violated in terms

7The speech is about the version with superhorizon modes, see Chapter 3.
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of vector fields is given in the model by Ackerman, Carroll and Wise (ACW model) [79],

which attracted much attention recently. There the authors introduced the spacelike massive

vector with the fixed norm, which created the slightly anisotropic background. The authors

concluded with the following power spectrum of the primordial scalar perturbations,

Pζ = P0(1 + g?(dk̂)2) . (32)

This is the statistical anisotropy of the special quadrupole type. It is characterized by the

amplitude g? and two direction of the unit vector d. Though being the most widely discussed,

the ACW model suffers from the instability problem. Moreover, pathologies have been found

in models characterized by, [87]:

i) a potential V (A2) for the vector Aµ, i.e. the inflation with massive vector fields;

ii) a fixed spatial norm of the vector, enforced by a lagrange multiplier;

iii) a nonminimal coupling of the vector to the scalar curvature.

In all three cases the ghost instabilities have been uncovered. Pathological is the longitudinal

degree of freedom, which is dynamical because of the broken U(1) symmetry. Though it is

so, the direction dependence of the special quadrupole type holds in the healthy scenarios8,

e.g. in [81]. The main idea of this model is the gauge field with the non-standard kinetic

term,

S = −1

4

∫
d4x
√−gf 2

ab(φ)F aµνF b
µν ,

where F a
µν = ∂µA

a
ν −∂νAaµ, and fab is the gauge kinetic function. Clearly, this specific way of

coupling of the gauge fields preserves the U(1) symmetry. Thus, the argument of [87] is not

applied. Indeed, and the model [81] is free of pathologies [88]. Further, for a broad range of

the gauge kinetic functions, the conditions, at which the cosmic no-hair theorem is obeyed,

may be circuvemented. Consequently, there is a chance to obtain the direction dependence

of the power spectrum. Indeed, as it has been shown in the anisotropic background metric

ds2 = dt2 − e2Ht
[
e−2Σtdx2 + e2Σt(dy2 + dz2)

]
, (33)

is the attractor solution for a wide range of kinetic functions. Here H and Σ describe the

average expansion rate and the anisotropic expansion rate, respectively. Further, the inflaton

perturbations evolving on the anisotropic background (33) obtain the direction dependent

power spectrum of the ACW form (32). The issue of naturalness in the model [81] is also

addressed in the sense that the gauge fields with the peculiar couplings naturally arise in the

bosonic sector of the supergravitational theory.

8It appears that the model [80] with the vector coupled to the waterfall field of the hybrid inflation is also

free of pathologies, but the imprint of the vector field on the background remains ubiquitos in that case, at

it has been pointed out by Soda himself in [82]
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The other class of models, still involving vector fields, is presented in the framework of

the vector curvaton paradigm [89]. However, the prediction is again the power spectrum of

the ACW form. Different predictions about the form of the power spectrum may arise in

the inflation extended by the scalar fields with the non-minimal kinetic terms [90]. In this

case, the quadrupole statistical anisotropy is absent at all. There have been also studies

relying on the inhomogeneities during the inflationary stage at the times, when the inflaton

fluctuations are deep subhorizon and characterized by the trans-Planckian momenta, see [91].

More exotic scenarios are ones relying on the non-commutative geometry [92, 93].

To conclude, we note that the statistical anisotropy appears to be a marginal prediction

of the inflationary framework, since it requires many efforts and encounters a lot of problems.

On the other hand, it is easily obtained in the conformal rolling scenario [?, 23]. This is one of

the crucial differences between two setups, which in turn implies different predictions about

the correlations of the CMB temperature coefficients. Hence, the statistical anisotropy may

be viewed as the powerful tool in descriminating between the inflation and the conformal

rolling scenario.

2.6 Alternatives to inflation: ekpyrotic scenario

Before we turn to the conformal rolling scenario, let us give a brief overview of the ekpyrotic

models. Among the other alternatives to the inflation, they are ones most widely discussed

nowadays.

Our main motivation in this Section is as follows. Dynamical scenarios of the (pseudo)-

Conformal Universe, which are the subject of our primary interest in the present thesis,

result into a very slow contraction/expansion at very early times. The first opportunity is

in the certain sense the incarnation of the ekpyrotic phase, as we discuss it below. It is

realized, e.g. in the conformal rolling scenario treated as the dynamical model. Thus, the

latter shares some problems of the ekpyrotic models. Hopefully, some ot them are absent.

Originally, the ekpyrotic cosmology is based on the braneworld picture of the Universe,

in which spacetime is effectively five-dimensional, but the fifth dimension is not infinite, but

being a line segment [15]. The endpoints of this line segment (orbifold) are two (3 + 1)-

dimensional boundary branes. Our Universe is identified with one of the branes. Futher,

there is the attractive force between the branes, which causes them to collide at some point.

This collision is associated with the Big Bang. Being highly inelastic process, this collision

produces the matter and the radiation on the branes, where the now standard cosmology

takes the place. Remarkably, far from this collision the ekpyrotic models admit a fully

four-dimensional description. In this effective picture the effects of the fifth dimension are

captured by the scalar field φ, the radion, associated with the distance between the branes.

Once the scalar field drives the evolution of the Universe, the latter undergoes the stage of

the slow contraction. As we will see shortly, the latter condition is enough to solve one of
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the most challenging problem of the contracting Universe, i.e. the problem of the growing

anisotropies.

Let us consider the contribution of the anisotropies in the contracting Universe. This

problem has been addressed a long time ago in the Ref. [16]. Here we briefly recall the main

results of this article. In the synchronous gauge, one writes the metric as follows

ds2 = dt2 − gij(xµ)dxidxj .

As it follows from the Ref. [16], in the contracting Universe spatial gradients become quickly

irrelevant compared to the time gradients, so that one results with the simplified metric

ds2 = dt2 − a2(t)
∑
i

e2βi(t)dxidxj ,

which is of Kasner type and one can require
∑
βi = 0. In this case, the Einstein equations

reduce to the following ones

H2 =
1

6

∑
i

β̇i
2

+
8πG

3
ρ

and

β̈i + 3Hβ̇i = 0 .

The latter gives β̇i = di
a3

, so that

H2 =
σ2

a6
+

8πG

3
ρ ,

where σ2 =
∑

i d
2
i . Once the Universe approaches the singularity, it becomes more and more

anisotropic. Thus, the picture of the Universe driven by the matter with p < ρ encounters

severe problems (see, however, [13] for discussions). On the other side, this problem is absent

in the Universe filled with the matter characterized by the super-stiff equation of state, i.e.

one with p = wρ and w > 1, see [17].

In the ekpyrotic models, the super-stiff equation of state is achieved by introducing the

scalar field with the negative steep potential. The concrete example is the exponential

potential, so that the action is given by

S =

∫
d4x
√−g

(
1

2
gµν∂µφ∂νφ+ V0e

−cφ
)
,

where V0 > 0 and the constant c� 1. In this situation, the Friedmann equation admits the

following solution for the scale factor

a = (−t)p , p =
2

c2
, φ =

2

c
ln
(
−
√
c2V/2t

)
. (34)
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Thus, we deal with a very slowly contracting Universe. The equation of state is given by

p = wρ , w =
2

3p
− 1� 1 ,

and the scaling of the energy density is then simply read from the conservation equation

ρ ∼ a−2(1+3w) .

Thus, we expect that the contribution of the anisotropies to the total energy density becomes

completely diluted at rather late times.

The flatness problem is also addressed in the context of the ekpyrotic models. Indeed,

the contribution of the curvature to the Friedmann equation,

Ωcurv = − κ

a2H2
,

falls down rapidly during the phase of the slow contraction. The ratio of the curvatures at

the end and the beginning of the ekpyrotic phase is

Ωcurv(tend)

Ωcurv(tbeg)
=
a2(tbeg)H

2(tbeg)

a2(tend)H2(tend)
.

In the limit c→∞ (and, respectively, p→ 0), this ratio is reduced to the following one

Ωcurv(tend)

Ωcurv(tbeg)
=
|tbeg|2
|tend|2

.

One naturally takes the initial value Ωcurv(tbeg) ∼ 1. Keeping the end time of the ekpyrotic

phase of the Planckian scale, |tend| ∼ M−1
Pl , one estimates the curvature at the onset of

the ekpyrosis as |Ωcurv| ∼ 10−60. Thus, the flatness problem is resolved, provided that the

duration of the slow contraction is large enough

|tbeg| = 1030|tend| ∼ 1030M−1
Pl ∼ 10−13s .

Clearly that the horizon problem can be also resolved, once the duration of the ekpyrotic

phase is long.

As pointed out in the Introduction, there is one specific problem in the models of the col-

lapsing Universe. This is the transition from the contraction to the conventional expansion.

Remind that the main difficulty here is to violate the Null Energy Condition (NEC) in terms

of the healthy quantum field theory. In this sense, the theories of the big crunch/smooth

bounce are currently at the stage of the development. There are, however, at least two pro-

posals indicating that the smooth transition is possible in principle. One is to introduce the

ghost condensate phase [11], where the NEC is mildly violated. This idea is used in the “new
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ekpyrotic models” [14]. The different proposal on the strong violation of the NEC has been

made recently, with the advent of the Galileon theories [95, 96]. The latter are incorporated,

e.g. in the G-bounce, which is the novel scenario of the smooth transition [97].

Let us briefly discuss the design of the “new ekpyrotic models”9. Far from the bounce

they behave essentially as in the standard four-dimensional picture. In the vicinity of the

bounce, they are described in terms of the ghost condensate phase. The main ingredient of

the latter is the scalar field with the non-canonical kinetic term, namely the relevant term

in the Lagrangian is given by

L =
√−gM4P (X) ,

where

X =
1

2m4
(∂φ)2

is the standard canonical term; M and m are two mass scales that must be determined by the

underlying microscopic theory and that have to satisfy certain consistency conditions [14].

The feature is that the function P (X) is rather non-trivial. Thus, it may have the extremum

at some finite point, say, X0 = 1/2. The solution to the ghost condensate field then reads

φ = −m2t .

Note, that the ghost condensate field φ itself does not violate the NEC, since it has the

same equation of state as the cosmological constant. Hence, it does not provide the desired

transition. However, the fluctuations around the extremum can violate the NEC. One defines

the fluctuations π via

φ = −m2t+ π .

Their dynamics can be expressed by the effective Lagrangian

L ∼ 2X0PXX(X0)π̇2 ,

which shows that the kinetic term has the correct sign if the extremum is a minimum.

Expanding then the expression for the energy density, ρ = M4(2PXX − P ), to linear order

in π, one obtains ρ = −KM4π̇/m2. One can provoke such a fluctuation by adding a potential

V , implying that the energy density and the pressure are now approximately given by

ρ ≈ −KM
2

m2
π̇ + V , p = −V ,

where K = PXX(X0) > 0 and P (X0) = 0. This immediately implies that

Ḣ ≈ KM4

2m2
π̇ ,

9Since this poin on, our discussion parallels with one of the Ref. [94].
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and hence, since π̇ can take either sign, we now have the possibility of the NEC violating.

The idea behind the “new ekpyrotic models” is to join the ekpyrotic phase with the NEC

violating phase. In the first reference of [14] this is achieved by assuming that the function

P (X) is linear during the ekpyrotic phase and then quadratic around the minimum. Also,

the potential V has to become positive at the onset of the bounce phase in order to push

the equation of state parameter w below −1. There are two sources of the instabilities in

the “new ekpyrotic models”. One is the Jeans type instability and the second is a gradient

instability. Both of these instabilities are harmless, if the bounce phase is rather fast, see

the Refs. [14] for more thorough discussions.

To conclude this Subsection, we note that the ghost condensate models are likely to suffer

from several conceptual problems [12]. We provided the discussion above in order to show

that the bounce impossible at all. Whether, it is designed in terms of the ghost condensate

or Galileon theories, is not our concern in this thesis. In what follows, we assume that the

transition is smooth, perturbations generated at the contracting stage remain unaffected

through the bounce and serve as the source of primordial fluctuations at the beginning of

the conventional epoch [98].

2.6.1 Scalar perturbations in ekpyrotic models: one field case

In the ekpyrotic models, creation of primordial scalar perturbations is, generally speaking,

quite challenging. The naive approach is to consider the unique scalar field dominating the

slow contraction and study its fluctuations up until the horizon-exit. The perturbations are

of the adiabatic type in this case. It is straightforward to check directly that they have

the flat spectrum in the superhorizon regime. Indeed, the corresponding equation of motion

reads10

δ̈φ+ k2δφ+ Vφφδφ = 0 .

Using the zero energy condition for the classical background, we obtain Vφφ = c2V =

−c2φ̇2/2 = −2/t2. Consequently, we obtain the same equation as in the case of the in-

flaton perturbations. Thus, we conclude with the flat spectrum of the field φ fluctuations.

Remind that in the inflationary context, the relevant fluctuations remained flat, once

the gravity was turned on. This is not the case during the ekpyrotic phase. It turns out

that with the gravitational effects included, one results with the blue spectrum of the gauge-

independent curvature perturbation ζ [99]. This is in a sharp contrast with the CMB ob-

servations. To show this explicitly, we employ the Mukhanov–Sasaki variable introduced in

the Section 2.2 (see also the Appendix A for more details). Remind that the equation (24)

is generic and does not rely on any assumptions about the background evolution. Thus, we

10The approximation of the Minkowski background is used here. This is allowed if the constant c is large
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can use it here. During the ekpyrotic phase, the quantity z defined by the Eq. (25) reads

z = −c[−(1− p)η]
p

1−p .

Here we made use of (34). Note that the relation between the proper time and the conformal

time at the ekpyrotic stage is as follows,

−t = [−(1− p)η]
1

1−p . (35)

Then, the equation of motion for the Mukhanov–Sasaki variable u in the momentum repre-

sentation is given by

u′′ + k2u− p(2p− 1)

(1− p)2η2
u = 0 .

At very early times, the amplitude of the negative frequency solution behaves as

u
(−)
k =

1√
2k
e−ikη , where η → −∞ .

The solution at all the times is then given by

u
(−)
k =

√−η
(
C1Hβ(−kη) + C2H

?
β(−kη)

)
,

where the constant β is given by

β =

√
z′′

z
η2 + 1/4 .

Using the expression for the Hankel function in the asymptotic past, the Eq. (19), one fixes

the constant C1,

C1 =

√
π

2
exp

[
iπβ

2
+ i

π

4

]
,

while the other constant C2 = 0. Consequently, the late-time solution for the negative-

frequency amplitude reads

u
(−)
k =

√
− η

4π

(
−kη

2

)−β
exp

[
iπβ

2
− iπ

4

]
,

where we make use of (20). Once we deal with the super-stiff equation of state, the parameter

p is naturally very small, and the constant β tends to 1/2 in this limit. Thus, in the late-time

regime we obtain

u
(−)
k =

1√
2πk

.

This implies a very blue spectrum of the adiabatic perturbations [99]. In principle, this

prediction can be avoided in the ekpyrotic scenarios with the rapidly changing equation of
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state, [100]. In this model, the adiabatic perturbations evolving on the dynamical attractor

solution acquire the flat spectrum. Further, it was argued in [101] that this scenario does

not work because of the breakdown of the perturbation theory at small scales. This problem

was circuvemented in [102] by altering of the potential such that the power is suppressed on

small scales.

2.6.2 Scalar perturbations in ekpyrotic scenario: the case of two fields

There is the other way to handle the situation. That is to introduce the second scalar field

with the negative quartic potential [103, 104]. In this situation, scalar perturbations can be

decomposed into the sum of adiabatic perturbations and isocurvature ones. The latter are

argued to have the flat power spectrum. The potential term for the system of two scalars is

V = −
∑
i

Vie
−ciφi .

In this assisted ekpyrotic collapse the solution for the scale factor is

a ∼ (−t)p , where p =
∑
i

2

c2
i

. (36)

This represents the evolution along the effective exponential potential, which is less steep

than any of the individual potentials from which it was constructed, c2 < c2
i , where the

constant c is defined from
2

c2
=
∑
i

2

c2
i

.

Let us stress on the potential danger with the scaling solution (36). The problem is that in

a collapsing Universe, the field with the steepest potential comes to dominate at late times,

i.e. the solution (36) is unstable [105]. To show this explicitly, we turn from the fields φ1

and φ2 to the adiabatic field σ and the isocurvature one, χ,

σ =
c2φ1 + c1φ2√

c2
1 + c2

2

, χ =
c1φ1 − c2φ2√

c2
1 + c2

2

.

In terms of the fields σ and χ, the total potential can be written as follows,

V = −U(χ)e−cσ .

The dependence of the potential U on the orthogonal field is given by

U(χ) = V1e
(c1/c2)cχ + V2e

(c2/c1)cχ .

Close to its minimum, one can expand the function as follows,

U(χ) = U0

[
1 +

c2

2
(χ− χ0)2 + ...

]
.

44



As it folllows, there is a classical trajectory for the two fields in which χ remains fixed,

χ = χ0, while the adiabatic field σ rolls down a steep exponential potential

V |χ=χ0 = −U0e
−cσ .

However, the isocurvature field χ has a negative mass-squared, m2
χ = c2V < 0, whcih

implies the tachionic instability [105]. The linear perturbation in the fields orthogonal to the

background trajectory are decoupled from the first-order metric perturbations,

δ̈χ+ 3H ˙δχ+

(
k2

a2
+m2

χ

)
δχ = 0 .

In terms of the rescaled field v = aδχ, the equation takes the form

v′′ +

[
k2 − a′′

a
+m2

χa
2

]
v = 0 .

Omitting the last term on the right hand side, this equation coincides with one of Mukhanov–

Sasaki variable and has been considered in the last Subsection. On the stable background,

the effective mass-squared of the field χ is negligible as compared to the Hubble rate. In this

(natural) situation, we obtain the strongly blue spectrum. The different story occurs, if we

turn to the unstable scaling solution (36). In that case, the mass term dominates instead.

Moreover, is has the form of the massless scalar field evolving on the de Sitter background.

Hence, the flat spectrum of the relevant perturbations [103, 104]. In fact, it has a small blue

tilt,

nδχ − 1 ≈ 2p .

As it follows, the flatness of the spectrum in the ekpyrotic models requires the fine-tuning of

the initial data11. In contrast, this problem is absent in models of the (pseudo)-Conformal

Universe. In that case, relevant perturbations evolving on the dynamical attractor back-

ground acquire the flat spectrum.

2.6.3 Tensor perturbations in ekpyrotic models

Without much efforts, we can derive the spectrum of tensor perturbations in the ekpyrotic

models. For this purpose, it is convenient to introduce the gauge-invariant canonical variable

φ̃A = a(η)φA. where φA =

√
M2
Pl

32π
hA (see the discussion in the Appendix A). Making the

redefinition φ̃A = φA
a

, we obtain the equation of motion for the field φ̃A,

(φ̃A)′′ +

(
k2 − a′′

a

)
φ̃A = 0 .

11This fine-tuning can be automatic in the cyclic models [106]
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In fact, it is the same equation as for the Mukhanov–Sasaki variable u introduced in the infla-

tionary context and already used in the case of ekpyrotic models. This becomes particularly

clear once we note that
a′′

a
=
z′′

z
=

p(2p− 1)

(1− p)2η2
.

Thus, the behaviour of the field φ̃A coincides with one of the Mukhanov–Sasaki variable u.

Hence, we immediately conclude with the strongly blue spectrum of the tensor perturbations

nT − 1 ≈ 2 .

This blue spectrum implies that the tensor perturbations are non-observable at the cosmo-

logical scales. Note that this is a common prediction of the alternatives to the inflation.

This clarifies the point made in the beginning of the Subsection 2.2.1, that the detection of

strong tensor perturbations in the forthcoming experiments will serve as the “anti-smoking

gun” for the alternative frameworks, e.g. conformal rolling scenario.
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3 Conformal rolling scenario

3.1 Flat power spectrum from conformal invariance

The inflationary mechanism [3, 7, 8] generates almost Gaussian scalar perturbations whose

power spectrum is almost flat due to the slow evolution of relevant parameters (the Hubble

parameter and time derivative of the inflaton field). Similar situation occurs in the infla-

tionary scenario with the curvaton mechanism [46, 47, 48]; in either case, the approximate

flatness of the spectrum is a direct consequence of the approximate de Sitter symmetry of

the inflating background.

In quest for an alternative symmetry behind the flat scalar spectrum one naturally turns

to conformal invariance [18, 25, 26]. Conformal symmetry implies scale invariance, which in

the end may be responsible for the scale-invariant scalar spectrum [24]. An assumption of

conformal invariance at the time the primordial perturbations are generated is in line with

the viewpoint that the underlying theory of Nature may have conformal phase, and that the

Universe may have started off from, or passed through that phase.

In this Chapter, we focus on the concrete realization of this idea, namely conformal

rolling scenario proposed in Ref. [18]. Besides conventional Einstein gravity and some matter

that dominates the cosmological evolution, its main ingredient is a complex scalar field φ

conformally coupled to gravity. We assume that the field φ is a spectator which does not affect

the cosmological evolution. For this reason, the mixing between this field and gravitational

degrees of freedom is negligible. Conformal invariance implies that the scalar potential is

quartic, while the dynamics is non-trivial if its sign is negative,

V (φ) = −h2|φ|4 , (37)

where h is a small parameter. One assumes that the background space-time is homogeneous,

isotropic and spatially flat,

ds2 = a2(η)(dη2 − dx2) .

We do not make the special assumptions about the scale factor a(η) standing here. The

Universe can undergo the inflationary expansion, the phase of the contraction etc. The only

qualification here is that the evolution should be long so, that the horizon problem is al-

ready resolved. In particular, this implies that the conformal rolling scenario cannot operate

during the Hot Big Bang epoch, where there is simply no enough time. Due to the confor-

mal coupling of the field φ to gravity, the model is invariant under Weyl transformations

supplemented by transformations of the field φ,

gµν → g′µν = e−2σ(x,η)gµν , φ→ eσ(x,η)φ .

Taking eσ(x,η) = a(η), we result with the Minkowski background. The dynamics of the field

χ(η,x) = a(η)φ(η,x) (38)
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is the same as in flat space-time. As it rolls down its potential V (χ) = −h2|χ|4, it approaches

the late time attractor

χc(η) =
1

h(η∗ − η)
. (39)

We take χc real without loss of generality with the understanding that the action is U(1)-

invariant. Here η? is the arbitrary real parameter, which has the meaning of the end-of-roll

time. The point of Ref. [18] is that the behavior of the phase12 θ =
√

2 Arg φ in the

background (39) is very similar to what happens at inflation to the fluctuations of a massless

scalar field minimally coupled to gravity (e.g., inflaton itself). The phase perturbations δθ

start off as vacuum fluctuations and eventually freeze out. To the leading order in h, the

resulting phase perturbations are Gaussian and have flat power spectrum [18]

Pθ =
h2

(2π)2
. (40)

After this brief introduction to the topic, let us discuss the evolution of fields during

conformal rolling in more details. At this stage, the theory is described by the action

S = SG+M + Sφ ,

where SG+M is the action for gravity and some matter that dominates the evolution of the

Universe, and

Sφ =

∫
d4x
√−g

[
gµν∂µφ

∗∂νφ+
R

6
φ∗φ− V (φ)

]
is the action for the scalar field we are going to discuss. Here the scalar potential is given

by (37). After introducing the field χ = Reχ + iImχ as in (38), one obtains its action in

conformal coordinates in the Minkowskian form,

S[χ] =

∫
d3x dη

[
ηµν∂µχ

∗∂νχ+ h2|χ|4
]
. (41)

In terms of the radius and phase of the field χ = ρe
i θ√

2 this action takes the form

S[ρ, θ] =

∫
d3xdη

[
ηµν∂µρ∂νρ+

1

2
ρ2(∂µθ)

2 + h2ρ4

]
. (42)

Let us first study the classical background, χc. One further assumes that the classical field

χc is homogeneous. In terms of the radius and phase, χc = ρe
i θ√

2 , one of the equations is the

conservation of the current,
d

dη

(
ρ2θ′

)
= 0 .

12The normalization here is chosen for future convenience.
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As the value of ρ increases, the phase θ freezes out, and the evolution proceeds in the radial

direction. Without loss of generality, we take χc to be real at that time. This allows us to

use the notation χc instead of ρ in what follows. Then, the first integral of the equation of

motion is

χ
′2
c − h2χ4

c = ε ,

where ε is the constant of integration. The solution to this equation tends to the dynamical

attractor independent of the constant ε and given by (39).

Now we turn to the evolution of the phase perturbations on the background (39). It

is convenient to work with the imaginary part of the field χ, or, more precisely, with the

quantity δχ2 =
√

2Imχ. We introduce the factor
√

2, so that the field δχ2 is canonically

normalized. In terms of the field δχ2, the phase perturbations are given by

θ =
δχ2

χc
,

up to the corrections O(θ3). We keep the notation θ for the phase perturbation as for the

overall phase. We are allowed to do that, since its classical value is tuned to zero. It is

straightforward to derive the equation of motion for the field δχ2 from the action (41),

(δχ2)′′ + k2δχ2 − 2h2χ2
cδχ2 = 0 . (43)

At early times, when k(η? − η)� 1, the second term dominates, and δχ2 oscillates like free

scalar field in Minkowski space-time. At later times, the third term dominates instead. In

more details, Eq. (43) reads

(δχ2)′′ + k2δχ2 −
2

(η? − η)2
δχ2 = 0 .

Formally this is the same equation of perturbations of minimally coupled massless scalar

field in de Sitter space-time. Hence, the spectrum of δχ2 is the same flat spectrum. We are

interested in the solution that behaves at early times as

χ
(−)
2 =

1

(2π)3/2
√

2k
eik(η?−η) .

The solution is expressed through the Hankel function.

χ
(−)
2 =

1

4π

√
η? − η

2
H3/2[k(η? − η)] (44)

At k(η? − η)� 1 this solution is

χ
(−)
2 =

i

2π3/2

1

k3/2(η? − η)
.
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The dependence on the momentum k standing here implies that the perturbations of the

imaginary part have flat power spectrum in the super-”horizon” regime,

∆δχ2 =
1

2π(η? − η)
.

Consequently, phase perturbations are described by the flat power spectrum (40) up to

the higher order corrections [18]. The phase perturbations are the source of the adiabatic

perturbations in this scenario, which proceeds as follows. At large field values, the potential

V (|φ|) is assumed to be different from (37) and to have a minimum at |φ| = f0; we assume

that f0 �MPL (see also the discussion in Section 4.2), so that the contribution of the field φ

to the effective Planck mass is always negligible. At |φ| ∼ f0, conformal symmetry is broken,

the radial field |φ| interacts with other fields, and its oscillations about the minimum get

damped quickly enough. To be on the safe side, we assume that the field φ is a spectator

at this and earlier stages, i.e., its energy density ρφ is small compared to the energy density

ρtot of matter that dominates the cosmological evolution. This is the case provided that

|ρφ| ∼ h2f 4
0 � ρtot =

3

8π
M2

PLH
2 . (45)

Then the decay products of the field |φ| do not affect the evolution of the Universe and,

furthermore, the perturbations of |φ|, that exist before the end of rolling and disappear after

|φ| gets relaxed to the minimum of V (|φ|), do not produce substantial density perturbations

in the Universe.

The scenario cannot work at the conventional hot cosmological epoch, for the following

reason. The vacuum state of the phase perturbations θ is well defined at early times provided

that these perturbations evolve in the WKB regime, which implies

k(η∗ − η)� 1 , early times , (46)

where k is conformal momentum. On the other hand, the property that these perturbations

are frozen out at late times holds if

k(η∗ − η)� 1 , late times . (47)

So, the scenario requires that both of these inequalities are satisfied at conformal rolling

stage. This can only happen if the duration of that stage in conformal time is greater than

k−1. For conformal momenta of cosmological significance this means that conformal rolling

lasts longer (in conformal time) than the entire hot stage until the present epoch. Thus, the

mechanism can only work at some pre-hot epoch at which the horizon problem is solved, at

least formally [18]. This is similar to most other mechanisms of the generation of cosmological

perturbations (see, however, Ref. [107]).
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Figure 2: Evolution of the field φ during conformal rolling

At the conformal rolling stage, the dynamics of the phase perturbations θ is governed

solely by their interaction with the background field (39) (as well as with the radial pertur-

bations δ|χ|, see below); the evolution of the scale factor a(η) is irrelevant. After the end

of conformal rolling, the situation is reversed. Once the radial field |φ| has relaxed to the

minimum of the scalar potential, the phase θ is a massless scalar field minimally coupled

to gravity (this is true for any Nambu–Goldstone field [108]). Since we are talking about a

yet unknown pre-hot epoch, it is legitimate to ask what happens to the perturbations of the

phase right after the end of conformal rolling. Barring fine tuning, there are two possibilities

for the perturbations θ: (i) they are already superhorizon in the conventional sense at that

time, or (ii) they are still subhorizon. The version (i) of the scenario has been considered in

Refs. [20, 21, 22]; in that case, the phase perturbations do not evolve after the end of the

conformal rolling stage, and the properties of the adiabatic perturbations are determined

entirely by the dynamics at conformal rolling (modulo possible non-Gaussianity generated

at the conversion epoch; the latter is not specific to the conformal rolling scenario). To

subleading orders in h, this dynamics is fairly non-trivial, and the resulting effects include

certain types of statistical anisotropy [20] and non-Gaussianity [21, 22]. In what follows, we

refer to this version as to the sub-scenario A, and consider its phenomenological consequences

in the end of this Chapter.

The version (ii) of the conformal rolling scenario requires a long intermediate stage be-

tween the end of roll and the beginning of the conventional epoch [23]. We discuss this
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Figure 3: Curvaton-type conversion mechanism requires the small effective mass of the phase

perturbation. The harmless way to satisfy this claim is to introduce the small breaking of

the U(1) invariance, which, in turn, can be realized via the small tilt of the potential V (φ)

opportunity in details in the forthcoming Chapter.

3.2 Conversion mechanisms

Once the radial field |φ| settles down to f0, what remains are the perturbations of the phase,

which at this point are isocurvature perturbations. Thus, one should take care about repro-

cessing phase perturbations into adiabatic ones at much later epoch. We already encoun-

tered this situation when discussed the curvaton mechanism. Then, the similarity between

the curvaton field and the phase after the end of the conformal rolling gives us the idea how

to provide the conversion into the adiabatic perturbations. Following [18], we demand that

the global U(1) symmetry is broken near |φ| = f0, so that the phase acquires the non-zero.13

From this point on, the phase serves as the pseudo-Nambu-Goldstone field, and our discus-

sion parallels to one presented in [48]. Provided that the Hubble parameter is larger than

the effective mass of the phase, the latter stays constant for some time. Once the Hubble

rate drops below the mass, the phase rolls to the nearest minimum of its potential and os-

13We assume that the corresponding scale of breaking is small as compared to f0. Thus, we can safely

neglect the effects of U(1) symmetry breaking during the conformal rolling.
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cillates there decaying into radiation. With no loss of generality, we can assume that the

minimum is located at θ = 0. Simultaneously we shift the classical value of the phase during

the conformal rolling to some non zero value θc. Following the discussion of Section, we see

that the correspondence with the curvaton case is established by the obvious replacements

θ ↔ δσ, θc ↔ σc. Thus, we write the result for the amplitude of the adiabatic perturbations

ζ generated during the decay epoch,

∆ζ ≡
√
Pζ =

rh

3πθc
. (48)

Remind that the constant r is the ratio of the phase field energy density to the total energy

of the Universe at the time of the decay. This constant cannot be arbitrarily small, since

otherwise it gives rise to a huge non-Gaussianity. From the current constraint on the bispec-

trum constant, see the Eq. (6), it follows that r > 0.017. Taking into account the amplitude

of the adiabatic perturbation, ∆ζ ' 5×10−5, this translates into the constraint on the ratio,

h

θc
. 3× 10−2 . (49)

This means that the value of the coupling constant is allowed to be as large as h ∼ 0.1.

This value is achieved provided that the phase starts rolling to the minimum from the value

θc ' π. Let us speculate about the upper constraint on the coupling constant h in the case

of the non-observation of the primordial non-Gaussianity in the PLANCK data. This would

imply that the parameter fNL is at most on the level os the sensitivity of the PLANCK

experiment, i.e. |fNL| . 5. Then the constraint on the constant h would read h . 0.007.

This constraint applies, once we insist on the curvaton-type conversion mechanism.

Alternatively, perturbations θ may be converted into adiabatic perturbations by the

modulated decay mechanism [55, 56]. One assumes that the phase θ interacts with some

heavy particles in such a way that the masses and/or widths of the latter depend on θ,

M = M0 + εMθ and/or Γ = Γ0 + εΓθ . (50)

One assumes further that these particles survive at the Hot Big Bang epoch until they are

non-relativistc and domonate the cosmological expansion. When these particles decay, the

perturbations in θ, and hence in M and/or Γ, induce adiabatic perturbations,

ζ ' δM

M
=

εMθ

M0 + εMθc
(51)

and/or

ζ ' δΓ

Γ
=

εΓθ

Γ0 + εΓθc
. (52)
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The shape of the adiabatic perturbations is again the same as that of the initial power spec-

trum of θ. The modulated decay mechanism also induces non-Gaussianity in the adiabatic

perturbations. However, once the dependence of the mass/width on θ is linear, the non-

Gaussian part of the adiabatic perturbations is of the order (δM/M)2, (δΓ/Γ)2 ∼ ζ2. In

other words, irrespectively of the coupling h, the non-Gaussianity is fairly small,

fNL ∼ 1 . (53)

Thus, the modulated decay mechanism by itself does not imply any bound on h.

3.3 Radial perturbations

Searching for the non-trivial phenomenolgical properties of the conformal rolling scenario,

one should consider the radial perturbations about the classical background. As we will see

in what follows, the interaction of the phase perturbations and the radial ones results into

the statistical anisotropy and the non-Gaussianity in trispectrum. Though we are focused on

the conformal rolling scenario, the results obtained in this particular framework are generic

for a broader class of models [25, 26], as we discuss it in the Chapter 5. Let us fix the

notations. We proceed to work in terms of the radius and the imaginary part of the field

χ. It is convenient because the equation of motion of the imaginary part for a fixed radius

is always linear, and all the non-linearities are transferred to the equation of motion for the

radius. To the leading order in h, perturbations14 δχ1 =
√

2δχc and δχ2 =
√

2Imχ decouple

from each other, and we can study their evolution separately.

The radial perturbations obey the linearized field equation, which in the momentum

representation reads

(δχ1)′′ + p2δχ1 − 6h2χ2
cδχ1 ≡ (δχ1)′′ + p2δχ1 −

6

(η∗ − η)2
δχ1 = 0 , (54)

We denote the conformal momentum of the radial perturbation by p and reserve the notation

k for the conformal momentum of the phase perturbation. The properly normalized solution

to Eq. (54) is

δχ1 =
1

4π

√
η∗ − η

2
H5/2 [p(η∗ − η)] · B̂p + h.c. , (55)

where B̂p, B̂†p are annihilation and creation operators obeying the standard commutational

relation [B̂p, B̂
†
p′ ] = δ(p − p′), H5/2 is the Hankel function, and here and in what follows

in this Section we omit irrelevant phase factors. At late times the solution approaches the

asymptotics

δχ1 =
3

4π3/2

1

p5/2(η∗ − η)2
· B̂p + h.c. .

14We proceed to use the same notation for the perturbed radial solution as for the classical field χc. To

avoid the confusion, we will indicate the spatial dependence of the perturbed radius, where necessary.
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At very late times the perturbations δχ1 become so large that they ruin the linearized

analysis. There is a way to avoid this difficulty. This is to impose the requirement that the

field χ1 is approximately homogeneous over the whole visible Universe at the time when the

scales of interest exit the “horizon” [18]. This requirement reads

∆δχ1(kmin, ηmax)� χ1(ηmax) ,

where the time ηmax is defined by

kmax(η? − ηmax) ∼ 1 .

These conditions translate into the severe constraint on the parameter of the model,

h� kmin
kmax

∼ 10−4 .

There is, however, the alternative approach to the problem. First, we notice that the super-

“horizon” perturbations δχ1 of the field χ1 can be absorbed into the redefinition of the

end-of-roll time η?, so that we can write the full radial solution as follows [18],

χc(η,x) =
1

h[η∗(x)− η]
, (56)

where

η∗(x) = η∗ + δη∗(x)

The inhomogeneous shift δη?(x) is the random Gaussian field chosen in such a way that it

matches the late-time solution in the regime, when the linear approximation is valid,

δη∗(x) =
3h

4
√

2π3/2

∫
d3p

p5/2

(
eipx · B̂p + h.c.

)
.

Note that this field has red power spectrum,

Pδη∗ =
9h2

8π2

1

p2
. (57)

One can view this trick as the convenient book-keeping tool. The things are in fact deeper.

The clarify the situation, we write the exact equation of motion for the radius of the field χ,

ηµν∂µ∂νχc −
χc
2
ηµν∂µθ∂νθ − 2h2χ3

c = 0 . (58)

Let us omit the backreaction of the phase perturbations, i.e. the second term here. We

comment on this point in the end of the Section. Being interested in the effects due to

very long wavelengths, we neglect the spatial variation of the end-of-roll time η?(x). In this
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situation, the solution (56) satisfies the Eq. (58). This proves that the corresponding effects

are indeed harmless, since they can be summed up into the shift of the end-of-roll time.

Clearly, this homogeneous shift is irrelevant from the physical point of view. Interesting

effects appear, once we account for the spatial variation of the end-of-roll time η?(x). It is

convenient to introduce the notation

vi = −∂iη? , (59)

while keeping the standard notation for the second order derivative, ∂i∂jη?. Notably, deriva-

tives vi and ∂i∂jη? have flat and blue power spectra, respectively. Thus, corresponding cor-

rections are safe for us. In fact, the correstion linear in vi is already included in (56). Indeed,

still keeping very long wavelengths, one expands the end-of-roll time, i.e. η?(x) = η? − vixi.
Substituting the latter into (56), we see that the background (56) still satisfies the Eq. (58).

This is true up to the corrections of the order v2 and ∂i∂jη?/k. To account for the latter, we

use the following ansatz for the radial background

χc(η,x) =
1

h(η?(x)− η)
+

αv2

h(η?(x)− η)
+ β

∂i∂jη?
h

.

The constants α and β standing here are defined by substituting the ansatz into the Eq. (58).

We find that α = −1/2 and β = 1/6. The coefficient in front of v2 is not accidental. It

should be viewed as the “remnant” of the Lorentz factor γ = (1− v2)−1/2. Though keeping

corrections coming from the distortion of the boost factor is not legitimate, we write the

background solution as follows [20],

χc(η,x) =
1

hγ(η?(x)− η)
+
∂i∂jη?

6h
, (60)

where the linearization in v2 is understood. In a view of the future results, note that

wavelengths of the radial perturbations relevant for us in what follows are such that much

exceed the cosmologically interesting scales, i.e. p � k. In particular, this implies that at

cosmologically interesting scales we can expand the end-of-roll time as follows,

η?(x) = η? − vixi +
1

2
∂i∂jη?xixj .

The only exception is the non-Gaussianity as discussed in the end of this Chapter. In other

cases we are allowed to study the evolution of phase perturbations on the background (60),

when the radial perturbations are in the super-“horizon” regime. Assuming this mode sep-

aration, one can show that the backreaction of the phase perturbations is negligible in the

approximation we work in. In more details, let us consider the contribution of sub-“horizon”

wavelengths, i.e.

k(η? − η)� 1 (61)

56



and ones, k(η? − η) � 1 separately. Obviously, the sub-“horizon” phase perturbations

oscillate like massless Minkowskian field. For this reason, their contribution to the radial

field equation is negligible (formally, it is zero). The contribution of the super-“horizon”

modes is estimated as

χc〈∂iθ∂iθ〉 ∼
hk2

max

η? − η
The momentum kmax is estimated at most as kmax(η? − η) ∼ 1. The contribution of the

order v2 correction is estimated as h ln Λ
(η?−η)3

. The latter is logarithmically amplified by the

infrared physics encoded in the parameter Λ. Hence, keeping corrections of the order v2 is

legitimate. This may not hold in the case of the second correction on the right handside of

Eq. (60). The similar arguments lead to the constraint on the momentum range of the radial

perturbations,

h� pmax(η? − η)� 1

If the constant h is not particularly small, the left inequality may break down at very late

times. This is, however, not of the special importance for us. The reason is that the correction

to the background due to the second derivative does not lead to any observable effects.

3.4 Corrections to phase perturbations

3.4.1 Order v

Let us now turn to the perturbations δχ2 of the imaginary part, and account for their

interaction with radial perturbations. As we will see in what follows, relevant perturbations

δη∗ have wavelengths much longer than the wavelengths of the phase perturbations, i.e.

the inequality (61) holds. Because of this separation of scales, it is legitimate to use the

expression (60), valid in the late-time regime p(η∗− η)� 1, when considering the dynamics

of δχ2, and treat the field (60) as the background. For the time being we omit the corrections

of the orders v2 and ∂i∂j/k, and account only for the order v effects encoded in (56). We

present the expressions valid to these orders and ∂i∂jη?/k and v2 in the following Subsection.

With this qualification, the linearized field equation for δχ2 reads

(δχ2)′′ − ∂i∂iδχ2 − 2h2χ2
c(η,x) · δχ2 ≡ (δχ2)′′ − ∂i∂iδχ2 −

2

[η∗(x)− η]2
δχ2 = 0 . (62)

At early times, when k(η∗− η)� 1, we get back to the Minkowskian massless equation, and

the solutions are spatial Fourier modes that oscillate in time. Hence, the solution to Eq. (62)

has the following form,

δχ2(x, η) =

∫
d3k

(2π)3/2
√

2k

(
δχ

(−)
2 (k,x, η)Âk + h.c.

)
,
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where δχ
(−)
2 (k,x, η) tends to eikx−ikη as η → −∞ and Âk, Â†k is another set of annihilation

and creation operators. It is straightforward to see that to the linear order in h and modulo

corrections proportional to ∂i∂jη∗(x), the solution with this initial condition is

δχ
(−)
2 (k,x, η) = −eikx−ikη∗(x)−ikv(η∗−η) ·

√
π

2
q[η∗(x)− η] H

(1)
3/2[q(η∗(x)− η)] , (63)

where q = k + kv. This is basically the Lorentz boost of the solution that one would find

for η∗ = const.

At small η∗(x)− η, one has δχ2 ∝ [η∗(x)− η]−1, i.e., the same behaviour as in (56). So,

the phase perturbation freezes out [20]:

θ(x, η) =
δχ2(x, η)

Reχ(x, η)
=

∫
d3k√
k

h

4π3/2(k + kv)
eikx−ikη∗(x)Âk + h.c. , (64)

where we again omit an irrelevant constant phase factor. Note that for η∗ constant in space

(and hence v = 0), i.e., to the leading order in h, the phase perturbations are Gaussian

random field with flat power spectrum (40). The interaction with the radial perturbations

makes the situation less trivial. However, at the conformal rolling stage corresponding effects

of the order v are washed out. Indeed, let us consider the two-point correlation function of

the phase perturbation. Accordingly to (64), in the late-time regime,

〈θ(x1)θ(x2)〉 =
h2

16π3

∫
d3k

kq2
eiq(x1−x2) + c.c.

We now change the integration variable from k to q. Since, the integration measure d3k
k

is

Lorentz-invariant, we obtain

〈θ(x1)θ(x2)〉 = h2

∫
d3q

16π3q3
eiq(x1−x2) + c.c.

This is precisely the two-point function to the leading order in h. The latter argument is

straightforwardly generalized to multiple correlators: for a given realization of the random

field η?(x), they are all expressed in terms of the two-point correlation function. In other

words, the infrared effects are removed by the field redefinition,

Âq = e−ikη?(0)

√
k

q
Âk .

Consequently, the order v corrections do not make any imprint on the observables, once the

behaviour of the phase perturbations is fully captured by their dynamics at the rolling stage.

This is true in the case of the sub-scenario A with superhorizon modes by the end of roll. On

the opposite, the most interesting phenomenological consequences of the sub-scenario with

the intermediate stage, i.e. the statistical anisotropy and the non-Gaussianity, follow from

the order v correction.
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3.4.2 Orders ∂i∂jη?/k and v2. Final formula

Finally, we should calculate the phase perturbations in the orders ∂i∂jη?/k and v2. The

former one is quite tedious and we refer the interested reader to the Appendix B, where we

reproduce the computations of the Ref. [20]. Otherwise, see the result below. It is much

easier to derive the correction of the order v2. This is expected to complete the analysis of

the deep infrared effects on the phase perturbations. Remind, that the quantity v has the

flat power spectrum and, therefore, the quantity v2 is logarithmically amplified due to the

deep infrared modes. Using the analogy with the Lorentz boost, one immediately obtains,

instead of (63),

δχ
(−)
2 (k,x, η) = eiq||γ(x||+vη)+iqTxT−iqγη∗(0) ·

√
π

2
γq[η∗(x)− η] H

(1)
3/2[γq(η∗(x)− η)] ,

where the indices || and T refer to components parallel and normal to v, respectively, the

boosted momenta are

q|| = γ(k|| + kv) , qT = kT , q = γ(k + k||v) ,

and, consistently neglecting the second derivatives of δη∗(x), we have used η∗(x) = η∗(0)−vx.

In the limit q(η∗(x)− η)→ 0 one obtains the late-time expression for the phase, which can

be written in a form. Let us write the final expression for the phase perturbations generated

by the end of the conformal rolling [20],

δθ(x, η) =

∫
d3k√
k

h

4π3/2γ(k + kv)
eikx−ikη∗(x)

(
1− π

2k

kikj
k2

∂i∂jη? +
π

6k
∂i∂jη?

)
Âk + h.c. .

(65)

This formula encodes all the necessary information about the statistical anisotropy in the

sub-scenario A, i.e. one with cosmological mode superhorizon by the end of the conformal

rolling. In this case the phase perturbations are frozen at the value (65). We assume that at

the beginning of the Hot Big Bang the conversion into the adiabatic perturbations occurs,

and the latter inherit the form of the phase perturbations generated (up to the possible non-

Gaussianities of the local type). In the sub-scenario B the phase perturbations further evolve

as they are still subhorizon at the end of the conformal rolling. In this case the value (65)

serves as the initial condition for the evolution at the intermediate stage.

An important remark is in order. Even though we illustrated the conformal rolling

mechanism by making use of the concrete model [18], the results are characteristic of the

entire class of conformal models. As an example, the above formulas are valid [22], modulo

field redefinition, in the Galilean Genesis model [25] based on conformal Galilean field with

higher derivative action [95]. In fact, these formulas hold [26], provided that the theory has

the general properties at the conformal rolling stage. We discuss them in the Chapter 5.
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3.5 Conformal rolling: sub-scenario A

Now, let us discuss the version of the conformal rolling with the cosmologically interesting

modes superhorizon by the end of the conformal rolling. In principle, all the basics of

the sub-scenario A have been discussed in the previous Chapter. Here we just accumulate

this knowledge to derive its phenomelogical properties. Namely, one can show that the

sub-scenario A results into the quadrupole statistical anisotropy and non-Gaussianity in

trispectrum [20, 21, 22]. Remarkably, these predictions are not specific to the conformal

rolling scenario. The same ones are inherent in the much broader class of models, based on

drastically different Lagrangians [25, 26], Hope, this will become clear from the discussion

in the Chapter 5. Also note that the sub-scenario A is natural from the dynamical point of

view. Namely, the field φ, which we assumed to be a spectator so far, can be pushed to drive

the evolution of the Universe. This is actually not the case of the aternative sub-scenario,

namely, the conformal rolling scenario with the intermediate stage.

3.5.1 Statistical anisotropy

The interaction of the phase perturbations with the radial ones at the conformal rolling stage

leads to non-trivial effects in the spectrum of the primordial perturbations. In particular,

it gives rise to the statistical anisotropy. Indeed, let us consider the two-point product

δθ(x)δθ(x′) and average it over the realizations of the operators Ak and A†k. To the leading

order, we obtain the flat and isotropic power spectrum. The directional dependence appears

once we take into account corrections coming from the derivatives of the end-of-roll time η∗(x)

and keep only those modes of δη∗(x) which are still superhorizon today (shorter modes of

δη∗(x) give rise to the non-Gaussianity rather than statistical anisotropy [21, 22]). For so long

modes of δη∗(x), it does not make sense to average over the realizations of the operators Bp,

B†p at this stage. In this way one obtains the power spectrum of the primordial perturbations

ζ(k) [20]:

Pζ(k) = P0(k) (1 +Q1(k) +Q2(k)) ; (66)

(remind that we assume ζ ∼ θ up to the constant factor). The directional dependence is

encoded in the functions Q1(k) and Q2(k), which originate from the corrections to the linear

and next-to-linear orders in the parameter h, respectively,

Q1(k) = −π
k
k̂ik̂j

(
∂i∂jη? −

1

3
δij∂k∂kη?

)
, (67)

Q2(k) = −3

2
(k̂v)2 , (68)
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where k̂ = k/k. First, let us consider the leading order contribution Q1(k). We expand it

in spherical harmonics,

Q1(k) = a(k)
∑
LM

qLMYLM(k̂) , (69)

where

a(k) = k−1 . (70)

By comparing (67) with (69), one concludes that the anisotropic coefficients qLM are Gaussian

variables, since they are linearly related to the derivatives of the end-of-roll time η?(x), which

is the Gaussian field. We keep very long modes of δη∗(x) with p < H0, where H0 is the

present value of the Hubble parameter. At shorter wavelengths the field δη?(x) gets averaged

out. Therefore, the expression in parenthesis in (67) should be treated as a constant tensor

throughout our part of the Universe; retaining its dependence on x would result in effects

suppressed by H0/k. For this reason, only the quadrupole of the general type survives in

Eq. (69). Neither its direction nor precise magnitude can be predicted because of the cosmic

variance. Yet its variance in the ensemble of Universes like ours is calculable and given by

〈q2Mq
?
2M ′〉 =

πh2H2
0

25
δMM ′ . (71)

For similar reason, the second contribution Q2(k) also represents the quadrupole statistical

anisotropy, but of the special type. It can be expanded in the same fashion as in (69). As

compared to the previous case, the amplitude a(k) is independent of the wavenumber k. We

will see that this fact is crucial from the viewpoint of the CMB observations. The other

important distinction is that the quantities q2M are not Gaussian now. Therefore, it will be

convenient to work with the components of the “velocity” v, which are Gaussian variables

with zero means and variances

〈v2
i 〉 =

3h2

8π2
ln
H0

Λ
. (72)

Here the present value of the Hubble parameter and the constant Λ appear as the ultraviolet

and infrared cutoffs, respectively. The quantities q2M are then given by

q2M = −4πv2

5
Y ?

2M(v̂) , (73)

where v̂ = v/v is the unit vector in the direction of the “velocity” v.

Equations (70), (71), (72) and (73) are the starting point of our analysis of the statistical

anisotropy in the CMB within the sub-scenario A.

3.5.2 Non-Gaussianity

The statistical anisotropy appears to be a weak signature of the sub-scenario A, since it is

suppressed either by the factor H0/k or by the power of the coupling constant h. In quest for
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more relevant signatures of the sub-scenario A, one turns to the non-Gaussianity. First to

note, the non-Gaussianity at the level of bispectrum is not particularly interesting. So, the

intrinsic bispectrum vanishes for the symmetry reasons. This is clear from the action (42),

which is invariant under the change of sign of the phase θ, i.e. under the transformation

θ → −θ. Hence, all the correlators of odd number of phase perturbations vanish. Further, as

discussed in Section, the non-Gaussianity generated at the conversion epoch is not specific

to the conformal scenario. Thus, bispectrum alone cannot descriminate between conformal

scenario and, say, inflation equipped with the curvaton mechanism [46, 47, 49, 48, 50].

Fortunately, the intrinsic non-Gaussianity of a rather peculiar form is non-zero at the level

of the trispectrum [21, 22]. Probably, the most striking feature of the trispectrum calculated

there, is the singularity in the limit where tmo momenta are equal in absolute value and have

opposite directions (folded limit). The singular part of the connected four-point function is

given by

〈ζk1ζk2ζk3ζk4〉 = constδ

(
n∑
i=1

)
1

k12k4
1k

4
3

[
1− 3

(
k12k1

k12k1

)2
][

1− 3

(
k12k3

k12k3

)2
]
, (74)

where

k12 = k1 + k2 → 0 , (75)

i.e., the trispectrum blows up as k−1
12 . The singularity in the folded limit is due to the

enhancement of the perturbations δχc. To account this effect properly, one needs to go

beyond the techiques applied so far. The reason is that the momenta p relevant for the

non-Gaussianity can be as large as the cosmologically interesting momenta k.

Interestingly, the single-field inflation predicts the trispectrum finite in the limit k12 → 0.

This sets a belief that the conformal rolling scenario can be distinguished from the broad

class of the inflationary models. Remind that the local type non-Gaussianity is also singular

in the folded limit, i.e. it peaks as k−3
12 as k12 → 0. This is, however, not a sort of worry for

us. In the Ref. [22], the trispectrum of the conformal rolling scenario was compared with the

local one. As it follows from the Figs. 4-6, the corresponding shapes are essentially different

in various limits. Hopefully, this statement holds at the level of the CMB observations.

Remarkably, the trispectrum calculated in [21, 22] is not specific to the conformal rolling

scenario only. The lowest order interaction between the phase and the radial perturbation

δχc is described by the interaction Hamiltonian,

HI = −Lint = −χcδχc(∂µθ)2 . (76)

Let us borrow the intuition developed in the Ref. [26], and view the radius χc and the

phase θ as two separate fields. In this treatment, χc is the conformal weight-one field, θ is

the weight-zero field, while the expression (76) represents the minimal interaction between
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k12/k1

k14/k1

T Ts

Tr

Tloc1 Tloc2

Figure 4: Complete trispectrum T (upper left pannel), its singular part Ts (upper right

panel), its regular part Tr (middle panel), trispectrum of the local form Tloc1 (lower left

panel) and trispectrum of another local form Tloc2 (lower right panel) in equilateral limit.

The picture is reproduced with the permission of the authors [22]

these fields preserving the conformal invariance. The similar picture occurs in the Galilean

Genesis [25]. The qualification is that the weight-zero degree of freedom a la the phase of

the conformal rolling scenario is set by hands in this model. The behaviour of the Galilean

field, the weight-one conformal field, is essentially the same as of the radius χc. Thus, not

surprisingly that predictions of two models coincide. This remarkable statement has been

first made in [22] and further proved clarified on much more general grounds in [26]. In

particular, this means that the trispectrum of the Galilean Genesis has the same shape as

one calculated in [22]. We further elaborate on these points in the Chapter 5.

63
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Tr
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Figure 5: Same as in the Fig. 4 but in the specialized planar limit. The picture is reproduced

with the permission of the authors [22]

3.6 Scalar tilt from broken conformal invariance

So far we avoided the discussion of one more important signature of the primordial physics,

i.e. the scalar tilt. Remind that the latter is favored by the current experiments. Not aiming

to go into the contradiction with the WMAP data, one should think about the sources of the

scalar tilt inherent in the model under the consideration. Unfortunately, the prediction of

the conformal rolling scenario as it stands is the exactly flat spectrum. Thus, to sustain the

consistency with the data, one (or some) of the assumptions underlying the model should be

mildly avoided. To understand what are these assumptions, let us return to the discussion of

the scalar tilt in the inflation. The deviation from the flatness there is due to the two effects:

the small effective mass of the inflaton and the slight breaking of the background de Sitter

symmetry. In the context of the conformal rolling scenario, the former would correspond

to the slightly broken U(1) symmetry. This is achieved without any efforts in the general

setup of Hinterbichler and Khoury [26] rather than in the conformal rolling scenario [18].
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Figure 6: Same as in the Fig. 4, but in the near double-squeezed limit. The picture is

reproduced with the permission of the authors [22]

We postpone this discussion until the Chapter 5. There is the other way to obtain the scalar

tilt, i.e. by the explicit breaking of the conformal invariance. This idea has been proposed

in [19].

The easiest way to break conformal invariance is to assume that the potential of the

conformal rolling is slightly different from the quartic one,

V (φ) = −h2|φ|4+α ,

where the parameter α is assumed to be small, i.e. α � 1. If the conformal symmetry

is broken, then the scale factor does not drop out from the field equation, and we have to

specify the cosmological model. Following [19], one chooses the contracting Universe filled

with matter with stiff equation of state w > 1 as the background, as given, e.g. in the

ekpyrotic models with the negative exponential potential. In terms of conformal time, the

evolution of the scale factor is

a(η) = A(−η)p,
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where p = 2
1+3w

, A = const. The evolution of phase perturbations on this background results

into the slightly tilted power spectrum characterized by the spectral index [19]

ns − 1 = α(1 + p) . (77)

Hence, the tilt is blue or red if the constant α is positive or negative, respectively. This

expression completes the set of predictions of the sub-scenario A. As it follows, violation of

the conformal invariance is the unique source of the scalar tilt in this case. The situation is

different in the sub-scenario with the intermediate stage, to which discussion we turn shortly.

However, the additional contribution to the scalar tilt appearing there is rather weak [23],

since it relies on the coupling constant h2. Thus, the spectral tilt as given by the formula (77)

seems to be the major source also in the sub-scenario B. One more option of getting the

spectral tilt is to break the U(1)-invariance, so that the phase obtains the effective mass

term. We consider this opportunity in the Chapter 5, where the general point of view on

the conformal rolling scenario is review.
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4 Conformal rolling scenario with intermediate stage

4.1 Setup and phenomenology

In this Chapter we assume that there is a long enough period of time after the end of

conformal rolling, at which the phase perturbations remain subhorizon in the conventional

sense [23]. Their behavior between the end of conformal rolling and horizon exit depends

strongly on the evolution of the scale factor at this intermediate stage. In order that the flat

power spectrum (40) be not grossly modified at this epoch, the scale factor should evolve

in such a way that the dynamics of θ is effectively nearly Minkowskian. Although this

requirement sounds prohibitively restrictive, there are at least two cosmological scenarios in

which it is obeyed. One is the bouncing Universe, with matter at the contracting stage having

super-stiff equation of state, p � ρ. It is worth noting in this regard that stiff equation of

state is preferred at the contracting stage for other reasons [17, 94] and is inherent, e.g., in

a scalar field theory with negative exponential potential, like in the ekpyrotic model [15].

It is known [99] that in models with super-stiff matter at contracting stage, the resulting

power spectrum of scalar perturbations is almost the same as that of massless scalar field in

Minkowski space, P(k) ∝ k2. This implies that the dynamics of the scalar field perturbations

is almost Minkowskian in these models. In tractable bouncing models like those of Refs. [13,

14], our phase perturbations exit the horizon at the contracting stage, pass through the

bounce unaffected (cf. Ref. [98]), remain superhorizon early at the hot expansion epoch and

get reprocessed into adiabatic perturbations by one or the other mechanism [56, 55, 48].

The similar situation occurs in the framework of the (pseudo)-Conformal Universe [26],

of which the conformal rolling scenario and the Galilean Genesis [25] are the particular ex-

amples. This will become clear in the next Chapter. Now, let us state that the (nearly)

Minkowskian background is the dinamical background of the Universe undergoing the con-

formal phase. In the concrete example of Hinterbichler-Khoury [26] the evolution of the

Universe is akin to one in the ekpyrotic scenarios with the negative exponential potential,

i.e. the Universe slowly contracts at very early times. In Galilean Genesis, the Universe is

initially spatially flat and nearly static, stays in this nearly Minkowskian state for long time,

then its expansion quickly speeds up and eventually the conventional hot epoch begins. If

our conformal rolling stage ends up well before the start of rapid expansion, the evolution

of the phase perturbations is again nearly Minkowskian up until the horizon exit.

In both scenarios the relevant range of momenta is wide, provided that f0 is small enough

(but not unrealistically small). We discuss this point in Section 4.2. So, it is legitimate to

approximate the evolution of the phase perturbations as Minkowskian in the time interval15

η∗ − ε < η < η1, where η1 is some time after the horizon exit, and (η∗ − ε) is the time when

15For the reason that will become clear shortly, we drop here the superscript (0) in the notation of η∗.
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the radial field relaxes to the minimum of V (|φ|) and the conformal rolling stage ends. We

set ε = 0 in what follows to simplify notations; keeping ε 6= 0 would not change our results

(recall that the phase perturbations are frozen out well before η = η∗). The field θ(x, η∗),

determined by the dynamics at the conformal rolling stage, serves as the initial condition for

further Minkowskian evolution from η∗ to η1. Barring fine tuning, the case of interest for us

is16

k(η1 − η∗)� 1 .

Our purpose is to study the properties of the phase perturbations at η = η1, as these

properties are inherited by the adiabatic perturbations.

To the leading order in h, we find nothing new: the phase perturbations at η = η1 are

Gaussian and have flat power spectrum. Subleading orders in h are more interesting. A

simple way to understand what is going on is to notice that the end-of-roll time η∗, instead

of being a constant parameter, is actually a Gaussian random field [18], η∗(x) = η∗ + δη∗(x)

with δη∗ ∝ h. This is due to the fact that not only the phase θ but also the radial field

|χ| acquire perturbations at the conformal rolling stage; after freeze out, perturbations δ|χ|
can be interpreted as perturbations δη∗(x). The effect of the perturbations δη∗ on the phase

perturbations θ is twofold. First, the perturbations δη∗ modify the dynamics of θ at the

conformal rolling stage, as it follows from Ref. [20]. The new point is that the resulting field

θ(x, η∗(x)) serves as the initial condition for the Minkowskian evolution. Second, this initial

condition is now imposed at the non-trivial hypersurface η = η∗(x). This is illustrated in

Fig. 7. The net result is that the perturbation θ(x) at the time η1 is a combination of two

Gaussian random fields originating from vacuum fluctuations of the phase θ and radial field

|χ|, respectively (better to say, from vacuum fluctuations of imaginary and real parts of χ,

with our convention of real background χc). This leads to several potentially observable

effects.

At the level of the two-point correlation function of the phase perturbation θ(x, η1), and

hence of the adiabatic perturbation ζ, we have found two effects. The first one is negative

scalar tilt [23]

ns − 1 = −3h2

4π2
. (78)

We note in passing that this is not a particularly strong result, as small scalar tilt in our

scenario may also originate from weak violation of conformal invariance at the conformal

rolling stage [19], see the Eq. (77) and/or not exactly Minkowskian evolution of θ at the

intermediate stage. The second effect is the statistical anisotropy: the power spectrum has

the form [23]

Pζ(k) = Pζ(k)
[
1 +Q(k̂)

]
, (79)

16In the opposite case, the phase perturbations do not evolve between η∗ and η1, and we are back to the

version (i) above.
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Figure 7: Due to the perturbations of the radial field, the evolution of phase perturbations

proceeds in inhomogeneous background. Perturbations θ oscillate in time at early stage

(region I), freeze out at time η = η×(x) and temporarily stay constant (region II) until

the end of conformal rolling that occurs at η = η∗(x). Then they evolve again, now in

nearly Minkowskian regime (region III), until the horizon exit time η1. Later on (region IV),

perturbations θ are superhorizon and stay constant.

where Pζ is independent of the direction of momentum (nearly flat spectrum with small

tilt), k̂ = k/k is the unit vector along the momentum and Q(k̂) is itself a random field,

which depends on the direction of k only. Unlike the statistical anisotropy discussed in the

inflationary context [79, 82, 81, 82, 89], and also in the version A of the conformal rolling sce-

nario [20], the function Q(k̂) contains all even angular harmonics, starting from quadrupole.

We give here the expression for Q(k̂) which accounts for the quadrupole component only

(see Section 4.4 for the results valid for all multipoles)

Q(k̂) = Q · wij
(
k̂ik̂j −

1

3
δij

)
, (80)

where wij is a general symmetric traceless tensor normalized to unity, wijwij = 1, and the

variance of the quadrupole component (in the sense of an ensemble of universes) is

〈Q2〉 =
225h2

32π2
(81)
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Of course, the precise values of the multipoles of Q(k̂) in our patch of the Universe are

undetermined because of the cosmic variance.

Due to the interaction with the perturbations δη∗, the resulting phase perturbations

θ(x, η1) and their descendant perturbations ζ are non-Gaussian (we leave aside here the non-

Gaussianity that may be generated at the epoch of conversion of the phase perturbations

into adiabatic ones; our scenario is not special in this respect). Their three-point correlation

function vanishes identically due to the discrete symmetry θ → −θ (cf. Ref. [20]), while the

four-point correlation function has a peculiar form [23]

〈ζ(k)ζ(k̃)ζ(k′)ζ(k̃′)〉 =
Pζ(k)

4πk3

Pζ(k′)
4πk′ 3

δ(k + k̃)δ(k′ + k̃′) ·
[
1 + FNG(k̂, k̂′)

]
+ (k↔ k′) + (k̃↔ k′) . (82)

The leading term in (82) (unity in square brackets) is the Gaussian part, while the non-

Gaussianity is encoded in FNG = O(h2). Note that the structure of the non-Gaussian part

is fairly similar to that of the disconnected four-point function. Note also that FNG depends

on the angle between k and k′ only. For reasons we discuss in Section 4.5, the notion of

non-Gaussianity is appropriate if the angle between k′ and k is small, i.e., |k̂− k̂′| � 1. In

this regime, the leading behaviour of FNG is

FNG =
3h2

π2
log

const

|k̂− k̂′|
,

where constant in the argument of logarithm cannot be reliably calculated because of the

cosmic variance. The logarithmic behavior does not hold for arbitrarily small |k̂ − k̂′|: the

function FNG(k̂− k̂′) flattens out most likely at |k̂− k̂′| ∼ [k(η1 − η∗)]−1/2, and certainly at

|k̂− k̂′| ∼ [k(η1−η∗)]−1. So, the parameter (η1−η∗) is detectable in principle (but, probably,

not in practice).

It is tempting to speculate that the negative scalar tilt ns − 1 ' −0.04, favoured by

the data [113], has its origin in the dynamics we discuss in this paper. If so, our only free

parameter h is determined from (78), h2 ' 0.5, while the small amplitude of the adiabatic

perturbations is to be attributed to the mechanism that reprocesses the phase perturbations

into adiabatic ones. In that case the statistical anisotropy is roughly of order 1, which is

probably inconsistent with the data. On the other hand, if one attributes the small observed

amplitude of primordial scalar perturbations,
√
Pζ ' 5 · 10−5 [114], entirely to the smallness

of h, i.e., identifies Pθ with Pζ , then h2 ∼ 10−7, and the statistical anisotropy is at the level

Q ∼ 10−3, while the non-Gaussianity is probably unobservable. This gives an idea of the

range of predictions of our model.
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4.2 Momentum scales

Before discussing field perturbations in detail, let us consider momentum scales for which

our scenario, outlined in previous Subsection, is valid. According to this scenario, conformal

rolling stage ends up when the radial field |φ| becomes of order f0. This occurs at time ηf
such that

1

a(ηf )h(ηf − η(0)
∗ )
∼ f0 .

Hence, the shortest waves obeying (47) have present momenta

kmax

a0

∼ hf0 ·
a(ηf )

ah
· ah
a0

,

where a0 and ah are the present value of the scale factor and its value at the beginning

of the hot stage, respectively. On the other hand, we assume that the relevant modes are

subhorizon right after ηf ,
k

a(ηf )
> H(ηf ) . (83)

We recall our requirement (45) and find that the longest waves obeying (83) satisfy

k

a0

>
kmin

a0

∼ hf 2
0

MPL

· a(ηf )

ah
· ah
a0

. (84)

We see that the relevant range of momenta is

f0

MPl

· kmax < k < kmax .

It is wide enough, provided that the energy scale f0 is sufficiently low. As an example, for

kmax/kmin ∼ (10kpc)−1/(10Gpc)−1 we need f0 < 10−6MPl.

If our mechanism is supposed to work at contracting stage in the bouncing Universe

scanario with the hot epoch starting immediately after bounce, the inequality (84) implies

much stronger bound on f0. Indeed, a(ηf )/ah > 1 in this scenario, while ah/a0 & T0/Th >

T0/MPl. We require that kmin/a0 is lower than the present Hubble scale H0 and obtain

√
h · f0 < MPl

(
H0

T0

)1/2

∼ 10−15MPl . (85)

Even for h ∼ 10−4 this implies f0 < 106GeV. Interestingly, fully consistent with this scenario

is the scale f0 ∼ TeV.

On the contrary, a(ηf )/ah can be large in the Galilean Genesis scenario [25]. Therefore,

no bound similar to (85) can be established in that case.
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4.3 Evolution at the intermediate stage

4.3.1 Cauchy problem

As outlined in Subsection 4.1, our scenario involves the evolution of the phase perturbations

θ from the hypersurface η = η∗(x) to the hypersurface η = η1 = const. At this intermediate

stage, the radial field stays at the minimum of the scalar potential, while the phase field is

minimally coupled to gravity, and evolves in the subhorizon regime. At time η1, the phase

perturbations become superhorizon and freeze out again. The evolution of the phase must be

nearly Minkowskian at this stage, otherwise its power spectrum would be grossly modified,

see also Appendix A. So, the quantity of interest is θ(x, η1), and it has to be evaluated by

solving the Minkowskian equation

�θ ≡ (θ)′′ − ∂i∂iθ = 0 . (86)

The initial condition θ(x, η∗(x)) at the hypersurface η = η∗(x) is determined by the dynamics

at the conformal rolling stage. In this Section we perform the calculation to the linear order

in v, so the explicit expression is given by (64). The second initial condition is that the

perturbation θ is frozen out by the end of the conformal rolling stage, so that

∂Nθ = 0 at η = η∗(x) , (87)

where ∂N denotes the normal derivative to the hypersurface η = η∗(x). As pointed out in

the beginning of the Chapter, the case of interest is k(η1− η∗)� 1, so the evolution is long.

4.3.2 Leading order: effects of the background cosmological evolution

Let us discuss the free propagation of the phase θ to the leading order in the constant h. The

only possible source of non-trivialities in this case is due to the background evolution, which

we choose to be the slow contraction driven by the matter with the super-stiff equation of

state, p = wρ, w � 1. Our point here is to show that in the limit w →∞ the propagation

is effectively Minkowskian all the way down to a(η)→ 0.

For constant w, the scale factor evolves in conformal time as follows,

a = |η|β , η < 0 ,

where

β =
2

1 + 3w
.

In terms of the field σ = aθ, the field equation reads

σ′′ + k2σ − a′′

a
σ = σ′′ + k2σ − β(1− β)

η2
σ = 0 . (88)
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For large w and hence small β, the last term in the left hand side of Eq. (88) is negligible

before the horizon exit time, ηex ∼ −
√
β/k, while there is simply no time to evolve even

in Minkowski space in the time interval (ηex, 0). This is why one can make use of the

Minkowskian evolution to evaluate the value of the field θ as η → 0, i.e., deep in the super-

horizon regime.

To substantiate this claim, let us consider the Cauchy problem. Namely, let the initial

value θi be specified at η = η∗ = const with |η∗| � k−1, and another initial condition is θ′ = 0

at η = η∗. Let us compare the values of θ obtained at η = 0 by solving the Minkowskian

evolution equation �θ = 0 and by evolving the field according to Eq. (88). The Minkowski

evolution gives the solution for the negative frequency mode: θMink(η, k) = θi(η, k)e−k(η−η?),

so that

θMink(η → 0) = θie
ikη∗ .

The solution to Eq. (88) with the above initial conditions imposed at |η∗| � k−1 is

σ(η) = θi|η∗|β
√
π

2
k|η|uH(1)

ν (−kη) ,

where ν = 1/2− β,

u = eikη∗+i
π
2

(1−β)

and H
(1,2)
ν are Hankel functions. The asymptotics of θ = σ/a as η → 0 for β < 1/2 is

θ(η → 0) = θie
i(kη∗−πβ2 )

(
k|η∗|

2

)β
Γ(1/2− β)

Γ(1/2)
.

We see that the Minkowskian result indeed coincides with the exact one in the limit w →∞,

i.e., β → 0. The main effect for finite but large w is the induced tilt in the power spectrum.

The phase πβ/2 is irrelevant as it cancels out in the correlation functions. Keeping in

mind this possible imprint of the background, we further deal with the purely Minkowskian

evolution.

4.3.3 The case of v = const

It is instructive to consider the unrealistic case

η∗(x) = η∗ − vx

with constant v. This means that the Cauchy hypersurface is flat and boosted with respect

to the cosmic frame. Let us consider the solution to Eq. (86) obeying the initial condition

(cf. (64))

θk(x, η∗(x)) = eikx−ikη∗(x) , ∂Nθk = 0 .
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By going to the boosted reference frame back and forth, one finds that the solution, to the

first order in v (and hence in h), can be written as follows,

θk(x, η) = ei(k+kv)[x+v(η−η∗)]−ikη∗ cos[(k + kv)(η + vx− η∗)] .

Equivalently,

θk(x, η) =
1

2

[
ei(k+2kv)x+i(k+2kv)η−2i(k+kv)η∗ + eikx−ikη

]
. (89)

The first lesson is that the solution is the sum of waves traveling along k and (almost) in the

opposite direction; we will see in what follows that this situation is generic. Furthermore,

for large enough (η − η∗) the two terms in (89) have very different phases at given x, so

their interference is negligible when integrated over k with any smooth function. The second

lesson is that the wave moving along k has momentum k, while the momentum of the wave

moving in the opposite direction is (k+2kv). We interpret this as the Doppler shift. Indeed,

let us go to the reference frame (τ,y) that moves with velocity v with respect to the cosmic

frame, i.e.,

x = y − vτ , η = τ − vy

(recall that we work to the first order in v). The Cauchy hypersurface η = η∗(x) corresponds

to τ = η∗ = const, and the mode at this hypersurface is

θk(y) = eikx−ikη∗(x) = ei(k+kv)y · e−i(k+kv)η∗ .

The last factor here is merely a constant phase, while the first factor describes the wave with

momentum (k + kv) in the new reference frame. In the cosmic frame, this momentum gets

shifted by −kv and kv for waves moving along k and opposite to k, respectively. Hence the

result (89). We will see that this situation is also generic: to the first non-trivial order in h,

the main effect due to the intermediate stage is precisely the Doppler shift and the lack of

interference between waves coming in the directions of k and −k.

4.3.4 General formula and saddle point calculation

The general solution to the Cauchy problem for Eq. (86) with the field and its normal

derivative specified at hypersurface Σ is

θ(x) =

∫
Σ

dΣµ

{
Dret(x, y)∂µθ(y)−

[
∂

∂yµ
Dret(x, y)

]
θ(y)

}
, (90)

where Dret is the retarded Green’s function of Eq. (86), x collectively denotes the coordinates

(η,x), and the normal to the hypersurface is directed towards future. In our case the first

term in the integrand is absent because of (87). We make use of the explicit expression

(valid in the case x0 > y0 we are interested in)

Dret(x, y) =
1

2π
δ[(x− y)2] , (91)
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perform the integration over the radial variable and obtain for large (η1−η∗) (see Appendix C

for details)

θ(x) =

∫
dΩn

4π

1

1− nv
r∂rθ , (92)

where we still use the notation vi = −∂iη∗. Here n is unit radius-vector, integration runs

over the unit sphere parametrized by n, and r = r(n) is the spatial distance that light travels

from the hypersurface η = η∗(y) to the point x = (η1,x). It obeys the following equation:

r = η1 − η∗(x + nr) . (93)

The function θ = θ(r,n) in the right hand side of (92) is the field value at the Cauchy

hypersurface,

θ(r,n) = θ(y, η∗(y))

with

y = x + nr .

The formula (92) is exact for large r (for arbitrary r and general Cauchy data with non-

vanishing ∂Nθ, its generalization is Eq. (211) in Appendix B).

We now make use of (64) and obtain

θ(x, η1) =
h

4π3/2

∫
d3k√
k

eikxAk · I + h.c. , (94)

where I is the integral over unit sphere,

I = i

∫
dΩn

4π
eiψ(n) · r · (k + kv)n

(1− nv)(k + kv)
(95)

with

ψ = knr − kη∗(x + nr) = knη1 − (kn + k)η∗(x + nr) . (96)

All quantities in the integrand of (95) (including v) are to be evaluated at y = x + nr.

Corrections to the integrand are of order v2 and ∂v/k.

The exponential factor eiψ in (95) is, generally speaking, a rapidly oscillating function

of n, since ψ is proportional to the large parameter kr. Therefore, the integral (95) can

be calculated by the saddle point method, adapted to our problem. When performing the

calculation, we have to keep in mind one point. Namely, even though we deal with soft

modes in δη∗(x) (with momenta p � k), the term kη∗(x + nr) in ψ also gives rise to a

rapidly oscillating factor, since r is large. So, we cannot neglect the second derivatives ∂2η∗
in the exponent ψ.
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The saddle points are extrema of ψ(n), where n is a unit vector. To find them, let us

formally consider n as an arbitrary vector, and ψ formally as a function of this vector. Then

the extremum on unit sphere is the point where ∂ψ/∂n is parallel to n, i.e.,

∂ψ

∂n
= λkrn (97)

with yet to be determined λ (the factor kr on the right hand side is introduced for further

convenience; in fact, λkr is nothing but the Lagrange multiplier). We use Eq. (93) to find,

to the first order in v,
∂r

∂n
= vr

and, therefore,
∂ψ

∂n
= [k + (kn + k)v] r . (98)

We see that there are two saddle points, one near the unit vector k̂ = k/k directed along the

momentum, and another near (−k̂). These saddle points correspond to waves moving from

the Cauchy hypersurface in directions opposite to k and along k, respectively, in accord with

the discussion in Section 4.3.3.

The contributions of the two saddle points to the integral (95) are calculated in Ap-

pendix D to the first order in v and ∂v. They sum up to

I =
1

2k

{
eiψ+

[
1− k̂v(+k̂) + r(δij − k̂ik̂j)∂iv(+k̂)

j

]
+ eiψ−

(
1− k̂v(−k̂)

)}
, (99)

where

ψ+ = ψ+(x, k̂) = kη1 − 2kη∗(x + k̂r) ,

ψ− = −kη1 ,

and superscripts (+k̂) and (−k̂) indicate that the corresponding quantities are to be evalu-

ated at

y(+) = x + k̂r (100a)

and

y(−) = x− k̂r , (100b)

respectively. The terms in (99) marked by + and − come from the saddle points n ≈ k̂ and

n ≈ −k̂, respectively; they are analogs of the two terms in (89) (the factor (k + kv)−1 =

k−1(1 − k̂v) in the integrand in (64) was ignored in Section 4.3.3). Note that there is no

symmetry between the two contributions; technically, this is because the dependence on δη∗
is absent in the phase (96) for n = −k̂, but present for n = k̂. Note also that the saddle

point value ψ+ depends on x already to the linear order in h, while the second saddle point
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value ψ− does not. This is precisely what we observed in Section 4.3.3: the momentum of

perturbation corresponding to the first contribution in (99) is k+∂ψ+/∂x = k+ 2kv, like in

the first term in (89). Note finally that since we consider the case kr � 1, it is legitimate to

neglect the correction of order ∂2η∗/k = ∂v/k, indicated in (64), while keeping the correction

of order r∂v in (99).

One more remark is in order. Our notation v(±k̂) suggests that these quantities are

functions of the direction of momentum only, i.e., that they are independent of the length

of the vector k. This is true, but within our approximation only. The reason is that the

horizon exit time η1 is different for different k, so the arguments y(±) of v(±k̂) depend on

k through r = η1 − η∗. This is irrelevant for us, since |η1(k) − η1(k′)| is at most of order

1/k or 1/k′ (in fact, it is even smaller), so the effect we discuss is of order ∂v/k. Also, one

may worry that the phases ψ± depend on k through η1. This is irrelevant as well, for the

following reason. When calculating the correlation functions of the field δθ, one neglects the

interference between the contributions due to the first and second saddle points, since the

interference term oscillates in k as e2ikr and is negligible when integrated with any smooth

function of k. Then the factor, say, eikη1 is merely a phase factor that can be absorbed into

the redefinition of Ak. In other words, x-independent phases cancel out in the correlation

functions of δθ, so the dependence on k through η1 does not appear. These observations

apply to all calculations in this paper, so we neglect the dependence of η1 on k in what

follows.

We conclude this Section by the discussion of the range of validity of our saddle point

calculation. It follows from (96) that the relevant region of angular integration in (95) near

each of the saddle points is ∆ϑ ∼ (kr)−1/2. The saddle-point calculation makes sense if

η∗(x + nr) does not change dramatically at this angular scale. Hence, by the saddle point

method we can only treat the interaction of the phase perturbations with the modes of δη∗
whose momentum p obeys pr∆ϑ . 1, i.e.,

p .

√
k

r
. (101)

The momenta p relevant for the statistical anisotropy do obey this inequality, see Section 4.4,

while the requirement (101) restricts the angular scales at which we can reliably study non-

Gaussianity. The latter point is further discussed in the end of Section 4.5.

4.4 Statistical anisotropy

We see from Eqs. (94) and (99) that the resulting phase perturbation θ(x, η1) is a combination

of two random fields, one associated with operators Ak and A†k and another being δη∗(x).

Let us discuss the two-point product θ(x)θ(x′) averaged over the realizations of Ak and A†k
for one realization of δη∗, still to the linear order in h (in this Section we consider solely the
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resulting perturbations θ(x, η1) and omit the argument η1 in the notation). As discussed in

the end of Section 4.3.4, we neglect interference between terms with eiψ+ and eiψ− . Then the

two-point function reads

〈θ(x)θ(x′)〉 =
h2

16π3

{
1

4

∫
d3k

k3
ei(k+2kv(+k̂))(x−x′) ·

[
1− 2k̂v(+k̂) + 2r(δij − k̂ik̂j)∂iv(+k̂)

j

]
+

1

4

∫
d3k

k3
eik(x−x′) ·

(
1− 2k̂v(−k̂)

)}
, (102)

where we made use of the fact that, to the first order in v,

ψ+(x, k̂)− ψ+(x′, k̂) = 2kv(+k̂)(x− x′) .

Since we consider the long-ranged component of the field v, i.e., p� k, we neglect the terms

of order |x− x′| · ∂v. In particular, we do not distinguish between v(x′ + k̂r) and v(x + k̂r)

in the right hand side of (102).

We now see explicitly that the actual momentum corresponding to the first term in (102)

equals k + 2kv, whereas the momentum in the second integrand equals k. To obtain the

standard form of the Fourier expansion, we change the variable to k̃ = k + 2kv in the first

integral. To the first orger in h, the Jacobian of this change of variables is(
det

∂k̃i
∂kj

)−1

= 1− 2k̂v(+k̂) − 2k
∂v

(+k̂)
i

∂ki
= 1− 2k̂v(+k̂) − 2∂jv

(+k̂)
i · r(δij − k̂ik̂j) ,

where we recalled that v(+k̂) = v(x + k̂r). It is worth noting that the last term here cancels

out the last term in square brackets in (102). So, omitting tilde over k̃, we obtain that for

given realization of v(x), the power spectrum, with the correction of the first order in h, has

the following form:

Pθ(k) = P0

[
1 + k̂i

(
v

(+k̂)
i − v(−k̂)

i

)]
≡ P0

[
1 +Q(k̂)

]
, (103)

where

P0 =
h2

8π2

is the power spectrum to the leading order in h (it is twice smaller than the power spectrum

at conformal rolling stage after freeze-out of the phase perturbations; this is because the

contributions of the two saddle points do not sum up coherently at η = η1). Note that the

non-trivial term in (103) depends on the direction of momentum k. Note also that the power

spectrum (103) is symmetric under k → −k, so the two-point function (102) is invariant

under x ↔ x′, as it should. Low angular harmonics of v(±k̂), viewed as a function on unit

sphere in momentum space, take certain values in our patch of the Universe. Hence, they
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induce statistical anisotropy; in particular, the lowest multipole of the expression in the right

hand side of (103) (quadrupole) gives rise to the power spectrum of the form (79), (80).

In more detail, the right hand side of (103) contains all even multipoles,

Q(k̂) =
∑
LM

qLMYLM(k̂) , (104)

where YLM are spherical harmonics. Making use of the definition v(±k̂) = v(y(±)), where

y(±) are given in (100), we find for L 6= 0 that the multipole coefficients are given by

qLM = −i
∫
d3pδη∗(p)

∫
dΩk̂Y

∗
LM(k̂) · pk̂

(
eirpk̂ − e−irpk̂

)
, (105)

where we omitted an irrelevant k̂-independent phase. It is worth noting that for low multi-

poles, the relevant range of integration over p is roughly p ∼ r−1: at larger p the integrand

rapidly oscillates, while at smaller p the expression in the inner integrand in (105) decays as

p2 while according to (57) the amplitude of δη∗(p) behaves as
√
Pδη∗ ∝ p−1. At large L, the

relevant momenta are of order p ∼ Lr−1. Thus, our approximation p� (k/r)1/2 is justified

at least for low multipoles.

The calculation of the variance of qLM is performed in much the same way as the calcu-

lation of the CMB anisotropy multipoles. This is done in Appendix E with the result

〈qLMq∗L′M ′〉 =
3h2

π

1

(L− 1)(L+ 2)
δLL′δMM ′ , even L 6= 0 . (106)

Note that we use different normalization here and in (80). To establish the correspondence,

we calculate the angular integral of the variance of the quadrupole term in (80):∫
dΩk̂〈

[
Q · wij

(
k̂ik̂j −

1

3
δij

)]2

〉 =
8π

15
〈Q2〉 ,

while the same integral of the quadrupole term in (104) is given by∫
dΩk̂〈 |

2∑
M=−2

q2MY2M(k̂)|2〉 =
2∑

M=−2

〈|q2M |2〉 .

Hence the extra factor 75/8π in (81) as compared to (106).

4.5 Non-Gaussianity

The statistical anisotropy is an appropriate notion for describing the effect due to the varia-

tion of v(±k̂) over large angular scales in momentum space. On the other hand, the effect of

fluctuations of v(±k̂) at small angular scales is naturally interpreted, we believe, in terms of
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non-Gaussianity. Indeed, in the latter case it makes sense to treat v(±k̂) as genuine random

field and perform averaging over its realizations, having in mind multiplicity of patches in

the k̂-sphere.

It is worth noting that even though we are going to consider v(±k̂) at small angular scales

∆ϑ in momentum space, the relevant momenta p of the field δη∗ are still small, p ∼ (r∆ϑ)−1.

So, our approximation p� (k/r)1/2 is still valid, provided that ∆ϑ is not very small, see the

discussion in the end of this Section.

Let us consider higher order correlation functions of θ(x) (we again omit the argument

η1 in this Section). Since this field has the general structure (94), where I does not contain

the operators Ak, A†k, the three-point function vanishes identically. For calculating the non-

Gaussian part of the four-point function, the expression (99), valid to the first order in v, is

sufficient. Proceeding in the same way as in the beginning of Section 4.4, we obtain

〈θ(k)θ(k̃)θ(k′)θ(k̃′)〉 =
1

4πk3

1

4πk′ 3
P2

0 δ(k + k̃)δ(k′ + k̃′)

×
[
1 +GNG(k̂, k̂′) +GNG(−k̂, k̂′) +GNG(k̂,−k̂′) +GNG(−k̂,−k̂′)

]
+ (k↔ k′) + (k̃↔ k′) , (107)

where the non-Gaussianity is encoded in

GNG(k̂, k̂′) = 〈k̂i
(
v

(+k̂)
i − v(−k̂)

i

)
· k̂′l
(
v

(+k̂′)
l − v(−k̂′)

l

)
〉 . (108)

Fluctuations of v(±k̂) at small angular scales in momentum space show up when k and k′

are either nearly parallel, or nearly antiparallel, the latter case being related to the former

by the interchange k↔ k̃. So, it suffices to consider nearly parallel k and k′, i.e.,

|k̂− k̂′| � 1 .

Since the power spectrum of the random field v(x) is flat, the leading term is logarithmic in

|k̂− k̂′|.
The expression in (108) involves the combination

v(+k̂) − v(−k̂) = v(x + k̂r)− v(x− k̂r) .

Therefore, the integral over momenta of the field v is cut off in the infrared at p ∼ r−1.

We cannot quantitatively treat the modes of these momenta anyway, since they are plagued

by cosmic variance. So, we consider modes with p > r−1, recall the expression (57) for the

power spectrum of δη∗ and write

GNG = 2〈k̂iv(+k̂)
i · k̂′jv(+k̂′)

j 〉p&r−1 = 2 · 9h2

8π2

∫
p&r−1

d3p

4πp5
k̂ik̂
′
jpipj eip(k̂−k̂′)r .
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The angular integral here is straightforwardly evaluated. We make use of the fact that

k̂(k̂− k̂′) = O((k̂− k̂′)2) and obtain

GNG = −9h2

4π2

∫
x&|k̂−k̂′|

dx

x2

(
sinx

x

)′
,

where x = rp|k̂− k̂′|. This is a logarithmic integral, and in the leading logarithmic approxi-

mation we immediately get

GNG =
3h2

4π2
log

const

|k̂− k̂′|
.

The constant here is of order 1; it cannot be reliably calculated, since the contribution of the

region p ∼ r−1 is undetermined because of the cosmic variance. Finally, we notice that the

right hand side of (108) is symmetric under k → −k, so the four terms in (107) give equal

contributions. Thus, the four-point function at |k̂− k̂′| � 1 is

〈θ(k)θ(k̃)θ(k′)θ(k̃′)〉 =
1

4πk3

1

4πk′ 3
P2

0 δ(k + k̃)δ(k′ + k̃′) ·
[
1 + FNG(k̂− k̂′)

]
+ (k↔ k′) + (k̃↔ k′) ,

where

FNG(k̂− k̂′) =
3h2

π2
log

const

|k̂− k̂′|
. (109)

Note that our analysis is valid provided that we can treat the range x ≡ rp|k̂− k̂′| ∼ 1 within

our approximation p � (k/r)−1/2, see (101). So, the logarithmic behaviour (109) persists

until |k̂− k̂′| & (kr)−1/2. At even smaller angles between k̂ and k̂′, the function FNG(k̂− k̂′)

most likely flattens out. The logarithmic behaviour is definitely absent for |k̂− k̂′| . (kr)−1,

since momenta p higher than k do not contribute to the effect. These observations suggest

that the value of r is potentially measurable.

We conclude by writing the expression for the trispectrum of the primordial scalar per-

turbations predicted by the scenario with the intermediate stage,

Tζ(k, k̃,k′, k̃′ ∝
h2

Pζ

[
δ(k + k̃)k̃3k̃3 log

const

|k̂− k̂′|
+ (k↔ k′) + (k̃↔ k′)

]
, (110)

up to the irrelevant phase factor. The direct comparison of our trispectrum with the local

one seems to be ubiquitos because of the delta-functions standing here. Hopefully, the things

become more clear, once we study their imprint on the CMB temperature coefficients. We

leave the further investigation of this trispectum for the future (more precisely, until the

advent of the PLANCK data).
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4.6 Scalar tilt

Once the interactions of the phase field with the radial one are not neglected, the power

spectrum of the phase perturbations obtains a small tilt. The reason is that for larger k,

there are more modes of δη∗ with p < k which affect the properties of the phase perturbations.

We will see that the effect is logarithmic because of the flat spectrum of v.

To this end, let us come back to the two-point correlation function 〈θ(x)θ(x′)〉. Even

though the integral (92) is again saturated near n = ±k̂, the saddle point calculation like

that performed in Section 4.3.4 is no longer appropriate, since we are going to consider all

modes of δη∗ of momenta p � k and not necessarily very large wavelength modes obeying

(101). The problem is not notoriously difficult, nevertheless, since we are interested in

logarithmically enhanced effect. Imagine that one calculates 〈θ(x)θ(x′)〉 by expanding in

δη∗ the complete expression (92), with θ in the integrand given by (65). In principle, large

logarithms could come from the expectation values 〈δη∗ · ∂i∂jδη∗〉 and 〈vi · vj〉. We reiterate,

however, that the overall time shift is irrelevant for our problem, so the terms of the former

type do not appear explicitly (for the same reason, there are no terms involving correlation

functions of δη∗ with itself and with v, which would yield power law corrections). Thus, it

is legitimate to ignore the correction of order ∂i∂jδη∗ in (65). Moreover, we can formally

consider the velocity v in (65) as a constant which is independent of spatial coordinates. So,

we effectively deal with the Lorentz-boosted hypersurface η∗ = η∗(y±) − v(y − y±), where

y± = x ± k̂r. The qualification here is that the velocity is to be evaluated at y = y±, and

that v(y±) is a non-linear function of δη∗, since, according to (93), y± depend on δη∗ through

r. Another qualification is that when calculating the power spectrum Pθ at momentum k,

we have to impose a restriction p < k on the momentum p of modes of the field δη∗.

Since we treat the velocity v as constant in space, we can obtain the solution to the

Cauchy problem explicitly, in a way similar to that of Section 4.3.3. However, we need the

solution to the second order in v. The initial condition for the Minkowskian evolution is thus

given by (65). Let us define the Lorentz-boosted coordinates z and τ :

z|| = γ(x|| + vη) , zT = xT , τ = γ(η + vx||) ,

where || and T refer to components parallel and normal to velocity. Then the initial data

are specified at the hypersurface τ = τ± = const, and ∂τθ = 0 at this hypersurface. We

re-express x and η in terms of z and τ and insert them into (65). Omitting the overall

phase factor independent of z that cancels out in the two-point function, we write the initial

conditions as

θ(z, τ±) ∝
∫

1

γ(k + kv)
eiqzAk

d3k√
2k

+ h.c. , ∂τθ = 0 , (111)

where

q|| = γ(k|| + kv) , qT = kT .
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The solution to the massless field equation in Minkowski space with this initial condition is

θ ∝
∫

1

γ(k + kv)
eiqz cos [q(τ − τ±))]Ak

d3k√
2k

+ h.c. , (112)

where q = γ(k + k||v). This solution again describes two waves propagating in opposite

directions, which do not interfere at η = η1. Let us consider the two waves separately.

At time η1, we have for the first wave, moving in direction opposite to k,

eiqz+iqτ = eiγ
2(k||+2kv+k||v

2)x||+ikTxT+iϕ , (113)

where ϕ is a phase, irrelevant for the two-point function of δθ. So, the actual momentum is

k̃|| = γ2(k|| + 2kv + k||v
2) , k̃T = kT .

Note that to order v2 we have k̃|| = γ2v(k|| + 2kv), where γ2v = (1− 4v2)−1/2 is the Lorentz-

factor for velocity 2v. Hence, k̃ again differs from momentum k by the Lorentz-boost with

velocity 2v. We recall that Akd
3k/
√

2k is Lorentz-invariant, and obtain for the contribution

of the first wave at point x (again omitting the phase factor, irrelevant for the two-point

function)

θ(x) ∝
∫

1

γ(k + kv)
eik̃xAk̃

d3k̃√
2k̃

+ h.c. ,

where k|| = γ2v(k̃||− 2k̃v), k = γ2v(k̃− 2k̃||v). Expanding in v to the second order, we obtain

the following form of the first contribution to the power spectrum

Pθ(k̃) ∝ 1 + 2

(
k̃i

k̃
〈vi〉+

k̃ik̃j

k̃2
〈vivj〉 −

1

2
〈v2〉

)
+
k̃ik̃j

k̃2
〈vivj〉 .

Here the term in parentheses comes from 〈θ(0)θ(1)〉, where θ(0) is the zeroth order phase

perturbation and θ(1) the correction (that includes linear and quadratic terms in v), while

the last term in the right hand side is due to the correlator 〈θ(1)θ(1)〉. We see that the

explicitly quadratic terms cancel out and find (at this point we can set k̃ = k)

Pθ ∝ 1 + 2k̂i〈vi〉 .

We now recall that the velocity is to be evaluated at the point y+ = x + k̂r, where r =

η1 − η∗ − δη∗(x + k̂r), so that

vi(y+) = vi[x + k̂(η1 − η∗)]− ∂jvi · k̂jδη∗ .

The expectation value of the first term on the right hand side vanishes, while the second

term gives

〈vi(y+)〉 = −k̂j
∫

d3p

4πp3
pipjPδη∗(p) = −k̂i ·

3h2

8π2
log(kr) ,
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where we recalled that the relevant range of momenta is r−1 � p� k. Thus, the contribution

due to the first wave has the form

Pθ ∝ 1− 3h2

4π2
log(kr) . (114)

Let us now consider the second wave that moves along k. We have at time η1

eipy−ipτ = eikx+iϕ , (115)

so the actual momentum is equal to k. Hence, the contribution of this wave is

θ(x) ∝
∫

1

γ(k + kv)
eikzAk

d3k√
2k

+ h.c. .

Proceeding as before, we obtain the contribution of this wave to the power spectrum,

Pθ ∝ 1− 2k̂i〈vi〉 ,

where the velocity is to be evaluated at the point y− = x−k̂r with r = η1−η(0)
∗ −δη∗(x−k̂r).

The resulting contribution again has the form (114), so we conclude that the shape of the

entire power spectrum is given by (114).

The result (114) shows that the power spectrum of δθ, and hence of the adiabatic pertur-

bations, is tilted. If this is the only reason for the tilt, the scalar spectral index in our model

is equal to ns = 1 − 3h2

4π2 . As pointed out in Section 1, however, there may be other sources

for the tilt, so we cannot insist on attributing the entire scalar tilt to the effect discussed in

this Section.

To end up this Section, we sketch an alternative way of calculating the correction to

the power spectrum Pθ. One makes use of the exact formula (92) with θ in the integrand

given by (65) and evaluated at y = x + nr, where r obeys Eq. (93). The dependence of the

integrand in (92) on the integration variable n is fairly non-trivial, since the vector n enters

the argument of η∗ both explicitly and through r(n). We know, however, that the integral

(92) is saturated in regions near the two points on unit sphere, n = k̂ and n = −k̂. Consider

the first region for definiteness. The idea is to write

η∗[x + nr(n)] = η∗[x + k̂r(k̂)] +
{
δη∗[x + nr(n)]− δη∗[x + k̂r(k̂)]

}
,

r(n) = r(k̂)−
{
δη∗[x + nr(n)]− δη∗[x + k̂r(k̂)]

}
,

express these functions iteratively through

δη∗[x + nr(k̂)]− δη∗[x + k̂r(k̂)]

and systematically expand the integrand in (92) in a series in the latter quantity, up to

quadratic order. Then one has to deal with angular integrals, in which the integration
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variable n enters either in combination eiknr(k̂) or via eiknr(k̂)δη∗[x+nr(k̂)] (the integral with

δη2
∗ is trivial after ensemble averaging). The former integral is straightforwardly evaluated

by the saddle point method. To evaluate the latter integral, one writes δη∗[x + nr(k̂)] in the

Fourier representation and arrives at the angular integral with ei(k+p)nr(k̂), where p is still

the momentum of a mode of δη∗. The latter integral is again evaluated by the saddle point

method; the rest of the calculation is straightforward. We have performed the calculation of

the power spectrum in this way; it is tedious, but does yield the result (114).

At this point we finish our discussion of the sub-scenrio B. Signatures of the latter com-

bined with ones of the sub-scenario A, complete the full set of predictions in the model with

conformal rolling. Shortly, we will see that these predictions are in fact generic ones and

calculations of last two Chapters serve as the ansatz in a much broader class of models, like

those of the (pseudo)-Conformal Universe [26].
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5 Models of (pseudo)-Conformal Universe

5.1 Assumptions

By far, we studied the properties of the primordial scalar perturbations using the particular

example of the conformal rolling scenario. Thus, one may think that the flatness of their

spectrum is due to the particular choice of the model rather than due to the conformal

symmetry inherent in it. In this Chapter, we will show following [26] that this is not so. In

particular, we will see that there is in fact a broad range of models obeying a few assumptions,

under which the spectrum of relevant perturbations is promised to be flat. Let us try to

guess these assumptions. For this purpose, we turn back to the discussion of the conformal

rolling scenario [18] in the beginning of the Chapter 3. There we considered the action for

the complex massless field φ conformally coupled to gravity. After the appropriate field

redefinition, namely χ = aφ, we were led to the Minkowskian evolution for χ. As it follows,

the conformal coupling to gravity is irrelevant if the background evolution of the Universe is

described by the nearly Minkowski metric at rather early times. Shortly it will turn to be

one of the conditions ensuring the flat spectrum of the relevant perturbations.

In the conformal rolling scenartio, the self-interaction is described by the negative quartic

potential, V (χ) = −h2|χ|4. Under this assumption, the radius of the field χ acquired the

time-dependent profile, real without loss of generality, since the U(1)-symmetry of the model,

χc ∼ −
1

η
. (116)

Here we omit the constant of the integration η?, which has meaning of the end-of-roll time in

the conformal rolling scenario. This we do envisioning the dynamical picture of the Universe,

where the end of roll is associated with the beginning of the hot epoch. The U(1)-symmetry

also fixes the interaction between the phase θ of the field χ and its radius χc,

Lint =
1

2
χ2
c(∂µθ)

2 , (117)

so that the phase perturbations evolving on the classical background (116) acquire the flat

spectrum. Obviously, the self-interaction in the form of the negative quartic potential is not

important as it is. Important is the background solution with the profile given by (116). The

latter may appear as the solution from the Lagrangians, which are completely different from

one of the conformal rolling scenario. Let us clarify its meaning from the viewpoint of the

conformal algebra in 4 dimensions. For this purpose, it is convenient to decompose the field

χ and view the radius and the phase θ as two separate fields. The basis of the conformal

algebra in 4 dimensions is the set of 15 generators: 4 operators Pµ corresponding to Poincare

translations, 6 generators Jµν of the space-time rotations, the dilaton operator D and 4

generators of special conformal transformations Kµ. With respect to these transformations,
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the field ρ is the conformal field with the weight ∆ = 1. We envision the situation with

more than one conformal field, namely some set {φI}, and each of them has the non-trivial

profile, and each has some weight ∆I . They transform under the conformal symmetries as

follows,

PµφI = −i∂µφI , JµνφI = i(xµ∂ν − xν∂µ)φI

DφI = −i(∆I + xµ∂µ)φI , KµφI = i(−2xµ∆I − 2xµx
ν∂ν + x2∂µ)φI .

It is well-known, that the conformal group can be viewed as the group of rotations operating

on the flat space-time with two time directions. To see this explicitly, let us write the

commutation relations for the generators of the conformal group,

[D,Pµ] = iPµ, [D,Kµ] = −iKµ, [Kµ, Pν ] = −2i(Jµν − ηµνD),

[Kλ, Jµν ] = i(ηλµKν − ηλνKρ), [Pσ, Jµν ] = i(ησµPν − ησνPµ) ,

[Jµν , Jρσ] = i(ηµσJνρ − ηνσJµρ + ηνρJµσ − ηµρJνσ) .

By redefining δJ−2,−1 = δD, δJ−2,µ = (δPµ−δKµ)/2 and δJ−1,µ = (δPµ+δKµ)/2, we can assemble

all the conformal generators into an anti-symmetric matrix δJAB , with A,B taking the six

values (−2,−1, µ). The commutation relation then takes the form

[JAB, JCD] = i(ηACδJBD − ηBCδJAD + ηBDδJAC − ηADδJBC ) ,

where ηAB = diag(1,−1, ηµν) is a 6d Minkowskian metric with two time directions. These

are the commutation relations of SO(4, 2).

Now, we note that there are ten generators, which annihilate the time-dependent back-

ground value, namely

Pi, D, Jij, Ki, i = 1, 2, 3 .

These ten unbroken generators can be assembled into an anti-symmetric matrix Jab, with a

and b taking the five values (−2,−1, i), by defining J−2,−1 = D, J−2,i = (Pi −Ki)/2 and

J−1,i = (Pi +Ki)/2. The commutation relations then take the form

[Jab, Jcd] = i(ηacJbd − ηbcJad + ηbdJac − ηadJbc),

where ηab = diag(1,−1,−δij) is a 5d Minkowski metric with one time direction. The remain-

ing five generators do not annihilate χ. Thus, we deal with the symmetry breaking pattern

SO(4, 2)→ SO(4, 1).

The generalization to the case with more than one field with the non-trivial background

is straightforward. If there is a set of fields {φI} each having the conformal weight ∆I , then

the non-trivial background for each of the fields is given by [26],

φ̄I(t) =
cI

(−t)∆I
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The power standing here is dictated by the invariance under the transformations induced by

the dilaton operator D. The 5 broken generators act on the background solution as

δP0φ̄I =
i∆I φ̄I
t

, ∆J0iφ̄I = −i∆Ixi
t

φ̄I , δK0φ̄I = −i∆Ixµx
µ

t
φ̄ .

As it follows, the zeroth weight conformal field cannot stand for the SO(4, 2) → SO(4, 1)

symmetry breaking pattern. However, their role is of particular importance in our discus-

sion. Indeed, the phase θ of the conformal rolling scenario is the weight-0 field, while the

term (117) represents the minimal way of coupling the phase to the field ρ, so that the

conformal symmetry of the model is preserved. The phase perturbations were most relevant

for our discussion in the Chapter 3, since they served as the source of the primordial scalar

perturbations with the flat spectrum.

Now, we are in the position to write down the assumptions, under which the scale invari-

ance of relevant perturbations is guaranteed [26]:

a) the background evolution of the Universe is described by the Minkowski metric with a

high accuracy;

b) the Universe is in the CFT state at these times, and among the field content there is a

set of conformal fields {φI} with different conformal weights;

c) the conformal group SO(4, 2) is spontaneously broken down to the de Sitter group SO(4, 1)

by the time-dependent background(s) of the field(s) φI ;

d) there is at least one field with the zeroth conformal weight evolving on the spontaneously

broken background.

If these conditions are obeyed, then the zeroth weight conformal field acquires the flat spec-

trum. The elegance of these conditions is that they allow to build the effective Lagrangian

fixed up to some constants. We do it in the following Section (at the quadratic level). In

parallel, we will give the proof of the statement made here.

The assumptions written represent the idea of the (pseudo)-Conformal Universe. In the

treatment of Hinterbichler and Khoury, they imply that the matter dominating the evolution

of the Universe is in the CFT state. Sure, one can relax this claim and deal with the spectator

models a la conformal rolling scenario. In this case, only the part of the field content of the

Universe is in the CFT state at very early times, while the presense of the background matter

and the gravity can strongly violate the conformal symmetry. The effective Minkowski metric

is then obtained by introducing the conformal coupling with the gravity. This is not necessary

for the dynamical models. Indeed, as we will see in what follows, the Minkowskian evolution

is the dynamical attractor in the Universe driven by the CFT state. Thus, the assumption a)

is guaranteed, once the condition b) is satisfied. The Galilean Genesis [25] is the well-known

example of the dynamical model, which satisfies all the conditions of the (pseudo)-Conformal

Universe. Though basing on the drastically different Lagrangian, the authors of [25] resulted

with the flat spectrum of the weight-0 conformal field.
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5.2 Effective Lagrangian

The basic principles of constructing the Lagrangian, which respects the symmetry breaking

pattern G1 → G2, where the G2 is some subgroup of G1, have been established long time ago

in [109]. Though this techniques is applied to the internal symmetries, it has been generalized

by Volkov [110] on the case of space-time symmetries. He considered the particular case of

the conformal group spontaneously broken down to the Lorentz group SO(3, 1), while the

authors of [120] derived the effective Lagrangian respecting the symmetry breaking pattern

of interest: SO(4, 2) → SO(4, 1). They constructed the effective Lagrangian up to the

fourth derivative of the Goldstone field. For our purposes, it will be enough to consider the

quadratic Lagrangian. The reason is that we interested in the leading order effects, and,

in particular, in the flat spectrum of the zeroth weight fields perturbations. The quadratic

Lagrangian was derived in [26]. Here we repeat the calculations made there (in a bit more

details, however) and also consider the consequences for the perturbations of the fields.

The unbroken SO(4, 1) subalgebra acts linearly on the perturbations ϕI = φI − φ̄I ,

PiϕI = −i∂iϕI , J ij = i(xi∂j − xj∂i)ϕI ,
DϕI = −i(∆I + xµ∂µ)ϕI , Ki = i(−2xi∆I − 2xix

ν∂ν + x2∂i)ϕI ,

whereas the 5 broken generators act non-linearly,

P0ϕI =
∆I

t
φ̄I − φ̇I , J0iϕI = −∆Ix

i

t
φ̄I + (t∂i + xi∂t)φI ,

K0ϕI = −∆Ix
2

t
φ̄I + (2t∆I + 2txν∂ν + x2∂t)φI .

(118)

At the quadratic two derivative level, the most general lagrangian consistent with spatial

rotations and translations is

Lquad =
1

2
M IJ

1 (t)ϕ̇Iϕ̇J −
1

2
M IJ

2 (t)∇ϕI∇ϕJ −
1

2
M IJ

3 (t)ϕIϕJ , (119)

where the summation over I and J is implicit, and where M IJ
I (t), I = 1, 2, 3, are symmetric

time-dependent matrices. First we impose the linearly realized symmetries. Since the La-

grangian (119) is manifestly invariant under spatial rotations and translations, we are left

with dilatations δD and the spatial conformal transformations δKi . The dilatation invariance

implies that
δLEL
δϕJ

DϕJ = 0 , (120)

where EL means the Euler-Lagrange derivative, i.e.

δLEL
δϕJ

= − d

dt
(M IJ

1 ϕ̇J) +M IJ
2 ∇2ϕJ −M IJ

3 ϕJ .
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For the time being we take for granted that the functional on the left hand side of (120) has

the form
δLEL
δϕJ

DϕJ = AIJ(t,x)ϕ̇Iϕ̇J +BIJ(t,x)ϕI∇2ϕJ + CIJ(t,x)ϕIϕJ , (121)

up to the terms appearing due to the integration by parts. We also assume that AIJ , BIJ

and CIJ are the functions of the matrices M IJ
1 , M IJ

2 and M IJ
3 , respectively. This will become

clear from what follows. For the arbitrary function ϕI(t,x), the equality (120) is satisfied

provided that

AIJ(t,x) = 0 , BIJ(t,x) = 0 , CIJ(t,x) = 0 .

Let us focus on the second condition here, i.e. on BIJ = 0. This condition imposes the

restrictions on the elements of M IJ
2 and has nothing to do with the matrices M IJ

1 and M IJ
3 ,

so that we can omit the first and the third terms in the (119). Thus, we write

M IJ
2 ∇2ϕI(∆J + xµ∂µ)ϕJ = 0 . (122)

The first term here, i.e. one with the conformal weight ∆J , already has the appropriate

form. Thus, we need only discuss the second term. Intergrating it by parts, we obtain,

M IJ
2 ∇2ϕIx

µ∂µϕJ = −Ṁ IJ
2 t∇2ϕIϕJ −M IJ

2 ∂µϕI∇2(xµϕJ)− 4M IJ
2 ∇2ϕIϕJ (123)

Integrating further the second term on the right hand side by parts, one expresses it as

follows

−M IJ
2 ∂µϕI∇2(xµϕJ) = 2M IJ

2 ∇2ϕIϕJ −M IJ
2 xµ∂µϕI∇2ϕJ . (124)

The second term on the right hand side here corresponds to the term on the left handside

of (123) taken with the opposite sign. Thus, substituting (123) into (124), one writes

M IJ
2 xµ∂µϕI∇2ϕJ = −1

2
Ṁ IJ

2 t∇2ϕIϕJ +M IJ
2 ∇2ϕIϕJ − 2M IJ

2 ∇2ϕIϕj .

Note also that the structure of the expression on the right hand side here and, consequently,

the structure on the left hand side of (122) coincides with one conjectured in (121). This is a

cross-check of the validity of our assumption made above. Combining altogether, we obtain

the equation for the matrix M IJ
2 [26],

Ṁ IJ
2 =

2(∆J − 1)

t
M IJ

2 . (125)

The similar manipulations lead to the equations for the matrices M IJ
1 and M IJ

3 [26],

Ṁ IJ
1 =

2(∆I − 1)

t
M IJ

1 , Ṁ IJ
3 =

2(∆I − 2)

t
M IJ

3 . (126)
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Since these matrices are symmetric, it follows that 0 = Ṁ IJ
I − ṀJI

I = 2(∆I − ∆J)M IJ
I /t,

and, hence, M IJ
I = 0 for ∆I 6= ∆J . In other words, fields with different conformal weights

do not mix with each other. Moreover, the Eqs. (125) and (126) fix the time-dependence

within each block:

M I,J
1,2 (t) = M̃ IJ

1,2(−t)2(∆I−1) , M IJ
3 (t) = M̃ IJ

3 (−t)2(∆I−2) .

Now let us impose the invariance under the special conformal transformations Ki. One can

show that this symmetry does not lead to any further restrictions on the form of the matrix

M IJ
3 . Indeed, providing the manipulations analogous to ones given above, one can show that

M IJ
3 ϕIKiϕJ ∼ (Ṁ IJ

3 t− 2∆IM
IJ
3 + 4M IJ

3 )xiϕIϕJ .

Therefore, it is always zero provided that the matrix M IJ
3 satisfies the Eq. (126). Further

one can show that

δLEL
δϕJ

KiϕJ = ÃIJi ϕ̇Iϕ̇J + B̃IJ
i ∇ϕI∇ϕJ + F̃ IJ∂iϕI∂0ϕJ .

The matrices ÃIJi and B̃IJ
i depend on the matrices M IJ

1 and M IJ
2 separately, while the

matrix F̃ IJ depends on both matrices. It is straightforward to show that ÃIJi and B̃IJ
i

vanish provided that the matrices M IJ
1 and M IJ

2 satisfy the Eqs. (125) and (126). The

condition F̃ IJ = 0 then leads to the following restriction,

M̃ IJ
2 = M̃ IJ

1 .

Therefore, the most general form of the Lagrangian consistent with the linearly realized

symmetries is [26]

Lquad =
1

2
M̃ IJ

1 (−t)2(∆I−1)ηµν∂µϕI∂νϕJ −
1

2
M̃ IJ

3 (−t)2(∆I−2)ϕIϕJ .

We now impose the 5 non-linear transformations assotiated with the broken symmetries. Let

us focus on the conformal block of weight ∆. At the quadratic level, we need only impose

the non-linear part of the transformations (118),

P0ϕI = i∆I
φ̄I
t
, J0iϕI = −i∆I

xi

t
φ̄I , K0ϕI = −i∆I

x2

t
φ̄I .

Invariance under P 0 yields the following condition

∆M̃ IJ
3 cJ = ∆(∆ + 1)(∆− 4)M̃ IJ

1 cJ , (127)

By redefining the fields, we may diagonalize the kinetic matrix within each block, setting

M̃ IJ
1 = δIJ and M̃ IJ

3 ≡M IJ . The condition (127) then takes the form

∆M IJcJ = ∆(∆ + 1)(∆− 4)cI .
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Finally, we write the quadratic Lagrangian for fluctuations, which respects the desired sym-

metry breaking pattern [26],

Lquad =
∑
blocks

(
1

2
(−t)2(∆−1)ηµν∂µϕI∂νϕI −

1

2
(−t)2(∆−2)M IJϕIϕJ

)
. (128)

Starting from this effective Lagrangian, one can prove the main statement made in the

previous Section.

5.2.1 Flat spectrum of zeroth weight fields

The source of scale invariant perturbations will be conformal weight-0 fields, which we denote

by θI . This field has a trivial background θ̄I = const. The form of the quadratic action for

∆ = 0,

Lquad =
1

2
(−t)−2ηµν∂µθI∂νθI −

1

2
M IJ(−t)−4θIθJ . (129)

The first term in the right handside of the Lagrangian is quite the same as the phase term

in the analogous Lagrangian of the conformal rolling scenario. The second term in (129).

indicates that generically the weight-0 fields have mass mixing. Making the field redefinition,

θ̂ = θ/(−t), we obtain the equation of motion

¨̂
θ +

(
k2 − 2−M

t2

)
θ̂ = 0 ,

Not surprisingly that this equation is essentially the same as the equation for the perturba-

tions of the imaginary part of the field χ discussed in the context of the conformal rolling

scenario. There is, however, also the contribution due to the mass mixing characterized by

the mass element M . Neglecting the latter and following the same steps as in the case of

the conformal rolling scenario, we arrive at the flat power spectrum [26],

k3/2|θ| = const .

Taking into account the mass element M and keeping the latter a small quantity, M � 1,

we obtain the small negative tilt. This is a novelty as compared to the conformal rolling

scenario.

5.2.2 Weight ∆ 6= 0 modes

Take for simplicity the case, where there is one conformal field for each ∆ 6= 0, and that

each has non-vanishing background, so that we may use the action (128) for each field. In

the Fourier space, the equation of motion for perturbation ϕ takes the form,

ϕ̈+ p2ϕp +
2(∆− 1)

t
ϕ̇+

(∆ + 1)(∆− 4)

t2
ϕ = 0 .
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With the field redefinition to the canonical variable, ϕ̂ = (−t)∆−1ϕ, the equation reads

¨̂ϕ+

(
p2 − 6

t2

)
ϕ̂ = 0 . (130)

This is essentially the same equation, which we had for the radial perturbations in the

context of the conformal rolling scenario. Thus, following the same steps we arrive at the

perturbations with the red power spectrum [26],

p3/2|ϕ̂| ∼ 1

pt2
.

Transforming back to the field ϕ, we obtain

p3/2|ϕ| ∼ 1

p(−t)∆+1
. (131)

Thus, all rolling fields no-vanishing profile and ∆ 6= 0 acquire a universal spectrum for their

perturbations. As is in the case of the conformal rolling scenario, the perturbation (131) may

be absorbed into the redefinition of the end-of-roll time. Though the obvious similarity, the

“time delay” mode appears in the different light, if the rolling field dominates the evolution

of the Universe. In this case, the gravitational effects become important. Consequently,

the red perturbations become gauge-dependent, and the appropriate quanity describing the

adiabatic perturbations is not the perturbation ϕ itself, but the gauge-invariant curvature

ζ. The latter has the blue spectrum and completely irrelevant on the large scales [26, 25].

We discuss these issues in the following Section.

5.3 Turning on gravity: Hinterbichler–Khoury model

5.3.1 Background evolution

So far we discussed the field perturbations neglecting the gravitational degrees of freedom.

Strictly speaking, this approximation is valid provided that the conformal fields {φI} are

spectators during the evolution of the Universe at very early times. Let us assume the

other opportunity. Namely, let one of the fields from the set {φI} or one of them drive

the evolution of the Universe at very early times. Once this is said, one cannot neglect the

effects associated with gravitational degrees of freedom anymore. Naively, one expects that

the picture given in the previous Section is going to be roughly spoiled with turning on the

gravity. In fact, this is not true. Following [25, 26, 111], we will show that in dynamical

models of the Conformal Universe the gravitational effects are highly suppressed. This

suppression holds on the classical level as well as at the level of perturbations. In particular,

we will see that the Minkowski background netric is the dynamical attractor of the Universe

passing through the CFT state. So, one should not include the conformal coupling of the
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CFT fields to gravity as in the case of the conformal rolling scenario. Second, the predictions

of the statistical anisotropy obtained in the spectator model hold for a quite generic class of

dynamical models.

Let us first concentrate on the classical evolution. For the concreteness, we choose to

work with the model akin to the conformal rolling scenario. Namely, we consider the model

with two conformal fields, one of which, φ, has the conformal field one, and the second, θ,

has the conformal weight zero. Again, the symmetry breaking pattern SO(4, 2)→ SO(4, 1)

is realized by introducing the negative quartic potential, V (φ) = −λ
4
φ4, where the coupling

constant λ > 0. As compared to the case of the conformal rolling scenario, we assume that

the field φ is minimally coupled to gravity. The action for the field φ is then given by [26]

S =

∫
d4x
√−g

(
1

2
gµν∂µφ∂νφ+

λ

4
φ4

)
.

The equation of motion following from this action is given by

φ̈+ 3Hφ̇ = λφ3 . (132)

Here we a priori assume that the effects of gravity are negligible, and the flat space-time

description is a good approximation to the scalar field dynamics. Dropping the Hubble

parameter from the Eq. (132) we obtain that the solution tends to the dynamical attractor,

φ(t) = −
√

2√
λt

.

Here we drop the integration constant analogous to the the time η? in the context of the

conformal rolling scenario. The reason is that the beginning of the hot epoch is associated

with the end of rolling in the dynamical picture. The Hubble parameter is obtained from

the equation,

Ḣ = −4πG(ρ+ p) = − 4π

M2
Pl

φ̇2 .

To solution to the latter reads

H(t) =
8π

3λM2
Plt

3
.

Now, let us check the validity of neglecting gravity in the evolution of the field φ. This

ammounted to the approximation |φ̈| � |3Hφ̇|, or

λt2M2
Pl � 1 .

Hence, the approximation made is valid as long as t� tend, where

tend ∼ −
1√
λMPl

.
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This corresponds to

tend ∼MPl .

The natural expectation is that the potential becomes regularized at such large field values.

The scalar field energy density follows from the Friedmann equation

ρφ =
3M2

PlH
2

8π
=

8π

3M2
Plλt

6
.

pφ ≡
1

2
φ̇2 − V (φ) =

2

λt4
. (133)

The scale factor is slowly contracting in the regime t� tend:

a(t) = 1− 4π

3M2
Plλt

2
.

Thus, we have a(t) ≈ 1 throughout the evolution, consistent with our assumption that the

gravity is a negligible effect on the scalar field dynamics.

Now, it becomes clear, why the contracting Universe dominated by the field φ is the

dynamical attractor. Indeed, let us write the general Friedmann equation,

H2 =
8π

M2
Pl

(
Cmat
a3

+
Crad
a4

+
Caniso
a6

+ ...+ ρφ

)
− κ

a2
,

which includes contributions from the spatial curvature (∼ 1/a2), non-relativistic particles

(∼ 1/a3), radiation (∼ 1/a4), and anisotropic stress of kinetic energy (∼ 1/a6). We observe

that since a ≈ 1 throughout the evolution, the energy density in each of these components

remains almost constant, while the energy density of the field φ rapidly grows in time. Thus,

even with comparable initial density fractions for various components, the Universe quickly

becomes flat, homogeneous, isotropic and empty [26]. For example, assume that the Universe

starts out with Ωi
K . O(1) at some initial time ti, the final value of Ωend

K at tend is therefore

Ωend
K ∼ H2(ti)

H2(tend)
=

(
tend
ti

)2

.

Clearly, this can be made arbitrarily small by choosing |ti| suitably small.

To avoid the confusion, we note that the contracting stage is not generic for the models

of the Conformal Universe. In the particular example of the Hinterbichler–Khoury model

discussed here, the pressure corresponding to the conformal field φ is positive. Alternatively,

one deals with the negative pressure, which results into the phase of (very slow) accelerated

expansion. This opportunity is realized in the framework of the Galilean Genesis [25], which

discussion we postpone until the end of this Chapter. Let us clarify this point. Since the

background depends only on time and is invariant under dilatations, the pressure end and
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energy density must both scale as 1/t4. But energy conservation implies ρ ≈ const at the

zeroth order in 1/MPl. Hence ρ ≈ 0. Thus, the conformal symmetries fix the form of the

energy density and pressure of the CFT,

ρCFT ≈ 0 , pCFT ≈
β

t4
. (134)

Integrating then the equation

M2
PlḢ = −4π(ρCFT + pCFT )

gives the Hubble parameter

H(t) ≈ 4πβ

3M2
Plt

3
,

which corresponds to a contracting or an expanding Universe depending on the sign of β.

Integrating Hubble parameter, one obtains the scale factor

a(t) ≈ 1− 2πβ

3M2
Plt

2
. (135)

Thus, under rather general assumptions one concludes that the Universe is nearly static at

early times. Depending on the sign of the constant β it undergoes either the contraction

(β > 0) or the expansion (β < 0).

5.3.2 Perturbations in Hinterbichler–Khoury model

Now let us include the zeroth weight conformal fields in the model. The general conformally

invariant action for these fields is given by [26],

Lθ =
1

2
φ2(∂θ)2 − κλφ4V (θ)− ξφ�φF (θ) , (136)

here V (θ) and F (θ) are some functions of θ; κ and ξ are the constant, which we keep arbitrary

for the time being. In the quadratic order, we write

V (θ) = V (θ)|0 +
∂V

∂θ

∣∣∣∣
0

θ +
∂2V

∂θ2

∣∣∣∣
0

θ2 +O(θ3)

and

F (θ) = F |0 +
∂F

∂θ

∣∣∣∣
0

θ +
1

2

∂2F

∂θ2

∣∣∣∣
0

θ2 +O(θ3) .

With no loss of generality, one can choose F (0) = 0 and V (0) = 0. This results into the

irrelevant redefinition of the coupling constant λ. Then, choosing ∂V
∂θ

∣∣ and ∂F
∂θ

∣∣
0

to zero, one

can tune the classical value of the field θ to zero. Thus, it may be non zero only due to
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the quantum fluctuations, akin to the conformal rolling scenario. Finally, one can tune the

second derivatives ∂2V
∂θ2

∣∣∣
θ=0

and ∂2F
∂θ2

∣∣∣
θ=0

. This amounts into the redefinition of the constants

κ and ξ. Now, one can write the action (136) in the form

Lθ =
1

2
φ2(∂θ)2 − κ

2
λφ4 − ξφ�φ .

Since we are working at the quadratic level, we replace the field φ by its background value.

Then, the Lagrangian takes the form. The equations of motion for the canonical variable

θ̂ = θ/(−t) then reads

¨̂
θ +

(
k2 − 2− κ− ξ

t2

)
θ̂ = 0 .

For rather small k and ξ one obtains approximately flat spectrum of the pertubations θ̂ in

the late-time regime, k(−t)� 1. Account of κ and ξ results into the small scalar lilt [26],

ns − 1 =
4

3
(κ+ ξ) .

This is a novelty as compared to the conformal rolling scenario.

Note that the weight-zero fields are supposed to give the negligible contribution to the

total energy density of the Universe. Thus, they are isocurvature ones and hence gauge-

independent. As we will see in what follows, the effects of gravity can be safely neglected

at the next to quadratic order as well. On the contrary, the perturbations of the weight-one

field φ are gauge-dependent. Thus, strictly speaking, we cannot neglect the gravitational

degrees of freedom in this case. Clearly with the gravity turned off, the perturbation of the

weight-one field φ, i.e. ϕ = φ − φ̄, behave literally in the same way as the perturbation of

the radius of the field χ of the conformal rolling scenario. Namely, the quadratic Lagrangian

for the perturbation ϕ of the Hinterbichler–Khoury model reads

Lϕ =
1

2
(∂µϕ)2 +

3

2
λϕ̄2ϕ2 ,

and the equation of motion coincides with (130),

ϕ̈+

(
p2 − 6

t2

)
ϕ = 0 .

The properly normalized late-time solution to this equation is given by

ϕ =
3

4π3/2

1

p5/2t2
.

Now we turn on the gravity. The proper description of perturbations in the dominating

matter is given then in terms of the gauge-invariant curvature perturbation ζ. It is easy to
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calculate the latter, once we remember the lessons learnt from the inflation. For the time

being we fix the Newtonian gauge,

ds2 = a2(η)((1 + 2Φ)dη2 − (1 + 2Ψ)dx2) .

One further employs the Mukhanov–Sasaki variable u, which recall reads for the canonically

normalized scalar field,
u

a
=

(
ϕ− aφ′

a′
Ψ

)
(137)

and satisfies the equation of motion in the momentum representation,

u′′ + p2u− z′′

z
u = 0 , (138)

where remind z = a2φ′

a′
. On the nearly Minkowskian background, the last term in the Eq. [?]

is negligible, and the quantity u essentially behaves as the free scalar field in the flat space-

time. This results into the blue spectrum of the variable u, which translates into the blue

spectrum of the curvature perturbation ζ, since the relation

ζ = − a′

a2φ′
· u .

Consequently, the dominant adiabatic mode is completely irrelevant at the cosmological

scales. Analogous result has been obtained in the context of Galilean Genesis [25].

5.3.3 Phenomenology

Once the field perturbation ϕ is gauge-dependent in the dynamical picture and the invariant

curvature ζ has blue spectrum, one may have doubts about the validity of the results obtained

in the spectator model. This discrepancy between the dynamical and the spectator model

is, however, a fake one. Indeed, the field pertubation ϕ can be given a gauge-invariant

definition; this field is related to, but different from ζ. Furthermore, at early times, when

the conformal mechanism operates in models of Refs. [26], the energy density and pressure

of the rolling field are small, so the effects due to gravity are negligible. Let us see, how it

works in the Newtonian gauge [111], see also [25].

In the Newtonian gauge, the action for the zeroth weight field θ including terms linear

in metric excitations and the pertubation ϕ [111],

S
(1)
θ =

∫
d4xa2φ′

2

[(
−Φ + 3Ψ + 2

ϕ

φ

)
θ′

2 −
(

Φ + Ψ + 2
ϕ

φ

)
∂iθ∂iθ

]
. (139)

In the spectator model one has Φ = Ψ = 0, while the perturbation ϕ coincides with the

Mukhanov–Sasaki variable v in the short wavelength regime p|η| � 1 and is given by

ϕ = − 3

p2η2
u (140)
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in the large wavelength regime p|η| � 1. Let us prove this. The application of the linearized

cosmological perturbation theory to the single-field fluid leads to the following equation for

the Newtonian potential Φ

∆Φ =
1

2M2
Pl

φ′
z

a

∂

∂η

(u
z

)
. (141)

As it follows from the latter, in the short wavelength regime,

aφ′

a′
Ψ ∼ 1

pη
u� u ,

so that ϕ indeed equals to v. In the large wavelength regime, one obtains

Φ = −Ψ =
1

2M2
Pl

√
2√

λη3p2
v .

Substituting the latter into the Eq. (137), we find that the leading part of ϕ is given by (140).

Hence, gravity does not modify ϕ in the Newtonian gauge. Further, in the Newtonian gauge

one always has

Φ� ϕ

φ
.

Indeed, the gravitational potential is doubly suppressed as compared to ϕ/φ. In the short

wavelength limit this follows from the estimate

Φ

ϕ/φ
=

Φφ

u
∼ 1

λM2
Plη

2

1

pη
,

while in the large wavelength limit

Φ

ϕ/φ
∼ 1

λM2
Plη

2
.

Hence, the gravitational potential is subdominant in the action (139) as compared to ϕ.

Thus, the calculations made in the spectator picture give correct results in the dynamical

scenario.

Thus, the signatures of the dynamical model coincide with ones of the conformal rolling

scenario (version A). This concerns the statistical anisotropy and the non-Gaussianity at

the level of the trispectrum. In particular, the constraint on the parameter h2 of the con-

formal rolling scenario obtained from the non-observation of the (cosmological) statistical

anisotropy, is directly translated on the parameters of the Hinterbichler–Khoury model and

the Galileon Genesis. Here two qualifications are in order. The first one concerns the spectral

tilt. Remarkably, the general picture of Hinterbichler–Khoury provides us with the natural

source of small tilt, which can be either blue or red. This source is absent in the sub-scenario

A of the conformal rolling and requires the additional assumptions, e.g. the small violation
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of the conformal invariance [19]. Second, the intrinsic non-Gaussianity at the level of the

bispectrum is non-zero already at the level of the bispectrum in the general picture. This

source is encoded in the terms O(θ3) in the Lagrangian (136). The coresponding bispectrum

has been calculated in [120]. The symmetry breaking pattern SO(4, 2)→ SO(4, 1) fixes the

shape of the bispectrum, so that the latter peaks in the squeezed limit. This is, however,

not a particularly strong signature, since the bispectrum with the same shape is obtained in

the curvaton models [46] or during the conversion epoch.

5.4 Galilean Genesis

As pointed out in the end of the Subsection 5.3.1, the Universe being in the conformal state

undergoes either the slow contraction or the slow expansion depending on the sign of the

constant β in the Eq. (135). Let us consider the case of the negative constant β. As it

follows from (134), this implies the negative pressure. Given that the absolute pressure is

much larger than the energy density in the conformal Universe, we are led to the strong

violation of the Null Energy Condition,

p� −ρ .

The inequality p < −ρ is not new for us. Remind, it has been invoked to provide the smooth

transition from the contracting stage to the conventional expansion. In particular, the new

ekpyrotic models [94] are designed in such a way that the NEC is mildly violated near the

bounce in terms of the ghost condensate models [11]. The interesting proposal on the strong

violation of the NEC without pathologies appeared recently in the context of the Galileon

theories [95, 96]. Originally designed as the local modification of gravity, they have been

used to address the early Universe problems. For example, the Galilean-type self-interactions

may provide the smooth transition from the contracting stage to the expanding phase [97].

Also, conformally invariant versions of the Galileon theories can play the role of the very

early Universe theory, alternative to the inflationary one. The picture of the Universe in

this framework is referred to as the Galilean Genesis [25]. Let us discuss the latter in a bit

more details. The general Lagrangian of the Galileon Genesis is the linear combination of

five terms Li,
L = c1L1 + c2L2 + c3L3 + c4L4 + c5L5 ,

each invariant under the Galilean and conformal transformations. The first term in the

combination is trivial,

L1 = eπ .

The interesting cosmology comes, once we consider the second and the third terms,

L2 =
1

2
e2π(∂π)2 ,
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L3 = −1

2
(∂π)2�π − 1

4
(∂π)2�π .

The structure of L4 and L5 is more complicated. Fortunately, the non-trivial cosmology can

be derived without their use. Though the complicated higher derivative structure of the

general Lagrangian, the resulting equations of motion contain the two-derivative terms at

most [95]. This protects from the appearance of the new potentially dangerous degrees of

freedom. Interestingly, the Lagrangian admits the de Sitter solution,

eπdS = − 1

H0t
,

provided that the constants in the linear combination satisfy the equation,

c2 −
3H2

0

2
c3 +

3H4
0

2
c4 −

3H5
0

4
c5 = 0 . (142)

Further, the system is free of ghosts, if the following inequality is obeyd,

c2 − 3H2
0c3 +

9

2
H4

0c4 − 3H6
0c5 > 0 . (143)

Setting c4 = c5 = 0, the Eq. (142) gives us c3 = 2
3H2

0
c2. Substituting the latter into the

Eq. (143), we obtain that c2 < 0, and hence the negative sign of the leading kinetic term.

This results into the ghost instabilities around the solution π = 0.

It is convenient to write the action of the Galilean Genesis as follows,

Sπ =

∫
d4x
√−g

[
−f 2e2π(∂π)2 +

f 3

Λ3
(∂π)2�π +

f 3

2Λ3
(∂π)4

]
,

where the coefficients f , Λ and H0 are related between each other as follows

H2
0 =

2Λ3

3f
.

The novelty of the Galilean Genesis as compared to all the previous cosmologies becomes

clear once we turn on the gravity. Let us calculate the energy-momentum tensor, Tµν =
δS

2
√
−gδgµν , see [25]

Tµν = −f 2e2π[2∂µπ∂νπ − gµν(∂π)2]

− f 3

Λ3
[2∂µ∂ν�π − (∂µ∂ν(∂π)2 + ∂νπ∂µ(∂π)2) + gµν∂απ∂

α(∂π)2]

− f 3

2Λ3
[4(∂π)2∂µπ∂νπ − gµν(∂π)2] .

(144)

Turning off the gravity for the instance, i.e. plugging gµν = ηµν , we find that the Eq. (144)

leads to the vanishing energy density and to the negative pressure, p ∼ − 1
t4

. This implies
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the strong violation of the NEC. The Hubble parameter is negative and given at the early

times by

H ≈ −1

3

f 2

M2
Pl

· 1

H2
0 t

3
.

The latter shows that the Hubble parameter grows with time with a rate Ḣ � H2.

At the quadratic level in perturbations of the field π, our discussion is essentially the

same as one of the Hinterbichler–Khoury model. This is not a surprise for, since the Galilean

Genesis contains all the necessary ingredients of the (pseudo)-Conformal Universe. Thus,

without the tedious calculations we can already conclude with the red spectrum of the

Galileon field perturbations. Including the gravitational degrees of freedom, the dominant

adiabatic mode acquires the blue spectrum, as in the Hinterbichler–Khoury model. Hence,

it cannot serve as the source of primordial scalar perturbations. From the previous analysis,

we, however, know, how to achieve the flat spectrum of relevant perturbations. This is to

add the zero conformal weight field,

Sθ =
1

2

∫
d4x
√−ge2π(∂µθ)

2 .

Remarkably, this simplest way of coupling of the zeroth conformal weight θ, fixes the phe-

nomenological properties of the Galilean Genesis. These are ones of the sub-scenario A of

the conformal rolling model, i.e. the non-Gaussianity at the level of the trispectrum and the

statistical anisotropy [20, 21, 22].

5.5 Sub-scenario B in the picture of (pseudo)-Conformal Universe

As it follows, the sub-scenario A of the conformal rolling is easily generalized to the dynami-

cal picture. This is not the case of the alternative sub-scenario, i.e. one with the intermediate

stage. It should be considered on the equal footing with the sub-scenario A in the spectator

picture, but is not particularly natural in the dynamical picture. One can imagine, however,

the marginal scenario both dynamical and incorporating the long evolution at the interme-

diate stage. This may occur, e.g. in the Galileon Genesis, if the effective scale factor ρ(π) is

a non-trivial function of the galileon field π, such that ρ ∝ eπ at π smaller than some value

of the π0 and ρ = const at larger π see [22].

Clearly, it is more reasonable to treat the version with the intermediate stage as the

spectator model. Remarkably, the natural choice of the background in this case is one of the

(pseudo)-Conformal Universe. Let us give a possible cosmological scenario incorporating the

intermediate stage. Indeed, we can easily imagine the situation, when there are at least two

fields with conformal weights ∆ 6= 0 and with the non-trivial time-dependent backgrounds.

Assume that one of these fields drives the evolution of the Universe, while the second is

a spectator. Coupling the latter with the zeroth conformal weight field, we return to the
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picture of the conformal rolling scenario with the intermediate stage. The only qualification

here is that there should be the hierarchy of scales of the explicit breaking of the conformal

invariance. As we discussed in the Section 4.2, the scale of the explicit breaking of the

conformal invariance in the scenario with the intermediate stage is naturally not larger than

10−6MPl, but is allowed to be as low as, say, 1 TeV. On the other side, the scale of breaking

in the dynamical picture can be as large as MPl. With these scales of breaking, we naturally

obtain the large intermediate stage. It is interesting to speculate about the relation between

the hierarchy of scales of the conformal invariance breaking and the same in the high-energy

physics. In particular, one can refer the violation of the conformal invariance in the spectator

field to some low energy supersymmetry, while the breaking of the conformal invariance in

the dynamical sector to the effects of the quantum gravity.

In either case, the sub-scenario B is of the special interest from the viewpoint of CMB

experiments. The statistical anisotropy predicted there is a very clear signature, which will

yield us the first interesting constraint on the unique parameter h2 of the conformal rolling

scenario. This is going to be the main subject of the next Chapter.
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6 Statistical anisotropy of CMB

6.1 Sources of statistical anisotropy

Recent advances in the observational cosmology make it real to start probing the most in-

triguing aspects of the Universe. In particular, it is of importance to inquire whether the

statistical isotropy of the scalar perturbations is exact or only approximate. This issue is

of special interest because the statistical isotropy is one of the key assumptions of the six-

parametric ΛCDM model and is favored by inflation. Thus, the violation of this property in

the observed CMB would imply a highly non-trivial extension of the now standard cosmolog-

ical model. An additional motivation to search for the statistical anisotropy is the possible

presence of various anomalies in the CMB data, such as alignment of low multipoles, axis of

evil, power assymetries, cold spots and others [28]–[36].

For the given distribution of the temperature anisotropies δT (n) on the CMB sky, one

defines the coefficients alm in the harmonic space,

alm =

∫
dΩδT (n)Y ?

lm(n) . (145)

Under the assumption of the statistical isotropy, the theoretical covariance Slm;l′m′ = 〈alma?l′m′〉,
is diagonal in the harmonic space,

Slm;l′m′ = Clδll′δmm′ , (146)

where Cl’s represent the standard CMB spectrum. This is not the case for the real CMB

signal, which we denote by âlm. The latter incorporates the noise, the unavoidable feature

of the experimental techniques. As a result, one naturally deals with the covariance

Clm;l′m′ ≡ 〈âlmâl′m′〉 = Slm;l′m′ + Nlm;l′m′ ,

where Nlm;l′m′ is the covariance, which corresponds to the instumental noise. In the real

space this covariance is diagonal, i.e.

Nij ≡ 〈ninj〉 =
σ2

0

Nobs(i)
δij .

The quantity σ0 is the dispersion per pixel, while Nobs(i) is the number of observations

per pixel. The noise is inhomogeneous over the CMB sky. Hence, the non-diagonality

in the harmonic space. Note, however, that since the the dispersion σ0 and the number of

observations per pixel Nobs(i) are well established, the noise effects can be properly accounted

and subtracted from the data.

Even in this case, one does not deal with the pure CMB signal. Indeed, the latter is highly

contaminated by the emission coming from the foregrounds. The common way to deal with
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the foregrounds is to mask the contaminated pixels. Clearly, this procedure immediately

induces the statistical anisotropy. The other approach to the problem is based on the so

called ILC (internal linear combination) full-sky maps. The latter are useful to study the

CMB properties at the sufficiently low multipoles, e.g. the quadrupole-octupole alignment.

We will employ the ILC maps in the Section 7.3., when discussing the quadrupole-octupole

alignment. Note, however, that the range of trustful multipoles of the ILC maps has the

cut-off at lmax ∼ 300. Thus, the (current) ILC maps is not the appropriate tool for studies

of the statistical anisotropy effects relevant at the overall CMB range. This is the case, e.g.

of the primordial statistical anisotropy, to which discussion we turn shortly.

Before that, let us make one remark. In principle, the cosmological violation of the

statistical isotropy is not necessarily rooted in the primordial physics. Several proposals

have been made in the context of the dark energy models [143]. or the non-trivial topologies

of the Universe (see, e.g. [144] and references therein). Note, however, that these sources

can at best affect the lowest multipoles of the CMB. Indeed, the characteristic size of the

non-trivial topologies is highly constrained by the present experiments [145]. Therefore,

the corresponding effects are strongly suppressed. The dark energy based violation of the

statistical isotropy relies on the super-horizon modulation of the homogeneous quintessence

field. Thus, the associated effects fall down rapidly with the CMB multipole number, though

being potentially interesting from the viewpoint of the lowest multipoles. In what follows,

we will neglect these sources.

6.2 Statistical anisotropy as a probe of primordial physics

In the statistically anisotropic but spatially homogeneous Universe, the power spectrum of

the primordial scalar perturbations ζ(k) depends on the direction of the wave vector k. The

power spectrum can then be written as follows,

Pζ(k) = P0(k)

[
1 + a(k)

∑
LM

qLMYLM(k̂)

]
, (147)

where k̂ = k/k. The coefficients qLM parametrize the direction-dependent part, which one

expands in spherical harmonics YLM(k̂). Unlike in Ref. [115], we assume here that the

dependence on the wavenumber k may be absorbed into one function a(k). Commutativity

of the classical field ζ(x) yields Pζ(k) = Pζ(−k) and hence qLM = 0 for odd L.

The generic prediction of the inflationary theory is that the power spectrum is isotropic,

a(k) = 0. However, the statistical anisotropy can be generated in models of inflation involv-

ing vector fields [79, 81, 80, 89, 82]. Somewhat more exotic examples are given by introducing

the noncommutative field theory [92, 93]. The most common feature of these models is the

statistical anisotropy of a special quadrupole type (the only non-vanishing coefficient in a cer-

tain reference frame on the celestial sphere is q20). This prediction arises, e.g., in the model
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with the rotational invariance broken by a space-like vector [79]. However, higher multipoles

qLM can also emerge within the inflationary framework, see, e.g., Refs. [90] and [91]..

Motivated by the ACW model [79], Groeneboom and Eriksen [116] discovered the evi-

dence for the quadrupole statistical anisotropy in the five-year WMAP data. However, it

was found tob nearly aligned with the ecliptic poles. Using quadratic maximum likelihood

estimator, Hanson and Lewis [117] extended the analysis to higher multipoles. They also

included the relevant prefactor in the covariance neglected in [79] and [116]. Hanson and

Lewis [117] confirmed the result on the large quadrupole q2M lying nearly in the ecliptic plane.

The strongest indication of the statistical anisotropy violation, non-zero at the 9σ confidence

level was found in the W band of the five-year data in Ref. [118]. These findings have been

confirmed by the WMAP team [37] in their analysis of the seven-year data. One possible

explanation of the anomalous quadrupole is the systematics inherent in the WMAP data.

As argued in [119], large observed statistical anisotropy may result from beam asymmetries

rather than have the cosmological origin.

At the conformal rolling stage, the properties of perturbations to both linear and leading

non-linear orders are uniquely determined by the underlying conformal symmetry [26], mod-

ulo the overall amplitude and a single dimensionless parameter h2. This parameter governs

the non-Gaussianity and statistical anisotropy. The statistical anisotropy generated in the

conformal rolling scenario is quite different from the predictions of inflation. In particular,

the coefficients qLM parametrizing the power spectrum (147) are the random variables rather

than fixed parameters of the model. For the convenience of future reference, we reming here

their properties. In the case of the sub-scenario with the intermediate stage, coefficients qLM
are random Gaussian variables with zero means and variances

〈qLMq?L′M ′〉 =
3h2

π(L− 1)(L+ 2)
, a(k) = 1 . (148)

In the sub-scenario A, there are two sets of coefficients {q2M} and {q′2M}. The former

parametrizes the statistical anisotropy of the general quadrupole type. In this case, the

coefficients q2M are again the Gaussian variables with zero means and variances

〈q2Mq
?
2M ′〉 =

πh2H2
0

25
δMM ′ , a(k) =

1

k
. (149)

The set q′2M corresponds to the statistical anisotropy of the special quadrupole type. The

coefficients q′2M , which are not Gaussian in this case are given by

q2M = −4πv2

5
Y ?

2M(v̂) , a(k) = 1 . (150)

In this Chapter, we constrain the parameter h2 of the conformal rolling scenario from the

non-observation of the cosmological statistical anisotropy in the seven-year WMAP data as
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discussed in our article [23]. We follow the general method proposed by Hirata and Seljak

for the purpose of studying CMB lensing and known as the quadratic maximum likelihood

(QML) estimation [124]. As discussed in Ref. [117], the same idea can be applied to the

study of the statistically anisotropic properties of CMB. In this case one assumes that the

coefficients qLM are small and expands the log-likelihood of the observed CMB to the second

order in these parameters. By maximizing the log-likelihood with respect to the coefficients

qLM , one obtains the estimator. Results derived within the QML approximation are in a

good agreement with the exact likelihood methods.

We apply this method to construct the estimator for the parameter h2. In view of the

results quoted, the estimated values are expected to be inconsistent with the statistical

isotropy because of the alleged systematics present in the WMAP data. Assuming that the

interpretation in terms of systematics is correct, we set the upper limits on the parameter

h2 in the following way. For each value of h2, we simulate the parameter sets {qLM}, and

then generate a number of anisotropic maps for each set {qLM}. From the maps generated,

we estimate the values of the parameter h2. We require that in 95% cases they should not

exceed the value estimated from the observed CMB. In this way we constrain the conformal

rolling sub-scenario with the intermediate stage [23],

h2 < 0.045

at the 95% confidence level. The constraint is much weaker in the framework of the al-

ternative sub-scenario. The reason is that the amplitude of the leading order quadrupole

decreases as k−1. This translates into the suppression of the statistical anisotropy effects at

high CMB multipoles. Thus, the data useful for the analysis are effectively limited, statis-

tical errors are large and the constraint is [23] h2 < 190 at the 95% confidence level. The

constraint is improved significantly, once we take into account the subleading contribution

to the statistical anisotropy. This contribution is of the special quadrupole type, and has

the amplitude a(k), which is independent of the wavenumber k. Thus, the number of CMB

multipoles useful in the analysis is much larger. This somewhat compensates the smallness

of the constant h, and we obtain the stronger constraint [23],

h2 ln
H0

Λ
< 7

at the 95% confidence level. Here H0 is the present value of the Hubble parameter, which

plays the role of the ultraviolet cutoff, and Λ is the infrared cutoff. Without going into

speculation on the value of the constant Λ, we point out that this constraint is still very

weak, in view of the fact that the conformal rolling scenario is self-consistent only at h2 � 1

anyway.

We conclude that the statistical anisotropy is the relevant signature of the conformal

rolling with the intermediate stage. It is of particular interest in view of the upcoming
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Planck data. Hopefully, the latter will be free of the quadrupole anomaly. The other expected

advantage of the Planck data is the larger range of the CMB multipoles, which translates

into smaller statistical errors. These two factors are expected to improve the sensitivity of

the data to the parameter h2 by more than an order of magnitude. On the other hand,

statistical anisotropy appears to be a weak signature of the alternative sub-scenario, and

the Planck data are not expected to improve the situation significantly. Thus, it makes

sense to focus on the other prediction of this sub-scenario, the non-Gaussianity [21, 22]. At

the level of bispectrum, the non-Gaussianities in the conformal scenario are not particularly

special. The shape of the intrinsic bispectrum is dictated [120] by the symmetry breaking

pattern SO(4, 2) → SO(4, 1) and coincides with the bispectrum of a spectator massless

scalar field in inflationary theory [121, 122] (in fact, the intrinsic bispectrum may vanish for

symmetry reasons, as in the conformal rolling scenario). The non-Gaussianity generated at

the conversion epoch is not specific to the conformal scenario either. So, bispectrum alone

cannot discriminate between the conformal scenario and, say, inflation equipped with the

curvaton mechanism. On the other hand, the non-Gaussianity of a rather peculiar form

arises in the trispectrum. Existing constraints (see, e.g. Ref. [123]) are model-dependent

and cannot be directly applied to our model. We leave for the future the analysis of the CMB

data aiming at the search for the non-Gaussianity characteristic of the conformal scenario.

6.2.1 Model-independent analysis

Let us first apply the quadratic maximum likelihood (QML) method to construct the es-

timators for the coefficients qML. Here we define the latter in a model-independent way,

assuming only that the dependence on the wavenumber k can be factorized as in Eq. (147).

We closely follow the technique developed in Ref. [117]. In Section 7.2.2, we use the same

ideas when constructing the estimator for the parameter h2.

In what follows we use the harmonic representation for the temperature fluctuations

and their covariances unless the opposite stated. The log-likelihood of the observed CMB

temperature map â is given by

−L(â|q) =
1

2
â†C−1â +

1

2
ln det C , (151)

where q is the vector of coefficients qLM ; the covariance matrix C incorporates the theoretical

covariance corresponding to the signal as well as the instrumental noise, C = S + N. The

theoretical covariance is given by

Slm;l′m′ = 〈alma?l′m′〉 = il−l
′ 2

π

∫
dk∆l(k)∆l′(k)Pζ(k)Y ?

lm(k̂)Yl′m′(k̂) .

Here alm are the theoretical temperature fluctuations of the CMB sky δT (n) in the harmonic

representation, see the Eq. (145); Pζ(k) is the power spectrum of the primordial perturba-
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tions; ∆l(k) are transfer functions. Under the assumption of the statistical anisotropy, we

write the theoretical covariance as follows,

S = Si + δS ,

where the leading contribution Si comes from the isotropic signal well fitted by the ΛCDM

model; the effects of the statistical isotropy violation are incorporated into δS. The matrix

Si is diagonal in the harmonic representation and given by the Eq. (146). The matrix δS is

given by

δSlm;l′m′ = il
′−lCll′

∑
LM

qLM

∫
dΩkY

?
lm(k̂)Yl′m′(k̂)YLM(k̂) , (152)

where

Cll′ = 4π

∫
d ln k∆l(k)∆l′(k)a(k)Pζ(k) . (153)

The integral of three spherical harmonics reads∫
dΩkY

?
lm(k̂)Yl′m′(k̂)YLM(k̂) = (−1)m

′
GL
ll′C

LM
lm;l′−m′ , (154)

where CLM
lm;l′,−m′ are the Clebsch-Gordan coefficients and

GL
ll′ ≡

√
(2l + 1)(2l′ + 1)

4π(2L+ 1)
CL0
l0l′0 .

Normally, the estimators for the coefficients qLM are determined by equating the deriva-

tive of the log-likelihood to zero,
∂L
∂q†

= 0 .

However, the covariance matrix C is not sparse and direct calculations are too costly. Thus,

we need an appropriate approximation to work with. At this point we make use of the QML

approach. Assuming that the statistical anisotropy is weak, we expand the log-likelihood

derivative to the linear order in q,

∂L
∂q†

=
∂L
∂q†

∣∣∣∣
0

+
∂2L
∂q†∂q

∣∣∣∣
0

q . (155)

We replace the second derivative of the log-likelihood in this expansion by its expectation

value [117], 〈
∂2L
∂q∂q†

〉
= −

〈
∂L
∂q

∂L
∂q†

〉
= −F , (156)

where F is the Fisher matrix. The first equality in Eq. (156) follows from the normalization

condition ∫
exp (L) dâ = 1 .
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In what follows we use the derivatives of the log-likelihood calculated under the assumption

of the statistical isotropy unless the opposite stated, and omit the subscript “0”. The first

derivative of the log-likelihood is then given by

∂L
∂q†

=
1

2
â†
(
Ci
)−1 ∂C

∂q†
(
Ci
)−1

â− 1

2
Tr

((
Ci
)−1 ∂C

∂q†

)
,

where Ci is the statistically isotropic covariance incorporating the noise, Ci = Si + N. The

second term in the right hand side of this equation is, in fact, the average of the first term

over the realizations of CMB. This follows from the identity TrA = 〈x̄†AC−1x̄〉, where A

is any matrix and x is a vector of Gaussian random variables with the covariance C. Thus,

one writes
∂L
∂q†

= h− 〈h〉 , (157)

where

h =
1

2
ā†
∂C

∂q†
ā , (158)

and the quantities ā are the inverse-variance filtered CMB harmonics calculated in the ab-

sence of the statistical anisotropy,

ā =
(
Si + N

)−1
â . (159)

By substituting Eqs. (156) and (157) into Eq. (155) and equating the result to zero, we

obtain the QML estimator,

q = (F)−1(h− 〈h〉) . (160)

In what follows we use the Fisher matrix calculated in the full sky and homogeneous noise

approximation [117]. It has only diagonal elements, which do not depend on M ,

FLM ;L′M ′ = δLL′δMM ′w
∑
l,l′

(2l + 1)(2l′ + 1)

8π

(
L l l′

0 0 0

)2
C2
ll′

Ctot
l Ctot

l′
, (161)

where Ctot
l is the sum of the standard CMB spectrum Cl and the noise spectrum Nl. The

constant w denotes the uncut fraction of the sky. We include this factor to achieve better

agreement between the approximate Fisher matrix and the exact one defined as the average

over the ensemble of simulated maps with the real sky coverage and inhomogeneous noise.

6.2.2 Application to conformal rolling scenario

In the framework of the conformal rolling scenario, the coefficients qLM are random variables

with zero expectation values. To the linear order in h they are Gaussian and have variances

given by Eq. (148) or (149). The variances depend on the constant h2, which is the only
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parameter of the model. This makes it possible to constrain the conformal rolling scenario

from the non-observation of the cosmological statistical anisotropy. We again use the QML

method to construct the estimator for the parameter h2. We do that starting from the

Gaussian hypothesis about the coefficients qLM . This hypothesis is particularly appropriate

in the context of the sub-scenario B. The non-Gaussian q2M ’s appear in the sub-scenario A

to the subleading order; we comment on this case in the end of this Section.

The probability density of the coefficients qLM for a given value of h2 is

W(q|h2) ∼ 1√
det Q

exp

(
−1

2
q†Q−1q

)
.

Here the matrix Q is the covariance of the anisotropy parameters, QLM ;L′M ′ ≡ 〈qLMq?L′M ′〉.
To obtain the likelihood of the observed CMB with respect to the parameter h2, one integrates

the product of two probability densities over the set of the parameters qLM ,

W(â|h2) =

∫
W(â|q)W(q|h2)dq , (162)

whereW(Θ̂,q) = exp[L(Θ̂,q)] and L is the log-likelihood introduced in Eq. (151). Following

the main idea of the QML estimation, we expand the log-likelihood to the second order in

q,

L = L0 +
∂L
∂q

q− 1

2
q†Fq ,

where we again replaced the second derivative by its expectation value over the CMB isotropic

realizations. Now the integral in Eq. (162) takes a simple Gaussian form and can be straight-

forwardly evaluated,

W ∼ 1√
det(FQ + I)

exp

(
1

2

∂L
∂q†

(F + Q−1)−1∂L
∂q

)
. (163)

Maximizing (163) with respect to the parameter h2,

∂ lnW(â|h2)

∂h2
= 0 ,

we obtain the equation for the estimator of h2,

Tr

(
(FQ + I)−1F

∂Q

∂h2

)
=
∂L
∂q†

(FQ + I)−1 ∂Q

∂h2
(FQ + I)−1∂L

∂q
.

In the full sky and homogeneous noise approximation, the Fisher matrix (161) is diagonal,

FLM ;L′M ′ = FLδLL′δMM ′ .
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The matrix Q has the same property,

QLM ;L′M ′ = Q̃Lh
2δLL′δMM ′ ,

where we introduce the quantities Q̃L which do not depend on the parameter h2. Then the

equation determining the estimator takes the form

h2
∑
L

(2L+ 1)F 2
LQ̃

2
L

(1 + FLQ̃Lh2)2
=
∑
L

(2L+ 1)FLQ̃L

(1 + FLQ̃Lh2)2
(FLC

q
L − 1) , (164)

where we use the same notation h2 for the estimator as for the parameter of the model. The

quantities Cq
L entering Eq. (164) are given by

Cq
L =

1

2L+ 1

∑
M

|qLM |2 , (165)

where the coefficients qLM are defined by Eq. (160).

Note that it follows from Eq. (164) that if the predicted statistical anisotropy is of the

quadrupole form, i.e., with non-zero q2M ’s only, then the parameter h2 can be estimated

simply as h2 = Cq
2 , modulo obvious additive and multiplicative constants. This is also clear

on general grounds. Indeed, the rotational invariance requires that the estimator should be

some function of Cq
2 , i.e. h2 = f(Cq

2). In the small statistical anisotropy approximation,

we keep only linear terms in the Taylor expansion of the function f(Cq
2). This immedi-

ately implies the quoted relationship between h2 and Cq
2 . Since no assumptions about the

properties of the random quantities q2M have been used in the latter argument, it holds

for non-Gaussian q2M ’s, which describe the quadrupole of the special type, see Eq. (150).

The only qualification is that the statistical anisotropy is of the order h2 ln H0

Λ
in that case.

Hence, the corresponding estimator reads h4 ln2 H0

Λ
= Cq

2 , up to multiplicative and additive

constants.

6.2.3 Implementation and results

We search for the statistical anisotropy using WMAP seven-year maps [125, 1]. We study

the V and W band data at 61 and 94 GHz. The first step is to implement inverse-variance

filtering defined by Eq. (159). We write that equation in the form appropriate for applying

the conjugate gradient technique,

[
(
Si
)−1

+ Ỹ†N−1Ỹ]Siā = Ỹ†N−1â . (166)

Here we use the pixel representation for the noise covariance N and the observed CMB

temperature Θ̂. The matrix Ỹ relates the harmonic space covariance and the observed map,

Ỹi,lm = BlYlm(ϑi, ϕi) ,
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Figure 8: Cq
L of the qLM reconstruction for the V (left) and W (right) bands of the seven-year

WMAP data. This analysis assumes a(k) = 1 in Eq. (147). The 1σ (dark grey) and 2σ (light

grey) confidence intervals are calculated using MC simulated statistically isotropic maps. The

analysis is performed with the WMAP temperature analysis mask and lmax = 400.

where Bl are the beam transfer functions and i labels pixels. We use the foreground reduced

V and W seven-year maps [126] provided in HEALPix format [127] with Nside = 512. For

the beam transfer function we use the average of V 1 and V 2 functions for V band and the

average of W1, W2, W3 and W4 for W band.

We consider the noise of the pixels uncorrelated and having the variance σ2
0/nobs, where

σ0 is 3.137 mK and 6.549 mK for V and W bands, respectively, and nobs is specific to each

pixel and tabulated in the maps. To remove foreground contaminated pixels we use the

WMAP temperature analysis mask which leaves us with w = 78% of the sky. We take the

noise covariance to be infinite (inverse noise is zero) for masked pixels. The noise model N−1

is constructed using noise covariance and template maps for removing monopole and dipole

contributions.

To evaluate the confidence intervals, inverse filtering should be performed on both data

and large number of simulated maps. Thus, the system (166) must be well preconditioned.

Following Ref. [117], we make use of the multigrid preconditioner, first proposed by Smith

et. al. in Ref. [129]. It is known to be the fastest to date and has a typical cost of ten

minutes when evaluated to lmax = 1000.

Next, we compute the quantities hLM given by Eq. (158). Using Eqs. (152) and (154),

we write them as follows,

hLM =
1

2

∑
lm;l′m′

(−1)m
′
il
′−lā?lmāl′m′Cll′G

L
ll′C

LM
lm;l′−m′ . (167)

We calculate the Clebsch-Gordan coefficients using the GSL [130] and Slatec [131] libraries.
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Figure 9: Parameter h2 of the sub-scenario B reconstructed from the WMAP V band (left)

and W band (right). The 1σ (dark grey) and 2σ (light grey) confidence intervals obtained

from MC simulations are also shown.

The summation in (161) and (167) is performed up to lmax = 400. We use the publicly

available Boltzman code (CAMB) [132] to compute the quantities Cll′ .

We have simulated large number of statistically isotropic Monte-Carlo (MC) realizations

of the field Θ̂ using WMAP noise covariance and beam transfer functions. We store the MC

maps in the same format as the original map, and the analysis procedure explained in this

Section is applied to both data and MC maps on equal footing.

Now we can check the consistency of the observed CMB with the hypothesis of the sta-

tistical isotropy. We begin with the model-independent analysis, as outlined in Section 6.2.1.

We reconstruct coefficients Cq
L, defined by Eq. (165), from the seven-year WMAP data as

well as from the MC maps. The results are presented in Fig. 8. They are in a good agreement

with the results obtained by Hanson and Lewis [117] for the five-year maps. In particular,

we confirm the result on the large quadrupole for the V and W bands. As discussed in

Refs. [116]–[118], the preferred quadrupole direction lies very close to the ecliptic poles. An-

other suspicious thing is the frequency dependence of the signal. Namely, it is non-zero in

the W band at much higher confidence level than in the V band. This indicates a systematic

effect rather than the cosmological origin. As discussed in Ref. [119], the account of beam

asymmetries can provide a complete explanation of the anomaly.

Let us turn to the conformal rolling scenario. First, we consider the version of the model

with the intermediate stage (sub-scenario B). The statistical anisotropy is determined by

Eq. (148). Having the set of the coefficients Cq
L reconstructed from the observed CMB, we

solve Eq. (164) and estimate the value of h2. We perform the analysis for the multipole

numbers starting from Lmin = 2 and ranging up to Lmax = 2−14. The results are presented

in Fig. 9. To evaluate the statistical errors we use about one hundred MC simulated isotropic
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Figure 10: Parameter h2 of the sub-scenario B reconstructed from higher multipoles (Lmin =

4). Results are plotted for the WMAP V band (left) and W band (right). Shown are the

1σ (dark grey) and 2σ (light grey) confidence intervals obtained from MC simulations.
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Figure 11: Cq
L of the qLM reconstruction for the V (left) and W (right) bands of the seven-

year WMAP. The momentum dependence of the statistical anisotropy is a(k) = H0k
−1. The

1σ (dark grey) and 2σ (light grey) confidence intervals are calculated using MC simulated

statistically isotropic maps.

maps. We see that the isotropic model is ruled out at more than 3σ confidence level even

in the V band. However, the large value of h2 (e.g., h2 ≈ 0.015 at Lmax = 14) is due to the

anomalous quadrupole anisotropy, which is argued to have non-cosmological origin.

Aiming at constraining the parameter h2, we simulate a large number of anisotropic maps

for each value of this parameter. We adapt the approach of Ref. [117], and use the following

procedure, adequate in the case of small statistical anisotropy.

We first simulate a seed map ai with a covariance Si given by Eq. (146). Then we generate
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a set of coefficients {qLM} based on the value of h2. The map

aa =
(
I + δS

[
Si
]−1
)1/2

ai ,

has covariance Si+δS, where δS is given by Eq. (152). To the linear order in the anisotropic

effects we have

aa = ai +
1

2
δS[Si]−1ai .

Finally, we multiply the map by the beam transfer function in the harmonic space, convert

it to coordinate space and add pixel noise to get statistically anisotropic simulated map Θ̂a

similar to that observed by WMAP. To set an upper limit, we allow h2 to be so large that for

95% of simulated anisotropic maps the value of the estimated parameter exceeds the value

estimated from the observed CMB map. In this way we obtain the upper limit, which reads

h2 < 0.045 (168)

at the 95% confidence level.

In view of the likely non-cosmological origin of the anomalous quadrupole in the statistical

anisotropy of the WMAP data, one would like to constrain the parameter h2 from the non-

observation of higher multipoles only. One way to do that would be to follow the same

procedure as discussed in Sections 6.2.1 and 6.2.2 but keep the set {q2M} of the quadrupole

coefficients fixed and taken from the observational data. In practice, things are simpler.

Indeed, the effects of the statistical anisotropy corresponding to different multipole numbers

L, M do not interfere with each other, at least in the approximation of small coefficients

qLM . To see this, we note that the theoretical reconstruction of the Fisher matrix (161) is

diagonal. The covariances of the quantities qLM are diagonal as well. As a consequence, it

is straightforward to neglect the effect of the quadrupole modulation by using the estimator

for the parameter h2 as in (164) but with the summation starting from Lmin = 4. The values

of h2 estimated in this way are plotted in Fig. 10. We restrict our analysis to Lmax = 14

and obtain that h2 is consistent with zero for the V band. Making use of the statistical

uncertainty inferred from isotropic MC maps, we obtain the upper limit

h2 < 0.040

at the 95% confidence level. Even though omitting the anomalous quadrupole makes the

situation cleaner (at least in the V band), this constraint is similar to Eq. (168). The reason

is twofold. First, according to Eq. (148), the predicted statistical anisotropy spectrum Cq
L

decreases with L as

Cq
L ∝

2L+ 1

(L− 1)(L+ 2)
.

Second, the errors grow with the multipole number roughly as L, see Fig. 8.
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With the Planck data available, we expect substantial improvement of the constraint (168).

The reason is twofold. Hopefully, the quadrupole anomaly will be absent in the Planck data.

Also, the range of the CMB multipoles useful in the analysis will be considerably extended.

The error bars, whch can be roughly estimated by making use of the inverse Fisher matrix,

scale with the number of multipoles as l−2
max. This is clear from the Eq. (161). Taking, e.g.,

lmax = 1200, one would be able to reduce the error bars by about an order of magnitude.

Hence, the non-observation of the statistical anisotropy will give the constraint as strong as

h2 . 0.001. We conclude that the statistical anisotropy is a promising signature from the

viewpoint of the CMB observations in the case of the sub-scenario B.

Finally, we consider the sub-scenario A. To the linear order in constant h, the statistical

anisotropy is of the general quadrupole type with decreasing amplitude, a(k) ∝ k−1. This

fact is crucial for the search for the statistical anisotropy in the CMB sky. Indeed, the con-

tribution to the signal δS is additionally suppressed by the CMB multipole number l. This

suppression is due to the fact that the integral in Eq. (153) is saturated, roughly speaking,

at k ∼ lH0. Effectively, it results in low statistics of the relevant CMB multipoles and large

statistical errors, which severely restrict the opportunity to observe the (cosmological) statis-

tical anisotropy of the type predicted. Somewhat loosely we apply the QML estimator to the

seven-year WMAP data. In Fig. 11 we show the results for Cq
L of the WMAP reconstructed

coefficients qLM , assuming a(k) = H0k
−1, but not restricting yet to the quadrupole-only qLM .

We apply the procedure used in the case of the sub-scenario with the intermediate stage, to

constrain the sub-scenario A; to this end, the quadrupole point L = 2 in Fig. 11 is relevant

only. The limit on the parameter h2 then reads

h2 < 190

at the 95% confidence level. Note, however, that for large values of h2, the QML procedure

is questionable. This limit can be viewed merely as an indication that the leading order

contribution to the statistical anisotropy is in fact negligible. The stronger constraint comes

from the subleading contribution encoded in (150). The reason is that the amplitude a(k)

is independent of the wavenumber k in this case. Thus, the suppression at high CMB

multipoles is absent, and the range of relevant l’s is extended up to lmax = 400. Since

the quantities q2M are non-Gaussian in this particular case, the constraining procedure is

somewhat different. First, we generate the components of the “velocity” v starting from a

given value of the effective constant h2 ln H0

Λ
. Then, using (150), we calculate the coefficients

q2M . The quantity Cq
2 = 1

5

∑
M |q2M |2 constructed out of these q2M is compared with the one

estimated from the seven-year WMAP data. In this way we obtain the constraint, which

reads

h2 ln
H0

Λ
< 7 (169)

at the 95% confidence level. Assuming that the logarithmic enhancement is not particularly
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strong, we conclude that this constraint is still weak. Note also that the statistical anisotropy

predicted by the sub-scenario A is of the same type as in some inflationary models [79, 81,

80, 82, 89]. Thus, it cannot be used to descriminate our model from other models of the

generation of primordial perturbations. Fortunately, the sub-scenario A gives rise to the non-

Gaussianity in the trispectrum [21, 22], which is in the sharp contrast with the inflationary

predictions. We leave for the future search for the corresponding signatures in the CMB sky.

6.3 Low CMB multipoles alignment and parity asymmetry

It seems that the statistical anisotropy predicted by the conformal rolling scenario or the

inflation, can be in principle large enough. Still, the direction dependence of the primordial

power spectrum is unlikely to be the source of the strong correlations between the lowest

multipoles. Up to the cosmic variance, the non-zero correlations in this case are only ones

of the anisotropy coefficients alm with the multipole values l differing by some even number

l. This is a quite generic statement, since it relies solely on the assumption of the Lorentz

invariance inherent in the very early Universe models. If this holds, then the primordial

physics fails to explain the strong quadrupole-octupole correlations detected first in [28] and

further elaborated in [155, 135, 154]. Therefore, we turn to the study of the possible non-

primordial sources of the statistical anisotropy. One’s natural desire in this way is to give

the unique explanation for two or more of the CMB anomalies. The model proposed in

this Section, though being the subject of the future tests, addresses also the so called parity

asymmetry detected recently in the WMAP data.

6.3.1 Uncounted foregrounds as the source of CMB anomalies

The potential contribution of foregrounds to the strong quadrupole-octupole alignment has

been discussed widely in literature. In [38] it was concluded that the low multipoles are sig-

nificantly contaminated by the foregrounds. The authors of the Ref. [133], however, result

with the statement that the foregrounds are not statistically important to the large-scale

modes of CMB. In particular, making use of the ILC maps does not change the situation

significantly. Moreover, it is believed (see, e.g. [134]) that the true alignment is degraded

by the foregrounds rather than created by the latter. There is, however, the loophole in

this discussion. Namely, one should be aware of the situation, when some new foregrounds

uncounted in the previous analyses can play a profound role in explaining the CMB anoma-

lies. In this Section we argue that this might be the case of the Kuiper belt. We give a

quantitative description of the Kuiper belt in the following Subsection. Here we just state

that it can be modelled as a very symmetric foreground in the outer Solar System. An illus-

tration is given in the Fig. 13, where the models of the Kuiper belt objects (hereafter, KBO)

emmisivity are shown in Galactic and Ecliptic coordinates for different angular heights of
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Figure 12: Left figure. (−1)l×difference between WMAP power spectrum data and ΛCDM

model. Right figure. The estimator gp(l) ≡ P+

P−
value of WMAP data and ΛCDM. These

pictures are reproduced with the permission of the authors [35, 36]

the KBO, namely, H = π/12, π/6 and 7π/180.

On the other hand, the residuals of the foregrounds are able to provide the explanation of

the other CMB anomaly, i.e. the parity asymmetry. The latter is nothing but the preference

of the odd multipoles upon the even ones in the CMB multipole range 2 ≤ l ≤ 23 [36, 35]

see also [148]. The estimator for testing the parity asymmetry has been proposed therein.

It reads

g(l) ≡ P+

P−
=

∑lmax
lmin

l(l + 1)C(l)Γ+(l)∑lmax
lmin

l(l + 1)C(l)Γ−(l)
.

Applied to the WMAP data, it showed the odd preference exhibiting 4 maps out of 1000,

see the Fig. 12. As claimed in the Ref. [154], the uncounted foregrounds, like emissivity of

dust from the Kuiper belt, could explain the detected parity asymmetry of the CMB. The

main idea of the method proposed in [136] is that a very symmetric foreground, when taken

into account and subtracted from the WMAP whole-sky ILC map, could amplify the CMB

power stored in even multipoles, increasing the parity parameter g(l) (i.e. mitigating the

observed parity asymmetry) for the multipole range 2 ≤ l ≤ 23.

Besides the Kuiper belt, the other important ingredient of the model we consider in

this Section, is the dipole modulation of the CMB sky. The evidence for a large-scale

hemispherical asymmetry of the WMAP data was found first in [140] at the 95% − 99%

confidence level depending on the range of multipoles under study. In what follows, we

prefer to distinguish between the hemispherical asymmetry usually referred to the situation

of the discontinuous jump in the power of the northern and southern hemispheres, and the

dipole power asymmetry dealing with the smooth change of the power. Usually the data

analysis techniques is applied to the second type of the anomaly. Thus, we specify to the

latter in all our discussions in this Section. In this case, the large-scale CMB is assumed to
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be of the form

Tmod(n) = (1 + A(qn))Tunmod(n) ,

where A is the amplitude of the dipole modulation characterized by the unit vector q.

The exact likelihood analysis of this anomaly has been made in [153, 150, 141], and

recently the Refs. [152, 151] have extended the analysis of the dipole power asymmetry to the

smaller angular scales arguing for the increased detection as more data is included. However,

as it has been in the Ref. [117] by making use of the quadratic maximum likelihood method,

the evidence for the dipole power asymmetry decreases at multipoles higher than l > 60.

The results of the seven-year WMAP team are in the agreement with this statement [37].

This decrease is, however, not particularly important for us. We assume that the dipole

modulation has the systematic rather than the primordial origin. In this case, it affects

not only the primordial CMB signal but all the measurements of the foregrounds as well,

including the Kuiper Belt.

6.3.2 Kuiper belt as a new foreground

Let us establish the main properties of the Kuiper belt on a bit more quantitative grounds.

The blackbody-like radiation from the KBO affects the intensity of the microwave sky as

follows:

I(ν, r̂) = (B(ν, TKBO)−B(ν, TCMB))τ(r̂) , (170)

where ν is the observation frequency and B(ν, T ) is the blackbody radiation spectrum at

T , and τ(r̂) is the optical depth of KBOs as the function of the direction on the sky r̂.

The second term on the right hand side of the Eq. (170) arises from the occultation of the

CMB photons by the KBO. The FIRAS data imposed the most stringent constraint on the

sky-averaged optical depth of the KBOs, which reads τ . 3× 10−7 [156, 157, 158, 159].

The heating is mainly due to the radiation from the Sun. Therefore, it is possible to

calculate the temperature of these objects at the equilibrium, assuming that it arises from

the conversion of the solar radiation absorbed by the object into the microwave emission. At

a distance of 40AU, where KBO’s are most widely populated, we find an equilibrium tem-

peratures of ∼ 43.7K. Notably, the frequency spectrum of KBO’s does not vary significantly

within the range of the WMAP frequencies:

(f(νK)− f(νW ))/f(νK) . 0.22 ,

where f(ν) is the frequency spectrum of the Kuiper belt, νK and νW are the frequencies of

the K- and W -bands, respectively. Therefore, the emisson may be confused with the intrinsic

CMB anisotropy, even when the contribution to the microwave sky emission is sizeable. For

the allowed values of the optical depth, τ . 3×10−7, the KBO’s may have an averaged effect

on the CMB data as big as 15µK. Provided the KBO’s have certain large-scale patterns,
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KBO’s may have an effect large enough to be the culprits of the reported large-scale CMB

anomalies.

To investigate the emissivity of the Kuiper belt, we adopt the model of [136], where

the Kuiper belt covers a symmetrical band in the Ecliptic plane of constant disk height H,

with uniform temperature distribution. Following [136], we pick three models, defined by

the angle ±H/2 from the Ecliptic plane, where we choose HKBO = π/12, π/6 and 7π/18,

respectively. For the three values of HKBO, we set the temperature inside the Kuiper belt,

so that it agrees with the upper bound of 15µK for the entire sky. In practice, we do this

by the calculating the respective fractions of the total sky area, for each value of HKBO, and

finding the required temperature inside the band from the value:

TKBO(θ, φ) = BΘ

[
θ − 1

2
(π −H)

]
Θ

[
1

2
(π +H)− θ

]
,

where B is the normalization constant and Θ(x) is the Heaviside-function. It is natural to

use the average of the temperature of the KBO emission as normalization of B:

TKBO =
1

4π

∫ 2π

0

dφ

∫ π

0

dθ sin θTKBO(θ, φ) = B sin

(
H

2

)
.

Now, we decompose the KBO signal into spherical harmonics and get the following coeffi-

cients of decomposition

flm =

√
(2l + 1)

4π
BΓ+(l)δm0

∫ (π+H)/2

(π−H)/2

dθ sin θPl cos θ .

For H � π/2 we can use the Taylor series representation: Pl(x) ≈ Pl(0) + 1
2
P ′′l (0)x2. The

first derivative vanishes for even l = 2n due to the symmetry of the model. This gives

Pl(0) =
√
π

[
Γ

(
l

2
+ 1

)
Γ (1/2− l/2)

]−1

, P ′′l (0) = −l(l + 1)Pl(0) .

Here Γ(x) is the Gamma-function. For l(l + 1)H2/24� 1 one can get

fl,0 ≈
√

2l + 1

π
B sin

(
H

2

)
Pl(0)Γ+(l)

[
1− l(l + 1)

24
H2

]
.

Thus, for l � 35
(

15
H(deg)

)
the coefficients of the expansion fl,0 have the following analytical

representation

fl0 ≈
√

2l + 1

π
TKBO(−1)n

(2n− 1)!!

2nn!
, l = 2n .

In order to test the influence of the models on the lowest multipoles, we find the power

spectrum for each value of HKBO and compare them with the ILC power spectrum. The

results are presented in Fig. 14. It is clear that for all 3 values the power of the KBO

quadrupole is strong enough to affect the ILC quadrupole. For higher multipoles, HKBO = 15

can affect the even multipoles up to l = 19.
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Figure 13: Left column. Model for the KBO emissivity distribution (arbitrary units) in

Ecliptic coordinates for H = π/12 (top), for H = π/6 (the middle panel) and H = 7π/18

(the bottom panel). The same but in the Galactic coordinates is shown in the right column.

All maps carry equal power.

6.3.3 Model of CMB-KBO cross-correlation

To assess the problem of a possible contamination of the ILC by the KBO-foreground, we

will use the model of the CMB signal for a given direction on the sky n:

Tc(n) = TILC(n)− [1 + A(qn)]χKBO(n) , (171)

where Tc(n) and TILC(n) are the temperature of the intrinsic CMB signal and the ILC,

χKBO ∼ TKBO(n) corresponds to the residuals of the KBO emmisivity. The second term

in (171), the residuals of the KBO emmisivity is symmetric with respect to inversion:

χKBO(n) = χKBO(−n), while the last term, dependent on the dipole, is anti-symmetric:

ε(−n) = −ε(n). In the multipole domain, these two components contribute to the coeffi-

cients of the spherical harmonic decomposition additively:

alm = âlm − flmΓ+(l)− εlmΓ−(l) ≡ âlm − Πlm ,
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Figure 14: Power spectrum D(l) = l(l+1)
2π

C(l) (in units of mK) for the three KBO models,

with H = π/12 (black), π/6 (red) and 7π/18 (blue), compared to the ILC power spectrum

(black line).

where alm is the primordial coefficient of decomposition. Coefficients εlm can be expressed

as

εlm =
1∑

m′=−1

∞∑
l′′=0

l′′∑
m′′=−l′′

(−1)m(b1m′fl′′m′′) =√
3(2l′′ + 1)(2l + 1)

4π

( l′′ 1 l

0 0 0

)( l′′ 1 l

m′′ m′ −m
) (172)

Here blm relates to the parameters A and n by the relation blm = 4πA
3
Y ?
lm(n). As stated

earlier, for the given model of the KBO we have flm = f(l)Γ+(l)δm0, and, thus, in Ecliptic

coordinates can be simplified as follows:

εlm =
1∑

m′=−1

∞∑
l′′=2

(−1)mΓ+(l′′)b1m′fl′′ =√
3(2l′′ + 1)(2l + 1)

4π

( l′′ 1 l

0 0 0

)( l′′ 1 l

0 m′ −m
) (173)
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6.3.4 Suppression of odd multipoles

We would like to show that our model can work if, and only if, the primordial CMB signal

just by chance has a strong cross-correlations with uncounted foregrounds. For this purpose,

let us define the coefficients of the cross-correlations between the ILC map and the Kuiper

belt,

K(l) =

∑
m [almΠ?

lm + a?lmΠlm]

2(
∑

m |alm|2
∑

m′ |Πlm′|2)1/2
. (174)

and between the pure CMB signal and the Kuiper belt,

ζ(l) =

∑
m [clmΠ?

lm + c?lmΠlm]

2(
∑

m |clm|2
∑

m′ |Πl′m|2)1/2
. (175)

Starting from (174) and (175), one can define the power spectrum of the primordial CMB

as:

Cp(l) =
1

2l + 1

∑
m

|clm|2 = V (l)Cilc(l) ,

where Cilc(l) is the power of the ILC 7 map, and

V (l) =
1−K2(l)

1− ζ2(l)
(176)

is the factor of modulation of the ILC 7 power. Using (176), we can estimate the parity

parameter for the primordial CMB as

gp(l) =

∑l
m=2 n(n+ 1)V (n)Γ+(n)Cilc(n)∑l
n=2 n(n+ 1)V (n)Γ−(n)Cilc(n)

.

In order to increase the contribution of even multipoles in parity parameter gp(l), the func-

tions V +(l) = V (l)Γ+(l) and V −(l) = V (l)Γ−(l) should satisfy the following conditions:

V +(l)� V −(l). This means that there are only two variants: ζ+(l)→ 1 or K− → 1, where

the + and − in the superscript symbolizes that the ζ or the K is drawn from either V + or V −

respectively. The first case (with |ζ+| → 1 and symmetric foreground) was discussed in [136],

and it requires a significant coupling between the priomordial CMB and KBO-foreground.

Due to clearly established non-Gaussian properties of the KBO foreground, a high correla-

tion between it and the primordial CMB temperature anisotropy, is in contradiction with

the assumption about a statistical isotropic and Gaussian intrinsic CMB signal. Thus, the

improvement of the parity parameter by an increase of ζ+ loses its theoretical basis. In

contrast, for |ζ±| � 1, the only way to increase gp(l), keeping the assumption about the

Gaussianity and statistical isotropy of the intrinsic CMB signal, is to get |K−| → 1 and

K+ < 1. That is a high correlation between the ILC signal and the KBO-foreground for odd
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m Rel3(â2m) Iml3(â2m) Rel5(â2m) Iml5(â2m)

0 1.3576 · 10−2 0 1.3576 · 10−2 0

1 −1.5904 · 10−3 −1.1121 · 10−3 −1.5904 · 10−3 −1.1121 · 10−3

2 −7.8456 · 10−3 −1.9363 · 10−2 −7.8456 · 10−3 −1.9363 · 10−2

m Rel3(â3m) Iml3(â3m) Rel5(â3m) Iml5(â3m)

0 −2.3688 · 10−2 0 −8.5516 · 10−3 0

1 −1.1804 · 10−2 5.4817 · 10−3 −1.4239 · 10−2 −8.4113 · 10−3

2 2.3844 · 10−3 5.0355 · 10−3 2.1783 · 10−2 −9.7430 · 10−3

3 −1.6411 · 10−2 2.0018 · 10−2 −2.8771 · 10−3 2.6001 · 10−2

Table 1: Quadrupole and octupole temperature coefficients in two models with the different

choice of the maximization of the parameter K.

multipoles, and at the same time, a relatively low correlation between the ILC signal and

the KBO-foreground for even multipoles.

The contribution from the KBO emissivity into the coefficient of cross-correlations K− =

K(l)Γ−(l) is given by

K−(l) =

∑
m [almε

?
lm + a?lmεlm]

2(
∑

m |alm|2
∑

m′ |εlm′|2)1/2
.

As it follows from the formulas in the Appendix F, the coefficient of cross-correlations

depends on the orientation of the dipole in the Ecliptic coordinates (Θ,Φ). Let us dis-

cuss one particular choice of Θ and Φ, which maximizes the coefficient of cross-corrlations

K3 ≡ K−(3). Let us show at the qualitative level, how the model resolves the quadrupole-

octupole alignment. This is due to the coupling between even and odd components of

εlm. In particular, the octupole component of εlm depends on the linear combination of the

quadrupole and l = 4-components of flm. Due to the azimuthal symmetry of the KBO emis-

sivity, these components have opposite phases. Thus, the coefficient of the KBO quadrupole

and octupole cross-correlation depends only on Θ and Φ. Since the KBO quadrupole and

octupole components could correlate with the corresponding components of the ILC, max-

imizing correlations between the ILC octupole and ε3m, will provide the optimal way for a

disalignment of the intrinsic quadrupole and octupole. As one can see from the Table 1,

the phase of the (3, 1)-th component of the octupole is φ3,1 = 1.227, which means that in

order to maximize the the K3-coefficient, the azimuthal angle Φ should satisfy the following

equation: Φ = −φ3,1. Then, the coefficient of cross-correlations K3 is given by

K3(Θ) =
a3,0b cos Θ + 2|a3,1|c sin Θ√
7C3[b2 cos2 Θ + 2c2 sin2 Θ]

=
(a2

3,0b
2 + 4c2|a3,1|2

7C3

)1/2 cos(Θ− η)√
b2 cos2 Θ + 2c2 sin2 Θ

,

(177)
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Figure 15: The coefficient K3(Θ) versus tan(Θ) in Ecliptic coordinates. Black line corre-

sponds to H = π/12, the red line indicates the model with H = π/6, and the blue line

corresponds to the model with the model with H = 7π/18.

where we used the following definitions: ε3,0 = b cos Θ and |ε3,1| = c sin Θ, and C3 is the

power of the ILC octupole and

η = tan−1

(
2|a3,1|c
a3,0b

)
.

As it follows from the Table 1, the amplitudes of the octupole in the Ecliptic coordinates are

at the same order of magnitude, while the parameters b and c depend on the power spectrum

of the Kuiper Belt angular anisotropy. This is why we will focus on two asymptotics, |b| � |c|,
and |b| � |c|, in order to investigate the dependency of the cross-correlations on the particular

choice of these parameters. In the case |b| � |c|, all the power of the εlm-signal would be

concentrated at m = 0 mode, and

K3(Θ) ≈ a30√
7C3

≈ −0.65 , Θ� π

2
.
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Figure 16: The coefficient K−l (Θ) versus l. Black line corresponds to H = π/12, and the red

line indicates the model with H = π/6.

In the opposite case, when |b| � |c|, the coefficient of cross-correlation is given by

K3(Θ) ≈
√

2|a3,1|√
7C3

≈ 0.46 , Θ� tan−1

(
a30b

2c|a31|

)
Alternatively, one can minimize the power for the l = 5 multipole in the intrinsic CMB.

The l = 5 mode of the power spectrum is one of the major sources of the parity asymmetry,

as it is clearly seen in the Fig. 12. Again, we exploit the fact that only the ε5,0 and ε5,1
components of the modulation are non-zero. Taking under the consideration that the phase

of the (5, 1)-th component of the ILC 7 is φ5,1 = −2.23845, we have adopted Φ = −φ5,1 for

the azimuthal angle Φ, maximizing the correlations between the (5, 1)-th component of the

ILC and ε5,1. Then, we obtain

K5(Θ) =
a50µ cos Θ + 2|a51|ν sin Θ√

11C(l = 5)[µ2 cos2 Θ + 2ν2 sin2 Θ]
, (178)

where ε50 = µ cos Θ and ε51 = ν sin Θ is the power of ILC and the l = 5 mode. From the

Eq. (178), one finds that the maximum value of K−(l = 5)(Θ) ≈ 0.28 can be achieved, if

Θ ≈ π/2.

127



M1 M2 M3 mean

Oct.-Quadr.(l3) 0.1860 0.4433 0.4658 0.36505

Oct.-Quadr.(l5) 0.41576 0.32210 0.3879 0.3752

Oct.-Quadr. (ilc) 0.7478 0.7037 0.7569 0.7361

Table 2: Quadrupole-octupole correlation estimated using the multipole vector analysis.

6.3.5 De-correlation of ILC and KBO

Now, we are in the position to discuss the possible changes in the morphology of the ILC map

after removal of modulations, associated with the KBO emission. We will concentrate on

one particular model of the KBO emission, H = π/6, using the model of the normalization

from the previous Section.

We would like to point out that our de-correlation technique is generally unstable, since we

cannot recover all the chance-correlations of the intrinsic CMB and KBO, which are sufficient

for the low multipole range of the power spectrum. This is why de-correlation of the ILC

and KBO could only demonstrate the tendency of the changes in the morphology of the ILC,

pointing at some general properties of the reconstructed (de-correlated) signal. Assume that

the intrinsic CMB associated with the de-correlated ILC map, has zero correlations with the

KBO emmisivity map, which allows us to set ζ(l) = 0. Now, taking the particular models for

flm and εlm, we estimate the reconstructed signal from ILC 7, shown in the Figs. 17 and 18.

We now perform a test of the alignment between the quadrupole and octupole for the

decorrelated CMB signals using the publicly available code from [142]. Our goal is to test

the the orientation between the quadrupole and the octupole, and in particular to test the

difference between the alignment for the pure ILC 7 and for our KBO-foreground cleaned

maps. In [142], the authors introduce different approaches for comparing vectors associated

with two different multipoles. We use the statistics of the oriented area, following the

definition of [142], namely we consider the quantity

|v̂l1,i × v̂l1,j||̇v̂l2,k × v̂l2,m| ,

That is, we cross the the i’th and the j’th vector from the multipole l1, and the k’th and m’th

vectors from the multipole l2, before we take the dot product between these two surfaces.

Values close to the unity are assotiated with a high level of alignment between two planes.

Generally, for a given l1 and l2, and i 6= j and k 6= m, there are M = l1(l1 − 1)l2(l2 − 1)/4

different products, meaning that for the comparison of the quadrupole and the octupole, we

have three oriented areas, namely M1, M2 and M3. In Table 2, we have summarized the

result of the quadrupole-octupole alignment test for the de-correlated CMB signal, including

the standard result for the ILC 7 map for the comparison. Clearly, for the KBO-foreground
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Figure 17: Left column. Reconstructed ILC for the model with H = π/6 (in Ecliptic

coordinates, top panel). Second from the top is the same signal as the first, but in the

Galactic coordinates. The second from the bottom panel, is the map of ILC modulated by

the KBO (in Ecliptic coordinates). The bottom panel is the same map as above, just in

Galactic coordinates. All the maps correspond to the normalization Θ = π,Φ = −1.227rad.

Right column. The same as left, but for the normalization on the l = 5 harmonic with

Θ = π/2,Φ = 2.2384rad.

cleaned map, we see significantly reduced alignments among the three oriented areas. In sum-

mary, when we remove the KBO contribution from the ILC signal, to reduce the the parity

asymmetry, we see a weaker (statistically negligible) correlation between the quadrupole and

the octupole, than in the case of the ILC 7 map.
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Figure 18: Left column. The map from the top left of the Fig. 17, but for l = 2, 3, 4, 5 (from

the top to bottom). Right column. The map from the top right of the Fig. 17, but for

l = 2, 3, 4, 5 (from the top to the bottom).

7 Conclusions

In the present thesis we mostly concentrated on theoretical and observational properties

of the conformal rolling scenario. Basing on this particular example, one can show that

conformal symmetries inherent in the underlying theory of Nature at very early times, can

explain the flat spectrum of primordial scalar perturbations. In particular, the latter can be

sourced by the phase perturbations of the conformal complex scalar field φ rolling down the

negative quartic potential, V (φ) = −h2|φ4|. The coupling constant h is the unique parameter

of the conformal rolling scenario, essentially unconstrained at the theoretical level, i.e. it

can be as large as h ∼ 1 and arbitrarily small. In the leading order, the predictions of the
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Figure 19: P-value for the reconstructed CMB in the model with H = π/6 and the normal-

ization on the constant l = 3 (the green line), the normalization on l = 5 (the red line) and

for ILC 7 map (the blue line).

conformal rolling scenario are ones of the minimal inflation, i.e. the flat spectrum and the

Gaussianity of primordial scalar perturbations.

The degeneracy with the inflation is broken, once we account for the subleading orders in

the coupling constant. The most interesting predictions of the conformal rolling scenario are

the non-Gaussianity at the level of the trispectrum and the statistical anisotropy. The former

is more prominent in the sub-scenario A, i.e. one with the cosmological modes superhorizon

by the end of the conformal rolling. The distinctive feature of the trispectrum generated

in this case as compared to predictions of the single-field inflation is the singularity in the

folded limit. On the other hand, the statistical anisotropy is rather weak in the sub-scenario

A being suppressed either by the momentum scale of the cosmological modes or by the
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power of the constant h. The situation is different in the sub-scenario with cosmological

modes subhorizon by the end of the conformal rolling. In that case, the evolution of the

phase perturbations at the intermediate stage is required. This evolution with the initial

conditions encoding the the dynamics at the conformal stage, results into the statistical

anisotropy of all even multipoles starting from the quadrupole of the general type. This is

in sharp contrast to predictions of inflation.

The deep insight into the conformal rolling scenario has been made from the positions of

the (pseudo)-Conformal Universe, which we reviewed in this thesis. This is the novel picture

of the cosmological evoltuion at very early times. Its main ingredient is the conformal

symmetry spontaneously broken down to the de Sitter symmetry by the time-dependent

background values of the conformal weight ∆ 6= 0 fields. The zeroth conformal weight fields

evolving on this spontaneously broken background acquire the flat spectrum. Remarkably,

the conformal rolling scenario and the Galilefn Genesis are just the particular realizations

of this general idea. This, however, does not downgrade the predictions made in the simple

model with the negative quartic potential. In particular, the statistical anisotropy and non-

Gaussianity there are generic for a much broader class of models.

Basing on the prediction of the statistical anisotropy, we searched for the signatures of

the conformal rolling scenario in the seven-year WMAP data. In particular, we repeated

the result of the large statistical anisotropy quadrupole recently observed in the V and W

channels of the five-year data. The anomalous quadrupole has been argued, however, to

originate from the systematics rather than have the primordial origin. We estimated the

parameter h2 from the seven-year data and compared it with estimates obtained from the

Monte–Carlo generated anisotropic maps. We resulted with the constrint h2 < 0.045 at the

95% CL.

In this thesis, we also considered the statistical anisotropy of low CMB multipoles. The

latter is unlikely to be explained by the primordial physics. The natural approach to the

problem is to consider the uncounted foregrounds, e.g. the Kuiper belt. De-correlating the

Kuiper belt and the seven-year ILC map, one can decrease the level of the quadrupole-

octupole correlation. Simultaneously, the problem of the parity asymmetry is addressed,

namely the de-correlation leads to the increase of even multipoles, thus mitigating the de-

tected odd preference of low multipoles.

Now we are moving towards a very interesting epoch in cosmology, when predictions

of very early Universe models will become the subject of the rigorous experimental tests.

Hopefully, the forthcoming PLANCK data will shed the light on the origin of the Universe

and/or the mechanism standing for the primordial perturbations creation.
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Appendix A. Cosmological perturbation theory

Fixing the gauge

The results presented in this Appendix are very well-known and can be found in the reviews

and textbooks [39, 40, 41, 42]. We prefer to use the books by Gorbunov and Rubakov [41, 42]

as our guideline in what follows. The results of cosmological perturbation theory are quite

generic and applied to study the evolution of perturbations during the Big Bang and at the

earlier epochs (not necessarily inflation!). The qualification here is that the perturbations

of the energy-momentum tensor T µν and the associated perturbations of the metric gµν are

small enough, so that we can work in the linear approximation in these perturbations.

When study the cosmological perturbation theory, it is convenient to work in terms of

the conformal time defined as a(η)dη = dt. In this case, the perturbed metric takes the form

gµν =
1

a2
(ηµν − hµν) .

The indices of the metric excitation hµν are raised and lowered with the Minkowski metric

ηµν . We also choose to work with the Fourier transform of the perturbation hµν(x),

hµν =

∫
d3keikxhµν(k) .

Now, let us fix the vector k and consider the rotations in the plane orthogonal to the vector

k. Since the background metric is invariant under spatial rotations, one can decompose the

perturbation hµν into the irreducible representations of the rotation group SO(2), namely

h00 = 2Φ , h0i = ikiZ + ZT
i ,

hij = −2Ψδij − 2kikjE + i(kiW
T
j + kjW

T
i ) + hTTij ,

where Φ, Ψ, Z and E are the scalars with respect to the group of rotations, ZT
i and W T

i

are vectors, while the transversal symmetric traceless structure hTTij stands for the tensor

perturbations. Not all of these degrees of freedom are physical. Some of them can be

eliminated due to the invariance of the General Relativity under the transformations of the

coordinates

xµ → x̃µ = xµ + ζµ(xν) ,

which induces the following transformation of the metric,

gµν → g̃µν = gµν +∇µζν +∇νζµ .

Here ζµ(xν) is the arbitrary function of the space-time coordinates, and ∇µ denotes the

covariant derivative. The linear pertubation hµν then transforms as to

h̃µν = hµν + ∂µζν + ∂νζµ + 2ηµνζ
λ∂λa

a
.
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First, it is convenient to get rid off the functions Z and ZT
i by applying the gauge

h0i = 0 . (179)

Still, we are free to perform the transformation with the function ζµ obeying the condition

∂iζ0 + ∂0ζi = 0. Choosing in particular

ζi = −∂iσ(η,x), ζ0 = ∂0σ(η,x) ,

and taking σ = E, we eliminate the function E. This way of fixing the gauge freedom is

known as the conformal Newtonian gauge, to which we specify in what follows, unless the

opposite is stated. Let us write the metric perturbation in this gauge

h00 = 2Φ , h0i = 0 ,

hij = −2Ψ + i(kiW
T
j + kjW

T
i ) + hTTij . (180)

Still, we have the residual gauge freedom. Indeed, the gauge choice ζ0 = 0 and ζi = fi(x)

leaves the Newtonian gauge unaffected. We can use the residual gauge freedom to eliminate

the vector modes. Note without the derivation that the latter are the pure gauge if not

sourced by the matter, and, therefore, can be removed by the appropriate choice of the

gauge function fi(x). In the opposite case, they rapidly fall with the scale factor a in the

expanding Universe and quickly become negligible.

Linearized Einstein equations

For the future purposes, we need to obtain the linearized Einstein equations. The latter

follow from the Einstein–Hilbert action and are given by

Gµ
ν = 4πGT µν ,

where Gµν is the Einstein tensor,

Gµ
ν = Rµ

ν −
1

2
δµνR .

It is convenient to work with the (00)-th, the (0i)-th and the (ij)-th components of the

Einstein equations separately, i.e. we write

δG0
0 = 4πGδT 0

0 , δG0
i = 4πGδT 0

i , δGi
j = 4πGδT ij . (181)

First, it is easy to linearize the energy-momentum tensor T µν . Assume that the latter is one

of the perfect fluid,

T µν = (ρ+ p)uµuν − δµν p .
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Here ρ = ρ0 + δρ and p = p0 + δp are the energy density and the pressure of the fluid; ρ0 and

p0 are their background values, while δρ and δp are the linear perturbations. The 4-vector

uµ and uµ are the 4-velocities, which unperturbed components are given by

ū0 =
1

a
, ū0 = a , ui = ui = 0 ,

while the linear perturbations are given by

u0 =
1

a
(1 + δu0) , ui =

1

a
vi .

In the linear approximation, the perturbation of the zeroth component of the 4-velocity,

δu0, is simply related to the perturbation of the (00)-th component of the metric, h00. This

follows from the normalization condition gµνuµuν = 1, which gives

δu0 = −1

2
h00 .

The linear perturbation of the energy-momentum tensor reads

δT 0
0 = δρ , δT 0

i = −(ρ+ p)vi , δT ij = −δijδp . (182)

It is convenient to decompose the velocity into the sum of the collinear and transverse

components,

vi = V T
i + ikiv .

The reason to perform this decomposition is that the transverse component of the velocity

sources the vector modes of the metric perturbation, while the collinear part sources the

scalar excitations. Note also that the energy-momentum tensor of the perfect fluid does not

source the tensor modes.

To obtain the linearized Einstein equations, we also need to linearize the Einstein tensor

in metric fluctuations. Note that in the linear approximation scalar, vector and tensor

modes evolve independently from each other. First, we focus on the scalar sector. The linear

perturbation of the Einstein tensor for the (00)-th, (0i)-th and (ij)-th components is given

by

δG0
0 =

2

a2

(
k2Ψ + 3

a′

a
Ψ′ − 3

a′2

a2
Φ

)
δG0

i =
2

a2

(
−ikiΨ′ +

a′

a
ikiΦ

)
(183)

δGi
j = − 1

a2
kikj(Φ + Ψ)− 2

a2
δij

[
−Ψ′′ − 1

2
k2(Φ + Ψ) +

a′

a
(Φ′ − 2Ψ′) + 2

a′′

a
Φ− a′2

a2
Φ

]
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We can simplify these formulae if we note that the structure kikj present in the last equation

of (183) is absent in the linearized energy-momentum tensor of the perfect fluid. Hence, in

the approximation of the perfect fluid we have the following constraint,

Φ = −Ψ .

Using the latter, we substitute (183) and (182) into the Eqs. (181) and obtain

k2Φ + 3
a′

a
Φ′ + 3

a′2

a2
Φ = −4πGa2δρ (00) (184)

Φ′ +
a′

a
Φ = −4πGa2[(ρ+ p)v] (0i) (185)

Φ′′ + 3
a′

a
Φ′ +

(
2
a′′

a
− a′2

a2

)
Φ = 4πGa2δp (ij) (186)

To complete this system of equations, one should also know the linearized energy-momentum

tensor conservation. We split the latter as follows

∇νT 0
ν = 0 , ∇νT iν = 0 .

Linearizing these two equations separately in metric and energy-momentum tensor pertur-

bations, one has

δρ′ + 3
a′

a
(δρ+ δp)− (ρ+ p)(k2v + 3Φ′) = 0 (187)

and

[(ρ+ p)v]′ + 4
a′

a
(ρ+ p)Φ = 0 . (188)

If we deal with the multi-component fluid, then the above equations hold for each component

separately.

Since the tensor perturbations are not sourced by the matter, the Einstein equations

in this case reads simply δGi
j = 0, where the linearization over the tensor excitations is

understood. Let us write the equation of motion for the tensor perturbations,

∂2
ηh

TT
ij + 2

a′

a
∂ηh

TT
ij −∆hTTij = 0 .

It is convenient to expand the tensor perturbation hTTij over the basic tensors eAij,

hTTij =
∑
A

eAijh
A .

where hA are the coordinates in the chosen basis. The tensors eAij, A = +,×, are constructed

out of the unit vectors e1
i and e2

i orthogonal to each other and to the momentum k,

e+
ij =

1√
2

(e1
i e

1
j − e2

i e
2
j) ,
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e×ij =
1√
2

(e1
i e

2
j + e2

i e
1
j) .

Further, one can build two linear combinations out of the vectors eAij, i.e. e±2
ij transforming

under the rotations in the plane orthogonal to the momentum k as follows

e±2
ij

′
= e±2iαe±2

ij ,

where α is the angle of the rotation. Clearly, the arbitrary transversal symmetric traceless

tensor can be performed as the linear combination of the chirality-2 tensors. Note that the

fields hA are not the canonically normalized one. This is clear from the quadratic action for

the tensor perturbations,

STT =
1

64πG

∫
d4xa2[(∂ηh

A)2 − ∂khA∂khA] .

One can, however, define a new variable

φA =

√
M2

Pl

32π
.

The action for the field φA is canonically normalized, and therefore it is a convenient variable

to describe the evolution of tensor perturbations. This shows that the tensor hTTij belongs to

the irreducible represntation of the group SO(2) and, thus, its evolution can be considered

independently.

As pointed out earlier, vector modes can be safely omitted from our discussion. In

particular, if the Universe is driven by the scalar field with the standard kinetic term, the

corresponding energy-momentum tensor does not source vector modes at all, and the latter

can be reduced by the appropriate gauge choice.

Adiabatic initial conditions

To solve the linearized Einstein equations supplemented by the linearized energy-momentum

tensor conservation, one needs to know the initial conditions for this system. It is natural

to separate the possible initial conditions into adiabatic and isocurvature ones. The former

corresponds to the situation, when the Universe is described uniquely by the energy density

ρ. In particular, the adiabaticity implies that the pressure is the unique function of the

energy density, i.e. p = p(ρ). Note, however, that the energy density perturbation is,

generally speaking, gauge-dependent, and, thus, may not be the appropriate variable to

describe adiabatic initial conditions. The gauge-independent description of the primordial

perturbations has been established in the seminal article [43]. Shortly, we will turn to the

gauge-independent description, but for the time being we specify to the Newton gauge.
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Linearizing the pressure as the function of the energy density in the perturbation of the

latter, one has

δp =
dp

dρ
δρ =

p′

ρ′
δρ . (189)

Substituting this into the linearized energy-momentum conservation law (187), one obtains

Φ′ =
δρ′

3(ρ+ p)
+
a′

a

ρ′ + p′

ρ+ p
δρ .

Then, using the conservation law for the unperturbed energy density,

ρ′ + 3
a′

a
(ρ+ p) = 0 ,

one obtains (
−Φ +

δρ

3(ρ+ p)

)′
= 0 .

From the latter it follows that the combination in the brackets is time-independent on the

superhorizon scales. Commonly, this quantity denoted by ζ is written as follows

ζ = Ψ−Hδρ

ρ̇
.

First it has been introduced in [8, 44]. Here we used the constraint Φ = −Ψ valid in

the approximation of the perfect fluid. In literature, the quantity ζ is referred to as the

curvature perturbation. The reason for this name will become clear shortly. In the case of

the multi-component fluid, one can define the curvature perturbation ζλ for each component

separately,

ζλ = Ψ−Hδρλ
ρ̇λ

. (190)

Note that each ζλ is conserved on the superhorizon scales provided that the corresponding

pressure is adiabatic, i.e.

δpλ =
p′λ
ρ′λ
δρλ .

The latter may be written as follows,

δρλ = ρ′λελ ,

δpλ = p′λελ ,

Further, the adiabaticity implies that the function ελ does not depend on the choice of the

component, i.e. ελ = ε is the unique function for all the components of the fluid. In this

case, the function ε is related to the total energy density perturbation,

ε =
δρ

ρ′
.
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In particular, this implies that the partial and the total curvature perturbations are equal

between each other,

ζ = ζλ1 = ... = ζλn . (191)

Before we complete our discussion, let us prove that the curvature perturbation ζ is gauge-

independent. To do that, let us turn from the Newtonian gauge to the gauge, where the

energy density stays spatially constant at each time, but the condition h0i = 0 is preserved.

From the transformation law of the energy-momentum tensor,

T̃ µν = T µν +∇µξν +∇νξµ .

it follows that

(ρ+ δ̃ρ)(x̃) = (ρ+ δρ)(x) .

Linearizing the latter we obtain

δ̃ρ(x) = δρ(x)− ρ′ξ0 .

This fixes the transformation parameter ξ0,

ξ0 =
δρ

ρ′
.

This transformation induces the non-zero E(x) and also leads to the transformation of Ψ(x),

so that the latter takes the form

Ψ̃ = Ψ +
δρ

3(ρ+ p)
.

Comparing the latter and the Eq. (190), we see that the curvature perturbation ζ coincided

with the potential Ψ̃ evaluated on the hypersurface of the uniform density. Further we note

without the derivation that the potential Ψ̃ defines the spatial curvature calculated on the

corresponding hypersurfaces,

R(3) = − 4

a2
∆ζ .

Here one important remark is in order. In literature it is quite common to use the

quantity R defined by

R = Ψ +
a′

a
v ,

where

v =

∑
(ρλ + pλ)vλ∑
(ρλ + pλ)

.

However, for the superhorizon modes the quantities ζ and R are equal. It follows from the

linearized Einstein equations (184) and (185),

ζ −R =
δρ

3(ρ+ p)
− a′

a
v = − 1

12πGa2(ρ+ p)
k2Φ .
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This difference is negligibly small in the superhorizon regime, i.e. in the formal limit k → 0.

Isocurvature initial conditions

Once the condition (191) is not satisfied, one deals with the adimixture of the isocurvature

parturbations. It is convenient to define the set the isocurvature initial conditions in terms

of the differences between the partial perturbations ζλ, namely,

Sλλ′ = 3(ζλ − ζλ′) .

Further, the natural chocie is to define the differences Sλλ′ relatively to the dominant com-

ponent, radiation at the conventional at the conventional hot epoch. It may happen so that

the dominant component carries the negligible parturbation at the time, when the initial

conditions are set, i.e. ζtot = 0. In this case, one deals with the purely isocurvature per-

turbations. As it follows, the spatial curvature defined at the slices of the uniform energy

density tends to zero in this situation, Hence, the name “isocurvature”. We will encounter

this situation in the context of the curvaton models and frameworks alternative to the infla-

tion. Note that the separation of the initial conditions into the adiabatic and isocurvature

ones is well motivated from the viewpoint of the CMB experiments. Starting from these two

different types of the initial conditions, cosmological perturbations follow different evolution

and, consequently, make the imprint on the CMB sky, which can be easily distinguished.

Accordingly to the current experimantal data, the admixture of the isocurvature initial con-

ditions is highly constrained. Thus, for the cosmological model to be successful, one should

guarantee that the cosmological perturbations are of the adiabatic type at the beginning of

the conventional hot epoch.

Application to single-field fluid

Basing on the cosmological perturbation theory, let us study the evolution of fluctuations in

the Universe driven by the unique scalar field φ. Provided that the latter has the canonically

normalized kinetic term, the energy-momentum tensor of the matter is fixed by the Eq.... .

As usually, we employ the Newtonian gauge. With this choice, the metric takes the form

ds2 = a2(η)[(1 + 2Φ)dη2 − (1− 2Φ)dx2] ,

where we omit vector and tensor exitations, which can be considered separately. We linearize

the energy-momentum tensor with respect to the perturbation ϕ of the scalar field φ,

φ(x, t) = φc(t) + ϕ(x, t) ,
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where φc is the background value of the field φ, assumed to be spatially homogeneous. The

(00)-th and the (0i)-th components of the energy-momentum tensor perturbation read

δT 0
0 ≡ δρ =

1

a2
[−Φφ′c

2
+ φ′cϕ

′] +
dV (φc)

dφc
ϕ (192)

and

δT 0
i =

1

a2
φ′c∂iϕ . (193)

Comparing the latter equation with (182), we conclude that the spatial derivative of the

inflaton perturbation is intimately related to the 3-velocity of the perfect fluid,

∂iϕ

φ′c
= −vi = −∂iv ,

where v is the velocity potential. Now we substitute the Eqs. (192) and (193) into the

linearized Einstein equations. The (00)-th component of these equations takes the form

∆Φ− 3
a′

a
Φ′ − 3

a′2

a2
Φ = −4πGφ′c

2
Φ + 4πG

[
φ′cϕ

′ −
(
φ′′c + 2

a′

a
φ′c

)
ϕ

]
, (194)

where we make use of the equation of motion for the unperturbed inflaton field, which in

the conformal time takes the form

φ′′c + 2
a′

a
ϕ′c + a2 dV

dφc
= 0 .

The (0i)-th Einstein equation is given by

Φ′ +
a′

a
Φ = 4πGφ′cϕ . (195)

In further calculations we will also need the equation

a′′

a
− 2

a′2

a2
= −4πG(ρ+ p)a2 = −4πGφ′c

2
. (196)

Using the latter, one can transform the first term in the right handside of the Eq. (194).

Then, the latter takes the form

∆Φ− 3
a′

a
Φ′ −

(
a′′

a
+
a′2

a2

)
Φ = 4πG[φ′cϕ

′ − (φ′′c + 2
a′

a
φ′c)] . (197)

Then, using the Eq. (195), we express the potential Φ through Φ′ and ϕc and substitute into

the Eq. (197). Again making use of the Eq. (196), we obtain

∆Φ = 4πG
a

a′
φ′c

2 d

dη

(
Φ +

a′

aφ′c
ϕ

)
. (198)
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The quantity in brackets,

−R = Φ− a′

a
v =

(
Φ +

a′

aφ′c
ϕ

)
.

has a very clear physical meaning. In fact, R is nothing but the spatial curvature of the

hypersurface defined in the comoving gauge, vi = 0 (or, in other words, at the spatially

constant value of the inflaton field). This all motivates us to use the variable

φ̃ =
u

a
,

u = −zR , z =
a2φ′c
a′

.

In the literature, the guage-invariant quantity u is referred to as the Mukhanov–Sasaki

variable [45]. With this notation, the Eq. (198) takes the form,

∆Φ = 4πGφ′c
z

a

d

dη

(u
z

)
. (199)

while the (0i)-th Einstein equation is given by

a′

a2

d

dη

(
a3

a′
Φ

)
= 4πGφ′cu . (200)

Finally, we express the potential Φ from the Eq. (199) and substitute it into the Eq. (200).

This gives us

u′′ −∆u− z′′

z
u = 0 . (201)

This simple formula will serve us to derive the dominating scalar perturbations generated in

the Universe at very early stages.

Appendix B. Corrections to phase perturbations of or-

der ∂i∂jη?/k

In this Appendix we calculate phase perturbations of the conformal rolling scenario including

corrections of the order ∂i∂jη?/k. We employ the Eq. (62) from the main body of the thesis,

where the classical background is replaced the modified one. We search for the solution in

the following form,

δχ
(−)
2 (k,x, η) = eikx−ikη?(x)−ikv[η?(x)−η] ·

[
F (q, η?(x)− η) + F (2)(q, η?(x)− η)

]
,
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where the leading term F is defined by and F (2) is propotional to ∂i∂jη?. Substituting this

ansatz into the Eq. (62), we obtain to the linear order,

F (2)′′ + k2F (2) − 2

ζ2
F (2) = ∂i∂iη? · S + kikj∂i∂jη? · T ,

where ζ = η? − η,

S = −ikF +
∂F (k, ζ)

∂ζ
+

2

3ζ
F ,

T = −2Fζ − 2i
∂F (k, ζ)

∂k
= − 2

k2ζ
eikζ .

The solution F (2) should vanish as η? − η →∞. Hence, it is given in terms of the retarded

Green’s function (recall that ζ ′ > ζ corresponds to η′ < η),

G(ζ, ζ ′) =
π
√
ζζ ′

2
Θ(ζ ′ − ζ) ·

[
J3/2(kζ)N3/2(kζ ′)−N3/2(kζ)J3/2(kζ ′)

]
, (202)

where J3/2 and N3/2 are the Bessel functions. Namely,

F (2)(ζ) =

∫ ∞
ζ

dζ ′G(ζ ′, ζ) [∂i∂iη?S(ζ ′) + kikj∂i∂jη?T (ζ ′)] .

We are interested in the behavior of this solution in the super-“horizon” regime, kζ → 0.

Since the most singular behavior of S and T at small ζ is ζ−2, the first term in the Eq. (202)

is irrelevant and can be safely omitted.

ImF(2)T |ζ→0 = −π
√
ζ

2
N3/2(kζ)

∫ ∞
0

dζ ′
√
ζ ′J3/2(kζ ′)

(
−2 sin kζ ′

k2ζ ′

)
kikj∂i∂jη? = −π

2

1

k2ζ
·kikj
k2

∂i∂jη?

Performing similar calculation for S-term, we obtain that in the super-“horizon” regime

F + F (2) =
i

q(η? − η)

(
1− π

2k
· kikj
k2

∂i∂jη? +
π

6k
∂i∂iη?

)
.

Now we can write the expression for the phase perturbations in the super-“horizon” regime [20],

δθ(x) =

∫
dk√
k4π3/2q

eikx−ikη?(x)

[
1− π

2k

kikj
k2

∂i∂jη? +
π

6k
∂i∂iη?

]
Ak + h.c. (203)

The correction O (∂i∂jη?/k) in the brackets serves as the source of the statistical anisotropy

in the sub-scenario A of the conformal rolling, i.e. one with the cosmologically interesting

modes superhorizon in the conventional sense by the end of the conformal rolling.

143



Appendix C. Derivation of the formula (92)

In this Appendix we consider the Cauchy problem for the Eq. (86) with initial data specified

at the hypersurface

f(y) = η − η∗(y) = 0 , (204)

where y denotes a point with coordinates yµ = (η,y). We simplify the notation and use θ(x)

instead of δθ(x).

Let θ̃(x) be the solution to the D’Alembert equation (86), such that θ̃(y) and ∂N θ̃(y)

coincide with the Cauchy data θ(y) and ∂Nθ(y) at the Cauchy hypersurface (hereafter ∂N
denotes the normal derivative). Let us introduce

θ(x) = θ̃(x) ·Θ[f(x)] ,

where Θ is a step function. Then

� θ = ∂µθ̃ ∂
µf · δ(f) + ∂µ[θ̃ ∂µf · δ(f)]

and, therefore,

θ(x) =

∫
d4y

{
Dret(x, y) ∂µθ(y) ∂µf(y) · δ[f(y)]−

[
d

dyµ
Dret(x, y)

]
θ(y) ∂µf(y) · δ[f(y)]

}
,

(205)

where we omitted tilde over θ in the right hand side, since the integration runs over the

Cauchy hypersurface. The second term in the integrand is obtained by integration by parts.

The formula (205) is nothing but the general formula (90), and ∂µθ ∂
µf ∝ ∂Nθ.

In the case of interest, the normal derivative vanishes at the Cauchy hypersurface, and

the first term in the integrand in (205) is absent. We make use of (91) and write

d

dyµ
Dret(x, y) = − 1

π
(xµ − yµ)δ′[(x− y)2] .

We use the explicit form (204) of f(y), integrate over η in (205) and obtain for x = (η1,x)

θ(x) =
1

π

∫
d3y [η1 − η∗(y) + v(x− y)] θ(y) δ′

(
[η1 − η∗(y)]2 − (x− y)2

)
, (206)

where vi = −∂iη∗(y) and θ(y) ≡ θ[y, η∗(y)] is the field value at the Cauchy hypersurface.

We now introduce the integration variable r via y = x + r, write r = nr, where n is a unit

vector, and cast the integral (206) into the following form:

θ(x) =
1

π

∫
dΩn r

2dr [η1− η∗(x + nr)−nvr] θ(x + nr) δ′
(
[η1 − η∗(x + nr)]2 − r2

)
. (207)
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Here v = v(x + nr). Finally, we make use of the identity

δ′
(
[η1 − η∗(x + nr)]2 − r2

)
= − 1

2 {r − nv[η1 − η∗(x + nr)]}
∂

∂r
δ
(
[η1 − η∗(x + nr)]2 − r2

)
,

which is obtained by evaluating the derivative over r of δ ([η1 − η∗(x + nr)]2 − r2). Since

r 6= 0 at the Cauchy hypersurface, we can integrate over r in (207) by parts. We also use

the fact that

δ
(
[η1 − η∗(x + nr)]2 − r2

)
=

1

2r(1− nv)
δ[r − r(n)] , (208)

where r(n) is the solution to Eq. (93). We get

θ(x) =
1

π

∫
dΩndr

∂

∂r

(
r2

2 {r − nv[η1 − η∗(x + nr)]} [η1 − η∗(x + nr)− nvr] θ(x + nr)

)
× 1

2r(1− nv)
δ[r − r(n)] .

The integration over r is now straightforward, and we obtain after some algebra (note the

cancellation of the terms with derivative ∂v(x + nr)/∂r)

θ(x) =
1

4π

∫
dΩn

[
θ +

1

1− nv
r∂rθ

]
, (209)

where in the right hand side one has θ = θ(y, η∗(y)) with y = x + nr. Let us emphasize

that (209) is the exact result for the Cauchy problem with ∂Nθ = 0. At large r, the second

term in the integrand dominates, and we arrive at the formula (92) used in the text.

For completeness, let us derive the general formula for the solution to the Cauchy problem

with non-vanishing ∂Nθ. With the Cauchy hypersurface defined by Eq. (204), the derivative

along the unit normal is given by

∂Nθ = γ∂µθ ∂
µf , (210)

where γ = (1− v2)−1/2. This expression can be obtained by performing local boost

dτ = γ(dη + vdx) , etc.

Then τ is the time coordinate along the normal, and

∂Nθ = ∂τθ = γ(∂ηθ − vi∂iθ) ,

which is precisely (210). Making use of (210) and (91) we write the first term in (205) as

follows, ∫
d3y

1

2π
δ
(
[η1 − η∗(y)]2 − (x− y)2

) 1

γ
∂Nθ .
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We proceed as before, again use (208) and obtain for this term

1

4π

∫
dΩn

r

γ(1− nv)
∂Nθ .

Thus, the complete expression for the solution to the Cauchy problem is

θ(x) =
1

4π

∫
dΩn

[
θ +

1

1− nv
r
(
∂rθ +

√
1− v2∂Nθ

)]
. (211)

The notations here are the same as in (209).

Appendix D. Details of saddle point calculation

Saddle point n ≈ k̂

To find the saddle points of the integral (95), we solve Eq. (97) with ∂ψ/∂n given by (98).

To the linear order in h, the first saddle point is

n+ = k̂ + 2[v − k̂ · (k̂v)]

with

λ = 1 + 2 k̂v . (212)

Let us evaluate the contribution to the integral (95) coming from the saddle point region

near n+. Let ϑ, ϕ be angular coordinates in the frame with the third axis along n+. Then

n = n+ + n(1) + n(2) ,

where n(1) and n(2) are of the first and second order in ϑ, respectively,

n(1) = (sinϑ cosϕ, sinϑ sinϕ, 0) ,

n(2) = (0, 0, cosϑ− 1) .

We have

ψ(n) = ψ(n+) + ψ(2) ,

where

ψ(2) =
∂ψ

∂ni
n

(2)
i +

1

2

∂2ψ

∂ni∂nj
n

(1)
i n

(1)
j

and the derivatives are evaluated at n = n+. The first derivative is given by Eqs. (97) and

(212), while to the linear order in v and ∂v (i.e., linear order in h), the second derivative is

∂2ψ

∂ni∂nj
= r(kivj + kjvi) + r2(kn+ + k)∂ivj .
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The angular integral is now straightforwardly evaluated (one first integrates over ϑ near

ϑ = 0 with weight ϑdϑ, then expands in v and ∂v and integrates over ϕ), and to the linear

order in h one finds

ir

∫
dΩn

4π
eiψ

(2)

=
1

2k
[1− 2(k̂v)][1 + r(δij − k̂ik̂j)∂ivj] .

The pre-exponential factor in (95) is to be evaluated at n = n+. Collecting all factors, we

get the contribution of the first saddle point (to the first order in h):

I+ =
1

2
eiψ(n+) 1 + r · (δij − k̂ik̂j)∂ivj

k + kv
.

Note a non-trivial cancellation between v-dependent terms in the pre-exponential factor.

Finally, we recall that

ψ(n+) = kn+η1 − (kn+ + k)η∗(x + n+r) = kη1 − 2kη∗(x + k̂r) ,

where we still work to the linear order in h. Since δη∗ and v are already of order h, their

argument is merely y(+) = x + k̂r. In this way we arrive at the first term in (99).

Second saddle point

The second saddle point is precisely at

n− = −k̂

(this is exact result valid to all orders in v). At this saddle point we have

ψ(n−) = −kη1 .

The same calculation as above gives for the contribution of the second saddle point

I− =
1

2
eiψ(n−) 1

k + kv
.

So, the second term in (99) is obtained in a very straightforward way.

Appendix E. Multipoles of statistical anisotropy.

The field δη∗(x) is an isotropic Gaussian field. Therefore, the multipole coefficients in (104)

are independent,

〈qLMq∗L′M ′〉 = QlδlL′δMM ′ .
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We make use of the expression (105) and calculate the sum
∑

M〈|qLM |2〉. Since 〈δη∗(p)δη∗∗(p
′)〉 ∝

δ(p− p′), this sum has the following form:∑
M

〈|qLM |2〉 =

∫
d3p
Pδη∗
4πp3

∑
M

|qLM(p)|2 . (213)

The integrand here is independent of the direction of p and therefore can be calculated in

any reference frame. To simplify formulas, we choose, somewhat loosely, a reference frame

one step earlier, in the inner integral in (105), so we calculate qLM(p) in a p-dependent

frame. This procedure is legitimate as long as one calculates the sum in the right hand side

of (213). We choose the spherical frame with p directed along the third axis and write

qLM(p) = −i
∫
dΩ Y ∗LM(ϑ, ϕ) · p cosϑ · (eipr cosϑ − e−ipr cosϑ)

= −iδM0

√
(2l + 1)π

1∫
−1

dtPL(t) · pt · (eiprt − e−iprt) , (214)

where Pl are the Legendre polynomials, ϑ is the angle between the momenta p and k and

t = cosϑ. Since the integrand in (214) is symmetric under t → −t (this is a consequence

of the symmetry of the power spectrum Pδθ(k) under k → −k, see (103)), odd multipoles

vanish. In what follows we consider even l 6= 0.

The standard way of calculating the integral (214) is to make use of the expansion of the

oscillating exponent in Legendre polynomials,

eiprt =
∞∑
L′=0

(2L′ + 1)iL
′
jL′(pr)PL′(t),

where jL are spherical Bessel functions. We make use of the normalization of the Legendre

polynomials, ∫ 1

−1

dtPL(t)PL′(t) =
2

2L+ 1
δLL′ ,

and recurrence relation

tPL′(t) =
L′PL′−1(t) + (L′ + 1)PL′+1(t)

2L′ + 1
.

Then the integral (214) is straightforwardly evaluated,

qLM(p) = 2δM0

√
4π

2L+ 1
iL p [(L+ 1)jL+1(y)− LjL−1(y)] ,

where

y = rp .
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We now insert this result into (213), recall that the power spectrum of δη∗ is given by (57)

and get ∑
M

〈|qLM |2〉 =
18h2

π(2L+ 1)

∫ ∞
0

dy

y
[(L+ 1)jL+1(y)− LjL−1(y)]2 . (215)

Finally, we recall the relationship between the spherical and conventional Bessel functions,

jL(y) =

√
π

2y
JL+ 1

2
(y)

and perform integration by using∫ ∞
0

Jν(y)Jµ(y)y−λdy =
Γ(λ)Γ

(
ν+µ−λ+1

2

)
2λΓ

(−ν+µ+λ+1
2

)
Γ
(
ν+µ+λ+1

2

)
Γ
(
ν−µ+λ+1

2

) .
After straightforward algebra this yields∑

M

〈|qLM |2〉 =
3h2

π

2L+ 1

(L− 1)(L+ 2)
, even L > 0 ,

or, equivalently, the quoted result (106).

It is worth noting that the relevant integration region in the integral (215) is y ≡ pr ∼ L

(the spherical Bessel function jL(y) is exponentially small at y � L and decays as y−1 at

y � L). This means that our approximation p � (k/r)1/2 is justified for kr � 1, unless L

is very large.

Appendix F. Distortion of odd multipoles

The coefficients εlm corrsponfing to the dipole modulated part of the KBO emission are given

by

εlm = A cos Θ[α1(l,m)fl+1,m + β1(l,m)fl−1,m]

+ (A/2) sin ΘeiΘ[α2(l,m)fl−1,m+1−
− β2(l,m)fl+1,m+1]

+ (A/2) sin Θe−iΘ[α3(l,m)fl+1,m−1−
− β3(l,m)fl−1,m−1] ,

(216)

where

α1(l,m) =

(
(l +m+ 1)(l −m+ 1)

(2l + 1)(2l + 3)

)1/2

, β1(l,m) =

(
(l +m)(l −m)

(2l + 1)(2l − 1)

)1/2

,
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α2(l,m) =

(
(l −m)(l −m− 1)

(2l + 1)(2l − 1)

)1/2

, β2(l,m) =

(
(l +m+ 1)(l +m+ 2)

(2l + 1)(2l + 3)

)1/2

,

α3(l,m) =

(
(l −m+ 1)(l −m+ 2)

(2l + 1)(2l + 3)

)1/2

, β3(l,m) =

(
(l +m− 1)(l +m)

(2l + 1)(2l − 1)

)1/2

.

Here Θ and Φ are the coordinates of the dipole modulation in the ecliptic system of coordi-

nates. and flm = flΓ
+(l)δm0 is the KBO foreground. Due to the high symmetricity of the

KBO foreground, coefficients εlm in the Eq. (216) have only three non-vanishing components

with odd l = 2n+ 1 and m = 0,±1. Namely,

ε2n+1,0 = A cos Θ[α1(2n+ 1, 0)f2n+2 + β1(2n+ 1, 0)f2n] ,

ε2n+1,1 = (A/2) sin Θe−iΦ[α3(2n+ 1, 1)f2n+2 − β3(2n+ 1, 1)f2n] ,

ε2n+1,−1 = (A/2) sin ΘeiΦ[α2(2n+ 1,−1)f2n − β2(2n+ 1,−1)f2n+2] ,

where l = 2n+ 1 and

α2
3(l, 1) = β2

2(l,−1) =
l(l + 1)

(2l + 1)(2l + 3)
,

β2
3(l, 1) = α2

2(l,−1) =
l(l + 1)

(2l + 1)(2l − 1)
,

α2
1(l, 0) =

(l + 1)2

(2l + 1)(2l + 3)
, β2

1(l, 0) =
l2

(2l + 1)(2l − 1)
.
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