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ЭКВИВАЛЕНТНОСТЬ ТЕНЗОРОВ ЭНЕРГИИ-ИМПУЛЬСА 
ГИЛЬБЕРТА И БЕЛИНФАНТЕ 

А.А.Логунов, М.А.Мествиришвили 
Институт физики высоких энергий, Серпухов 

1. ВВЕДЕНИЕ 

Хорошо известно, что только симметричный тензор энергии-импульса при­
водит к самосогласованным законам сохранения 4-импульса и момента ко­
личества движения. Поэтому проблеме симметризации канонического тензора 
энергии-импульса, который естественным образом возникает в лагранжевом 
подходе и который, вообще говоря, не обладает свойством симметрии, в ли­
тературе уделяется большое внимание'!•*', 

Общий метод построения симметричного тензора жергии-импульса был 
предложен Гильбертом в связи с выводом общековариантного уравнения 
гравитации. 

Метод Гильберта основывается на нахождении вариации лагранжиана ма­
терии по метрическому тензору и с необходимостью требует перехода к 
криволинейным координатам, что, с одной стороны, вызывает неудобства в 
теориях, где достаточно ограничиться пространством-времени Минковского, 
и для координат - преобразованиями Пуанкаре, а с другой, при получении 
явного выражения тензора энергии-импульса Гильберта приходится сталки­
ваться с большими техническими трудностями. 

Более рациональный метод построения симметричного тензора энергии-им­
пульса был предложен Белинфанте **. Метод Белннфанте заключается в том, 
что к каноническому тензору энергии-импульса добавляются некоторые по­
строенные из исходного лагранжиана члены и в результате тензор получает­
ся симметричным и сохраняющимся. 

В некоторой степени нерешенными являются следующие вопросы: 
1. Отличаются ли тензоры энергии-импульса Гильберта и Белинфанте? 

Отчасти ответ на этот вопрос в литературе имеется'^ - ' ' . Он заключается 
в следующем. Если лагранжиан материи содержит производные полевых функ­
ций не выше первого порядка, то тензоры энергии-импульса Гильберта и 
Белинфанте совпадают. 

В данной работе мы покажем эквивалентность тензоров энергии-импульса 
Гильберта и Белинфанте в эту чае, когда лагранжиан содержит производные 
симметричного тензорного поля до третьего порядка включительно. Такой 
лагранжиан появляется в полевой теории гравитации^8 и поэтому изучение 
данной проблемы имеет не только методическое, но и практическое значение. 
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2, Если канонический тензор энергии-импульса сам является симметрич­
ным, изменит ли его проделура Белинфанте, т.е. равны ли кулю в этом слу­
чае добавочные к каноническому тензору построенные_по рецепту Белинфан­
те члены или нет? Пример лагранжиана, рассмотренного в приложении 2, по­
казывает, что канонический тензор энергии-импульса, который оказывается 
симметричным, и тензор Белинфанте не совпадают между собой. Это значит, 
что в теории появляются два кандидата на роль тензора энергии-импульса. 
Какому из них отдать предпочтение? 

Ввиду того, что для любой теории фундаментальную роль играет именно 
тензор энергии-импульса Гильберта, и значит тензор Белинфанте, предпочте­
ние следует отдавать этому тензору по сравнению с каноническим, даже ес­
ли последний является симметрическим. В этом заключается ответ на вто­
рой вопрос. 

В настоящей работе затрагивается также вопрос о калибровочной инвари­
антности тензора энергии-импульса. 

Известно' 9 ' , что канонический тензор энергии-импульса свободного 
электромагнитного поля не является инвариантным относительно калибровоч­
ного преобразования вектор-потенпиала 

VWW' 
хотя соответствующий лагранжиан калибровочно инвариантен. Что касается 
тензора Гильберта-Белннфанте свободного электромагнитного поля, то он 
калибровочно инвариантен. 

В разд. 5 этой работы на примере лагранжиана полевой теории гравита­
ции показано, что это не всегда так. Не только канонический, ко и тензор 
энергии-импульса Гильберта-Белинфакте не является калибровочно-инвариант-
ным относительно замены 

хотя лагранжиан полевой теории гравитации этим свойством обладает. Сле­
дует подчеркнуть, что в основе построения тензора энергии-импульса Гиль­
берта-Белинфакте лежит инвариантность относительно преобразований коор­
динат, не имеющих ничего общего с калибровочными преобразованиями полей, 
поэтому нет ничего удивительного в том, что тензор энергии-импульса в 
общем случае не является калибровочно-ннвариантной величиной. 

Наконец, заметим, что калибровочная неинвариантность тензора энергии-
импульса не отражается на наблюдаемых физических величинах, построенных 
на его основе. 

В общепринятом подходе к построению теории поля исходным объектом 
является действие, которое в декартовых координатах пространства-времени 
Минковского (или псевдоевклидова пространства) Е 4 с метрикой УЦ1/

 = 

= (1 , - 1 , - 1 , - 1 ) , имеет вид 

S = / d 4 x £ . (1.1) 
V 

Здесь лагранжиан £ (лагранжева плотность) построен из полевых функций 
и их производных и является скаляром; V - некоторый, вообще говоря, про­
извольный объем из Е . 
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Если в Е 4 введены криволинейные координаты у*"» У ( х ) , то (1 .1) 
следует записать в виде 

S. /dVA. (1.2) 
V 

где величина 
A=J=j£ (1.3) 

является скалярной плотностью и при преобразовании координат преобразу­
ется как ij—у- В (1.3) у = def у^"(у) • Для дальнейшего удобно £ пред­
ставить в виде 

где в декартовых координатах £ g является скаляром, построенным только 
лишь из производных третьего порядка от симметричного тензорного по­
ля ф „„ , а £ и (также скаляр) зависит от полей и д , и_... (индексы 
А, В , ... здесь и в дальнейшем будут означать мультииндексы), от их 
первых производных ^ U A ~ U A , „ ; и в , и '• ••• И " г о л ь к о от вторых произ­
водных поля Ф uV • Данная структура лагранжиана £ выбрана нами с 
келью применить полученные в этой статье результаты непосредственно к 
полевой теории гравитации, развитой в работах'8''. Утверждения настоящей 
работы справедливы в обшем случае для любого лагранжиана и могут быть 
доказаны аналогично с некоторыми незначительными изменениями техничес­
кого характера. 

При рассмотрении метода Гильберта необходимо входящие в лагранжиан 
поля записать в криволинейных координатах. Требование инвариантности 
лагранжиана при этом приводит к тому, что в £ появится зависимость от 
самого поля Ф „v и от всех его обычных производных до третьего порядка 
включительно, а в £ ¥ - зависимость от самого поля ф и от всех 
его производных до второго порядка включительно. Кроме ^ого, так как 
метрический тензор у уже становится зависящим от криволинейных коор­
динат, в лагранжианы £ и £ ц войдут его производные до соответствую­
щих порядков. 

Как правило, сохранение свойства инвариантности при переходе к криво­
линейным координатам достигается заменой обычных производных на кова-
риакткые 

<V.<̂  D « V = Vi"' 
Фр>,о,г " °о°г Ф^~ Фр.р-,о;т » 
U A , ^ - D M ° A a U A ; ^ « Т . Д . , 

где, например, 

ф =ф - Г ф-. -ГКфь . (1 .4 ) 
^HV.a ^pv,o afi^Kv ov^A/i' 

Такой переход и дает рецепт построения инвариантных величин в криволиней­
ных координатах. 



В (1 .4) Г„„ является символом Кристофеля (или связностью) и через 
метрику пространства-времени Минковского у„„ выражается следующим 
образом: 

Г

Л = - 1 у А < 7 ( у + у - у )• (1 .5) 
Р^ Л ' rva,ii 'ftotv '>W0 

Заметим, что в декартовой системе координат 
г л -о. 

Так как пространство Е4 плоское, тензор кривизны Римана тождественно 
равен нулю и поэтому операторы 0 о и D r перестановочны. 

2. СИММЕТРИЧЕСКИЙ ТЕНЗОР ЭНЕРГИИ-ИМПУЛЬСА ПО БЕЛИНФАНТЕ 

Хотя в этом разделе мы намерены получить следствия, следующие из ин­
вариантности только относительно группы Пуанкаре, учитывая необходимость 
обшекоордикатного преобразования в дальнейшем, удобно уже здесь привести 
определения и формулы в той форме, в которой они понадобятся ниже. 

Индупиоова;нея ваоиапия А д . Запишем общекоорликатное преобразование 
в инфинитеэимальном виде: 

г ' - м ' + ^ М . (2 .1) 
Тогда очевидно 

Л?тг*+фж) (2.2) 
и в линейном приближении по f (х) 

i ^ . e ' - f ' M » ) . (2.3) 
dyv v •" 

Определение • Приращение тензорных величин, согласованных с координат­
ным преобразованием ( 2 . 1 ) , называется индуцированной вариапией и обозна­
чается через Aj(!)-

Если ф (х )-скалярное поле, то очевидно 

A s ^ ( x ) . 0 . (2-4) 
Пусть ф„„ симметричное тензорное поле, т.е. 

ф> ( y ) = ±L-^f^ (х), 
*" а? ef "P 

тогда в силу (2.3) в линейном приближении по £ находим 

Ф'^У) - v ( x ) - д

8 Ф?Л4--е"гФа№ - С W 0 , ( 2 5 > 
Для поля u д ( х ) , где А - мультиинцекс, тензорный закон преобразования 
в инфинитезимальной форме может быть записан в виде 

»'Ам-<«!г * ; # > • « • 



Тогда очевидно 

Совершенно аналогично может быть показано, что 

A s^W=-C<M + f f a <W, (2.7) 

v A « - 0 > B w ' и т я-
Теперь найдем индуцированную вариацию от производных полей. Рассмотрим 
подробно Д ф . По определению: 

Так как в линейном приближении (см. (2 .5 ) ) Ф'(У) тФа^ ~ (,иФау^ ~ 
- (" Фа (*) . т 0 

')*№ „»LHW «( S

r-f r )[Ф м-иа Ф w* 
dy° fly" **' " '" ^' ' К . рЧ«* 

поэтому 

*,**^-U •*,№..<. W ( X ) > ( 2 8 ) 

Аналогично может быть доказано, что 

^ w ^ ^ s v^ ( x».« -f,f v.<*^x)' ( 2 9 ) 

и т.д. 
Вариация Ли. Из формул (2 .8 ) - (2 .9 ) видно, что uiepaTop Д 3 н е пере­

становочен с операторами дифференцирования. Во многих случаях, однако, 
целесообразно иметь такие вариации, которые, с одной стороны, согласова­
ны с тензорным законом преобразований, а с другой, перестановочны с опе­
раторами дифференцирования. Такие вариации называются вариациями Ли и 
обозначают их через A L . 



Определение A L следующее: 
Ь^ф(*)шф'(х)-ф(х); 

Л А M-J>£3$ _-**£> -(Д.*(х)) • 
L •" дх" a*" L '" 

(2 .10 ) 
4 V ( x ) = < ^ ( x , ~ V ( x , ; 

ал'Х*) ал (х) 
Д А (х) = _ ^ £ ± ! 1 1 л £ 1 . = (\ф (х)) и т.д. 

В ( 2 .10) 0'( х), d (х ) и т.д. - значения преобразованных полей ф (у), 
Ф'п^У) и т.д., взятые в исходной точке х**- уС - f . Отсюда видим.что 
^ L ( ' ) - вариааии не являются произвольными изменениями полей в точхе, 

а согласованы с преобразованием координат (2.1) , т.е. с тензорным зако­
ном трансформации полей. 

Из определения (2 .10) очевидно, что оператор А^ перестановочен с опе­
раторами дифференцирования. Установим связь между операторами Д 8 и A L -
Найдем сначала Д.<£: 

. зШ- С"-Ф»-&ШФМ- -&УЦ". 
Так как в первом порядке по £ 

ЭФУ) v__ах"а£1у) frfJ£W_f» **ф ( х ) , 
ayv df в* v axe -с 

то с учетом ( 2 . 4 ) находим 

Ь.ф(*) = Ь-ф(х)-?'1ф M = - f ^ (")• (2 .11) 
Теперь найдем Д. <А 

**" ЗА' М 

но в первом порядке по f 

a / ay' ax" V -
и поэтому имеем 

Д А (х) = Д Л М - ? " * W« (2 .12) 
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Совершенно аналогично доказывается, что 

Ль ил( х>-Д 8

ил( х>-£'Ч,„ ( Х )' 

К*,Л*-*.*^Р-*\и...гН- 1 2 Л З ) 

В силу того, что операторы Д^ и 3 перестановочны, для вычисления 
явного вида вариации Ли от производных полей, достаточно знать явный вид 
вариации самих полей; AL<£ задана формулой ( 2 . 1 1 ) : 

ч*„„« - 4 > „ * w - С V ( x ) " * "V.«w- ( 2 Д 4 ) 

Переход от формул, полученных для обшекоордннатного преобразования 
(2 .1 ) , к формулам для преобразования Пуанкаре осуществляется с помощью 
конкретного выбора параметра f ( x ) : 

f M ( x ) - E " + m**v, ( 2 .17 ) 
где t ** - произвольный, но постоянный 4-вектор, а ш'"' - некоторая 6-па-
раметричеекая антисимметричная 4 x 4 матрица: 

J ^ = . V < < . (2 .18) 
Явный вид ш'"/ в данной работе нам не понадобится. Главной особен­

ностью группы Пуанкаре является то, что она сохраняет вид метрического 
тензора у„^= (1 , - 1 . - 1 , - 1 ) , т.е. группа Пуанкаре осуществляет переход 
от одной галилеевской системы отсчета к любой другой галилеевской систе­
ме. Поэтому естественно при построении теории, инвариантной относительно 
группы Пуанкаре, исходить из действия ( 1 . 1 ) , которое записано в декарто­
вой системе координат. Следуя Э.Нетер, потребуем инвариантности дейст­
вия (1 .1 ) , когда координаты подвергаются преобразованию Пуанкаре, т.е. 
положим 

s S = / £ 4 J x ) ; V J * - ^ 4 " - / *4, '* W ; <* CTW;-)«"4y=o.(2.i9) 
Так как d у = d x, а 

Цф'ЬУ.Ф' ( У ) ; - ) = £ ( * (*);<* (»);•-) + " A S ^ (x)+ 



+ *£. д ,4 (х) + i L u u (x) * _ i i _ Д u <x), ( 2 .20 ) 
"vHV,o,r,a " А А,ц 

то из (2 .19) находим 

J6\(-Jl д 0 + _ J £ дл 

t i i i „ t i L 4 » ).o. (2.2D 
В силу произвольности у из ( 2 . 2 1 ) следует 

3$. . ^ л э£ А , <?£ 

dS. 

pv,a,t • p.v,o,r,a * 

Т " ^ А » " * , . - в ' (2.22) 

Учитывая связь между вариациями Д s и Д [,, а также предпринятое нами 
разбиение лагранжиана £ • £ + £ ц , соотношение (2 ,22 ) может быть 
записано в виде 

+ _ 3 д u + - i 4 . 0 . « 0 . < 2 - 2 3 ) 

В (2 .23) введены обозначения: 

V ^ = - , (2.24а) 

R ( ^ ) ( o r a ) <?£, ^ (2.24) 
^ 0Ц1>,<7, г.а 

Но инвариантными относительно группы Пуанкаре должны быть величины £ к 

и £ м по отдельности, поэтому, применяя метод Э.Нетер для интегралов 
/ £ g d х и / £ d 4 x по отдельности, найдем: 

' fX^^Wu-»' ( 2 2 5 ) 

, „ , д £ „ а £ и 

^ j ^ ^ X - ^ ^ - ч „ д ( д ^ ^ . о . ( 2 . 2 6 ) 
Хотя соотношение (2 .23 ) следует из (2 .25 ) - ( 2 . 2 6 ) , мы сочли необ­

ходимым выписать его отдельно, поскольку, как это будет видно ниже. 
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законы сохранения удобно получить именно на его основе. Тождества 
(2 .2о) - (2 .26) являются необходимыми и достаточными условиями инва­
риантности St и £ м относительно группы Пуанкаре, и по-сушеству накла­
дывают ограничения только на функциональную структуру лагранжианов £ 
и £ н , т.е. на то, как они зависят от величин <f>uv,a,r,a и Фии а г '• "л : 

и А соответственно. Подстаы"-^ в (2 .25) и (2 .26) явный вид вариации 
^ьФа» и ^1УА С учетом т о, что для группы Пуанкаре все производные 
от параметра f ** начиная со второй включительно и выше тождественно рав­
ны нулю (см. ( 2 . 1 7 ) ) , найдем : 

Р т^Нага) ' Л „Хаг м ) ( 

• С pv,o,t,a ^av,f},T,o' ' 

Легко заметить, что (2 .27 ) и (2 .28 ) накладывают условия только на анти­
симметричные части выражений, входящих в квадратные скобки, так как ве­
личина £/-. « a » антисимметрична (см. ( 2 . 1 8 ) ) . Таким образом, из 
(2 .27) и (2 .28 ) находим: 

rv,a,r,a rv,a,r,a 

Ы ( ^ р favXarp) ( 2 2 9 ) 

2 У

( < " М < " У - 2 V ^ " ) ( » V + 2V ( "' X ' ' ) * ^.^°V4T\ "• 
V,O,T v*o,T OV,T, av,r, 

y du A

 A o в 7 й и А » « в ' вик *° B,<r 

- « p i i i L s 8 ^ + i £ j L « P- i iS -и . ^ 0. (2.30) 

Теперь вернемся к тождеству (2 .23) , переписав предварительно его в виде 

— _ i = - д 0 + - Д . и . + J = 0 . (2 .31) • 
S V L V SuA

 L A •" 
где 

i i 



(/jvXorc)., B(uv)(ora) . , д£и . . 
- R (&.Ф ) +R A, * + A I U A > (2 .32) 

n,r LTav ,a ,r,a l/*/ti/ du 
At a 

a S/Ьф - функциональная производная Эйлера-Лагранжа (см. приложе­
ние 1) . 

Предполагая, что поля ф „v и и д подчиняются уравнениям движения, 
т.е. что 

sS> (2 .33) 

из (2 .31) находим 

/ -о. ( 2 - 3 4 > 
Используя для Д^А,,, и Д ь

и

А явные выражения (2 .14) и ( 2 . 1 5 ) , пред­
ставим (2 .32) в виде 

j'--erp"-<,„«"". 1 2 - 3 5 ) 

где 

P f f r = - / r ( £ + £ Н У ' " " * " 0 * r - V ( " " M f f 0 V ' + 

+ R g "' X < , a V '_R (""K^°V ' * И < « / » > ф

 Г + — - л ' - ( 2 3 6 > 
A,a 

H°lir^ (цЛоРа) т + 2 R(ai/Ma/3(i) ^«^С^Но/За) r 

^Лг/З *ai'f/3.~ «0 ^"»« 

• R . / s * . * * . « . £ 0 " 2 V ф».р + 

+ у<м*> ,_ 2 Vw> + ™*_ - , г > . ( 2 3 7 ) 
/3f, »P v 3 l ) i n ' с 

Тензор Р , заданный равенством (2 .36 ) , называется каноническим тензо­
ром энергии-импульса. Заметим, что Р " г , как правило, не является сим­
метричным по индексам (от)» 

Если поля фuv и и А удовлетворяют уравнениям движения ( 2 . 3 3 ) , Р 
является по первому индексу сохраняющимся, т.е. 

р " Г = 0. (2.381 
.» 
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Действительно, выбирая в качестве f r - £ , , где tf - постоянный, но 
произвольный 4-вектор, из ( 2 . 3 4 ) и (2 .35 ) находим ( 2 . 3 8 ) . 

Пусть теперь f • и . х . Тогда 

J = — а , X г — ш 1Л > гл гр 
и с учетом (2 .38) из (2 .34) находим 

« (Р"Г-РГ"+М"*Г-М'7)=0, 
т.е. 

^'-^'^-(Н?1"-»!"!1),». ( 2 .39 ) 
Введем обозначение 

H f " - " = M C T ^ r _ M a f f i i ( 2 . 4 0 ) 

Тогда (2 .39) примет вид 

Р ^ - Р ^ — Н*"". (2 .41) 
Заметим, что (см. (2 .40 ) ) 

Н' " ' " . - ^ ' " 7 . (2.42) 
Из (2 .41) в силу (2 .38) очевидно, что 

(zr = _ H / , r 0 ( 2 4 3 ) 

Следуя Белинфанте, определим тензор Р/с) • полагая 

Р*" 0 . Р«' + 1 ( Н ^ Г

+ Н"'"- H ^ ) , „ . (2.44) 
(Б) 2 

B ( f " > Докажем, что таким образом определенный тензор Р/С., симметричен. Дей­
ствительно, рассмотрим разность ' 

Р ( Б Г p ( ( m - р "- p r ^Y^"' + ^'°-""'"-""-и'"*н*'"). 
Учитывая свойства антисимметрии ( 2 . 4 2 ) , найдем 

p(f ir)_p( r / i )_p^r _ r / i ufira 
(Б) (Б) ~ .» " 

Последнее выражение в силу (2 .41 ) тожаественно равно нулю. Этим дока­
зательство симметричности тензора Белинфанте Р*Н'' завершается. 

Теперь покажем, что 'Б) 

Р , ^ - P f l ^ - O . (2 .45) 
( Б ) , Р (Б)„ , > 

Рассмотрим сначала Р ( Б ) ц • 

pbrKrr + wlyt'"-*"') -о. 
(Б),/1 •/» 2 »"•<« 

Здесь мы также воспользовались свойством (2 .42) и законом сохранения 
канонического тензора Р**г (см. ( 2 . 3 8 ) ) . Аналогично: 

13 



?(B),r=?" +1{H + H - H Ur = 

= Р : ' 4 ( Н " Г

+ Н ' " | -РР/*Н' ,Гг-

Последнее выражение тождественно равно нулю в сипу ( 2 . 4 3 ) . 
Построенный Белинфанте тензор P/tfi (в отличие от канонического тен­

зора ( 2 . 3 6 ) , который,вообще говорящие является симметричным) обладает 
всеми требуемыми свойствами, предъявляемыми к тензору энергии-импульса 
и является хорошим кандидатом для того, чтобы быть взятым в качестве 
тензора энергии-импульса материи. 

После несложных, но громоздких вычислений на основе формул (2 .37 ) и 
(2 .40 ) найдем: 

4/,/S »P v v , p > p v 

-\P +v+* Ф*Ф,а~ R , /3 **-**,a,P *„ ~ 

>>, p,a av,p, »P Via »"»P " 

^ X r f l . ) „ 2 > ^ r ^ ) a _ > K ^ ) - -НЬМР*)ф о+ 

a t>. 

^*4Sa) „ (ovXrfi*) {ovbpa) + R ( a , X ^ r ) ^ 
,a,p ^v ^v,a,P ,fj ^v,a tp r n v , 

-R.a.p К ' * Ф1,а,р + *,Р ^ , a - R . a , 3 *,' + 

+ R ( r . ) ( ^ a ) „ R(,„)Q,p-.) „ + R ( r ^ « ) ^ a , + 

- 4Ё«_ Су*? - £*« s c " y " r

+ J L L S C r yao\ • (2.46) 
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Принимая во внимание в (2 .30) уравнение движения для полей и д , найдем: 

[и ( i i i L s V ' . i i l s ya'')] =-2v Ф я + 

Vta*P pv,a, J3i>,a. 

— и г + S - o Р . (2 .47 ) 

Подставляя в (2 .44) выражение для канонического тензора (2 .36) и (2 .46 ) , 
а также учитывая (2 .29 ) и ( 2 . 4 7 ) , найдем окончательный вид тензора Бе-
линфанте, обладающего явной симметрией по индексам ( р ' ): 

P ^ - ^ ' t t , * * b v ' ^ V '•V<*" ) ( reV «-(Б) g и Р>л» pV*, 
y(pV)M, г фкМаг) р у ^ Х о г ) fijf&Ma?) ф г + 

,а /3i/, " ,o */3i>, " pV,«t Э"»а» 

,а,р \ %а,£ ^у %0 v „ > 0 ,/3 ^V.a 

WvKrP) ы <а„)(р/3> <<7„Хг/9>„ ЛоЖц/З) , 

-\° *„.л-v t,^- v ^ _ v %з,*+ 

(а^КгЭ) „ W*Xji0> r „(о-^г/З) а -ДоиКа/ЗГ г 

>"fF v tOtP v ,p v,a ,fi v,a 

JavKaPfi) , _(oi/Ko/3r) „ _(ai>X<70u), t 

•Р aviff. tp ov,(7, t"»p « i 

(окХо/Зг) (и^Хг/За) _ (r„fy,9a) <, 

Ut^Xo^r) (fi/X^/Зо) „ , p (ev)(urj8) , <, 
+ R t . a . 0 . / 3 + R ^ . а . Э + 2 R , a U + 

Jav^p) „ <^Xr/S«) „ цЬуХр&ф. _ 

_m(avKrnp). <r+„(.iiv)(ra0) . 0 r,(rvXaPii) .а 
,p av&, ,a,a,p v + ,a,p~,o v 
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^v)hpa) а пЬгУмарфо _ R W X r a # ,, 
,a,P Vv,a >a,p vu,o n,a vv,a,p 

_R(ff|/)(pa/3) . R ^ ' ^ p ' a ) ^ -(^""^Р^фТ 

+ R W X r 0 O y + R U „ ) ( « p > ) r + R W ) ( a ^ r ) 
• ">P v,a ,<7,/3 p,a . 0 i/,o,ff 

+ R W X . ^ f _ RfeOfa/M „ _ R (<~X e p y _ 
tP v,a,o ,a,p,a p ,a,p,o rv 

_ R WXr«0 „ _ Rfe.,*.a0 . X R W H ' P » 
,a ,p i/,a ,a,p ^v,a 2 vav,o,p, 

. " vau,a,p, TduA *• <?U. *. 
' A • (1 А, г 

2 c ^ A . r *" 5 u A „ A a ' * « * , K a Y 

_ i £ « . S A

C V r ) ] • (2.48) 
5 U Ao f" 

3 . СИММЕТРИЧЕСКИЙ ТЕНЗОР ЭНЕРГИИ-ИМПУЛЬСА ПО ГИЛЬБЕРТУ 

Метод Гильберта основан на применении обшекоординатного преобразова­
ния ( 2 . 1 ) . Следуя Гильберту, будем исходить иэ действия (1 .2 ) , записанно­
го в криволинейных координатах. Так как при обшекоординатном преобразо­
вании (2.1) метрический тензор у уже не остается постоянным, необхо­
димо найти индуцированные и лиевские вариации метрики у и ее частных 
производных. Используя тензорный закон преобразования у , совершенно 
аналогично тому, как это было сделано в разд. 2 , найдем: 

A UV >•/* CLV , i-V a u 

\ГИ:Р=^С\Р-<Р^ ^ 
i6 



a 

*У 'ely+W-e'y!:; < 3 5 > 
4 L4"> <*«/">.. » V ^ - V ^ u * ит-д- ( 3- 6 ) 

Наконец, выпишем связи между вариациями A s и Д ь : 

A , y ' " ' - A i / , ' + * V , ' s ( 3 ' 7 ) 

8 > e L »" ,а,/3 

S',o,/3 V ,а,р * \аф,а 

а 
При обшекпординатном преобразовании (2 .1 ) в первом порядке по f 

*а 
а 

ЛСу'"", у ' " " ; . . . ф'>... и ^ в ) - Л ( / " ; ^ " ; . - # , . . . « A > a ) + 

•а 

Эу'"' S Зу '" ' S •" йу'" ' *"'Р ду*" *"#" 

i i i u + — ЬФ + -**- Д.* 
Д* - ' ' д ^ а ^дк.а./З 

ЙЛ 
М „ . « . „ + - г ^ д * % + - ^ д , U . 

^ /iy,a,p,o " " A A, a 
и поэтому условие инвариантности действия (1.2) запишется в виде 

/ d W а Л + £"Л + _ ± ^ д уД' + . М - (Д,уП + 

з л /А ,/"л . _ а л _ , А д ^ . ал / л uvv ал / . д»ч о'» 

«,/3 y,a,/3,a *V" 
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+ — — — (д, Ф ) + — — — (д Ф ) + 
дф ^pv'.a д ф " L"V '."./3 

tu>ta fiv,a,p 

В силу произвольности V отсюда находим: 

(f-A) + -**—Ь^+-*±-(ЬуП + - ^ (V^oJS* 
•« ay ' 4 " L 3 y t M / L •" ay t " /

a

 L ""P 

,J± (Д /") . + - ^ - A L # • 
',a,p,a r 

. 5Л /л ., \ . ал /A , * , а л 

' я A f a 
Тождестве (3 ,8) является необходимым и достаточным условием инвариант­
ности действия / \ i *y относительно преобразования ( 2 . 1 ) . Однако инвари-

V 

антными относительно обшекоординатного преобразования (2 .1) должны быть 
величины / A d у и f A „ d 4 y . Поэтому применяя метод Э.Нетер для интег-

Л V А1 

ралов / d у А и /d у А н по отдельности найдем: 
V 

(f«A ) + -1^_Д г /" + ±Л-8_(Д.<"') + 

,a,p tOip.o 

ал„ ,. , ал + &,ф + s — ( Д . * ) + S (д л ) + 

а<г L /»" а<* L с " • « <э<£ д

 L / f »«»p 
ал 

lLv,a,p,o 
<\Ф > я„* 0 ' ' ( 3 9 ) 

(f° Ли ) e + i i l A v ^ i -^!L (Д / 4 + 

<?уг а у р 

Id 



аЛ 
а у с ,а./3 

ал. 
а<£ W.A..' . 

Ц1/ 

ал 
/ii'.a 

<М„ 
L > y »a»0 йи. Д . и . + • 

ди A,a 
• ( 4 , « , ) , = 0 . (3 .10 ) 

Хотя из (3 .9 ) и (3 .10) следует (3 .8 ) , последнее, т.е. ( 3 . 8 ) , мы выписа­
ли из-за того, что на его основе удобно получить законы сохранения и 
связь между каноническим тензором энергии-импульса и тензором Гильбер­
та. Учитывая разложения Д£,(!) вариации по параметру f a (см. формулы 
(2 .14 ) - (2 .15) и (3.5) - ( 3 . 6 ) ) , запишем (3 .9) в виде 

, » . , " , , _ J A « во, , Э \ в и Й Л * V-O £ Л_ + £ о [2——— у н р + Z——— у н ^ - —— у + 
•" " - й а у ' " / ду*»" •« aYta *.«-

2 ал, ЭР 2 - а л « 
а у 

- 3 

f a . o 
ал 

ум« + 2^L_y^ -
ауС" 

',<т,г,а 
<ЭЛ. 

rt&o,r 
i _ y " ° _ 2 - ^ 5 _ ф - 2 ^ - ф -*„ 

- 2 ал. 2- Э Д « . - 2 - ^ 
>/3,о,г >ег,£,г >/3,о,г,о 

. 8 - ^ 1 . W «Й ал. 
a d iio,v,r,a д,/3 дуР" 

цч,р,а,г ,а 

а Л « , - , 6 • ' * ' уР" - 3 - ^ 

^ + 4 . ^ 
dy*v 

„ Э м _ 

„Р" 

га,Р ,а,о,т >а,р,г 

. 2 -£* * - *_ . . -4^«_* ал„ 

- 6 
ал <?л. 

-* , y.O,r,v 
1 + 

* " ,4 * Л « ..ЭМ, t З Л « У^Р Э А « у'" ' 

а, в,т 
ду а,/3,(7 
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ал. ал. ал. 
_ 2 — — — Ф - 6 — Ф - Ф 1 + 

+ Г я [ 2ii.A.2ii!- V1"- ( З Л 1 ) 

,а,(7,г цр,а,о,г 
Принимая во внимание тождество 

ауС" ay'*" 2 V е dy*v 

в силу произвольности величин f ; £,„ ; ? ^ о : Z,a,B.o " *,а,в,о,т 
из (3 .11 ) находим: 

2-!^y^2^y^-^y^ + 2 - ib_ y ^-
ЗуР" ау^" .« 3yf' f f •" By^v 'а'° 

'О iP ,a,a 

_f£i_ «a , , * V ,."Р _ 3 ад. «.« . 
йу*1" у .»,„ ау^" • " • r ' a ay»1" ' v , a , r 

- 2 5—уР» +2 s—у ^ - 3 - ^ = * — v 
-*« 47, 1У ду*" '"'Т'а ду** 
,о, в ,<],',а ,р,г,а 

- 2 -ф - 2 — * — ф * — Ф - 2 *—tuv.r.o' 
'д/З г

м /3 ,« М».р\ Ф** ( з . 1 2 ) 

_ 2 - Ф - 2 • Ф - 3 - Ф . = ° i 

л Г2 J ^ _ y ^ + 4 - i £ s _ y ^ - ^ ^ - y ^ + б ^ у * " 3 -
lap» dyC" ay' 1" '" ay*1" •" dyVv •".'• 

,a ,e,<J ,a,fi ,a,a,r 

- 6 £ ф - 3 £ ф ) - 0 . (3 .13) 
nf},a,o,r ца,аф,г 

д ^ B„ . Э £ « ^ * £ « П ( 2 _ 1 1 1 _ flu . t. g С/3 

г Р " а у ^ ду^ ' г 5у" -
• У 

V-' _ 

- 2 - ^ ! « - 6 - ^ 0 - _££* 0 )=0, (3.14) 
ал - С" л,* . *V* л,* _ > ' . • 'дф „ (*" ал „ Р"* а<* 

цВ,а,о гцв,а#,т ^рг ,аф,с 
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dl о д£ 
П, „ 1 L . y ^ 1 ф ) . 0 . (3-15) 

',а,<7,г у.р,а,а,г 
В формулах (3 .13) - (3 .15) и в дальнейшем П ( а я ) означает оператор 
симметризации выражений, на которые он действует, по индексам (а/3 . . . ) . 

Совершенно аналогично с учетом тождества 

дли dW=V2u) 1 , _ р , _ * д и 
= — — ^ — = ——у v~y ^-u + V~y "~ — —~ » 

<Эу/̂  ayC" 2 V и Э у ^ 
в силу произвольности параметров f , f , f и f иэ (3 .10) 

„ #а i a , o «a*/3fC7 
найдем: • i- ««»ы>« 

' ,а ,р ,а,а 

2Лх- *° 2-^0-Ф 2-^-ф -

<Э£ М , dlM <}£м 

•Ф..-.Г2Т, % и , « - 2 Т 7 0 к " 3 V^*"-' 'V. . .""* ' ' W * ' * " ' 
-ibs«*„ . - S L S ^ . C .-f!L.., =o. (зле) 

4f ml y ^ r + 4 y r r ^ у -1-———Ф -
KaP> дуР-" ByV-v •" дуР" »" ^ f l „ f ^ 

<Э£„ д£ д£и е й , 
- 4 ф - фп 5 _ 5 Л

Р и - = 0 , ( 3 . 1 7 
дф а V . » дф j W эи. A" c ' 

> / 3 , a , a > o , a , / 3 •»•<* 
(?£ л p 

П, я Л й - у ' ' ' 3 - - * u „ ) = 0. ( 3 . 1 8 ! 

Тождества (3 .12 ) - (3 .18) являются необходимыми и до таточными усло­
виями инвариантности величин £ и £„ относительно обшеко пдинаткых пре­
образований ( 2 . 1 ) . 

Обратимся теперь к тождеству (3 .8) и запишем его в виде 

S y * v L K ^ 7 L V su.A

 L A •« 
где явно выделены эйлеровы производные лагранжиана по полям Ф >> и . . 
В (3 .19) введено обозначение: 
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,o »<j . ЗА nu ЗА i. UIA , , ЗА ч . (iv, 
J = £ Л + Д. / + (Л У ) д - а й ( ТЕ ' A i / + 

+ J± 1&у)в-вЛ-&—Н\уП +3ed0(-Z±-)w+ 

,a,(3,(7 ,a,|8,ff .e ,0.ff 

5,6 L С" дф L '"' '^ Р а<£ ' L * V 
> ^ ° fiva.P \iv,a,p 

rfiv,a,p,o fiv,a,p,a 

+ aBBJ— >M +-^~Лг%- ( 3 - 2 0 ) 

Р " дф ' L V > " диА

 L А 

Учитывая в последнем выражении разложение по параметру £ вариации Ли 
A L ( I ) , запишем его в виде 

J e - f P fe" + K2) + f > P " + f l l " " ^ * У*"". (3.21) 
Х Р Р' "°,Р v \р,а v %ф*,т v 

где 
Р а . Д . , Д* ^ . / ЗА . , 5Л 
"„ =-Оо Л + , , <р - о — д ( 'А + о 0 

Р Р дф ^tiv,o.p а^дф '%и/,/9 ,?<£ V»##* 
д А » , , 0Л 

Э * ( З Г — W + V, (П Ч„. * + ̂ 7 7 V Р • ( 3 - 2 2 ) 

\^ы ̂ * "Ч,-.*/™ (ii'.a.ff.r А а 

К
а 5Л „„ , ЗА a,v , i дА \ VLV ЗА „С" 

ауР" ,р дуР" >Р~'а ° 3yV-v \Р 3yV-v •^"•' ,а ,а,о га,о ,а,а,т 

2±—)уГ»в д (-**-) / " + * А ф . ( 3 . 2 3 ) 
У*" 'Г'Р " г ду?" У . Р a* V . / 3 ' 
.«.".'' ,а,в.г J""»0 

Р " , ал „д „ ал 
а у '"' аус" у . " dyf >" ° ду^ ) у 

-2-£ i yPf - 2 — у ^ -2а (-2£ ) у ^ + 
fl z»" W ЗуС" W " a y ( xv 
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. . 2 - £ £ — ф - ЛА—Ф +2за{ .* л )ф _ 

Р,Ч,а,»,г у0,аф,т ^Рцщг* 

+ dJrr* >* " 2 V r ( - i 4 )0 --M—jfu-, (3.24) 
fir.o./SiO т7«р,а,а,г '««а 

м » ' . 2 ал /Зр + 4 ДА &_ _ а л _ „ , _ 
" дУ^ ay*» •' ay*" я •" 

°',а,о ,а,а,т "',а,/3,ст 

.а,г ,<7 py.,a,o )ip,a,o,r 

-^>v+u'(it~u-- ( 3 2 5 ) 

fm2J± * _ 2 _ * A _ , . ( 3 . 2 6 , 
Предположим, что поля 0 _ и и А удовлетворяют уравнениям движения Эйле-
ра-Лагранжа. Тогда (3 .19 ) примет виц 

- ^ - Д y ^ + J 0 - 0 . (3 .27 ) 
$уС" «-У , а 

Подставляя в это выражение (3 .5) и (3 .21 ) и учитывая произвольность па­
раметров £" , £ " . £ v„ о, £v „ и £" , найдем: 

- £ Д _ г<7 + г5<> + к а = 0 > (3.28) 
g /iff ,i/ v,a У Л 

2-** ^ - P ^ - K ^ + N ^ O , (з.29) 

п м ( ^ а + м - а ) = 0 ' ( 3 3 0 ) 
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n < a / 3 a ) < M f e " + Y v f r r a e ) - 0 ' (3 .31) 
Baar 

П, о Л , =0- < 3 0 2 > 
(o/3(7r) •> 

Теперь следует вернуться к декартовой системе координат. Это означает, что 
во всех формулах, получанных в этом раэаеле, все производные от метричес­
кого тензора y^v надо положить равными нулю. При этом, очевидно, выра­
жения типа дЛ/уР" , дА/уР" и т.д. сначала надо вычислять в криволиней-

9 и # а*т 

ных координатах, а уже потом приравнять к нулю производные метрического 
тензора. 

Заметим, что в декартовой системе координат К„= О. Действительно из 
(3 .23) видно, что все члены в правой части, хроме последнего, умножаются 
на производные метрического тензора и поэтому вклада не дают. Что каса­
ется члена Фц1/,й дЛ/<?0 , то в силу структуры Л , которая зависит от 
ф только через ковариантные производные второго и третьего порядка, 
он может быть записан в виде 

ЗА , ЗА ^Atoigtr;* ЗА д^\<м а: г) 
ф1И>ф дЛ ~ Фруф*d<bi ~ дф * дф дф 

Так как дф Койо.г.*'дф^^ и дФХмпт

 ; Э^и,а оба пропорциональны 
производным метрического тензора, то в декартовой системе координат они 
тождественно равны нулю • Этим утверждение доказано. 

Таким образом, из ( 3 . 2 8 ) и (3 .29 ) находим 

Р° =0 (3 .33) 
и 

г ^ / ' . ^ . н ^ . о ; (з.з4) 
Остальные соотношения (3 .30) - (3 .32 ) в дальнейшем нам не понадобятся 
и поэтому сосредоточим наше внимание только на величинах, входящих в фор­
мулы (3 .33) и ( 3 . 3 4 ) . Выражение 

Z-M-A-Tf т-Д (3.35) 
Syiiv (l'v 'va (Г) 

называют тензором энергии-импульса Гильберта. Из (3 .35) легко заметить, 
что Тр? является симметричным тензором по своим индексам. 

В декартовой системе координат величина г ~ Y 'а будет совпадать 

с каноническим тензором энергии-импульса (2 .36 ) , а N примет вид 
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+ 2вз <-ii£_ ) },^_ 2 V</MW> MM> 

V « V.^-2 R <U„, r + ( 3 3 6 ) 

A, a 
Принятая нами ранее (см. разя. 1) структура Л и Л и дает возможность 

выразить производные Л и Л„ по производным метрического тензора че­
рез производные величин Л и Ли по производным полей Ф„„ н и д . Д е й ­
ствительно, так как лагранжиан Л„ составлен только нз ковариантных про­
изводных третьего порядка поля ф , то он будет зависеть от •JLV iy*tv

0 

и y,a,f}fo только через Ф„1/1аа; а - Опуская простые, но длинные выклад­
ки, выпишем окончательные соотношения: 

А\Латц) в Jao){$r\), „(arMAr,,) ,/3 
+ R ^ A a . r , + R <Ur,A + R VA.A.r 

5 fie 4 ^rv.p rtv 
,a,a 

(j,A i<A,r 'Av f » r 

(AfiKe/Sa) (pAKoar) g J (j AX/3 or) a 

+ 2 R V* + V WV 0 A.r" 
- 3 ^ R ^ .A- y r , R V - V 0'.A-

(/Sf/XarA) ( r * ( 3 f ) 0 . 
- 3 y R * i - y „ R t » ] ; ( 3 . 3 8 ) 

r ri / МИ V r A> 

, _ ( а Д А а г ) (<rM)(arA) _(r M ) ( o a А) Я , _ W X a < 7 r ) 
+ v ( R +R + K r ) * +1K v ( i v * 

'AK »» 
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(,/ЛХаог) о , e_(/iJ0(/3*f) о JfiMa^r) 

*д Al> ^ " " 
Аналогично, так как Л н зависит от у^" , уД д только через коварнант­
ные производные поля ф второго порядка и коварнантные производные 
поля и д первого порядка, найдем: 

1 War) P+y<«°№ V U > M , / J _ 

" 2 V r " % . 4 ^ u A f 0 * - 3 u A , a V ' 7<" 

t i ! i s t e

t i ^ s B ° v ^ v ._f£s_sB v̂̂ y -
<Э£ц „Br 

4 ) 8 
• s — s * / " у i ° B ; ( 3 4 0 ) 

W8 Э Л м l , v

( a r X ^ у ( < " К а Э > ^ Ч ( г Э Х а с т ^ 
, (if 4 «т 2 "" 
' ' .о , о 

4>f > 2 с" г 

4 rv > v n 

Подставляя соотвошения (3 .37 ) - ( 3 .41 ) в ( 3 . 3 6 ) , после умножения на у'"' 
и действия оператором За найдем: 
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О, Г 17, Г О Г , 

_ V < " W > a^baXrfi) a _ vW»Xar) + 

or, о, г o, r 
(oaXfif) ft w(/3«rXr,i) a ЛогХон) ft 

a,r a,r t<f r 
(<70M „ „(aaX/Sf > (o/3Xar) „ (<*Xar) ft 

« ' f ' t l ' « V f C OT. f , 
(ацКап,) a (<r0Kari/) „ (orXafu/) ft 

_(о/ЗХогй и Warv) a (оаХ/Згй „ 

—• К c p + K r i > c p + K Ф + 

• R^*""» */» _ R (<*>W « _ R <*X*M . . 

(<7r)Vfi„) Q (огНРри) (<wX/3r̂ ) ,, 
or, v, •" ' i f , » r Ч7,1/ 

WX/ЗЫ Jmllprv) в (oa)(Mri/) /3 

+ R « * X , " > . _ R ( 0ftXMr„) „ + R M ( f l r . ) a _ 
• r o,v » ' • . • ' V . Г >, „ 

K,V,r %Ка+2[и^^Г—^ЛаУ --7- S A p y M + 

* » a A , a 

( 3 . 4 2 ) 

S C a v"^ d £ " S ^ «" • а £ м с 0" 2 А й £ М t C ^ <HMI J5L 
+ d»A B "*" ' "3»» Й "*" ' aiT A ^ ? 5u~ "AV 

A, fj A, p A, /I A , ^ 
Из равенства (3 .34 ) и определения (3 .35) находим 

T f c . 2 J £ - , A V - Р * - М ? . (3 .43 ) 

Сравнивая выражения (2 .46) и ( 3 . 4 2 ) , мы вианм, что 

и поэтому 

Т(Г) Р (Б) • 2 7 



Этим доказательство эквивалентности тензоров Гильберта и Белннфанте за­
вершается. . . 

Для записи тензора Белннфанте Rgr в виде ( 2 . 4 6 ) , обладающем яв­
ной симметрией по индексам (/Зр) , мы воспользовались тождествами (2 .29) 
и ( 2 . 4 7 ) . Эти глэотношения могут Рыть установлены и в рамках подхода 
Гильберта. Действительно, в декартовой системе координат (3 .12) примет вид 

2 A J b - - 2 * ' • Ф + 3 '*• Ф . (3.45) 
Л-,,*"7 <*Ф a yv,o,r,a дф _ fia, i/, r, a 

Здесь было принято во внимание то, что в декартовой системе координат 
а£ /д<Ь „ - д£./дф „ = О. Умножая ( 3 . 4 5 ) на у" А найдем 

if*Y**s-.2lJb—/ + з ^ Ь — Ф 

Левая сторона этого тождества симметрична по индексам (Л/3), поэтому ан­
тисимметричная часть правой стороны тождественно равна кулю, что и при­
водит нас к соотношению ( £ . 2 9 ) . 

Аналогично из (3 .16 ) в Декартовой системе координат, находим 

<$м с 0 / 3 i/A й 4 е 0 / 9 „А й £ М А 

Так как левая часть этого равенства симметрична, то и правая часть долж­
ка быть симметричной. Поэтому 

2 - £ 5 L _ / I >** ;Р ,2 ^ • Л. 

dSL в д%и »СЙ 1 3%н »сА „о 
-21ф^-Ти^б7Г^У "с-^КУ^с + 

"vfp, a, A A * 

А, о А , а 

а £ « „ * _ £ & L . . * .о. 
Э и А , / 3 *• 5 U A , A * ' 

В силу уравнений движения для поля и д величину д £ м / д и д можно заменить 
на да{д£ы/дол а ) и тем самым прийти к тождеству ( 2 . 4 7 ) . На основа­
нии этих тождеств правая часть (3 .43 ) может быть приведена к виду, об­
ладающему явной симметрией по индексам О р )• 

В заключение этого раздела отметим, что для нахождения тензора энер­
гии-импульса Гильберта - Белннфанте в теориях поля с естественной гео­
метрией пространства-времени Минковского достаточно ограничиться рецеп­
том Белннфанте. 
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4 . ТЕНЗОР ЭНЕРГИИ-ИМПУЛЬСА В ПОЛЕВОЙ ТЕОРИИ ГРАВИТАЦИИ 

В полевой теории гравитации в качестве свободного лагранжиана £ для 
симметричного тензорного поля ф берется выражение 

£ g . J - A V ' - ^ ^ ^ . U / i • ( 4 - l ) 

г д е i v \ 

U-%0 *«,.,„ ' ( 4 ' 2 ) 

В (4.2) 

4(ty) 4 у % % 

-у % - у % - у % + 2 У V + 

+ 2v ( y a V * + y , u V -2у<" еу<**)]- (4 .3) 
Здесь 

Ар А р А /1 
Можно показать, что (4 .3) допускает разбиение 

V ) = f W + п <м • ( 4 - 4 ) 

где величина {к. > антисимметрична по индексам, заключенным в 
квадратные скобки, и имеет вид 

°W) = 4 [ ^ ( y Ь~у *' 

+ а£У*«* - а*у<") * lyxy*f* - у - у"*)] • (-..5) 
Легко показать, что {ч не меняется при следующем калибровочном пре­
образовании поля ф : 

ф - ф +о + а , (4 .6 ) 
оХ ох О'Х Х,а 

где ад - некоторый 4-вектор. Действительно, в силу (4 .4 ) из (4 .2) на­
ходим 

(oX)Uo>) 

"»(fi/. i + f i / . < ) ( d + ° -w, <: + ° ) • 

Так как величины a „ и a _ симметричны по индексам (»EU>) 
и (<т£<и) соответственно, правая часть последней формулы дает I ^ , что 
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и требовалось показать. Теперь покажем, что определенное равенством (4 .2 ) 
f̂  тождественно удовлетворяет условию Лоренца-Гильберта: 

* ; * • • • , , и л ) 

Действительно, запишем ' „ v в виде 
,v > „ ( о * ) Ы 

Используя разбиение 

где 
В 

и является антисимметричной по индексам, заключенным в квадратные скоб­
ки, на основе (4 .8 ) в (4 .9 ) с учетом симметрии ф по {iav) 
приходим к тождеству ( 4 . 7 ) , 

Что касается лагранжиана материи 

при его построении мы должны руководствоваться требованием, чтобы он был 
инвариантен относительно калибровочного преобрьсования поля Ф„„ ( 4 . 6 ) , 
В работах''8/ предложена одна из возможных реализации этого требования 
посредством предположения, что эффективная метрика риманова пространства-
времени д зависит от поля Фии только через fui, . Последнее согла­
шение в полевой теории гравитации исключает зависимость лагранжиана £ ц 
от производных g .Действительно, одной из особенностей подхода, разви­
того в работах^^Л Является то, что естественной геометрией для гравита­
ционного поля фЦ1, остается пространство-время Минковского. Это означа­
ет, что в лагранжиане £ ц не могут присутствовать производные <£„,, выше 
второго порядка, и так как В а я С ) У ж е зависит от вторых производных по-
Л я Фии ' с м - ( 4 - 2 ) ) , то £ „ неможет зависеть от производных g „ . 

С другой стороны, в £ м производные полей материи и д всегда должны 
входить в виде ковариантных производных, согласованных с метрикой эффек­
тивного риманова пространства-времени g _ (f) . 

Требование независимости лагранжиана а"£ц от производных метрического 
тензора g д приводит вас к особой структуре £ „ и сводится к тому, 
что ковариавтные производные от полей материи и д должны входить в него 
в виде комбинации., в которой происходит полное сокращение членов, пропор­
циональных к символам Кристоффеля эффективного риманова пространства-
времени. (Сокращение членов, пропорциональных к символам Кристоффеля в 
вышеупомянутых комбинациях производных полей Ид произойдет и при пере­
ходе к криволинейным координатам). Таким образом, лагранжиан мате­
рии £ ц становится зависящим реально только от обычных производных по­
лей и. . Такая структура лагранжиана £ м проявляется в том, что для 
•уР^д\и /t^'/'X вместо (3 .40) будем иметь тождество 
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у

 dffi vm>,r rpv o,r 2 lM'v 

1 WXar) 0 + v W ) ( 0 r ) ^ vWXr,x) Э _ 
2 Vr P d " " t f r " "• С 

(/3aKrP) 0 V < " X ^ « I v ( e " K ^ 4 ° (4.1 i) 
> f a, fi r " J, ( i ' ' " <4*» 

Дополнительное и очень важное соотношение для лагранжиана материи £ц в 
этом случае получается иа ( 3 . 1 7 ) . В декартовой системе координат (3 .17 ) 
принимает вид 

гЛЗ^+гу^-^-м^^ф -А^&Ф -

Учитывая здегь ( 4 . 1 1 ) , найдем 

- £ £ 2 _ $ ^ . - _ £ * H _ S * • ( 4 .12 ) 
» » А . . А " *»А./8 А " 

Это соотношение в рамках преобразования Пуанкаре, вообще говоря, не воз­
никает, тах как там f a * 0. В силу соотношения (4 .12) последние квад­
ратные скобки в формулах (2 .46) и (3 .42 ) упрощаются и сводятся к выра­
жению 

<?UA,/3 * " ' * • « ' 
а тензоры энергии-импульса Беяинфанте и Гильберта в полевой теории гра­
витации также совпадают между собой и имеют вид 

_ V . « V " •« V. V** V.a. + 

„WK/Зг) a „(rvXfti) « фМР') „ {rvKpfS) 0 

y(ov)b0i p AoiMpp) т yWXr/S) р y(ep)(ftt) r 
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u(<*Xr/3) а ЛоЩф) , x wW}(r,3) p. J<**rf) r 
+ V „ о i * < . / ) ф + У й ' 0 Y . S • • „ 

>°>P |/ »">F i/ »P v,a * p и , <J 
BWX»ft.) , f _(<иЖ<7р-г) <ffl,)(op>) , 

-R.P- *«,.„-*./» U - ^ V 
(a,)(^r) W(r/3a) a (г„Хд/За) a + 

+ 2 R W K ^ > ff_RWK^) a _ R ( ~ > W » „ _ 

_R((n/)(r/3o) „ „(n/Kjipa) о _R(oi/)(r ( i/3) , 0 _ 
,/S ф1>,о,а~ •& v,a,a •"'& **> 

(av)iritfi) „ (pj/Xrap) ,o _,_ р(гй(ару) ,a 

_ R "^.сг.а./З K %,a,a.p '°'P Vu,a '°'P *V.« 

АоЛтра) u „(спЖма/З)- -(ovXrpa)>u _ JovXpapV _ 
+ R . /3 C„ + " .P *„'«.» . * * 0 *" '••«•^ Ф" 

- R „ f l C " R . a . f l * - ? R «L.„.a-? K V.a.e. 

• V , * ' 5 U A T A ' 2 C * 4 f *" <*"*.„ ( 4 л з ) 

5. ПРОБЛЕМА КАЛИБРОВОЧНОЙ ИНВАРИАНТНОСТИ ТЕНЗОРА 
ЭНЕРГИИ-ИМПУЛЬСА ПОЛЕВОЙ ТЕОРИИ ГРАВИТАЦИИ 

Лагранжиан £ = f g + £и, используемый в полевой теории гравитации, 
инвариантен относительно калибровочного преобразования поля ф v ( 4 . 6 ) . 
Естественно возникает вопрос: будет ли тензор энергии-импульса Гильберта-
Белинфанте инвариантным относительно преобразования поля ф (4 .6 )?Что­
бы ответить на этот вопрос, удобно в той мере, в какой это удастся, из 
тензора Гильберта-Белинфанте (2 .48 ) выделить члены, записанные только в 
терминах \^v . Величину f „ v в дальнейшем будем называть полем. 
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Предварительно выпишем уравнение движения для поля f„„ в той форме, 
в какой оно понадобится ниже (подробно см. приложение 1) . Это уравнение 
имеет вид 

где величина Л" определяется иа соотношения (см. (П.1.1Г))) 

Учитывая связь (4 .2 ) и ( 5 . 1 ) , легко найти, что 

vWW). l e J j^ ) + a V i e { j J b r ) # ( 5 з ) 

ЛорЖатт) 1 , а £ . >/3)(гш) j £ t „(cxffXaa) 5 £ f „(о/ЗХаг) , , 

После несложных, но громоздких вычислений иэ (4 .13 ) получим 

р М р(а/3) JwK/Sr] „t/ЗДМ . , 
где (см. приложение 3, (П.3.17)) 

2 " р 

<Э£г .» а£ .а 32. ,° а£„ А 

» 4 ft 

3/V;./r»)4f(^ ^ °- y

aW 

- хлчг Фа е- >"•*' Ь - ̂ V" . v p > 
33 

(5.6) 



, d&t п ( й * ) ( а щ ) <Э£ ( А * Х г ш ) „ 
~ \ й W> - d < f Q ( „ ^ ) * + 

i , 3 £ g „(/ЗжХои) fl£„ («*Xr«l „ 
3 aJliv,r r a'fiv,a 

i/ (X/SMrolu „ v (<,jf)[re]<a A (5 .7 ) 
+ Л Вк *x~ Л " ** «<" ' 

> # ] .nt/3a][ar] . , „ „. 
Так как величины П о г и ' ' • с . ' ' П Р И преобразовании 14.6) 
поля ф получают отличные от нуля добавки, которые в сумме не сокра-
шаются, из (5 .5) видно, что тензор энергии-импульса Гильберта-Белинфанте 
не инвариантен относительно калибровочного преобразования ( 4 . 6 ) . 

Следует, однако, заметить, что члены TI а , и П g г из 
(5 .5) могут быть устранены путем добавления дивергениионных членов к 
лагранжиану. Поэтому при построении наблюдаемых величин достаточно ис­
пользовать только калнбровочно-инвариантное выражение ( 5 . 6 ) . 
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Приложение 1 

ПРИНЦИП НАИМЕНЬШЕГО ДЕЙСТВИЯ 
И УРАВНЕНИЕ ДВИЖЕНИЯ ДЛЯ ПОЛЕЙ 

Согласие вариационному принципу, уравнения движения для полей получаются 
из условия экстремума функционала ( 1 . 1 ) . Этот принцип в физике известен, 
как принцип наименьшего действия. Для данного лагранжиана экстремали 
функционала (1 .1) должны удовлетворять уравнениям Эйлера-Лагранжа 

8 £ - 0 , ( n . i . i ) 
8ф(...) 

которые и являются уравнениями движения для полей <£(,„). В (П.1.1) оператор 
8/8ф, > имеет вид (Л 1 2 ) 

g , -ТТ ЗЛ . ) + Э дЛ , ) - ддаЬ 1-ггх )+••• 
S ^( . . . ) дф{...) " дф{...), а " Р$ф(...),а,в " Р °^К..).аф* 

Заметим, что принцип наименьшего действия является совершенно самостоя­
тельным принципом, и не связан с инвариантностью действия. Из (П.1.1) и 
(П. 1.2) легко заметить, что если £ является лагранжианом, рассмотрен­
ным в разд. I , то уравнения для полей <\i„v и и А примут вид 

-М.= £±и_а -i±n~=o. (п.1.4) 
В полевой теории гравитации, принимая во внимание структуру Л' и £ м 

(см. разд. 4 ) , уравнение (П.1.3) запишется в виде 
а2(аф^ - / " о / -д*д"$а - a ^ V + * V < £ * у>°' <>аЗцФФ)^ 

В (П. 1.5) 

.-^4^-^*-£ч г,<пл.в) df 2 af ' f f r ' 

se„rt 
а р " f ( i f 

Учитывая связь ( 4 . 2 ) , уравнение (П.1.5) в терминах поля f примет вид 

D V = -16*(ah'"' -эа<Л"а -a eaV" +Гдаэ/Р). (п.1.7) 
Уравнение (П.1.7) с помощью вариационного приниипа может быть получено 
непосредственно из действия, если лагранжиан полевой теории гравитации 
записать в терминах поля f „ , а потом варьировать его по f „„ . 

Однако при варьировании действия по полю f „ v , необходимо учесть до­
полнительное условие Лоренца-Гильберта ( 4 . 7 ) , которому подчинено i„v. 
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Такая вариаиионкая задача - задача на условный экстремум - решается ме­
тодом лагранжевых множителей и сводится к тому, что вместо действия (1.1) 
с лагранжианом £ , Надо рассмотреть действие вида 

S-fiZ + PfLJi**. (п.г.8) 
v f 

где \^ - лагранжевый множитель н подлежит дальнейшему определению. 
Условие экстремума Эйлера-Лагранжа для (П. 1.8) дает 
JjL-а ( - f*_)- I<*V ^V)-(fc (п.г.9) 

'M.= ff =0f (П.1.10) 

j£—a - i£-=0. (n.i.u) 

Учитывая разбиение £ - £ g + £ ц , где £ g имеет вид ( 4 . 1 ) , а £ м от по­
ля т „ зависит только лишь через g ( f ), иэ (П.1.9) найдем 

_ ! 5 L — i - o f " + - ! _ / " о£ - i f a V + A V o . m , u 2 ) 
afM V 32* 64я ° 2 

Умножая это выражение на у , получим 

Учет последнего соотношения в (П.1.12) дает 

Принимая во внимание в (П.1.13) определение (П.1.6) , его можно записать 
в виде 

of*" = -16„h'"' + 16 f f ( /V° " ^ " ^ • (П.1.14) 
Действуя на (П. 1.14) оператором dv, и, учитывая (П.1 .10) , найдем 

П А ' . 2 * . . 4 & ~ У л , а " 4 Ь — а . У . (пд.15) 
Иэ этого соотношения и находится лагранжевый множитель А ( х ) : 

^ ( * ) = - < y D ( x _ y ) h ' " ' ( y ) d V (П.1.16) 
В (П.1.16) D ( x - y ) - гриновская функция и удовлетворяет уравнению 

DD(x-jr) = S ( x - y ) . (П.1.17) 
Принимая во внимание (П.1.6) и (П.1.16) в (П.1 .13) , найдем 

of""- -16»^% / Ч ^ &{х"г) *"Ь) л*1 -
-д\ fDl*-Y)baV(Y) Ь -д"да {01*-у)Ь"Ъ) А). (П.1.18) 
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Если подействуем на (П.1.18) оператором о и учтем (П.1 .17) , мы пе­
рейдем к уравнению (П.1.7) . Таким образом, уравнение (П.1 .18) , и значит 
и уравнения (П.1.9) и (П.1 .14) , могут быть интерпретированы как частич­
но проинтегрированное уравнение ( 1 . 7 ) . 

Приложение 2 

КАНОНИЧЕСКИЙ ТЕНЗОР ЭНЕРГИИ-ИМПУЛЬСА 
И ТЕНЗОР ГИЛЬБЕРТА-БЕЛИНФАНТЕ 

ДЛЯ СВОБОДНОГО ГРАВИТАЦИОННОГО ПОЛЯ 

В настоящем приложении рассматривается пример лагранжиана, который 
приводит к симметричному каноническому тензору энергии-импульса, не сов­
падающему с тензором Гильберта-Бел'^фвнте, 

Пусть 

Легко заметить, что (П.2.1) является лагранжианом свободного гравитацион­
ного поля ( 4 . 1 ) , записанного в декартовых координатах в терминах $pv' 
Далее предположим, что поле f „„ подчинено дополнительному условию Ло­
ренца-Гильберта: 

<?%„=0- (П.2.2) 
Каконический тензор экергни-импульса из лагранжиана (П.2.1) с уче-том до­
полнительного условия (П.2.2) и уравнения движения 

o f ^ =0 (П.2.3) 
находится легко и имеет вид 

^ . - у Ф £ g + £*\„№ - \f*/0 • С П.2.4) 
Из (П.2.4) видно, что он симметричен по индексам ( а /3 ) . 

Теперь построим тензор экергин-нмпульса Белннфзнте. 
В силу (2 .44 ) 

где 

^ m2»f _ 2 ^ _ ( « ^ Х _ Г ^ ( П. 2. 6 ) 

и поэтому имеем 
J/ф) -рР 1 ..".«Р («v.o Р /to f* 

| / , *"t V4 * t О 
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Учитывая (П.2.2) и (П.2.3) , находим 

На (П.2.7) видно, что добавочное к ханоническому тензору выражение 
«Р _ 1 _ „ " V (3 , ^ / З а _ ai>(oP_fiVfoa 

32* 
,<* . J - ( f Т Р

+ Г , ' С - Г С Р - 1 Р 1 ' в > (П.2.8) 
-»ч х I/. I'I У? • . а 

отлично от нуля и симметрично по индексам а/3. 
Заметим также, что выражение (П.2.8) на классе поля f«j/ , удовлетво­

ряющее дополнительному условию (П.2.2) , и уравнение движения (П.2.3) со­
храняются, т.е. 

з / р " - *0 , < * - ° - Приложение 3 

КАНОНИЧЕСКИЙ ТЕНЗОР ЭНЕРГИИ-ИМПУЛЬСА 
И ТЕНЗОР ГИЛЬБЕРТА-БЕЛИНФАНТЕ 

В ПОЛЕВОЙ ТЕОРИИ ГРАВИТАЦИИ В ТЕРМИНАХ ПОЛЯ ^ v 

/ft / Структура лагранжиана полевой теории гравитации' 0 ' 

в терминах поля f т-кова, что £ g содержит только первые производ­
ные I а £ „ зависит от поля Г,„ только через в (f „). 

Так как f„j, подчиняется дополнительному условию Лоренца-Гильберта 
( 4 . 7 ) , теоремы Нетер следует применять к действию (П.1.8) . В (П.1.8) 
входит лагранжев множитель A^fx) , поэтому необходимо учесть его транс­
формационные свойства при преобразовании Пуанкаре. Легко показать, что 

где вариация Ли 

\ \ . - - С л«-*%-.«• < п - з - 2 ) 

Из инвариантности (П.1.8) , а также по отдельности интегралов /"(£ + 
+ * ^ ' «J , )d х и /£ц<1 х относительно группы Пуанкаре, следуя Нетер, 
получим соответственно тождества: 
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f (4 + ^ fM1>.e + c>g( a j у Ч и » * 

<U E V A > * ~ <?u A, a ax" 
• V 

^ ^ , , , ^ ^ 4 ; 
«*. fa/3 V « p T Su. 

^,„ 

ал" 

(П.З.З) 

(П.3.4) 

(П.3.5) 

Подставляя в (П.3.4) и (П.3.5) явный вид вариации Д ь (1) и используя 
свойства антисимметрии (см. (2.18)) и произвольность параметра f в'^аВ 
а также уравнения движения для поля и . , найдем соответственно: 

'*« ffi »*ш f° l f_££i_f ' Л f P) (пзе) 
Л1 г.а~~я\ 'г. аГ Vaf * V , ~ д 1 Vtr, ' ' l«l.AW 

' * • » % i^L»f = i { Jb- u J -i5L.4") + 

A , v * t V 

(П.3.7) 

Аналогично, если учесть формулы (П.1.9) - (П .1 .11) , на (П.З.З) найдем 
•),"„ =0, (П.3.8) 

где 
(П. 3.9) j-=-f f tp a4,>-w« e o4,>-ь/3 • *>"'~50,<» 

В (П.3.9) 
ofi „ д а £ . А <?£„ fi " « i 8 

о) 
• от , а A, a 
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г» P ( f ^ y ) - 2 . * < f + - — S - S A t , y « B + U f + \ у «,)• (П.3.11) 
at, о А, а 

Величина Р (*„,, ) , залавная равенством (П.3.10), является канониче­
ским тензором эвергни-импудьса полопой теории гравитации, записанным в 
терминах поля f „„ . Поступая совершенно аналогично тому, как это было 
сделано в разд. 2, можно построить симметрический тензор энергии-импуль­
са Беливфавте. Действительно, из (П.3.8) и (П.3.9) , выбирая параметр f /3' 

(П.3.12) 

(П.ЗДЗ) 

(П. 3.14) 

поочередно f- "гВ и ^В " ыйаХ" ' н а * д е , в 

P^(f).0; P e"<0-P*ff>.-l<£ft 
где, как и раньше (см. ( 2 . 4 0 ) ) , 

H a ^ f ) . m f f e p ( f ) - m ^ a { « . 
По определению тензор Белинфанте имеет вид 

Учитывая формулы (П.1.9) - (П.1.11) , а также соотношение (П.3.6) и 
(П.3.7), найдем: 

1(н^)+нЛ|)-н^(о}а , (^_C + 1 i !b_C -
2 •" д*ог,В д*Вг,а 

1 , а « „ e SSj. В. Ь <?£ц е*» „».. д £ * 5 B g •* 
Аа" В 

(П.3.15) 
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После подстановки (П.3.10) и (П.3.15) в (П.3.14) для тензора энергии-
импульса Белиифанте найдем: 

»А,/3 • *»A,a 

Наконец, учнтымя здесь соотношение ( 4 . 1 2 ) , получим: 

Ь) Ю"гр*, + £ - ) + 2 (dl^ ,«". * ef„, e "• 

,o a. 

1 , $£„ cBa „R <?&, с 8 * " ^ > 

A, a 

(П.3.16) 

(П.3.17) 

Выбирая в качестве лагранжиана £ g выражение (П.2.1) , а £ц полагая рав­
ным нулю, иэ (П.3.17) наядем 
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Эта формула полностью совпадает с тензором Велинфанте, полученным в при­
ложении 2 (см. (П.2 .7) ) . 
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являются ли монополи 
НЕИЗБЕЖНЫМ СЛЕДСТВИЕМ ТЕОРИЙ БОЛЬШОГО ОБЪЕДИНЕНИЯ? 

Н.В.Красников 
Институт ядерных исследований АН СССР, MOCKDB 

Как хорошо хвв*стно;творхк большого ооьеххневхя предокашвапг 
существование иокооодай Хофта-Оодяхова о массой /И м о п ^ 

(<0<s-1 oi f ) &<*f. Сущастаохавхв мжовохай о такой ивовой щхь 
водхт х кажоторои тдодоопш в хоомохош . Поатому ххтарвсно 
хоожадовя» вопрос: хвлякея хх мокопохх вакабаххш следствием 
теорий бохнюго обмххваккк? В n o t eras» мк олхонваак модвфх-
хацхв мохахай велжхого обмххявкхх,в которой моиояохх Хофта-По-
хххова отсутствуют. Основной недостаток предложенной моххфхкаяхх-
отсутствжв двранормкруамостж. В нрхшшпе, учет гравхтацхохного 
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вмжмодейотвжя можм пржвестм ж наичж» ввдеренорижруемых чжеяов 
в еНежгаком шгравжжавв. Поэтому не жомючвно, что учм гра- -
вжтацжожжого вважиахежотвжя приведет к жочевновенжв мокошиеж 
Хофта-Поюова. 

Рассмотрен проотежеую моде», ошюкващп> взажмодеВствже 
$К(2) - жаяябровочвнх поде! с триплетом сжахярнвх похож. Лаг-

-о. 
Могопохыое реоияже Хофть-Подяком н и м вжд 

12* (г, О - ГЛЬ2^>, 

(±) 

•Ъ. г f r x , u | ? ) , . л г * - г 2 -

llacoa можопохя Хофта-Паюова определяется мишцмим фуициниадя 
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Ив уоловхя конечноотж кассы нонодоля следует, что прж г -* » 

GU^ - F £. / , 
Добавки ж лагранжжану (I) модвлж член вжда Д ^ ^ - ^ ' г ^ - % 

-IV А». Р"2" ж рвсокотржм лагранжиан (I) в пределе сильно! 
о н » А -» о=> . Предел X - * »=> соответствует наложению до-
полнжтелыюго уоловжя Ц^ •= F . Масса мовополя Хофга-Поля-
хова в ждрфкжроваяно! ноделв (I) определяется минимумом функ-

Нетрудно виде», что дш фуинщиямп (5) при любом ваборе Wlr) 
жевовможжо долучжм. жожечжув величину д а амюся жояодоля. Дежот-
жжтельно, воследижж ш в внрахвжжж (5) раоходктся хаж S Луг*-
држ г-%• о для жонечинх в нуле К / ( Г ) . В пржнцжпе,иожжо 
охомпежожрова» улирафгояетовуж расходимость последнего члена 
в интеграла (5), потребовав,чтоЛ1 W(v} г ~ 0 - ^ ~ г , однако 
прж такой ваборе асимптотики VJ(f) нервно членя а функционале 
(5) будут раоходямжмжоя прж h —•» о . 

Такжм обрами, мк понажали, что для модяфкцжровавжого лагран­
жиана (I) моиодоли о конечно! насоо! отсутствуют. Нетрудно виде», 
что его ж» утверждеяже справедливо для лагранжиана ££ +А£ 
с лвбвм потенциалом, обраеуавшож в бесконечность вблихж G^=o, 
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К оожммпт, иоджфжцжроваажк! лаграаккая (I) на является переяор-
мвруемш. В првжцжяе, учет гравжтацвожта аффектов мотт пржвео-
тж s нояжжежжв жешрежормжруемого чаш вида j-5 (j-^i^a)1")2" 
В sioi овяп следует о п я т ь , что тотжогжчвсхже соображежжя 
вржводят только лквь к хонечвоотж функционалов (3) в (5) а жжфра-
крашож ( г - * сю ) областж для монопольного решения. Сходи­
мость же ооответствупкях жнтегралов в ультрафиолетовой области 
( г ^> О ), где аффекта гравитации несомненно ваккн, вавиожт 
от конкретно! Форш лагранжиана на каша расстояниях, доетому яе 
жокличено, что еффехтн гравитация приведут ж бесконечно! т о м 
монополж. 

То, что аффекта гравитации могут бить оцределяпккмж.жжжко уже 
ж> сяедукакго примера. Рассмотрим лагранжжая (I) с потввцввюм 
9№) = \ ( и а

г - р г ) г С*V-F* )• Эк» в т п ш жмеег 
мяяжмум î o, - p5" f t i о иуяевоя шотжоотьв энергии вакуума* •*-
ружавеяд локальную калжбровочЕуи грушу SO (3) до SO (2). 
Ояжако «тот няжжмум я* является абоолвтннм. Кахябровочно жнва-
рважтяж! минимум 0-^ -О обладает отржцательво! ввотвоотьв эжер-
гжж - Л F*P*. Ees уча» «{фактов гракжташп ив окждалв бн фаэо-
вяж переход жв вакуума U* = F S U I В '.ергетпеохи более аи-
годниж вакуум ©^ «0. Кроме того, ь описанной ожетеме можо-
доль 1офта-аоляжова бвяо он энергетически не вягодхо обрааовв-
вать по ораакевжв о вакуумом У^ -0 ж ож бел бв просто яеус-
тожчжвш. Ояжако ярж учете эффектов гравжтапдж тужнелжровакже 
жв вакуума У?-» = F &аъ в вакуум & л -О становятся жевоэ-
новвжм ж вакуум $ f t г f «^является устойчива». Учет гравжтацжон-
нях аффектов арвводхт также к устойчивости монополек Юфта-Поля-
кова относктаяьжо распада в вакуум 0^ «О. 
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ПОЛЯРИЗАЦИЯ ВАКУУМА МАССИЗНЫХ ПОЛЕЙ 
В ПРОСТРАНСТВЕ-ВРЕМЕНИ ВРАЩАЮЩЕЙСЯ ЧЕРНОЙ ДЫРЫ 

В.П.Фролов, А.И.Зольников 
Физический институт им. П.Н.Лебедева АН СССР, Москва 

Цель нестояще* работы состоит в изучена вклада массивных по­
лей в эффект поляризации вакуума в гравитационном поле вращающей­
ся черной дары. В работе вычислено среднее значение по вакууму 
Хартля-Хоюшга1Н> /^/тензора энергии-импульса массивных скалярно­
го (s« о) , дираковского спиворногоСь-^г векторного(*-1) полей, 
удовлетворяпцих уравнениям: 

{fVt + т ) Ф < * ' г ) = о , 
(Sf 7 ^ - Vu V* - К? - m2*f ) <S>p

w = 0 , 

в приближении, когда комптововсхая длина волны A-ti/rnc много 
меньше размера горизонта. Соответетвупиая метрика (метрика Керра) 
в координатах Бойера-Диндквиста имеет вид 

+ (r*+o* + *g^«n»9)*in 1e Jv* -̂ JE dp* , 
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где Д = Г г + стг-2Мг, 2> г
г + агсоъгВ. г с,, 

Вычисление вакуумного тензора энергии-импульса Х н1Чг*1Н>, в к проводится методом эффективного действия де Виттг- 2'. В рассмат­
риваемом приближении эффективное действие 

где Л г - матричные коэффициента де Витта. Подставляя в ~ W ^ l общее выражение для Л ь. найденное Джилки' . в случае вакуумных пространств,получаем 

где oCe= I; oC t l z=-4; e C 1 = з; р о = 216-1008?; ^ ц г = 144; 
Рл = -360. Варьируя 'ft / c w по метрике, имеем 

ft. * • i т »» _ i _ < ^ т i£ 

Здесь С*.*» - тензор Вейля; b C ^ C " W ; № < { С Л С « • 
Конкретные вычисления <НПу? \ Н > ^ даю метрики Керра удобно 
проводить в формализме Нымева-Пенроуза. В результате вычислений 
окончательно получаем: 

^cm-o, 'ti,.)£=p*(-27+a6ij-2u)+8p'T}4 , 
ftt)*=P&(-2?+70v.) + 8 p > , r t^=J> 8(9-36iJ-+T0u)+8p' ?f4 i 

^wt* p*(-s+i2w+auw)+- р^и-г^-иг-мти-) , 
r uvt= 2p8"°>/z:+ р 7ца (4(T-i)/z , 
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г { 1 ) " = p 8 ( 2 - 8ur + 4 4 u ) •*- p'f» U - 2 I T ) . 
Здесь p = - ( r - i a соье)"\ p * M / z : , U = M V / Z , 

Полученной тензор энергин-имиульса обладает следующими свойст­
вами: l)<HlTfflH>4V«. отличается от средних значений<в1Т£|6>£1,. 
H<V\Tj?\V >>^ e M >, вычисленных соответственно по вакуумным состоя­
ниям Бульвара 16> и Унру \U>, на величины, пропорциональные 
«яср {.-"V7\'Ъ . В нашем приближении 5i«^ji этим отличием всегда 
можно пренебречь. 2) Его компоненты в координатах Ьойера-Диндк-
виста остаются конечными на горизонте. 3) В частном случае 
шварцшильдовской черной дыры а = 0 воспроизводится полученный 
ранее в нашей работе'4' результат для скалярного поля. Любопытно, 
что поведение компонент <Н|Т^ 1Н> 1^ качественно аналогично пове­
дению соответствупоих компонент тензора энергии-импульса в случае 
безмассового конформного скалярного поляг5'. 4) Для вращающейся 
черной дыры<и1Т,|И>^ о и, следовательно, около черной дыры су­
ществует циркулярный поток энергии.что приводит к эффекту экрани­
ровки (в случае векторного поля ) и антиэкранировки ( в случае 
скалярного и сшшорного полей) углового момента черной дыры. 

Более подробное обсуждение свойств <H|TJ, 1 H \ ^ можно найти в 
работе ' t . 
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ON CONNECTION BETWEEN THE SOLUTIONS OF THE QUANTUM 
AND CLASSICAL TRIANGLE EQUATIONS 

V.V.Bazhanov, Yu.G.Stroganov 
Institute for High Energy Physics, Serpukhov 

The following functional equations 

»i£*>«v;«^;;;<''-^-«:j>^<,/e'wM>' ( i ) 

j I j 2 for the set of meroraorfic functions R. . (0) of the complex vari-
l i ' 2 

able 0 are called the triangle equations (or Yang-Baxter equations). 
The indices run over the values ], .,., n, the summation over re-
oeated indices is assumed. 

For the first time eq. (1) has appeared in refs. ' ' and now 
it plays an important role in the theory of completely int-jgrable 
quantum systems. 

Let us introduce compact notations. The four-index quantity 
RJ. ' 2(в) will be considered as matrix elements of some matrix R(e) 

ll'2 
acting in the tensor product of two n-dimensional vector spaces. 
Further, introduce the matrices R , 2{0) , R l 3(0) , R23(fl) acting 
in the tensor product of three n-dimensional vector spaces accor­
ding to the following rule 

.12'-«JV2J3 DHh, «"(el'^.RVWa i,i,i, l,i, I. 'l'2'з J S'1'2 '3 
(R (в) and R (в) are defined similarly, they act identically 
in the second and third spaces,respectively). In new notations 
eq. (!) takes the form 

R , 2(6)R 1 3(e')R 2 3(0'-e) = R 2 3(e'-e)R I 3(e')R 1 2(9). d a ) 
Any solution of eq. (1) R (d, IJ ) is called quasiclassical one if it 
depends on an additional parameter ij and has the following expansion 
for small г; 

R U 4) = K>»r(9) + 0( 4
a) (2) 
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Substituting (2) into (1) one can obtain classical triangle equa­
tions' >̂ ', which play an important role in the theory of classical 
integrable systems 

[r,2(9), r' V ) ] + [г 1 2 (в) , r 2 V - * ) ] • [г'3 (в'), г" (<?*- в)] - 0, (3) 
where [ , ] stands for commutator, r ( § ® § , where § denotes Lie 
algebra of n by n matrices, i.e. t(e) = ' a a № ® | 0 , where I I a | 
is a basis in §. The solution of eq. (3) т\в) is called nondegenera-
ted if det(r ao (в)) does not vanish identically. 

Recently, the classification of the nondegenerated solutions of 
eq. (3) for all simple Lie algebras has been constructed^5'. It was 
shown that these solutions can be expressed through elliptic,trigono­
metric or rational functions only. Moreover, all the elliptic and 
trigonometric solutions and some rational solutions have been const­
ructed explicitly'5'. Note, that corresponding solutions of quantum 
triangle equations (1) are known only for few cases. 

Thus, there arises the problem to construct the corresponding so­
lutions of quantum eq. (1) (assuming that they exist) starting with 
known solutions of classical eq. (3). 

We find out, that for the known elliptic solutions ^ of eq. (]), 
connected with st(ii) algebra, this problem is solved with the help 
of the formula 

1 0+i? 
R(0,4W№,!i)Ptxpl-=- / r < s ) r f $ l ' ( 4 ) 

2 e-n 
where ф(.в, i;) i s some normalization factor, the symbol P means 
an ordering along the integration path. The e l l i p t i c solut ion ' ' 4 / 
has the form 

»_l e „ f l { e - i j / n ) + 

«*.ч)-9(е.ч) s 1 , , . «.p«M ( 5 ) 

a,p-o e a j 3(-,/n) a p a p 

(6 ) 

where 
в Л в - - 1 - - T-) - S expli*r(m + —) 2 + 2ffi(m+^-+—)($ + £.)! 

aP / / m=—се П Z ft П 

-й+йп -44-Jin 
9(6. i?) = -в 0 0 (ч ) [в 0 0 (в+ „)] [ в в о ( й - ч)1 

52 



the matrices 11ад1 form a basis in sf(n) algebra, cross denotes 
the hermitian conjugation, 8[ = 1, if к =t (mod n),Im r > 0. Note,that 
for n с 2 eq, (5) reduces to the Baxter's solution'2^. 

One can immediately check, that eq. (5) satisfies the differen­
tial equation 

d/dr,R{e, 4) = y[r(<?-4)R(e,i))+ R(e.7,)r(e* 4)i, 

which is equivalent to (4) for ф(в, IJ) =1. 
We suppose that eq. (4) may be generalized for other solutions 

of eq. (3), connected with si (n) algebra. A possibility to genera­
lize eq. (4) for other algebras is also studied. 

The authors thank A.A.Belavin for driving the authors' attention 
to this problem and to S.N.Sokolov for reading the manuscript and 
useful comments. 
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МЕТОД ОБРАТНОЙ ЗАДАЧИ РАССЕЯНИЯ 
ДЛЯ РЕЛЯТИВИСТСКОЙ СТРУНЫ 

Г.П.Пронько 
Институт физики высоких энергий, Серпухов 

В настоящей работе предлагается формализм для описании релятивистской 
струны с помощью так называемого метода обратной задачи рассеяния, точ­
нее его модификации для периодических потенциалов, которая развивалась в 
работах Новикова, Дубровина, Матвеева л Итса / 5-7 / # Применение «того ме­
тода позволило найти регулярную процедуру редукции струны х системам с 
конечным числом степеней свободы. Первый пример такой редукции был по­
строен в работе 4 без обращения к методу обратной задачи простым "замо­
раживанием" бесконечного числа степеней свободы. Возникающая при атом 
система с конечным числом степеней свободы, сохраняя характерные черты 
релятивистской струны, допускает последовательное квантовое описание в 
пространстве любого числа измерений. Несмотря на конечное число степеней 
свободы, редуцированная система обладает богатым спектром состояний и 
реджевскими траекториями, которые в отличие от традиционных оказываются 
нелинейными. Следует напомнить, что существующие в настоящее время ме­
тоды квантования, с которыми можно ознакомиться, например, в обзора'^, 
не приводят последовательной теории струны в пространстве с любым числом 
измерений. В данной работе мы рассматриваем только случай четырехмерного 
пространства-времени, хотя, в принципе, аналогичные построения возможны и 
для большего числа измерений. 

Несомненным преимуществом предлагаемого подхода является его реляти­
вистская и калибровочная инвариантность. Так, например, нам удалось по­
строить полный набор инволютивных, релятивистски-инвариантных интегралов 
движения. Эти функционалы генерируют гамильтоновые потоки на фазовом про­
странстве струны, причем точки стационарности этих потоков образуют конеч­
номерные орбиты калибровочной группы. 

Аналогичные потоки в теории уравнения Кортевега-де Фриза (КдФ) назы­
вают высшими уравнениями КдФ. Введя понятие о высших струнных уравне­
ниях, можно сказать, что их стационарные решения образуют конечномерное 
пространство, соответствующее калибровочно-инвариантной редукции фазового 
пространства струны. 

Предлагаемый нами формализм основан на изучении вспомогательной спект­
ральной задачи для матричной системы первого порядка. Аналогичная система, 
но с меньшим числом компонент потенциала, возникает в теории периодичес­
ких решений нелинейного уравнения Шредингера/7/. В работе содержится вы­
вод и обсуждение основных свойств функций Блоха и спектра необходимых для 
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введения и формулировки условий конечноэониости конфигурации струны. По­
казано, что условие конечноэонности вквивалентно условию стационарности 
относительно одного из высших струнных уравнений. В заключение обсужда­
ется квантование струны в конечнозонном спектре. 

1. ПРЕДВАРИТЕЛЬНЫЕ ЗАМЕЧАНИЯ 

Релятивистская струна в четырехмерном пространстве-времени задается 
с помошью набора функций от двух параметров: 

« „ - У » . ' ) , С" О, 1. 2, 3 . 
Параметр г описывает аволюцию струны, в то время как а нумерует её 
точки. 

Мы будем рассматривать замкнутую струну, поэтому удобно взять об­
ласть изменения параметра о от О до 2 я, причем 

* , Д г) = х^йл, г). 
Удобно также считать, что функции х„(а, г ) периодическим образом продол­
жены на все остальные значения о. 

Следуя работам' 1'', мы выбираем действие для струны в виде 

S. - -J - . ; d r 2 / W < « ' ) - * V a . (1) 
Ztra г4 о 

где точка и штрих обозначают производные по ' и а соответственно. Для 
простоты будем считать, что размерный множитель 2ла ', обеспечивающий 
кулевую размерность действию, равен 1. 

Как известно, действие (1) является параметрически инвариантным,вслед­
ствие чего канонический гамильтониан равен нулю, и в соответствии с тео­
рией Дирака' 2' роль гамильтониана выполняет линейная комбинация связей 

X 1 (ff ,0 = i - (p 2 ( ( ; ,r ) + x'2(<7,r)) l X 2 U r ) - p ( o , r ) x 1 a , f ) . 
Канонические импульсы, фигурирующие в атих формулах, определены ра­

венством 

С Вх^о, т) 
Каноническая скобка Пуассона для координат и импульсов замкнутой стру­

ны имеет следующий вид: 
'У".'), Pt,(o',r)\ = 9fa/Ma-o'), (2) 

где ДЗД - периодическая 5-фунхция 

\M = -i- 1 а 
Связи Xj ( а, г ) и Xjf". ') образуют относительно скобки (2) алгебру 

связей первого рода 2 . Подробное обсуждение атой алгебры и соответствую­
щей группы содержится в / 3 • 
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Вводя обозначения 
Оц(а, г) •: Рц{о, () + х'ц (а, г), Ьр{о, г) . Рц(о, г) - xj, (а, г), 

удобно перейти х линейным комбинациям связей Хх и Х 2

: 

L ( a , r ) , - ^ . a 3 ( a , r ) , L ( « . r ) . - ) - b S ( « , r ) . (3) 
Используя скобку ( 2 ) , можно убедиться в том, что переменные о ( 0 , г) 

и Ь„(о, г) и связи (3) удовлетворяют соотношениям 

1вр(„. г), <v(<7', г) 1 = - i b ^ a . г), Ь„(<7'. г) I = 2д,,„Д'(«7-<х'), 
lo^a,r)#M<*V)L0, 
iLUr), L(0', r) |=-(ц„,г)*м/.'))м«-»г 
!L(a. г), M a ' . r ) ! = - ( L U г) * Mo' , r» Ь'{„-о% 
\Цо,т), L(o',r)}- -Q. 
Генераторы группы Пуанкаг>= получаются с помощью теоремы Нетер стан­

дартным образом и имеют следующий вид: 

р

ы = /<*°Р (".')- / d e b („,r)= fie о ( „ , , ) , ( 4 ) 

М - / doiK (o.rJp^U r ) -x l / ( f f > i / )p f l (o > r ) ) . (5) 

Из Р и Мщ, можно построить псевдовектор Паули-Любанского 

и тензор спина51' 

V = V - - p ^ V p р- ~M"pp p ^ " p 5 < ' u ' ' ' r P P w r ' 
Импульс и момент (4 ) , (5) образуют относительно скобки Пуассона обыч­

ную алгебру Ли группы Пуанкаре.Как отмечалось в работе' 4 ' , для замкну­
той релятивистской струны существует разбиение $ на сумму двух интег­
ралов движения. Введем векторы 

1 v 2 " Р ° ' ( 6 ) 

4vP* ° ° 
Нетрудно убедиться в том, что векторы (6) не зависят о т ' я образуют 

относительно скобки Пуассона алгебру, являющуюся прямой суммой двух ал­
гебр, каждая из которых совпадает с алгеброй Ли малой группы четырех-
ммпульса Р : 

• > 2 2 

Счатмм, что Р i l o . сягчШ Р - О штжяо рмзсиатрамть особо. 
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Введя тензоры 

V" JpS w л ' V = /pS-Wr B ' 
мы видим, что 

S - A 4.B . (7) 
Соотношение (7) не случайно, в действительности все величины, связан­

ные с внутренними степенями свободы замкнутой струны, можно разбить на 
два слагаемых, аналогичных (6 ) , одно из которых зависит от переменных 
о „ ( с ) , второе - от переменных Ь (?)• 

2 . ВСПОМОГАТЕЛЬНАЯ СПЕКТРАЛЬНАЯ ЗАДАЧА 

Классическая динамика релятивистской струны довольно проста - гамиль-
тоновы уравнения решаются в произвольной калибровке 3 / , однако, несмотря 
на то, что задача Коши полностью решена, до сих пор не удавалось пост­
роить ннволютивные релятивистски инвариантные интегралы движения струны. 
Привлекая метод обратной задачи рассеяния , удалось получить полный на­
бор таких интегралов в классической теории. Более того, спектр вспомога­
тельной обратной задачи позволяет естественным образом выаелить из фазо­
вого пространства струны подпространства с конечным числом степеней сво­
боды, причем, что самое главное, делается это калибровочно-инвариантным 
способом. 

При анализе вспомогательной спектральной задачи мы основываемся на 
результатах, полученных в работах Новикова, Дубровина, Матвеева и Итса, 
посвященных исследованию периодических решений уравнения Кортевега-ае 
Ф р и э а / 5 - 7 / . 

Перейдем к описанию спектральной задачи. Как говорилось выше, удобно 
вместо канонических переменных р (а, г) и х „ (а, г) использовать перемен­
ные а (а .г ) и Ь„(о .г ) , дополнив их усредненной координатой Х„ (способ 
усреднения не играет особой роли, и мы не будем его конкретизировать). 

Далее, для случая Р •» О, который мы будем рассматривать, можно ввес­
ти тетраду, связанную с полным импульсом: 

. ; - J ^ . . ; * • =о, .; ."• ~ * ц . и =1,2,3. <в> 
и вместо проекций на координатные орты рассматривать проекции о (о) и 
Ь „ ( а ) на компоненты тетрады. При этом 

для трехмерных векторов, составленных из проекций четырехвекторов на е' , 
ниже мы будем применять обычные векторные обозначения. Заметим, что в 
силу (4) и (8) 

' /daSW-O 5 ?

 ( Э > 



и, поскольку Еектор а(а) периодически зависит о т о . его можно считать к а ­
сательной к некоторой замкнутой пространственной кривой у . Эта интерпре­
тация в дальнейшем позволит сушественно упростить формулы. Проекция а (а) 
на нулевую компоненту тетрады физически малоинтересна и выбором калиб­
ровки ее можно сделать константой, поэтому в спектральной задаче доста­
точно использовать только d ( o ) . Рассмотрим матричную систему первого 
порядка 

^ j - O ( s » A ) . - - j - o . ( $ } a l 0 ( ^ x ) , ( 1 0 ) 

где а. - матрица Паули, 0 (s . А ) - двухкомпонентный спинор. При каждом 
значении спектральього параметра А существует, вообще говоря, два линей­
но-независимых решения ( 1 0 ) ф(%, A ) , <£(S, A ) : 

\< i , ( s»A)y V 2 ( s . A ) / 2 
Определитель Вронского для системы (10 ) имеет вид 

| 0 , ( s , A ) <£,(S, A) I 

U 2 ( S , A ) <*2(s, А ) | 
II не энвисит от S Эрмитовость матрицы ". o ((s) приводит к существованию 
инволюции 0 ( s , A ) -• 0 ( S , A ) при произвольных комплексных А, т.е. если 

i/'U, A) 

является решением ( 1 0 ) , то 

5(s, А) 

M , ( s , А) \ 

•ннем ( 1 0 ) , 

также является решением с тем же А 
Для системы ( 1 0 ) можно построить матрицу трансляции решений на пе­

риод или матрицу монодромин T . s l 2 " (A ) 

Т ; ' 2 Я ( А ) P e x p J i - ' } V o . f s ' ) * , ( I D 
* з 

где Р обозначает упорядочение вдоль пути. 
Перечислим некоторые элементарные свойства матрицы монодромии. 
1 . Унимодулярность при произвольных комплексных А. 
2 . При вещественных А матрица Т" "(А) унитарна, при комплексных А 

соотношение "унитарности" выглядит следующим образом: 

T s , 2 , ( A ) ^ T s , 2 „ ( A t ) y , # ( . . . ) 

3- Уравнение движения 

J L T S г " (А ) I L c . M U . T S

S ' 2 " ( A ) ] <13) 
ds ' 2 ' ' 
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4. SpT» "(А) не зависит от s . 
5. SpT^^tA) - интеграл движения. 
6. Матричные элементы Т*+ "(А) являются целыми функциями А. 
7. SpJ^2n(\) - релятивистский инвариант. 
Доказательства первых четырех свойств элементарны, и мы не останавли­

ваемся на них. Свойство 5 следует из того, что эволюция Oj(s) сводится к 
перепараметриэации/ЗЛ 

Oifo.O-F'hrKfffcrbO), ( 1 4 > 
где F ( s , г) - монотонная функция s при всех г, причем 

F(s+2rr, с)- F(s, г) + 2л. 
Явный вид F ( s , г) зависит от калибровки. Подставляя (14) в определение 
матрицы монодромии, получаем 

Т . &'>')- i F l t t 0 (A,0), 

т.е. при изменении г меняется начальная точка t -» FС*» »•), но из свойства 4 
следует, что след матрицы монодромии не зависит от начальной точки, сле­
довательно, он не зависит и от г. 

Для доказательства шестого свойства матрицы монодромии достаточно раэ-
ЛО/Ё:>ПЬ её в ряд по степеням А. Этот ряд сходится абсолютно при всех 
комплексных А, откуда и следует отсутствие особенностей в конечной части 
комплексной плоскости А. 

Релятивистскую инвариантность следа матрицы монодромии проше всего 
доказать, разложив его в ряд по А. Каждый член этого ряда представляется 
в виде 

2п 
Sp(<7 . . . СТ. ) / i i < 7 . . . 0 ( 7 Р ( 0 (о ) — 0 ( с т ) ) , 

' l 'n о 1 " ' l 1 'п " 

где Р - знак упорядочения. После вычисления следа первый сомножитель в 
этой формуле становится тензором, составленным из инвариантных тензоров 
Sjj и f l j k , индексы которых свернуты с индексами а ; . Напомним, что 

эти индексы являются номерами пространственных компонент тетрады (8) . 
Произведя суммирование по этим индексам, мы получим выражение типа 

^ 1 - . *« .7 d e i~* ' . p ( % ( e i , ~ e i ' . ( e » , ) ' < 1 5> 
где R - тензор, составленный из тензоров двух типов: 

'"' " Р Р 
SU % 9v = - V + ~рТ 

и 

следовательно, (15) является лоренц-скаляром. 
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Решения системы (10 ) , являющиеся собственными векторами матрицы 
моноаромии, называются функциями Блоха. Обозначим такие решения 0'(s,s ,Л). 
Зависимость 0* от t , связана с условием нормировки 

Ж*.' *о> А) = 0 2 ( * . ' $ о < Л ) - 1 ' ( 1 6 > 

Как следует из определения, 

O W f c v A ) - . " " V h . . . * » ' (17) 
где « - собственные значения матрицы 1 (Ал которые в силу 
свойств 1 и 4 не зависят от s и являются взаимнообратными при всех Л. 
Величину р(л) по аналогии с одномерным уравнением Шредикгера будем 
называть квазиимпульсом. Очевидно, что 

SpT; + 2 f f (A)=2cosp(A) . 
Оставим на время спектральную задачу и рассмотрим скобки Пуассона 

матричных элементов матриц монодромии с разными значениями спектраль­
ных параметров. Опуская вычисления, приведем результат: 

Отсюда получаем 

JSPT.^U). SpTj+2%)| = 0. 
Таким образом, след матрицы монодромии, а вместе с ним и квазнимпульс 
р(Л), являются производящими функциями инволютивных интегралов движения. 
Для вычисления этих интегралов удобно воспользоваться функцией Блоха. 
Из определения (17) и нормировки (16) имеем 

р(А)4еп0Х,2, ,уА).Г О ;У * r V ' * - ' A ) • (18) 
Будем искать ф ($ , s > Л ) в виде 

Ф+(*. S o,A) = *хр ~ / d s V e a ( » ' ) ( 1 + К (*', А)). (19) 

Подставляя (19) в систему (Ю) и исключая ф , получим для функции 
К ( s , А ) уравнение Риккати 

_nj±_ j (*<**> + ' - " » W \ j A ( K W ) +2Ц..А)) . 0 . 
/ a T j i y ds V n_(s) / 2 v 

где мы обозначили 

п Ц . - S g L . n+(s) = n,(s)±in (s). 
^ ) ' l 2 
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При А-> «., функция K ( s , л) имеет асимптотическое разложение 

K f e A j - J ^ J ^ X W . (20) 
где Km(s) удовлетворяют системе уравнения 

J !=M- 1 Ь £ + I К.(,)К , f ( s ) + 2K m + 1 ( s ) = 0 / 

ds Л (*) f = l m+l-l m+1 
причем 

ds V n (s) / i 2 УоТф «•« v n j s ) 
Наконец, сравнивая (20) и ( 1 8 ) , можно выразить кваэиимпульс р(л) непо­
средственно через KJ,s): 

m = 1 * 

Выпишем несколько первых членов разложения ( 2 1 ) , записанного в виде 
_Л_1 . I . _1_1 . _J . | 

p(A) = i . [ 2 / d » v / ^ f s ) + S ( ^ V W ^ M K - M l - ( 2 1 ) 

(22) 

где | к - функционалы, зависящие от вектора о ( * ) . Чтобы выписать их яв­
ное выражение в компактном виде, удобно воспользоваться интерпретацией 
о*( s ) хак касательной к некоторой кривой у. С «той кривой связаны её 
дифференциальные характеристики - хривизна pit), кручение r ( s ) и диффе­
ренциал дуги d f ( s ) . Через »ти величины первые четыре коэффициента раз­
ложения (22) выражаются следующим образом: 

2п 
I - / * М , 
1 о 

(23) 

(24) 

1 2 о 
(25) 

1 Г / df(s) p=(s)r(s). (26) 

Естественно, в интегралы ( 2 3 ) - ( 2 6 ) не вошли полные производные от пе­
риодических функций, содержащиеся в K„j(s). Кривизна, кручение и дуга 
связаны с o(s) формулами 

1 dn(s) 
PW-

/o 2 (s ) 
ds 
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. « . _ ! _ ( „ [ _ ! _ i i x ( - J i-) 2 n]), 

3. СВОЙСТВА ФУНКЦИЙ БЛОХА 
Функции Блоха в случае одномерного уравнения Шредингера подробно ис­

следовались в цитированных выше работах''''^/. К сожалению, мы не можем 
воспользоваться етими результатами, так как в нашу задачу спектральный 
параметр входит нестандартным образом, что приводит к некоторой модифика­
ции аналитических свойств функций Блоха и матрицы монодромии. 

Выведем минимальное количество формул, необходимое для обсуждения 
аналитических свойств. Прежде всего, нам нужно установить связь матрицы 
монодромии с функциями Блоха. Запишем её матричные елвменты, вводя 
вектор (Т, Т,): 

1 е - т « + 2 " / п г и H _ J _ 5 » „ т ' + 2 "(л). Т.(А) = | S p Т . " '"(А), V » , Л) = ̂ - S p а, Т. 

Соотношение 'унитарности* (12) при комплексных Л приводит к ра­
венствам 

•Р(А) = То(А*), t * (« ,A)« f (« ,A*) . (27) 
Кроме того, нам понадобится уравнение движения,которое получается прямым 
дифференцированием (11) по %: 

. ,и -т- Т(«, л).»-Ав(»)хТ(*, А). (28 ) 
Va2($) «* + 

Поскольку функциг. <А (*, %о, к ) является собственным вектором матрицы 
монодромии, нетрудно "оказать, что в принятой нами нормировке (16) 

^ + ( * _ , * , А ) = / ] \ (29) 
Т ( А ) - Т 3 ( » . , А ) » 

Т > 0 . А ) / 
где Т(А) обозначает модуль вектора Т(*, А) ( Т*t. Л) не зависит от А). 
С другой стороны, уравнения ( 1 0 ) дают связь между компонентами Ф12

 и 

функцией КС*, А): 

2 n_W 
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Полагая в (30) s - » 0 и сравнивая с (29 ) , получаем выражение функции 
К(* , А ) через компоненты T t(», А): 

К(», А) + 1 - n 3 (s) +ф) 1{Х\~£§ А ) • <31) 
Правую часть этого равенств.! можно преобразовать с помошью уравнений 

движения T ( s , А), заметив, что 

„ /S) - „ (») 3 ^ 4 = -L _ L _ i^LT (S, A). (32) 
3 - TJs.A) U V ^ W d * 

Подставляя (31) в (18) с учетом ( 3 2 ) , мы выразим ф {%,% , А) через 
"Ms, A): ' 

Аналогичные формулы можно получить и для других компонент функций 
Блоха. Мы не будем их выписывать, так как характерные особенности видны 
уже из формулы ( 3 3 ) . Наконец, прежде чем переходить к обсуждению анали­
тических свойств функций Блоха, приведем формулу для хваэиимпульса, кото­
рая получается из представления ( 3 3 ) . По определению, ^*(*0+2ir,so,A)ecTb 
e«pip(A), следовательно, 

р(А) - A f d « n > ) T y ^ ( m o d 2 , ) . (341 
Z о Т_\*# А) 

Решения ф ~ уравнений (10) существуют при произвольных компексных А. 
При специальных значениях А, зависящих от <)(*), решения »ти становятся 
периодическими или антипериодическими функциями s . Эти точки называются 
соответственно периодическими или антипериодическими точками спехтра. в 
этих точках йпр(л) = О. Обычно в периодической или антипериодической 
точке вектор T(s ,А ) не обращается в нуль, хотя и имеет нулевой квадрат, 
так как Т(А) = sin (Я». 

Такие точки спектра называются невырожденными. В вырожденных точках 
матрица монодромии становится кратной единичной: 

Т ; * 2 В ( А ) - 4 1 .. 
и, следовательно, T ( s ,А ) = 0 . Соотношение ( 2 7 ) предписывает всем точ­
кам - вырожденным и невырожденным - располагаться симметрично относи­
тельно вещественной оси, следовательно, их количество всегда четно. 

Другое следствие из соотношения (27) состоит в том, что на веществен­
ной оси находятся только вырожденные точки. 

Важным обстоятельством при обсуждении аналитических свойств функций 
Блоха является то, что матрица монодромии есть целая функция спектрально­
го параметра. (Заметим, что Т(А) вообше говоря, не является целой}. Имея 
явное выражение для Ф\(*, *„,А '> "врез T.(s,A ) (формула ( 3 3 ) ) , можно 
сделать вывод, что функции Блоха являются мероморфиыми функциями А на 
двулистной римановой поверхности с ветвлениями в невырожденных точках. 
В этих точках определитель Вронского обращается в нуль, т.е. решения ф + и 
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Ф становятся линейно зависимыми. Для произвольной конфигураоии струны 
а( % ) количество ветвлений у функций Блоха бесконечно, однако существуют 
конфигурации с конечным числом ветвлений, их мы будем называть конечно-
зонными. Точнее, N-эонной конфигураоии соответствует 2N точек ветвления. 

4. УРАВНЕНИЯ ДЛЯ КОНЕЧНОЗОННЫХ КОНФИГУРАЦИЙ 
В этом разделе будем заниматься выводом уравнений для конечноэоиных 

конфигураций струны. Явная формула для матрицы монодромии позволит сде­
лать этот вывод более наглядным по сравнению со случаем уравнения КдФ. 
Далее, введя понятие о высших струнных уравнениях, покажем, что условие 
конечнозонности эквивалентно условию стационарности конфигурации струны 
относительно высшего струнного уравнения. Этот факт имеет свой аналог в 
теории уравнения КдФ' >° , но мы предпочли несколько видоизменить подход 
с тем, чтобы не нарушить ковариантности наших уравнений. В работах^ 5 '^ 
было замечено, что уравнения для конечноэоиных решений КдФ порождают 
вполне интегрируемые механические системы с хонечным числом степеней 
свободы. Можно показать, что и наши уравнения для хонечноэонкых конфигу­
раций струны также порождают вполне интегрируемые механические системы, 
но благодаря тому, что икволютивные интегралы Ik в нашем случае обладают 
калибровочной инвариантностью, »ти системы сингулярны: в них имеются свя­
зи. В настоящей работе мы не будем излагать теорию механических систем, 
связанных с хонечноэонными конфигурациями. Отметим только, что их пол­
ная интегрируемость означает наличие необходимого количества первых ин­
тегралов, достаточных для сведения задачи о нахождении хонечкоэонных по­
тенциалов х проблеме Якобн обращения гипервллиптических интегралов. 

Перейдем к выводу уравнений. Условие конечнозонности по сути дела оз­
начает, что целая функция Т ( s , А ) имеет следующий вид. 

T(s, \ ) = l(A)fU, A), 
где f (А ) - целая функция с нулями в вырожденных точках, a t ( s , А ) -
конечный полином по А: 

t(s,A)= I f k{s)A k. 
k-0 * 

овие конечности пол 
> к (*)-0 при к >N, 

к-0 -
Условие конечности полинома M s , А) другими словами означает, что 

t_i (s) - 0 . 
Кроме того, уравнения движения для Т(«. А) ( 2 8 ) дают связь между t.((): 

' ^.? k ts)=-i„(s)x,; js ) ] . <зв) 
Этих соотношений достаточно для построения t (*, А) с заданным N. Пока­
жем это. Для упрощения формул введем следующее обозначение для производ­
ных по дуге: 
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Начнем нахождение полинома t ( s , A ) с последнего члена. Так как 

4,+iM-O 
? N (s ) .d 0 (s )n" (s ) , 

из ( 3 6 ) следует, что 

n(«)?k =0 , ^ (37) 
откуда в силу единичности n ( s ) получаем, что d 0 - константа, которую мы 
положим равной единице. Далее из (36) при k = N имеем 

t (s) = n(s)xn(s) +d,(s)n(s) . 

Опять с помощью (37) находим, что 

и переходим х t N _2 . Определив таким образом все члены t k вплоть до t , 
оборвем итерации с помощью условия (35 ) , которое означает, что t - по­
стоянный вектор 

t"0=K. (38) 
Это и есть искомое уравнение. При N = 1 оно имеет вид 

n x n + d ^ - K , <™> 
при N - 2 

- — п-Й - n + d,n хп + d„n -К, ( 4 0 ) 
2 l 2 

Уравнения (39) и (40) необходимо дополнить условием ( 9 ) , которое при 
N - 1 дает d i - О. 

Так как t (* , Л) удовлетворяет уравнению ( 2 8 ) , то t ( с . Л) не зависит 
от s и можно показать, что коэффициенты полинома ? (А) степени 2N вы­
ражаются через первые интегралы уравнения (ЗВ). Зная t ( s , л), мы можем 
найти функцию f (л ) и, следовательно, весь вектор Т ( х . Л ) . Действительно, 
согласно (36) 

Р(А). 2 0 т ( s / A ) 2 0 t_(s,\) 

Зная квазиимпульс, мы можем определить f (А ), а вместе с тем и все вы­
рожденные точки спектра. 

Полином t 2 (A ) играет важную роль в определении аналитических свойств 
функций Блоха, он задает римакову поверхность Г 

* 2Л 2(А), 
на которой функция Блоха является мероморфной, точки ветвления Г есть 
концы зон, следовательно, для N-зонной конфигурации степень полинома t (л) 
равна 2N • 

В работах ' конечноэонные потенциалы определялись хак статические 
решения высших уравнений КдФ. Применительно х нашему случаю можно ска­
зать, что конечноэонные конфигурации струны являются статическими реше­
ниями высших струнных уравнений. 
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Поясним, что мы имеем в виду. Рассмотрим линейную комбинацию пер­
вых N +1-ИНВ0ЛЮТИВНЫХ интегралов | к ( 2 2 ) : 

N-1 
N-1 р п-1 Г - 1 

Всем таким функционалам соответствуют коммутирующие потоки 

Л _ |а I I -— 5 | 

dl ' " <5s 8 3 ( s ) 
Назовем статическим решением высшего струнного уравнения конфигурацию 
о (s ), удовлетворяющую 

-1JL..0 
д* So(s) 

или уравнению 
-Л— = к, (4i) 
S 3(s) 

дополненному условием интегрируемости о (s) ( 9 ) . Тогда справедливо ут­
верждение, что N-аонная конфигурация струны является решением (41). Для 
доказательства этого утверждения рассмотрим вектор f ( * , А ), причем бу­
дем считать, что он является полиномом по Л степени N. Составим отно­
шение * ' /Г*2, , и, устремив А •• ~, разложим его по степеням. ! /А: 

V ' vAJ 

>(«.*) Ы* J L < 1 , 4 2 ) 
— т = — = + ' + . . . 14^) 

y/Pti) A A 

Число членов этого асимптотического разложения бесконечно, но из-эа 
условия конечности полинома t (s , A ) N+1-ый член (42) является линей­
ной комбинацией предыдущих плюс постоянный вектор К, т.е. 

RN(s) +Ytys)bN_ f=K. 
Теперь вычислим вариацию квазиимпульса р ( л ) по о (S ) при условии ( 9 ) : 

SP(A) 1 2" 8 р ( А ) x / f f c » 1 2 " r f l > T(^ .A) \ 

So(s) " 2 , / e j ( , . , * 2 U A ) 2, i T(A) J 

Для вычисления вариации мы воспользовались явным выражением для мат-

Ч К», л) 1 у у »(S*,A)N { 4 3 ) 

^Л*(л) 2 " ° Tf^A)' 
[ПЯ 

рицы монодромии, а во втором преобразовании мы сократили функцию 1{А) 
в числителе и знаменателе дроби. Поделим обе части (43) на А/2 и, ус­
тремив А-» со, разложим их по степеням 1/А . Разложение в правой части 
мы уже фактически знаем: оно дается формулой (42) с точностью до посто­
янного слагаемого в каждом члене. В левой же части (43) стоят вариацион­
ные производные инволютивных интегралов | к ( 2 2 ) . Сравнивая коэффициенты 
при одинаковых степенях А в правой и левой частях, получаем 
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R k ( s b " -
8a(s) 

и, следовательно, условие конечности полинома t (з , А ) или условие ко— 
нечнозонности (38) имеет на языке инволютивных интегралов слецую-
ший вид: 

N - 1 
— IL + 1 I. с . )= К. 
( S ) \ N = 1 e=o f - i N-f/ 

Таким образом, мы доказали эквивалентность двух условий - конечности по­
линома t ( s , Л) и условия стационарности относительно высшего струнного 
уравнения. 

5. ОБСУЖДЕНИЕ 

Условия конечноэонности конфигурации струны являются калибровочно—ин-
вариантными уравнениями, которые можно рассматривать как уравнения не­
которой гиперповерхности в фазовом пространстве струны. Поскольку эволю­
ция струны есть калибровочное преобразование, генерируемое связями, а 
гиперповерхность задана инвариантным уравнением, она содержит фазовые 
кривые принадлежащих ей точек. Решив уравнения, т.е. выразив конфигура­
цию через начальные данные и первые интегралы, мы можем сузить симп-
лектическую форму, заданную на всем фазовом пространстве на рассматри­
ваемую гиперповерхность, и в результате получить систему с конечным 
числом степеней свободы. 

В работе А.В.Раэумова и автора''* была рассмотрена система, получаю­
щаяся из релятивистской струны при замораживании бесконечного числа сте­
пеней свободы. Пользуясь терминологией данной работы, можно сказать,что 
по существу эта система соответствует однозонной конфигурации струны. Са­
мое примечательное в этой системе то, что её* хвантовая теория не содер­
жит никаких аномалий и обладает явной релятивистской инвариантностью в 
четырехмерном пространстве. Кроме того, в этой системе нет естественно 
духовых и тахионных состояний, которые неизбежно возникали в традицион­
ной квантовой теории струны' °'. Таким образом, имеется реальная возмож­
ность непротиворечивого квантового описания струны и в любом конечноэон-
ном секторе. Его отличие от традиционных квантований струны заключается 
в том, что переход от скобок Пуассона к коммутаторам производится не в 
исходных канонических переменных, а в других, более удобных. Например, 
в однозонном секторе такими переменными являются два вектора, сопряжен­
ных друг другу как момент и углы. При этом не возникает необходимости 
упорядочивать некоммутируюшие операторы при вычислении генераторов груп­
пы Пуанкаре и, следовательно, в квантовом случае она остается такой же, 
хак и в классическом. 

В заключение автор благодарит А.В.Раэумова и Л.Л.Соловьева за ценные 
обсуждения. 
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ПРАВИЛА СУММ 
И ЭКСКЛЮЗИВНЫЕ ПРОЦЕССЫ В КВАНТОВОЙ ХРОМОДИМЛМИКЕ 

А.В.Радюшкш: 

Объединенный институт ядерных исследований, Дубна 

I. Введение 
Правила кваркового счета (ПКС)' 1 > 2' стали фактически частью 

"фольклора" современной физики элементарных частиц высоких энер­
гий. Согласно этим правилам, усредненный по спиновым перемен­
ным формфактор адрона, состоящего из П кварков, должен вести 
себя в асимптотике как(<Э^ " п (где Gt*-°£ , а с\, -передача 
импульса). Бродским и Фаррар ' 2' был найден и конкретный динами­
ческий механизм (жесткое перерассеяние), обеспечивающий выполне­
ние ПКС в пределе G?-*oo, Предложенная в ' 2' картина получи­
ла в конпе 70-х годов свое обоснование в рамках пертурбативной 
КХД ' 3>4'. Было показано, в частности, что учет Ю Щ - эффектов 
для формфакторов мезонов и нуклонов приводит в асимптотической 
области лишь к логарифмическому отклонению от диктуемого ПКС 
степенного закона / 3^'. Возникает естественный вопрос, начи­
ная с каких передач импульса можно использовать асимптотический 
анализ? Нередко ответ на этот вопрос пытаются извлечь из сущест­
вующих экспериментальных данных. Из данных же следует, в част­
ности, что для пиона произведение G r F ^ f Q 2 ) практически постоян­
но при Q*£, I ГэВ 2, а для протона и нейтрона при Q.2J. 2-3 ГэЗ 2 

с хорошей точностью постоянны комбинации Q ? Q M ( Q \ Q 2 G T " (Q 2) . 
Отсюда делается вывод (см., например/ 4 , 6'), что уже при 
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QLZ г , I ГзВ 2 (для пиона) или при Q 2 Z. 2~3 ГвВ 2 (для нук­
лонов) наступает аоимптотичеокий режим и основной вклад в форм-
факторы обусловлен подпроцессом жесткого перераосеяния (рис. I). 
Однако теоретическое обоснование подобной интерпретации в рам-

а) б) 
Рис. I. диаграммы, ответственные за аоиштотику 

форифвкторов а) шона я б) нуклона 
ках КХД сталкивается с определенными трудностями. Дело в том, 
что, скажем, для нуклона вклад, соответствующий диаграммам типа 
16, является фактически лишь третьим членом разложения, полу-
чапцегооя в результате применения к Q V ( Q Z ) стандартной ЮСД-
процедуры разбиения вкяадов больших и малых расстояний (си. рис.2). 

б) в) 
Рис. 2. Структура факторизации для нукпонннх формфакторов. 

Обобщенные кварк-адронные вершины вместе с непос­
редственно примшсапщими к ним кварковыми линями 
соответствуют большим расстояниям (малым виртуаяь-
ностяи), а остальные кварковые и глюонные линии 
- малым расстояниям, т.е. виртуальноотям, большим 
некоторого адроняого масштаба X 2 — I ГаВ 2. 
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Для оценки относительных вкладов диаграмм 2а-в заметим, во-
первых, что при Q l = 0 основной вклад в (УСО*) обусловлен, оче­
видно, простейшей диаграммой 2а. Далее, согласно обычной оценке 
по числу петель, вклады диаграмм 26, в подавлены по сравнению с 
вкладом диаграммы 2а факторами порядка («**(M wWWo,4 и 
(ol

s(MiV')/Ti')a<0,01 соответственно ( M w - масса нуклона). Это 
означает, что в некоторой области Q-* £ t m i x простейшая диаг­
рамма 2а доминирует несмотря на то, что в асимптотике ее вклад 
убывает с ростом Q1 быстрее, чем вклад диаграммы 2в. По оценкам, 
основанным на теории возмущений вклад диаграммы 2в убывает с рос­
том Q 2" лишь как4/<З б (мы убедимся в этом ниже на конкрет­
ных примерах), и поэтому следует ожидать, что ^^(-Ч/тгТмГэВ*. 
Дяя более аккуратной оценки вкладов диаграмм 2а-в необходимо 
знать мягкую волновую функцию нуклона. Эта задача, конечно, не 
может быть решена в рамках обычной теории возмущений, поскольку 
само существование адронов в КХД в значительной мере обусловлено 
непертурбативными эффектами. 

Из существующих в настоящее время подходов к анализу непер-
турбатявных эффектов наиболее близким к пертурбативной КХД в 
"технологическом" аспекте является метод КХД правил сумм ' 9»*°', 
успешно примененный ранее к вычислению таких существенно связан­
ных с непертурбативными эффектами адронвнх характеристик как мас­
сы и лептонные ширины. В последнее время этот метод { в различ­
ных формулировках) был применен также и к исследованию поведения 
адронных формфакторов при умеренно больших передачах импульса 
/П-15/ < в данном докладе будет дан краткий обзор результатов, 
полученшх в работах / И - " » ! 4 - 1 5 / , выполненных автором совместно 
с В.А. Нестеренко. Основной вывод, к которому мы пришли в конечном 
итоге, состоит в том, что для описания экспериментальных данных 
по формфакторам пиона, протона и нейтрона достаточно учесть вкла­
ды лишь простейших диаграмм (типа рис. 2а), не содержащих глю-
онных обменов. Следовательно, экспериментальное подтверждение 
степенного закона, формально диктуемого правилами кваркового 
счета, вовсе не означает, что основной вклад в формфакторн при 
достижимых ныне передачах обусловлен механизмом жесткого перерас­
сеяния. 

2. Анализ йошйактора пиона методом ЮСД правил С У М / 1 1 - 1 3 / 
В основе метода КХД правил сумм лежит концепция кварк-адронной 
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дуальности, ооглаоно которой характеристики адронного спектра 
в интегральном смысле (т.е. после усреднения по некоторой энер­
гетической облаоти) близки к аналогичным характеристикам, вычис­
ленным по теории возмущений для (слабо взаимодействующих) квар­
ков. Учет непертурбативных аффектов (определяющих, в частности, 
величину интервала усреднения) достигается при этом введением 
в теорию ненулевше вакуумных средних (конденсатов) кварковых и 
глюонных долей' '. При анализе формфакторов методом КХД правил 
оумм исходным объектом является трехточечная функция 

где J^z (г/З^й^и-^З^-алектромагнитный ток, a ^ e d j ^ u 
- аксиальный ток (обозначения соответствуют рис. За). Последний, 

а) б) в) 

Рис. 3. Диаграммы, дающие вклад в пертурбативную 
спектральную плотность P K B A W t(s,s J iQf)-

как известно, имеет ненулевую проекцию на одиопионное состояние 
1Р> : <0»^(0)IP)=ii Рд> Я » f^ » 132 МэВ - константа рас­
пада тт J, ^ 

Амшштуда T^.Cft.Pi) представляет собой сумму различных 
структур: Р^р*Р? . Р*Р"Ч* . Р ^ Я ? " и т- д" 
где Р = p,,+fc. Соответствующие инвариантные амплитуды T i 
зависят от трех импульсных инвариантов: р ч

г , f* i^-lH-ftf" • 
Вклады различных структур в Т £ можно сравнивать, естествен­
но, лишь в какой-либо конкретной системе отсчета. В нашем слу­
чае весьма удобной является система бесконечного импульса (СШ), 
в которой Р^зРц^оо , а ^ = 4*1 фиксировано. Наибо­
лее важной в СБИ является, очевидно, структура р^р*рР , не со­
держащая "малого" параметра cj, . Эта структура, кроме того, 
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р г = -пМ* (3) 

максимально близка к структуре Р Р* , являющейся объектом ана­
лиза при исследовании двухточечной функции ТГ^Лр) - коррелятора 
двух аксиальных токов. 

Благодаря асимптотической свободе амплитуда Т ^ Д ^ а 1 ) мо­
жет быть теоретически рассчитана в глубоко евклидовой области, 
где $ , р| , q_2 < - I ГэВ*. Для извлечения информа­
ции о физических состояниях использутся двойное дисперсионное 
соотношение „ 

Невьшисанные явно члены в (2) исчезают после применения к (2) 
ШВЗ - оператора ' ^ 

по переменным р* и р* . 3 результате 

где §=-Вл-ВгТ J° М< 'о М ' У ^ > ^ и ^ 
Пертурбативный ':дпад в Ttp^pJ.a 2^ (соответствующий диаграм­

мам рис. 3) также может быть записан в форме (2), а %pvrt=B<'BjTf*"t. 
в форме (4). Непосредственные вычисления дают в низшем (нуле­
вом) порядке по o<s 1 

Массами и-, d - кварков( « i u d s 10 МэВ) мы пренебрег­
ли. Отметим, что переменная х имеет смысл фракции продольного 
импульса пиона, приходящейся в СЕН на пассивный кварк. 

Используя тот факт, что (4) имеет форму двойного преобразова­
ния Лапласа по W M J , из (5) нетрудно найти кварковую (пер-
турбативную) спектральную плотность 

Физическая плотность сял,,ьг,аг^ , конечно, отличается от 
pV""tcs,,Sj,c^) . В частности, pcs^Sj.Q2") содержит пион-

ннй "S£" - вклад 
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а вне этой точки равна нулю везде ниже порога рождения (^т)-сис-
темы. Лишь при достаточно больших S, , S^ , где резонансы ста­
новятся очень широкими и фактически сливаются друг с другом, 
можно ожидать, что р * j>p"rt . Это означает, что ^ ( м Д м ^ й 1 " ) 
также отличается от выражения (5). вычисленного для свободных 
кварков. Как подчеркивалось в '*', за эту разницу главным обра­
зом ответственны кепертурбативные степенные поправки (1/м г)^ 
обусловленные существованием кваркового<£^> и глюокногсК^Сг^ 
конденсатов. Учитывая низшие степенные поправки 

а) б) в) 
Рис. 4. диаграммы, описывающие непертурбативные 

аффекты, пропорциональные < Q£,Gfu V> (4Л 

(типичные диаграммы представлены - на рис. 4 ), находим 

Представляя адронную спектральную плотность o^s^O, 1} в виде 

(9) 
(т.е. , считая, что везде вне квадрата $.,,s 2< b© адронная плот­
ность совпадает с кварковой) и приравнивая (8),(4) ( с учетом 
(6),(7),(9)), получаем правило сумм, связывающее характеристики 
адронного спектра ( в нашем случае таковыми являются-L Е^.(<Зг) 
и S 0 - эффективный порог рождения высших состояний, масса пи­
она nv^ берется равной нулю) с теоретически вычисленными 
величинами: 
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UftWV & \ \ \ \ f\^<?) e *3 \ <.«£<&> 
84 W« > ч т 

Для конденсатов мы используем значения 
ы»/тО < $!! б* >=о,одггзв: 
*»<чя>а« *,*-мг г»ъ* 

/9/ 

0(^М Ь) +0Ц>(10) 

(II) 

(12) 
полученные в '"' из анализа двухточечных функций. 

Нетрудно заметить, что левая часть правила сумм (10), в отли­
чие от правой, не имеет явной зависимости от параметра М г. На 
самом деле, если бы мы учли все непертурбативкые поправки и 
взяли для Р(Ц,&1,02)точное, а не модельное выражение, то правая 
часть правила с у ш (10) также не зависела бы от М2-. в реальной 
оитуации значения величины £*Р„«а г1, полученные из (10), име­
ют слабую зависимость от "нервического" параметра М г при 
больших М 1 , но начало асимптотического режима сильно за­
висит от выбранного значения S (рис. 5) 

Рис. 5. 
Типичная зависимость р г 

от параметра s e : 
a) So = 0,6 ГэВ 2; 6)S.=0,7 ГэВ2; 
в) S„= 0,8 ГэВ 2; 

" M V * > <»1 -2 ™< 
Истинным значением So будем считать, естественно, то 

значение, при котором область слабой чувствительности F^ca 1^ 
л параметру М г является наиболее широкой. Для Q* = 1,2 и 
3 ГвВ 2 данный критерий дает значения,близкие к 0,7 ГэВ 2. Отметим, 
что такое же значение параметра S 0 получается и из анализа 
двухточечной функции, связанной с <-*ri»iJj'> > x r i a свидетельст­
вует о оамооогласоваяности метода. В качестве теоретического 
предсказания на £, ^<.йг") следует, очевидно, брать значение 
атой величины на плато. Для So = 0,7 ГаВ^ это значение 
на всем интервале М >, I ГэВ^ фактически не отличается 
от асимптотического значения при \Л1~ оо . 

75 



Важно подчеркнуть, что при М -»оо степенные поправки исче­
зают и мы приходим к конечноэнергетичеокому правилу сумм (ср. 
/К/) S e s. 

Г 1 Т * ТГ 1 о о J (И) 
выражающему собой локальную дуальность между резонансным (пион-
ным) и кварковын вкладом. Для двухточечной фушшии аналогичное 
правило сумм позволяет связать S„ с константой L : 

^ • ^ * Й - (14) 
Соотношение (14) хорошо согласуется ( при S 0 «0,7 ГаВ 2) с 
экспериментальным значением -^ « 132 МэВ. 

Используя, далее, явный вид pf>*rtfe4,4,QJ) (6), можно по­
лучить из (13) выражение для формфактора пиона 

F ( О г Ь s« [ 1 j-*- feSc/Qb \. "V '" l̂ TJT- \. 1 - T^wS*)*'*- J (15) 
Связь (14) обеспечивает в (15) правильную нормировку (на еди­

ницу) формфактора при 0,г=О . 
Более удобную при быстрых оданках форкулу для Р„«а?} можно 

получить, если заменить интегрирование по кгздркгу в (13) интег­
рированием по треугольнику (0£S 4+s^ $ Se=^?sj)равной площади. 
В атом случае 

» ( Q b s?SF в*л*о* ( 1 6 ) 

где $ 0=/г*. -г I ГэВ 2. При Q a i I ГаВ 2 предсказания фор­
мул (15) и (16) согласуются друг с другом лучше, чем с КЙ-ной 
точностью. 

Формула (16) предсказывает дипольное поведение для шюнного 
формфактора, что, казалось бы, резко противоречит сложившимся 
представлениям о поведении F^UR*} . В действительности, одна­
ко, теоретическая кривая, основанная на (15), при S Q= 0,7 ГэВ 2 

находится в хорошем согласии с экспериментом (см. рис. 6), сов­
падая при а 4 >, I ГЭВ2с лучшим фигом' &' имеющихся данных'18'. 
Иными словами, формулы (15), (16) в области 0,5<Q*< 5 ГэВ 2 

имитируют V Q * - поведение, соответствующее правилам кваркового 
счета. 
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Рис. 6. 
Сравнение теоретических предска­
заний, основанных на правиле сумм 
(ЮУ с экспериментальными данны­
ми '1°'. Сплошная кривая: М1= см. 
Пунктирная кривая: 

о ю 2.о з.о до аЧг»вЧ М 2=1,ь гэв*. 
3. Локальная дуальность и волновая функция икона 
Использование локальной дуальности (13) эквивалентно фик­

сации вида мягкой волновой функдаг (и.в<рл :гаона. Действи­
тельно, с учетом того, что p**'t<i-,,slQi'> четь двойной скачок 
(по р,1 и pi ) соответствующей амплитуда T^'^Cp/.pJ.a*) > 
раочет по форчуле (7) сводится для диаграммы За к подстановке в 
качестве кв.ср. локальной амплитуды перехода тока i в сво­
бодные, практически безмассовые кварки, с последующим усредне­
нием по инвариантной массе S двухкварковой системы в интер­
вале o$s<S„ , Иными словами,пион моделируется системой из 
двух свободных ( к * = п ^ кварков, локализованных в области 
(ltA+kJf'<s>импульсного пространства. К достоинства',! "модели" не­
обходимо отнести, по крайней мере, ее явную релятивистскую и 
калибровочную инвариантность. 

Следует также отметить, что в СЕ1 такая м.в.ф. пропорциональ­
на 9(х г<5<Л , где х 1 - стандартная С£И - комбинация (см. 
/6Л 2 , г 

* - Z ±±. 
причем X; являются фракциями продольного импульса пиона, 
приходящимися на i. - ый кварк, а Кд.с - поперечный импульс 
последнего. Приведем для сравнения предложенные Бродским и Ле-
пахем / * 9 ' модельные м.в.ф. с гауссовским Vr'(Ki , < ; ' \ ^ « » p ( - ^ M j 
и степенным V c ' ( , l i ; 1 *;V~l* I ' '* l V поведением. Общим свойством 
всех трех функций является обрезание интегралов по Цц, х к в 
области больших значений н г . Конечно, резкое обрезание при 
a t 2 = S 0 . диктуемое Ц;1*1^, Q^VsoV нереалистично; точная 

ю 
03 || 

0.6 
* 
а 
X? 
С2 

л , . 

0 -—1*« 
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м.в.ф. должна быть гладкой функцией параметра "жг наподобие 
V ' или ч»'^ . Таким образом, ̂ ^^V^.ji;") дает представление 
лишь о наиболее общих,интегральных свойствах точкой м.в.ф. пио­
на. Соответственно и результаты вычисления формфактора FW(Q*1 
по формуле (10) не обязательно совпадают с точным вкладом тре­
угольной диаграммы во всем интервале 0< Q 2 < оо _ 

Не следует, в частности,особенно доверять основанным на (10) 
предсказаниям в ситуациях, когда соответствующий вклад сильно 
зависит от конкретного поведения м.в.ф. на краях кинематически 
разрешенной области, когда х±~о или *;~t для одного из 
кварков. Как следует из выражения (5), поведение ? p * r t (а сле­
довательно, и p f" r t ) при малых О.2- существенно зависит от 
поведения подынтегрального выражения в области зс~ 1 , в кото­
рой основная доля продольного импульса пиона приходится на пас­
сивный кварк, тогда как при больших Q 2 основной вклад в ф 9 " 4 

обусловлен интегрированием по области з~0 , когда импульс 
пиона переносится, в основном, активным кварком. Таким образом, 
основанным на (10) результатам не следует доверять ни при малых, 
ни при асимптотически больших значениях Q * . 

Конкретные значения границ области применимости формулы (10) 
можно получить следующим образом . Во-первнх, расчет исходной ам­
плитуды Т(р ч

7, ft2, <З г) по теории возмущений надежен лишь в облас­
ти асимптотической свободы, т.е. при Q iivrip -^ о,б ГэВ . При 
больших Q 2 формуле (10) не следует доверять при таких <Эг , 
когда начинает чувствоваться асимптотический режим F T (О г)~ VQ"? 
При этом основной вклад определяется областью, в которой пас­
сивный кварк имеет ицл-уагьяость •$ pV<2* , и мы снова оказы­
ваемся вне области асимптотической свободы. Нетрудно установить, 
что (15) согласуется с асимптотической формулой F^s)(Ql)= б^/о* 1 

(в пределах 50 %) лишь начиная с Q a « 7 ГаВ 2, и примерно при 
таких значениях Q 1 произведение Q2Fn.CQt'> начинает убывать 
с ростом Q* (что является сигналом о наступлении асимптотическо­
го режима). 

Таким образом, существует промежуточная область O^ofcSTjB* 
в которой вклад треугольной диаграммы определяется интегральны­
ми свойствами м.в.ф., главным образом шириной распределения 
кварков по поперечному импульсу ( т.е. в конечном итоге - разме­
ром пиона) и слабо зависит от конкретной формы этого распределе-
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ния. Размерным параметром, характеризующим ширину распределения 
по кд_ для V ( * i ; , О , является, очевидно,^ (<WJ>*^,/7.~ (0,ЗГ»в1г), 
т.е. тот же параметр, который задает и масштаб спектра масс 
барионов в рассматривает» канале. С физической точки зрения 
такая связь выглядит совершенно естественной. 

4. Локальная кварк-адронная дуальность и йормтакторы нуклонов 
в КХД 

Изложенную выше технику можно распространить и на куклонные 
формфакторы. Естественно, вместо аксиального тока в (I) необхо­
димо взять ток, имеющий квантовые числа нуклонов, например, для 
протона ' *0' 

О * " ' (18) 
где С - матрица зарядового сопряжения, a £ 0t c - абсолютно анти­
симметричный тензор ( ч , 6 , с ж 1,2,3). Нейтронный ток 
получается из (18) заменой u**d. 

yt< . (р>. Отметим, что при p,*?p,"' эта структура обла­
дает свойством поперечности Я Н ^ ^ А С Р ) * о . Этим свойством об­
ладает и следующая в СЕИ -иерархии структура Av*lP,<j}. линей­
ная по "малому" параметру <\ . Соответствующие инвариантные ам­
плитуды обозначим Т . и Т д . данные структуры имеют наиболее 
тесную связь с IP)* j - компонентой двухточечной функции Tty^ Р) , 
связанной с <Tl»|^FuY> > и детально проанализированной в ' 2 0'. 
Для интервала дуальности S„ в ' 2 0' было получено значение 
S0 » 2,3 ГэВ , которым мы и будем пользоваться в дальнейшем. В 
приближении локальной дуальности £ 0 связано с константой рас­
пада протона 

<o\^(o^P>=^4,iP) ( i 9 ) 

( где i^lF) - диракоБский спинор) следующим соотношением 
^ П « , . 5 . / 1 г , ( 2 Q ) 

аналогичным (14). 
Вычисляя р?*"* (s^Sj.Q2) для диаграммы 2а и подставляя резуль­

тат в аналог формулы (10), получаем для протона 
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^ О О 

V ' N а о 

(21) 

(22) 

где CrS^SjfQ 2; 2 = \ T ? V ^ 7 . «ц-2/з ,ed=--i/3 .нейтрон­
ные формфакторы получаются из (21)f (22) заменой «u ** e d , 

Конкретные значения формфакторов получаются из (21), (22) под­
становкой в качестве &v значения, диктуемого (20). Для S 0 

необходимо взять 2,3 ТоВг. Следует также учесть, что F v пред­
ставляет собой комбинацию электрического Q и магнитного Q 
форматоров 4 М * & е С о ' ) Л ' 6 м < а г ) 

которая при малых Q своодится к QB(<a*) , а при больших (3 
(фактически при Q* Z. Ю ГэВ} - к G M ( Q ^ • Формфактор Ijj (Q2) 
совпадает с (^м*131*) • 

ПрийЧоо правая часть формулы (22) совпадает с правой час­
тью выражения (21), и из обеих формул следует одно и то же вы­
ражение для асимптотики магнитного формфактора: 

Необходимо подчеркнуть, однако, что асимптотический режим для 
(21),(22) устанавливается лишь при<3 2.20-30 ГэВ 2. Произведения 
&н Fv(ofl, а*&„(а г), вычисленные согласно (21),(22),в области 
Q.2- 5-20 IbB 2 на самом деле постоянны в пределах 10 % точности. 
Другими словами, формулы (21), (.22) имитируют степенной закон 
Q- ̂  VGf диктуемый ПКС, вплоть до весьма больших значений Q 1 » 
20 ГэВ2. В высших порядках по <*s выражения (21), (22) модифици­
руются поправками, связанными с судаковокпм формфактором актив­
ного кварка 
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где в качестве масштаба М следует взять некоторую величину, 
пропорциональную S 0 - единственно^ размерному параметру, са­
турирующему в (21),(22). Заметим, что параметр £-, довольно зе-
лик, а параметр Л , в свою очередь, довольно мал 
( Л < 100 НэВ), и поэтому судаковское подавлеьзге в существен­
ной для нас области не очень значительно. Более того, оно мо­
жет быть частично скомпенсировано вкладом диаграмм 26,в. Поэ­
тому при d ^ 20 ГэВ 2 кажется весьма разумным пренебречь эф­
фектами высших порядков и ожидать, что основы::ле на локальной 
кварк-адронной дуальности предсказания д ш ш ш находится в хоро­
шем согласии с экспериментальными данными. 

5. Количественный анализ результатов для н.укло;..ч': 
йорибакторов 

Обратимся теперь к детальному сравнению предсказаний формул 
(21),(22) с существующими экспериментальными данншли (см. табли­
цу). 

Таблица 
Результаты численных расчетов, основанных на ;;юриулах 
(21)-(23) 

t (Г.В г) 1 2 з 4 ц 6 8 , 0 12 15 2 ' ' ! 30 

4 «SLw/wi г.г> 2.60 2,Т) г.еб 2,87 2,8-1 2 , - 1 2 ,5 f 2,41 2,20 1 , !u 1.45 

2 51Ы/Ш) 2.57 2,61 2, Г-2 2,9.1 2 .51 2,85 2,71 2,54 2,35 2.17 1,88 1,47 

1 <Н i.Oim) 1,00 ' . 1 ' 1,16 1,15 1,11 1,06 0.»=. 0,86 0,77 0,67 0,54 0,38 

1 GjaU-Mti -1 ,11 -1 .30 -1 .3? - 1 , ^ 3 - 1 , 43 -1 ,42 -1 ,16 -1 ,28 -1 .21 - 1 , 1 0 -0 ,95 -0 ,74 

5 Sjltl/Sltl -1 .57 -1 .52 - 1 , 5 0 -1 ,4В -1 ,45 -1,41 - 1 , т > -1 ,25 -1 ,17 -1 ,07 - 0 , 93 -0 ,73 

6 0«/3>И) -0 ,13 -0 ,12 - 0 , 1 0 -0 ,06 -0 ,03 0,00 0,05 0,06 0,11 0,13 0,14 0,14 

• » мы1ъвч 0,74 0.8-3 0,87 0,90 0 , "2 0,"4 о , '-.7 О.оЗ 1.00 1,01 1,02 1,04 

а) Протонные формфакторы. Отметим, во-первых, что поведение 
форм$актора &„(QZ) , вычисленное по формуле (22). в области 
2-Ю ГэВ2 согласуется в пределах 10 % точности с эмпирическим 
дипольнымфитом&^^г^ХХо^Сгде ??~2-?9 • а £Кй г >-

=(НвУо,М)"г].Далее, используя (21)-(23), можно получить явное 
выражение и для S g ( а ^ , которое при <эг < 12 ГэВ2 также 
с 10 % точностью согласуется'дипольн;ц формулой СЬ?(.«г) -5KQ1} . 
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(таблица,третья строка ). Как следствие, при изменении Q от 3 
до 15 ГэВ 2 с точностью 15 % выполняется масштабный закон 
^«аЧ/^в (0*1 = V4 Р' с ДРУГОЙ стороны, приняв, что, 

Q K I Q * V V t e 1 ) - НР л л я в с е х Q 2 » М О Ж Н О и з в л в ч ь * * * * и из 
формулы (21), которая предположительно является более точной 
при малых Q 1 , чем формула (22). Действительно, подобный расчет 
дает для Q^Q*) значения, лучше согласупциеся с эксперименталь­
ными данными при Q 1 « 1-2 ГэВ 2, чем результаты вычислений по 
формуле (22)(см. таблицу,2-я строка и рис. 7.) 

Рис. 7. «ормфактор Q* F
v
 ( & * \ л" 1 протона. 

О г(ГэВ г) 

Данные из работы 
б) Магнитный йормйактор нейтрона. Для нейтронного формфакто-

ра G^№) формулы (21) , (22) согласуются с экспериментальными дан­
ными в пределах ошибок эксперимента только при Q*i 6 ГэВ 2 

(рис. 8 ) , а в области Q*<, 6 ГэВ 2 согласие формул (21) ,(22) 

Рис. 8. 
ФорнфакторО^Й*) для нейтрона 

с экспериментальными данными далеко не такое блестящее, как для 
Q^tQi1). В частности, при О? « 3 - 6 ГэВ2 формула (21) дает для 
\<ч£(оЧ/1>са хЧ значения, лежащие ш 30 % ниже экспериментально 

набявдаемого (таблица, 4-я строка). При Q* = 1-2 ГэВ2 формула 
(22) еще больше занижает величину |Сгн \ • Расчет по формуле (21) 
в предположении, что ^ Е ( О г ) = о , уменьвает рассогласование 
з экспериментом при Gt' - 1-4 ГэВ 2, но лишь до 20 % (Таблица, 5-я 
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строка). Эту ситуацию можно интерпретировать таким образом, что 
различие между точной м.в.ф. нуклона и модельной м.в.ф. заметнее 
сказывается на Q M ( Q 1 } , чем на Q M ( Q M • Необходимо подчеркнуть, 
что подобная асимметрия между протоном и нейтроном не обязатель­
но противоречит изотопической инвариантности. В частности, ис­
следуя структуру степенных поправок в КХД правилах сумм для Q Mte? 
мы обнаружили, что для протона наиболее существенные ̂ "4">г- поправ­
ки пропорциональны e d , в то время как основной член, соглас­
но (22), пропорционален е„ . Для нейтрона ситуация в точности 
обратная, и как следствие отношение <4>4>> - поправки к основно­
му члену для нейтрона получается в 4 раза большим, чем для про­
тона. 

в) Электрический йормйактор нейтрона и оценка массы нуклона 
Используя формулы (21)-(23) можно вычислить формфактор <rEiQ*), 

который оказывается с хорошей точность» равным нулю в интервале 
от 2 до 20 ГэВ 2 (таблица, 6-я строка). Подчеркнем, что близость 
Qg LGf) к нулю является результатом нетривиальной корреляции 
между диктуемыми формулами (21), (22) значениями формфакторов 
F*(Gfl > <JjJ<tf̂  и входящим в (23) параметром массы нуклона. В 
частности, из требования $-£(ог)=о можно, пользуясь (21)-(23), 
извлечь величину M w , которая в интервале Q 2 = 2-30 ГэВ 2 совпа­
дает с экспериментальным значением с точностью не хуже 10% 
(таблица, 7-ая отрока). 

г) Отношение 0-мСа')/<Тмваг). Согласно формуле (22), отношение 
Q^(a l)/&^(e x> постоянно и равно (-2). Формула (21) (в предпо­
ложении, что <5-е1аг)/§-и(вМ = <тью)/6-и1оУ)при а 4 < 4 ГэВ 2 дает 
для Кэ-цСОМ/ЗДсЛЬвачения, меньшие двух (например 1,6 при 
а г * I ГэВ 2), но при <Лг >. 4 ГэВ 2 предсказания форадл (21) 
и (22) совпадают друг с другом. Отметим, что при Q* г. 6 ГэВ 2 

экспериментальные данные ' ^ также указывают на то, что 
<т£(аМ/&;;сагУ*-2. 
д) Значения йормйактооов ПРИ О г= о Как указывалось ранее, 

нет никаких оснований надеяться на хорошее согласие между форму­
лами (21),(22) и экспериментальными данными при <3»г £ I ГэВ 2. 
Однако благодаря сохранению электрического заряда форыфакторн 
G*ltf\ <т£ (ИМ » вычисленные по формулам (21)-(23), при Q*=Q 
принимают экспериментальные значения 0 и I соответственно. Для 
магнитных формфакторов формула (21) дает Q-^lo)= 4 « u - 6/3 и 
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G Mlo)=tie d=- Ъ ^ ддд дробна T e 0 p M опять (как и при йг>-
I ГэВ 2) оказалась более точной.чеи для нейтрона. Интересно от­
метить, что отношение(\t««\-<г/з)/С\»р-Л/з) , действительно, близко 
к 4. 

6. Заключение 
Таким образом, в довольно широкой областив=2-15 ГэВ 2 расчет 

нуклонных форм$акторов по формулам (21), (22) находится в удов­
летворительном ( а иногда и в хорошем) согласии с эксперименталь­
ными данными. Одним из наиболее нетривиальных результатов можно 
считать вытекающее из (21), (22) предсказание о том, что отноше­
ние Qntaft/uJ,»1) при достаточно больших Q 1 должно принимать зна­
чение (-2), согласующееся с последними экспериментальными дан­
ными "^.Для шюнкого формфактора хорошее согласие между теоре­
тическими расчетами и экспериментальными данными имеет место в 
области 0,5 < Q 1 4 5 ГэВ 2. Как для нуклонов, так и для пи­
она хорошее описание данных удалось получить в рамках низ­
шего ( нулевого) приближения по <* s , без учета подавленных 
по {«(s/irV-o,* и (cis/ir)z~o,04 вкладов, связанных с глюонными об­
менами, мы видели также, что поведение адронкых формфакторов 
в указанных областях изменения Q2- существенным образом, за­
висит от параметров ( типа $„ ), характеризующих размеры рассмат­
риваемого адроне. Соответствующие формулы имеют сложную зависи­
мость от S 0 и Q 2 , при умеренных Q 2 имитирующую степен­
ное поведение ^,(О гН/Ь* $£ в<а*Ыл£диктуемое правилами кварко-
вого счета '*» 2'. Следует, однако, отметить, что основной вклад в 
формфакторы дает при втом интегрирование по импульсам к , имею­
щим виртуальность lkzl порядка масштаба s e , так что ни о ка­
ких приближениях, основанных на малости отношения s 0 / \tf\ , не 
может быть и речи. Наблюдаемый на эксперименте степенной закон 
убывания адронкых формфакторов с ростом Q z есть эффект, целиком 
обусловленный конечными размерами адронов. Он никак не связан ни 
с подпроцессами жесткого перерассеянмя, ни с масштабной инвариант­
ностью на малых расстояниях. Лишь в далекой асимптотике, когда 
вклады простейших 0(*£) - диаграмм (уие.йО^будут подавлены су-
даковским формфактором активного кварка, доминирующий вклад в ад-
ронные формфакторы будут давать диаграммы жесткого перерассеяния 
(рис. 1 ). Только при таких ( по-видимому, астрономических) значе­
ниях передачи импульса в игру вступят малые расстояния, и к рас-
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чету формфакторов адронов будет применим асимптотический анализ, 
развитый в ' 1 - 8'. 
Все сказанное имеет прямое отношение и к другим эксклюзивным 

процессам (таким,как рассеяние адронов на большие углы), а также 
к анализу структурных функций при х-* 4. Во всех случаях, 
когда нет запретов (связанных, например, с законами сохранения) 
на диаграммы без глхюнных обменов, именно такие диаграммы сле­
дует учитывать в первую очередь, _а не тратить зря силы и время 
на расчет, скажем,миллионов 0(<*$ ") - диаграмм, ответственных 
за (астрономически далекую) асимптотику амплитуда рр -рассеяния 
на большой угол. 
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ТРЕУГОЛЬНАЯ АНОМАЛИЯ ПРИ КОНЕЧНОЙ ТЕМПЕРАТУРЕ В КХД 

Н .В.Красняхов 

Институт ядерных исследований АН СССР, Москва 

Яооааховаю рвяжяваотоаого м ч м т ара xoetixol татаркту-
р* матована хмжтово! таерп дош м с ш * aaaao хаж воомхомавж 
реши! В о м н и ! к друга астрофважчаовжх дршошаж. Оооовж вж-
м р м орохсмвляот шшгчшт фааоввх аараюдов в медалях м я т о ­
го оомявмяя ж в КХД. В КХД дрв вакогорож тамаарвщ* Т 0 

лрояохохн фамввж крахах от фавн жовДОнмата к $ам свобожсвх 
жваржав. С другой сторожи, а жмжтовов хроиоджжаижм с ^ 
баввви ПРИВИТ t a n — i t жжрашшж группа о м и ц м $Ц. W «SM,̂ *) 
олаятажжо мщаава ops Т-О. Пра жажотарох таишрахура Т р ороао-
хажвт вооотавовмвм жарапкох пвшщви в КХД. В оаааа о агам 
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веоша жнтераоев вопрос о соомомежжж между температурой декож-
фажмежта Т с ж т емпературой вооотажовюжвя кяражыюж ожмивтржж 
Т F - Недавно Хофт ж» основ» жопожьвовмвя ураввежкл Адлера-
БмявиДжшжм м и о м о дредшыюжажжем о коафажмшт» в КХД пока­
ж и яежвоажжооть жарумежжя кжрыыюй о ж м и т | п в КХД ( д п 3) 
држ нулевой температуре. 

В ваотшоив работе м&. покажем, что ураавежие Адлера-Белла-
Дяакива, выведенное первоначально для 7=0 согрешит СВОЕ вхд Ж 
щжс конечных температурах. При этан аналв 1офта справедлив ж 
джя конечных температур, ми покажем, что 

Т ^ 7, Т 0 ( D 
Кроме того,жэ намго ажаджва следует, что држ температуре 
\<Т i-Ty. оеэмаооов» кваркж приобретают ненулевую динамичес­
кую наосу. 

Напомжш, что при Т=0 уравнение Адлера Балла Дшмгжва ж КЗД 
о п бевмаосошми т р и м ж имеет вжд 

(2) 

Д с =3 - чжояо цветов, Т а - геиераторн группы SU{ л ) . Тенэор 
Г^УДовхетворяет тождеотваи Уорда 

р Т ^ -= Р Т Т - о <з> 

ж условию Боев - еж 
днахжажруя уравнение (2) ж исполюуя гжпвтвеу о юшраямент» 
кварков,Хофт покааал, что щи h ? 2 хярахышя -ЗД-п* И ) 
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пимптпг должна онть спонтанно нарушена. Доказательство дофта 
оожоважо да тон, что аномалия в оравой чаотж уравнения (2) ма­
кет появиться только при наличии в опектре твора бвзмаооовнх 
частиц* В с я кжральжая овшмтрмя • КВД была бы точно!, то зто 
«начало он, что у некоторых баряожог масоа рама нулю. Однако 
држ Л> 2 учат безмасоовых баржожов не воспроизводит аномаль­
ное уражжежже (2), Отметим, что прж доказательстве спонтанного 
нарушения кяральной симметрии Хофт использовал понят уравнения 
(2) условие декаплжкга. Заметим, однако, что ори л »ЗК (к-пв-
лов) деказательотво Хофта жааосредстввжно следует ЖЕ уравнения 
(2) без условжя дехашошга. 

Еолж ни рассматриваем квантовую теорию ш и н с температурой, 
то релятивистская жжваржантжоеть будет потеряна. Для того чтобк 
формально воостажовжть релятивистскую жкварвактвость удобно ввес-
тж •••••! четнрахввктор температуры п * ( п Д =т 2). Прж 
атом в случае Т^О вое фукюшж Гржна будут завжоеть от внешнего 
чегнрехввктора температуры h £ . Нетрудно заметить, что уравне­
ния движения не зависят от температуры. Более того, непосредст­
венным жнчжолежием можно покаьлть, что при Tito уравнение (2) н 
тождества Уорда (3) не меняются. Тот факт, что уравнение (2) 
справедливо и при конечной температуре,непосредственно овязан 
о там, что уравнение (2) обязано своим происхождением линей­
кой расходимости соответствующих одаояетлевых интегралов. Пос­
кольку введение конечной температурн не вносит 5ополнктблъкнх 
улиркрвшптоввх расходжмоотей по сравнению со случаен Т=0, то 
вид уравяенжя (2) не меняется, за исклвчеяжеи тоге, что в ора­
вой части уравнения (2) 

TTbt <•»«.>., О -
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Н-гаиахьтожжав сжеташ, а щур баратея во воем оостовжшш. Та-
жш обрами, u a x a s Хвфга оаражоевтеж оаа в м и н а в ! к жа ох/чай 
ЦА). Отека* как ояадоояа.мв сражу же получав*, что тампораху-

ра воеотажевхаажа жжраажож оааамржж Т Р жа может сеть манки 
тешарегурн дажвифажаажтл Т. (жеравежотво I ) . В случае Т- < Т< 

<гТ,- а отавуг часть урвмежи (2) буду* давать вжжвд баамасоо-
вшГгоадоожаджвва •мме^гоядгтоужк грушш 5 / Ц < И ) . Д и 

того чтобн жабежвт» дололвжтельжого вклада в правую часть урав-
жажжж (2) , беамаоеоаяе кварк» дожвжа пржобреотж щ а Т с < Т < Тр 

жажулавув диаи'модуц массу. 
Я благодараж ВД.Мвгвееву ж АЛ.Тавхадждэа аа аолоажна 

обсуждежжн. 
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AVERAGE MULTIPLICITIES IN DEEP INELASTIC PROCESSES 
AND THEIB INTERPRETATION 

A.V.Kiselev, V.A.Petrov 

Ins t i tu te for High Energy Physics , Serpukhov 

1. INTRODUCTION 

For a more detailed check of QCD in hard processes it is neces­
sary to measure besides usual structure functions - 'the* quantities 
related to final hadronlc states: inclusive spectra of hadrons and 
jets, average multiplicities, etc. In particular, a great attention 
is being payed to measurement of average multiplicities in deep-
inelastic lepton-hadron processes both total (Я™—) and those of 
hadrons flying along and opposite to current direction in hadronic 
c.m.s.'J>2/, m what follows we shall designate these quantities 
as Ny and N B, respectively. 

If one starts from "standard" parton model then such experiments 
are to give information about fragmentation properties of the quark, 
knocked out from the nucleon (8_) and; those of the remaining stuff, 
which we call "diquark" (Ng), 

A common property of various experiments at energies of hadronic 
system in its c.m.s. W£ 18 GeV consists in systematical excess of 
Np over N B ' 1 , 2 / , > Qualitatively this phenomenon can be explained by 
the fact that diquark, as a rule, must produce a nucleon (or an iso­
bar ), carrying away a significant fraction of the diquark momentum. 
Thus the effective energy available for particle production in tar­
get fragmentation region is lower than energy available for particle 
production in current {struck quark) fragmentation region. Quanti­
tative calculation at above mentioned (relatively low) energies 
demands concrete phenomenological assumptions about, for example, 
fragmentation function of the diquark, and cannot be realized in 
the framework of quantum field theory, at least on its present 
level. 

At Q high enough standard parton model needs quantum chromodyna-
nical modification in order to account for the scaling violation in 
structure functions. The same relates to the hard processes with 
semiinclusive production of hadrons. For all that it is possible 
to preserve usual interpretation of Np as multiplicity of the struck 
quark fragmentation products. As far as Ng is concerned the picture 
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changes drastically. At Q 2 high enough there begins intensive brem-
strahlung of gluons, fragmenting then into hadrons. The role of di-
quark in Nn becames less and less essential, and the main contribu­
tion to Ng is due to the cascade production of heavy gluon jet (see 
below in more detail). Under such conditions the task of determi­
ning of Np and S?g can be reduced to the calculation of multiplici­
ties in quark and gluon jets in the framework of perturbative QCD, 
supplemented with hypothesis of soft blanching for transition of 
quarks and gluons into hadronic states' , 4'. 

2. INCLUSIVE PRODUCTION OF HADRONS IN DEEP INELASTIC PROCESSES 

Let us consider a deep inelastic process 
i t p ^ i ' a (i) 

In single-photon (W-boson) approximation process (I) is equivalent 
to the process of absorption of virtual photon or W-boson with four-
momentum q = I -V by proton 

У* + p-. X (II) 
In the rcnorraalizable theories structure functions of process (II) 
which we designate totally as F(x, Q 2 ) , where Q z = -q2, x = Q2/2pq, 
are proved to factorize (with an accuracy of 0(1/Q2)): 

F(x, Q2)= 2 J % F^f, Q2. ^)tt(z, Q2) (D 
i x 

where i means the species of partons, F^ can be interpreted, at 
Q 2»Q^ )as a structure function of a parton process 

У* + i-Xi (III) 
with Bjorken variable x/z, and f.(z,Q2) is the i-type parton dist­
ribution function on parton momentum fraction of proton momentum. 
Parameter Q§ has double meaning. In process (III) Q2, staniis for in­
variant mass square of parton i (this is so only at Q o « Q 2 ) and 
in fi(z,Q2) parameter Q2, means the normalization point of composite 
operator,which in its turn defines z-distribution function of par-
ton i. In the langauge of Lipatov-Kogut-Susskind parton model Q2, 
in fi defines the depth at which the parton z-distribution is pro­
bed.The L.H.S. of equation (1) at Q 2 \ Q2, » II2, II is a mass of the 
order of 1 GeV (proton mass, for example), independent of Q2 - the 
fact following from renormalizability. 

In QCD the concept of renormalization well defined in perturba­
tion theory looses its meaning at Q§ ~ H 2 because nonperturbative 
effects connected with confinement become important. Further on Q2, 
is supposed to lie on the boundary between perturbative phase of 
QCD and nonperturbative one, i.e. Q 2 « Q while an effective coup­
ling constant is yet small enough es(Q2)/2v<l. Thus all nonpertur-
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bative effects are consentrated in f i(z,Q§) and Q^ acquires a status 
of a physical parameter,connected with the confinement radius.It is 
worth to note that f^z, Q^) in gauge theories can be interpreted 
as a function of parton momentum fraction distribution only within 
definite class of gauges, in axial gauge, for instance 

«уА р = 0 (2) 
In this case z = nk/np, where к is a parton momentum. Relation (1) • 
may be symbolically presented in the form 

In order to obtain the expression for inclusive epecvum in the 
process 

у* + Р -h + X <IV) 
one needs to "differentiate" (1): 

dF 
d 3h 

dF 
a* v Г d z r i * 4. v i 1 

d h 

df. 
_ i • 
3 d h 

(3) 

d 3 h = dhV(2ir)32h . Relation (3) can be presented by the fol lowing 
f igure 
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Usually when discussing inclusive hadron spectra in deep inelas­
tic processes one restricts himself by the consideration of the 
first term in relation (3) only, which defines at large Q 2 the dist­
ribution of particles produced with positive rapidities in hadronic 
c.m.s. As it will be seen below the contribution of the second term 
in (3) to total multiplicity at fixed x becomes less and less essen­
tial when Q^ grows.Nevertheless the rejection of the second term in 
(3) would result in violation of general requirements us, for ins­
tance, sum rules reflecting four-momentum conservation. Further on 

1 ho + hn 1„ n+ we will discuss distribution on rapidity y= «£n~—-Л= =£n — = 
2 V»,, 2 b_ 

n which we rewrite in a normalized form 
V^ 2 + "l _ 1 djj. dn 
F(x, Q 2 ) g . S / ̂ ( f , « 2,Q2)f. ( 42, z ) [_^ + _ i ] f < 4 ) 

i x "* 
where dj^/dy is a rapidity distribution density*^ in the process 

y' + i -. h + X A (Y) 
and dfî /dy is a rapidity distribution density, corresponding to vir­
tual process 

p -i + h + (X - Xx) (У1) 
In process (II) у varies within the region 

2(P + q) + 

-У < у • Ir - <Y f 

where У = ln[~ * -J(y)2 - 4] .fci *£ , W 2 = (p+q)2 is a square of 
final hadron states energy in the c.m.s. p + <f = 0 and fn (Pffl+ 

is the c.m.s. rapidity, which is equal to zero when p + q = 0. 
Further on we work always in хае c.m.s. p + q =0. In process (V) 

rapidity changes within the limi. 
_ Y < y , Е П

2 < * : " > . * < ? , 
w 

where ? = Сп[д + V(j) - 4], W is the mass of final states and 
2(k+q)<. 

(D means rapidity of the c.m.s. for system X. in the total 
W x 

process c.m.s. Here 
~2 2 z-x 2(k + 4)+ 1-х 
W " *2 П. * J— * f n 2=x - У 0 . 

«) 
Here nnd below the 01—.tlon on .peel .» of detected iMdron. la Lpl ied unless I t i s 

mentioned Bpart. S4 



In the p + 5 » 0 system the kinematically available region of 
rapidities for particles produced in process (IV) at fixed z is of 
the form 

-Y + y 0 < y < Y (5) 
The region where rapidity of diquark fragments varies in subprocess 
(IV) at fixed z looks as follows: 

-Y f tn £ f < y < - Y + 'n ±2 tin — | , (6) 
2 2 2 

where M" = (l-z)(M + Ч-/ 2) is an upper limit for diquark system in­
variant mass. 

After integration upon z in formula (4) regions (5) and (6) 
spread to the total region 

- Y < y < Y 
More detailed analysis shows that provided 

W>|(l-x)(ll2+ Q 2/x) (7) 
di<j>_-ark contribution is wittingly absent in the region 0 < y< Y.For 
example, if (i = m„, x = 1/2, Q 2 = M 2 the condition for absence of 
diquark contribution to forward moving particle production consists 
In that 

W ^ 2 0 GeV 
Condition (7) is, of course, not an exact one because of some 
uncertainty of the parameter Q§. But some qualitative conclusions 
can be drawn: for instance, ' eavier diquark fragments leave the re­
gion of positive rapidity more rapidly. 

On the other hand at low energies as one can see from (5) and (6), 
fragmentation regions of quark and diquark overlap. 

So at high enough energies inclusive spectrum will mainly be 
defined at y > 0 by secondary particle spectrum in process (V). The 
position of the central part of the rapidity region available in 
the c.m.s. of process (V) can be estimated at fixed x by taking in­
stead of F. its nonsinglet part, i.e. 

2Cpf-l 
x 2 2 t 1 " " / 2 ) * 

n 2 2 
4 d I c 2 a_(k*) ,. 

where f = / — 2 , C-, = (N - D / 2 N , N - i s a color number.For Qo2 
2l7 

о 
Q ) we use the expression following from quark counting 

rules' e/6?. 
2. „ 2 П З Р - Д 

i

± ( z . %)~ (J"2) 
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where n g is a number of pas3ive quarks (spectators). In our case 
n s p = 2. Then the position of spectrum central part for process 
(IV) in the system p* + q « 0 is determined by the quantity 

i < y° > a t ф ^ n ^ ) 
Formula (8) holds at f > 0. At f = 0 i.e. <J2 = Q 2 

±<yo> =£n J- (9) 
4 o 

where parameter 5 analogous to Q Q separates perturbative phase 
from nonperturbative one along timelike direction. One can see from 
(8) that the position of spectrum middle point in process (V) tends 
to zero rather slowly (2C„f -In. ^ 4 " > 

\ <y > — _ • 0 
2 о о 

d2 , 
x -fix 

Whence it appears that with the increase of Q 2 process (V) will 
form the spectrum of process (III) within even wider region of ra­
pidities. As for diquark contribution there is a limit on its inva­
riant mass 

H*<(l-x)<H2 + Q2/x) 
which makes diquark contribution even less essential at fixed x 
when Q grows. Indeed integrating the diquark contribution to total 
multiplicity 

F(x,Q2)ji = 2 / ^ii (Q 2,Z)F.(Q 2.Q^,^)f.(z,Q 2) diquark i x о ^ * о 
we obtain 

— - 2 N.. , < max n.(Q , z) diquark - x < i < 1 i o' 
- = ~ 2 

i.e., N.. is bounded from above by a Q independent value. 
о So contribution of process^(IV) dominates at Q -• «> . However at 

fixed Q the average energy <W> of process (IV) in its own c.m.s. 
is much lower than the total energy W 

2C^ 
^sp + 2 ° ^ 
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For instance, if Q = 100 Gey***, Q = 1 GeV , Л = 0.1 GeV 

< W 2 > ~ 0.1 W 2 

i.e. <W>ar 3 GeV at W = 10 GeV. Under such circumstances one can 
hardly expect that LLA is applicable to the calculation of spectrum 
in process (XV). 

Indeed in this case secondary particles must be the products of 
quark and gluon jet fragmentation. However invariant masses of the 
jets are too small for one to use the approximation which allowed 
the authors of rets/ f to obtain the expression for spectra and 
multiplicities in parton jets. This is confimed by low values of 
experimentally observed multiplicities. For example, at W « 1 0 GeV 
N c n in process ур-»ЬХ is approximately equal to 4 for particles mo­
ving forward in hadron c.n.s. 

Thus at available energies transition of partons into hadrons is 
mainly of nonperturbative character. At the same time usual struc­
ture functions which we calculate without paying attention to final 
states are satisfactorily described by the expressions obtained 
within the framework of QCD at x not too close to 0 or 1. 

Leaving aside a doubtless possibility of describing inclusive 
spectra in deep inelastic processes with the help of phenoraenolo-
gical parton models, let us turn directly to experimental data. The 
main feature of inclusive rapidity distributions of charged hadrons 
in hadron c.m.s. measured in processes Vp-> p hX (W <10 GeV)' , 
HP - fihX <W<14 GeV)'- l 0 /' is quite distinguished asymmetry : the 
spectra have a maximum shifted into a region of positive rapidity. 
As soom as diquark contribution to positive rapidities region dec­
reases with an increase of W the maximum mentioned above reflects 
obviously the structure of inclusive spectrum in subprocess 
У*+ quark - h + X. It follows particularly from the results of 
ret.*™' where spectra of charged hadrons in process iip-ЧЧЛ at 
W 2 < 450 GeV 2 and Q 2 < 1 0 0 GeV 2 with laboratory momentum above 
6 GeV have been measured, Hadron spectrum for y > 0 has rather sharp 
maximum at yx 1.5 (y< 4). The value y* 1.5 is in a satisfactory 
agreement with the estimates of mean value 1/2 <y„> by formula (8) 
from which one concludes that hadron spectrum in subprocess (IV) is 
approximately symmetrical in the c.m.s. of subprocess (V) and 
reaches its maximum value at у = 0. Of course one should bear in 
mind that inclusive spectra in deep inelastic processes are measured 
to our regret, not at definite energies but at energies belonging 
to some interval. That is why the discussions mentioned above are 
mainly qualitative ones. 

Thus available at present experimental data on inclusive produc­
tion of hadrons in deep inelastic processes reveal the asymmetry: 
particles with positive rapidities are produced in a quater number 
than those with negative rapidities. 

97 



3. AVERAGE MULTIPLICITIES IN DEEP INELASTIC PROCESSES 
AT Q 2 - » 

What will happen with the increase of Q ? As it was mentioned 
above subprocess (V) plays the leading role. In general one must 
take as i parton both quarks and gluons. However the contribution 
of gluons is suppressed in comparison with quark contribution at 
fixed x and Q 2 high enough. Thus the subprocess 

у + quark •* h + X 
plays the leading role. 

The total average multiplicity is consequently determined by the 
expression 

N T O T

F ( X ,Q 2 ) = 
l 

* / 
J. X 

dz 
T * i < 4 »Qo» I>fi<2- <#i ̂ ( Q 2 a 2 - ) + 

+ ' 'diquark 1 4 *' Q 2 ) (10) 

> r e » H i n , to»» lr const at О** -»~ and fixed 1 x, i i s a spec ie s of 
quarks, 

Let us clarify now what is the contribution to K ™ . and also to 
N F and N B coming from the firet term in (JO) which we designate 
by NSL_. F(x,Q2). The problem has already been investigated in 
ref.'11'. Here we present only the results supplemented by a more 
detailed discussion of parton jet fragmentation. It is convenient 
to make calculations in axial gauge (2), taking as a gauge vec­
tor W„,i.e. total momentum of final hadron state in process (IV). 
In the c.m.s. this gauge comes to temporal one: 

A 0 = 0 
In A 0= 0 gauge both the fragments of struck quark and the frag­

ments of massive off-shell gluons emitted by the target-quark make 
contribution to Uj™.. We designate their multiplicities S + and N_, 
respectively (К™, = N + + N_). It is necessary to clear up; in 
what direction the fragments move. It concerns mainly the soft par­
ticles, because namely they are considered as responsible ones for 
the size of average multiplicity. 

First let us consider the fragmentation of the struck quark. Its 
off-shell mass is large enough at high Q 2. It follows from kinema­
tics that quark would be able, in principle, to emit soft particles 
backward, i.e. opposite to its momentum. However this does not take 
place due to dynamical reasons. As it has been shown in refs. ' ' 
at soft momenta destructive interference in Feynman diagrams leads 
to effective ordering of production angles in consecutive decays of 
partons. It also shifts the spectrum towards higher momentum than 
one thought of earlier. In our case it leads to the fact that pro -
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ducts of the struck quark fragmentation «eve wholly along the cur­
rent direction. Thus we have 

1 
_ _ f *i<*2>x" 4 V«2'«o.;> fi<«o' z> 
N_ = N + = — — — — — — — — — — — f (11) 

F(x, Q 2) 
where N is average multiplicity in a jet of i quark in A =0 gauge, i о о 

As at W high enough quantity N^ does not depend on quark species, 
^i^a * e o b t a i n f r o m (1]> 

NF-r N q(W 2). 
Let us underline that Np depends essentially on total energy of fi­
nal state W only but not on Q 2 and x taken separately - the fact 
marked out repeatedly in experimental works/12/. On first sight from 
the point of view of LLA to destinguish Q 2 from W 2 would mean 
an excess of accuracy. However when one calculates average multi­
plicities he in fact already goes beyond the limits of standard 
procedur of accounting for leading teres. For example, the use of 
k 2 instead of zk 2 leads to quite different (and wrong) answer for N. 
At present the opinion is popular (confirmed by the direct calcula­
tion in high orders) that rigoroue account of kinematics in LLA 
takes into consideration automatically corresponding corrections. 

On the other hand in the same temporal gauge we have 

Хе 2(Н(1Г) + N g O O ) 
„(V) = 2 _ в 2N ( Ю (12) 

2 e Z ч 

i i 
and, consequently, 

JL(W 2)~ | S t _(W2) (13) 
F * е е 

As we see from (13) the average multiplicity of particles moving 
along the current in deep inelastic process coincides with the 
half of average multiplicity in e+e~-annihilation at the same 
energy. 

For the first time the quantity Я + _ has been calculated in 
refs.' • /. Further it has been shown in ret.' ' that the expres­
sion for N . _ is modified due to destructive interference (menti 

e Te oned above). At present it is of the form 
N + .(W^-expv/ 2^ fa, 4 , е е "b fit 

where 12ffb = 11N-2N , N. is a number of active flavors. 
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Formulae of type (11) more than once have appeared in litera­
ture. As to the target quark contribution to NIJL-, it has been 
found for the first time within the framework or perturbative QCD 
in ref. ' ^ Л Target fragments are produced from decay of hard gluon 
Jets, they flow ^in A 0= 0 gauge) opposite to the current, i.e. make contribution to Hg 

1 -

B B = N 1-F(x, Q 2) i 

x ¥±(Чг, И , — ) r q (z)N g(|k*|—, Q o)f i(k 2/z, y). (14) 
In formula (14) P (z) means the nonregularized function for decay 

Q q-»qg, and through N„ we designate the average multiplicity in 
.gluon jet. 

Function p!Jg(z) has the singularity of (1-z)" 1 type. In structure 
functions calculations the singularity is regularized by the contri­
butions of virtual processes. In our case, when one selects final, 
"real" states, the singularity of decay function regains uncompen­
sated. But according to the hypothesis of soft color blanching,had-
rons are produced through decay of parton colorless clusters with 
a mass of the order of few GeV' 3» 4'. For simplicity we suppose that 
it coincides with parameter QQ. Then the limitation at large z 
holds 

|k 2| il2>Q2 o r z < 1 ^ o _ 

Taking into account all what was said above it is easy to obtain 
the formula 

•^U 5! Q2 \jr«^ ~ V I 4 ^ Q ° 
d I*2! Г »gq °S ( k T^} - 2 z -2 

В J o . О. —о i оI О о 

о — 
The expression on the R.H. S.in its turn at W -»»•• is nothing but N_ 
and we come to equality (accounting for (12)) 

N B = - 5 + _ (V ) (15) 
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It follows from (13) and (15) that at W 2 ~ — the relations 
hold *) 

JL(W2) 
F - 1. S B(w 2) 

W w 2 ) 
(16) 

i. 
N . .(W 2) e*e 

When deducing (16) we have omitted nonperturbative diquark contri­
bution discussed above in detail which is energy-independent. 

4. INTERPRETATION OF N p AND N f l 

Now let us discuss some principal problems, connected with the 
interpretation of formulae (16). Results (16) are in full agreement 
with the ideas of parton model about hard processes. Unfortunately 
such correspondence depends completely on our wish. Indeed consider, 
for instance, the case when vector n determining the axial gauge, 
coincides with momentum of the struck quark. Then the total multip­
licity is accumulated (in the sense of main leading term) entirely 
through decay of gluon Jets emitted by target-quark, i.e. 

NTOT * "-
N, 2 =* - 0 at W 

It however does not mean at all that most of the particles are pro­
duced in the target fragmentation region, i.e. RyOT = Яд. In rea­
lity gluon jets are emitted in the given gauge by the target-quark 
symmetrically relative to the direction of its movement **) which 
leads again to formulae (16). Nevertheless the picture of final 
states creation has considerably changed and we are not able to 
interpret, say, N"r as the result of the struck quark fragmentation. 
Still more noticeable deviations from parton pattern will take place 
in Feynman gauge. 

All this makes us convinced that perturbative QCD at modern le­
vel does not allow one to interpret unambiguously the experimental 
data in terms of microprocesses underlying observed phenomena.Thus 
the interpretation of experimental results is, in general, quite 
conventional in QCD. Of course it does not concern the verification 

Нр/Ив- о-хГ 
An analogous phenoaenon was observed in e*e~-annihi]ation Investigation in QCD . 
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of quantitative predictions of QCD, connected with the behaviour 
of gauge invariant features of physical processes, such as, for 
Instance, average multiplicities considered in the paper. 

S. CONCLUSION 

As a result we come to the following conclusions: 
1. At modern energies the jet evolution in deep inelastic pro­

cess is mainly of nonperturbative character. 
2. With the increase of W 2 the leading contribution to average 

multiplicity comes from parton subprocess due to production of mas­
sive quark and gluon jets and their further fragmentation, as di-
quark contribution becomes less and less essential. 

3. At asymptotically high W 2 the ratio of average aultiplicities 
of particles, moving along the current and opposite to it in had-
ronic c.m.s., tends to unity. 

4. The ratio of the total average multiplicity in deep inelastic 
process to average multiplicity in e+e"-annihilation at the same 
(asymptotically high) energy tends also to unity. 

5. Interpretation of Np and NQ as average multiplicities of cur­
rent fragments and target fragments respectively takes place in 
definite gauges only and consequently it is no more than a gauge 
artifact. 

Authors are grateful to V.V.Ammosov for useful discussions of 
the obtained results. 
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СВЕРХТОНКОЕ РАСЩЕПЛЕНИЕ ОСНОВНОГО УРОВНЯ ПОЗИТРОНИЯ 
С ТОЧНОСТЬЮ ДО о*&1а 

Н.Е.Нюнько, Ю.Н.Тюхтяев 

Саратовский государственный университет 

Р.Н.Фаустов 

Всесоюзный научно-исспедоватольский центр 
по изучению свойств поверхности и вакуума, Москва 

I . ОСНОВНЫЕ Ш Ш К В Ш Ш Т Ш Ш Ы Ш З ПОДХОДА К РАСЧЕТУ 
, ОПРАВОК ЮШКА d*t*Wl В СВЕРХТОНКОЕ РАСЩЕПЛЕНИЕ 
ОСНОВНОГО УРОВНЯ ПОЗИТРОНИЯ 

Аналитические выражения для сверхтонкого расщепления основного 
уровня водородоаодобного атома в обдам случае, наряду с логарифми­
ческими ао константе тонкой структурнi /»«1/ включают поправка, про-
доооионалыше отношении масс частиц Ллщ^/. велачана которых в нас го­
ж е е время не установлена окончательно. В связя с зтам опенка теоре-
глческого значеяля указанно! велячяш в ах сравненае с экеперамея-
тальямш данными затруднены. 

Такая сагуаши всклочена при исследование уровней энергии позят-
роная, который наиболее полно описывается методами квантовой элект-
роданамака а является особенно удобным объектом для проверки её о с ­
новных положена*. 

Теоретические исследования сверхтонкого расцепления основного 
уровня позитрония с точностью доДОн( интенсивно ведутся с начала 
70-х годов. В настоящее время для величины зтого расщепления принят 
результат , полученный в р а б о т а х ' ^ ' ^ ^ 
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Наш установлено новое теоретическое значение сверхтонкого рас -
аепленвя основного уровня поэятронвн, которое обосновнвается в нес­
тояще! работе дополнительным» исследованиями ряда процессов взаимо­
действия электрона я позитрона в пряном я аннигилюионном каналах. 

Исходным пунктом для анализа структуры уровне! энергии позитро-
няя является основное уравнение кяввиаотеншюльного подхода 

(Е-ге,)̂ (й.̂ г»5̂ ЦПГ<Кч;Е)ЧФ. t?W^% ( г л ) 

Здесь Tft - волновая функцяя связанно! сястемы с полно! энергией Е • 
КвазшютешшалУ может быть выражен с помощи) ядра взаимодействия 
электрона и позитрона. 

Для полно! функции Грина двух частиц б- существуют различные ин­
тегральные представления и в частности, 

С « t . t t ' X f r J - f r t f t + K f r ) . CI.2) 
где |,-функция Грина свободных частиц ̂ ^(МОУ-кулоновская функ­
ция Грина ;Ке*4£. t£-кулоновский потенШ1ал;1^£,||Ь -дяраковские 
матрицы 1-ой частицы; К - ядро взаимодействия;ХОС-Х^ • 

Представим квазипотенциал суммой 
Y»KE*VY. «.в) 

Оператор K i включает всевозможные процессы обмена кулоновскями фо­
тонами n «v. л> . m 1 

Символ 4> означает проектирование на положительно-частотные состоя­
ния, например , • _ _ „_ 

Здесь tt{ - дираковские бисшшоры часгш; символ— означает дираков-
ское сопряжение. ОператорA^I'ii^Az. определяемся через единичный 
J и операторы проектирования 

Другие части квазидотенциала 1.3 задастся выражениями 

Здесь _ 

(1.6) 

(1.7) 
(1.8) 

(1.9) 
CLIO' 
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CI.II) 
Ядро вэаямодействия К строится с помощью р я д а ^ 

il« «*'•*"•... (I.I2) 
Члены ряда могут быть представлены трафичееки. В этом случае основ­
ной частя ядра ̂ "соответствует простейшие однофотонные диаграммы в 
прямом и акнигиляцг .„ом каналах 

JC^-XT+JCA. Ci.13) 
г д е К т - е ^ - ^ - Ч и ^ ( ^ - ^ ) - ^ ci.14) 

КА »-еЧУ^СК^^^Е,о),Т>^;г--^й (1Л5) 
Выражение ^ ' зависят от выбора теории возмущений. Обычна это-оум-

ма неприводимых диаграмм 2-го порядка по d - Для учёта эффектов свя­
занности следует считать, что соответствующая часть ядра К^предста-
вляет собой кулоновскую лестницу, пересеченную фотоном Л.улоновским 
или поперечным/. 

Решая уравнение (.1.1) с кввзиаотенциалом ( 1 . 3 ) , выраженным с помо­
щью ядра (I . I2) , методами теория возмущений, можно получить поправ­
ки к сверхтонкому расщеплению от обменов одним или двумя поперечны-
и^ .. любым числом кулоновских фотонов. На практике оказывается, что 
с точностью д о ^ м А достаточно огранячикя расчётом одно-, двух- и 
трёхфотонных взаимодействий. Учитывая это, запишем 

А Е » дЕ* *• А Е * • дЕр, (I.I6) 
где 

&Ъ - ^ М Ч О + а д к * +(&Д)ЛИ«<сИ ( I I 8 ) 

Важно отметить, что входящие в эти выражения одно- а двухфотон-
ные диаграммы в приближении^,'4'"^(Мв^немедленно дают известное 
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значение сверхтонкого расщепления основного уровня позитрония с точ­
ностью до А* . Использование точного выражения для кулоновсксй функ­
ции *fc при усреднении квазипотенциале позволяет получить поправки~ 

4 * ( » ы от этих диаграмм. Кроме того, на основе соотношенийU. 17 ) -
- ( I . I 9 ) могут быть исследованы соответствующие трёхфотонные обмены 
в позитронии. 

2 . ШЭДСЙ КАШ ВЗАИМОДЕЙСТВИЯ. ПОПРАВКИ ~ <*'(«<* ОТ ОДНО-. 
ДВУХ- И ТРЕХФОТОННЫХ ДИАГРАММ 

Подставим выражение для яшраХ I . I 2 в общие формулы (1.ЩС1.19) 
и рассмотрим сначала поправки к уровню энергии от одно- и двухфо-
тонных взаимодействий - » ff 

Методика расчётов, применяемая нами, сводятся в основном к следу­
ющему. В связи с выделенной ролью ядра ftt используется кулоновская 
калибровке для фотонного пропагатора. При этом однофотонкое взаимо­
действие в прямом канале разбивается- на кулоновскую и поперечную 
части. Соответственно разбиваются я двух- и более фотонные взаимо­
действия на чисто кулоновские, смешанные и чисто поперечные. Инте­
грирование по энергетическим компонентам проводится с учётом инте­
грального представления для 8"-функции Дирака, что позволяет факто-
ризовать кратные интегралы и проводить каждое из возникающих инте­
грирований с яомолью теории вычетов/4/. Получившиеся в итоге функ­
ция трёхявдульсов подлежат дальнейшему интегрированию по этим пере­
менным, матричная структура элементов амплитуды рассеянияТ +приво­
дится к характерной для сверхтонкого расщепления форме Д ^ ; Е ) ' ^ д . б г 

учётом симметрии подынтегрального выражения относительно переменных 
интегрирования. 

Наиболее тонкий момент анализа трехмерных интегралов - разложе­
ние подынтегрального выражения по степеням d . Как правило, оказы­
вается возможным ещё до интегрирования оценить порядок вкладов 
частей рассматриваемого интеграла в сверхтонкое расщепление уровня 
энергия. В частности, логарифмические поправки порядка <1ьЛм^.< как 
показывают детальные исследования, всегда обеспечивает интеграл, ко­
торый в дальнейшем условимся называть стандартным: 
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Дополнительные степени » м м q в числителе подынтегрального выраже­
ния приводят х вкладам-ч*.6 • Фактически разложение по el и выделение 
поправок'»»^!»* проводится посредством сравнения о интегралом Гег • 

Переждем х изложению результатов вычисления логарифмических 
вкладов в сверхтонкое растепление основного уровня позитрония. Ос­
новной в х о д от взаимодействия с кваэмлотенциаломвл^гХс+чГе жмеет 
порядок dMLd^.&V. Диаграмма обмена одним поперечна! фотоном кроме 
основного вклада 4 , 4 / 6 , 7 / обусловливает дополнительно и логарифми­
ческую поправку^*4|А / а /. 

Основной вклад от большинства двухфотонных диаграмм имеет порядок 
о £ Это позволяет при проектирована дираковсквми бисшшорами поло­
жить там, где это не приводит к расходимости в ультрафиолетовой об-
лаоти^*|^»Щ. Наибольшие же вклады от диаграмм [ К & Х ^ * & 6 ё З £ т З + 
и вычитаемой итерации (К^^+ОДСОДвмеот порядок ot*. Расчёт итера­
ционной части тривиален - она оводитоя к однофотонному обману. Что 
квсаетос процессов £Kr&Kc+Xc6»KrJ+' т о »Д*°ь черезвычайно важно 
учесть отличие факторов £» и €^ от щ в бшшиюрах. При этом суммар­
ный вклад таких диаграмм, пропорциональныйi^t/nd. . обращается в 
нуль. 

Конкретные значения. ш>лравок*1Чм1от перечисленных диаграмм, а 
также от неприводимых двухфотонных графов, соответствующих я д р у ] й , 
приведены на рис.1 / 9 , 1 0 / . 

(4 ) <»> (С ) 

""""«> - ' -со " / * w 

г \ * • • . 2ч ' 
С 9 > Р в с . 1 < h > 

Здесь точечная линия сямволизирует кулоновышй обмен, прерывистая -
обмен поперечным фотоном. 
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На практике оказывается, что любые четырёхфотонные диграммы, а 
такт графы, включающие более двух обменов поперечными фотонами, ло­
гарифмических вкладов интересующего нас порядка • сверхтонкое расще­
пление основного уровня, не вносят. 

Поправки от трёхфотонных диаграмм, содержащих обмен одном или 
двум* доперечннми фотонами запишем в виде 

д Е 5 - АЕ? * *Е?. С 2 - 3 ) 

•«•нн. *ЩШХ)+'0Ь\ШХ*««нн] 4-симм. |f e > 

Представляющие наибольший интерес д м анализа трёхфотонные взаи­
модействия ж соответствующие ям поправки tfffifct приведены на ряс. 2 

дЕ(м х п -rf'wW-1-

чЖ-^ХН*-! 
Рис.2 

Учитывая результаты, изложенные выше, получаем суммарную поправ­
ку от взаимодействий в прямом канале к сверхтонкому расцеплению ос ­
новного уровня позитрония, равную 

3 . ПОПРАВКИ ГОВДКА. o t ' l u A ОТ ДИАГРАММ АННШИЛНЦИОННОГО КАНАЛА 
Учёт матриц зарядового сопряжения С в определении полной функции 

Грина позволяет по аналогия с работой ̂ з а п и с а т ь квазшютенцяал. в 
терминах амплитуды рассеяния единым образом в прямом и аннигилаци-
онном каналах взаимодействия. 

Простейшему аннигиляционному взаимодействию К д ( I . I S соответст-
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вует элемент квазшютенииала _ 

YA-^KAU.M^ .-w-r4tfi4**itu;if <gi- ( 3 I ) 

Двухфотонная аннигиляция в позитронии Хд отроится ™c помощью итера­
ционной процедуры в уравнении для ядра взаимодействия 

Чтобы получать аналитическое выражение для вклада в сдвиг уровня 
от процессов взаимодействия в аннигиляционном канале, достаточно за­
менить в выражениях А|*С2.1) и4^2.3) обмен поперечным фотоном Хтна 
»0> у_4УУ и ]£**' на К 2 * • ч т о приводит к следующим поправкам; 

4-* i t t^4 i^^wi**i l^wubi + - сз.з) 

•<*Ч -к̂ й*и**клкт]4*с«ии. •едв^-едои* 
+«тфс*ш. -(^^^«(дГ-ожн. tft l^lLUyity lf«> 
Специфической особенностью анннгиляционного взаимодействия явлается 
наличие У -иатриц.не имеющих принадлежности к току той или иной час­
тицы. Для преобразования матричной структуры в "этом случае праыеня- ' 
ется теорема Фярца. 

Отметим, что однофотонная аннигиляция С3.1)не вносит логарифми­
ческого вклада интересующего нас порядка. При исследовании двухфотон-
ных процессов единственная поправка порядка jHrni получена от два -
граммы однофотонной аннигиляции с вершинной вставкой 

(AEi>r

s<fcl[KTfiJC»**MM:ulfc> (3.5) 
Выделяя здесь положительно-частотную составляющую свободной функции 
1рина §•. , приходим к выражению 
В результате теорема Фжрца используется лишь в части ( j £ ^ и, как по­
казывают расчёты, для выделения логарифмического вклада можно исполь­
зовать приближения 
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Училывая в (3.6) явный вид кулоновской функции ^ ( f ) • возможность ис­
пользования приближения fyfy*»%($ • после иитегрироваюш п о Ц и < ^ 
аолучш 

Отметим, что при преобразовании матричной структуры достаточно 
удер«ать степень jfc . Тогда празеодим к стандартному интегралу, при­
чём выделенный вклад сходятся в области больших||Г|. Поэтому здесь 
вопросов перенормировки мы не касаемся. В результате имеем 

(гёЯДОд). *£№?.<&> • for* 0.9) 
Перейдём х трёхфотонямм диаграммам аннвлияионного канала. Ранее 

в работах 1 ^ 1 «12/ ашю оокмано, что для ряда таких процессов основ­
ной вклад имеет порядок «гЧи4 • может бить просто получен в прийли-
шваи^^Л) « - S f f ) > Для часта кваэшютеншала 

[frtojc* • ОД\КЛ+ ( З Л 0 ) 

возникновение логарифмических поправок связано с поведением соответ­
ствующих диаграмм вблизи порога рождение честил /расходимость при 
Е 1 = 4 ш г / - Диаграммы двух- а трёхфотояной аннигиляция, не амещяе 
подобных особенностей, не вносят логарифмических вкладов в сверхтон­
кое расцепление. 

Нетрудно показать отсутствие логарифмических вкладов от диаграмм: 

Третье слагаемое содержат два фактора типа F 'S££*2{K3' '* В с м у з а ~ 
вясимостяХ^ лишь от | интегрирование факторязуется я стандартного 
аятеграла не возникает. В двух первых слагаемых достаточно учесть 
лишь положительно-частотную часть функция ( 0 , но я при этом нали­
чие лианах степеней переменных интегрирования в числителе оодннте-г 
гральяого выражения, приводит к отсутствию логарифмических поправок. 

Рассмотрим приводимые трёхфотонние диаграммы с ядром j f A , для 
которых сдвиг уровня имеет вад 
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* W • <t'l(X*Ml'> "- fo * tfE * ft . (3.12) 
Первое слагаемое < |(Хд1+1> н е содержит стандартного интеграла из-за 
отсутствия множмтеля(^-^)"г. Второе слагаеное запишем в виде 

tfE «l^<№№*a,f)|0UV№ft>- Сэла 
С требуемой точностью дляЬК. имеем выражение 

Сравнение интеграла/К^ со стандартным показывает, что для получе­
ния логарифмических поправок следует учитывать в числителе степени 
переменное р* , и наоборот, степени переменно! К* исключить из рас­
смотрения. В этом случае, используя симметрии подынтегрального выра­
жения, имеем j>« n 

Ф-Л»М»ГДОр ttft-fl см© 
На этом этапе легко увидеть компенсацию логарифмических поправок. 

СЗ.Г7) 
Тогда сравнение этого выражения и интеграла ДдЕ показывает необходи­
мость учёта степеней переменной 1С* для выделения логарифмических 
вкладов: «•_n*fl Л • 

Первое и второе слагаемые компенсируют друг друга, третье же приво­
дится к ваду . 

Выполняя интегрирование по импульсу f , приходим к выражению 

&ъ*№#-2£В&Мг1#Ь-11 ~#U, сз.2о; 
не содержащему вкладов порядка &hl . Аналогичным образом реииет-
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ся вопрос об отсутствии подобных вкладов и в других оставшихся трёх-
фотошшх диаграммах. 

Результаты выполненных исследований диаграмм аннигиляциояного ка­
нала систематизированы на рис. 3 . . 

*> Р..З »» 
Суммарная поправка &Ед(Л|^)°г аянигиляцяонного взаимодействия, 

таким образом, равна . 
&(#LA\•%.<&>№*?•&**- 7 ( 3 2 1 ) 

4. ЭШШЕНИЕ 

Анализ результатов, полученных в настоящей работе позволяет зак­
лючить, что суммарный логарифмический вклад порядка &1*Л в сверх­
тонкое расщепление основного уровни позитрония от диаграмм прямого 
канала равен нулю и поэтому искомая логарифмическая поправка свя­
зана лишь с процессами виртуальной аннигиляция электрона и дозитро-

дЕ^а»^).^**.*. £ ( 4 Л ) 

Выполненные нами исследования взаимодействий в аннигиляшюнном 
канале полностью согласуются с результатами работ / 1 . П / . 

Метод определения уровней энергии ВЦ-атомов, используемый в рабо­
те / 2 / и позволивший подтвердить теоретическое значение сверхтонкого 
расцепления основного уровня в позитронии, найденное ранее Ледажеи'Ч 
чрезвычайно близок к квазипотенциальному подходу Логунова -
- Тавхелидзе. Поэтому анализ данных, содержащихся в этой работе 
представляет особый интерес. 

Результаты вычисления вкладов от ряде диаграмм прямого канала 
У С М Д О ^ ) ^ ) / авторы считали надёжно установленным /что вполне сог­

ласуется я с нашими выводами/ и непосредственно исследовали процес-
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он обмена одним ооаеречшш фотоном л некоторый числом кулоковокшс. 
К последним в нашей работе относятся диаграммы (£), («О, (e) 

и (f). Суммарные результаты вычисления вкладов от этих диаграмм 
в обеих работах идентичны'**8'; если учесть поправки к волновой 
функции уравнения Щредингера с кулоновскнм потенциалом. При этом 
изменяется только величина вклада от диаграммы (d). 

Таким образом, используя найденную вами поправку к величине 
сверхтонкого расщепления основного уровня позитрония, рассчитан­
ной ранее'° ' ' ' с точностью до <* , получаем новое теоретическое 
значение 

Учитывая значения наблюдаемой массы и константы тонкой структуры, 
приходим к результату 

A^hlwr = 2 0 3 , 4 0 0 ( 1 0 ) ГГц' < 4 , 3 ) 

Это значение довольно близко к экспериментальному /13,14Л 
^ V j ^ * 203.3849^2) ГОХ, (4.4) 
А^о» е г 0 3. 3 8 7 0^ 6) пи. «.5) 

Авторы благодарят А.А. Логунова, А.Н. Тавхелидзе, Л.Д. Соловьёва 
я О.А. Хрусталйва за внимание я жнтерес к работе, полезные обсужде­
ния и замечания, а также Н.А. Войкову • А.А. Войкова за помочь в 
работе. 
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ПОПРАВКИ К СВЕРХТОНКОМУ РАСЩЕПЛЕНИЮ m 

ОСНОВНОГО УРОВНЯ МЮОНИЯ ОТНОСИТЕЛЬНОГО ПОРЯДКА —ia2&ia 

Н.А.Бойкова, Ю.Н.Тюхтяев 
Саратовский государственный университет 

Р.Н.Фаустов 
Всесоюзный научно-исследовательский центр 

по изучению свойств поверхности и вакуума, Москва 

I , НИ̂ 11 ЦНИИ 

Проблема связанных составная ва воеж втапах р а з м я к квантовая 
твори остается одно* яз ваябсяае актуальных. 

Особая p a n ьодородододобннх /Ш атомов обусловлена тем, что 
этж проотевжм сизашше соспвош двух частщ достушш для арецязж-
ошшх яаиеряяа*. Таоретячвсхое значенве сверхтонкого расщеплем* ос-
ноавяго уровня; в ВП-атоме с точностью до«1* / 4 - постоянная тоякой 
отруктурн/ было установлено Оермл ев» в ЭО-х гс-дах / 1 / . Надёжные рас­
ч е т «той велгавн с точвоопв до А 5 / 2 ^ с т а о возможны лвяь в 50-е 
годи восле ооновололагаящях pack» Бате, Солитера, Ммвгвр* / 3 /'. 

В начале 70-х годов о н и получены первые логаряфмвчеохяе поорав-
хачтоА к этому результату''4 • 5 / / . Достигнутая в настоящее время точ­
ность таоретяческжх яссладованяя в значительно! стеаенв связана с 
ясоользованлам квазяяотвншяиьвого подхода в квантовой теоряя ваяя, 
предложенного впервые А.А.Логуновым я А.Н.Тавхелядзе /'6 /'. 

Квяввпотаяцяяльное уравненяе для двух взаямодввотвумщх частая 
со олвнамя 1/2 ямасоаия и», я тх в лмпульсвом представленяя я сяоте-
ме центра масс имеет вкд 
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(E-e , f -ЬД<?» Ч ^ ^ Й ^ Й ' Е ^ е С С ) . 0.1) 
Ив ^-волновая фунхшк связанной системы, Еу̂ р'+то*, Е-полная авргия. 

Для оярадвленяя кваз«аотвнциала\?р ,̂Е)существует два способа.Вся­
ком случае на основе полной функция 1ряна двух чвстш 6(р,$Е) вводят 
жвухмремвннув функцию 

Здесь ]̂ :j(i,]L> 1М?> - двраковскяй бясяяяор i-ой чвстшы: 

М*«МУ«Ь , «;Р=Щ1 , Vi^V^'.1 и.8) 
В этом случае квазшютенииал даётся выражением 

_y*rl-@*Yl**(l*f*r,1 „ (1.4) 
raeftFiy&rF* 1 ;fre- Функция Града свободных фермяонов; F'^fr*)*1* 
>4Ь^^|(Н|^^Т»Х(1+(гК)ЛС-ядро взаимодействия двух часящ. 

В другом случае хвазядотенциал строят с помощью амплитуды рассе­
яны вне энергетическом поверхности 

• Y H V f t * n v r . 1 (1.5) 
CTeT^;Eh-«.(f»¥flT^,q;E;^<j.--OM'u^); «**>* ~ означает дя-
раковское сопряжение. Переход от одного варяанта к другому оря опре­
делен** хвмшютенцяала осушеотвляетсз заменой t - * T + • 

Цря расчётах с точностью д о * 5 / 7 / квазидотенциал урегненш(1.1) 
задавался оазложеняеи 

Y - t T t ^ V C " * Y ( , , i + . - . (1.6) 
где tft- кулшювохяа ao*mam*;tf*p!ft№t* . • V " l W H ? i МОГ 
быть представлен фейнмаяовокямя графами 2- и 4-го порядков so заря­
ду электрона. Исследования сверхтонкого расщепления основного уров­
ня ВП атомов в этом случае проводядясь с ясдользованяем так называ­
емого "прислижбния рассеяняя" : эффекты связанности частш. проквдя-
шмяеоя ляшь прм малых частотах виртуальных фотонов не учятывалясь 
ввяду малостя константы связи, в высокочастотной хе облаотя квазя-
оотенцяал выражало* через элемент амплитуды рассеяняя вбляая мас­
сою! поверхности. Вычисления оря этом можно упростить, есля поло-
яять E&tR|*Ma, а волновую функцию основного состояния нерелятявяст-
окого уравнения Щрединтера с кулоновсквм потенциалом представить в 
•яде 
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В таком подхода «клады в сверхтонкое расщепление от фейнмановских 
диаграмм продорционалыш целым степеням < . Наибольшие оооравкя к 
известной с точности до Л* веяячяне сверхтонкого расщепления основ­
ного уровня Ш-атомов могут бить получены л а й от диаграмм 6-го по­
рядка оо заряду электрона к пропорциональны соответственно <*'. 

Отметям однако, что,используя при усреднения квазипотенциала ку-
лоновокие волновые функции в приближении (1.7) можно, получить лишь 
основной вклад в сдвиг уровня от рассматриваемой диаграммы. Для ана-
Л1. . одно- я двухфотонных процессов с большей точностью /поправки к 
основному порядку вклада А*1 и А 5 соответственно/ требуется реосмо­
треть дополнительные вклады с учётом точного вцмкения для кулонов-
ской волновой функции я зависимости квазипотенциала от относитель­
ных трёхлмпульсов начального я конечного состояний и параметра пол­
ной энергии связанной системы. 

С другой стороны,вклад в сдвиг уровня энергии от некоторых трёх-
фотошшх диаграмм начинается с величины порядка d&i*. В данном слу­
чае для кулоновской волновой функция можно воспользоваться приближе­
нием ( 1 . 7 ) , а полная анергия ояотемы £<иЦ4Мг примет характер парамет­
ра обрезания, фякоярувцего инфракрасные / в аянигяляционком канале -
пороговые/ особенности интегралов по импульсам виртуальных частиц. 

Для систематического исследования структуры уровней анергия о 
точности) доо(.Чпа1 нами разработан квазипотенциальннй метод учёта 
аффектов связанности, который позволяет анализировать в ВП-атоме 
процессы обмена одним или двумя поперечными фотонами и любым час -
лом кулоновских. 

2.КВШШ0ТЕНЦИАЛЫИа МЕТСШ УЧЕТА ЭДИКТОВ СШЗШОСТИ В ВП-АТОМЕ 
Состояние связанной системы с полной энергией Ъ описывается вол­

новой функцией Ус , удовлетворяющей кваэяпотенцяальному уравнении 

«74 '-"И- (2.1) 
Для исследования структуры уровней энергии ВП-атоме с точностью до 
&Ь»А. запишем квааялотешнал в виде 

«. W i s K i * - Y e . (2.2) 
Операторыус выявляются ядрами интегральных уравнений для поло­
жительно-частотных полной щ я кулоновскойtt двухвременннх функ -
они Тршиа соответственно: 
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% • F . C U X I S ; ) . «•» 
Используя интегральные представления для четырехвременных функций 
Грина 

& c « k ( l * K c & e ) > ^ 02.5) 
&» $.а* да «&(*•*&>» C2-6) 

wlWjl» а Х * ! ^ " * * 0 0 взаимодействия в ВП-атоме, определим ква-
зшютеншюл 2.2 соотношениями 

*Ь«ttXlMA, I **ft-A&Kef'. А Ж А 1 , C2.7) 

где ( (Д^ГВД£*/8£У$ T*X{l*6K)- Из выражения для оператораXjrBU-
делиы ядро jCg, основного кулоновского взаимодействия в ВП-атоме: 

(2.9) 

Амплитуду f j зададим суммой 
%•?*+(>, C2.II) 

Тогда, итерируя равенство (2.8Х получаем 

w fai .fcft-fct.*...), %> • tfi-K4fcwS*/»£V.. 
Для разложения в ряд теория возмущений амплитуды рассеяния «f ис­

пользуем метод построения ядра взаимодействия в BD-атоме, предложен­
ный в работах/й 9 / . В этом случае в нулевом порядке теории возмуще­
ний ядро описывает кулоновское взаимодействие в ВП-атоме, в первом -

обмены одним поперечным и любым числом кулоновских фотонов и т.д. 
С учётом изложенной процедуры разложения для ядра К , амплитуда рас­
сеяние принимает вид ^ 

f .2 e**K»»fWB«,KC t t*... (2.I3) 
Здесь римские цифры символизируют число обменов поперечными фотонами 
при учёте многократного обмена кулоновскими. 

Поправки к кулоновским уровням энергии в ВП-вмме найдём с помо­
щью квазапотенциахьного уравнения 

(ft-ia-b'frk-u, ( 2 I 4 ) 
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в котором квазшютешцал 

выберем за возмущение. 
Уравнен» 

определяющее невозмущённув волновую фунюшоЧ^к сдвиг уровня энер-
г а ^ , решается на основе яврежямвмстского уравнения И|)едннгера 
с кулоновскям потенциалом, в результате чего с необходимой точнос­
тью приходим х выражениям . 

АЕс»<^кеа*^УКс^>- ( 2 I 9 ) 

Цряченяя далее метода обычной твори возмущений х уравнению(2.14), 
определим сдвиг искомого уровня энергия 6 относительно!;': 

АБ'гБ-6', (2.20) 
И в А8'*<+Г|?,4*Л>1*Г>. ^«fe-^fet-fV'jg^ (2.2I) 
Подставив найденное значение Е 'в равбвство(2.ГА находим окончатель­
но 

Ae*e-Et«iEe*Ai' (2.22) 
Выражения для поправок к уровням энергии в волновой функции(2.18; 

2.1% (2.21)показывают, что развита теория возмущений, позволяющая 
исследовать в ВП-атоме обмены одним и в двумя поперечными • любым 
числом кулоновских фотонов. Одним из приложений этой теории являет­
ся одкшше структуры уровней энергии в атоме мюония /m,swi* - мас­
са э л е к т р о н а , * , : ^ - масса июояа/ . 

3. ГОПИШКИ ОТНОСИШПЙОГО ПОИДО j-V4ft4OT ОДНО-. ДВУХ- I 

На практике оказывается, что основные вклада от одно-, двух- • 
трёхфотонных обменов в сверхтонкое расщепление имеют по константе 
тонкой структуры порядки соответственно * t \ Л Г ,«(*/п*. Ясно поэто­
му, что чепфёхфотонаве диаграммы взаимодействия при определении 
сдвигов уровней энергия с точность» до J^IMA. МОЖНО не учитывать. 

Используя фотонный црошгатор в кулоновской калибровке 
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представим ядро взаимодействия суммой слагаемых по числу обменов 
фотонами в ВП-атоме. Тогда ядра одно- и двухфотонного взаимодействии 
примут соответственно вид " 

К'4'« ЗЪ*Кт , *е»*&, Кт * -e^iVfiW, сз.г; 
ТР^Ксс + Кст+Ктг, ( 3 3 ) 

где символыси т относятся соответственно к обмену кулоновским и 
поперечным фотонами. 

Трёхфотонные неприводимые диаграммы логарифмического вклада в 
сверхтонкое расщепление основного уровня мюония не вносят. Анализ 
кулоновского взаимодействия показывает, что логарифмическая поправ­
ка ^Чи*связана лишь с однофотонным кулоновским обменом в мюонии. 

Поэтому, перегруппировав члены в выражениях ( 2 . Щ (2.21)так,что­
бы квазипотенциал наабояее просто изображался графически, приходим 
с требуемой точность» к следующему выражению для суммарного вклада 
в сверхтонкое расщепление ооновного уровня мюония: 

£ E * A i E + & i E * A j E , Сз.4) 
где 

AiE*<«feiaCe*tSCrV-2M»r)**2ftCtejCTUHt>' (3.5) 
b& «<,?c^Kcc\+OCcr>WKtTV+0W,T(T\We>, (3.6) 

Методика вычисления записанных поправок включает следующие общие 
моменты. Вначале выполняется интегрирование по энергетической ком­
поненте виртуального импульса с помощью теории вычетов. Преобразо­
вание матричных выражений к форме, характерной для сверхтонкого 
расщепления уровней энергии, осуществляется с учётом соответствую­
щих симметрии относительно переменных интегрирования. Разложение 
по константе связи проводится посредством сравнения с так называе­
мым стандартным интегралом J^, единственным, приводящим к логариф­
мическим вкладам в сверхтонкое расщепление 

Авале* вкладов в сдвиг уровня мюония начнём с диаграммы обмена 
кулоновским фотоном. Перемножая дираковские матрицы и биспиноры и 
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выделяя ответственные за сверхтонкое расщепление члены, получаем 
(Wc-<W\-Wc> • tm»'WK'\$?£» ( 8 1 0 ; 

Сравнение выражений 3 .9 я ЗЛО показывает, что для выделения по­
правок j}{u.i важно выделять слагаемые с множителем*^)". С учётом 
этого обстоятельства заменим 

фцJ* - • - ^ бр*-<р* сз.ш 
Так как для частицы с массой м ; во всём интервале интегрирования р*< 
<£,-.М;» • используем разложения 

р с«*м;г* -«в^г'ЛЧ йгн*г4* - v ( 3 1 2 ) 

Всё это позволяет при вычислении величшшАц|||оформировать стандарт-
Ш - " И Р М (AFV-^-beSrK^^Gfel». O.I3) 
Используя наиденное Ферми значение сверхтонкого расщепления основно­
го уровня в низшем порядке, запишем окончательно 

fat\Qf>JU)*№*Чи*у %*\АУЧ*+»Г&0.14) 
Вклад части квазипогенциала tl+H^Mj^tytfM^Hi^F'JUte)* B 0 В в Р х _ 

тонкое расцепление, как показывает анализ, может быть выражен инте­
гралом (3 .9 ) с дополнительной степенью р г в числителе и поэтому про­
порционален « ( ' . 

Взаимодействие при обмене поперечным фотоном оказывается более 
существенным, его основной вклад пропорционален «С.4. В го же время 
и здесь может быть получена поправка 4 ( 6 « * к известному с точностью 
до J? значению сверхтонкого расщепления. Соответствующий вклад даёт­
ся выражением 

При расчетах с^требуемой точностью достаточно ограничиться преобразо­
ванием блока S|Ut.LbU,ilt : 

№**<> .МММ, V#^js$b' «•»> 
Сравнение этого интеграла со стандартным убеждает, что для выделения 
логарифмического вклада ни одна степень переменных р или а не долж­
на быть учтена в разложениях типа (3.12.). В результате имеем 
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Поокодысу волновая функция удовлетворяет уравнении Щредднгера 
<м* SOiAc^ii?»$-ч,ф , г1«-<fr»V* (зле) 

то непосредственно отсюда следует 
<*1&4С1тМ<1е>« 0k,«V<*****- (3.19; 

Завершая вычисление поправка (3.5} исследуем вклад 
(ЛгЕ ) е т = «Сь1(хс6Л<т>* №> (э.20) 

•ункца» 1ржна свободных фермжонов представляем через оаераторы про-
ехтхровашк на положительно- • отрицательно-частотные состояв»: 
Тогда велхчянаДО^явнтся результатом перемножения бмсаяноров, f-мат­
риц ж произведения соответствующие операторов проектирования. С не-
обходамоа точностью зашлем 

A f C T * 1 4 * « - 1 * - * Г - 4 . . ^ (3.22) 

Детальны! аналжэ показывает, что оря вычислено логарифмических 
поправок можно полежать , 4 _, 

(fet-ffe-Ei)'1 а: к,"*. 
Выполняя хроме того несложнне алгебраические преобразования • вн-
тегрярованве по переменной^, нахолам : 
I** • i WI«MU- ЙЬ^^У't?|*(i-«l (3.23) 

Удерживая здесь множитель к£ 1 и опуская лашнве степени переменной к*» 
приведем внтегралТик стандартному: 

Х~<%*Ъ,)1*&Г\ (3.24) 
Аналогвчнш образом получам 

I a - * U - a S a r f t » i ) l f ' ^ * - ! (3.25) 
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В результате логарифмическая поправка от приводимой диаграммы 
обмена кулоновским • поперечным фотонам имеет значение 

Структура полученных вкладов «с*4<«1 однотипна: имеется общий во всех 
случаях коэффициент Ê dffllt*"' • специфический фактор диаграммы, ко­
торый включьат числовые величины я параметр отнолення масс частш. 
Фактор суммарного вклада яе зависят от масс, что позволяет сделать 
оря расчётах очевидные упрощения. Например, полагая в факторах всех 
рассмотренных дню диаграмм массы частиц равными, приходим к той же 
величине суммарного вклада: 

Переходя к анализу поправки «|£, примем во внимание следующие 
соображения. Логарифмический вклад от неприводимой диаграммы с дву­
мя кулоновскимя фотонами равен нулю. Вклад остальных двухфотонных 
диаграмм неприводимого типа после перемножения пропагаторов частил 
в форме (3.21) иыражаетоя о помощью попарных произведений проекци­
онных операторов, относящихся к различным частицам. Наиболее значи­
тельно!, порядка ̂ 4 » J , оказывается поправка, комаешлруюжвмоя в 
суммарком выраинии для сдвига уровня я появляющаяся от слагаемых, 
содержащих отрицательно-частотные операторы проектирования. Вклады 
от других интегралов пропорциональны по крайней мере#\*. Во всех 
этих случаях нормировочные множителя бяопиноров можно положить рав­
ными единице. 

Интересующая нас поправка jHLЛ соответствует произведению опера­
торов проектирования на смешанные частоты. В результате упомянутых 
выше преобразований для логарифмического вклада от неприводимой 
диагрямин обмена двумя поперечными фотонами получаем 

С необходимой точностью можно положить М * « - 2 м ; . М г ~ 0 . Тогда при­
ходим к интегралу типа стандартного: , .* 

Точно так же вклад от суммы симметричных неприводимых .ципгрпмм с 
кулоновским и поперечным фотонами представляется в виде 
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Учитывая замены переменных р и ц , позволяющие читывать свойства 
симметрии подынтегральных ьчражени/, пол с р а в н е н и . ф р ^ и ф ^ ^ т не­
трудно установить равенство 

Вычисление поправки от арааодикой диаграммы 

(AEi>ir ««PelOW.XAW^ (3.32; 
начнём с интегрирования по|^Шс^' . Применяя интегральное представ­
ление для S-функции и известные формулы типа . _, 

ариходим к интегралам по трёхимпульсам j?, |Г , ̂  . Ььщеляя обычным 
Срезом логарифмические пояроки, йапшем ^ ^ 

™* M * « (3 34) 

Замет» что 

№ *N« )•• - (См,ж«*^г'^ (3.35: 
а при вычислении логарифмической поправки положим М£*2*м,-,И;"'Ф- В 
результате исследуемый вклад принимает вид 

Интегралы, олр&дедяюаие величиныjtf) иftfL-легко выраяаются через 
стандартный. В частности, 

Таким образом, суммарный логарифмический вклад от двухфотонных дир,-
грамм имеет значение 

AlWWer^uEWAiEtfr е ttf***•*". сз.38) 
Основной вклад от трехфотонной диаграммы Хтбь^&Лвг имеет поря­

док <К**и«| и его можно выделить, используя ряд существенных упроще­
нна. Так, в функции Грина fir# можно учесть лишь положительно-частот­
ную часть. В этом случае формируется проекция ядраХ^. на СОСТОЯНИЕ 
С положительными частотами. 3 используемом приближении оно, кроме 
того, не зависят от нулевой компоненты виртуального импульса. Соот-
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ветотвующая част* квазяпотенцяала преофазуется к виду 
(Xr&K&Xr)« Йл •«.*«»* F «Те F «* t u t ДГа, (з.зэ) 

Интеграл, воэнякавцяя оря вычисления поправка &&F, может быть 
проведён к стандартному, если не укатывать оря разложении степеней 
аерененяшс f f , l ? ,5?' . i f . Поэтому воспользуемся приближением (1 .7) 
д а волноьой функция а запишем 

Здесь с требуемой точность» можно доложить 

Перемножая матрицы с учётом скмметрш подынтегрального выраженмя, 
для велячины А«Б получям . „ ....«.,_.»-*•,.« 

Иоклочак яз произведения векторов {*в |Гфакторо?й*и яопользуя зна­
чение стандартного жнтеграла, находим 

Результаты вычислвняя вкладов в сверхтонкое расщепление основно­
го уровня мвошя ояотематяэярованм на ряс. I , 

_ * " ' _ * » ^ ' « ; » ^ -

; -ft * »• )t > Т* 2{]_[-uit}{ •*«. - г , 

IS •2 V • 
Ряс. I 

Учитывал поправку к кулоновской волновой функции, находим cyuf 
мерный логарифмический вклад в сверхтонкое расщепление основного' 
уровня мюония, равный полученному ранее в работе' ' на основе I] 
несколько иного подхода: 

ДЕ ̂ 'Sj^Wfci iK»*. (3.44) 
Следует, однако,заметить, что в связи с наличием в настоящее время 
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неучтенного вклада в сверхтонко» раощеплеше основного уровня иоонка 
велпаной 

О (*г ^ € Р Ы gfu) * 10 кН* сз.45; 
на данном этапе нельзя сделать окончательных выводов относитель­
но результатов сравнешн теоретического ж экспериментального значе­
нии сверхтонкого расцеоленкн основного уровня в шюно. 

Авторы приносят благодарность А.А. Логунову, А.Н. Тавхеладзе, 
Д.Д. Соловьёву ж О.А. Хрусталёву за ннтерес х работе, полезные о&-
судценля ж эамечани, а также А.А. Войкову • Н.Е. Нвнько за помощь 
в работе. 
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QUANTUM EFFECTS IN THE SCHWINGER MODEL 

N.P . I l i eva , V.H.Pervushin 
Joint I n s t i t u t e for Nuclear Research, Dubna 

1. Introduction 

I t la twenty years that tba Schainger model' ' вегтев аа а 
theoret ical laboratory abara new mathematical and phyaleal ideas 
are checked' ' . In f a c t , tba idaaa sueb aa tha 0-vacuum, con­
finement, Infrared lnatab l l l ty of gauge f i e l d s lad to a new In­
terpretation of t h i s model. 

In tha preaent paper aa study tba Scbwinger aodal in the 
sp ir i t of quantum representations and idaaa of t h i r t i e s a la 
Гоек, Weyl, Jordan and others. fbe aim of t h i s paper I s the 
invest igat ion of soma purely quantum e f fec t s of motions of the 
fermionlc and boeonlc тасиа in tha Baseless Scbalnger model, we 
would l ike t o empbaalsa that t h i s modal gives an example of tba 
dependence of phyaleal raaults In quantum theory on the choice 
of the vacuum and on tba global properties of the gauge f i e l d 
configuration apaea. 
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In section 2 the Dirac raouun collective motions are investi­
gated. 

Section 3 is devoted to the topological degeneration of the 
gauge field vacuum. 

In the theory we keep the Planck constant Я as a parameter to 
avoid an incorrect interpretation of quantum effects via classi­
cal mechanisms'*'. 

2. The Jordan Effect 
An interesting fact was pointed out f irst in several works by 

Jordan, Born, Socolov and others in the thirties' , and again 
by matt i s and U e b / 9 / in 1965. 

They have considered a fermionic system in one space dimen­
sion, described by the following Hamiltonian 

wbiob is just the Hamiltonlan for a Dirac particle in two-dimen­
sional •pace-time. 

The two-component spinora 

VW: (J*), W b K » * * ) 
satisfy usual antlcoamutation relations 

{Vi(*).Vj($--&ijS(f>'<l) (2) 
all other anticommutators vanish. 

Performing fermionic operators as plane-wave expansionsi 

vr The realization for \f" -matrices chosen is 

and , $.. = -£« = * 
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«a bara at laaat twe poaalbilltle» to realls* relation» (2). Mrat 
of tbaa> la juat atralghtforward s 

о v 

(3.1) 

(5.1) 

•nd tba пешш ia defined aa 

M p > | o > = 0 (4.D 
It eorraaponda to the Haailtonlan 

H = К 5 dp p [a*cP)Q,(p)- Qa+(p)^(p)J , 
which Ьаа eleo negative eigenreluee, ao i t la phyeically. not 
acceptable (oparatora Q, (-/»>, а д ( р ) , p > 0 , create atataa altb 
negativa energlee). 

So the aeeond realisation aa ooaw after a aultabla redefini­
tion of Q. and a* i 

а,(р)«в(р)е(р)+с*-(Р)ес-р) 
а г(р)= 6(рЖ-р)+ сЧр)б(р) 

Here S (p) i e tba atep-function 

B l p , - ( o , P < o 
It acta aa a projactlon operator on the etatea with poaltl-re 

(8(p)) and negative (в(-р)) energiee for tbe aolutione of the free 
Dlrac equation forV(x). 

In tbla oaaa the ooaaaitatlon relatione are 

{*(pb&o*>j={eV.6VH 
{ M P ) . *>*<?>) в < ^р-<?> 
{с(Р),с(ф{с*{р),ЛфО 

(з.п> 
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•nd th* vacuum ia defined by 
6Cp)|0>-c(p)|0> = 0 ( 4 # n ) 

It correspond* to the Dirac filling in all negative energy 
atate*, *o the Haalltonian already has nonnsgativ* eigenvalues 

H-hJdpipi [ * f(p)4( P; • счР)с(р)] ( 5 Л 1 ) 

All this шеапв that we have introduced the Dirac vacuum. 
Jordan and the others have discovered that the filling in all 

negative energy state* changes the axial current commutator. 
Instead of th* trivial one 

(•here^s/.X'O^W/iJ'^Y'W'' £/*» j"^) ), «hioh follons 
for th* ease (I), in the caa* (II) w* obtain 

U~(*4«W}-±h*b-X> ( 7 ) 

1Ы* is just «hat was later called the Sohwinger term or the 
Soheinger anomaly. 

the commutator (7) 1* vary similar to the one for a scalar 
field, soar* о 

if яе put 

This correspondence «as later called a bosonlzatlon. 
Adding to the fre« Hemlltonian (1) an interaction term (of 

a Coulomb type) 
H,-4 J d« (»;>))' 

we com* In fact to th* Hamlltonian of the massless Sctminger 
model in the gauge A^-0 /4-7/, I t l e n o t difficult to 
obtain the divergence of the axial current, using Heisenberg 
equation of motion for th* component j S o (x) 

In the first case «* come to the conservation la*: 
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t/*jtf. = 0 (9.1) 
But whan tba Dlrao racuum ia praaant, tha Coulomb Interaction 
leads to tha well-known axial anomaly 

* . ? • " • & * * 
Ihla equation may be rewritten (using (8)) aa a ralativietl-

cally invariant equation *•• a acalar field 
(кЪр) <j> = mlj> (,0) 

where __ 

H r e (ID 
( I . e . the Senwinger aiodel mass). Quantum nature of this pheno­
menon Is evident because of lta proportionality to tha Planck 
conatant ti . Pros) such a point of view the real physical rea­
son for tha axial anomaly and for the appearance of thie massive 
scalar field ( i . e . for the boaonlsatlon) i s juat the Dlrao aea. 

It ia lntareatlng to note that tba importance of the Dirac 
vacuum in the anomalous axial-current dlvergenea in four-dlmen-
alonal space-time has been recently discovered by Q r l b o / 1 0 ' . 

It is assy to see that tba chiral charge In the model with Di­
rac vacuum Introduced is not conserved 

-ft-Q.v.0 > Ъ*№"ш№$ ci.) 
It is clear that tbe physical causa of this Is the Dirac va­

cuum "polarisation" induced by Coulomb (gauge) field. So diffe­
rent vacua lead to theories with different symmetries and with 
one and the same local dynamics (Bamiltonian). 

Bote, that in auch a treating of thia problem there is no to­
pological vacuum degeneration at all. 

Here we would like to remember that the 6 -vacuum In the Sch-
winger model is used for an artificial partial restitution of the 
chiral symmetry of tha affective action for the corresponding 
scalar field 

\\щ-{^[{ы)^м)^[гЮ из) 
It is evident that chiral topological transformations with sn 
operator 
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tfn= fixp{iJnQ5} , n:0,±4,tZ,... (H) 
do not l»are i t Invariant, I . e . 

To avoid th i s some epecial^gtatee are constructed ' 

and for the matrix elements ( I . e . in brackets) the chiral sym­
metry holds on which Is treated as a good agreement with the sym­
metry of the I n i t i a l fermionic Lagrangian. 

Coleman'' has shown that the e f fect of such a 0 -vacuum Is 
ent ire ly reproduced by a c l a s s i c a l constant e l ec tr i c f i e l d , but 
with additional parameter 6 He pointed out shat here r i s e s a 
question: why i s It necessary to introduce t h i s в -parameter con­
nected with chiral symmetry res t i tu t ion in the massive Scbwinger 
model though there th i s symmetry i s broken from the beginning 
by the mass term? 

Ae becomes clear from the papers by Jordan and the others just 
the same question may be adreseed to the masslesB model tool 
why i s i t necessary to res t i tu te the c l a s s i c a l Lagrangian sym­
metry, broken in the quantum theory by the f i l l i n g in the Dlrac 
веа? 

3. The Joaeohson Effect 

There e x i s t s another reason to Introduce the 6 -vacuum which 
i s not connected with the chiral symmetry at a l l . Here we propose 
a new physical interpretation of в -vacuum in the Schwinger model 
based on the pioneering works on gauge theories by Pock and 
Weyl' ' . They have introduced gauge transformations as U(1)-
phaae transformations in quantum theory 

. AWe i A(»)e 
-t -£А>~г*с - = - H W ) ( 1 5 ) 

The expression in brackets is Just the Pock redefinition of 
the quantum-mechanical momentum 4tto\u In the presence of an 
electromagnetic field. Equality (15) is entirely classical and 
It is not alwayr valid in quantum theory. The matter is that the 
Veyl phase is defined on the circle while the function А (х) has 
as a region of definition the line H(1). And it is important 
what muat we choose as a basic element of the gauge transfor­
mations. 
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We sha l l i l l u s t r a t e the dependence of the resu l t s on t h i s 
choice on the example of the free two-dimensional electrodynamics 
in temporal gauge ( A o * 0 ) : 

The Lagrangian (17) i e invariant under stationary gauge trans­
formations w \ A 60 

So we have to solve the Schrodinger equation 

H eY t*ty t , Н 0 4 ^ л а л , ( 1 8 ) 

E- »o A, -\8/UM) ( 1 9 ) 

with the additional condition on the wave function 
Y(A')»y(A) (го) 

Рог an infinitesimal transformation 
у ( д , + & i ) , Y(A) * { ^ (iv) Ы + 0(;.a) 

eq. (20) becomes a transversality condition for the electric 
field „ •» , „ „ 

if th6 function Л (х) is a smooth one and vanishes at spatial 
infinities 

tim Mx)=0 
|xl-*t*o 

The extension of this condition to the Weyl basic element 
Я(х) = ехР{гА(х)д$ 

leads to a nontrivial topology of the gauge field configuration 
space. In this case we find 

[or rM-Al"4-oo)=27rnt,] 
We have a map of the line R(1) onto the circle U(T), charac­

terized by an Integer П . This number shows bow many times the 
line R(1) has turned around the circle U(1). This nontrivial 
topology disappears in the classical limit (K = 0) . But in the 
quantum case the gauge transformations group (17) and the confi­
guration space j_A,(x)j are not simply connected. Their topology 
coincides with that of the closed paths on the ring. So the 
"points" 
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А (».*) = е (A,+*fc.u;e , сгг) 
п-*о,*н,*а,... 

are phyaically identical and the nave function there takee one 
and the same values (of course, up to the phaae factor) 

Y ( A t a H , ; . e * e V ( 0 , |el<y <23) 
Thue we obtain the following system of equations 

Н У - fck" 

V(A l - ) )«e* e y fA l ' ° ) 

Its solution is a plane wave in the configuration space 

Y~exp { i £ -$d *A < w} = exp{iN - ^ J (24) 

where the quantity 

NMje - ^ r " \dxA,(x> (25) 
Я* R J 

le a continuous generalization of the Pontryagin index" 2 ' and 
changes by an integer under gauge transformations (22) 

N f A <" j -_ M[AJ. > '"W*" ' ( -">) .- >j f A j » „ 
It is easy to find the spectrum of the constant electric field 

using (23), (2*) 

Its minimal (in aodule) value (whenkaO) coincides just with 
Coleman's classical electric vacuua field (the в-vacuum). 

Я ш е we have seen that the 0 -vacuus is related to the topo­
logical properties of the gauge field and appears as a field 
analogy of the Joeephson effect (consisting in the existence of 
undamped currents due to discontinuity of the wave function 
phase). 

The collective motion of the gauge field (which suggests the 
existence of a longitudinal dynamics of the latter) described 
by eq. (24) hae a finite energy density 

f - i b 8 r ( m * e ) r > V*S6K (26) 

So we have obtained a consistent relativistically invariant 
quantum theory. Let us consider the spectral representation of 
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ita Oreen function in tha physical sector 

4 .iM^6f^-t,) i ( 1 J r k + e ) ( w „ 0 

= -r? ±>e *M e 

alon can be transformed Into a au 
tha configuration apacet 

G(M(t,)/A<(tj)=|) M X e t n e e 

с** 

«here 

This expression can be transformed into a sua over homotopy 
claases' " In the configuration apace t . g M 

Hera ,** 
:)d 

(27) 

la tha affactlre claaatcal action. low becomes evident that tha 
variable N baa no coualatent interpretation in the claaaical 
relatlTiatio theory. But. in fact, claaaical approximation la 
not neceesary.Proa tha collective motion lagrangian (27) i t fo l ­
low a that tha region of quantum theory validity la proportional 
to tha one-apace "volume" V (L ~M",M" « V ) . Яша Weyl'a aup-
poaitlon on the gauge symmetry as of a quantum theory one extends 
quantum representations to the «hole region «here gauge field la 
defined. In other words, QXD in two apace-time dimensions haa no 
claaalcal interpretation similarly to the situation with ths 
Dlrac equation. 

Я» main difference of thia approach from that one In papal/ *' 
la tha dynamical treatment of the Pontryagin index 

•<X> 

* W ' ; i H j J x d 4 F « S $ J * W . N Ф0 

•oo 
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Л alapla "claaaleal" method to reproduce all these nonclasei-
cal reaulta without gauge fixing oonsists In projecting the ac­
tion and the Pontryagin index onto the general solution of the 
constraint equation 

% 0

= 0 ** э Х-»АЛ.-0 ( 2 8 ) 

In Ita general solution we have to take Into account the sin­
gular Infrared solution of the homogeneous equation with an arbi­
trary tine-dependent coefficient: 

л,-Шд + (з;)м, 
So we find for the Lagranglan and toe variable Ы 

L-iC f t(t)V { 2 9 ) 

from (29) immediately follows the Imgranglan (27) (which waa 
standing In the Qreen function)» Ibis claaaical theory la only an 
intermediate atep in oonatrueting a conaietent quanta» theory with 
relatlvlstically-invarlant obserrablee. 

Ihe aaaa procedure «ay be carried out for the Baseless Sehwin-
gar modal 

4 r (30) 

and wa сова to the Coleman Bamiltonian 

with р-2лк +0 , к* 0,±4i±2>. 
but with the only difference that It describes also the collec­
tive motion (26) of the gauge 0 -vacuum (see the Appendix). The 
Hamlltonlan (3D i s equivalent to the following affective Hamil-
tonlan for the scalar field (pion), defined with (8)i 

It i s invariant under joint transformations of the Dirac and 
gauge vacua 

6*= ZXp{iXn (QS+1N)$ 
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Им Sohwlnger modal glvea a good example of the dependence of 
tba таошш on tha global aymmetry of tha quantum theory, and vice 
тагва, of tba Influence of tba choice of the ground state (vacuum) 
on tha aymmetry of tba theory. 

In particular, we have aean that the physical reason for the 
oblral symmetry breaking In tha modal la tha Dlrac vacuum "pola­
rizat ion"' ' induced by Coulomb f i a l d . Understanding of t h i s fact 
makes unnecessary the part ia l re s t i tu t ion of t h i s symmetry by an 
a r t i f i c i a l 6-vacuum introduction. 

We have shown that tha topological vacuum degeneration in QKD 
la connected with topological properties of the gauge f i e l d l t e a l f 
(regarding tha gauge invarianca principle as a quantum theory 
symmetry following Pock and weyl) . Then the gauge-field configu­
ration space i s not simply connected and baa tha topology of a 
r ing. Ib i s leads to the nontrlvlal infrared dynamics and to the 
existence of constant a laetr io f i e l d s (a f i e l d analogy of the 
Joaephson e f f e c t ) . Iba exact solut ion of tba Sobwlnger modal In­
dicates tba physical role of the gauge f i e l d topology in tba inf­
rared dynamics c o l l e c t i v i s a t i o n (appert from the lnstanton app­
roach), i s I s shown in p a p e r s ' 1 5 ' 1 ' , a general isat ion of the 
Joaepheon f ia ld affect to quantum ohromodynamlcs gives r i se to a 
physical picture of tha "infrared vacuum" as a quantum liquid 
with s ingu lar i t i e s forming bags. 

The authors would Ilka t o thank B.M.Barbaehov, A.V.Bfremov, 
A.V.Radyuahkin, V.S.derdJikov and Ya.A.Smorodinsky for d iscus­
s ions . One of the authors (K.I . ) i s grateful to prof. V.A.meeh-
cberyakov for the p o s s i b i l i t y to work in tha laboratory of theo­
r e t i c a l SBhysica of JOTt. 

Append1» 

let ua consider the action of the Sobwlnger model 
6 - ̂ dxdi j | F/ -efAp + it̂ /r-] (AD 

projected on the subspace of aolutions of the classical equation 
for the temporal component of the gauge field» 
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(Аа 1в known' "', the projection of the action on a aubspace of 
tba conatraint equation» of type of (A2) describee the whole ola-
aeioal and quantum dynamics of electromagnetic fields in <&Dtttll)). 
Into the general aolution of eq. (A2) we include a singular aolu­
tion of tba homogeneous equation 

A,- CWx + *U0A, -e(Kl)j< (АЗ) 
«here (ГЦ ЭГ*) are abbreviations for the reversible operators, 
C(±)is a zero aode of eq. (A2) which describee the collective ex­
citation of the field and is related to the covariant variable N 
by the projection of "the Fontrysgln Index" 

where V= $°* it • "v-ilUBe" of apace R(1). 
We substitute the aolution (A3) into eq. (A1) and change the 

physical variable Y - + V ( , ) 

that leada to the Lagranglen 

The Hamiltonlan of the theory la given by 

where the momentum p ia defined by the equation "hp = °°/8H 
and has the spectrum 

wbioh follows froa the condition(44) 
We sight obtain the авва result in axial gauge'*/ (>4, = 0). 

For this we Bust take into account that the transition froa the 
temporal ( A e = 0 ) to axial gauge is defined up to the integratl-
on conatant ^ = ^ ^ ^ ^__ ^ ( ? ^ } + щ 

This constant Bay be determined from the topology of the gauge 
field. 
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КАЛИБРОВОЧНАЯ ИНВАРИАНТНОСТЬ 
И СОСТОЯНИЯ В ПРОСТРАНСТВЕ ФОКА 

Ю.В.Новожилов 

Ленинградский государственный университет 

I. Введение 
Базисные состояния в пространстве Фока [ 1 , 2 J построены на 

произведениях операторов рождения, примененных к вакууму. Если 
операторы рождения зависят от координат, то базисное состояние 
содержит операторы рождения в различных точках пространства. 
Операторы рождения преобразуются при калибровочных преобразова­
ниях, ж зги преобразования определяют поведение базисных фоков-
ских вектвров. Однако физические состояния калибровоено-инва­
риантны, и возникает задача о построении таких состоянии, отправ­
ляясь от представления о пространстве Фока. 

Общая схема построения мультилокальных калибровочных инвари­
антов в калибровочной теории хороио известна. Нас интересует 
вопрос о том, в какой степени эта схема может быть осуществлена 
в рамках кинематического подхода, т.е. без явного использования 
гамильтониана или уравнений движения и при соответствующем вы­
боре калибровочного условия. Очевидно, что в кинематическом под­
хода калибровка не должна приводить к появлении условий динаеш-
ческого характера, ограничивающих возможные калибровочные функ­
ции (как ато, например, имеет место в кулоновской калибровке). 
Примерами допустимых калибровок в этом смысле могут служить 
аксиальная калибровка А ; = 0, светоподобная калибровка А_ = О 
и калибровка А 0 ж о. но такие калибровки не определяют потен­
циал однозначно. Остаточную калибровочную свободу будем описывать 
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'функцией л (х), зависящем только от некоторых координат, которые 
определяются выбранной калибровкой. В случае аксиальной н снего­
подобной калибровок х « ( х 1, X 2 ) , в случае калибровки А 0= О 
х витает все пространственные переменные. 

Калибровочное поле А ^ преобразуется по правилу 

Пусть И (/n-,!t^ и CL (<К, хЛ - операторы рождения 
и поглощения частиц, характеризуемые набором квантовых чисел "W 
и зависящие от тех координат, с которыми связана остаточная 
калибровочная свобода Sfr). Эти частицы могут быть как скаляр­
ными, так и векторными ( в том числе и глюонами). Квантовые чис­
ла % не меняются при калибровочной преобразовании. Ограни­
чимся такими значениями TV , при которых операторы рожде­
ния и поглощения преобразуются однородно при ( Ы ) : 

В калибровке А } « О, где квантовое число -Я- состоит нз импуль­
са |>з и векторного индекса (для векторного поля), по прави­
лу (1.2) преобразуются вое операторы с folO. В светоподоб-
ной калибровке однородно преобразуются все операторы с Р- 40. 
В калибровке l g > 0 отбор соответствующего Ъ, затруднителен, 
так как потребовал бы разложения поля в интеграл Фурье по времен». 
Если наложит* периодические граничные условия по времени н 

привить калибровку \АС=0, то преобразовывать однородно 
по (1.2) будут операторы с отличной от нуля частотой. 

Отметин, что в светоподобной калибровке нулевые моды р . - О 
не используются при построении базисных состояний в пространстве 
Фока, так как они не являются независимыми степенями свободы 
(см.,например, £ 3 3 ) . 

Вакуум \0У предполагается калибровочно-инвариантным; как 
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обычно 

Пря построении калибровочно-инвариантных состояния необходимый 
алементом являются фазовые множители •Pfo,:^), которые оря пре­
образования (I.I) сдвигают Л ^ > из точки -̂  в точку -fc,; 

Фазовый множитель выражается через упорядоченную эсвпоневту, 
содержаную интеграл по контуру от калибровочного поля: 

$>(*,,**.) ~ Pt*f>JaAkdx\ ( Ь 5 ) 

Калибровочно-инвариавтное состояние с и - операторами 
рождения отличается от L -частичного фоковского состояния 
наличием фазовых множителей (1.5), связывающих операторы рожде­
ния в различных точках пространства 

(1.6) 

Полагая в (1.6) (х.' , Х # № Л

Ш получаем стандартное фоковское 
состояние с точностью до нормировки. 
В методе функционалов Фока [ 2 J оператор рождения И ( к , * ) 

сопоставляется умножению на некоторую произвольную комплексную 
функцию 1 ( ъ , х ) , а состояние изображается функционалом £2 
от ~% Ы, х ) . При этом оператор поглощения сопоставляется обра­
зованию функциональной производной по §;(*,•*) 

3 Ъ §(п.,х.-> 

Скалярное произведение функционалов удобно 
записывать в голоморфном представлении С *. 5 j , когда по 
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фоковскии функциям £(*-,:&) ннтегркруется с гауссовой мерой. 
Для одной степени свободы, когда ~5-x-*i<t есть комплексное 
число, » 

Таким образом, задача определения инвариантных состояний 
в рамках метода фушсцноааааоа Фока сводвтся к нахождению фазовых 
множителей (1.5) посредством функций ^ О - , ^ а производных 
по ним £/£§£»,:£) , 

2. Кинематический потенциал и инвариантные состояния 
Калибровочная инвариантность состояний (1.6) есть следствие 

трансформационных свойств потенциала и операторов рождения 
(I.I) а (1.2). Инвариантность состояний сохранятся, если вместо 
полного квантовополевого потенциала Л к в фазовые множители 
подставить любой другой квантовополевой потенциал с тема же 
трансформационными свойствами (I.I). Используем ато обстоятель­
ство для того, чтобы в (1.6) вместо А к ввестя такой кинема­
тический потенциал, для определения которого не нужно арнвлекать 
динамические соображения. 

Предположим, что кинематический потенциал *£fe) обладает 
следувжани свойствами: 

(а) Vk коммутирует со всеми операторами рождения 
f t£ , CL+t(n,x>] = О. (2.1) 

Это значит, что \ ( ^ ~ ) определяется только посредством операто­
ров рождения. Если нет других полей, то потенциал ]£ будет 
зависеть от координат только посредством операторов рождения. 

(б) Ук зависит лишь от одной степени свободы. 
Таким образом, мы ищем потенциал Vk в виде 

Предположение (а) естественно в рамках метода функционалов, 
где все состояния построены на операторах рождения. Предположение 
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(б) выделяет кинематический потенциал простейиего вида. Из (2.1) 
явствует, что потенциал Yk не может быть эрмитовым; соответ­
ствующие фазовые множители типа (1.5), но с потенциалом Tfc , 
не будут унитарными.Однако фазовые множители с потенциалом Vk 

будут удовлетворять условием самосогласованности: 

Л. 
где т^ преобразуется также, как и Ф . 

Чтобы определить "Vk нужно задать еще граничные условия в 
асимптотической области. Эти условия тесно свэаны с вопросои о 
тон, существует ли калмброючно-инвариаятиые одночастачшю сос­
тояния, т.е., например, главны иди цветные скалярные иезопы. 
В духе (1.6) одночастичное состояние можно было бы определить 
как предел двучастичиого 

когда одна из координат удаляется в асимптотическую область. 
Изучение асимптотики требует знания динамики, что выходит за 
рамки иааей задачи, мы предположим, что одночастичшх инвариант­
ных состояний не существует. 

Рассмотрим для простоты случай калибровочной группы S T K l ) . 
В соответствии со сделанными предположениями определим кинема­
тический потенциал V~K уравнением 

3 
л+ ¥ где Л. « А-|Т^ , Легко проверить, что преобразование (1.2) 

для операторов рождения ведет к правилу (I.I) для потенциала. 
Из (2.2) следует, что потенциал TQ не несет продольного 
импульса в калибровках Aj » О и А_ = О. 

В представлении (1.7) оператор рождения соответствует умноже­
нию на произвольную комплексную 2*2 матрицу с нулевым следом; 

tL*(*;*)bt/ * ̂  (*'*>& > 1"Ч "О. (2.3) 
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(2.4) 

При заданных t o » %- матрица % зависит от шести вещест­
венных параметров. Вместо обычных параметров - комплексных 
векторных компонент %,_ - ддя ревевня (2.2) удобно ввести 
иную параметризацию , учитывающую явно инвариантность £ f t СвУ-

л 

V(4,x) ~ol(n,*>Ti*i~('Kloc)J 

а 
где С - «вариантная комплексная функция, £ • >«,^«_. 
Уннмодудярная натрмиа о с содержит четыре независимых параметра. 
Соотношение (2.4) определяет ©£ с точностью до умножения 
справа на комплексную диагональную матрацу. При калибровочных 
преобразованиях (1.2) матраце <з{ преобразуется по хевмм индек­
сам как спинор 

ос (Ч,*} = , $ < > W f * . , z ) (2.5) 

и инвариантна по правим индексам. Поэтому матрицы 

е^^-^х)^^,), (2>б) 

относящиеся к двум степеням свободы п, м '»я, , являются кали­
бровочными инвариантами. 

Вектор состояния £ 2 есть функционал от матриц (2.4). 
Скалярное произведение записывается а виде 

(ЯЗЬ 

где А л Ц р ? ) - нормированный элемент объема матрицы Ы. как 
функции четырех незавмсммнх параметров. Конкретный вид этих 
параметров зависят от характера задача. Переход к полярным коор­
динатам матрицы d повлек за собой существенное усложнение 
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гауссовой экспонента 
ЦЫ.4 *)» { Тг{*+* Ъ Ы*с1)~\ I. 

Свойства арннтовоста операторов, вводаши параиетрааацаей (2,4), 
следуют непосредственно из (2.7) в конкретной параметризации 
матрицы ol . Например, величины $"/» //Г £ и ^ J ^ S ' 
арматою сопряжена и играм рожь фоковских операторов рождения 
в поглощения по отношение к функционалам £ 2.£е?. 

Оператор поглоаення Л., (-h.,:*) определяется перестановочным 
соотвовением 

[л,с*,*>,*f,(<*'>3 = $ts £, , &*-*'>, 
уодоввен эрмитовой сопряженности &/ a CL ^ * видом (2.4) 
оператора рожденвя в представлении (1.7). Матрица оператора 
поглощения имеет вид 

^ Г H^t = ^г~Г * i A > ̂  ^Тг($сСЩ (2.8) 
л 

где оператор d- связан только с переменными, параметрнауваамн 
матрацу «^ . Плотность «вела частиц в состоянии %• зависит 
лааь от инвариантного параметра ^ •' _ 

Матричные элементы оператора Л. удобно запиенвать через 
производные по матричным элементам матрацы о£: 

(2.9) 

etc . 
Генератор калибровочных преобразований выражается только через 
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переменные матрицы o i • Плотность генератора в состоянии Уь 
в 0 , ь

 + л А 

в векторном представлении. Чтобы получить генератор в слкнорном 
представлении, следует учесть неоднозначность в определении 
матрицы oi no (2.4), а именно, возможность умножения спра­
ва на диагональную матрицу, что дает для спинорного представле­
ния А 

< ? £ р - & - У Д , 

Обратимся к построению кинематического потенциала V^ и 
фазовых множителей. Из уравнения (2.2) и параметризации (2.4) 
находим, что Т£ определяется матрицей оС: 

X (%Х) = j ol(K,x) дкО£ ~(<п,Х). (2'9) 

Формула (2.9) напоминает выражение для чисто калибровочного 
потенциала. Однако матрица аС не является унитарной. Неэрмито­
ва напряженность, построенная на (2.9), равна нуле. Эрмитова 
напряженность, вычисленная с помощью (2.9) и эрмитово сопряжен­
ного потенциала, будет отлична от нуля. 

Фазовый множитель (1.5), содержащий кинематический потенциал 
(2.9), представляет собой произведение двух матриц 

Ф(*,,г,) = *(*.,г,)Ы.-\п,ъ). ( 2 Л 0 ) 

В силу (2.6) трансформационные свойства (1.5) выполняются авто­
матически. Фазовый множитель (2.10) является простейшим, так как 
зависит только от одного состояния Л* . 

Теперь в наием распоряжении имеются все элементы, необходи­
мые для построения калнбровочно-вннарвантных многочастичвых 
состояний (1.6). Введем в общую формулу (1.6) фазовые множители 
согласно (2.10). Каждый из фазовых множителей в (1.6) может быть 
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связав с однии на значений S: тЧЖ^ I )= Щ. №г.,х1*л} < 
Общее выражение для многочастичных инвариантных'состояний есть 

Tr{t(^x,) 0p(z^t) ^%Л)°РК*0~\ •<>>= 

= M 8 V / M , ) \ S J K U . . 1 I O > «.„) 

ЪцСЪ.Х.) ̂  и^а.=с)%Ы,Х)и(&.^ (2.12) 

Таким образом, в общем случае многочаотичные инвариантные 
комбинации состоят из блоксв-матриц, которые зависят от одной 
точка пространства в трех состояний. Каждый is блоков В < £ (ъ,х.) 
калибрпвочво-ннвариантеи а отдельности; взятие следа произведе­
ния блоков &;.£ в окончательной формуле (2.12) не имеет отно­
шения к калибровочной инвариантности, оно необходимо для того, 
чтобы из инвариантов E ^ s набирать многочастичные состояния. 
Одной и той же фоковской конфигурации операторов рождения (когда 
все РР = I) соответствует согласно (2. II) множество инвариант­
ных конфигураций, отличающихся выбором фазовых множителей. 

3. Инвариантные состояния 
Инвариантные операторы В { $ (п, х) можно подразделить на два 

класса в зависимости от того, совпадает ли квантовые числа t 
и £ , иди они различны. Если t - S , то связь между 
операторами bssCi,x.) и а?(п,эс) осуществляется с поноцы) 
изовекторных величия.относящихся к степени свободы S , если 
же IФ S , то 8f- связано с (L* изосшшориыин 
величинами по степеням свободы I и S .Эти классы отли­
чаются также различными свойствами симметрии миогочастичннх 
состояний. 

д. Случай -с = S . Здесь удобво вместо матриц ас лодьзо-
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м » с я комплексной матраце! группы 0(3) H^j , записывая 
явмрвавтанй оператор в ввде 

(3.D 

Е с м фазовые шожатежа отнесем к некоторому стандартному состо­
яние 5 С , общему дяя всего кабора ииогочастичяих остояввй, 
то переход от операторов рождения к внваряаятному оператору 
B s S c можно рассматривать как неунитарное преобразованне жая 

всех* степеней свобожн t u кроне -Н- •* s D ; 

Состоянае S r служат при этом системой отсчета калябровочвнх 
фаз. 

Двучаотачаое внварнантвое состоянае (2.II) амеет вид 

(3.2) 

В зтнх же обозначениях санглетное двучастичное состоянае, состав­
ленное в пренебрежении фазовыми множителями, есть 

Приведем также трехчастячаое состоянае (2.II), в котором фазы 
отвесенн к первой частице 
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'xt *ь (з.з) 
Нежнвариантвое синглетное состояние трех частиц в наших перемен­
ных приобретает вид 

£ *4с №,*<) Dt (п,х±) 9С (s. ^(K^faxjsCs, V /<?> 
Таким обрааом, рецепт перехода от неииварианткнх состояний к 

инвариантным вполне прост. 
Свойства симметрии инвариантных состояний отличаются от обыч­

ной бозе-симметрии фоковских состояний, если калибровочные фазы 
относятся к одной из частиц в наборе. Чтобы восстановить бозе-
симметрию, нужно симиетризовать по тем частицам, которые служат 
системой отсчета фаз. Например, в случае двухчастичного состоя­
ния вместо (3.2) следует писать 

Неунитарность перехода от переменных 1-(п,х) к переменный 
fass(n,Z) проявляется в том, что скалярное произведение для 
степени свободы 1ь становится зависящим от oti Sc. tx.)zd 

Интегрирование по стандартному состоянию -?„ будет охветмвать 
также интегралы по другим степеням свободы, фазы которых отнесе­
ны к стандартному состоянию. 

Инвариантные состояния ортогональны яеинвариантным состоя­
ниям при несовпадающих координатах операторов рождения, так как 
вакуумное среднее от R.^ равно нулю: < 0 / R . ^ Io)> = 0. 
Разумеется, при совпадающих координатах обычные многочастичше 
состояния-синглетн инвариантны сами по себе и равны состояниям 
(2.II). Однако в квантовой теории поля вполне возможно обойтись 
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без многочастичных состоянии с совпадающими координатами. 
Б. Случай 1 4 S , так что инвариантный оператор рождения 

6{ s(n,x) содержит только одну иатркцу с заданны* чксаон $. 
Удобно, чтобы квантовое число фазового множителя совпадало с 
квантовым числом одного н» соседних операторов рождения. Тогда 
основной блок £ { S (5,л)им«ег простейинй вид по сравнение со 
всеми другими выборами фановых множителе! Сб J: 

Мх)г8,5(*-*)= d'kxU(S/x)T3 ^x), (3.5) 
а инвариантное двучастичиое состояние есть 

Однако ыногочастичные состояния в этом случае не имеют 
простой сшшетрии. Использование оператора (3.5) обеспечивает 
линь циклическую симметрии. Это обстоятельство не свидетельствует 
против инвариантных состояний данного класса, так как по своему 
определение (1.6) инвариантные состояния не должны обладать 

симметрией фоковскях состояний. Но в кинематической подходе к 
построению фазовых множителей естественно требовать, чтобы полу­
чающиеся состояния были близки по свойствам симметрии к свобод­
ным состояниям. 

Как и в случае состояний класса А, свойства ортогональности 
состояний, построенных из блоков (3.S), определяются интегриро­
ванием в скалярном произведении (2.7) по фазе инварианта £ 
и по углам в матрице о£ (для каждой точки X и каждого сос­
тояния ft ). Скалярное произведение многочастичного состояния 
класса Б и обычного неинвариантного состояния будет пропорцио­
нально вакуумному среднему от матрицы Ы. • Так как (0 № №)=0 
для группы S l i d ) , то инвариантные состояния класса Б также 
ортогональны не«вариантным состояниям. 

Обобщение развитой вине теории на случай группы SV-CM} не 
представляет затруднений. Все рассматриваемые величины - операто­
ры рождения и поглощения, кинематический потенциал и фазовые 
множители следует описывать hi* N -матрицами. Параметризация 
произвольной комплексной матрицы It; в атом случае будет 
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непосредственным обобщением (2.4): 

где 3-м -диагональные матрицы группы SUCH) а матрица 
о£ определена с точностью до умножения справа на диаго­
нальную матрицу. При заданных %> ж X патрица ol(n.tx) 
зависит от &M(Af-1) вещественных параметров. 

Уравнение (2.2) для кинематического потенциала теперь заме­
няется уравнением 

из которого следует кинематический потенциал тсго же вида (2.9), 
что и ранее, и, следовательно, фааовне множители (2.10), но с 
матрицами, введенными по (3.7). 

Отметим, что хотя формальные выражения для инвариантных состо­
яний мало отличатся от случая группы SU&), внчнсдешк скаляр­
ных произведений быстро усложняется с ростом Л/ , как из-за 
громоздкости весовой экспоненты 

так я необходимости интегрирования по группе. Здесь может быть 
полезен опыт интегрирования по матрицам в реветочных теорияхf7J, 
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КРИТИЧЕСКАЯ КОНСТАНТА СВЯЗИ 
В ПРОБЛЕМЕ СПОНТАННОГО НАРУШЕНИЯ КИРАЛЬНОИ СИММЕТРИИ 

В КВАНТОВОЙ ХРОМОДИНАМИКЕ 

В.А.М иранский 

Институт теоретической физики АН УССР, Киев 

Успех феноменологического описания /I/ спонтанного нарушения 
кмральнои симметрии в фюике «дронов не оставляет сомнений в ре­
альности втого явления. Однако реализация динамики такого нару­
шения в квантовой хромодинамкке (ЮЩ) - единственном кандидате 
на роль теории сильных взаимодействий - остается нереаенной зада­
чей. Представляет поэтому интерес получить ограничения на возмож­
ный механизм спонтанного нарушения кнралыюй симметрии непосред­
ственно из уравнений ЮЩ. В настоящем докладе рассматриваются 
такие ограничения, следущке ив асимптотических (опредвлящих 
ультрафиолетовую асимптотику) уравнений для функций Грина Ю Щ . 
Показано, что динамика спонтанного нарушения кмральнои симметрии 
в КХД формируется ь области, где бегущая константа связи ^CjfJ 
превышает некоторое критическое значение сх^ > С , и определе­
на ультрафиолетовая асимптотика динамической массовой функции 
кварков. При получении зтих результатов существенно используется 
условие сохранения аксиально-векторных токов, связанных с мрешь-
ной группой $l^i (/(J * $££g(/fj ( Я - «тело хварковых 
ароматов). Как оказывается, зто условие выступает как доопределе­
ние пространства допустимых решений уравнения для динамической 
массовой функции фермиона. 
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Задача определения ультрафиолетовой асимптотики динамической 
массовой функции кварка tifeff') j y ^ ч < Ш ( £ ) (пропагатор фер-
миона SCfJ- "(9^(^9 ~ SC^j) ) впервые рассматривалась в 
работах /2,3/. Используя метод операторных разлокеннй, для асимп­
тотики функции /Pfaffy в евклндовской области в поперечной 
калибровке были получены выражения вида 

WfJ^J/^Xj^ (работа/2/), (1а) 

Wj>(fJ- f-$$j ( р а б 0 № / З Л ' ( 1 б ) 

где t = J~</i > Л/ - размерный параметр квантовой 
хромодинамики. Однако вывод, использоваваийся в этих работах, 
был подвергнут критике /4,5/. Суть критики сводится к тому, что 
асимптотическое уравнение для массовой функции кварка в КХД с ну­
левой затравочной массой допускает также решение вида 

Как было указано в /4,5/, аргументация против этого решения, опи­
равшаяся на метод операторных разложений, является неубедительной, 
так как при обосновании самого этого метода априори принимается 
быстро убывающее решение вида (I). 

Возникает необычная ситуация. С одной стороны, динамическая 
массовая функция определяется из точных уравнений для функций Гри­
на. С другой стороны, ультрафиолетовая асимптотика этой функции 
не определяется однозначно из асимптотического уравнения. Един­
ственный вывод, к которому можно отсюда придти, состоит казалось 
бы в том /5/, что определить ультрафиолетовую асимптотику динами­
ческой массовой функции нельзя без определения ее поведения в 
предасимптотической области - задача весьма сложная. 

Как будет, однако, показано ниже, ситуация оказывается иной: 
лишь регулярное решение (I) удовлетворяет асимптотическому урав­
нению в КХД с кирально-инвариантным лагранжианом (т.е. с сохраня­
ющимися аксиально-векторным токами). Как хорошо известно, из-за 
сингулярного харктера на малых расстояниях уравнения для функций 
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Грина в Щ должны быть доопределены. В теории возмущений такое 
доопределите сводятся к перенормировке. В настоящей работе будет 
ухааака процедура доопределения етжх уравнений при учете явления 
спонтанного нарушения кирааьной симметрии; характер доопределения 
однозначно определяется самой сутью етого явления. Как оказывает­
ся, динамическая массовая функция кварка должна удовлетворять бо­
лее жестким ограничениям, чем те, которые следуют на рассматривав­
шегося в /4,5/ уравнения для массовой функции с нулевой затравоч­
ной массой. В результате однозначно отбирается асимптотика вида 
С16). 

При спонтанном нарушении тральной симметрии массовая функция 
/%(%*) в фермионном пропагаторе отлична от нуля, а I / -I) 

бесцветных аксиально-векторных токов J* = y'/Aj/ff < Z •>!..., 
Jf-l) сохраняются. Из уравнений движения 

где /7? (А)- затравочная масса фермиона, Л - параметр обрезания. 
Дозтому для определения дивергенции fyjsf следует рассмот­
реть поведение в локальном пределе (/J -» 0 & ) составного операто-

шп-0$Гmtv}., •« 
где / J - ренормгрупповой параметр. Из (3) и (4) получаем уело 
вне, гарантирующее обращение в нуль дивергенции аксиально-вектор­
ного теса в локальном пределе: j . JL. 

Таким образом, равенство нулю затравочной массы в локальном преде­
ле ( / 7 7 ^ = Н & / " \ Й ) — 0 ) , вообще говоря, не гарантирует сохра­
нения аксиально-векторного тока. Такой гарантией является доста­
точно быстрое Д1°(Л)-0 ( */(&•&) > убывание при 

А~*оО затравочной массы в теории с обрезанием. В частности, 
условие (5) выполняется при выборе /tf*i А )»0,т.е. когда лаг­
ранжиан теории с обрезанием является кирально-икяармантаым. 

Как будет сейчас показано, условие (5) является решавщим для 
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определения ультрафиолетовой асимптотики динамической массовой 
функции кварка в КХД. . 

Перенорнированная функция 3 ^J > соответствущая точке 
вычитания // , удовлетворяет уравнении 

где 7 ^ - константа перенормировки фермионного пропагатора;/1-
вспомогательный параметр, который во всех конечных выражениях 
должен быть устремлен к бесконечности; Нляд'/л' ~ ЭДР0 Бете-Сол-
нитера; в нижайием приближении в калибровке Ландау ядро имеет вид 

4, to- &-^£ 
Так как ультрафиолетовые асимптотики функций Jf ф/ и Луцл'/Я' 
не чувствительны к массовому члену, то их вид не должен меняться 
при учете спонтанного нарушения киральной симметрии. Поэтому в 
главном приближении для них будем использовать выражения, следую­
щие из ренормалиэацнонной группы: 

Как обычно, для определения ультрафиолетовой асимптотики функ­
ции £ dfi) в уравнении (6) удобно перейти в евклидовскую об­
ласть. Ренорнгруштовые аргументы показывает /2/', что в пределе 

£*-* oO основное вклад в интеграл правой части уравнения (6) 
дает область А * , {$'&>?• / У . В етой области 
Л > * " jj*® * ~ if • < 9> 

Подставляя выражения (8) и (9) в (6) х переходя в евклидовскую 
область, получаем уравнение 

(10) 
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(мы учла, что в атом приближения %t/mX , см. (8)}. В главном 
логарифмическом приближении в области Д* ,, (f-f/ » ЛГ 
функцию fflfy-Kly можно ваменнть на ^ ( ф при £ > / ( * и 
на £&$ при ^ V / f * . Поетому, интегрируя в (10) по углам, 
в етом приближении получаем уравнение д 1 

(нижний предел интегрирования «, в етом асимптотическом урав­
нении остается неопределенным). 

Для определения ультрафиолетовой асимптотики динамической мас­
совой функции мы должны решить уравнение (II) и затем в решении 
перейти к пределу Л~*оО так, чтобы выполнялось условие сохра­
нения аксиально-векторных токов (б). 

Легко проверить, что решение уравнения (II) удовлетворяет диф­
ференциальному уравнению второго порядка 

и грашпиецу условию 

Для наших целей достаточно знать, что обцее решение уравнения 
(12) имеет вид 

где (гак нетрудно проверить прямой подстановкой) функции Д- мне-

л-ft*)** 
-t г 

(напомним, что в етом прмС.клкеюм GftfJ— /iAf&A/* )• И* 
граничного условия (13) получаем 
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\&~г / 

Отсюда и из условия (5) находим, что константа С/ в локальном 
пределе равна нулю. Поэтому ультрафиолетовая асимптотика динами­
ческой массовой функции имеет вид , 

Подчеркнем, что доказать равенство Q -0 удалось благодаря ис­
пользованию выбранной процедуры перехода к локальному пределу. Ес­
ли бы переход к пределу Л~*оО осуществлялся непосредственно в 
уравнении (II), т.е. в граничном условии (13), то определить О 
было бы нельзя: граничному условию с А" оО удовлетворяют обе 
функции Д \ Этот факт отражает то, что (как ухе отмечалось) 
равенство нулю затравочной массы /Я®** £ & /7?<v(Aj не гаран­
тирует сохранения аксиально-векторного тока j ] L f Существен­
но, что выбор процедуры перехода однозначно определяется физичес­
ким содержанием задачи (условием сохранения тока £ ) . 

В принципе размерная константа С в выражении (17) должна 
выразиться через параметр КВД И. Сделать это в явном виде непрос­
то (для этого требуется знать решение уравнения для массовой функ­
ции при всех % г ) . Можно.однако, выразить константу С че­
рез феноменологический параметр & / ( у ? У ) и / 0 ^ * Действи­
тельно, в теории с обрезанием 

(18) 

С другой стороны /l/t , / 

&/(7фо>^(1г% &/(Г*&/о>. С 1 9 ) 

Из (18), (19) находим 
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(заметим, что в силу (19) константа С является ренормкнвариант-
н о Я Ь a ml -' 

Нетрудно этот результат обобщить на случай /%/*£%%Л? йО&у* 
Ф О, когда кроме спонтанного имеет место еще и явное наруше­
ние киральной симметрии. В этом случае из (16) находим ^ 

Отметим следующий характерный момент. Нетрудно проверить, что 
если решение S/ с логарифмической асимптотикой (см.(16)) фор­
мируется в области / ' / ^ , то соответстаущее спонтанному 
г'лруаешт киральной симметрии реаание ^ формируется в области 

}{*<<?* и повтому не зависит от величины параметра обрезания /I . 
Это является указанием на то, что динамика спонтанного нарушения 
киральной симметрии в КХД формируется не на малых расстояниях. 

Обсудим особенности перехода к локальному пределу А~*6° в 
уравнении (II) с точки арен» теории интегральных уравнений. Рас­
смотрим вспомогательное уравнение вида 

которое при J «I и Л" °& совпадает с уравнением (II). В прос­
транстве квадратично-интегрируемых функций ядро /fij?5 £у явля­
ется фредгольиовским (Гильберта-Шмидта) /6/, так как 

ffy<4/(?,&< СО • 
Как известно /6/, спектр собственных значений такого уравнения по 
модулю ограничен сверху 'Щ^Л^ОО. С другой стороны, два возмож­
ных решения уравнения (22) имеют асимптотику вида (ср. с (15)) 

160 



л. ^f. 
4w ~ f(6>tfj / С25) 

и так как оба этих реиения при всех 1 > 0 удовлетворит гранично­
му условию на бесконечности ( ff* *™ty%* + fr~ a r/wfo?*)* 

л AwwaT" • °Р" с ̂ ^ '• т о Ф 0Р* и и , ьно уравнение допускает 
решение при всех / > 0 . Противоречие устраняется тем, что функ­
ция SfA не является квадратично-интегрируемой. Таким образом, 
условие сохранения аксиально-векторного тока, отбирающее быстро 
убывающее при ^ - » оО решение, выступает как условие доопреде­
ления пространства допустимых решений. Учтем его доопределение при 
•наливе динамики спонтанного нарушения киральной симметрии. 

Введем параметр инфракрасного обрезания % в точное уравне­
ние для динамической массовой функции (6) с Л=С& и М^'Ю • Бу­
дем говорить, что критическое значение бегущей константы связи 
для нарушения киральной симметрии равно нулю, если это уравнение 
имеет нетривиальное решение при сколь угодно больше* значении <fc . 
Если же величина таких 0О ограничена сверху, % 4 СГ^оО , то 
будем говорить, что критическое значение а£ =- вГС&'У* Из это­
го определения ясно, что величина (У определяет верхнюю грани­
цу той области импульсов, где в основном формируется динамика спон­
танного нарушения киральной симметрии. Приведем соображения, пока­
зывающие, что ъ КХД критическая константа о& > О . 

Напомним, что, как следует из тождества Уорда для вершины ак­
сиально векторного тока ji^, между функцией &0 Cfif и вол­
новой функцией голдстоуновского бозона Jf (fJ имеет место соот­
ношение вида /I/ 

где /£ - константа слабого распада 7/ -мезона. 
Из (6) и (26) следует уравнение для волновой функции голдстоу­

новского бозона: -/ f j 

[?&/%) foJhr ИLjMf^Xw C<J. (27) 
161 



В саду (26) это уравнение фактически является нелинейны!. Пе­
рейдем к линейной версии этого уравнения: 

где X (fJ'SQJifO ~~ $Щ> ." /К*;*/* = 4т*Л'МГ° •' Л -
свободный параметр, который введен здесь из сведущих соображе­
ний. Уравнение (28) является уравнением для волновой функции голд-
стоуновского бозона в пределе, когда динамическая масса равна ну­
лю. Из общих физических соображений следует ожидать, что уменьше­
ние массы возможно лишь при ослаблении взаимодействия между фер-
мионом и антифермионом в голдстоуновскои бозоне. Поэтому собствен­
ные значения Л . решений уравнения (26), соответствующих спонтан­
ному нарувешш тральной симметрии, должны быть больше единицы 
(очевидно, условие /\ <? J означает ослабление взаимодейст­
вия). Покажем, что при достаточно большой значении параметра ин­
фракрасного обрезания 90 собственные значения J - решений, 
удовлетворяющих условии сохранения аксиально-векторных токов, ста­
новятся меньше единицы. Это и будет означать, что критическая кон­
станта ol(.>0. 

При достаточно больших значениях *£>/Ууравнение (28) при за­
мене tfJ&CfJ-* fa(fJ ( W Mfc=J(Z ) перехо­
дит в асимптотическое уравнение (22). При в - % решение урав­
нения (22) удовлетворяет условии 

4*&Ь О . (29) 

Подставляя в (29) решение £ # , отвечавшее спонтанном» нару­
шению кираяькой симметрии, находим, что при % -* &Э 

что и требовалось почаэать. 
Вопрос о величине критического значения Ыс тесно связан с 

вопросом о механизме спонтанного нарушения игральной симметрии. 
В работах /?/ был предложен механизм нарушения, тесно связанный 
с явлением рождения сверхкритическим кулоновским полем fift , 
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if > Jc A 137, фермион-антифермионнкх пар /8/; в этоы подходе 
константа Ос является аналогом критической константы т|г ^ "!• 
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О СЛОЖЕНИИ ВЗАИМОДЕЙСТВИЙ 
В КВАЗИРЕЛЯТИВИСТСКОЙ МЕХАНИКЕ СИСТЕМЫ ЧАСТИЦ 

Р.ПТайда, Ю.Б.Ключковский, В.И.Третяк 
Институт прикладных проблем механики и математики 

АН Украинской ССР, Львов 

I . ВЩЦрНИЕ 

Интенсивно развиваемая в настоящее вреыя релятивистская тео­
рия пряного взаимодействия СРШВ) между частицами позволяет, из­
бегая известных трудностей теоретико-полевых моделей, получать 
удобное описание процессов рассеяния при высоких энергиях в тер­
минах определяемых феноменологически потенциалов взаимодейст­
вия' * ^Важное место в таких подходах занимает релятивистская за­
дача сложения взаимодействий, состоящая в описании взаимодейст­
вия в системе N (» 3)-частиц по известным взаимодействиям внут­
ри составляющих ее кластеров. Исходными требованиями, предъявля­
емыми к решению этой задачи, являются пуанкаре-ннвариантность и 
разделимость (см. ' 3> ) . Поскольку в РТПВ условия пуанкаре-
инвашантности выражаются по-разному в различных формализмах 
( с и . / 3 / ) , то и решения указанной задачи, опирающиеся на эти ус­
ловия, могут существенно отличаться между собой в различных 
подходах. 

Наиболее подробно задача сложения взаимодействий изучена в 
релятивистской гамильтоновой механике ' . Однако отсутствие 
прямой физической интерпретации канонических координат в зоне 
взаимодействия усложняет исследование связанных состояний (.во 

164 



всяком случае, для системы в целом) я введение взаимодействия с 
внешними полями. . . 

Лагранжева релятивистская механика ' выделяется среди 
других одновременных трехмерных формализмов Р Т Ш линейностью си­
стемы уравнений, выражающих условия пуанкаре-инвариантности, По­
этому здесь допустим простой принцип суперпозиции лагранжианов 
взаимодействия различных подсистем системы А/ - частиц. Благодаря 
использованию ковариантных координат частиц ? ь , а » л , . . . , N 
можно также применять суперпозицию лагранжианов прямого взаимо­
действия частиц и их взаимодействия с внешним, в частности, элек­
тромагнитным полем. Если от лагранкева формализма перейти к дру­
гим - например, к ньютоковому мхи гамильтоновому (.см. , 9 , 1 3 / ) , 
то тем самым можно получить и в них соответствующие правила сло­
жения взаимодействий. 

Настоящая работа посвящена обсуждению отмеченных вопросов в 
ранках кваэирелятивистской механики, учитывающей некоторое конеч­
ное число членов разложения потенциалов взаимодействия по с" 1 . 
В разделе 2 мы исследуем общую структуру лагранжиана взаимодей­
ствия произвольного кластера в хвазирелятивястском приближении 
любого порядка. Затем (раэд.З) рассмотрим переход в ганильтонову 
формализму и получим в нем правило сложения взаимодействий во вто­
ром хвазкрелятивистсхом приближении, соответствующее суперпози­
ции попарных лагранжианов взаимодействия. В разделе 4 в том же 
приближении рассмотрена система заряженных частиц во внешен 
электромагнитном поле, изложение ведется в мгновенной форме ди­
намики, как и в е~ • . однако не составляет принципиальных 
трудностей распространить подученные результаты на любую форму 
лагранжевой д и н а м и т а / ^ ~ . 

2. КЛАСТЕРНЫЕ РАЗЛОЖЕНИЯ В КВДЗИРДОХИВИСТСКСЙ 
ЛАГРАНЖЕВОЙ МЕХАНИКЕ 

Рассмотрим лагранжиан системы W-частиц в виде 

где L.f = - S.'^a.c^V'l-^/c* описывает свободные частицы, 
U - потенциал прямого взаимодействия и Lext - лагранжиан 
взаимодействия с внешним полем; 3 a « * а - скорости частиц. В 
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разделах 2 и 3 ограничимся замкнуто! системой частиц, которой 
соответствуют два первых слагаема в (I) . 

Условия пуанкаре-ннварнапности в трехмерной лагранкевой ме­
ханике формулируются с помощью десяти векторных полей Ли-Бек-
лунда X ее > *"'!,•••• "10 , определяющих реализацию алгебры 
Пуанкаре в бесконечном продолжении конфигурационного простран­
ства системы частиц на высшие производные х а « ds * а /olts, 
S~,°i л>• •• , *o.s 5 а . В мгновенной форме динамики они имеют 
вид / 8 / 

(2) t = 1 1 . 6- x J -2-

X^lJ^tskWi)]^ . ( з ) 

Генераторы Н и 9; соответствуют временным и пространственным 
трансляциям, Vi K'X.L- пространственным и лорекцовыы поворотам; 
i>j>K " Ii2,3; dV к eiiK. - символы Кронекера и Леви-Чивита. 
Пуанкаре-инвариантность описания будет соблюдена, если U удов­
летворяет системе дифференциальных уравнений первого порядка 

X - U = T>^ o t , *=л,...,ло, С4) 
причем функции Ч'ы должны обеспечивать выполнение условий сов­
местимости системы (4): 

Ли V-

X^-Xa^-jLc^vpr ,*,f«V/0, (5) 
где Слв - тензор структурных констант группы Пуанкаре. 

Если предположить, что лагранжиан взаимодействия U для си­
стемы N -частиц допускает кластерное разложение вида 

U-£ Г U W , - I I U a b + I H U a b £ + Сб) 

где сумма берется по всем А/' - частичным кластерам, то линей­
ность системы уравнений (4),(5) разрешает принять аналогичное 
предположение для у ^ и получить замкнутую систему уравнений, 
относящуюся х любому Л/' - частичному кластеру. Далее оцус-
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каем явное указание на количество частиц в кластере. 
Условия (4) требуют 3 > s / , чтобы лагранжиан прямого взаимодей­

ствия 17 не содержал явно общего параметра эволюции (времени) 
t , зависел от координат частиц лишь через разности Уа-Зь^ол 
(трансляционная инвариантность), был трехмерным скаляром и удов­
летворял условиям лоренц-инвариантности, которые удобно запи­
сать в виде 

•XiU«T>(cf*ftiU-$>i.). ( 7 ) 

Здесь Ф<. -функции, которые в силу условий совместимости (5) яв­
ляются трансляционно-инвариантными, не зависящини явно от t ком­
понентами 3-вектора,и удовлетворяют уравнениям 

"КсФ, -•*,$».-c^SyU, (8) 

ъ.Ъ-ъ^гъ, С 9 ) 

Пусть функции U , Ф 1 в (7), (9) описывают фиксированный 
N' -частичный кластер. Рассмотрим решение уравнений (7), 

(8) в рамках последовательных приближений по с" 2 . Эта задача 
решена в для Л/' «2 до второго порядка по с" 2 включительно. 
Здесь изложим общее реоение для произвольного кластера и порядка 
приближения. ^ 

Представим искомые функции 17 , Ф в виде 

««О ' YWO 
Учитывая, что, согласно (3) и ̂ 9) , оператор ^i мы можем 
представить в виде '3(;=!П.+с~2В^ , где Ji - генератор преоб­
разований Галилея, Si. s -t?i. - G-i., Gi*5[ Э/Э^а , после под­
становки рядов (12") в уравнения (7) , (8") получим, принимая во 
внимание трансляционную инвариантность функций U Vм, ф '^ , 
следующие соотношения: 
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СсФ^А^ФГ'-%^"'L%UCW)*«T; (14) 
здесь V tmT>R. « £ в аОаА. a»-« 

В уравнениях (IS) , С14) можно перейти от индивидуальных ско­
ростей частиц 1>а к новым переменны!: "коллективно*" скорости 
V и некоторый (л/-*)-относитвльным скоростям, явный выбор -J-

торых для нас несущественный. Тогда вместо оператора Сп нуж­
но писать 3 /Э V ' . и общее решение уравнений (13),(14) имеет 
вид (см., например * , с. 60-51) 

u^v^tFfcW^, С1б) 

где 4 V - произвольные галилей-инвариантные (т.е. не содержащие 
V ) функции. Мы ограничились частным решением (15) , так 
как выбор другого реалия для Ф^ приводит к появление в (/<i4 

слагаемых типа полной производной no t . 
Анализ цепочки решений (15),(16) для последовательности тг = 

=0,1,... приводит к следуним выводам: 

1. $ й = 0 , ^ О , U« = 4-e. ( 1 7 ) 

2. Для любого in > О функции U и Ф являются полико­
мами по V степеней 2тг и 2п- /1 соответственно. 

3. Если Н*к , к в О, 4,..., **»> - бесконечно дифференцируе­
мые функции в некоторой области изменения своих аргументов, то 
тем же свойством обладают и'^'и Ф^"* для всех "П i.rm . 

йункции Р ^ , Р у * , определенные в формулах (13), (14), 
допускает представление в виде 

.00 %л

 с с « с<«**> г£"\с*«> 
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г Д е Рс«) и ?ц<Х) ~ однородные функции v порядка s. Это 
позволяет взять интегралы в (15), (16) и представить решение 
уравнений (13), (14) в следующих эквивалентных формах ( ъ > 0 ) : 

s r 0 £ * i < » ш nsTo(s«--rt! s <* * (го) 
Здесь операторы W s , S-0,-1,.... определяются рекуррентными 
соотношениями 

W 0*id; V/s-v'Ws.,^ , s>o. (21) 
Во второй форме записи (19), (20) все функции можно считать вы­
раженными в терминах индивидуальных скоростей частиц 5 й . 
Соотношения (19),(20) " -..шая получать общие выражения для 
лагранжиана взаимодействия в "п. -ом порядке по С " 2 , если из­
вестны лагранжианы в предыдущее порядках К сп. . 

Если ограничиться двухчастичными (в лагранжевом формализме) 
взаимодействиями ( N ' ~ Z ) и положить 4 ' o a U » ( r > i y * y / ^ ч С ^ . ^ Ь 
то формулы (19)-(20) воспроизводят результат рабой/ . Только 
при очень частном (и, по-видимому, лишенном физического содержа­
ния) выборе U,, лагранжиан ( 7 С 2 ) может не содержать ускорение . 
В типичных случаях C 7 t t t зависит от ускорений (а возможно, и 
высших производных ) , так что соответствующие уравнения движения 
имеют порядок выше второго. Исключая производные выше первой в 
малых членах уравнений движения, приходим к нелинейным выраже­
ниям для релятивистских "сил" ' 

«£ » К С*,») . £ ^ + ̂  £ ^ , (22) 

3. СЛОЖЕНИЕ ВЗАШОДЕЙСТШЙ ВО ВТОРОМ КВАЗИРЕДЯТИВИСТСШ1 
ПРИБЛИЖЕНИИ ГАМИЛЬТОНОВОЙ МЕХАНИКИ 

Решение задачи о сложении взаимодействий в гамильтоновом фор­
мализме путем перехода от лагранжева описания реализуется здесь 
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во второй квазирелятивистском приближении для взаимодействий со 
статическим нерелятивистским пределом в предположении, что ла­
гранжиан взаимодействия является суммой попарных выражений. 

Пуст-, в лагранжиане 

L = х^Ч^ + »2ab e)_u w-iu w-£U^-oCc e) C23) 
потенциалы U ,11=0,1,2. обладают двухчастичной кластерной 
структурой: 

причем U a b * и^С^аь} , ^аь* l̂ oLbl ; УСЛ> зависит от коор­
динат Х а . и скоростей 7 а частиц, a U с п содеряит также ус­
корения \? а ( общий вид функций U ^ и l / a J' найден в \ 

Для лагранжиана (23) отличными от нуля импульсами Остроград­
ского 

будут только два первьк (б" *0«О » Переход х каноническим пе­
ременным q , р по методу рабой/ * осуществляется согласно 
формулам 

Ч а - * о . - ^ г Д . , * О С е - в ) , (26) 

Р а = ? а , 0 ^ С с - 6 ) ^ А ^ С ^ ^ > 0 С с - ' ) ; ( 2 7 ) 

здесь и ниже тильда обозначает операцию исключения высших произ­
водных i? a , 5^ С ПОМОЩЬЮ нерелятивистских уравнений движения. 
Соответствующий (25) гамильтониан можно записать в виде 

u-5 ( & --£*- + Рй6- \ + u w

 +i-u« +±ц'г,+0(св)<28) 
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где 

(29) 

(30) 
фигурирующие здесь функции аргументов С Я, Р/чт>) строятся из тех 
же функций от (x,ir) подстановкой * а » Ц^ , «? а= ?а./'>та. , 
соответствующей нулевому приближению преобразований, обратных 
к (26) , С27) . 

Результаты вычисления выражения (30) запивеи в виде суммы 
линейных и нелинейных по константе взаимодействия членов 
иСг> иСг)Л UU)HA 
НЫ * Hiy»t + Mttvt , где 

,.СйНЛ 1 г г г _Л ( Pb-Ft 
L n t о a.*b coal ^ ^ b l т т с

 a b a t 
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-(о oVSszh VPc\ (qgbW) dttgb ditac1 

" I I I [3 Yb+MVq - ^ - U ^ ^ 
^ U c W H a b ^ a W J ^ a c Э&. Я<* dqac 

здесь q a b » q a - 9 b . Яаь'^Яаь! "» u-a.k = u-ab(q ab\M. 1 = 5-| v|U 1ub l 

U-2 ~ произвольные галилей-инвариантные функции. 
Выражение (31) является суммой попарных слагаемых, тогда как 

(32) соответствует трехчастичным и, возможно, - если функция 
U.2.(X)0", J"), содержащаяся в (7^ 2 ), нелинейна по ускорениям -

четырех - и т.д. частичным кластерам. Появление таких многочас­
тичных членов является следствием исключения ускорений в исход­
ном лагранжиане и в имцульсах Остроградского, а также связано с 
переходом от лагранжевых переменных х каноническим. 

Выражения (28), (31) и (32) определяет общий вид гамильтониа­
на системы /V частиц во втором хваэирелятивистском приближении 
и могут рассматриваться как решение задачи сложения взаимодейст­
вий в рамках гамильтонова формализма с точностью до членов с~м . 

Общее реоение квантовой релятивистской задачи сложения взаи­
модействий в гамихьтоновой теории дано С.Н.Соколова/ 5*^ при 
заданных потенциалах "первичных" (существенно N ' - частичных, 
/tf'=2,...,N) взаимодействий. Предложенный здесь способ построе­
ния гамильтониана N -частичной системы позволяет использовать 
преимущества лагранжева формализма - простое правило сложения 
взаимодействий, а также возможность конкретизации вида галилей-
инвариантных функций u a b , u., a b , u 2 , определяющих струк-
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туру величин .(31), (32) , для того или иного типа взаимодейст­
вий (см. • ). С точки зрения физической интерпретации резуль­
татов теории важно также то, что благодаря лагранжевому происхож­
дению полученных выражений нам известна связь канонических пере­
менных с ковариантными координатами частиц, заданная соотноше­
ниями (26) , (27) . 

Применяя преобразование (261, .(27) к остальным девяти лагран-
жевым интегралам движения (см. ) , можно получить полный набор 
десяти канонических генераторов. При этом импульс Р и момент 
импульса J системы имеют свободночастичгшй вид (как и должно 
быть в мгновенной форме динамики ̂ , а генератор лоренцовых по­
воротов 

содержит член, зависящий от взаимодействия и являющийся в рас­
сматриваемом приближении суммой попарных выражений. 

Изложенные здесь результаты показывают, что за пределами пер­
вого постньютоновского приближения требования пуанкаре-инва-
риантности не допускают в гамильтоновом формализме простого прин­
ципа суперпозиции взаимодействий к, таким образом, приводят к 
неизбежности многочастичных членов в гамильтониане системы N 
честиц ( W > 3 ) . 

4. СИСТЕМА ЗАРЯЖЕННЫХ ЧАСТИЦ ВО ВНЕШНЕМ ЭЛЕКТРОМАГНИТНОМ 
ПОЛЕ 

В качестве конкретного примера, иллюстрирувцего получение пра­
вил сложения взаимодействий (как прямых межчастичных, так и взаи­
модействий частиц с -внешним полем) в ньютоновом и гамильтоновом 
формализмах на основе линейного принципа суперпозиции в лагранже-
вом описании, рассмотрим систему частиц с зарядами е а во внеш­
нем электромагнитном поле. Функция Лагранжа (I) для такой систе­
мы во втором кваэирелятивистском приближении состоит из двух 
частей: во-первых, лагранжиана замкнутой системы вида (23),(24), 
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где и а ь = е аеь/<*аь - кулоновский потенциал, U a
(
b" соот­

ветствует известному лагранжиану Дарвина (сы. ) , для которо­
го и */!!>*? 1 a/ Q У а > - лагранжиану Голубенкова-Смородин-
ского / 1 б / Сем. также / 9' 1 0 /), когда 

U**b= l^J[3Cok*b)flb-(^-A)C^b)] ; (34) 
во-вторых, стандартного минимального лагранжиана взаимодейст­
вия частиц с ьнешним электромагнитным шлеи 

U r t - I e a O f a - H - * » ) , (35) 
где Ч*».*^**»^ > -"а = ^а,*) - потенциалы поля в точке на­
хождения а. -той частицы • 

Уравнения движения .ньютоновского типа вида (22) монно найти 
способом, описанным в . Уы не будем здесь приводить получен­
ные выражения ввиду их громоздкости; их особенностями является, 
во-первых, появление уже в первом кваэирелятивистском гриближе-
нии трехчастичных (а во втором - четырехчастичннх)членов ., что 
согласуется с общей структурой^таких уравнений движешиг 9 ; во-
вторых, наличие внешних полей Е и Н , которые входят не толь­
ко в виде обычной силы Лоренца, но и в некоторые интерференцион­
ные члены, перемешивавшие межчастичные взаимодействия и взаимо­
действие с внешним полем. Своим происхождением, как и многочас­
тичные "силы", они обязаны процедуре исключения высших производ­
ных (ускорений и т.д.") в уравнениях движения» 

При переходе к гаыильтонову формализму следует принять во 
внимание, что из-за явной зависимости Lent от времени гамиль­
тониан системы не является энергией. Более того, в общем случае 
система во внешнем поле не является пуанкаре-инвариантной и не 
обладает набором соответствующих интегралов движения. 

Переход к каноническим переменным определяется формулами (26) 

Pai.-"V»ai.* — «ai*^3ai,o*^5sai.,o W a C s * а и ~? . (36) 

Вводя для произвольной функции f(x,0-,-t) обозначение 
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Г-Г(Ч,Р,1>«Я,^,0, (37) 

где 
V Pa" T A (qa>t) (38) 

- "кинематический" импульс, приходим к функции Гамильтона систе­
мы вида (28), где в свободночаотичных членах р а заменено на 

Здесь выражения bff̂ . и Н;^*Л получены из (31) и (32) подста­
новкой >ja вместо ]5а (т.н.минимальное введение взаимодейст­
вия с внешним полем ) и учетом явного вида |ункций u 4 b , u 1 a b , 
U 2 a b , в частности, u l a b = 0 , u f = 0, 

* л$ a* b*c*d ^ ь ^ с Я ^ Я ы ̂  ^ a b ' 

Дополнительное слагаемое Н е >.^ в (40) имеет вид 

+ Г Ш ЙЙ^[ 3Ч"ьЧ Ьс- i Л^-Йи}Р*ь , (41) 
где 

?atfa А * > = Е (7а,0+ R^C?a,i) ( 4 £ ) 
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зависит от напряасенностей внешнего поля, а не его потенциалов, и 
нарушает принцип минимального введения взаимодействия с внешним 
электромагнитным полем в гамильтониан системы частиц. Отметим, 
что гамильтониан (39), кал и исходный лагранжиан (35), обладает 
калибровочной инвариантностью. 

5. ЗАШНЕНИЕ 
Мы рассмотрели некоторые возможности применения лагранжевой 

формулировки классической РТОВ для изучения задачи сложения взаи­
модействий. Эти возможности опираются на два важных достоинства 
указанного подхода, а именно: линейность уравнений, выражающих 
условия пуанкаре-инвариантности, и использование физических коор­
динат частиц в качестве исходных переменных. В рамках лагранжева 
формализма, допускапщего суперпозицию потенциалов взаимодействия 
отдельных кластеров, составляющих систему частиц, .Дцены общие 
выражения для потенциала любого кластера в произвольном конечном 
приближении по С" 2. В результате перехода к гамильтонову форма­
лизму, осуществленного явно во втором приближении по с' 2 и в 
предположении попарности лагранжианов взаимодействия, получено 
общее выражение для гамильтониана /V -частичной системы (а также 
остальных канонических генераторов группы Пуанкаре) , которое 
можно рассматривать как правило сложения взаимодействий в канони­
ческом формализме. Для системы N заряженных частиц, находящейся 
во внешнем электромагнитном поле, найдено в том же приближении 
правило сложения как межчастичных взаимодействий, так и взал-о-
действий отдельных зарядов с внешним полем. Следует подчеркнуть, 
что исходя из предположения о минимальности взаимодействия с 
внешним полем в лагранжевой формализме мы пришли к неминимально­
му введению взаимодействия с полем в функции Гамильтона. Резуль­
таты, полученные в ньютоновом и гамильтоновом формализмах могут 
быть использованы для расчета релятивистских поправок в движении 
систем заряженных частиц в заданном электромагнитном поле. Неко­
торые задачи этого типа рассматривались Н.П,Клепиковым в рам­
ках четырехмерного гамильтонова формализма, использующего пфаф­
фовы формы с минимальным введением взаимодействия зарядов с внеш­
ним электромагнитным полем. 
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Необходимо сдолать также некоторые замечания о проблеме раз­
делимости (сепарабельности/, обычно возникающей при решении 
задачи сложения взаимодействий. В рассматриваемом приближении, 
ках можно убедиться на основе выражений (31), (32) , при двух­
частичном потенциале и а ь(т а ь)и функции ь<. 1 й Ь , убывавщих на бес­
конечности, трудности с разделимостью могут возникнуть только 
за счет функции U 2 в (32) . Так как с точки зрения условий 
пуанкапе^инвариантности галилей-инвариантная функция u.L произ­
вольна , то, ограничивая ее выбор, можно указать широкий класс 
моделей, удовлетворяющих требованию разделимости взаимодействия. 
Однако сюда не включаются некоторые лагранжианы с нерелятивистс­
ким кулоновскин потенциалом, допускающие теоретико-полевую ин­
терпретацию ' . Таким примером является лагранжиан Голубенко-
ва-Смородинского, для которого функция U t имеет вид (34). Не­
трудно заметить, что соответствующее ей четырехчастичное слагае­
мое в (40) Н ' ^ н л не является разделимым. Аналоги даые труд­
ности возникают также в ньютоновом формализме. Они связаны, по 
нашему мнению, с тем фахтом, что разложения в ряд по степеням 
параметра с"1 в моделях, допускающих теоретико-полевую интерпре­
тацию, включают разложения по степеням запаздывания (опереже­
ния); очевидно, что с ростом расстояния между некоторыми клас­
терами системы запаздывание взаимодействия между ними становится 
большим. В этом смысле кваэирелятивистские приближения, доста­
точно удобные для рассмотрения связанных систем, обладают огра­
ниченной применимостью в многочастичных задачах рассеяния; в 
последнем случае более естествекны приближения по константе свя­
зи. 
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МГНОВНННАЯ ФОРМА РЕЛЯТИВИСТСКИХ УРАВНЕНИЙ ДВИЖКНИЯ 
В ОДНОЙ МОДЕЛИ ФОРМАЛИЗМА СИНГУЛЯРНЫХ ЛАГРАНЖИАНОВ 

Р.П.Г^нда, А.Л.Дувиряк, Ю.Б.Ключковский 
Институт прикладных проблем механики и математики 

Академии наук Украинской ССР, Львов 

I, ВВВДЕНИЕ 
/1/ 

шормализм сингулярных лагранжианов в последние года вы­
зывает значительный интерес как один из способов .описания реля­
тивистских систем пряно взаимодействующих частиц (си. также 
обзоры / 3 > 4 / ) . Этот формализм, в отличие дт трехмерных подходов 
лагранжева, ньютонова или гамильтонова > использует четы­
рехмерные координаты мировых линий частиц в пространстве Мин-
аовоксго А/1* ; избыточные переменные исключаются с помощью 
связей, следующих из сингулярности функции Лаграака. Наличие 
этих связей позволяет записать уравнения движения в виде обыкно­
венных дифференциальных уравнений, а не интегро-дифференциаль-
но-вааностных, как л явно ковариантном формализме типа §окке-
ра 7 6 / ( см. также / 5 ' 7 / ) . 

мормализм сингулярных лагранжианов тесно связан^ с канони­
ческим формализмом со связями Гамильтона-Дирака '^ . С другой 
стороны, его взаимосвязь с другими подходами, используемыми в 
релятивистской теории прямых взаимодействий, в частности, тоех-
мерннмг , практически не изучалась, укажем только работу , 
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где установлено соответствие с явно хогаянантнш формализмом 
Дро-Венсака, а также попытку Такабаям/^ сопоставить модели с 
сингулярным лагранжианом некоторое действие типа ioxxepa (как 
будет показано ниже, его результат некорректен; см. разд.5). 

Целью настоящей работы является разработка способа перехода 
от уравнений движения в формализме сингулярных лагранжианов к 
трехмерным уравнениям типа Ньютона в мгновенной форме динамика 
в рамках разложений по параметру с'2 (т.н. квазнрелятивистские 
приближения ) , а также нахождение соответствующих интегралов 
движения. В частности, здесь получено и исследовано первое ква-
эирелятивистсжае приближение для модели Домнничи, Гомеша и 
Лонги ( B G L ) / 2 / . 

2. МОДЕЛЬ M L И УРАВНЕНИЯ ДВИЖЕНИЯ ТАКАБАЯШ 
/о/ 

Модель 1GL а , описывающая систему двух частиц с одинаковы­
ми массами т , является одной из наиболее простых о изученных 
в формализме сингулярных лагранжианов, модель постулирует пара­
метрически-инвариантное действие 

s- jLet r , L • -/wTF) (/If + yTkf) (D 
с функцией Лагранжа L , заданной на T Q , где конфигурационное 
пространство Q - М ^ х М ^ ; здесь p*-(*f-**)(*»/i-*i/i), * Г 
(а «1,2; р «0,1,2,3) - координаты а-той частицы в ЬЛМ , к£ • 
ч dx£/dr , где х - некоторый параметр эволюции. Петрику в 
Ml« принимаем в виде I l^t - diaj (_ -I, I, I, I). Функция 
W , описывающая взаимодействие, выражается через нереляти­

вистский потенциал V (здесь р - /р* ) : 

\*Чр 4) - W*C*-»- 777 2/(р). (2) 
Пуанкаре-инвариантность лагранжиана (I), согласно первой теоре­
ме Нетер, приводит к существованию 10 интегралов движения 

?, - £ J* £& . ^-L^(v.,-vJ (3 ) 

г a-f \f-xl a-«Y-xi 
Матрица Гесса <V'L/'bk£'M\ лагранжиана (I) вырождена; след­
ствием этого является наличие (в случае dW/df+Q) первичной 
лагранжевой связ«г , которую можно записать 
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/F£ « ?rf * 0 C4) 
( символ т здесь обозначает слабое равенство, выполняющееся 
на уравнениях Эйлера-Дагранжа } . Условие стабильности связи 
(4) приводит и вторично» лагранжевой связи ?^ р г * 0 . 

Уравнения ЭЯдера-Лагранжа для лагранжиана (I) можно привес­
ти к виду, инвариантному относительно замены параметра эволщии 
для каждой частицы отдельно (исходный лагранжиан такой двойной 
параметрической инвариантность*) обладать не может, си. °;; от­
метим, что интегралы движения (3) и первичная сыаь (4) уже об­
ладает этим свойством. Проводя теперь в них репараметризацию 
Ха СО 1-* Кл (г л) (а «1,2 ) , приходим к уравнениям Такабаяси 

(в работе выполнен обратный переход от двухпараметрических 
уравнений (5) к однопараметрмческому действию (I) )и соответ­
ствующим первичной связи и первым интегралам. 

•икеируя, наконец, произвольные параметры с а как коорди­
натные времена частиц, 

получаем трехмерную форму уравнений Такабаяси с , которую пос­
ле некоторых упрощений с учетои (2) можно преобразовать к систе­
ме независимых уравнений 

WIT - — • ш (J /,») 
tffO+IICfO/W) # 

Т } * ' - с Т > в ( - * , - + а ) - 0 . (8) 
где использованы трехмерные обозначения К* (Ч а } для координат 
* *а С*в) • ki (ia ) - Л»* скоростей частиц ( I ш 1,2,3); 
при этом „. . , •,,. 

tf - с, -X* - с* 0 - «/*> - с* Г? • 
Интегралы движения (3) принимают вид 

Vi--/w7-1f^ai, Е*с7б-с/й/2_ул; (9) 
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3. ПЕРЕХОД К НПЮШШОВ « Н Е Д Ш М К И 
Система сени уравнений (?), (8) служит для нахождения жести 

искома функций х£ (4 а) и зависимости t, (t 2) (или наоборот), 
(фиксирующей соответствующие точки шфовнс линий двух частиц, 
"одновременные" в терминах единого первоначального параметра 
эволюции т. Для перехода к мгновенно! форме динамики, в ко­
торой одновременная конфигурация системы определяется на гипер­
плоскости х°» court * , удобно ввести вовне переменные 

t - A t < + 0 - » t 2 l e-c(t f-ti).xf-xj ; (ID 
t,-t + 0-'A)6/c, t ^ t - W c (AelR). (12) 

Тогда уравнение / в / с учетом / 9 / еашщится в виде 

*.е-12(*.Л).е-[ у ' У ^ И ) , о , из) 
где t t i t z обозначав* выражения /12 / , и его роль состоит в 
исключении избыточно! переменной 6 - "относительного временя" 
двух частиц. 

мы предлагаем алгоритм перехода ж мгновенной форме динамики, 
основанный на разложении в ряд по параметру с"', что соответ­
ствует так называемым квазирелятивистским приближениям ' . 

Пусть Л (xi(f,), <tf(ta),*.'(*a); t r t ) » Д & Л ; Ь- некоторая 
фиаическая величина; ее аначение с учетом свявя (13* можно пред­
ставить в виде • л 

Учитывая, что , согласно /13/, 

где D a - £ о

Г С V & L ; * ~ » d 4 i / « 4 f ; J> - J>,^,« представ-
ляя сдвиги в аргументах Аюосци! А и £ с помощи» ежспоненты 
от операторов D a (ср. ) , имеем 

W W « jd6 exP||(D r^)} «(•- i 3(t,*>) * 
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MCM.e/c) [<-k(VAD)2(t,-0]. ere) 
Разлагая вхслоненту в ряд н выполняя интегрирование, после не­
которых преобразований находим: 

I iwt С 5. 
Полученное выражение удобно для нахождения приближений по с"2 

для уравнений движения, когда А - левая сторона уравнений 
(7), или для интегралов движения (9), (10). 

4. ПЕРВОЕ КВАЗИРШтаВИСТСКОЕ ПРИНОШЕНИЕ 
Для нахождения приближенных (с заданно! точность» го с 2 ) 

выражений для d;„$t на. основе (17) следует учесть разложения 
в ряд по с - исходной величины А и функции % > определен­
ной в (13): ^ 

Л- 2_ с Л , ^ - £. с _ . . . «-.о «-«о * о ; 

Мы ограничимся рассмотрением первого квазирелятивистского прибли­
жения, учитывающего члены до порядка с 2 . При атом оклеивает­
ся, что если в нерелятивистском приближении выполняется равен­
ство DA® » 0 , как это имеет место для уравнений движения или 
их первых интегралов, то Л ^ С * ) не зависит от произвольного 
числа Я . 

Применяя предложенный алгоритм к левой стороне уравнений 
(7), находим уравнения движения ныяоновсхого типа в мгновенной 
форме динамики: 

X „(о) . i ..СО 
Vei "/*«* + ТгГя1 • (19) где , 

(20) 

183 



(здесь ^f-т7(*,£/)|1);«+",;а'Ь обозначает скалярное произведение 
3-векторов) ; аналогичное выражение для /«£•' получается из 
(21) перестановкой индексов частиц, функции /и£' , //„'/ удов­
летворяю условиям Карри-Хилла (см. • ") цуанкаре-инвариант-
ности ньютонова формализма в соответствующем приближении. 

Аналогично находим квазирелятивистские интегралы движения: 

? - l * ^ 0 + ^ J + 4 ^ , w w " ^ + ^ ^ : ( 2 2 ) 

-i&#b+i<&rU%?-jb»*>-' Jlt

 ( 2 3 ) 

?- ЦКЫ<+ £) +&w>} + й-да^)К? ( 2 4 ) 

jf-"t? + i -2 ; ( f + ̂ )*^(?,+?a)t/(ri ( 2 5 ) 

(Здесь [а*1>7 - векторное произведение 3-векторов) . 
Исходя из общего вида квазирелятивистской функции Лагракжа 

в мгновенной форме динамики /12,5/, пузе» конкретизации произ­
вольных функций можно подобрать лагранжиан, приводящий к уравне­
ниям движения (19)-(21) и их интегралам (22J-C25J: 

а»/ 

Отметим нелинейность по константе взаимодействия лагранжиана (2&) 
и соответствующего выражения для энергии '23). 
5. О «ОККЕРОВСКШ ДЕЙСТВИИ ДЛЯ СИНГУЛЯРШХ ЛАГРАНЖИАНОВ 

Трехмерный лагранжиан для модели D G L можно было бы полу­
чить в любом приближении по с~г методом, разработанным в " , 
если можно было бы воспользоваться фоккеровским представлением 
для действия предложенным Такабаяси ** : 
2 - V $м -~ t^JTldvc - \\Ф(9, к) 4l)JL^d.Tit (27) 
где Ф-2/ifxf V ( P ) , а 4 определено в /4/. Однако оказывается, 
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что действие (27) Н е соответствует модели D G L и не приводит 
к уравнениям Такабаяси (5). 

Действительно, вычисление уравнений экстремалей для дейст­
вия (27) с произвольными ф и 4(х,х) приводит к системе 
(здесь а * о ) Л ^ --. , г 

dxanr Ъ*£1 ЪкЦсЬ*! ( 2 8 ) 

После интегрирования по частям и ряда упрощений система (28) пре­
образуется в систему обыкновенных уравнений четвертого порядка 
со связью 

2<Y.U *>*.*/**) " 0 , С-0; (29) 
коэффициенты у четвертых производных в £а имеют вид 

Таким образом, действие (27) не порождает уравнений ВТОРОГО 
порядка (5). 

Вычисление трехмерного лагранжиана взаимодействия, соответ­
ствующего действию (27), дает в приближении c~ z выражение 

отличающееся от (26). 
Результаты настоящего раздела ставят под сомнение возмож­

ность сопоставления сингулярным лагранжианам ?ипа (I) фоккеров-
схого действия вида (27). 

6. ЗАКЛЮЧЕНИЕ 
Полученные в настоящей работе результаты устанавливают взаи­

мосвязь между моделью DGL формализма сингулярных лагранжианов 
и трехмерным ньютоновым формализмом в мгновенной форме динамики 
в первом квазкремтивистскои приближении. Преджоженный алгоритм 
позволяет вычислять соответствующие выражения (функции м а' и 
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интегралы движения ) в любом заданном приближении по С'г . Его 
можно обобщить на произвольную форму динамики, заданную геомет­
рически ( см. ), для зтого достаточно вместо (6) выбрать в 
качестве параметров Т « » б ( Х . ) , где б - функция, опреде­
ляющая форму дккамики. 

Вопрос о соотношении формализма сингулярных лагранжианов, 
представленного в литературе несколькими конкретными моделями 
'2,4,13/^ в трехмерного аагранжева описания 5 » 1 2 ' в настоящее 
время является открытии. № представляет интерес в связи с тем, 
что последняя формализм, развитый в общем виде, позволяет прово­
дить сравнение с полевыми теориям/ , что делает возможным фи­
зическую интерпретацию некоторых моделей с прямым взаимодейст­
вием. 

Развиты! здесь подход не дает возможности найти трехмерную 
функцию Дагранжа, исходя непосредственно иа сингулярного лагран­
жиана типа (I). Построение трехмерного регулярного лагранжиана 
через сингулярный четырехмерный в общем случае может оказаться 
невозможным. В частности, обобщение модели D G L на систему двух 
частиц с разными массами , исследованное с помощью предложен­
ного алгоритма, приводит к хвазирехятнвжстехим ньютоновым урав­
нениям движения, лагранжиан для которых подобрать не удается. 
Эти результаты, а также исследование других моделей формализма 
сингулярных лагранжианов будут опубликованы отдельно. 

Авторы благодарны С.Н.Соколову и В.И.Третяку за плодотворные 
обсуждения и ценные замечания. 
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ТЕРМОДИНАМИЧЕСКИЙ ПОТЕНЦИАЛ НЕАБЕЛЕВОЙ ПЛАЗМЫ 
В ПОСТОЯННЫХ КАЛИБРОВОЧНЫХ ПОЛЯХ 

Ш.САгаев, В.Ч.Жуковский, О.Ф.Семенов 
Московский государственный университет им. М.В.Ломоносова 

А.С.Вшивиев 
МОСКОВСКИЙ институт радиотохники, электроники и автоматики 

I. Ввеяеиве 
В последнее годи больвов жнтврес представляет вселвдошнв* 

влвяввя температурках аффектов в халвбровочных творвях. Это свя­
зано с вовиохностьв суаествоваяхя фазовых периодов в таххх тво­
рвях в хх следстввв для равххчнкх аспектов ахронвов фхавкв, кос­
молога к т.д.'1'. Д.А.Кхрквхц х А.Д.дхяде хсволзовав аналога 
между сверхпроводхмосты) в иехавхзмом Хяггса в хахвброаочвнх тео-
рхях указала ва сувветвоваяве фазового перехода в область восета-
BOBieBHot самметрях. 

Ддя оцевкх крхтяческой температура фазовых переходов в вичхе-
денхя тешодхнамхческжх варвиетров в хахвброаочннх таорхях в ря­
хе рабог 2 , 3 , 4'быха разработана теоретххо-возмувенческяе методы. 
Так, в работе Бернарда/*' выведены правваа Фехнмава, поаводяваве 
внчасдх» температурннв фуккцвв Грана, статястхчесхве суммы в со-
отввтезвухцве термодкняшческхе параметра евстемы. Првмевяа опе-
рвторвнх метод вместе с фунхцхонадьяо-дхагрмитет методам*, в 
случае мало! константы свяав, Вавяберг^', Дохав а Джакхв'4' на-
яхх температурннв эффективных потендвал в аффехтхавне масса бозо­
нов. В указанных работах показано сучествовакхе крхтхческо! тем­
пературы 7*/>. • П Р " температурах вым крвтпесков мхнвмум эф-
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фективного потенциала находится в нуле, т.е. происходи восста­
новление нарушенной симметрии. 

Исследование свойств кварк-глвонной плазш при высоких темпе­
ратурах и больших плотностях в квантовой хромодивамике представ­
ляет особый интерес. Существование такой плазмы предполагает на­
рушение конфайнмента при высоких плотностях и температурах и свя­
зано с моделью образования адронов, как конденсата кварк-глвонной 
плазмы. Есть основания полагать, что фазовый переход адроны -
кварк-глвонная плазма существует. В работе'5'приводятся доводы в 
пользу такого перехода. Авторы, использовав методы ренорнгрушш, 
показали, что теория возмущения с увеличением бариоввой плотности 
дает все более точные результаты. Это связано с асимптотической 
свободой теории. Кроне того, при высоких плотностях ими было най­
дено уравнение состояния, которое в пределе приближается к урав­
нение состояния идеального релятивистского кварк-глюонного газа. 
Дальнейшее развитие теории термодинамических свойств КЭД сделано 
в работах Кислиндиера и Моря' 6', указавших на необходимость уче­
та экранировки при конечных температурах. В общей форме было до­
казано отсутствие новых, по сравнению с теорией возмущений расхо-
димостей. Вычисление термодинамических потенциалов проводилось 
разными авторами. Исследуя КХД методами теории воаиущенкй при ко­
нечных плотностях, Фридман, Маклеравг7', и Балуш/8'вычислили Л-
потенциал кварк-глвонной плазмы в четвертом порядке по константе 
связи g . Вычисление Л - потенциала при ненулевых температу­
рах и химическом потенциале с точностью до О fy*) проведено в 
работе'9'. 

Укажем, что основные чер теории присутствуют как в случав 
модели калибровочной теории группы SV(Z), так и в Si/ (3) . 
В последов*, случае происходит лишь некоторое математическое ус­
ложнение, обусловленное Солее высоким рангом группы/10'. Учиты­
вая изложенное, мы ограничимся рассмотрением модели плазмы в ка­
либровочной теории с группой £>!/(£) . В настоящей работе в од-
нопетлевом приближении вычислен J2 - потенциал кварк-антикварко-
вой плазмы во внешнем цветном магнитном поле, заданном потенциа­
лами с разной изотопической ориентацией, мы не будем рассматри­
вать влияния флуктуации "глвонного" поля, а ограничимся рассмот­
рением квархового сектора. Это с-редахяется тем, что рассматрива­
емое поле должно создаваться постоянным внешним током, причем, в 
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силу вапнвйноотя твори, флуктуации глюонного водя будут сопро­
вождаться изменениями этого тока. В результате преходится ревать 
нелинейную задачу с двум вважмодействувшжмж полями, что оказыва­
ется затруднительны!. В некоторнх роботаг 1 1 , 1 2 /автори, вссдедуя 
проблему стабильности состояний с такие полевыми конфигурациями, 
оставяяют без внимания »то обстоятедьство. Подученные результаты 
содержат явную заввсжиость от калхбровкв в способа поддержания 
постоянства внежнего тока ж как сдедствке не являются точными. 

2 , Обще формулы 
Вине отмечалось, что прж вычжслени термодинамических потенцж-

адов кварк-глюонной плазмы используются различные подходи, ми ПО­
ЛОЖИМ в основу вычжслени! метод, основанный на использовании тех-
нкхя функционального жэтвгтжрованнл, дополненный методом собст­
венного временж Швжнгере/13'. Такой подход прж рассмотрении вли­
яния температуры в КЭД был применён Дятрвхом в работе'"'. 

мы раосмотрвм плазму для трех различных типов массивных частиц, 
характервзуощжхся следуюжжмж значениями сджва ж жзосджва: S » О, 
Т - 1/2 j S - О, Т - I ; 5 - 1 / 2 , Т - 1/2 . Химический по­
тенциал каждой системы бужем пмага» равным кулю. Другими слова­
ми, чжсд* частиц ж античастиц равны, а нажа система является цве-
тонейтржльвой. 

Как жзвестно, большая статистическая сдоа квантованных волей 
представляет собой амплитуду вероятности.перехода "вакуум-вакуум" 
евклидовой квантовой теоржж поля: 

здесь / 5 л - эффектжвяое /проинтегржрованвое по всем кванто -
BUM флуктуацжям/ евклидово действже частиц во внежнем классичес-
хом поде. На квантовые флуктуации наложено условие периодичности 
по четвертой координате /"мнимому времени"/» что обозначается ин­
дексом J3 . Период указанных флуктуации связан с обратной темпе­
ратурой следующим образом у 5 ' S /7* . Плотность Л - потен­
циала вдж прж Н - 0 плотность свободной энергии равна 

&'-л/г--4'//'г' / 2 / 
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то «с» ато евклидова латравхева плотность со знаком минус. Елот-
вость свободной внергжж в одкопетлевом приближении можно зависать 
в виде 

<?. j r ^ ^ r * \ / 3 / 

В однопетлевом приб­
лижении о о - потевшая плазмы определяется в виде функциональ­
ного интеграла по материальным полям частиц У* и У : 

/4/ 

В этом выражении К>£ - евклидово действие для соответствующего 
типа частиц 

/ 5 / 

(Л,т (р) - выражения в которые входит пропагатор частицы или 
квадрированныи пропагатор, причем указанные функции содержат за­
висимость от спина, «оспина и внешнего веабелева поля. Вычисляя 
гауссов интеграл ( 4 ) для Л получим следующее выражение. 

у»J2*« &i oU (Ц*т Ф) . / 6 / 
В формулах (5} ж (6) в соответствии с/ 2 , 1 4' / ? v s u ^ - £ f ^ y 3 / где 
<i?« = /& , при £" = 0; I и л?» = л + 1/2. при' ̂  - 1/2, 
Л- * 0, ±I,i2, ... / - мнимая энергия, а интегрирование по 
не! переходит в суммирование сведущим образом; 

реу* /з£:„ J W /1 / 

Вычисляя ("б) методом Швингера с учетом соотношения 
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вместо (6) получки 

В (8) Т Ч означает суммирование по цветовым яндексан в кнте-
гряровавве по р , "frt - только суммврованже по сшшовн* в цве­
товым индексам. Для G-\_ т(р во внешнем поле нмеют место сле-
дущяе явные внрвженЕя; 

8 - 0 . Т - 1/2 

£».,/. ̂  - fa - ifr*A^) \ ~ * 
* • °i т - I / 9 / 

g-I/2.T = I/2 

г д е ^ " * g, Т л ^ а,/,с,к,/'**,Л.,5 , <ГЯ - матрюш Па­
уля, ̂  - аатравочная постоянная взаимодействия, /?̂ "~ - потенциа­
лы внешнего поля. 

3. Перенодакрованвые лагранжианы при нуле температуры 
Зададим конкретны! вяд внешнего доля воспользовавшись класси­

фикацией поле!, основанной на «спохьзованкк собственных значена! 
матрицы Ул £ - - А/< -А^г - Постоянвое в одвородвое хромомагвит-
вое поле &1 - # J- = // зададим неабелевыми постоянвнмв 
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пота 
А( - (0,у£,0,0) ! A , - fO,0,*5\o) ; A -̂fe.O.O.O) . / 10 / 
где Я - собственные значения матрицы Yaf-ApA^/ . в ре­
зультате преобразовали* жз (ь) получи выраженжя для %"Т(Н,Т) : 

,(<) *° 

а / * 

г*№'*к1ё&1~те {i + 
о 

. * . . » . . 

%1.пЛГГ'-81Ш>1 s c 

• d*4*tf+/«/?$> %Ш / u в / 

Г' 
Здесь &г.(°0 и ft (x> - тэта-функции Якобж, определяемые со-
отношенжяма 

Далее в выражениях (II а.б.в) выделим в r S t T (Н, Т) чамж.яв-
но не связанные с температурой,жсдользуя соотноаеная для функций 
Якобж: _.„*, 

L ^ Л /12/ 
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Обозначив в (II а,б,в) слагаемые о Л. * 0 /не содержать тем­
пературу/ через ^г'(Н) , а температурную часть через л % 7 C#,T)t 

найдем 

Заметам также, что -^,т (Ю С точностью до знака совпадает с од-
нопетлево! поправкой к эффективному лагранжиану для соответствую-
ивго тана частиц во внешнем поле. Учитывая сказанное • проводя 
интегрирование по / ^ , джя однопетлевых поправок подучим сле­
дующие выражения. 

о 

в выражениях (14 а.б.в) мм введи аддитивные постоянные, необхо­
димые для того, чтобы одвопетдевая поправка X s ' i ( ^ ) обраща­
лась в нудь при выключении внешнего подя. Функция Ф(х) в Cl4 a, 
б,в) - интеграл вероятности. Используя технику перенормировок, 
подучим следующие перенормированнне выражения для эффективных 
лагранжианов: 
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<>V W л ^ +frrfJ-jr* i*.e •+£> v 

+t*W#fcprJ-j+vf} / I 5 B / 

Здесь логарифмически расходящиеся члвш включены в перенормировку 
заряда. Обозначав ненеренорннровакнне вахвчнны индексом нуль, для 
перенормированного заряда к напряженности • (15) получки 

где 

I при S - О, Т = 1/2, 
<^s,r = | 2npi S « O . T . I , / 1 7 / 

4 прк S -1/2, T * 1/2. 

В предельном случае слабого поля первый отличный от нуля член раз­
ложения эффективного лагранжиана (15 а,б,в) пропорционален вели­
чине (Н/Н с) г , где Н с - т.* / з и Н/Йс <:< I, что отличается 
от случая электродинамики /лагранжиана Гавзенберга - Эйлера/. Об­
щее выражение для эффективного лагранжиана в случае слабого поля 
таково; 
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<*-S,T i »•* i 960 y % / 

где 
S - 0 , 
s-=.o , 
5-1/2, 

T « 1/2 
T . I 
T = 1/2 

/9s, r 
I 
2 

32 

A*1 

13/960 
303/40 

I 

В противоположном случае сильного внешнего водя (Н/Нс)>> I ддя 
однопетлевой поправки к лагранжиану получки выражение 

%:-г = С JiS* & /тг/ / Ю / 
где os/r 

ST - 0 . Т - 1/2 I 
S - О, Т » I 2 
5 - 1/2, Т - 1/2 8 

Легко вждеть, что в случае сильного внешнего поля эффективен! 
лагранжиан шеет поведение, аналогично тому, как ведёт себя эф­
фективный лагранжиан Гаивеноерга - Эйлера в КЭД. 

4. Тешопинямическии дота^ддд «дярк-антжкватжовой плаамн 
Ддя получения полного выражения &^'т(#, T J вычислим темпе­

ратурную часть & ̂ г ( Н , т ) .Проинтегрировав (II а,б,в) по 
d*/* и e £ s t получим точные вираженжя: 

/20 а/ 
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/ 2 0 б / 

(t*-l)(k-o! J 

В предешом случае высоко* температуры • сшоото подм.т.е. пра 

УСЛОВЕН 

» внраженнв (20 а, б,в) найдем Д ^ 7 г 

A%fkrj^-aSi7,^rv^sr^rtr^j / 2 2 / 

Первое слагаемое в С22) соответствует аакову Стефана - Бохышвва, 
"С (Т) - остаточный член лхиеано зависящий от температуре ; 
t(?> ш с Т т- 8 / С - некоторая числовая константа/; дха 

Д — ^ ^ ш е е м 

g - 0, Т - 1/2 4 1/6 / 23 / 
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S ж 0. T - I 3 1/8 
g* 1/2 , T . 1/2 W I/S 

В предельном случае кмких температур • сыышх полей 

/ж * - у у е ' / У » / / 2 4 / 

аргумент функций Махдональда в (20 а,б,в) значительно больше 
а р т д р прн любых К/. Используя соответствующую асимптоту фун­
кций махдональда и ограничившись в (20) лишь первым слагавши, по­
лучим следующие выражения: 

*&»-§&л*Гг*!аг- / 25 а / 

ф^рр6*^ 

&ЪА,Ф!"''У' -^vrUM * t/rr ) 6 ^ / 25 в / 
»/f -fa****'/* 7 

*^V^ е f. 
Заметим, что в выражениях (25 а,б,в) степенная температурная фун­
кция имеет экспоненциальный множитель, который соответствует 
энергетическому порогу образования nap <§ ̂ - Zj^ftf' fij в 
сильных внешних полях Н - » m?/fi. В выражена j j a & % i ) , / / ^ , V 
отсутствует линейная по ^ Н поправка при члене пропорциональном 
линейной степени температуры. В случае КЭД, как следует из работа 
Дитриха'14', такая поправка существует. 
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КВАЗИКЛАССИЧЕСКАЯ КАРТИНА ВАКУУМНЫХ ЭФФЕКТОВ 
В КАЛИБРОВОЧНЫХ ТЕОРИЯХ 

В.Ч.Жуковский, И.Б.Морозов 
Московский государственный университет им. М,В.Ломоносова 

I. Введете 
Можно считать хорошо установленным к настоящему времени, что 

вакуумное состояние в КХД /*' и в модальных калибровочных теори­
ях с калибровочной группой ,5 tJ(2)' 2' 3' имеет нетривиальную струк­
туру. По-видимому, в ближайшем будущем мы не будем иметь возмож­
ность провести достаточно полное исследование его в рамках точ­
ных квантовых методов. В связи с этим предпринимаются попытки 
изучения вакуумных эффектов в квантовой теории поля, в частнос­
ти, в электродинамике (В.С.Лопов. М.С.Мавинов' ' ' ) и в неабеле-
вой теории с калибровочной группой S U(2!j°' квазиклассическими 
методами. Предлагаемая работа представляет собой развитие рабо­
ты ' °' с иной точки зрения. 

В работе '°' использовался метод "мнимого времени", до того 
успешно применявшийся в электродинамике ' 4 » ° ' . Преимуществом это­
го метода является его простота и наглядность, в то же время ему 
недостаёт явной релятивистской ковариантности. Кроме того, этот 
метод оперирует с классическим действием, тогда как поляризация 
вакуума обусловлена квантовыми поправками, т.е. эффективным дей­
ствием'8' , связь между которыми не вполне ясна. Далее, имюльзо-
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вавшаяся в статье ' ' аналогия изотопического сшша с вектором 
намагниченности ферромагнетика не позволяет исследовать отличные 
от 0(3) калибровочные группы (нетрудно видеть, что рассмотрение 
в работе ' ' свелось именно к группе 0(3)), таким образом, в этой 
статье рассмотрены только частицы с целочисленным изосшшом. 

Ниже будет предложен лз""-3 квазиклассический подход к этой 
задаче. В разделе 2 проводится построение функционала однопетле-
вой поправки к действие внешнего калибровочного поля с использо­
ванием метода пятого параметра Фока '''(или "собственного време­
ни" *°')ж гамильтонова континуального интеграла у ' . Необходимо 
отметить, что в отличие от, например, работы Z 1 0 ' , мы не исполь­
зуем грассмановых переменных для описания изотопического сшша. 
Это даёт возможность провести квазиклассическое вычисление веро­
ятности распада вакуума в некоторых простых случаях; это сделаво 
в разделе 3. 
2. Однопетлевая поправка к действию и континуальный интеграл 

Будем рассматривать скалярное в обычном пространстве поле if , 
удовле'и.ряющее уравнению движения 

А ( Л1-**)<* = о , 
где Пр - l&fi-eAp'Q, /^- внешнее калибровочное поле; Ti - опе­
ратор изотопического сшша. Однопетлевая поправка к действию 
внешнего поля даётся известным выражением 

WM=-i Тг & С , m 
где С - опер^-ор, обратный к П -и»*. Символ Tt здесь означа­
ет интегрирование по пространству и суммирование по дискретным 
цветовым индексам. Имея в виду построение квазиклассического при­
ближения выражения (I), воспользуемся бесконечномерным приводи­
мым представлением операторов "f^ , записав (см., например/ 1 1'): 

где 
Т я = at (Xa)0-»j > (2) 
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и в качестве матриц (\ajij можно взять матричные представления 
генераторов рассматриваемой калибровочной группы. Заметим, что 
часто используется представление (2),(3), в котором коммутаторы 
в равенствах (з) заменяются на антикоммутаторы ' 1 0 « 1 2 ' . простран­
ство представления становится при этом конечномерным (а собствен­
ные значения операторов ас- грассмаковыш переменными).поэтому 
построение квазиклассического приближе: ля при таком выборе пред­
ставляется затруднительным. Другое преимущество выбора (3) состо­
ит в том, что представление (2) при атом охватывает все неприво­
димые представления алгебры генераторов калибровочной группы 
при фиксированных (Ав)л» отвечающее фундаментальному представ­
лению ' I J'. 

В дальнейшем мы ограничимся рассмотрением калибровочной груп­
пы $U(l). положив в формуле (2) /J-I.2 • Д*=_Г./Д г д е Г а - мат­
рицы Паули, а «1,2,3. Стандартным методом '"•' можно построить 
гильбертово пространство представления операторов (2) с базис­
ными векторами 

где вакуумный вектор /о> определяется посредством соотношений 
Я;/о>=й i"«I,2. Величина j в выражении (4) представляет со­
бой собственное значение оператора 

уу\ - собственное значение оператора 

В силу соотношения 
(Та)г = J(d^-l) 

J представляет собой величину изоспина, а М - значение его 
проекции на третье изотопическое направление. 

Для построения континуального интеграла нам понадобится ба­
зис когерентных состояний, определяемых условиями 
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Они могут быть выражены через вакуумное состояние: 

нормировка и соотношение полноты для них имеют вид 

Joij.eW* ddjdt e " Г * £ Uxu2xc(±uil= I . (5) J 
Полученный базис когерентных состояний в пространстве пред­

ставления группы $ОЩш используем при вычислении следа в вы­
ражении ( i ) : . 

^W-W^i^-^)^, (6) 
где применено интегральное представление для 1л< С ' ' '• 

Контур С интегрирования по s начинается в точке $ =0 и ле­
жит полностью в четвёртом квадранте. Величина (7) определена 
( с точностью до перенормировки), строго говоря, только на тех 
состояниях | ф > ,для которых 

^Ф l(fl4-wOl ф> 4 0 (8) 
("нас интересуют только диагональные матричные элементы операто­
ра (7)) . Для теории поля в пространстве Минковокого неравенство 
(8) удовлетворяется соответствующим выбором правила обхода осо­
бенностей в комплексной плоскости р" . Мы автоматически учтём 
зто обстоятельство, если с самого начала совершим в выражении 
(6) виковский поворот Pe^'fi ,*,,-»-tz^, ̂ £-»Л4°. Тогда, при усло­
вии самосопряжённости операторов р ц , X* , /]* оператор (пг- тг) 
будет отрицательно определён в смысле неравенства (8), что по­
зволит осуществить поворот контура интегрирования по s в пра­
вой части соотношения (б). 

Амплитуду перехода <ос&'\ ё~к*ЦI*.ы!'> (ц = т2-Пг) , входя-
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щуп в (6), можно представить в виде континуального интеграла в 
фазовом пространстве системы 

= ]ы>№*1[Щ№][<*Ф4]с' ( 9 ) 

с граничными условиями /см. '''у: 
Г„И = X'; , X„(s)*X» , cL^o^at- , 4?(s) = 4.'.* . 
Для определения вида функционала $> в выражении (9) приме­

ним стандартную процедуру /I3»I*/f т > е > разобьём отрезок \0, s~] 
на /V (Л/-ы>о) частей и воспользуемся разложением единичного 
оператора (см. (5)). Амплитуда в левой части соотношения (9) 
примет вид Л 

где положено 

Окончательное выражение для конечно-разностной аппроксимации 
континуального интеграла (9) получится, если мы вставим в мат­
ричный элемент, входящий в правую часть соотношения (10), еди­
ничный оператор 

Верхний индекс у «^*~ имеет символический характер и означает, 
что функция^(т)берётся в точке, лежащей между точкамих < к~'я Т ° $ 
Таким образом, число точек разбиения аргумента функций U;(T)B cL*h) 
вдвое больше, чем для функций р,.(т)и ХцЬ%> 

Как известно '15', значение гамильтонова континуального интег­
рала зависит от способа его конечно-разностной аппроксимации, по­
этому вид функционала классического действия t $ в выражении (9) 
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будет определяться местом, в которое мы вставим оператор (II), 
а также и выбором разложений единичных операторов (5)ли (II) . 
В выражение ( Ю ) входит матричный элемент оператора Гг = n^nl 
который содержит некоммутируицие операторы a + t а в четвёртой 
степени. Поэтому, аналогично тому, как это сделано в работе '*•"', 
в этом слагаемом вставим единичный оператор(II) между оператора­
ми Пи . Для остальных слагаемых этот вопрос несущественен. Пред­
ложенный способ аппроксимации позволяет избежать появления ка-
либровочно-неинвариантннх членов в действии '*"'. 

Функционал действия /5 в калибровке "ЪрА -О принимает окон­
чательный вид: 

S= ^Jrif^-UU: ~ ~Я) , (12) 
где ~Ц - "1 а-(р п-е4/ч( А«)-0- o(?<^j) , а конечно-разностная 
аппроксимация подынтегрального выражения определена согласно 
правилам: 

(13) 

3. Проблемы построения квазиклассцческогп рриб^рявнд? 
Задача построения последовательного квазиклассического при­

ближения для однсшетлевой вакуумной поправки к действию неабеле-
ва калибровочного поля до настоящего времени не решена. Основные 
трудности сводятся к тому, что групповое пространство калибровоч­
ной группы обладает нетривиальной топологией. Если в декартовом 
пространстве координаты зс1* изменяются в неограниченных преде­
лах, то групповое (цветовое,изотопическое) пространство замкнуто, 
не имеет границ и, следовательно, допускает множество различных 
экстремальных траекторий, связывающих две точки. При этом дей-
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отвие зависит не только от начального и конечного положений, но 
и от числа обходов частицей замкнутой траектории в групповом про­
странстве. Не до конца ясными являются также вопрос о переходе 
от переменных ^ ,а(* к динамическим переменным частицы с калибро­
вочными степенями свободы на классических траекториях, т.е., на­
пример, к вектору изоспина Тл , и связанная с этик проблема кор­
ректного вычисления следа по калибровочным переменным в квази­
классическом приближении. 

В то же время развитый ранее ' 6' квазиклассический подход, в 
основе которого лежит метод мнимого времени В.С.Попова, позволя­
ет получать разумные оценочные результаты для вероятности распа­
да вакуума в неабелевом поле и точные квантовые результаты в по­
стоянном калибровочном поле абелева типа (см. ниже). Хотя метод 
мнимого времени и не является достаточно обоснованным, в особен­
ности в применении к неабелевым калибровочным полям, полученные 
с его помощью результаты, также как и известные инстантонные ре­
шения, позволяют надеяться на возможность успешного построения 
последовательного квазиклассического приближения в теории неабе-
левнх калибровочных полей. 

Приведём теперь некоторые общие соображения относительно ква­
зиклассического предела соотношений, полученных в предыдущем раз­
деле, и рассмотрим два конкретных примера, изучавшихся ранее в 
методе мнимого времени в работе '6'. Полученное выше представле­
ние амплитуды перехода в виде континуального интеграла (9) может 
быть кратко переписано в виде 

Здесь у , 1 и £." - начальное и конечное значения координат точки 
в "суперпространстве", объединяющем координаты обычного коорди­
натного пространства Минковского Х^и некоего "калибровочного" 
пространства 5" : ?-=(я* ^*), $=%((f£s)- действие "частицы", дви­
жущейся за"время" s от '̂ до j? if,= (fyJ'fia)- импульс, сопря­
жённый координате Я, . Формально кваэиклассический предел правой 
части (14) можно записать, согласно /">', как 

где суммирование ведётся по всем классическим траекториям между 
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у 1 и <р" за "время" s • Sm - действие на /JJ-ОЙ траектории, С „ -
предэкспонента, значение которой, вообще говоря, не известно. 

В предположении тривиальной топологии декартова пространства Ст 

выражается через определитель Ван Флека (см., например, ' 1 6 ' ) : 
с, = [и* rsm /W)/(ir? ]L/Z и 

( £ - размерность пространства). 
Классический аналог квантового оператора Гамильтона, получен­

ный выше (12), перепишем в виде # = щ г - ( p r - e l $ T a f , где т я -
классический вектор изосшша "частицы". Поскольку квадратичная 

форма в # вблизи массовой поверхности (р-еДТ) 4=»| г является 
отрицательно определённой, то определение функции Латранжа 

/ , = - # - ft,*" + ТТЛ" , # /17) 
отличается от общепринятого знаком перед о ос , при этом аз = 
= - ̂ Р^/Р/ 3 . а действие имеет вид „ 

Отсхша получаем функцию Латранжа в явном виде 
/, = - *-*- *?- eATi + 1Г f . (H) 
"Время" виртуальной "частицы" 5 станет собственным временем 

частицы, если, следуя Фоку "', минимизировать действие по .г , 
потребовав, чтобы"b^/ l s*О , т.е. Ш-=-0 . При этом частица выхо­
дит на массовую поверхность и 

W г- / .ATX* -(Р-«АТ) = О, (го) 
т.е . х±г=4п11 • и лл я действия получим 

$*-*,]/£?- ]eAlT«dX* + *)Тлск±« (21) 
где интервал Jdx2 = 2 m o l s . Требование калибровочной инвариант­
ности действия (21), как показано в 'б', приводит к отождествле­
нию iir«4j= $т3о|у . где у - азимутальный угол вектора 7" . 

Для однопетлевой вакуумной поправки к действию поля можно за­
писать квазиклассическое выражение 

Г1)-]*Г\ЛН*№с1ег*" , (22) 
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где Ц*, - предэкспонента, отличающаяся от Ст на фактор, связан­
ный с квазиклассическим переходом в вычислении следа по калибро­
вочным степеням свободы; £т взято в совпадающих точках у!=с[,". 

Вычисление интеграла по s связано с обходом особенностей 
S=S„ подынтегрального выражения (в случае абелега постоянного 
электрического поля - это простые полюсы,- см. ниже). С другой 
стороны, решения уравнения~Zf>/3$=0 при у-'= ф' определяют периоди­
ческое движение частицы с некоторым периодом AS , имеющим, вообще 
говоря, как действительную, так и мнимую части. В приведённых 
ниже примерах моменты времени s-S„=n&s совпадают с особенностя­
ми подынтегрального выражения в (22), так что в итоге 

где Sw,»,- приращение действия за п периодов движения частицы 
на массовой поверхности (20). 

Рассмотрим теперь пример с постоянным электрическим полем неа-
белева типа, т.е. заданным постоянными потенциалами с различной 
изотопической ориентацией (неабелевы потенциалы): 

>£-«Л At = <*,.% , А1 = О . (24) 
Тогда уравнение массовой поверхности примет вид 

Ъх - ( P ° - e a t T O Z - ( р А - е а г Т г ^ = о , ( 2 5 ) 
где yv\i=vn%-fltj>-p^' , f^=coMjf.B пространстве изоспина уравнение 

(25) описывает отрезки гипербол - проекций 
на плоскость большого круга замкнутых тра­
екторий на поверхности сферы T&=co*<,i= Тг 

(в симметричном случае р°= р А=^они изо­
бражены на рисунке). 

Собственное время при р ° = р^= О 
равно 

, T s«jT&0- (Тг--ф))(£+ £ )ь1> f \ (26) 
где (^«(ел^"', /3=(еаяу', а приращение действия за период собствен­
ного времени д s есть 

&$.-2frs+&T*-Ti<.»r$^g^ (27) 
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Интегралы в (26) ,(27) определяют как действительную, так и мни­
мую части AS и д £ • Действительный период обращения по одной 
из замкнутых траекторий на сфере равен 

Re US= ТГ/тг , (28) 
а прлращение действия за период 

R e A £ = M T - / r A - T i f 0 ) > S , (29) 
где Т3(о)- начальное значение Т^ (при S=o). Мнимая часть периода 
возникает из-за точек ветвления Т^ при %W^=± I • В этом случае 
р 1 и Ti чисто мнимые,и движение в плоскости 1-2 изопростран-
ства происходит, согласно (25), по замкнутой эллиптической тра­
ектории (си. рисунок). Приращение мнимой части действия за пери­
од мнимого времени определяется вкладом первого члена в (27), 
который в квазиклассическом случае при р»оС логарифмически ве­
лик: 
I v ^ ^ U - ^ I m u S = Д ~ & P/dL . (30) 
Наличие мнимой части Гю & $ Ф0 приводит к появлении ненулевой 

мнимой части лагранжиана поля Т * £ = (lmW f l/Jd*x ) = 4%. V , 
связанной с вероятностью распада вакуума |/г . 

многократный обход эллипса за и>1 периодов мнимого собствен­
ного времени экспоненшюльно подавлен ~е*р(-иД). В то же время 
необходимо учитывать вклады всех возможных обходов траектории 
на сфереТ^=Т гзап=1,2.3... периодов действительного времени и 
сложить соответствующие амплитуды с соответствующими фазовыми 
множителями е*р (£„§)- в этом состоит проявление нетривиальной 
топологии калибровочного пространства. 

В абелевом случае, когда электрическое поле Е задаётся по­
тенциалом 
ДЛ-Г^Е** , (зх) 

получим действие 

+ l*l+xi)/4s , (32) 
гдее=е71, 1\-Censtt X^sxlf1-x"^• Отсюда для определителя Ван 
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Фдека имеем: , , 4л _ 
1 Г V"^ 1 е' Е 

С^^ОЯГС^-мТя*} = (4г;г s sAe'Es ' ^ ) 
Ясно, что подынтегральное выражение в (22) имеет особенности 

при e'Es--lrt?(и-1,2.3...)("случай и «О исключён условием 
fyf(i)/ =о ) . В то же время уравнение Э $ / 9 $ = О , т .е . 

£ :> je_ E )^ . , 4 ) _i__ s _ £ ( х Ч , } , 0 ( 8 0 

при X,y,i,i-*0* 5 # 0 имеет решения лишь при S = s n =-£«ff /^ '£ , 
т.е. на полюсах С Л , Л . Тогда, раскрывая особенность в (34), 
получим: г 

( S - S n ) = - - ^ ^ - . ( 3 5 ) 

для мнимых S~»S„i г - О это равенство удовлетворяется только при 
мнимых -t-*W . 

В мнимом собственном времени движение в электрическом поле 
происходит как в магнитном поле при действительных s - по замк­
нутым траекториям в X. - пространстве. Заметим, что изосшшовая 
степень свободы благодаря интегралу %-const фактически выключе­
на и мы можем опять перейти в следе по изосшшовым переменным 
к сумме по дискретным значениям Тг , причём нас интересует 
вклад одного из возможных Тъ . 

Приращение действия за У! обходов траектории равно 
1 » » д £ п = - ж * 5 ч = - л Г > и У е ' £ . (36) 

Вычисляя интеграл по £ с помощью теоремы о вычетах, получим 
известный результат '8': 

откуда следует значение вероятности распада вакуума W = 2 . I m W t t ' 
в электрической поле абелева типа (3l). Подчеркнём, что в данном 
случае результат оказался точным, поскольку учтён вклад всех 
периодов движения в мнимом собственном времени, чего нельзя сде­
лать ни в нестационарном электромагнитном поле ' ', ни в посто­
янном электрическом поле неабелева типа (24). 
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РАДИАЦИОННЫЙ СДВИГ МАССЫ ФЕРМИОНА 
ВО ВНЕШНЕМ ХРОМОМАГНИГНОМ ПОЛЕ 

В.Ч.Жуковский, И.Б.Морозов, А.В.Борисов 

Московский государственный университет им. М.В.Ломоносова 

В связи с построением моделей вакуума КХД большое чвсяо ра­
бот в последнее время было посвящено иаученнв различных раджа-
циопных процессов в неабелевнх внешни полях' 1" 4'. 

В настоящей работе вычислена радиационная поправка к энергхв 
фермиова со спином 1/2 (для кратхостх будем называть его квар­
ком ) , двххущегося во внешнем постоянном однородном хромоиаг-
нитном поле, • исследовано влияние на него нестабильности этого 
поля, обнаруженной в работе'3'. 

Рассмотрим сначала случай калибровочной группы $U(3) и за­
дадим внешнее поде вектор-потенциалом 

что соответствует постоянному однородному хромомагнитному полю 
напряженности В • направленному по оси х * обычного прост­
ранства (уЦ = 0, 1, 2, 3 ) и оси CL = 8 цветового $[/$)-
пространства (<Х = I, 2 8) . Полное поле представляет­
ся, как обычно' 2 , 3/ в виде суммы классического внешнего поля А ? 
(I) и квантовых флуктуации около него Q't . Взаимодействие 

с внешним полем учитывается точно (представление Фарри) , а 
с квантованным полем глхюнов Qi- no теории возмущений. 

В низшем порядке теории возмущений по перенормировавяой кон-
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стаете свЯ8в а (см. ниже (9)) радиационная поправка к энер­
гии кварка во внешней поле записывается в виде 

Здесь %(рс) - волновая функция кварка цвета 
•St 2, 3 ) i Та, - генераторы группы Stf(3) ; Y* ~ *&трж-
т Дирака; $ ж D - пропагаторы соответственно кварка в 
глюона во вне .т поле,' Те - "время взаимодействия". Указанные пропагаторы диагоиалыш по цветовым индексам: 

Доя кварка двагонахьиость - следствие сохравения его цвета в си­
лу специального вида внешнего доля (I) . Диагональнооть же глв-
онного пропагатора обеспечивается стандартным переходом от вепе-
ствевша компонент глюонного поля Qj» к их комплексным комбина­
циям, соответствующим соотоявшш с определенным зарядом по отно­
шению х внешнему поле Д £ . Пропагаторы S ^ в Д£*> удовлет­
воряют уравнениям, совпадавшим соответственно с обычными элек­
тродинамическими уравнениями для фермионов с массой 1% и заря­
дами в|, = ̂  (%)ц "if ( *• *» " 2) и б в з , а с о о в | а век­
торных бозонов с аномальным магнитным моментом ( равным I) и 
зарядами а а = О ( а * 5, 2, 3, 8 J , <2e *(-/)* 2 (а= 4, 
5, 6, 7; , $=uis/z • 

Заметим, что для глюонного пропагатора используется обобщен­
ная фейнмановская калибровка, в которой духовые поля не дают 
вклада в массовый оператор в низшем порядке теории возмущений:5' 

Явный вид пропагаторов £ ф и BJ$ можно найти либо мето­
дом собственного времени'6', либо используя точные волновые фун­
кции кварков $ (х) и глюонов Q£(x) во внешнем поле в полной 
аналогии с КЭЖ 7'. 

Особый интерес представляет основное состояние кварка в хро-
момагнитном поле, для радиационной поправки к энергии основного 
состояния находим следующее выражение: 
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1 о. 

о о 

+ tte^-e^)ff(e^-i) + (/-e-^J"i ( 4 ) 

где er-j>(Mi) , T=lpu . I = 2/3 в параметр 
£=jB/ft 4. (5) 

Заметим, что (<С получено в цредположенвв, что кварк имеет 
заряде sJ/З (цвет 1=1) , в, следовательно, промежуточный 
кварк живет заряд в.» -23/3 • а заряд глюона в силу закона со-
храненмя равен 5 (тек что I = 2/13 есть отнооение зарядов 
кварка ж глюона) . 

Огравжчвваясь пржблжженвем сравнительно слабого внешнего по­
ля, когда 0 <•* J , находки следующее асимптотичегкое выраже­
ние для сдвжга авергвж: 

дЕ*= - 0 N f - M ^ +iTrf (6) 

где R = / Г ( 2 _ « -i)S(//2-) >0(5W-дзета-функция^ . 
Отметим, что главный член в д £ 0 имеет порядок (£&)'£ в 

не зависит от заряда • массы кварка. Это обусловлено тем, что 
ввешвее поле оказывается ввиду р<* I слабим для кварка, во 
сверхсильным для безмассового заряженного глюона. Поскольку в 
вещественной части дЕ0 опушены члени порядка р, , то мы 
отбросили также вклад нейтральных компонент глюояного поля, ко­
торый, как и в КЭД^', линеен по £ . 

Укажем, что выражение для ДЕе , найденное в работе^8', в 
которой рассматривалась аналогичная задача, является ошибочным: 
в нем отсутствует мнимая часть, а также основной член порядка 
/I* . Следувиий же по малости член порядка j 3 & £ отлича­
ется от ванего численным множителем. 

Аналогично можво рассмотреть случай фермионов с изотопическим 
спином 1 в теории с калибровочной группой S & & ) (присоединенное 
представление) . Эта задача решалась в работе'9', но не была 
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доведена до конца. Внешнее однородное хромомагнитное поле Р^, 
(теперь й- 1, 2, 3) имеет отличные от нуля КОШТОНРКТЫ fjf = 
»' £*= В . В выбранном представлении Ьермионы У*- v. калибро­
вочные бозоны имеют по отношению к такому полю заря :и - 4- , 0, 
+ (L . Ограничимся случаем фермиона с зарядом <- а. в основном 
состоянии. Тогда промежуточный бозон в диаграмме низшего поряд­
ка для радиационной поправки д£„ к энергии оказывается заря­
женным, а промежуточный фермион - нейтральным. В результате для 
поправки д £ в получается выражение 

т 

Здесь £ = # б / М г . C*=pO-tt). Заметим, что в (7) исправлены 
две ошибки, содержащиеся в аналогичном результате работы'"'. 

Отметим, что подынтегральные выражения по переменной о в 
(4) и (7) имеют особенности в комплексной плоскости р. Ис­
пользуя пржншш причинности' ', нетрудно показать, что их сле­
дует обходить в нижней полуплоскости: Ьло <• 0. 

Для слабого поля, когда Л <& 1, из (7) находим выраже­
ние, аналогичное (6) : 

где, как и в (б) , опущено линейное по 1 слагаемое в веще­
ственной части. 

Аналогичные вычисления можно провести для случая, когда фер-
мионы принадлежат фундаментальному представлению группы Sl/$)-
Результат для дЕ в в этом случае совпадает с (8) . 

Как видно из выражений (6) и (8) , радиационная поправка 
имеет положительную мнимую часть. Это означает, что основное со­
стояние фермиона в постоянном хромомагнитном поле неустойчиво. 
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Очевидно, что эта неустойчивость обусловлена нестабильностью са­
мого поля™'. 

Мнимую часть можно интерпретировать следующим образом. Она 
соответствует вероятности захвата фермионом калибровочного бозо­
на из бозонной пары, рожденной нестабильным внешним полем. Ве­
роятность рождения такой пары в единице четырехмерного объема 
равна по порядку величшь/ 3' id^'l^B1 . Фермион в основном 
СОСТОЯНИЕ локализован в области пространства обьекм порядка 
V ~ {jlf^Ej" Oln) . Вероятность рождения пари в этом объеме в еди­
ницу временя p = 1rfY ~$В//Я , и вероятность захвата фермионом 
одного из родившихся бозонов в единицу времени 

W<votsp ^^^Ыт)^1ш,ь£„) 

где cC s= fy^/m - параметр теории возмуценжй. 
Положительный знак Ъп. д£, , отвечавший классической "рас­

качке" формионного поля, соответствует поглощение рождаемых внеш­
ним полем частиц (обычно 1т йВ ^ °. если идет процесс с ис­
пусканием реальных частиц) . 

В заключение заметим, что константа связи О- является 
"бегущей", т.е. зависит от характерного переданного импульса Q 
(см., напр./ 1 0'): 

где Hi - число фермионных ароматов, N - размерность 
калибровочной группы, А - характерный размерный параметр теории. 
В данном случае характерная передача импульса, очевидно, Q ~ 
«v f¥& , я параметр теория возмуценжй принимает вид: 

Условие применимости полученных выше результатов (§В 4^91^ 
oLtf "1) выполняется поэтому для достаточно тяжелых фермионов: 
Л 1 4:^6 4Ш1-. 
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ОБ ИНФРАКРАСНОЙ АСИМПТОТИКЕ КВАИСОВОГО ПРОПАГАТОРА 
В СВЕТОПОДОБНОЙ КАЛИБРОВКЕ 

М.Л.Некрасов, ЕЕ.Рочев 
Институт физики высоких"энергий, Серпухов 

1. Изучение инфракрасного поведения функций Грина представляется одной 
из наиболее значительных проблем квантовой хромодинамики','-б1 И, 16/. 
Решение этЪй задачи, однако, наталкивается на ряд трудностей, обусловлен­
ных самодействием глюонов и неабелевой изотопической структурой взаимо­
действия глюонов и кварков. Учитывая результаты р а б о т е 2/_ можно, по­
водимому, полагать, что в инфракрасной области осуществляется сингулярная 
асимптотика глюонного пропагатора вида 3!(k)~M 2 / (k 2 ) 2 . Однако результа­
ты для кваркового пропагатора, полученные с учетом такого поведения глю­
онного пропагатора, весьма противоречивы: исследования уравнений Швннгера-
Дайсона с учетом тождеств Уорда - Славнова приводят одних авторов к ре­
гулярному решению^, 4 / , других - х квазисвободиому виду кваркового 
пропагатора / 3 / или к решению с существенной особенностью^/. Сюда следу­
ет добавить исследования в квазиклассическом приближении, которые также 
привели к регулярному решению/?/. Таким образом, вопрос об инфракрасном 
поведении кваркового пропагатора еще далек от окончательного решения. 

В настоящей работе инфракрасное поведение кваркового пропагатора ис­
следуется методом функционального интегрирования в приближении мягких 
бозонов. Это приближение основывается на предположении, что главный вклад 
в инфракрасную асимптотику фермионного пропагатора дают мягкие бозоны. 
Это приближение хорошо работает в квантовой электродинамике и в случае 
некоторых других моделей^-Ю/, 

Вопрос об асимптотике кваркового пропагатора в рамках этого подхода 
обсуждался в работе" 1', в которой был получен предварительный результат 
о квазисвободном поведении кваркового пропагатора при некотором выделен­
ном значении коэффициента в дополнительной тензорной структуре глюонного 
пропагатора. В настоящей работе проводится подробное исследование инфра­
красного поведения кваркового пропагатора методом мягких бозонов. Иссле­
дование проводится параллельно в четырехмерной (КХХЦ) и в двумерной 
(КХД2) хромодинамике. Обе теории рассматриваются в светоподобной акси­
альной калибровке i ; 2 =0 (ч - аксиальный вектор). Во втором пункте работы 
формулируется метод мягких бозонов для случая неабелевой калибровочной 
теории. В п.З рассмотрена KXAj в случае SU(2) -симметрии в показано, 
что кварковый пропагатор в рассматриваемом приближении есть конечная при 
любом значении р 2 функция, не имеющая особенностей динамического про­
исхождения. Этот результат получен при любом значении введенного пара-
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метра Ь при дополнительной тензорной структуре глюонного пропагатора, 
кроме одного исключительного случая b - 1 , в котором кварковый пропагатор 
имеет простой полюс в точке р 2 = ш 2 , где m - затравочная масса кварка. 
В п.4 на примере КХДд показано, что результат с простым полюсом в тео­
риях с сингулярным поведением боэонного пропагатора не является устойчи­
вым относительно, сделанных приближений и среди неучтенных членов в урав­
нении для пропагатора выделены те члены, которые приводят к доминирующим 
поправкам к 'главному* приближению. В п.5 формулируется модифицированный 
метод мягких бозонов, учитывающий выделенные в п.4 члены, при помощи 
которого вычисляется фермионный пропагатор в теориях, моделирующих ин­
фракрасное поведение кваркового пропагатора в КХД2 и КХД^, а именно, в 
двумерной электродинамике ( К Э ^ ) и в модели 'абелева хромодинамика" 
(АХ)/12/. в обоих случаях показано, что фермионный пропагатор есть ко­
нечная функция р 2 и не имеет простого полюса при любом значении пара­
метра Ь . Показано также, что учет асимптотически свободного ультрафиоле­
тового поведения боэонного пропагатора в модели АХ не меняет полученного 
результата. 

2. Для вычисления инфракрасной асимптотики кваркового пропагатора вос­
пользуемся представлением в виде функционального интеграла 

(2 f f) dS(p-q)S(p) = N" 1 /dAdef(i3-m + g t " A , ) S ( p , q i A ) e , L < A ) , (1) 

где S(p) - кварковый пропагатор в импульсном представлении; ЦА) - клас­
сическое действие калибровочного поля A; det(id — m + gt'A") - фермионный 
детерминант; S(p, q|A) - функция Грина уравнения Дирака во внешнем клас­
сическом поле А ; d - число измерений пространства - времени; t • - ма­
трицы фундаментального представления группы SU(N)« 

Чтобы определить поведение кваркового пропагатора вблизи массовой по­
верхности, нужно в формуле (I) соответствующим образом эффективно учесть 
фермионный детерминант, классическое действие калибровочного поля и 
5(р , 9IA). Воспользуемся для этого методом мягких бозонов^, 9/ {см.так­
же' ' ) , согласно которому для получения главного вклада в инфракрасную 
асимптотику кваркового пропагатора в формуле (1) достаточно лровести 
функциональное усреднение только по мягкой компоненте поля А. 

Определим в этом приближении сначала функцию Грина во внешнем поле 
S(P» Я|А) = <p|S(A)|q >. S(A) удовлетворяет уравнению 

( ia-m + 8 t - A ' ) S ( A ) = - l . (2) 
Введем функцию S (А) , определенную соотношением 

S'(AKia + m + gt , A") = S(A). (3) 
Уравнение для S (А) имеет вид 

S ' W H t f + Q t ' A ' f - m » ] — 1 (4) 
и его формальное решение в виде интеграла по пятому параметру Фока можно 
записать в виде 
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S'(A) = i f d r . - " < " ' 2 + ' j 2 ) - ' r F ( 0 , <~ 0, 
* л <8) 

F(r) = e l f 5 2 i " (« t , t ' *4 2 . 

Дифференцированием по г легко получить уравнение, которому удовлетворяет 
функция F(r) , 

(6) (F(0) - i , 
где 

ЩАЬа 2

 + 0а + в«*А*)2. (7> 
В импульсном представлении формула (5) имеет вид 

S'(p(q|A) = i / d , . - l r < m 2 - p 2 - i ' > F<NP, Ч). (8) 
О 

Фуккиия F(rt Pi Ч ) Е <p|F{ r)l4> » согласно (в), удовлетворяет уравнению 

LifFir;P,4).fJk7H(p,p-k\k)»wk2-2p'l) F(r; Р - М ) . 
1 д' л*>> (9) 
LF(0;p,4)-(2^) da(p-4). 

где функция Н(р, р -к|А) в <р|Н(А)|р - к > согласно (7) имеет вид 

4 g 2 l i / l ' 8

b c

+ » V b % ' I , ' + f * b V l ' ) ] / ^ l A > ' ) A > - l c ' ) . (W) 
Z «Ьс .ьс " " ' 

В формуле (10) f и d - структурные константы группы SU(N)i 
В приближении мягких бозонов в формуле (10) следует оставить только 

первое слагаемое в правой части. Это приближение хорошо работает в абе-
левых теориях^З-Ю/ в основывается на предположении, что главный вклад 
в инфракрасной области дают быстро спадающие на бесконечности потеншалы. 
Для таких потенциалов вклад второго члена в правой части, очевидно, мал 
по сравнению с первым членом. Вклад третьего квадратичного члена можно 
оценить при помощи следующих размерных соображений. Пусть при к -. О . 
АОс) — 1 / к А , тогда третий квадратичный член при к -»0 ведет себя как 
] / k 2 A - d , где d - число измерений пространства-времени. Таким образом, 
при A<d вклад третьего члена я формуле (10) пренебрежим по сравнению с 
первым членом. В случае, например, КХД4, d = 4+2e, е-»+0 в инфракрасной 
области и, следовательно, мы можем пренебречь квадратичным членом в 
формуле (10) для потенциалов не более сингулярных, чем A f k ^ l / k 4 при 
к -• 0. Уравнение для F(r; p, q) при этом принимает вид 
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1-lLFinP, q) - 2 9 / ( 1 ^ P " » ' A > ) . l ' < f c a - 2 p k ) Hn P - k , , ) , 

l F ( 0 ; p , q ) . ( 2 , ) d S ( p - q ) . ( U > 

В уравнении (11) сделаем, как обычно, следующий упрощающий шаг, пре­
небрегая к по сравнению с р в экспоненте и в FU; р -к, р ) * ' . Интерпре-
таиия этого приближения будет обсуждаться в п.5. Уравнение ( И ) при этом 
принимает вид 

f - i i -F ( r ;p ,q ) = 29p'VA* [(2rp)F(r;p,q>, 
\ * <• / (12) 
[ F ( 0 ; p , q ) = (2 n> S(p-q> 

и его решение можно записать в виде упорядоченной экспоненты 

F ( r ; p . q ) = ( 2 n ) d s ( p - q ) T e X p l 2 i 9 / d r y t ' A ^ 2 r ' p ) ! . ( 1 3 ) 
О 

Согласно формулам (3) и (8) , S(p, q|A) имеет вид 
S(p,q |A) = S , ( p , q l A ) + S 2 ( p , q | A ) , (14) 

где 

S .{p ,q |A)- (p + m ) i 7 d r t - ' f < B 2 - p 2 - U ) F ( r ; p , q ) , (15) 
1 О 

s , ( p , q | A > . i ; d f . - i r < m 2 - p 2 - ' ° / - i 3 l p ( r ; p . f l ' ) 9 « ' A ' ( q ' - q ) ' 
(2*) d (ш) 

Для того чтобы теперь получить кварковый пропагатор S(p) , нужно 
подставить формулы (14-16) в формулу (1) и провести функциональное ус­
реднение по полю А. При этом, пренебрегая, как обычно, в инфракрасной об­
ласти вкладом массивных фермионных петель, полагаем фермионный детерми­
нант равным единице. Действие калибровочного поля L(A) в инфракрасной 
области эффективно учтем в гауссоиом виде 

L ( A ) - 1 A V 1 A ' . (17) 

В случае КХДд в аксиальной калибровке формула (17) есть попросту опреде­
ление действия калибровочного поля, если Ж есть свободный пропагатор по­
ля А . В случае КХХЦ формула (17) есть анзати для учета в инфракрасной 
области нелинейных членов в лагранжиане калибровочного поля. В духе рабо-
т ь , / 1 0 / будем считать, что S) -инфракрасная асимптотика глюонного пропага-
тора. 

Итак, с учетом сделанных приближений кварковый пропагатор можно 
записать в виде 

s<PbMp) + s2(p), ( 1 8 ) 

Как известно'8» в / , таков приближение вполне оправдано в КЭД) (в классе ковариантных калибровок, 
где оно приводит к правильной инфракрасной асимптотике электронного пропагаторв). Более того, результаты 
работы' 9 ' показывают, что учат зависимости от к в уравнении (11) в атом случае приводит к тому же 
результату. 
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( 2 , ) d s ( p - 4 ) S 1 ( p ) = ( p + m ) i / d r e - i r ( m - p - ' ° < F ( r ; p , q ) > 0 , ( 1 9 ) 
О 

(2 , ) d

S (p -q)S 2 (p ) = l / d r . - " ( m 2 - ' ' 2 - " ) < ; - ^ 1 Р ( г ; p,q)tf"A-(4--q>>. 
(2n) (20) 

В формулах (19, 20) знаком <•••>„ обозначено функциональное усреднение 
по полям А. _ Далее в тексте будет приведено вычисление только 5>,{р)« 
Вычисление §.(р) полностью аналогично вычислению 5.£р) к будет опу­
шено. Вклад величины S 2 (p) в кварковый пропагатор S(p) оказывается 
либо пренебрежимым, либо того же порядка, что и S, (р) . В каждом кон­
кретном случае это будет оговариваться в тексте. 

Для того чтобы провести соответствующее усреднение в формулах (19,20), 
воспользуемся итерационным разложением формулы (13) и тем свойством, 
что функциональное среднее от нечетной степени поля равно нулю, а от 
четной степени с точностью до независящего от п нормировочного множителя 
равно 

< А Д < Х , ) . . . А ( , 2

2 " П ( Х 2 П ) > 0 .= 

= Ф"„Т ^''''^^-^'••^''-^X^^J^.r-^)^ (21) 
В формуле (21) суммируются все возможные одновременные перестановки 
(о, , ц. , х ) , С учетом формулы (21) соответствующее функциональное сред­
нее в формуле (19) есть 

< F ( r i p , q)> . (2„) d e(p - q) I ( - 2 " » ' ) П ( t ' 1 . . . t* 2") fir - . V ' d r , x 

X ? P . i « " 1 * 2 . " S * 2 n - 1 " 2 1 P r KpSQpfr, -г2))р]т1рЩр(гЬ1_1-г211))р]\Л22) 

Функциональное среднее в формуле (20) имеет аналогичный вид. 

3. Для того чтобы при помоши формул (19, 20, 22) определить кварковый 
пропагатор в КХД 4, надо знать инфракрасное поведение глюонного пропага­
тора. Воспользовавшись результатами работ'''> 2 / , будем считать, что ин­
фракрасная асимптотика глюонвого пропагатора в аксиальной калибровке име­
ет поведение ~ 1/к 4 . Такое поведение, как известно, приводит к линейному 
росту эффективного потенциала в приближении обмена одним 'одетым' глюо-
ном*). Наиболее общий вид £„„{!<) в светоподобной калибровке при этом 
предположении есть 

В появавшккся в последнее время работах" приводятся аргументы, основанные на лркменешш 
аиэаца Депьборго-Весто / ^ 4 / , согласно которым асимптотика глккжяого пропагатора имеет вид 1Д 4 вяПс 2 . 
Мы не будем в настоящей работе обсуждать возможность такой модМжкаош. 

«!22 



I flo.JjL-irt,,,Л\' ^ ' o - B - ^ r ^ v j , (23) 
(k ) ' 0"') 

где М - некоторая константа размерности массы. Первая тензорная струк­
тура в формуле (23) совпадает со структурой свободного пропагатора. Вто­
рая тензорная структура, кок показано в р а б о т с / ' / , в размерной регуляриза­
ции важна для борьбы с инфракрасными расходнмостями. В связи с этим 
положим B = b ( d / 2 - 2 ) , где d - число измерений пространства-времени. 
Таким образом,при d= 4 вторая тензорная структура в формуле (23) отсут­
ствует, что обеспечивает калибровочную инвариантность эффективного потен­
циала, однако при d = 4+2e . f -*+0 она дает неисчозоюший вклад в форму­
ле (22). Отметим здесь <ше то обстоятельство, что величина b из раз­
мерных соображений не может быть пропорциональной кпкой-либо степени к 2 

или (к п), поэтому в классе степенных асимптотик Ь есть константа. 
В х-пространстве формула (23) имеет следующий вид: 

"" - #{*Та/2ПШ - 2X« i t y-' ,^ 4 VV(1-B)> (d/2-3>-*L „ ,„!.(24) 

В формуле (24) нельзя снять размерную регулярна ишы, положив d с 4 , од­
нако при B = b(d/2-2) величина х5)пу ( х ) оказывпотся конечной (расходи­
мости при разных тензорных структурах сокрушаются при сворачивании их 
с вектором х*1 ). В соответствии с этим имеем следующую формулу: 

р% 1 / (2,р)р ' '=-1-мУ0-Ь). (25) 
(4тг) 

Рассмотрим особый случаи Ь= ] , В этом случае в формуле (22) отличен 
от нуля только первый член суммы, и кварковый пропагатор имеет квази­
свободный вид (функция $,(р) при Ь = 1 равна нулю). 

у, . m + р 
S ( P > - - — — . (26) 

m - p 2 

Отметим, что такой же результат при выделенном значении коэффициента 
при второй тензорной структуре в инфракрасной асимптотике глюонного про­
пагатора был получен в работах • " ' в аксиальной калибровке г)2 ^ 0. 
В рассматриваемом подходе, однако, можно исследовать инфракрасное пове­
дение кваркового пропагатора для более широкого класса значений коэффи­
циента b • В случае Ь^1 воспользуемся тем фактом, что р2Х2гр)р, к а к 
это видно из формулы (25), не зависит от г . Вследствие этого свойства в 
формулах (22) действие оператора перестановок Р г окаэываетсн эквивалент­
ным единичному, в результате чего удается распутать произведение t -мат­
риц и провести интегрирование по переменным т. , Формула (22) при этом 
принимает вид 

<F(r;p,q)> =(2Я)%(Р-Я) I ( - а мУг 2 У.)" £-», (27) 
п - о £ п ! 

где a s f l 2 / 4 * 2 . 
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C « " 7Гй1(,М ' " , , 2 П ) Р ' I8'1'2'" в ' ^ Ч (28) 
В случае группы SU(2), t = <т*/2 , где о' - матрицы Паули, и С„ есть 

С п = 4 - ( Ш Г - ( 2 9 ) 

С учетом (29) формула (27) принимает вид 
< F ( f ; Р , Ч ) >0 - (2» ) 4 г (Р - q) Ф ( | ; J ; - « м У ? £ j l ) , < 3 0 ) 

где Ф - вырожденная гипергеометрическая функция' " ' . При г -. « выраже­

ние (30) пропорционально фактору »хр(- 0М р г ) , следовательно, S (ft), 
вычисленное по формуле (19), при Ь> I будет регулярной функцией от р . 
Проделав соответствующие вычисления можно получить явный вид функции 
МР)--

atfp2l£ 2 a M 2 p 2 i j 2 

где V - другая вырожденная гилергеометрическая функция. Функция S 2 (p ) 
имеет аналогичный вид: 

При Ь<1 интеграл по г в формулах (19, 20) расходится на бесконечности, 
поэтому в этом случае результаты (31, 31а) следует понимать в смысле 
аналитического продолжения. Из формул (31, 31а) видно, что кварковый про-
пагатор в рассматриваемом приближении при Ь / 1 есть конечная при любом 
значении Р 2 функция. Имеющийся в выражениях (31, 3La) разрез, начинаю­
щийся в точке р2 = 0 , не имеет динамического происхождения, поскольку его 
начало и вид не зависят от параметров теории. 

Отметим, что если в формуле (31) положить т - 0 , то полученное выра­
жение с точностью до коэффициента при нМ 2р совпадет с результатом для 
инфракрасной асимптотики кваркового пропагатора, полученным в работе '^ ' 
(вместо (1 - Ь ) / 2 в указанной работе стоит цветовой фактор, равный 3/4 в 
случае группы SU{2) )• В этой работе инфракрасное поведение кваркового 
пропагатора в случае беэмассовой КХД. исследуется в независимом от рас­
сматриваемого у нас подходе, основанном на анализе уравнений Швинтера -
Дайссаа с учетом тождеств У орда - Славнова в аксиальной калибровке 
(Pf) = 0 . При этом выражение типа (3La), пропорциональное ц , в работе'''*'' 
отсутствует. Отмеченное совпадение результатов, полученных в различных 
подходах, дает дополнительное указание на то, что инфракрасная асимптотика 
кваркового пропагатора в КХД^ есть конечная функция р 2 . 

В заключение данного пункта отметим, что полностью аналогичная карти­
на для инфракрасного поведения фермионного пропагатора получается и в 
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абелевом случае с бозонным лропагатором (23). Эта модель, введенная в 
качестве модельного приближения к КХД^ в инфракрасной области'' 12/, на­
званная "абелевой хромодинамикой" (АХ), была рассмотрена в приближении 
мягких бозонов в работе'16/. Наше рассмотрение подтверждает правильность 
гипотезы о том, что модель АХ воспроизводит инфракрасную структуру хро-
модинамики. 

4. Возникает вопрос об устойчивости полученных выше результатов отно­
сительно сделанных приближений. Чтобы, ответить на этот вопрос, необходи­
мо к главному члену (26) разложения S(p) при р 2 = ш 2 получить попра­
вочные члены. К сожалению, в случае КХД} сделать это крайне затрудни­
тельно, поскольку для этого пришлось бы учитывать поправки к формуле (17), 
эффективно учитывающей в инфракрасной области нелинейные члены самодей­
ствия глюонов. 

Для выяснения вопроса о роли поправочных членов рассмотрим модель 
КХДо, обладающую сходным с КХ£Ц поведением глюонного пропагатора на 
больших расстояниях. В аксиальной калибровке нелинейные члены самодей­
ствия глюонов в КХДп отсутствуют и Tfu/ в формуле (22) есть свободный 
пропагатор , 

V 1 " 1

 k 2 < V к, ' к, (32) 

Также как и в КХДд, в КХД2 функция £„,, "плохо" определена. Это на­
ходит отражение в том, что в х-пространстве 'Т„р не является однозначно 
определенной функцией'" 7 /: 

Р 
„(x) = - U ч ( | х + | + £ х + + £ ) S(x_). (33) 

В формуле (33) х ± = (х 0 txj/irt, Ч = 1 / V 2 ( U ) , f " £ - некоторые 
произвольные параметры. 

Параметры (•, £ можно фиксировать при помощи следующих дополнитель­
ных соображений. Потенциал статического точечного источника j = JS S(x.) 
есть ** ' " 

^M—tH^^.^-^f-W^ ^ Ы\)*1 *2Сч.\- (34) 
Из формулы (34) видно, что параметр ( имеет смысл постоянного члена в 
поле точечного источника и поэтому является неким калибровочным пара­
метром и может быть без потери общности отброшен' * 'Л Из выражения для 
напряженности поля , 

Е = - < ? » ) = - IgbfXj) + Ы1Х)\ (35) 
видно, что параметр £=0» если мы хотим, чтобы сила не зависела от ка­
либровочного вектора. Таким образом, в формуле (33) следует положить 
f= 4= 0 . Такой выбор пропагатора в х-пространстве соответствует опреде­
лению знаменателя в формуле (32) в смысле главного значения. 
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Определив таким образом функцию 3)„,,(х), легко получить, что 
р 2Г (2гр)р [ / » 0 . Следовательно, инфракрасная асимптотика кваркового 
пропагатора в KXAj в рассматриваемом приближении имеет кваэисвободный 
вид (28). 

Для того чтобы вычислить поправочные члены к формуле (£6), найдем 
сначала поправку F (r; p, q) к функции F(r; p, q) • Fg ( r; p, q) , опреде­
ленной формулой (13). F. (г; Р/ ч) определяется уравнением 

f-i^F 1(r;p.4).V 1(r)F 0(r;P,4) + He(r)F1(r;p.q). 
{F 1{e;p fq)-ft ( 3 6 ) 

где Нв(г)-2вр" f'AjjBrpJi V ( г ) - Н - Н 0 . 
Итерационное решение уравнения (36) имеет следующий вид: 

F, (ri Р, Ч) = J J dr,... "Г«1'„ • Н0(г, ) ... i H„(f. ) I х 

* / d H V , M * l f c s J d v . . / "d^lH, ,^) . . . !^^) ! . (37) 

Представим теперь Vj(r) как сумму двух слагаемых 
V j f O - H J O + ^ r ) , (38) 

где Hj(r) - поправка к Н 0 (г) , соответствующая второму и третьему чле­
нам в правой части формулы (10). Поскольку в светоподобной калибровке 
квадратичный член в формуле (10) равен нулю, то 

H , ( , , " / 5 7 , " , k ' l , ' v + l v , , , x ' , , ( l l , l , * , i - l , , , ^ ( 2 ' * M i 
Второй поправочный член в (38) соответствует дополнительному приближению 
в формуле (11), когда мы пренебрегали к по сравнению с р в функциях, 
явно зависящих от г . Включая в V,(г) , как и в случае Н.(г) , только 
линейные по к члены (члены, пропорциональные высшим степеням к войдут 
в высшие поправки), получим 

v > ( r ) = / - ^ V , ~ 2 " * ' -2ep"»"A;fr)k%/dp" I ^HvVlfttevV/a,». 
(2 IT)" r »• (40) 

Вычисление показывает, что если подставить соотношения (39), (40) в фор­
мулу (37), то Hj(r) дает нулевой вклад в 5(р) , в то время как вклад 
от v (г) пропорционален полюсу второго порядка по (ш2 - р 2 ) , т.е. доми­
нирует над 'главным* членом (26) при р? ~< т 2 . Отсюда следует, что ре­
зультат (26) для кваркового пропагатора не является устойчивым относи­
тельно дополнительного приближения в уравнении (11), т.е. в теориях с 
сильными инфракрасными особенностями, в отличие от КЭД^, необходимо бо­
лее точно учитывать в (11) зависимость от к. Таким образом, для более 
последовательного решения вопроса об инфракрасном поведении кваркового 
пропагатора в случае КХД-> в в случае КХД, при выделенном значении па-
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раметра b - 1 , необходимо, как это показал проведенный анализ, провести 
более аккуратное построение решения уравнения (11). 

5. Дифференциальное уравнение (11) с учетом начального условия легко 
свести к интегральному уравнению 

F, (г; р, q) -(brftfp-qWiQ/dr' fJh-p111 ,A*'(fc). , (* a- a ,*>F(r; p - k, q). (41) 

Итерационное решение уравнения (41) имеет вид 

F(r; P, q) = (2п)й г(р - q) + 2 Fn (г; р, q), (42) 
п = 1 

где 

F n(r; P ,q) = (2ig) n/d',~. / d r n / — U . / _ _ L [ P * - t 'A ' (k , ) . „ 
(2*) d (2*) d ' 

« . р ^ Л А ^ п ( к п ) ] . х р м Ь , ( ^ - 2 р Ь , ) + 2 « X г ; к ( к , l ( 2 f f ) d s ( P - 4 - l k i ) -
' ' > ! ' (43) 

В формуле (43) в духе приближения, сделанного в формуле (10), отброшены 
слагаемые~к А (к ) . После функционального усреднения формула (43) при­
нимает вид 

d / 4i^2,n ' r 2 n - i J L , d k , 

:F 2 n( f;p,q)> e-(2„) S( P-q)HifL/dr l„. I 6,jJ±X....f-b« 

x»xp!i2r.(kj - 2 p k , ) + 2i I r. k.k, | ( t " ' . . . t * 2 n ) x (44) 
j i > i • • i 

x ^^n 1 C f f ) d s ( ^ + k 2 ) s V 2 (P« ( k

I )p ) -» (2 f f )%(k 2 n _ i + k 2 j ; =" - ' 2 , (pg ) (k 2 n _ i )P ) i . 

Рассмотрим какую-либо перестановку в формуле (44). Пусть она содержит 
фар ;ор S(k j + k j ) . После интегрирования по k j (пусть для определенности 
i > i ) ( ri i г - ) ~ член в экспоненте в формуле (44) преобразуется следую­
щим образом: 

ir,(k? - г р к ^ + кОс, -2pk,) + 2i [lirik.kt+2i'l\rik.kt -

-К', - ' I )<kj-2pk J ) -2lr l l i J ]s4, + 2ir J k J V k f . (45) 
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Отбросим в формуле (45) второе и третье слагаемые в правой части. Это 
приближение эквивалентно выбрасыванию из фейнмановских интегралов в тео­
рии возмущений членов к , к ) при 11* j , сохраняя при этом к 2 , где Ц, j -
импульсы виртуальных бозонов. Такое приближение успешно использовалось 
при изучении инфракрасной структуры квантовой электродинамики и известно 
как 0 t { , к . ) приближение''^''. Отметим, что отбрасывание также к? - чле­
нов в формуле (45), как это нетрудно увидеть, эквивалентно приближению, 
рассмотренному в разделах 2, 3 , 4. 

Подставив формулу (44) с учетом (45) в формулы (42) и (19), получим 
следующее выражение для Sj(p) : 

? i 1 / - \tfj -1т1шг-£-и\ ~ {-2ifl )" /."l / * 4 SAp)-fa+m)ifdre l ' 1 • 7 (t ... > ) x 
1 о пшо n ! 

* K " T 4 , 1 P . ) f i V 2 - « " " " ' V 'M>t - r2 , P)... I(r - V p)!,(46) 

где , 2 
, < , , . , . / " p / ( k 4 . < № • - » » . ( 4 7 ) 

Наличие члена к в экспоненте в выражении (47) сильно усложняет з а ­
дачу распутывания произведения I -матриц и вычисления интегралов по г, 
в формуле (46). Поэтому в рассматриваемом в данном пункте уточненном 
приближении ограничимся изучением инфракрасного поведения фермиокного 
пропагатора в абелевых моделях КЭД2 и АХ, которые, по-видимому (см .за ­
мечание в конце п.З), правильно воспроизводят инфракрасную структуру 
КХДо и КХДф В обоих случаях формула (46) принимает вид 

S 1 (p )= (P + i « ) iTdr . - " ( r a 2 - ( > 2 - K ) + J < r ' « " . 
1 о 

е 

(48) 

(49) 

Функция \{', р) с учетом граничного условия I(г« о) = 0 в случае КЭUQ 
есть . э 

K' .pbf * " - ' . (50) 

а в случае модели АХ 

м 2 

( 4 m ) d / 2 n=> n ! (d/2-2 + nX<l/2-3 + B) 

, ( , r ? M2 ,-a/ag <-.,p')° n-Wb(d/2-2Hd^-2,n) ( ( Ц ) 
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Подставив формулы (50, 51) в формулу (49), получим выражение для 
J(r, p) в виде абсолютно сходящегося бесконечного ряда степеней (-'"'Р2 )• 
В обоих случаях функция J (г, р) регулярна (в случае модели АХ можно 
снять размерную регуляризацию, доложив d = 4 ). Для того чтобы выяснить 
аналитические свойства функции Ъ1 (р) необходимо знать асимптотики функ­
ции }(г, р) по г в нулз и на бесконечности. При ' -*0, lv, p) -• 0 в 
обоих случаях, что обеспечивает сходимость интеграла по г в нуле в фор­
муле (48). При г -»«>, J ( r , р) в случае КЭДд имеет асимптотику 

J < r ' P ) r ^ = - i r £ ( 1 - > ' ) " r T + i r * r f n ( r p 2 ) + 9 ( 1 ) ' (S2) 

где у = 0,57 ... - постоянная Эйлера. Первое слагаемое в выражении (57) 
имеет смысл некоторой постоянной добавки к масс^ фермиона, которая воз­
никает в 1/N-приближении для кваркового пропагатора в KXBQ ' °Л 
Второе слагаемое - г д 2 / 2 обеспечивает сходимость интеграла в формуле (48) 
на бесконечности. Третье слагаемое не влияет на сходимость интеграла. 
Анализ интеграла по параметру г в соответствующем выражении для 5 2 ( р ) 
показывает аналогичную картину. Отсюда следует, что учет зависимости от к 
в уравнении (11) ведет к тому, что полюсное поведение фермионного пропа­
гатора в инфракрасной области в КЭДд сменяется на конечную функцию 
от р2 (при р 2 1 О) . 

Аналогичная картина наблюдается в модели АХ. В этом случае при ' -» к 

+ i r £ | i e n

2 r p 2 _ i r a M 2 { l - y ) f n r p 2

 + Q ( 1 ) , (53) 

где " •= 0 /4тг2. В этом случае также возникает постоянная добавка к мас­
се фермиона, полученная в работе^ 0 ' при исследовании уравнения Швингера-
Дайсоиа в KXAj. Второй член 1ри Ь / 1 является главным в выражении (53) 
и совпадает с соответствующей асимптотикой в формуле (30), полученной в 
неабелевом случае. Однако при Ь=? , в отличие от'рассмотренного п.З при­
ближения .фермионный пропагатор не имеет полюса, поскольку третье слага­
емое в выражении (53) обеспечивает сходимость интеграла по г в форму­
ле (48) при любом р 2 > О*. В случае р 2 =0 интеграл также сходится, по­
скольку в этом случае J ( r # 0 ) = 0 , как это видно из формул (51) и^ (49 ) . 
Анализ интеграла по параметру г в соответствующем выражении для S 2 (р) 
показывает аналогичную картину. Таким образом, учет зависимости от к в 
уравнении (11) не приводит к изменению результата для фермионного пропа­
гатора в случае Ь ̂  1 , т.е. в этом случае кварковый пропагатор есть конеч­
ная функция от р 2 . Случай Ь = 1 оказывается неустойчивым относительно 
сделанных приближений в п.п.2, 3, и учет членов, ведущих к доминирующим 
поправкам к формуле (26), приводит к тому, что кварковый пропагатор (в 
приближении АХ) и в этом случае (Ь = ]) есть конечная функция р 2 при 

Р 2 » 0 . 

! 1, по-прежнему, выделен, так как характер асимптотики J(*p) 
меняется при Ь = I . 
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Рассмотрим теперь вопрос о влиянии ультрафиолетовой области теории на 
инфракрасную асимптотику кваркового пролагатора. Для этого рассмотрим 
модель АХ/'в/, в которой бозонный пропагатор кроме члена вида 1 / к 4 , 
описывающего инфракрасную асимптотику глюонного пролагатора, содержит 
также слагаемое вида 1 /к2 , отражающее асимптотически свободное пове­
дение глюонного пролагатора в КХД .̂ При этом функция J (г, р) в форму­
ле (48) получит аддитивную добавку J (г, р) . При г -> 0. J (', р) -» 0 , а 
При Г-. ос 

•>'(>•, p)|f ^ ^ = - i rap 2 + | ! n Z f p 2 t a y e n r p 2 +Q(1). (S4) 

Первое слагаемое в формуле (54) имеет смысл некоторой дополнительной до­
бавки к массе фермиона, второе и третье слагаемые всегда подавляются чле­
ном—-г tnr в формуле (53). Отсюда видно, что ультрафиолетовая область 
не влияет на сходимость интеграла в формуле (48) и, следовательно, на 
результат для кваркового пролагатора. 

6. Вышеприведенный анализ показывает, что в рассмотренном приближении 
кварковый пропагатор есть конечная функция р 2 и не имеет полюсов при 
р 2 ^.0 « При этом остается не вполне ясным вопрос о наличии более мягких 
особенностей типа ветвлений. 

Сопоставление нашего результата в случае КХД4 с полученными ранее 
другими методами показывает качественное согласие с работами/^, 4/*), с 

работой''''/, а также в некотором смысле с работой/б/ (в этой работе полу­
чена существенная особенность в точке р 2 . т 2 , но структура ее такова, 
что на действительной оси пропагатор оказывается конечной функцией, рав­
ной нулю в точка р 2 = т 2 ) . В отличие от работы^', в которой рассматрива­
ется вопрос о возможности существования решения с простым полюсом, в 
рассматриваемом у нас подходе а pr ior i не предполагается вид асимпто­
тики кваркового пролагатора. 

Отметим, что в модифицированном приближении мягких бозонов, рас­
смотренном в п.5, в выражении для кваркового пролагатора появляются чле­
ны (см. формулы (48), (52), (53)) , имеющие смысл некоторой аддитивной 
динамической добавки к затравочной массе кварка, которая была получена в 
случае КХД| в работе/5/, и в случае КХД2 в 1 /К-приблнженни в рабо-
тах' 1'» 18/. Различие результатов для кваркового пропагатора в случае 
КХД2, полученных в I/N-приближении и в теории КЭД^, моделирующей ин­
фракрасное поведение КХДо яри конечном N, обусловлено тем, что метод 
мягких бозонов учитывает непланарные графы, вымирающие в 1 /N-прибли­
жении. 

Авторы признательны Б.А.Арбузову, А.И.Алексееву, В.А.Байкову, Э.Э.Бо­
осу, А.В.Куликову, С.С.Куренному и А.П.Самохнну за полезные обсуждения. 

В работы • шсслеоовдлсв случав с беэыйссоеыив каариик. 
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SUMMATION OF LEADING LOGARITHMS FOR FOUR-FERMION INTERACTION 
AND COMPOSITE VECTOR BOSON 

A.V.Kulikov, V.E.Rochev 
Institute for High Energy Physics, Serpukhov 

1°. It is well known that the usual scheme of constructing 
renormalized perturbative series based on the Introduction of infi­
nite counter-terms into the oare Lagrangian, does not work for quite 
a wide class of interactions, namely for the second-class interac­
tions'*' ("non-renormalizable", by the traditional terminology). 
This fact, i.e. the impossibility to calculate the corrections in 
the framework of the renomalizatlon program, is the main argument 
against using the second-class interactions for the description ot 
the real world of elementary particles. In particular, due to this 
the Salam-Weinberg gauge model wee proffered, rather than four-fer­
mion Lagrangian in describing weak interactions. However, the tra­
ditional four-fermion theory wonderfully describes all effects of 
weak interactions at energies available (as well as neutral cur-
rents)/ 2» 3/. Thus we have no physical reasons to refuse the non-re­
normalizable four-fermion interaction, except our inability to work 
with it in higher orders of perturbation theory. 

Long ago the idea was stated (and by now it has become a "hack­
neyed truth") that the inapplicability of the standard perturbation 
theory to the second-class interactions is connected with the strong 
non-regularity of Green's functions in the expansion parameter.Due 

# t o this it was proposed to modify the perturbation theory and to in­
sert the terms that are non-analytical (logarithmic) in the coupling 
constant. Such a modification may lead to the construction of a 
divergence-free perturbation theory. One of the arguments in favour 
of this view is that a similar situation also exists in super-renor-
malizable massless models: QED^ 8/ and the Schwinger model^'. In 
these examples strong infrared divergencies are analogous to the 
ultraviolet non-renormalizability and after eliminating the former 
we come to the necessity to introduce the terms with the coupling 
constant logarithms (OCL). It was shown in refs.' 8' that such a 
modification of perturbative expansion by introducing CCL allows to 
construct a perturbation theory that is finite in each order. The 
same is true for exactly soluble non-renormalizable models'^t 7i 1 0 /'. 
The common feature of the models mentioned is -hat their coupling 
constant is dimensional and, as a consequence, the existence of a 
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priori limitations on the applicability region of perturbation 
theory. For example, in the four-fermion interaction this region is 
| к Oj. | « 1, к being some specific momentum. The presence of such in­
ternal boundaries causes principal incompleteness of perturbation 
theory for models with a dimensional coupling constant and leads to 
the appearance of some parameters. 

A general situation for the models with a dimensional coupling 
constant may be characterized in the following way'7': modification 
of perturbation theory (through introducing CCL) leads to the fi-
niteness of all expansion terms, but there may appear parameters, 
whose fixation will bring us beyond the framework of perturbation 
theory. 

In the present paper higher orders of perturbation theory for 
the four-fermion interaction are analyzed. The leading CCL are se­
lected for the current-current amplitude (intermediate field propa­
gator). The summation of these terns widens the range of applicabi­
lity of perturbation theory and points to the existence of unstable 
bound states in the theory discussed. 

2°. Consider a massless four-fermion interaction, whose Lagran-
gian has the form 

£ - ф1дф - е

2/2(.фуК1 + y5)/2 t B Ф)2 . (1) 
Here Ф belongs to the SV(N)-group representation, whereas t are ge­
nerators in the same representation: 

[ta, t b] = if a b ct c; 
„ - b 1 / o w sab < 2 ) 

Tr t t = 1/2 N f 8 , 
where N f is the number of fundamental multiplets. We also need the 
Casimir operator, described as 

S t V t 1 = Lta. (3) 
i 

Using a usual trick, we introduce the auxilary intermediate vector 
field B° and represent Lagrangian (1) in the three-linear form: 

£= ф±дф + g^B at a(l + у5У/2ф + Л/гСВ 3) 2. (4) 
The equivalence of (1) and (4) is obvious from relation 

/S)B exp i dx(Bj - 1/2B2) ~ exp ig2/2 /dx j 2 . 
Three-linear interaction (4) leads to the following Feynaann rules: 

= - i D
a b ( x - y ) a . l v S a b3(x - y) 

•i л л 
— = h s c (x - y) = -L * - ? 

1 ° 2v2 [(x-y)2-10]2 

ig t'yPll + y5)/2. 
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The basic subject of our investigation is the auxilary field pro­
pagator 

O x " y > = 1 / i < T ( B ^ ( x > B ^ ( y ) > > . <5> 
which is connected with the current-current amplitude. 

Now select the self-energy part П of the full propagator (5): 
ДЧЭГ'+П]" 1. (6) 
The expansion of П in perturbation theory series contains all 

one-particle irreducible diagrams. 
Henceforth we often use the dimensionless variable f =k g /1217 . 

As it is shown in'7', the first terms of the diagram expansion of П 
is f 2 £n[(_fz - iO)/C]and the region of applicability for this 
approximation (in momentum space) is 

|f2«n(-f2/C)|« 1, (7) 
with С as a parameter. 

We can go beyond the boundaries of this region if summing all 
I)-expansion terms proportional to ( f?£n(- f 2/C)) n. The result of 
this summation will be valid in the region 

|f2| «1, |£n(-f2/C)| » l, |f2fn(_ (2/C)\ „1. (в) 
This approximation (that of the so-called "leading logarithms" 

means the neglect of terms ( £ 2 ) n tn n"" (2 (m - 1,2,...) in compa­
rison with the main terms ( (2 In (2)n in every order of perturba­
tion theory. 

The appearance of logarithms in the previous formulae is caused 
only by ultraviolet divergencies. Here lies the main difference 
between non-renormalizable theories and, say, electrodynamics,where 
logarithms appear from Integration over the infrared region 
(double logarithmic asymptotics). There are no methods of the direct 
summation of these "ultraviolet" logarithms. That is why it is ne­
cessary to analyse separately both why logarithms appeare in diver­
gent diagrams and their selection creteria. Our next Section deals 
with this problem. . 

3°. The appearance of logarithmic terms more easily be under­
stood if we consider the problem of constructing the perturbation 
theory not as "calculation of divergent integrals" but as the defi­
nition of the product of distributions with coinciding singulari­
ties. Consider the simplest example: a massless scalar loop in the 
d-dimenslonal space (d>2): 

О ~ А 2 Л2(х) = М х ) . (9) 
Ft •» 

In momentum space a convolution-type integral corresponds to 
this loop. Propagator /\,(x) will be 
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л ( J C ) = -i_ ; d p L__ = _A_ Г (й/2-1){у?)1'йП (10) 
° (2«!d p 2 4-rd/2 

(in this Section Euclidean metric is used). 
Thus, the calculation of loop (9) is reduced to the definition 

2 2 _ d 

of the Fourier-image of function (x ) . However, the homogeneous 
distribution (x 2)~ a considered as a function of parameter a has 
poles at points a = d/2 + к (к =0,1,...) and, consequently, there 
should be a supplemented to its definition. Such a supplement breaks 
the homogeneity of the function ( x 2 ) - 0 which should be considered 
at the given points as an adjoint function of the first order'1]'. 
The Fourier-image of the adjoint distribution will be: 

о -d/2-k (-l) k + 1 >r d / 2 2 - 2 k 2 k P 2 

?t(x 2) ]<P) = *-" (p 2) kPn|-. (11) 
k!r(W/2) 

Thus, loop (9) (with d even) is an adjoint distribution of the 
first order whose Fourier-image, according to (11), will be: 

Lj(p) . A n ( p 2 ) d / 2 " 2 (n P 2/C r (12) 
By analogy we define the n-loop diagram that is again an adjoint 
function of the first order: 

" + 1 Л П
0
+ 1 (x) = V*>- <«> 

L,(P) = K U * \ i p 2 ) n W a - l i ' 1 Ш P 2/C n. (14) 
In (12) and (14) 

h n = (-l) n ( d / 2- : I )(4 f f)- n d / 2 r"+1(d/2 - l)/r(n(d/2-l))x 

x r((n+l)(d/2-l)). 
It is essential that the aforecited definition contains an ar­

bitrariness i.e the indefinite constant C n. To fix this arbitrari­
ness is the task of the complete theory. This problem cannot be 
solved by considering loop (9) apart from the context of a concrete 
model. For example, consider two physically different situations: 
the renormalizable and non-renornalizable ones. In the renormali-
zable case (let it be the massless 04-theory in the four-dimensio­
nal space) the arbitrariness in defining L. is fixed by infinite 
renormalizations of a charge and wave function. In this case it is 
possible to fix renormalizable perturbation theory in any order by 
the finite number of constants. As an example of a non-renormali-
zable situation we can choose a massless superpropagator (SP)'7-* . 
As it was shown ix/1', SP is a function of gauge transformation for 
four-fermion interaction. In Euclidean space SP in the coordinate 
representation is the function 
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У(х) = «xpl-A/x2!-1. (15) 
(We consider SP at "non-physical value of the coupling constant"/1-'/ 
A> 0 which corresponds to some gauge a<0'7'. It is sufficient for 
illustrative purposes of this Section). The Fourier-image of this 
function can easily be constructed with the help of, e.g. the Mei-
lin representation for the exponent. As a result: 

y ( p ) = . ILL + ,* л2 _!_ " 7 А ~ d s Г(-а-2)п-5)(2£_2
Г. ( M ) 

(0<S<1) Р 2 2 " - 6 - - r ( S + 2 ) V 4 ' 
An n-llop diagram (13, 14) corresponds to tern of the expansion of У 
in л. Besides, in this case, according to (16), constant C n is fi­
nite and written as 

C n = — exp I (Kn+2) +ф(п+1) - Ф(п)) 

( Ф is a logarithmic derivative of Г-function). 
In the first place, the peculiarity of this non-renormalizable 

example is that the dimensional coupling constant Л is found under 
the log sign. Secondly, constant C n is finite and defined by the 
exact solution ?(p), i.e. by the sum of all loops. But if construct 
a perturbation theory for 3 (see, e.g. then in virtue of a 
priori limitation on the region of applicability of perturbation 
theory Ap 2 « 1, the perturbative expansion will contain a dimen-
sionless parameter, whose definition in the framework of perturba­
tion theory is in principle impossible. 

Thus, in the non-renormalizable situation the perturbation theory 
is non-analytical in its coupling constant and finite in every order. 
It is natural to make a similar assumption for FFI as well. In fact, 
it will be equivalent to the assumption on the existence of the 
well-defined exact solution (unknown in this case). 

Go back to scalar loop (9). We have already ascertained why the 
logarithm appears in lower order (12) and found out that diagrams 
(13) also give only one logarithm (14). But higher orders of pertur­
bation theory can give higher logarithms (i.e. adjoint functions of 
higher orders) as well. Summation of such leading logarithms is the 
aim of this paper. To explain the principle of selecting leading 
logarithms we consider as an example three typical diagrams of the 
fourth order (see Fig. 1). 

Diagrams (a), (b) and (c) have the corresponding expressions in 
x-space 

f ( x ) ~ / d 4 x d 4 x , 4 f ( j - x . ) Д 2(х, - x,) Л 2(х„) 

Ю\х)~ [ d \ d \ Д 0 ( х - Х 1 ) A e ( X l ) Л о (х 2 ) Д о (х-х 2 ) Д 2 ( х г х 2 ) = 

= / А ^ У , ; Л 0 (х-У Г У 2 ) Л о(У а+ у 2 } W V X " y 2 ) A o ( y l > 
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<jf (x) ~ / d 4 x a d 4 x 2 Д 0 ( х - х 2 ) ^ ( X j - x g ) Д 0 ( х 2 ) Л 0 (х ) = 

= /d V S Д о ( Х _ У Г У 2 > A o ( » l > Д о< у 2> Д о ( х ) -

coo© © 
( а ) £ Ь ) ( с ) 

rig. i. 

Diagram $ contains two divergent integrations, and each of them 
is connected with the homogeneity breaking and, consequently, with 
the appearance of logarithms as well. The corresponding Fourier-
image will be an adjoint function of the third order, i.e. it will 
contain a cubed logarithm. On the contrary, in the diagrams 3) D and 
Jf one of the integrations is convergent and, consequently, does 

not break the horaogeneity. Correspondingly, in momentum space these 
diagrams are adjoint functions of lower (second) order. Note, that 
though diagram 2) c is more "singular" ( дЗ f a s compared to 35° 
their powers of logarithm in momentum space are equal (as it was 
previously shown in (12)-(14)). Thus, diagram S) a in the region of 
large logarithms becomes leading. By this example we can see for­
mulate a general principle of selecting leading logarithns: the lea­
ding contribution is made by diagrams with the maximal number of 
non-integrable poles. 

о 4 . Proceed to the analysis of diagrams that appear during the 
expansion in series (6). The first expansion terms are shown in 
Fig. 2. As it was shown above, the maximal breaking of homogeneity 
(and the maximal power of logarithm in momentum space) is caused 
by the diagrams with the maximal number of non-integrable poles 
("divergent integrations"). In Fig. 2 there are (a), (c), (d). Diag­
ram (b) vanishes, and the rest (e)-(i) are not leading. Host easily 
it can be understood if S-propagator be contracted in the point. 
Then, neglecting the matrix structure, we come to the correspon­
dence: diagram (2d) transforms into (la), (2g) - into (lc) and the 
rest of diagrams of the 6-th order in Fig. 2 arc of topological 
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о©-©*®*© * (D*®* 
(а) (Ь) (с) (d) (e) (t) (q) 

•<0) * 0 " - 0 «... 
<М (I) 

Til. 2. 

structure (lb). So, ip to the 6-th order ladder type diagrams will 
be the leading ones. Obviously, in an arbitrary order the ladder 
diagram also has a maximal (for this order) rnaber of non-integrable 
poles (see (18)). Note, that after contraction of a propagator into 
the point the ladder diagrams acquire a topological chain structure. 
An arbitrary diagram can be obtained from the ladder one by a fi­
nite permutation of vertices. However, even minimal changes connec­
ted with the mutual permutation of adjacent vertices (see Fig. 3) 

• 

-@-<@)-®-®-(!XD--~ 
~aQx> * o©o •.., 

»1«. 3. 
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break the chain topology and lead to the appearance of insertions 
of the type (b), (c) in Fig. 1. These insertions contain a loga­
rithm of a lower power than in the corresponding chain. It is clear 
that the permutation of more than one vertex or the flip-over of 
the line end in more than one vertex lead to further reduction of 
the power of logarithms. 

Thus, the ladder-type diagrams alone lead to the maximal power 
of logarithms in momentum space. 

5°, In 2(n+l) order of perturbation theory the ladder diagram 
for self-energy part of auxilary field propagator (5), (6) takes 
the form: 

a , ) 2n+2, i.n n 

tiv(.2n+2) x i' щ = 1
 m 

5 
x Sp — П T S„(x - X ) ya* Tr nt"". (18) 

2 m i с m-l m m 

By n in (18) we designate the product over m = 1, 2 , . . . , n , n + l , 
n, . . . , 2 , 1 , 0 ; x c = x, x „ + 1 = y; a 0 = c , a n + ] = v; ao = a, a n + 1 = b. 

Substituting into (18) expression 

S „ ( x ) ® S c ( - x ) = — / d 4 k e " i l t x P ( k ) P a b ( k ) y a ® У Ь , 

where g ^ k ) = k 2 g 2 / 9 6 " 2 f n ( - k 2 g 2 - iO)/12ir 2C = 1/8 £ 2 fn [ ( - f 2 - iO) /C] 

and P = - g a / 2 - к к /к , and af ter the Fourier transformation we 
obtain 

lii>(2n+2) 2 щ = 0 

0 _ a a n 

ж П X у m * Tr 11 t ш x П P r s . (19) 
и=п m m=0 m m 

The convolutions of t -matrices can e a s i l y be calculated with ( 3 ) , 
and in order to ca lcu la te the trace of у-matrices we note that 

y a y 1 y b p a b ( k > = Г1 " & r% fcVk2 5 Г 1 , 

у а Г*у = - 2 Г 1 , 
and 

У а г ' у \ ъ = -2ТК 
A consistent substitution of (20) into (19) leads to the final exp­
ression 

n a b <w-f« ar) B + 1<-4w»spr*lll!/' XTr t at b. ^^(гп+г) 2 
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Summation all of the orders gives: 

n>> = - v8*" 2 Kf-^T • ( 2 1 ) 

P l+4LgJF 
Here 

„l'"= gf"- k'V/k2, 
and N. is the number of fermion multiplets. The changes necessary 
for calculations of other variants of FF1 are quite obvious. For 
example, we get a vector-vector variant by the following substitu­
tion in (21): 1 + У 5 

2 = Sp "— — Sp 1 = 4, 
2 

and in the absence of isotopy it follows from (2) and (3) that 
N f ^ 2 , Ls*l. The full propagator of auxilary field A ^ ( k ) in the 
case of SU(2)-group and V-A interaction will be 

0«4'sab+ v * a b »-"»* 2 '»«-/ '-"»/°'— ( 2 2 ) 
M k 2 ]+]/4(Nf-l/2) f^fn[(-f -iO)/Cl 

Next, write down an auxilary field propagator obtained from the 
Lagrangian: 

£ = -g2/2(0yf(J. ) 2 : 
= «^ + i + wfnl-f-mn 

M k 2 * 1 + 3 / 2 f ta[(~ С - iO)/C] 
Expressions (22) and (23) do not result from the summation of soae 
partial class of diagrams but represent the exact sum of all leading 
logarithms of the type ( (% f n f 2 ) n in all orders of perturbation 
theory. The attempts to sum some classes of diagrams in FFI have 
already been made earlier/ 1 4 - 1 7/, but with the assumptions not be­
ing justified and, consequently, the region of being applicability 
completely vague. The introduction of non-physical cutting Л and 
complicated topological structure of FFI diagrams prevented the 
summation of all diagrams even in chain approximation. From this 
point of view introduction of the auxilary field В and selection 
of one-particle irreducible part П, whose topology in region (8) 
is rather simple, proved to be extremely useful for calculations. 
This topological structure is not given as a model assumption but 
appeared as a result of our- principle of selecting leading loga­
rithms (ultraviolet by their origin). The discussions made proved 
the result of summation to be valid in region (8), which is suffici­
ent for important physical consequences. 

6 . The expressions obtained for propagators have a pole singula­
rity in complex к -plane. This singularity corresponds to un­
stable bound state with quantum numbers of the vector particle. 
The expression R e [ J + n ] ( k 2 ) „ „ 
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In this case the equation will take the defines the particle mass, 
form 

y(x) - 1 + x(£ n x - c') - 0, (24) 
with x • a f 2, and a = 3/2 for VxV interaction and a = J(Nf - 1/2) 
for V-A interaction with SU(2)-syametry; C'<= PnaC. Depending on the 
C'-values, the graph of function y(x) will be the same as in Fig.4. 

Y* 

Thus, at C > 1 there exist two solutions of (24), and x^ < 1 < x,. 
The lesser solution Xj lies in the region of applicability of the 
result of the leading logarithms simulation and corresponds to the 
aforecited vector bound state. The greater solution x 2 lies, gene­
rally speaking, beyond this region and its interpretation as a real 
bound state is not reasonable. 

At large С xj and x 2 will have approximate values 
1/C'[1 + C « n С/С')] 

(25) 
x 2«e c'+e(l). 

In accordance with the notation adopted, mass M of the bound state 
corresponding to the smaller solution is equal to: 

- / 12 n* 
C'ag2 

The width of the bound s ta te i s : 

r=^i«3. 
1217 
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(26) 

(27) 



If identify FFI (1) with the weak one'3/, i.e. put g2/2 = 2\f2 GF, 
then at И = 80 GeV 

Г •= 0.2 Kf GeV. 
Note, that parallel to isovector bound state in FFI considered 

there may exist bound states of another spin. Such states will 
appear as poles of the corresponding scattering amplitudes. 

The authors are grateful to B.A.Arbuzov, A.I.Oksak and Yu.F.Pi-
rogov for fruitful discussions. 
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МЬЗОННЫЕ ЛАГРАНЖИАНЫ 
В МОДЕЛИ С ЧЕТЫРЕХКВАРКОВЫМИ ВЗАИМОДЕЙСТВИЯМИ 

И РАСПАДЫ МЕЗОНОВ 

М.К.Волков 

Объединенный институт ядерных исследований, Дубна 

I. Введение 
В работах '*"*' было показано, как на основе эффективного 

лагранжиана с локальным четнрехкварковнм взаимодействие* можно 
построить известные феноменологические лагранжианы, описываю­
щие взаимодействия охалярннх, псевдоскалярных, векторных и псяв-
довекторных мезонов при низких анергиях. При введении электро­
магнитных взаимодействии кварков с фотонами в этом подходе ав­
томатически возникает модель векторной доминантности ' ' ' . 

Нала модель является развитием идем, изложенных в работах 
'5~7'. ошшем кратко основные черты этого подхода. Все мезоны 
рассматривается как совтавные двухкварковые системы. Взаимодейст­
вие мезонов друг с другом происходит только через кварковне пет­
ли. Через кварковне петли происходит и взаимодействие мезонов с 
фотонами и W -бозонами (далее - с легионами, сгаОые взаимодейст­
вия ' ' ) . При построении феноменологических меэояных лагранжиа­
нов будет рассматриваться только однопетлевое приближение с пет­
лями расходящегося типа. Расходящиеся интегралы устраняется пе-
ревормироххоя незонннх поле». Эти перенормировки полностью оп­
ределяет силу взаимодействия мезонов друг с другом - феноменоло­
гические меэоннне вержины. Все феноменологические вержинн, опи-
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снвавщие сильные взаимодействия скалярных, псевдоскалярных, век-
хорных и псевдовекторвых меэоввнх нонетов, удается выразить через 
одну вершину dp , описывающую распад />^2^"{0/^г~ з) . 
При этом оказывается, что смьваа верпна, описываемая взаииоде!-
ствне ПИОНОВ друг с другом и с кварками а. , связана с ^ прос­
и м соотношением Q=№g и равна f?%g-~ */% • Т м* самым в сек­
торе, описывавшей взаимодействие свадарвнх и псевдоскалярных ме­
зонов, появляются основания для использования обычно! теории воз­
мущена! даже при описании сильных взаимодействий *'. 

В следующем разделе будет показано, как с помощьв метода функ­
ционального интегрирования аз лагранжиана с четнрехкварвовнми 
взаимодействиями скалярного а псевдоскалярного типов можно полу­
чить обобщенную сигма-модель, описывавшую взаииоде!ствие скаляр­
ных в псевдоскалярных мезонш новетов. При этом массы токовых 
кварков, присутствуощие в исходном чисто кварковон лагранкнане с 
взаимоде!ствием типа ток-ток, после введения бозонннх поле! за­
меняется на массы составлявших кварков в лагранжиане, соответст­
вующем обобщенно! сигма-модели. 

В третьем разделе обсуждается формулы для масс псевдоскаляр­
ных и скалярных мезонов. В четвертом разделе ва основе распада 
п-з!Г' фиксируется разность масс составлявших U- и rf-кварков 
и даются оценки значена! масс как составляющих, так и токовых 
U-, d-к ft- кварков. Отметим, что в вайе! модели между значе­
ниями масс составляющих и токовых кварков существует однозначная 
связь. 

В петом разделе обсуждается распады /?'-»Л5Г и /у'-/?2$~, 
близкие к распаду /? -* 3$Г. 

В ивстом разделе выводится феноменологические лагранжианы, 
описывавшие взаимодействии векторных и псевдовекторвых мезонов •, 
а также взаимодействия этих мезонов со скалярными и осевдоскаяар-
ннмв бозонами. 

В седьмом разделе вводится электромагнитные взаимодействие и 
показывается, как в наием подходе возникает модель векторво! до­
минантности. 

В восьмом разделе приводятся результаты вычисления жирин ря-
1а щ с н а я 0 в мезонор. 

*'Аналогичная опенка величины константы ф получена в ра-
боте / 8 / . ^ 
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Наконец, в заключении дано кранов обсуждение полученных 
результатов. 

2. <ШиШ1ЛШЬМШ&к 
Рассмотрен аффективный хваржовнЯ дагркижиан с локальный взаимо­

действием тша ток-ток 

где f'Cif^S) - цветные кварковне поля (в ( I ) предполагается 
суммирование по цветовым индексам); Аи -матрюды Геля-Нанна 
( о g в(**, ^r^l);^,s(!^m^/n>)~ и а 1 Р и » а » соответствувжая 
массам токовых кварков. Член с / ^ в а р у в а е т хкральнув симметрии 
лагранжжана, . 

С помоиьв производяиего фунхцкояада VV^/JJUOKHO ввести боэон-
инаподя < V ; f , , £ , , £ : 

где * * я г 

Ш^Н^'-^^^^Jr Йр > Ч$> (3) 

После введения мезовних поле! в выражения (2) можно провести ин­
тегрирование по хварховш полям. В результате под знаком экспо­
ненты возникает феноменологически! меэоваыи лагранжиан '*"*' . 
Однако можво убедиться, что вакуумное ожидание поле! 6~, , 6"3 

и G~f в этом лагранжиане не будет равно вулв. чтобы добиться 
равенства нулю для вакуумных ожидали! у всех поле!, следует пе­
реопределить поля 6J , 6^ и 6^ , вводя новые значения масс 
кварков в лагранжиан (3): 
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•FT - <f3 •* > (ц) 

Номе массы кварков Мч , /11^ в /Пр определавтса условахмв 

Как повахух дмввеввве оценка, ваачеваа масс fflH , /П^ ж fft„ 
соответствуют массам соетавлааада парков. Переход ох токовых 
масс т* к массам соотавлаваих парков /П; свяаав о процессом 
спсв1авввго варугавв хврад»вов санмеграв. девотавтельво, на пер­
вом папе пода (Г, , 5"3 в с> могут водности» поглотать токо­
вые массы т* в мм получвм ввральао-овыметркчвув овтуашш а 
каарх-мевоааов часта лагравввава (э ) . Одвако поскольку вахуум-
и е оквдаава етвх воде! ве равш аул , вам веобходвмо вводвхь 
вовне массы кварков /п. , чтова ооеоп»т«т» равеаехва (5) . Прв 
вхом дровскодат сповхаавое варувевве каралмо! овммехрав. 

О вовнмв подвив хаграааваа (3) првввмает форму 

Здео» введена матраца А ~( " лгм-т«/ » *«°ЮГ» 
прв вичвсдевав кварховмх пехедь удобво будет обмдкнв» с f • 
подана. 

Провода ватеграрованве по парковым подам в (2) с лагранжиа­
ном (з')« получаем: 

) 
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W o f f r , tf (/ rf ) _ •ффежтнввнв меэонянЯ лагранжиан 

ООратжмс* теперь в определению тов часта лагранжиана (б), ко­
торое ошюнваех взавнодв1с1вае свахврвнх в псевдосжааарвнх мезо-
яов. Д и «того надо рассмотреть расходящиеся вварвовне петдж с 
однвм, двумя, трена я четнрьмя ввенввна неэовннна жонцамн. Этана 
диаграммами асчерпнвается масс расжодаяихсх диаграмм. Ова право-
дат ж следумиш выражениям 
/. -tlttn„ %{r*S)t 

(7) 

где р - жнпудьс незова, 

Возвраяаась к матраце/7 (формула ( I ) ) с вовмня массамн/^, 
/*5r" я/fTp, сумму внражев» (7) можнояпасат» в просто! форме: 

Произвола переаормнрор&у незонвнх поле», обеспечивающую праввль-
вме жоаффвцвевтн врк жжветачесхах членах в бозоввом лагранжиане 
W 

приходам ж асжомому феноменологическому лагранжиану 
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Б последней члене втрях у фигурной охоби означает, что вэ ввар-
яоввх петель, ооответствумрх 7 ? faf-"-j , вычтены все расходя­
щееся чаотв. В дальневяеы ввдево Я у незовннх поле! будет 
опускаться. 

Для удовлетворення условна (5) нэ дагранхвава ( I I ) получаем 
уравненяя, овязнвавме вяаченяя наос токовых в составляем* ввар-
хоа 

3. ИйббИ М 8 Ш 8 1 
Внпвнен квадратвчнуп часть лагранявана (II) для псеадо -

скалярных невонов г г 

_ ( 1 3 ) 

Л-">2^, г- . /~/ fM'ffteJ* -г /к'&»/ 
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где С =$*(%1~#^) • Дла правмлвого опвсавал масон меаова^/ 
в лагравжжав (13) следует добаввть «лев ^ f,1 с ^ -
• 6,4 Ю 5 ИзВ2 . Этот чаев обазав свои воэввжвовеввем учету 
глвоввих адоналав ' 9 ' . В результате аагравпав (13) ножво будет 
запаса» в форме 

Здесь о< - &s0-<f7sJ/t 0 в ji =&/г0 +{гсех& , где 
0 т - I I 0 - угол смежаааваа, 

9"t -?'&»& + pets &• 
Масон жезовов равна: 

Mi'Mr* -fa*-**.)*, 

После учета смешшавжа f3 с р ж р ' меаовамв, получаем 
оховчателыше формула дха массм F ' 

(15) 
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< -ifa *mr -H-o1* w^f^f'}. сю 

Смеаввавве ^ с /? -мезоном понижает массу JT* приблизительно 
ва I НаВ. Смеаввавве $?'<;?' мело вхвает ва массу JF' . 

Дла определена! аелвчивн суммы масс составвнх К- ж е/~ 
хвархов будет аспохьзоваво соотвояевяе Голдбергера-1ревмава 

"** +"** **f& (/)r*SSA,6) . ( I 7 ) 

Дла определенаа масон А-кварка будет вспольвокала разность масс 
/С~ж JF'-мезонов, следувяал аз (15); 

М}' ~т1Г* "Ufa; -"?*){"*;> +/T?J '/К») . < I 8 ) 

Наконец, даа определенаа развоств масс Л*-а У-кварков будет хс-
пользована права распада i?-*3W*, пропорявовальваа квадрату 
развое» (М^'/Пщ), Сразу заметам, что ва формул (15) следувт 
праавльнне звахв дла развоотев масс ffZ~* /t?g* • W^t, Mf » 
а именно,/*^,;»/75*, а Ю#,>/г?л,+ . 

Часлеввне звачевва даа масс составлявших в токовнх кварков 
будут получены в следувяем разделе. Здесь мм обсудвм еще массовые 
формулы даа окал ар них невовов, следуацве ва лаграняиана(11)х'. 
Квадратхчваа часть атого лаграваяава, содервавда скаларвне мезо­
ны, имеет ввд 

(19) 

ж'Прв анводе массовых формул дла окаларанх частиц будем 
пренебрегать мало! разносив масс U ж ot кварков. 
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где t 

т * ="*Ж *-<"*!; , m ? m»'£*2'fif{mj,mu)i (20) 

При тех значении кварковнх пасс, которые будут получены в сле­
дующем р а з д е т , можно видеть, что массы б / - и 6 J - мезонов хоро­
шо согласуете* с массами скалярных €- и ^Г-реэонансов ( т# « 

=760 МэВ,у?гг . 950 JaB; / « г » 770 U»B, Щ^» - 975 МзВ). В то же 
время массы V - и /? -мезонов, следующие из (20) (/7?/> 500 НэВ, 
/7?£-вЧ0 М»В), существенно мевьже экспериментальных зиачевиМ. 
Возможно, »то является следствкен того факта, что в £~- и /?-иезо-
ны болью! вклад дают четнрехкварковне состояния '10' . 

В лагранжиане (19) содержится недиагональвыи член, приводя­
щий к идеальному смешиванию 6~,-ч 6J-мезонов : 

Ьч-.--Щ&2Р-«г. 
Подобная ситуация имела место к в лагранжиане (13) для псевдо­
скалярных мезонов. Идеальное сыешванме наруаалось там членом 
^ (/>.* , возникающим после учета глюонных аномалия. 

В случае скалярных незовов идеальное смешивание б",- и 6^- ме­
зонов тоже невозможно, поскольку в зтом случае J? t мезон состоял 
бы только из странных кварков и распад ^ * ^ р 0 н я бш и в , 0 3 М 0 . 
жен. Отклонение Y от значения идеального угла смешивания у , 
может произойти за счет учета аавигиляоионного канала в скалярной 
частя четыреххваркового лагранжиана ( I ) . Для гтого в лагранжиан 
( I ) следует включить члены веда 

Наядам угол У , которн» соответствует экспериментальному зна­
чению жнривн распада / T J ' -»^S" / r / / - ' 

Г?**лг - 2 6 Ы э В -
1а часть лагранжиана ( I I ) , которая описывает такие распады, имеет 
вид 

&, ??*)*£?*& *uVr=jf*tufatf-fUvJrt№)r)r '. ( 2 2 ) 
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С учетов фвзвческого угла смвввванва ^ иасон <Г- а /"-мезо-
вов а авравы распадов ?-+Jfr в /f+SST првввиаат вид 

(23) 

Ою -.»*%-/,4&£fi.(%)']*. 
Есяв выбрать для ховставты Л значение, подученное в работах 

Л-4,7/^ f _ ff/f-- (4l:tF) , а дла масс парков взять значения, 
сдедуоме аз формул (17) в (18) (/«„ = 240 МаВ./Я^ *47б М»В), то 
для f* 12° получаем 
/ttt - 750 ИеВ, /*£,, - 965 МВВ, £ / f . -I80 Н»в, ^ , / 2 6 М*В 

(2<0 
Здесь все аедвчввы хорово ооотаетотвуют евопервиенту, кроме ав­
равы распада f-+2W. Еолв счета» соотновенве tfyfij првблв-
хеввым в взять веовохьво бо'льаве эвачевая для наос кварков #ги • 

•280 MtB,/^, = 500 HtB, а = ^н/^ % fs/ff , то прв jf* 18° 
получаем: 
/П. = 800 ИзВ, т «ЮЭО ItfB, £ , -350 ИзВ, >£ ._ -26 ИзВ 

4. Ра,ШИ /?~г3^~ " масса "WW* 
Перевдем теперь к опясаввс распадов р-*ЗЯ~'я ф-+7Г*&~Я~*ш 

Do варив первого распада будем апределать разность кварковых 
наос Jt?H a /t?j . • 

Выпнвен ту часть лаграахвава ( I I ) , которая потребуется для 
опнсавва внвеупонянутнх распадов 
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где 

S* -ЛЬ-*»» , Г *-*??- > </>* —jf— . 
Приеденное здесь выражение дне <f -резонанса соответствует 

случав ждеальвого смеюаяи жомповент ffji 6 } , следующего i s 
лаграниана ( I I ) . Дм простотн ш сначала рассмотрим этот случа!, 
а затем переждем ас описания более фазвчесжоя ситуации, рассмотрен­
ной и «онце првдидущего раздела. 

1ирина распада p+zST опредедаетои трема группам! диаграмм, 
взоОражеаннх ва рис.1 

* г'--,* 
Pac.I. диаграммы, опиенваищи распады p->j$T ж р'-* 3<*~. 
Предполагай, что J «t/n , получаем дни амплитуды распада 
f?-*jS" треление 

где 
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"Г"* (28) 

¥(ф; >ф*)Р-Г'*«), 
г y=Ii^L и = Ы: «-„'„я} 

Прв опвеавав распада ф-*Ф*Я" 9F' , помвмо дваграмм, вэоо-
рамвнмх аа ряс.1, следует правах» во вааманве также диаграмму с 
промежуточна О -мевоыом (рвс.2) х* 

г ~~ --*•-.* 
P J C . 2 . Доподавхмаваа дваграмма, опвсмвавцаа распад p-*W'F~F'. 

В распад p-tjlf' такве дваграшш не давт вклада, однако оав поч­
та полаостьв опрвделавт аеасчаву параметра наклона процесса 
О-* Sf*"ff"JT: Амплвхуда «того распада равна 

(29) 

£ V "¥ 

где 

пвоаанв, будет получен в вестом разделе 
Лагравяяаа, опвсмаавцва взавмоде1ствве р -неэонов с 
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+ (30) 

'9 

,2 

Пооиотрш, каше значения А получаете* в случае идеального сне-
•ивания поде! <Г, ш б"* и при то! связи констант а и а,. , 
ко юра» подучена в / 1 " * » 7 / : ж , = 0$. . Из (17) следует, что 
2т - адо Ивв, а м (20) м №)-т%»т£*ь т* ,т( = 500 мев. 
Для остальных пасс можно испольвевать их экспериментальные ава-
чевня '"•/ . Тогда прк £ " / ^ v % «-3,5 МэВ получаем 

Г ' (31 ) 
где / * - «кривы распадов, а б^ - параметр наклона. Экепернмев-
тельные ввачеянл равны ' " ' . 

Ка формул (15) следует, что /77^, >/fyt, во эваченке зто! разнос­
ти эвачитеяьво меньше экспериментального. 

Рассмотрим теперь случай, соответствуем! более реальному сме-
анванкв поле! б~. ж fry . При f - 12° в формулах (28) к (30) 
необходимо сделать следующие замени.' 
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Тогда при значениях мапс/tf, к /ft^t, приведенных в (24) и при 
Л •= 5 НэВ, получаем 

^лг-ММб, £rrrs****. %*'*•'*. (34) 

Очная такое согласие с экспериментальными данными вполне 
удовлетворительным, приходил х следующим значениям пасс состав­
лявших хвархов." 
ти - 237,5 МВБ,- /Tlj - 242,5 НэВ; / » , , *• 476 НэВ . (35) 

Если для регулировании интегралов (8.) использовать обрезание 
на верхнем пределе при Л = ИЗО НэВ, что соответствует значен ив 
$t=$f/is 2Я~ , то из (формул (12) получаются следующие оценки 
дли масс токовых кварков: 
/ я £ = 3,8 М»В,' /я} * 5,1 НэВ,- /r?J = 160 НэВ . (36 ) 

Полученные оценки вполне соответствует ловреиеявш представлени­
ям о величинах касс составляющих а тоховнх кварков / 1 2 ' . 

В заключение втого раздела рассмотрим <>щв случав, когда 2т-
. 560 НэВ и ^ , » * i T * . Тогда при У= 18°,Д*ЧМэВ и массах 
JTtg и /Пр,, данных а (25) , получаем: fav-fWrf, 

Шч -278 НэВ, /tfy -282 НЭВ, т^* 503 НэВ, fcjf'Wta, (37) 
/ « ; -4 ,6 НЭВ, / * £ . 5,9 Мэв, у ^ ' * 180 НэВ, 6 ^ = - ^ 2 . 

5 . Распагм > y ^ J f и г > у - . g l S ^ , 

Нехавизмцраопадов ф '-*J35T и ̂ 7 '-~/?2S~ очен* близки х только 
что описанному распаду р-з£~ . Поэтому есть смысл сразу же 
описать и эти процесса. 

Начнем с распадов р'-* 3SF' и {?'- W*F'F'.nX амплитуда 
полностью аналогична ашяятудам (27) и (29) , только oi теперь 
следует заменить ва р , в ^ и ̂  р„ и А? 7 - замеаить 
ва 0.> и /тг ?/ и в четвертых члевах i ^ i / (формулы (28) я 
(30J) в знаменателях т„ надо замеаить на / « - ' . Тогда дли 
случаи 2т - 480 НэВ и , f - 12° получаем : 

fate. • 2,6 хзв,- fa,*rjr~tyb3W > Ъ> -*"• (за) 
Л ля случая 2/гг - 560 НэВ и у^ = 18° получаем: 

256 



^'-ssr =*,****; ^4jr*rF>*3%-3fr; %> = -a-*z • C39) 

Заметим, что м и оценки довольно близки к значения»;, полученный 
в работе ' 9 ' . 

Рассмотрим наконец распады i?'-yZW . Величины этих распа­
дов определяются диаграммами, подобными тем, которне изображены 
на рис.1в, только без перехода последнего г? -мезона в Я~' . 
Амплитуда распада /?J-+/?S1P° имеет вид 

кинетическая анергия п -мезона, а й Ч £ равны 

В формулах (41) помимо диаграмм с промежуточными £ - JC -
и (Г- мезонами учтена также диаграмма с промежуточным £ (1300)-
незоном. Поправочный коэффициент сС выбирается из условия, что­
бы аффективны! лагранжиан типа (22) 

правильно описывал распад f'-tff , средняя жирина которого рав­
на ~ 400 ЫэВ / п / . 

Для случая im = 480 МэВ, ^- 12° получаем ( Я = 3) 

£'-**** '**&**; fattf'^vtrs %**'?»£ (AS) 
Экспериментальные значения равны ' I 1 » 1 3 ' 
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^ Л Г ' ^ - ' ^ З £.<№'"*"*'"' 6-г.'&*"*"М?М 
Значительно лучке получаете в результаты дл* случая Zffl = 560 Мв^ 

6. Вект9дцнеЛ.псецовехлорные, ыезрны 
Обратшсв теперь х описание взвимодеаствия векторнвх к псевдо-

векторннх мезонов. В предыдущей разделе мы вндела, что при описа­
нии евнглет-овтетных хонлоиент скалярных • псевдоскалярных незо­
вов, в конечных результатах всегда возникало идеальное смевива-
ние атнх кошовент. Однако учет глвонных аноиалив в аннигиляцион-
вих каналов приводит в заметному отклонение от идеального смеимг 
ванил. Поскольку при описании векторных в псевдовекторных мезо­
нов таких причин для отклонения от идеального угла сыеиивания 
возникать не долвно, нам будет удобно в лагранжианах (I) к (3) 
сразу работать с матрицами Хц и Jj> ( см. (21)) вместо \ в 

ж А, ж компонентам* Уц {£) , ]/f (Дл) вместо V, (А.) и /f CJ}f). 
Тогда, как мм убедимся ниже, в квадратично! части аффективного 
мезовного лагранжиана ве будет возникать неджагональннх членов. 

Суммируя расходящееся петлевые диаграммы с двумя, тремя я 
четнрмя векторными концами, приходам к выражении 

•Цт,{у,.-ц?„и}'. 
где - коммутатор операторов 
] / = J, l/*' . После проведения перенормировки ]/ = J- a V 

лагранжиан, описываем! взаимодеВствия векторных поле», право-
дихся к виду *' 

ж'Дял упрощения запаса формул вндекс R у поле! V. будет 
опускаться в дальве1нем. Оря использовании градвентно-веввва-
ржантно! регуляриэациа получаем m$*ff*f% -^(1^Гг)] ^ 
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*(*)• fh')'-Ml-' til. Щ'-
(«>) 

«. jya-ft m*.$£ 
Рассматривая расходяяяесв треугольные в четырехугольвые 

диаграмме смвваввого тала, где помвмо векторных меаовов участ­
вует во взавмодевстввя таив скалярные в псевдоскалярные ывзояы 
(рис.3), првходвм х следующему лагранжиану ваанмодевствмя' 

*Ч Л А 
егд 

ftp 

>4? 
Рвс.З. Диаграммы, опвсывалщве взавмодевстввя смвваввого твпа 

<Г, </>, V' в /} мезонов. 

(47) 

где - жоаараавтвая проазводзая от 
схаларвмх в псевдосхалярвых доле! . В волучеввом даграяждане со­
держатся члевн, опвснвалнве распад Р—29Г , по праве которого 
фиксируется жовставта О-, {fj/^g- &3). Если предположить, 
что ковставты а в &г одинаковы для взаямодевствяв всех 
сортов кварков, то ва лагранжианов (46) в (47) получайся следую­
щие формулы для масс векторных меаовов: 

(48) m}~ng*mf*jfe , т^м}*1(щ,-тшУ 
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При втом 0-я &>-мезоны состоят только as Х- к d~ кварков, 
a (f> -мезон - аз,? -парков. Равенство масс о-, и> -
и ^7-мезонов яэ соответствует зкспермм&ату, Согласие с экспери­
ментом можно получать, ввода с помощью тождеств Гол/Лергера 

9 Треямава различные а дла различных сортов кварг.-в, а именног 

Тогда дла яш&чтЛЯ/п * 560 МэВ;/^, = 503 И э В ; £ = 1 ,2е"£ •, 
/Г . £ . 1,35 £ ( с м / 2 3 / ) , получаем из (№) 

Экспериментальные значена» равны/77^з 1020 \к%Ъ,т)1¥-ЬЧг НвВ. 
Пере1дем теперь к описанию взаимодействия псевдовекториых 

меаонов. Она описывается раоходивдмися кварковши петлями только 
двух типов - с двумя а четырьмя внеивимк мевонмши концами. Пос­
ле проведения 
торных 
лучаем вираженне 

•едения перенормировки, совпадаетеК с перенормировко» век-
поле! Л^ *$£/?* , дла псевдовекторного лагранжиана по-

.,, вираже нне 

Взаинодеветвве псевдовекторнюс мезонов с псевдоскалярными ме­
зонами опвсываетси расходащимнеа диаграммами только четырехуголь-
ного типа (рас. 36 .в ) . Она приводят к лагранжиану вида 

^Неравенства fa >^lt/t f-ц >$u,if следуют также вэ формулы 
(10) , если учесть зависимость Iz от масс кварков. Дла Щп. -
480 11 эБ согласае с зкепернментом яолу чается при /^ = / ,35"/^- , 
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SfoSJ-£ Ttf ?,%.}', (50) 
где под знаком 7 ? стоит квадрат антикоммутатора. 

В лагранжиан взаимодействия скалярных к псевдоскалярных мезо­
нов д а т вклад расходящиеся диаграммы как треугольного, так и 
четырехугольного типов (рнс .4 ,3б 5 в) . Их совместны! вклад имеет 
вид * _ « 

ft 

Рис.4. Треугольная диаграмма, описывающая взаимодействие 
скалярных и псевдовекторяых меэовов. 

Из дагравжиавов (49) и (51) получаем следующие формулы для 
масс псевдовекторных мезонов: 

* (52) 

что приводят к таким численным оценкам ( 2 s n = 480 мзВ); 

Экспериментальные звачевия масс псевдовекторвнх мезовов равны'1-1'' 

В заключение «того раздела приведем еще лагранжианы, описываю­
щие смешанные взаимодействия мезовов б", ̂  / ) и ^ / ) t j/ 
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(54 ) 
Z 

•fwj)-?r,{mi?l - (M J). ( B > 

Обща! лагравжвав для »oei рассмотренных здесь вааамодеветввя 
можно запасать в очен» компактно! форме, следуа работе ' 7 у' 

гае 

а /)„ Я _ жоварв&вхваа проазаодваа (ем. (47) ) . 

7. З ш а ш ш т и и |*ЯВи?1в1б1Н1 |.19П9ВаМ 
ИИНМИОШ 

Электршагввтвнб вааямоде!стваа авожахса в вавв! модеаа гра-
двевтво-ввварв&втшм способом ва освове веходвого авараоаого 
лагр&шоава (I). Поэтому ва начальном ахвое фотоны могут взавмо-
девствоветь с аарввеввнмв меаовамм тояьао через авараовне петда. 
В отдвчае от неаовов, ааясвцвхса ооставснмв обввхтама, кадета- % чесав! чин дда фотонов вводатса самостоятельно в даграважав (I). 
Учат хварховнх петедь првводвт только к перевормвровве алехтро-
магввтвнх поле* а эарада. 

Часть дагравжвава, оввснаавцаа ваевтромагввтвне ваавнодевсг-
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вид, имеет вид 

'1>М-Н, '-ю. -Ю • /ft - ^ ; -
Здесь О - оператор заряда кварков. 

a f t r 
Рас5. Расходящиеся хварковне петли с внеашанн фотонами 

Я в о-, л>- a If- меэонама. 
После вычисления расходящейся собственно энергетической 

дкаграшш фотона (рис.5а) получаем следующее выражена* для £>м 

где 

Помамо собственно энергетических диаграмм с участием фотона 
имеются еще расходящиеся диаграммы снеганвого тала, описнвавщне 
переходы )fp* , У и) и y~(f> (рис. 56,в,г.). Учет этих два-
грамл приводи к возникновении в лагранжиане членов вида 

Z £, '*•> 1 Л** J % ' ZTJ"'J-
В результате та часть лагранжиана, жотораа описывает электромаг­
нитные взаимодействия мезонов и кварков, п.ринимает форму 

(56) 

fJU/Л +Hrffr)-;r*z,f^ji>?-ev/i)i 
Произведем диаговаляаапио кинетических членов с помощью замени 
полей: 

/; ->• *|#; * 4 "4^ ^ * * * 4^ • (57) 
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Электромагнитное поле и заряд е' перенормируотся при атом сле-
дуоскм образом: ju 

ШфХ. *-Н0Ш10- - < 5 8 ) 

Легко видеть, что в результате двух перенормвровок((55) и (58) ) 
алектрическии заряд принимает свое первоначальное звачевяе. Окон­
чательны! лагранжиан имеет вид 

(59 ) 
Нетрудно убедиться теперь, что фотоны могут язаимоденохвэвать 

с заряженным* частящий только черг- посредство нейтраль­
ных векторных меаонов. Тем самым автг - чески получялаоь модель, 
описывавжвя векториув домявантяость. иод знаком логарафма член с 
фотонами полностьо поглотился яекторннми мезонами. 

Подобным же образом можно яклвчять в валу модель я слабые 
азаимодеястввя, вводя в лагранжиан (I) вместо 0^ хоааривлтнув 
прпязводвую fy, , характернув для теория Ваинберга-Салама. Такая 
процедура проделана в работе *" . Здесь мы ограничимся линь 
это! ссылкой, укаааа, что в секторе ялехтрослабнх ваажмоде1стви1 
также получается модель векторвов доминантности во только для взаимодействия фотонов, но и дня И / -бозонов. 

8 . С Н Ш » » ?ДШВШагиягее и с п м и ЛИанВ! 

Чтобы продемонстрировать, как работает явка модель, приведем 
здесь результаты вычисления ширив сильны* и радиационных распа­
дов скалярных, псевдоокалярннх, векторных я псевдовекторных меао­
нов / 1 . 2 , 4 , 1 4 - 1 6 / ^ с 1 0 Ч И аршия ваших методов вычисления все 
распады можно разбить на две категории. Первые из них идут через 
сходящиеся кварковне петли аномального типа. Типичным примером 
распада зтои категории является распад л г * - * / у . Как правило, это 
радиационные распады я при их вычислении используется та часть , 
полученного вами лагранжиана, которая записана а форме 7г(п{-»-^ . 
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Рваулиаты вычисления ширин атих распадов ооОранн в таблице I . 

Таблица I 

Процессы Теория (кэВ) Эксперимент (кввУН 

*'-1Г 

7,3 Ю- 1 

0,38 (0,18,£=a.T/£-J 
5,8 < 5 , ^ - x 5 - ^ . ; 
9,8 
9 7 

( 7,851+0,001) Ю - 3 

0,32+0,05 
5,32+0,56 
7,8+1,1 
8 1+1,5 

86,8 
51 
801 

6,1 
115 (ПО,£--//•£,) 

68+ 8 
55+ U'17' 
861+50 

+2 5 / 1 ? / 
3 -lie 
63+ 3 

III 
15 

1,3 
3 

Экспериментальных 
данных нет 

Ко второв категория распадов принадлежат распали, идущие че­
рез расходямэся каарковне петли. Для вычисления вирив этих рас­
падов будут использоваться аффективные вервины полученных яаыи 
феноменологических ыезоввых лагранжианов, результаты расчетов ай­
ран таких распадов собраны в таблице П. Это в основной сильные 
распады. Отличительно! черте! атвх распадов являетсв то, что их 
инрвва,как правило,зависит от величины масс составлявших кварков 
( в о ковстанты а = m/Ag- ) в касс иезонов, в то время как аири-
ян распадов перво! категории зависят только от константы /^- я 
масс мезонов. Поэтому в таблице II будут приведены для сравнения 
два набора теоретических результатов, соответствующих значениям 
хварковых масс 2т = 180 М»В и 2т - 560 ЫэВ. 

В таблицах I и II мало внимания уделено многочисленным рас­
падам псевдоскалярных мезонов основного октета. Такие распады 
подробно описаны ва основе нелинейно! хвральвов квавтово! теории 
в навих обзорах / 1 9 » 2 0 ' . Поскольку выведенная здесь сигма-модель 
очень близка по своим результатам и следствиям к расшотревно! в 
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Таблица И 

1роцессы Теория Теория Эксперимент '**' 

180 ыэВ 
26 МяВ 
40 НэВ 

350 НэВ 
26 МэВ 
75 НэВ 

300-400 МэВ 
(25,7+1} МэВ 
(54 + *7) МэВ 

0,27 кэВ 
0,16 КЭВ 
0,98 эВ 
2,6 кэВ 
1,1 «эв 
375 кэВ 

0,27 кэВ 
0,16 кэВ 
0,88 ЭВ 
1,4 КЭВ 
0.9 КЭВ 
234 КЭВ 

(0,25*0,04) каВ 
(0,20*0,03) кэВ 
(0,81*0,22) эВ / 1 8 / 

(183+~65) ХЭВ 

326 МэВ 
57 Н»В 

480 КЭВ 

326 МэВ 
33 МэВ 

480 КЭВ 

(315+ 45) МэВ 

J>-fW 154 НэВ 
2 НэВ 

154 ЫэВ 
2 МэВ 

(154 • 5) МэВ 
(2,06*0,04) Мэг 

' ' ' нелине1но1 кирьлыю! подели, то результаты, полученные 
таи, следуют также к из предлагаемого здесь подхода. Поэтоиу e e l -
час иы не будем на них останавливаться. 

9 . 3anyf»fli«j 

Основный достоинством предлагаемо! модели является то, что с 
ее помощью удается построить феноменологические лагранжианы, 
описывающие взаимодействия 36 сортов мезонов (скалярные, псевдо­
скалярные, вехторнке и псевдовекторные нонеты) с использованием 
иинимального числа произвольных параметров. Этими параметрами 
является массы составляющих кварков и константа пионного распада 
/^ (тем самым и константа сильного взаимодействия g=/ni'"ts) 

Если использовать полученную в ваше! модели связь констант 
(fo^fTg (формула (46)), то оказывается, что сильная констан­
та а является довольно мало! величине! ( 9%g- ~ * / * ) л 

так что можно использовать теорию возмущен и! по это! константе 
связи. Вводя в рассмотрение электромагнитные и слабые взаимо­
действия ' 1 » 2 ' , мы автоматически приходим к модели векторной 
доминантности. При этом возникает возможность описать в рамках 
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наше» «одели практически все распады упомянутых выше иеэовов, а 
также такие важные низкоэнергетичеохие характеристики их, как 
длины рассеяния, параметры наклона, электромагнитные к слабые 
формфакторы, поляризуемость и т.п. Расчеты показывают, что 
согласие с экспериментом пп^одхся вполне удовлетворительное 
/ 1 , 2 , 4 , 1 4 - 1 6 , 21 ,22 / _ удайся 1 а в ж е сделать и ряд предсказания 
(си. таблицы I л U). 

Менее строгие результаты получаются при выводе массовых фор­
мул . Здесь начинает участвовать большее число произвольных пара­
метров, поскольку х вышеупомянутым константам присоединяются па­
раметры Ct и С-л . Полученные формулы могут претендовать лижь 
на качественное согласие с экспериментом. Особонво сильное рас­
хождение с экспериментом наблюдается в предсказании масс скаляр­
ных д~ и / ? - мезонов, что может бить следствием больших вкладов 
в эти резонавсы от четырсхкварковнх еоетсяаий / 1 0 ' . 

Интересные результаты получается при опенке величин масс квар­
ков, участвующих а это! модели. Оказывается, что первоначальные 
пасен кварков, фигурируйте в исходном чисто кварковом даграв-
жиане с эффективным четырехкварковым взаимодействием типа ток-ток, 
совпадает по величине со значениями масс токовых кварков. В то 
же время массы кварков, появляющиеся после введения в втот лаг­
ранжиан бозонннх полей, равны массам состав л явил х парков. При 
этом величины масс токовых и составляющих кварков однозначно 
связаны друг с другом. Это свидетельствует о логической замкну­
тости рассмотренной здесь модели. 
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ANOMALIES IN LOCAL CONSERVATION LAWS FOR AXIAL CURRENTS 
(A FUNCTIONAL APPROACH) 

A.A.Andrianov 
Leningrad State University 

L.Bonor* 
Institute di Flaica dell'Universits dl Padova, 

Institute Nazionale di Fisica Nucleare -
Sezlone di Padova, Italy 

The anomalous behavior of divergencies of axial or chiral 
currents in gauge field theories is a quite remarkable fact' ' 
which states the incompatibility of the gauge and chiral invari-
ances on the quantum level'2'. Traditionally, the anoaalies 
concern the physics of the decays of pseudoscalar mesons''1''". 
In so far as they are not subjected to the radiative corrections 
(the Adler-Bardeen theorem '} the generated sum rules have 
proved to be a simple and convenient tool in the analytical 
search into the structure of confined states of fundamental fer-
mions (quarks''' or preons' ' ) . 

In this report we are discussing the constructive problem of 
how to reproduce the anomaly of the axial or chiral current in 
those gauge models which make use of the approximate space-time 
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kinematics of quantum fields. 
The development of numerical and analytical methods based on 

/7/ 
the approximate space-time description is inductJ " by the in­
creasing interest to the phenomena beyond the weak coupling re­
gime of the standart perturbation theory. Such a description 
yields the ultraviolet finitenaas of the field theory in a natu­
ral fashion. Among these non-perturbative approaches the lattice 
realizations of gauge field theories have taken the significant /7/ p l a c e " due to the achievements in the computation of meson 
spectra' ' and in the numerical evidence for the confinement''' 
and for the various phase transitions^'' '. 

However the complexity of any non-perturbative calculations 
need not be stressed. Moreover the well-known ambiguities exist 
in constructing the extensions of field dynamics onto an appro­
ximated space-time''• . Therefore it is important to have in 
stock the quantitative principles which help to reduce the vari­
ety of the above extensions and to controj over the field quan­
tization after the space-time modification. 

For the gauge field theories including fermions the required 
restrictions follow from the gauge and chiral symmetry of the 
classical action combined with the anomalous violation of local 
conservation laws of axial fermionic currents in the quantum 

In this point the lattice approach is not so flawless. The 
attempts to preserve the gauge and global chiral invarlances of 
the fermion vacuum functional give rise to the fermion replica­
tion . The interaction of fermion doubles with the gauge 
field leads to the cancellation of their anomalous contributions 
into local conservation laws of axial currents. Thus the pre­
sence of farmion doubles becomes the drawback -a obtaining the 
continuous gauge theory from the discrete one. 

These f_rguments force to seek different non-perturbative 
schemes providing the ultraviolet regularization, the gauge and 
(global) chiral imparlances and the reproduction of anomalies 
in axial current conservation laws if any exist according to 
the perturbative analysis of diagrams'1»2'. /14 14/ The approach under discussion was developed in •" «It ge-
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neralizes the lattice approach in the sense that the ultraviolet 
regularization is obtained merely by the choice of a finite num­
ber of modes in the Hilbert space of fermion wave functions. Ob­
viously it is consistent T7ith the second quantization procedure. 
When one calculates the averages of any products of bilinear fer-
mionic operators (currents) this rather old idea can be embodied 
by the fermion functional integral in its traditional implejenta-
tion a la Berezin - . The main question is how to retain the ga­
uge symmetry of the functional averages after a finite mode regu­
larization and what a fa'je is expected for anomalies. 

let's consider the functional integral over fermions as a li­
mit of che sequence of finite dimensional grassmanian integrals 
generated by a set of embedded finite dimensional subspaces of 
the Hilbert space of four-dimensional spinors. In order to ensu­
re the mathematical consistency we deal with the euclidean <-id 
compact (region of) space-time and in line with the Fermi . ••• fcis-
tics we pose the antiperiodic boundary conditions for fermion 
wave functions. Then the partition function of massive Dirac par­
ticles in the external vector gauge field can be described by 
the following integral: 

(D 

* eccp J - J J T J U3x f (&- i m) f(r, x» ̂  
where 0 — - LTMQM + VM) i s a covariant Dirac operator, 
\ff,(X) = T<XV?'(X) i s a vector gauge field and T я are (anti-
hermitian) generators of a gauge group. The ultraviolet regula­
rization is provided by the definition of grassmanian variables 
on the finite dimensional subspace: 

«K=0 =*> £ cH^clfny ?&*>£ 5„<y„l*>, 
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The projector onto the chosen eubspace can be depicted by means 
of the Dirac symbols» 

n-i 

In these denotations the regularized feraxonic determinant i s g i ­
ven by the approximated functional integral , 

f N и = ' \ 
\ H.Wei / 

(4) 

Herein one can regard 

If we employ "the dynamical frame" in the spinor apace which de­
pends on the external field and behave* aa the fundamental repre­
sentation of the gauge group then the action in (4) holds inva­
riant provided that the Dirac operator transforms accordingly 
(in the adjoint representation) 

V , № " ' V, ft + ЯГ% Й , # f t = 5Г'№ .C5) 

Hence the gauge invariance of the regularized partition function 
(4) as a whole will be ensured too» 

In order to find out the general conditions on the spinor ba-
sises yielding the gauge symmetry it is helpful to examine the 
infinitesimal gauge transformation of the partition function 
keeping in Bind the functional dependence of the frame on the 
gauge field, bet's take $ 2 ~ Г + **)(*) • *ben 
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*{l + Tr((*-imTjfpbL*tu>]P„ + 

J I I* J 'KsVjfte) N ы ?V°% 
where Д м = 3«+/И« J and the identity P P P = 0 is applied. 
The trace symbol should be refered to the overall operator and 
aatrix structure. 

If one takes into account cancellations under the trace and 
projection operations the required condition on the gauge tnva-
rianoe preserving baeieee can be expreoee» by the equation 

PAaN)[vi)?f]}pN-o) 

where 

We see that the assumption 

(8) 
or explicitly 

S*''?$k = ̂  P3C' P^ > Р-" |X>^' 
is quite sufficient for our goal. Evidently this equation has 
the solution for the projector which conforms to (5)s 

On the other hand such a property is more general than (5). Na-
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mely it is also acceptable that the basis apirtors exhibit the pro-
partiaa of the adjoint representation in a given apaca-tlma point. 
The latter Implies that they transform according to the repre­
sentation of the local gauge group on the left and according to 
the representation of the group of internal symmetry on the 
right, in the polarization space. Presumably the above group 
transformations are entirely induced by the local gauge group 
transformations in a marked point. Below, when discussing the 
lattice approach we shall show an appropriate example. 

The comparison of (6) and (7),(a) gives that as a rule the 
conserved vector current has a sophisticated form due to the 
presence of variational derivatives of projectors: 

There exist two (!) baaieee in which the conserved vector cur­
rent takes the standart form in agreement with the common equa­
tions of motion. It happens when the derivatives of the projec­
tor do not contribute in (7)s 

[0,P»]-O en) 
С "Of), Я/v] - О J Dj*?Pf, = О (12) 

She first basis' " ' is a basis of eigenfusctions of the eovari-
ant Oirac operator. She second one results in the lattice appro­
ximation and needs the finite-difference modification of the Di-
rao operator". 

It is convenient to describe the gauge symmetry preserving 
basises of squared-integrable spinors using the representation 
(11) by means of the gauge invariant transition matrix: 

iO = f; ir^ejvj, (13, 
и'»/ 
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The projector onto the finite dimensional subspace of fn ,s 
can be constructed from B ^ ' n '• и 

< V.T/ P„ I О н j»„m = £ Sh£(v) B&M.W 

Its variational derivatives form the independently conserved con­
tributions into the vector current: 

6,6 ^-i 
The axial currents are external currents in the pure vector 

gauge field theory, they could be extracted only by variation of 
the more general field of mixed chirality. This is because 
the Ус-transformation acts on the Dirac operator as follows: 

e/3CP (~ fsw) P'еяр(-Т*ш) ~ P' + Ts&")(x) -
Let's extend the gauge f i e l d and the Dirac operator respect ive ly , 

^ = ^ + <T 5^-^ +> &*'ti, + rstf. Об) 
Then the variational axial current reveals three pieces again: 

l ы*Ар& + Щ&**' + P"P5A?C*)}JA-O 
If the regularization is arranged in one of the basises (5),(9) 
the gauge covariance. of »"»i currents will be reached. However 
the canonical structure of them appears in the eigenfunction ba­
sis of the J$W -operator when the derivatives of the projector 
vanish due to the identity P P P = О . In the arbitrary 
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basis the above derivatives cause the optional anomalies in the 
local conservation law of the axial current: 

. . (18) 

Herein the 0 -representation has been used. 
One can hope that in the limit of the complete spinor space, 

Д/-» po , the harmful terms with derivatives die out because 

PN^I , rW*sf =>о , 
in the strong sense. But the real situation may prove much worse 
due to the too weak convergence of the iterated fermionic propa­
gator to the exact value and due to singular properties of the 
latter one in the four-dimensional apace-time. Eventually the li­
mit of last terms in Bq».(10),(15),(17),(18) can differ from не­
го. In this case one should care for the redefinition of 6h Z# 
by means of subtraction of an appropriate local polynomial of 
gauge fields so that the modified effeotive action would deter­
mine the conventional vector and axial currents, though hold the 
the gauge symmetry ( and, of course, would be free of divergen­
ces). These requirements are connected with the existence of the 
gauge invariant, finite and unitary Б-matrix in the Minkowski re­
gion of momenta'1>2/. If this program fails the corresponding 
basis could be hardly considered as an acceptable one. 

Fortunately this is an abstract problem in the pure vector 
gauge theory, the pf -basis fulfils all above requirements in 
a maximally simple fashion. But the problem inevitably emerges 
when the gauge fields have the mixed chirality. The unambiguous 
solution exists for hermitian gauge potentials (16), this is a 

J2>w -basis. More details and the manifest form of the anomaly /14. 16/ can be found in our papers' » '. However the •-field does not 
suit to describe the left- or right-handed fexmions, it does not 
bear the left(right) chiral gauge symmetry. The relevant gauge 
potential is rather 
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which is non-hermitian if W j ' ' * ( Wffl . 
Nevertheless the possible way to construct the euclidean ana­

log of Weyl feroions turns out to pass through the hermitian 
•^potential. Indeed let's examine the direct analytical continu­
ation of left-handed femlons Into the euclidean space-time when 
W.e 0, W_» 2T in (19)« The corresponding «eyl-Blrac operator be-
coaes non-hemitian t "0_ -Уя. ^ZvC^~ fs)' ** o n e exploits the 
D2y-basie to regularize the fermlonic determinant «he latter will 
amount' ' to the square root of the determinant of the vector 
gauge theoryt Z_« (Zy)»% Thus the ejected anomaly (if any) 
disappears in contradiction with the perturbative' 'and cohomolo-
gical''1'' analysis in the Minkowski space» The Fujikawa's non-
perturbative method' ' which is related to ours does not yield 
the desirable result for oolor handed fermionsi his anomaly does 
not satisfy the Шева-Zumiao consistency conditions' . 

She functional integral for euclidean left-handed fermions can 
be obtained through the theory with the gauge potential 

У - | * 1 (i + ter*4) , *• = £*, 
at the intermediate stage. The appropriate basis is certainly a 
W-baeis. The next step is thought of as the analytical continua­
tion from € « 1 to £ « i • Then the free right-handed fermi­
ons decouple with the left-handed, the resulting anomaly satis­
fies the f.-Z. consistency conditions and corresponds to the tra­
ditional Minkowski space calculationsC see' 1 6' for comments ). 
It looks as follows) 

(20) 

where the Cls-tera can be dropped out by a suitable redefiniti­
on of the effective action' 1 ' . 
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Now let's briefly sketch out the second type of possibilities 
to preserve the gauge symmetry which originate from the lattice 
regulariz&tion (12). The projector onto a spinor space generated 
by the choice of a cubic space-time lattice with the link Д can 
be presented in such a symbolic form'1*/, 

where И = ( A ) is the number of lattice points. L is a volu-
1Л / n / 

me of the (region of) space-time. The fermion action by Wilson" 
acquires the finite-difference Dirac operator: 

where the unitary "gauge field" Uu i s bilocally со variant, 

(23) 
Let's proceed to the arbitrary singular basis connected with 

Herein Uf, are orthonoraalized spinors, У) i s a dimension 
of the representation of the group of internal symmetry. Suppose 
we "regularize" the partition function in a new basis, reducing 
the amount of basis vectors. Then t̂he gauge symmetry will s t i l l 
hold If the transition matrix B -̂jj i s left-covariant (not in­
variant I) under gauge transformations: 

S- i J (25) 
In this case the action (22) proves to be invariant talcing into 
account (23). The global right covariance i s also allowed with 
respect to the gauge transformation in a fixed (for al l П )point 
of the space-time. 

The famous fermion doubling"' -.s accounted for by the pe­
riodicity in momenta of the lattice fermion propagator. In par­
ticular, for the free fermion propagator, 
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(massless fermions) within one momentum zone / - % < Р и ^ % г * е 

find out 16 poles of the propagator(instead one)at the value's: 
p = (0,0,0,0), ( ̂ .0,0,0), (^,^,0,0)... fhe anomalies of dif­
ferent fermion species have opposite signs and cancel each other. 

In order to solve this problem one can attempt to apply the 
finite-mode regularizabion in one of the basises (24; such that 
the unwanted parts of the momentum spectra be dropped out. The 
fee of this cure will be a long range interaction between fermi­
ons on the initial coordinate lattice* Thus our method generali-

/2Л/ 
zee (in a eense) the BUG approach' ' . At the same time there 
i s ao discrepancy with the Juelsen-Ninomya'Tfo-Go" theorem' 2 0 ' . 

i s a vivid example we exhibit the la t t ice basis of the momen­
tum tjpe^ , Z - . f ? в% - (ft) ««р<ЧаУ&<*'?"««#t xh) 
where 

and contours С begin in a fixed (for all OLn ) point OL0 . 
If we reduce the number of basis vectors in favour of th* vici­
nity of the zero momentum, |p„J </\. • and take the continuum 
limit, . . , ir 

Л — о , Л —в» , A-A-*£^l , 
we will get the projector Р л which cuts off the unwanted mo­
menta with too high values and thereby 15 poles of the propaga­
tor (26). Of course, the basis (27) is gauge covariant in the 
sense of (25), 

Furthermore the adequacy of the lattice and continuum propa­
gators can be considerably improved if £ 4C1 (but /\.-*oo ). 
At finite Д , after the above regularization,the long range 
interaction arises because of incompleteness of the part of the 
momentum basis. However it dies out in the continuum limit as 
far as the completeness recovers. 
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АНАЛИЗ ПРИРОДЫ СКАЛЯРНЫХ МЕЗОНОВ 
С ПОМОЩЬЮ УНИФОРМИЗУЮШЕЙ ПЕРЕМЕННОЙ 

жж1 о J p c « о** s кров» те», та 

Д.Крупа, В.А.Мещеряков, Ю.С.Суровцев 

Объединенный институт ядерных исследований, Дубна 

I . В аоежаджм врав* иробжвив тчкшшл евапрвк иввоков^^ 
и ш ж я е ажапмхыюа чжоло р а б о г 2 " 1 8 ' . Это своею о вахвож 
рохьв тажжх •ваашвв в тааратжчаево! смктроеюжвж адроаов: 

ашатеж в—мим 6п оостея-
таарагжчасхж «ожусжавтсж жжта-

раеаяа воавохжостж четырехкварковых tyfflf) ооетоажжж, 
жжх off ж гавотах ж часто пвожжжх сжемат с теш же хвв 
чжмаш. 1—ивжвмткш* водахв ковфахвмевта, тек» хаж МТТ-
авдвхь " м и г 5 ' , а также м е ч т в ваавтево! хреюлтяяш) 
вв рвввтжа (си. .важржмр/ 6') ж на оевове КЯ правы ejwr7' 
дааг ужаввввж ва те, что веа > я »$$актя могут ветрачатьса в 
сжактре вале жвжа 1500 МаВ. 

вжтаржретавяв аксаарввавтахижх ДР"ИР" , в кагорах жаожв-
давте* памрвва равожажож (aiврввар. wr—«яг ,КК), осяевва-
ва жаобходшвепа учата вавввва КК - ворота, в, может бить, 
друях ворвгвв (в веоеваажввай •& - вала КК - рвлоеди* — 
ворогов цу , Чу' в т .д . ) , кеввчате! вжршш сшжржвх вааввов, 
аМежтввнаго жааежжжовага варуажжа вехажетваа К*-К° гЕ»»-
веетж ваео, вовааввога «aiawaw еввавважжж S*-? -тлят**'. 
Дхк ажжеавжж атжх | Ц т и жевахьаувтеж раажвчвве ватодв, ж 
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получавшиеся вавожл п всегда одинаковы (см., например/ 2 - 4 , 8/). 
Поэтому в проблема исследоважхя скалярных мезонов остается перво­
степенно! задача установления адекватного способа оижсанжя экспе­
риментальных данных ж жа trot основа рецепта получения информа­
ции о скалярных резоиаисах. 

В депо! работе ХЕЖ раижкж ttot задача реализована ждеж до-
мккирувиего влияния ближаиинт особенное»! с применением процеду­
ры уивфэрмизации.Приводятся результаты обработка по методу %г 

экспериментальных давка относительно изоехалярво! Я -волны 
вГяТ -рассеянжя в области энерги! О, 6-1,9 Г»В ж полученные 
параметры скаляриях мезонов J*i 6 . 

2. Экспериментальные дажвне относительно А -волш JOP — 
рассеянжя обычно приводятся для фазы рассеявжя 8~(£) ж парамет­
ра унругостж Г) Си) , которые сапажн с элементом S - матраца 
следумним образом: 

S(*x~xx) - ?C*)ew d (* ;, (i) 
н е -d—ifo +/я£)и а - модуль 3-жмпульса в е.п.и. 1ПГ-
сжстемж. 

Экспериментальная фаза в - волш JTJT- рассеявжя в нзосха-
ляржом канале возрастает от 90° около 870 иэВ до 270° прн 
1,2 ГзВ. Бистров нзменекне S~($) прн проходе через КК -по­
рог сопровождается резким надежней от еджвжцы параметра унругос­
тж п($) точно вине порога. Такое новедеане связывается с ре­
зонансным £*- аффектом. Возникает естественны! вопрос о воз­
можности объяснения $*- зффехта К К - пороговым явлением' . 
Различии анализы экспериментальных данных но ЮС - н KR- фа­
зам, рассматркваннше 5 * - надо, говорят в пользу его сильно! 
связи сКК - снст1мамг^' ' г ' , что подтжерхдает выводы квар-
ковых моделег 4 , 5 ' . Все ото говорит о важности учета влияния 
КК - канала на JTSC- систему. 

Рассматриваж аналитические сво!ства фуихцнн SfactC-*-**) 
в комплексно! 3 - плоскости, учтен,помимо физического разреза 
(.km.jg,+оо ) н левого разреза ( - с о , 0 ) , также точку ветвле­
ния, связанную с порогом открнвахямгося жрж 3~4/П-£ канала 
ХК—-Л,К , т.е. проведем также разрез ( 4 m J , + схз ) . Это 
приводит к рассмотрение 4-листжо! ржиаиово! ноаархноети & -мат­
рицы, мсти которо! пронумеруем в соответствии со знаками па них 
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функций ^Q—kmJc' * V*—4m-jp' , связанных с точками ветвленя* 
на ЮС- ж Kit -порогах, следующим образом: листав I (физическо­
му), И, И,1У отвечают соответственно знаки (Уз ~im.^ 1 .Ve-i'/Ti^')" 
« ++ , —f , -- , +-» Ближайшими к физической области особенностя­
ми, соответствующими резонансу, являются пара комплексно сопря­
жении жоласо* на II листе и, как мы увидим, но крайней мере 
пара иолиеоа жа Я листе. Этим нарам полюсов отвечают пары 
комыекеао сопряжении! нуле!, располагающихся в нервом случае 
U I листе, во втором - на 1У листе. Необходимость таких 
нуле! диктуется условием унитарности. 

Учет точки ветвления •й/ся.=кш^. легко проводится переходом 
К Еврммжаой О. . При этом вышеуказанная риманова поверхность 
отобразите* на 2-листную поверхность. Аналитический свойства 

в комплексной а -плоскости изображены на рис. I. Щ) 

о. 

I-nq И 

Req Re г 

Ряс, I. Рис. 2. 
( где <Ь С где Cf,r 

порогу. Левый разрез 
началом в точках 

Функции S(q,) имеет точки ветвления при а>=± 
— V m i - пг£' ), соответствующие КК -по; 
преобразовался в разрезы на мнимой оси с начал 
а,ш ± liaK. Отрезок на действительной оси ( 0 , tri ) соответству­
ет части физической области km* <•& < km%. . Упругая S -мат 
рица ( п = I) удовлетворяет следующим условиям: 
u ) S C < P m s ^ - б) x-p'Sfy »> ^-jty- ( 2 ) 
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Этх условия не незавхсвш - любое хз них может бнть получено 
хз двух остальных. Подобным же условии в упруго! области удов­
летворяет х $ - матрица, аналитически продолженная на второ! 
лист 2-лжстно! а - поверхности. Отвечающие рвзонажсу полюса 
ж нулж располагаются в е.- шюскостп в соответствкх с условия­
ми (2,а,б,в ) (си. рхс. I, полюса обозначены звездочками (*}, 
а нуля - кружочкам (о)). Подобный образом можно вводх» произ­
вольное число резонансов. Соответитвуюжий элемент S - матрицы 
удовлетворяет условие упруго! унитарности /Sty)) -1 (2а) прж 
физических значеняях а, нз упруго! обжастж, строго говоря, 
до кзс -ворога. Учесть аффекты абеоршпш, связанные с хроцесеа-
их внхе ktc - порога, можно смененхем нуле! относительно яелж-
сов. Зря этом вместе с наруменяем условия (2а), /3ujJ>/*< i , на­
рушается тажже D O xpatxe! мере одно хв соотвомнхКг б,ж). Нажрж-
мер, смежая толы» жулж на величину-i£ (в>0) , оставляя хх 
ехмметрхчншш относительно мххио! осх, нарущхм условхя (2 а,в), 
сохраняя (2 6) х т.д. Однако вклад в stir -рассеян* хеуврутхх 
каналов, откриваюнжхся вине ktc - порога, незначхтамх вплоть 
до I Г»В. В работ» / 1 0 /, в жоторо! информация о ЮС -рассеянии 
извлекалась хз процесса te+p-*. *Г +яг~Д + + , была сделаха «хеки 
жвупругостж ЖК - амхлятуд: ji-Ogj^ Zf- При сохрммхао! твч-
воетх эксперимента эффектами тахол порядка можно пренебречь я 
счжтать irjr -ваахмоде!етвхе полностью упругжы в это! обдастх. 
Поэтому далее прхвжмаем g= 0, и условия (2а,б,в) выполняются 
вплоть до RjC- порога, то есть в интервале -а,£ < в. < ai . 

3. Вышеприведенная процедура вкл»*эння_абсорптивннх вффвх-
тов не позволяет учесть сильное влхяиьл. ХК. -канала в области 
энергий выше ttnK. Включить в рассмотрение точку ветвления, 
связанную с КК -порогом, можно, перейдя ж ново! переменно! % : 

•Ъ + ЩГ7 (3) 
отобразив таким образом 2-листнув а, -поверхность на 2 -плос­
кость. Этим заверааетоя процедура униформхзации - вся 4чпствая 
рнманова -й -поверхность отобразилась на % -плоскость, н 
отноентельно переменно! Z S -матрица является однозначно! 
фуикцие!. На ряс. 2 римский цифрами обозначены те части 2 -
плоскости, на которые отображаются соответеиуииже листы рима-
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ново! 6 - поверхности; хжрной лхнкей указана физическая область 
для переменкой X > чае» окружное» я первом квадранте, ограни­
ченная точками I ЙОГ-жорог) ж I ( К Х - ворог), соответствует 
упруго! области. Условия (2) для yapyrot 5 -матрица ха нервом 
к ка втором листах а - поверхности могут бить теперь записаны 
дм Sfe) : 
a) $ V - i ) - S " t o , б) SC-s*)-$*(z). 
в) Sf-z-^-S^fe), г) Sfe-')-Sfe). 
Олискващие резонанс в упругой области полюса х нули, распола­
гавшиеся на •& -плоскости в точках -А0 ж 4 * , теперь зай­
мут положения (рже.2): рлж - в точках Х0,-Х^ , Z^, - a * ~ i , 
полюса - в точках Ж * ~ , -Zg, ** ,-Яе , в ооответствхх с 
условиями (2,а-г). нн вжджи, что полиса х пуп располагается 
ехмметрхчшвя отвоехтахмо охруххоеп парами. J>TO обеерчхмет 
вшюлнехже условхх упругой увхтархостх: l&(tt™*~f')j • 4 
Учесть небольшие >#фехти абоорпциж прх sxtprxxx иххе Z Шк 

мохяо било бн, кахрхмр, смещением хуля Хв по радкуву в направ­
лена соответствуй**» полка Я* (ежммегрхчво отхоохгельжо 

ой оох смещаете* в куп - Ж * )• Т а | С 0 1 еюооб обеспечивает 
неравенства jS(ei<^~V)l<i для С < J> <ж/1 . В 

последувщам, как обсуждалось вше, хеажачхтахишмх абсоркпв-
ннмн эффектами акха КК -порога ш пренебрегаем, т.е. холвса 
х нулх расволагавтеж свммегрхчво отноехтахьхо окружвостж. 

Естественной параметризацией вклада упругого резонанса в 
S —матрицу является функция Ехажхе: 

Эта функция удовлетворяет условжям (4) в дает характерное резо­
нансное поведение фа». Откатим, что резонансное воведепе фазн 
х удовхетворавлс уеловхй U * , 6 , B ) обеспечивается х жолмсяам 
Z* х -%ё* " нулями я 0 ж - Z * , лежащими только в 
верхней 2 -жолуплосхостж. Однако необходакоеть учета в хачест-

ыжовинфстей, также жолвоож Ж* в -Ж0 ж соответет-
хухей %ё* я - Ж * , располоханхнх в нхххей Ж 

луплоскостж, иомхмо удовлетворення условхя (4т), видна из 
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следующего простого примера. Пусть, с н и ш учета 4 Г-порога 
т сделали конформное отображвнав (3) (в этом случае ai соот­
ветствует 4 г - порогу), тогда форма твш (5) только с полюса­
ми Ж*~ в -ZQ1 В нудят я р в - г * дает резонансное вове-
дежм фаза, в параметр упругости g равен I в строго упруго! 
облает* tm^c<^i'<km^ для простом можно не раесматрввать по-
лвс я нуль в лево! г -волувлосхостя (еяк введена: для вшюлненкя 
усложя! (46 ,в), но вх алвжяве незначительно). Тогда п равно 
огноиеиив огрвзза ( г , , г ) к увоженному на /Z 0 / отрезку 
(»?"* , X ) : { ? « / 2 e - z / / / a j ] 2 ? - i - s / - Ш 2 из фнзвческо! 
области. Это отноменяе равно I вря z - e l W / Z ~ * J ( 0 < < £ « г / £ ) , 
а внве 4»т - порога, вря z-Rt,z>i , резко падает от I , 
как вкжно вз рве. 2, резка! взлом, котори яспнтввает крввая, 
ооответствуяндя фнзяческо! ооластн, в точке ж - I ( 4ис -по­
рог) , врвводвт к столь же значительному уменьшению отрезка 
( 2 0 , % ) во сраввевив с возрастаниям отрезком ( xf"1, X ) . 
Однако к> эксвервмента взметах», что g •« I вплоть до Kit п о ­
рога. Исправить ситуацию с описанием мояво только, добавив волв-
оа в нули в вввве! я - волуплоскоетв в соответствии с (4г), 
окмметрячвне отяооятельво окруяаостя-для упруго! унитарности 
ниже 4вТ - ворога в г нинецшмие полисам и нулям в верхней 
% -волухлоскоств —для упруго! унитарности внве kx - ворога, 
(си. ряс. 2) . Далее, точно вине КК - ворога жопврвмонталыо 
упругость Ь резко надает. Добиться этого в описании нараиотри-
зацне! (5) можно, меняя положение волвоов в нуле! в важней % -
волуплосхостн с сохранением их симметрии относительно окружностж 
(для упруго! унитарности ниже КТ£- ворога), то есть условия 
(4а,б,а) аиволвямтся по отдельности в верхне! в ввхне! % -полу­
плоскости, а условие (4г) яаруиаатся вне фнзвческо! ооластн. При­
чем ясно, что измененное положение паря "полас-жужь", веобие го­
воря, меняется с энергией. 

Поскольку era энергетическая зависимость обусловлена влия­
нием каналов (в навей случаеSR, 44 ) , сально связавкнх с ре­
зонансом ( $*). прояаляииимся в исследуемом канале (жГ*Г - рас­
сеяние), т.е. идет от резояаяоов в этих каналах я обменов части­
цами, то надежда (оправдываемая последуваям анализом дайках) 
состоят в том, что ату зависимость удастся описать яахленамям 
набором уявформнзуиие! переменно! (формула (3) с (L,i , 000т-
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ветствувикм К К - порогу) ж помещением на нижнюю % - полуплос­
кость, помню уже рассмотрение! смеменно! пары, возможно, допол-
нятельянх пар полюсов н нулей, симметричных относительно окруж­
ности. Так» образом, можно рассматривать произвольное число ре-
зоканеов. 

4. Кроме резонансов, в предлагаемом способе описания следует 
учесть также фон, кхукхх в основном от левого разреза. Этот раз­
рез преобразовался в результате отображеши (3) в разреэн на мни­
мо! оси (/it^(m-j^+m^m^-m^y): (-teo,-tm.),c-lm _ i, tut - 1), 
(tin, too) . Поскольку влияние левого разреза проявляется наиболее 
сильно в упруго! области, то можно полагать, что и фон имеет в 
основном упруги! характер. Если не интересоваться пороговый дове­
дением, та фазу упругого фона можно традиционно взять в виде (см., 
иапример/ 3' 1^) 

6̂  - а + 1?4. (6) 
Другим используемым нами описанием фона, которое представляется 
более интересный и последовательным в камеи подходе, является 
ашрокскмацкя разрезов на мнимо! оси ( у- - оси, z-x+Ly-) полюса­
ми и симметричными им относительно единично! окружности нулями 
(для упругоояфока ниже КК - порога). Отличие этого описания 
фона от (6) состоит в том, что вше КЖ - ворога его вклад 
становится «упругим. 

Итак, окончательная параметризация $ - матрицы имеет сле-
дувщвп вид: 

S m c n ььгяъА+лыгфм:**£,л ,7) 

где для фона будем нсиользовать два сиособа описания: 

V 
i + tymZ 

(а) 

(б) 

£J?t) - учитывает оосуждавииися вмие вклад каналов, сильно 
связанных с рассматриваемвми резовансами ( паря полюс-нуль в 
нише! X - волужлоскости): 
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В формуле (7) величинами со ирисам обозначены положения 
соотютствущжх резонансу волков в нуле! в нижней % - полуплос­
кости, смещевннх вследствие абоорптжвннх эффектов вшю К К -по­
рога. В (8) положения волков • нулей так» отечем штрихами, 
чтобы подчеркну» вх расположение в нижней Z -полуплоскости. 

5. На основе предложенной формулы проанализируем эксперимен­
тальные даяние по <$ -волновому « С -рассадник* в изосхалжрном 
канале в ввтерваяе 0,6-1,9 Г»В. шивачвски наиболее приемлемые 
решения различных фазовое аналжяов tctc -рассеяния длх изоскаляр-
ной 4 -волки жгут бить, ио-вихииому, разбит на два набора, 
которые првиерно согласуется в отношена фвш S"0A) , за ясыв-
чением давних рабоп/ 1 0 7, располагающихся в ш е K R -ворога 
систематически нкжа других зкеперииентальинх точек. Главное раз­
личие этих двух наборов давних касг год параметра ужругости »(й) 
в области t l t i K ' C ^ 4 I.I5 ГаВ: рабоя/ 1 0' 1 2' 1 3' 1 Ю Л * %&) 
существенно меньше значения, чем результате pador^~ f f l . 

Рассмотрш давние работяг**' из первого набора, в которой в 
отличие от других работ содержатся результат единого системати­
ческого фазового анализа %вс -рассеяния во всей интересувшей нас 
области. Во-первнх, заметш, что ив реализуем идея домияирувме-
го влияния бякяйшт особенностей, которая справедлива, вообще 
говоря, на довольно узком интервале анергий и требует проверки 
в более вирокой области. Поэтому ми сначала разбили эхеиоримек-
тальние точки рассматриваемых давних ва две грунпн: даннве а ин­
тервале от 0,6 до 1,2 ГеВ - область резонансного 5*- аффек­
та - н от 1,1 до 1,5 ГаВ - здесь фаза ОДк) обнаруживает 
дальнейший рост в районе 1,3 - 1,4 ГэВ, что может бить интерпре­
тировано как резонансный в - эффект. Далее ми обработали эти 
давние с помощью формулы (7,а) но методу X* , предполагая 
£s* а 00я*i я вводя только один резонанс в каждой из облас­
тей.'Полученные при этом параметры резонансов (со своим фоном 
для каждого резонанса) приведены в таблице I (вервие две колон­
ки). 

Затем ны распространяем обработку на основе формулы (7,а) 
на данные во всей рассматриваемой области, вводя одновременно 
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оба резонанса. Если в результате параметры резонансов изменятся 
незначительно, то предлагаемый способ описания экспериментальных 
даннкх следует считать достаточно надежным. Причем это требование 
в основном относятся к положениям полюсов на П листе, которые 
определяют жстинные массы и ширины резонансов. Положения же по­
люсов на Ш листе, в значительной мере зависящее от абсорптив-
ных эффектов, могзгт, очевидно, существенно меняться в результате 
такой процедуры. 

Результат такого анализа данных (в предположении /'§*Е&)~ 
«• d ) приведен в третьей колонке таблицы 1 (положения' полюсов 
на U в Ж листах обозначены как Vd^ 1— n\,n—bVn/% и 
VSJj7""m^-iT^'/Z , n** S* е , . . - ) . Обработке подверглись 
64 экспериментальные точки. Свободными параметрами, подлежащими 

Таблица I. 

^""vJteiepBai 
^^энерги! 

Параметрн^^ 0,8 - 1,2(ГэВ) 1,1-1,5(ГэВ) 
0,6 - 1,9 (ГэВ) ^""vJteiepBai 

^^энерги! 
Параметрн^^ 0,8 - 1,2(ГэВ) 1,1-1,5(ГэВ) фон (а) фон (б) 

tn£* (НэВ) 
Гл, ШэВ) 

997 ± 6 
41 ± 9 

999 ± 7 
55 * 8 

1000 * 5 
48 i 6 

rg* ШэВ) 
942 ± 16 
147 ± 60 

965 i 30 
62 ± 40 

971 ± 8 
152 ±15 

т.ш ШэВ) 
Ге ШэВ) 

1570 ± 175 
410 - 180 

158? - 35 
631 ± 60 

1552 ±15 
494 ±35 

т-'с ШэВ) 
Ге ШэВ) 

1710 ± 250 
350 ± 300 

Г499 ± 20 
459 ± 55 

1516 ±15 
369 ±32 

4 
23° Z 14° 

65° ± 17° 

115° ± 100° 

110° ± 100° 

23° ± 5° 

38° ± 5° 

полюс 2-го 
порядка 
при + 

±б706СГэВ* 

^/п.Ц. 0,6 0,32 1,14 1,00 

определвнив в результате минимизации %* , являются положения 
полюсов ж параметре фона - всего 10. Экспериментальная точка 
жря У 5 * =0,99 ГэВ вносит аномально больжоя вклад в %г, поэ-
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тому разумно исключить ее вз рассмотрены. Не сравнения с первы­
ми двумя колонками таблици ввхво, что пасен в нарван резонавсов 
изменялись в допустимнх пределах, те е е » предлагавши способ оп-
ределеква параметров резонавсов достаточно валежин*. 

В свазн с обсуждавшейся ранее возможности существовав»! 
скалярного мезона е (700) ш ввела далее в формуле (7,а) полка 
в нули, которые соответствовала бн этому резонансу. В результате 
нжнжмжзацвв %1 парамегрн фона ami практически обратилась 
в нуль, введение полюса на II лжете ж соответствувпе ям ну­
ля на I листе сместились в положение левого разреза, введен­
ные полюса на • листе сместились на реальную ось няне 4<п£ 
и взаимно уничтожились с соответствуйц им нулями на 17 
листе. Таким образом, ин естественно ярмили ко второму способу 
описания фона - (б): он опвенвается иолноем 2-го порядка на 
И листе на реально! оси в соответствующим ему нулем ва I 
ласте, адвроксамирунмдмн левый разрез; то есть фон описниаетса 
одним параметром. Результат анализа давних ва основе формула 
(7,6) (9 свободквх ираме трои) вркведеи в 4-о1 колонке таблице I. 
Описание давних удовлетворительное. 

Для удобства использования формул (7,а,б) укажем также 
соотмтстжуищво ревонаасам положения нуле! в право! я -волу-
плоскости, установленнне носредством анализа даяннх: в случае 
упругого фона (а): 

%gt~ 1,2273 + 10,17339 . %' » 0,84637 - £ 0,22365, 
%t « 2,987 + £0,75566 , « J - 0,34737 - 10,070805, 

в случае фона (б): нуль 2-го порядка на мнимой оси в точке 
и. ж 1,2634, 

»-,« 1,2281 + £0,15318 , Ж ' - 0,72984 - 10,24186, 
Ж, - 2,8933 + £0,59804 , %\~ 0,34796 - £0,05624. 

Энергетическая зависимость фазы 6Ч«) я упругости п(б) , по­
лученная на основе формул (7,а,б), приведена на рнс. 3. 

Проверялась также чувствительность ароцнтированннх вив» 
результатов к положению «упругого порога at , то есть %г 

ияжаиизкровадось с ене одним свободней параметром а, . Резуль­
тат практически неотличим от щмдндумего анализа. 

6. с целью определения параметров r*CJ p)"0 +C0 +) - мезо­
нов предложен способ описания эксперииентальннх лакивх но * -
волновому JtaT - рассеянию в вэоокалярном канале, оенованяни на 

290 



'.6 1.8 U 

PIC. 3 . Эирптлвеки завяеавоетв фаза $f (ЯСЖ—ЯК) 
в параметр* ужругоетв £ « бюг—гг), волучвннке с 
вожжи предюкевкого метода о п и л и вкспвркмвнталъ-
m давввх: ка осаове фодои (7,»)- жунктщрвве крж-
В1и ( ^ % ^ « e I , U ) , на основе (7,6)- свивши кря­
к в (до$цы><1,0). ^валзвровалвсь 64 иссвврвюнтажь-
вие точка «а рабоя/* 2 ' ; ва рвсрпсв ираввденн только 
ввкоторвв характерам точка. 
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реализации идеи доминирующего влияния блихахшхх особенностей с 
использованием процедуры уяиформнзашп. Аргументировано, что npi 
учете точки ветвления, связанно! с КК - порогом, приходящем к 
рассмотрению 4-лхстной римановой поверхности $ - матрицы процес­
са Ю Г - » Ш Г , ближайшими х физической области особенностями, соот­
ветствующими резонансу, являются две пары полюсов, располагают­
ся в комплексно сопряженных точках на плоскости квадрата энергии: 
одна пара на Ц листе и другая - на № . Для "упругого" резо­
нанса эти пари полюсов находились он точно одна над другой. Влия­
ние абсорптхвннх аффектов в н е Kit - порога смещает полюса на 
Л1 листе. Условие унитарности требует наличия нуле! в S - мат­
рице, располагающихся при тех хе значениях квадрата энергии, что 
и соответствующие полюса: полюсам на II листе отвечают нули 
на I листе, полюсам на Ш листе - нули на 17. 

Включение в рассмотрение второй пари полюсов (и соответствую­
щих им нуле!) является необходимым элементом описания резонанса 
в случае 4-лхстно! риманово! поверхности и существенным отличием 
от описания резонанса на 2-лхстно! поверхности. В последнем слу­
чае ближайшими особенностями, соответствующими резонансу, яв­
ляется, как известно, пара комплексно сопряженных полюсов на вто­
ром листе. 

Четырехлистная структура риманово! поверхности учитывается 
с помощью униформизувще! переменно! г (формула (3)). Парамет­
ризацией резонансного вклада в я - плоскости является функция 
Блящке, построенная из указанных выне полюсов и нулей. Фон берет­
ся (а) как "упругий" с линейно зависящей от энергии фазой (2 па­
раметра) и (б) как аппроксимирующие левый разрез полюса и нули на 
реальной оси. В нахем случае оказалось достаточно одного полюса 
2-го порядка и соответствующего ему нуля (один параметр). Получе­
но хорохее описание экспериментальных данных работы^ 2' в области 
энергий 0,6 - 1,9 (ГэВ). Результаты обработки по методу %г : 

%*/n,.d.£. «1.0; m>»= (1000 ± 5) МэВ, Г ~ = (48 ± 6) МэВ, 
Ш е = (1552 ± 15) МэВ , Ге = (494 ± 35) МэВ. 
Указаний на осуждавшихся ранее скалярный мезон е (700) мы 

не обнаружили. Масса и ширина мезона е(I4C0) оказались боль­
ше получавшихся в других анализах/ ' ' . Кроме того, мохно 
сделать качественный вывод о сильной связи $* с другими ка­
налами (Kit, 21 )• Это видно из относительно большого смеше-
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кия полюса на Ш-ем лжете. Наоборот, из аналогичных соображена! 
ж жз того, что упругое» £(«) в окрестности е - мезона 
близка ж I, делаем вывод об относительно сильно! связи б - ме­
тена с ш г -сжетемо! по сравненжв с tyjvmu каналами. Для получе-
н н более подробно! ж количественно! информации о связях с раз-
ннмж ханаламж ж более определенно! интерпретации полюсов на 
Ш-ем лжете необходим также анализ давних по крайне! мере по про­
цессу яж—'КИ • /ТА к / 

Следует также проанализировать экспериментальные данные' 4 / 

жз второго набора, обсуждавшегося в разделе 5. Однако этот ана­
лиз требует больших ускли! ж осторожности, поскольку в этом слу­
чае в разннх энергетических областях должны использоваться данные 
жз различных работ ж для получения приемлемо! эжергетжчесхо! за­
висимости ж разумных значенж! %% нужно, возможно, ввести некие 
вормировечнне множители, чтобы привести в соответствие качество 
•тих различных экспериментальных данных. 
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ПОЛЯРИЗАЦИОННЫЕ ЭФФЕКТЫ В ПРОЦЕССАХ ПРЯМОГО 
И ОБРАТНОГО ЭЛЕКТРОРОЖДЕНИЯ БОЗОНОВ НА НУКЛОНАХ В КХД 

Ф.С.Садыхов, А.И.Мухтаров, С.К.Абдуллаев 
Азербайджанский государственный университет, Баку 

В последнее время » •коперкиентальних данных DO лептон-нук-
лоншш слабо-електромагнитним пропеооам.иклиивому роидввик ад-
ронов о больмш поперечным импульсом, по процессам аннигиляции • 
рождения лептоннкс и адроюшх пар пояучеян вовне важные введения 
о овойотвах парковых в главных распределений внутри адронов.В г 

чаотно-.№»,уотановлеЕО различие в поведеиж функций раопределенвя 
кварков разлжчных осртов.Не менее успеино била развита квантовая 
хромодинамика /КХД/, ва основе которой удало» ошоать укааавнне 
процессы и предсказать некоторые вовне эффекты'1'.Интенсивной 
хромодкнамичеокой обработке подвергаются разнообразные лептон-ад-
роннне взаниодейотвия.где аовмптоткчеокая овобода позволяет объ­
яснить известный бьбркановокжй окбйлиЕг.лакащий в основе партон-
них представленжй о структуре адронов.опжонвает глюоннне поправкв 
к слабому взажмодейотвию.Исалвдоважие различных полярязацконнвх 
эффектов при лептов-адровннх взаимодействиях позволяет ооределжть 
неупругае структурные функции,дает ценную информацию о свойствах 
кварк-глюонных распределений внутри адронов.ооэдает благоприят­
ные, условия для проверки предсказаний калибровочной теории.Напри­
мер, в экспериментах отенфордской группы изучено глубоконеупругое 
рассеяние продольно-лолярязованннх электронов ва нуклонах и изме­
рена Р-нечетная опкновая аоиммятраа/^.Результаты згой реботн хо­
рошо согласуются о предсказаниями единой теории слабо-алектромаг-

/ з / нитных взаимодействий' ' . 
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В работа) / 4 * 5 'в ранках КХД бшш исследованы процессы электро-
рожденвя шона в обратного электророждения пжона на нуклоне с 
учетом одабых нейтральгаа токов /СНТ/ в определены структурные 
функции,обусловленные как юарк-гххюнют.глюон-глюонннм взаимо­
действиями, так и нейтральными токами.В работе 7 0 /также рассмотрена 
аннигиляция лептон-антмептонных пар в адронн в модели Вайнберга-
Салама. 

В настоящей работе проводится исследование поляризационных эф­
фектов в процессах прямого к обратного электророждения шона на 
нуклона в тормозного излучения электрона на нуклоне с образовани­
ем адронов в КХД с учетом СНТ. 

Наш получено обвее выражение эффективного сечения процессов 
ttf-gA/tri 7ТМ-*/У(?ъ КХД и модели Вайяберга-Салама в низшем 
порядке теории возмущения ж произведено интегрирование по пара­
метру ж.. При этом для степени поляризации конечного электроне 
/начальны* алвктрон яеполярхзован/ получается оледущие выражения: 

Р . (ж) = £ ё — без СНТ / I / 

£ L*> = A l i l l f f ^ о СНГ /2 / 

где 

?. * <*»вV^v^Y*? Ьм/)ef] /з/ •i 

Здеоь fi.(x) и £ (х) являются функциями векторных и акевльных 
конотавтга теории Вайяберга-Салама и вмпульоов частиц.из-за гро­
моздкости выражений хх здеоь не приводим, А - лг/£, ; <$ -пере-
даваешнв импульс;/^ в ил -импульсы лептонов; £* и 5* -заряд и 
поляризация кварков,' «£ и ^^-коаотавтн электромагнитного и сла­
бого вэажмодежотвжй. 

Изменение степени поляризации электрона £& при фиксирован­
ных различша значениях х. показано на рис.I.При увеличении JC 
вклад СНТ на Eg, существенно уменьшается.С ростом <?* влв 
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нве СНТ на £е значительно,но поляризация о учетом СНГ олабо 
зависит от QL. 

т 

<иа 

W 

Q6 

02 -

25 SO К ЮО QI 2S w ffT 

Рио.1 Изменение степени поля­
ризации конечного элек­
трона в реакции еЫ-»еЛя 
при £ =120 ГэВ, ве =*°. 
I -без СНТ.И -о СНТ 

Рио.2 Зависимость £"е от 
квадрата передавае­
мого импульса в реак-
пии ел?-*ел?эг при 
S =120 ГаВ, <% =6°, 
I -без СНТ.П -о СНТ 

Используя функцию распределения 2/ -кварков в нуклоне в ви~ 
д / б Г 

и интегрируя полученное выражение для сечения реакции efi/->£A/T 
по ж. о точностью до членов l?=0,l/Q*- для степени поляри­
зации находим , 

£ _ _Zf_ , 
е 3 h без СНТ, / 5 / 

С *Щ(;Щ*.-№4,Ъ&) сеет, /6/ 
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где 

** = хв / Ч С<+*Г& +)(ьч х**л) -

Xg =Q /ifHf, 4 6" -бьёркеновокнй параметр. 
На ржо.2 представлена завнскмооть £>& от квадрата передава­

емого жмпульса.Поведение _£ . о СНГ ж без СНТ почтк одкнаковсе 
н он уменыаетоя о ростом 0*.Интереово отметать,что поляризация 
конечного вукдова /обусловленная поляржеапкей кварка/ о иомененж-
ем передаваемого импульса оотаетоя почта постоянной без учета 
СНГ, а о учетом СНГ она резко умевмветоя /рко.З/ . 

Степень поляркзацо эяектрон-повжтронянх пар в процеосе jr/f-ь 
Nie определяется вкражевжяш 

Р = ^ & 
Г* 3fj £ без СНТ, / в / 

* ЧЩСЩ&'-ЩУ-^М) о СНГ /9/ 
где л 
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**' = ^ ^ r ) / * * * v ^ ^ ^ - - 4 ^ H ^ <?> 

Хг.(ьа)-х,Ч(Ы*)]} . 

«г 

V^ *•«* / 

«/ 

jf.-flf 

к f 

Ржс.З Зависимость полярлза-
ши конечного нуклона 
от <5*в реахцп ft*'-* Л#^ 
при,? ж 1 2 0 Г з В , ф » 6 о , 
I -без СНГ.И - о СНГ 

Ржо.4 Зависимость отепавх 
поляризации пар от q l 

прш<? «120-ГэВ, 6е =6? 
I -без СНТ.П - о СНГ 

Как вндво жз ряо.4, степень поляризации пара о ростом с? * 
уменьшается ж это очень чувствительно к значевшаш зс. макси­
мальное звачевке поляризации возшпсает при отнооитвльво мала Q*~ 
ж влияние вклада СНГ является существенна». 

Полученное ваш овченме пропеоов JFy-g /У/f при распределении 
/ 4 / кварков в нуклоне интегрировано по ас. При этом степень поля­
ризации конечного электроне показана ва рио.б.СВТ существенно 
изменяет Jx. и при малых <?* степень поляризации принимает даже 
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отржцательное звачевже.Такое поведевве поляризации пар может дать 
пенную информацию о распределении кварков в нуклоне. 

Следует отметить,что поведение поляризации конечного нуклопа в 
данной реакции в завхожмоотв от < $ г почти такое же, что в процео-
ое irt->ttfJT /ржо.6/ . 

№ 

S 
l / 

т 

т 

в i 

J 

1 , 

т 

в 
п « О* 

р. 
> ~~ *,=о.е I 

аг 
- v ^ * 

- ~ £ М ? " ^ ̂  

V 

i i 

я SB 1$ р 

Ржо.5 Поведенже 2е после жн- Рже.6 Поляризация конечне-
тегржрованжя по х. , го нуклона, I -des 
I -беэ СИТ.И -о СВТ СЯТ.П - с СНГ 

В стандартной модели Вайнберга-Салала дифференциальное сечение 
процеоса тормозного излучения g/if-» i$X может быть представлено 

где 

/1С/ 

fis ^F %*<ъ+ъ>(ф»>+ф*>)+*ъ^:щ(г, tr 
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-1Yt\ei*<,Сff %л&%)(ф*)-%i*i) ; 

#,&/, £, /£*,) x к:^(5г ) -4-хивульон /сшфвльноотв/ фотона,на­
чального х конечного лептонов; &я) к. £&) -функцхк раолреде-
ленхя кварков х автхкварков в нуклоне; Vf/i = I ~ 8 / -некото­
рые функции энергхв х углов внявта чаотхц.хэ-за гршовдкоотх вы-
paxeHxt кх адеоь яв црхводкн. 

Пользуяоь формулой /10/, определен Р-нечетнуп продольнув опх-
новую аоишетрхю, обусловленном СЯТ 
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л_ , z* *, (t, Ъ+W (#*>+£<*) 

/и/ 
Для численных оценок аоямметрни к используя функции распреде­

ления кварков / 4 / прж значено Х- =0,5 с учетом валентянх квар­
ков находим 

f г 

к = - 8 1СГ4 —-%: 
для протона 

--7Г 

А = 15 I 0 * 4 _ Z _ д п ввйтоона 

Другим Р-нвчетяим аффектом, укавнвапим на существовании ней­
тральных токов.явдяатоя отепень круговой поляризации тормозных 
фотонов 

V"" е2фр, + *ЩЪ>+ф(*о Д 2 / 

В олучае.когда лептов раоаеивавтоя назад • тормозная фотон 
уносит максжмвльвую анергию при значении ас« -1 дай степени кру­
говой поляризации имеем 

Р . 7 . 2 И Г 4 - ^ т для протона 

- * V = - 2 4 1 С Г 4 ^ ДИЯ нейтрона 
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О ВОЗМОЖНОЙ СТРУКТУРЕ ХИГГСОВСКОГО СЕКТОРА 
В SU(2)x IKDx U l (-МОДЕЛИ ЭЛЕКТРОСЛАБЫХ ВЗАИМОДЕЙСТВИЙ 

А.Н.Лезнов, В.В.Хрущев 
Институт физики высоких энергий, Серпухов 

В стандартной теории электрослабых взаимодействий, основанной на ка­
либровочной группе SU(2)xU(l)i существенным образом используется меха­
низм Хигтса спонтанного нарушения калибровочных симметрии. К настоящему 
времени кроме естественного требования простоты или минимальности числа 
хиггсовских полей известно только одно ограничение на структуру хиггсов-
ского сектора в SU(2)x U(l)-теории (кроме численных оценок некоторых 
параметров), которое связано с экспериментальным значением величины 

р - т^/т^см в-- i . Так как в основном приближении 

Р . ! K T 2 - T 2 ) f ] / 2 2 ( Т 3 » , ) 2 , 

где »( / у 2 - действительные вакуумные средние хиггсовских полей, Т, - ге­
нераторы слабого изоспина, то хиггсовскке поля, которые преобразуются 
как синглеты или дублеты относительно SU(2 ^преобразований, удовлетворяют 
условию р= 1. 

С другой стороны, известно, что ряд вопросов теории частиц, таких, на­
пример, как число поколений фермиоиов, не может быть решен в рамках 
SU( 2) х Ц(1)-модели, т.е. необходим переход к более широкой группе калибро­
вочных симметрии. Минимальным расширением стандартной модели является 
модель, основанная на группе SU(2) x U(l) x U(l), которая рассматривалась 
рядом авторов1'*"1 . В SU(2)xU(1)x Ц{))-модели существуют два нейт­
ральных массивных Z-бозона, одни с массой, как правило, меньше массы 
стандартного Z-боэона, другой с массой, большей ш»(я_ теоретически 
равна приблизительно 90 ГэВ). 

В настоящей работе мы накладываем определенное условие симметрии от­
носительно глобальной группы на исходный лагранжиан для фермионных и хиг­
гсовских полей до введения взаимодействий с калибровочными полями. Для 
SU(2) х U(l)xUn)-MO«urco двумя поколениями фермионов условие симметрии 
относительно 0(4) -группы (вместе с требованиями самосопряженности пред­
ставления для скалярных полей) приводит к выбору определенного её вариан­
та - так называемой дублет-сикглетной модели. Исследуются источники на­
рушения исходной симметрии после введения взаимодействий между фермион-
нымн и хиггсовскнми полями. Показано, что при определенном выборе эаря-
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дов фермионных полей, при котором удовлетворяется условие отсутствия ак­
сиальных аномалий в SU(2) х U(l) х 11(1 )-модели, механизмы образования 
масс фермионов первого и второго поколений различны, что может служить 
возможным объяснением наблюдаемой разности масс этих поколений. 

Рассмотрим калибровочную группу Sl)(2 ) x U ( l ) x l ) ( l ) с генераторами 
I Т[, Y, N I. Ковариантная производная равна 

*„ " *„ " '«Г, ^ - i e V / 2 В„ - ih N/2С„. (1) 
При h = 0 3)„ переходит в ковариантную производную стандартной модели. 
Будем для удобства рассматривать только два поколения фермионов: 
/ | Ч Т _ / L J* L L L JL , Ь - L , / < R ^ T - I R » R R R R J R 

с , s R ) , T означает операцию транспонирования, i = 1,2,3 - цветовой ин­
декс кварков. Для электрического заряда справедлива формула Q= T 3 + Y/2. 

Чтобы задать хиггсовский сектор модели, рассмотрим следующее усло­
вие. Мы знаем, что свободный лагранжиан системы с п безмассовыми фер-
мионами обладает Ц_(п) х U ((п)-клральной симметрией. Хиггсовский сектор 
предлагается строить таким образом, чтобы до введения взаимодействий с 
другими полями он обладал симметрией относительно какой-либо векторной 
подгруппы V L + R , которая содержится в [ Ц,(п) х и„(п)] л . 

В нашем случае в качестве такой подгруппы выберем векторную подгруп­
пу SLK4) х U(1), которая после включения взаимодействий с другими полями 
и процедуры спонтанного нарушения калибровочных симметрии переходит в 
группу нарушенной симметрии ароматов кварков S U ( 4 ) n a v o r

 Х Щ 1 ) В . Более 
того, считая хиггсовские поля элементарными (в рассматриваемом нами диа­
пазоне энергий), естественно потребовать, чтобы они принадлежали фундамен­
тальным представлениям группы SU(4)xU(l), для которых Ьарноиный заряд 
равен нулю. 

Рассмотрим подробно случай, когда хиггсовские поля принадлежат фунда­
ментальному сомосопряженному представлению, размерность которого равна 
шести. Используя приведенное выше условие, получим, что плотность лагран­
жиана для фермионных в хаггсовских полей до включения взаимодействий 
между ними будет иметь вид 

-lsp[(aX)+axi-i-[-Lsp(X+X)+£!]2, (2) 
4 " " 4 С п. 

где g = в „,/i» v = 1, 2, 3, 4, X - антисимметричная относительно SU(4)-
индексов матрица: Х4, = - X j ( , i , j = 1, 2, 3, 4. 

Используем в качестве калибровочной группы взаимодействий между фэр-
мионными и хиггсовскими полями минимальное расширение группы электро­
слабых взаимодействий Глэшоу-Вайнберга-Салама, т.е. SU(2)xll(l)x U(l) -груп­
пу (отметим, однако, что приведенное выше условие симметрии можно ис­
пользовать для любой калибровочной группы, в том числе и для группы 
SU(2)xU(l))< В такой модели по сравнению со стандартной, появляется 
только один новый нейтральный бозон. Так как мы накладываем условие сим-
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метрии относительно SU{4) только на 2. (х), то после введения 
SU(2) х Щ1) х Ц(1)-Бзоимодвйствий исходная глобальная симметрия будет 
нарушаться определенными членами в полном лагранжиане, которые приведе­
ны ниже. 

На хнггсовских полях Х„ можно реализовать представления группы 
5U(2)[, несколькими способами 7 ' " ' . В дальнейшем будем использовать ре­
шение (10.4) из работы 1 " ' ' , которое соответствует разложению Х 4, на 
синглет и сопряженный ему синглет, дублет и сопряженный ему дублет. Это 
решение удовлетворяет ограничению на возможный набор Щ 2 ) -представле­
ний для хиггсовских полей, которое следует из того, что экспериментальное 
значение параметра р приблизительно равно единице'''''. Причем заряжен­
ный ток хиггсовских частиц в этом случае (до спонтанного нарушения) от­
личен от нуля только для переходов между членами дублетов, а нейтральный 
ток диагоналей по $Щ4) -индексам. 

Матрица Xjj выражается через синглет Ф° и дублет Ф2 = ( % ' ф 2 ) 
следующим образом: 

(3) 

После введения взаимодействий между ферми-полями и полями Хиггса 
плотность лагранжиана рассматриваемой системы принимает следующий вид: 

I ( X ) = - 1 A 2 - 1 В 2 - 1 С 2 -(•">% у ©*»*-
4 v-v 4 с" 4 Р" 4 f (1 

0 —о 
Ф 2 *; 

< 0 " * 2 < 
-*; •2 0 •г 
< < ^ 0 

- \а<*ХК*Х + *2 *2> - ^.<*>i) - a T ' (4) 
I 

3)'=а - i h / 2 n C , 
я м J с 

©/f = 3 i-ie'/2 4 R B^-ih/2N , t / (5) 

3^ - а, - J«V2? Д, -iB'/2 Y^B, - ih/2NL C^, 
a Y = 2 ».У L Ф 4 к

+ п . с , 1 в ia a a • 
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причем Ф*_ = Ф » io_ Ф 2 , если i соотвествует фермионам с Т 3 = % , и 
ф'= ф ,если i соответствует фермионам с Т 3 » - 1 / 3 . Ц, - левые дубле­
ты фермионов. 

При получении выражений (4) и (5) мы воспользовались следующими ое-
зультатами. Набор хиггсовских полей, заданный матрицей (3) , позволяет 
использовать условие работы/12/ для совпадения низкоэнергетического взаи­
модействия левых электронного и мюонного нейтрино в рассматриваемой и 
стандартных моделях. Чтобы такое совладение имело место в данном случае, 

достаточно потребовать Н(Ф„) =N^^) =N(i/ > =0. Известно также, что N(1L -вза ­
имодействие может привести к возникновению аксиальных аномалий (АА) во 
взаимодействиях с участием фермионов. Условием отсутствия АА является 
справедливость для N-аарядов фермионов четырех уравнений: 

TrN L = 0, 
TfQV^TrQ 2 N R , 
TrQ(NY = TrQ <NR)2, ( 6 > 

Tr(N L) 3=Tr{N R) 3. 
Если считать, что сокращение U())N АА происходит внутри каждого по­

коления, как это имеет место для Щ1) у АА в стандартной модели, то не­
трудно получить: 

а) когда N-заряд правого нейтрино какого-нибудь поколения равен нулю, 
то N -заряды всех фермионов поколения равны нулю; 

б) когда N-заряд правого нейтрино какого-нибудь поколения отличен от 
нуля, то N-заряды левых фермионов равны нулю (при условии Джорджи-
Вайнберга , '12/)> а для правых фермионов рассматриваемого поколения могут 
задаваться матрицей N. или матрицей N R , где 

N* = d i 4 | , , , - * , n ( i ) , - л ( 1 ) | , 
N R = А о д Ц / У ^ й , - Л , 5 n ( i ) , n ( 1 ) I. 

Индекс (i ) означает троекратное повторение произвольного числа п, что 
соответствует утроению за счет цвета кварков. При п = 1 матрицы N R и N 
совпадают с матрицами, приведенными в р а б о т е / 1 3 / . 

Выберем в качестве основного решения для N-зярядов фермионов перво­
го и второго поколений матрицы Nr, N," и Nh , Nl ! соответственно, кото­
рые задаются следующими формулами: 

|£=Н,*=0, N£=0, N^dioeln,-n,n ( i ) , -n ( i ) | . (в) 
Другое простое решение для N-зарядов фермионов, которое хотя явно 

нарушает условие Джорджи-Вавнберга, но, как следует из формул (9) , не 
может привести к существенным противоречиям с имеющимися эксперимен­
тальными данными, имеет вид 

N̂  = N R = 0, Ид = N R = diag I3n, 3n, - n ( l ) , -n ( i ) I. ( 9 ) 
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Взаимодействия Юкавы при выборе решения (9) кик ami фермионов первого 
поколения, так и для фермионов второго поколения стангнитси возможными 
только после нарушения U(l)N-KHBapBaHTHocTii. 

Для решения (8), если п ^ О , условие U(1)N -инвариантности но позво­
ляет построить связи Юкавы для фермионов первого и второго поколении 
одновременно. Если Щф ) = п = 0, то взаимодействие Юкавы возможно толь­
ко для фермионов первого поколения, если п 2 - п, то взаимодействие Юка­
вы возможно только для фермионов второго поколения (при услоыш U(1)N-ин­
вариантности). В последнем случае квадраты мясе нейтральных калибровоч­
ных бозонов определяются как Собственные значения матрицы: 

М - -Г - « » , ( 9 » 2 ) 9hn v (Ю) 

(hn,v,) . (Ьп , -р 

причем поле фотона выражается через поля А и В , ; :,Г.ЖР. как и в стан­
дартной модели. 

Таким образом, нарушение первоначальной глобальной симметрии лагран­
жиана TL„(X), как до спонтанного нарушения SU(2) - U(l ) * IAD-GHMMCT-
рни,так и после можно определить с помощью формул И ) . (Fi). Омочим 
одно важное обстоятельство, которое заключается в том что нарушение 
11(4) -симметрии и вклад различных взаимодействий в образование масс фер­
мионов больше для фермионов второго поколения, которые- обладают ненуле­
вым N-заршюм, К тому же, если спонтанное нарушение симметрии происхо­
дит следующим образом: SU(2) x U(l) x U(l) •• U{1) x U(l) • М(1), то на первом 
этапе только фермионы второго поколения приобретают массы за счет взаи­
модействия Юкавы, массы фермионов первого поколении ил этом этапе мо­
гут быть отличны от нуля только за счет динамического механизма возник­
новения м а с с ' " - * • ' . Это обстоятельство может служить возможным объяс­
нением наблюдаемой разности масс между фермионами первого и второго 
поколений. 

Авторы благодарны Б.А.Арбузову, А.А.Архипову, В.И.Саврину, М.В.Сц-
вельеву и С.Ф.Султанову за полезные обсуждения. 

307 



ЛИТЕРАТУРА 
1. Kim J.E. et al. - Eev. Mod. Phys., 1981, 53, 211. 
2. Долгов А.Д., Захаров В.И., Окунь Л.Б. - ЯФ, 1973, J£, 876. 
3. Fritzsh H., Minkowski P. - Nucl. Phys., 1976, B103. 61. 
4. Pa.i J.C., Rajpoot S., Sale» A. - Phys. Rev., 1978, D17, 131. 
5. Darby D., Gramner G., Jr. - Hucl. Phys., 1978, B139, 490. 
6. De Groot E.H., Gounaris G.J., Schildknecht D. - Phys. Lett., 

1979, 85B, 399. 
7. У ue M. - Prog. Theor. Pliys., 1979, 61, 269. 
8. Desnpande N.G., Iskandar D. - Hucl. Phys., 1980, B167, 223. 
9. Смирнов А.Ю.- Kuovo Cin., 1981, 64A, 297. 
10. Robinett R.W., Rosner J.L. - Phys. Rev., 1982, D2S, 3036. 
11. Khrushchov V.V. - Prepr. IH» 82-190, Serpukhov, 1982. 
12. Georgi H., Weinberg S. - Phys. Rev., 1978, D17, 275. 
13. Chanowitz M.S., fills J., Gal Hard M.K. - Nucl. Phys., B128.506. 
14. Nanby Y., Iona-Lasinio G. - Phys. Rev., 1961, 122, 345;124,246. 
15. Арбузов Б.А., Тавхелндэе А.Н., Фаустов Р.Н. - ДАН СССР, 1961, 139, 

345. 
16. Вакс В.Г., Ларюш AM. - ЖЭТФ, 1961, 42, 282, 1392, 
17. Weinberg S. - Transactions of the N.Y.Scad. of Sciences, 1977, 

Ser. II, vol. 38. 

308 



ЭФФЕКТ ААРОНОВА-БОМА: КАК ПРОЦЕДУРА ВКЛЮЧЕНИЯ 
МАГНИТНОГО ПОЛЯ ПОМОГАЕТ ЕГО ПОНЯТЬ? 

В.Д.Сг.аржинский, В.П.Фролов 

Физический институт им, П.Н.Лобецевя АН СССР, Москва 

I. Введение 
Эффект Ааронова - Бона ' I i 2' является одним из замечательных 

квантовомеханических явлений, которое можно поставить в один ряд 
с такими предсказаниями квантовой механики, как квантование энер­
гии связанных состояния, прохождение частиц через потенциальный 
барьер и т.п. Сущность эффекта состоит, в частности, в том, что 
квантовое состояние электрона, удерживаемого потенциальным барье­
ром в неодносвязяой области, где отсутствует магнитное поле, но 
отличен от нуля вектор-потенциал, зависит от калибровочно-инва-
риантшх комбинаций вектор-потенциала, §Adl и в конечном 
счете от магнитного поля в запрещенное области. Этот в некото­
ром смысле парадоксальный факт вызвал в 60-х годах острую дискус­
сию о роли электромагнитного потенциала в квантовой механике, а 
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также о концепции локальности '3~5', в ходе которой было высказа­
но немало интересных, но не всегда корректных утверждений. Уже в 
своих первых работах ' 2 > * авторы убедительно показали, что дан­
ное явление кажется трудно объяснимым лишь с точки зрения клас­
сической физики, где изменение состояния системы может быть выз­
вано только действием некоторой силы, и напротив, оно представ­
ляется совершенно естественным в рамках обычной квантовой меха­
ники в ее традиционном толковании. 

Тем не менее в последнее время эффект Ааронова - Бома вновь 
привлек к себе внимание как теоретиков, так и экспериментаторов 
после серии работ '6', в которых утверждалось, что данный эффект 
является следствием ложных математических построений, не имеющих 
физических оснований, а соответствупцие эксперименты объясняются 
нлохой экранировкой магнитного поля. Хотя критический разбор ''' 
этого утверждения показал его явную некорректность, однако сам 
факт возникновения последупцей дискуссии ' °' свидетельствует о 
том, что теоретическое рассмотрение данного явления сталкивается 
с определенными трудностями как чисто математического, так и фи­
зического характера, которые мешают ясному пониманию сущности 
этого явления. 

Так,в ряде работ при описании данного эффекта некритически 
используются многозначные потенциалы, а также волновые функции, 
зависящие от интегралов по путям. Это часто ведет к нарушению 
требования однозначности волновых функций и к неверным утвержде­
ниям о роля допустимых калибровочных преобразований. Подобная 
проблема возникает, например, при исследовании асимптотики волно­
вой функции в задаче рассеяния на бесконечно длинном соленоиде, 
вектор-потенциал которого слабо убывает на бесконечности. Это 
вызывает искажение асимптотики, которое отражает, как я в случае 
кулоновского рассеяния, специфические физические характеристики 
рассеивателя и поэтому не может быть устранено никаким калибро­
вочным преобразованием всюду вне соленоида. Подобное проявление 
дальнодействия потенциала ставит вопрос о его влиянии на процесс 
приготовления начального состояния электрона. В этой связи пред­
ставляет определенный интерес рассмотрение эффекта Ааронова-Бома 
на тороидальном соленоиде /9/, где,к сожалению, не удается найти 
точную волновую функцию из-за больших математических трудностей. 
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С другой стороны, в случае бесконечно тонкого соленоида век­
тор-потенциал неизбежно сингулярен вдоль него и вызывает соответ­
ствующую особенность волновой функции, однако это затруднение 
легко преодолевается тривиальным использованием теории обобщен­
ных функций. 

В данной работе мы уделяем основное внимание исследовании 
влияния процесса включения магнитного поля соленоида на состоя­
ние квантового электрона. Такая постановка вопроса позволяет ис­
ключить трудности, связанные с дальнодействием (слабым убыванием 
вектор-потенциала на бесконечности) и его возможным влиянием на 
провесе приготовления начального состояния системы. Кроме того, 
при таком подходе к задаче удается отделять классическое силовое 
воздействие на электрон вихревого электрического поля, возникав­
шего в процессе включения, от квавтовоиеханических эффектов,свя­
занных с появлением в пространстве вектор-потенциала, что способ­
ствует более ясному пониманию природы эффекта Ааронова - Бона. 

Во втором разделе работы изучается влияние процесса включе­
ния магнитного поля в бесконечно длинном тонком соленоиде на 
рассеяние плоской волны и волновых пакетов. 

В третьем разделе аналогичная задача решается для случая фи­
нитного движения электрона в цилиндрической полости между соле­
ноидом конечного радиуса и ограничиващей коаксиальной цилиндри­
ческой поверхностью большего радиуса. 

В обоих случаяз. дается ответ на вопрос, при каких условиях 
только по конечному состоянию электрона можно получить некоторую 
информацию о магнитном поле в области, недоступной для электрона. 

2. Рассеяние электрона при включении магнитного поля 
в соленоиде 

Здесь мы исследуем изменение движения электрона в процессе 
его рассеяния при включении магнитного поля в бесконечно длинном 
тонком соленоиде, расположенном вдоль оси ог . это поле описы­
вается вектор-потенциалом 

1(гЛ)=%^ - Р~(х**/)£, (2.1) 
определенным с точностью до калибровочного преобразования. Так 
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как поток магнитного поля Ф(1)=уЖ<И=%1ГссШ через произволь­
ный контур С , охватывавджй соленоид, фиксирован и не зависит 
от выбора калибровки, никаким калибровочным преобразованием нель­
зя обеспечить более быстрое убывание & на бесконечности. 

Магнитное поле 

сосредоточено на оси 01 , а индуцированное вихревое электрическое 
поле -* • 

отлично от нуля во всем пространстве только во время включения. 
Заметим, что бесконечно тонки! соленоид рассматривается лить ра­
ди простоты расчетов и легко может быть заменен соленоидом конеч­
ного радиуса. Кроме того, соленоид считается неэкранжрованным, 
"прозрачным",- в противном случае необходимо учитывать дополни­
тельное рассеяние, обусловленное экранкрущей поверхностью. 

Движение электрона в данном поле описывается уравнением Шре-
дингера с гамильтонианом, зависящим от времени: 

/£_S_f* 
3t ZM 

Вдоль оси 0 2 электрон движется свободно. Коли составлшцая 
волнового вектора тс вдоль нее задана, волновая функция элек­
трона содержит тривиальный множитель 

YfctJ = exf>[-ii -&Г+-1 *ш*1 УГ*.У-iJ » 
который не меняется при рассеянии и в дальнейшем будет опущен. 

Симметрия задачи допускает отделение угловой переменной 

Y(*.y,&J=£ Я~ Cfi-V ехр[ът<р], (2.5) 
/Г* ST — е в 

где радиальные функции удовлетворяют уравненпю 
• 2Н dRm _ dlR„ _. v 3&i / л , „(Ufa 

которое в общем случае для произвольной функции ft (t) решить не 
удается. 

it&'iktf-fffv . ? = -ikr- (2-4) 
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Поэтому сделаем упрощапцее предположение, что магнитное поле 
включается скачком в момент времени t =o , так что функция/}'^ 
имеет вид 

где в - ступенчатая функция, а Ф - установившееся значение 
потока ыагнитвого ноля. 

Для того чтобы решать нестационарное уравнение Шредингера 
(2.4) в этой принижении, нужно найта решение стационарного урав­
нения, осисывапцее рассеяние па постоянной сингулярной магнитном 
поде, сосредоточенном на оси О Я , и сшить его с соответствуицам 
решением для свободного движения. Условием сшивания является не­
прерывность волновой функцл! в момент времени t = o • как видно 
из уравнения (2.4), производная У~ при этом терпит разрыв при 
Ь = о . 

Пусть прг t < - 0 волновая функция является плоской монохрома­
тической годной с волновым вектором £ : 

=£ expl-iktg+,.+/> COS(<P- vti]. { 2 - 8 > 

Решение при t > o будем искать в виде суперпозиции стационар­
ных решений с заданной энергией: 

У (st, y.tj = JetjS с(?) exfi[-ikt£ J У. СЮ, (2.9) 
где УрФ- ортонормированные (на S - функцию) решения стационар­
ной задачи рассеяния электрона на сингулярном магнитном поле, со­
средоточенном на оси о х . . 

Как известно '2', ременжя ¥^(Ю можно представить в виде 
Ув($) =^fScJp) Rn <fi)*«*Lim9l, (2.10) 

где радиальные фикции SmffiJ удовлетворяет уравнению Ьесселя: 

Учитывая граничное условие при р - о , имеем 

313 



Коэффициенты CJP) определяется граничная условиями на бесконеч­
ности и имеет вжд 

Ст (Р) = exp[iVtn - iglm-jit- in se.7. ( 2 # I 3 ) 

Спектральная функция раэяокешш (2.9) вычисляется кэ условия 
непрерывности волновой функция Y(x,y.,t) прн Ъ =о по формуле 

с ^ = i f . Р / exp[{V] Ур&> • ( 2 Л 4 ) 

Рассмотрим сначала случай /Э = ft- , где ft - целое число. 
Тогда имеем 

=iF e4>lin(*-*r")]£expLi&]3(f'f)eMim!(<i'-%)]= (2.15) 

Выражение (2.14) перепишем в виде 
С(Р) = С?Л ех-р fin (y>F +vj]r (2.16) 

где 
С (pi =ф !и/еоср[г(#-р^-яъ<г]= 

Таким образом, волновая функция при £ ? ° имеет вид 

Yr*s,tj- Ы^г1^рс:с?>е**>[-ш£+чф]ъ (зле) 
т.е. представляет^собой супврповицию плоских волн (волновой па­
кет) со спектром с Ср) . Калибровочной мнситель«з££'яр7обвспе-
чжвает устранение вклада вектор-потенциала из средних значений 
всех физических величин. Он имеет особенность при j a * - o , которая 
соответствует сингулярности вектор-потенциала данного поля в не 
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приводит к каким-либо трудностям. Это становится очевидным, если 
рассмотреть рассеяние на экранированном соленоиде конечного ра­
диуса, где возникает такой же множитель, но волновая функция при 
Р=о обращается в нуль. 

Спектрахьная функция сСр) волнового пакета (2.18) зависит 
от установившегося значения потока магнитного поля. Эта зависи­
мость естественно объясняется действием на начальную плоскую вол­
ну (2.8) вихревого электрического поля (2.3), которое и формиру­
ет данный волновой пакет. Заметим, что в случае fi=n никакой 
рассеянной цилиндрической волны не возникает и все изменение па­
дающей плоской волны сводится к ее деформации под действием им-
пульсвого электрического поля в момент времени t- = o . 

Волновая функция (2.18) может быть представлена в явном, во 
физически менее наглядном виде: 

/ — 

В частности, при И- = 8 имеем 

(2.19) 

(2.20) 

Рассмотрим теперь картину рассеяния при уЗ + п. . в этом слу­
чае стационарное решение К (р) уже не приводится к виду (2.15), 
так как функция 

•2- exp[iji (<?-<% -1<-)]еаср[-<:р/>] 
претерпевает разрыв при f=&v ж поэтому не является решением 
стационарного уравнения Шредингера. Асимптотически при больших 
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значениях ft[-i-Cos(i/>-<ffi)] стационарное решение Vg(^>) содержит 
плоскую волну и расходящуюся цилиндрическую волну , 

% (fi> =2W£exp[iirnt -фт-4-1т%)"J(f>P> expfim if] 
1П.-Щ 

•^reocplifil<f-%-mleocp[ipp] * щ ^ ч fM exp[ip/>], 
(2.21) 

где S- 1 прио<у уля и S--1 при-Я^^-у, <о , a flfj- амплк-
туда рассеяния: 

J l f / (sr)* P l i V * z "'suf=» (2.22) 
£ 

fi = H.-S , o<?< r. 
Заметим, что первый асимптотический член в (2.21) не нарушает 
однозначность решения, таи как эта формула несправедлива при ма­
лы:: значениях f-fp •где амплитуда падающей плоской волны 
уменьшается (область тени); при этом фазовый множитель перестраи­
вается так, чтобы в асимптотической области волновая функция ос­
тавалась однозначной и непрерывной. 

Волновая функция системы при £ ?о будет, по-прежнему, опреде­
ляться выражением (2.9).где 

» ~ г (2.23) 
о я г — • ,т?' т 

но в отличие от случая /3 = л , она уже не является суперпозицией 
плоских волн. Напротив, асимптотически волновая функция при t ? ° 
содержит не только суперпозицию плоских волн со спектром (2.23), 
во и суперпозицию расходящихся цилиндрических волн. Именно пос­
ледние и несут информацию о наличии потока магнитного поля вдоль 
оси o i и позволяют определить его величину по модулю целого 
числа ,yj=A-<5" . Выражение для волновой функции Yfay.tJ при Ь>о 
в виде ряда no т. достаточно громоздко и здесь не приводится. 

Результаты, полученные для случая падающей плоской монохро-
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магической волны при t<o тривиально обобщатся на случай волно­
вых пакетов. 

Пусть ори Ь<о волновая функция представляет собой волновой 
пакет: 

Ч(х,ч,Ь)ш ijdftaW^r ***HU£ + *'*/!. (2.24) 

Тогда решение при t >0 можно записать в виде 

^fclpgcp} exp[-ibt£]r-(j!), ( 2 ' 2 5 ) 

где 

ё(р)~ fd#a(4} с(P) , <2.26) 
а спектральная функция Cfp), зависящая, конечно, и от волнового 
вектора # , определяется выражениями (2.14), (2.16) и (2.23). 

Опираясь на полученные результаты, можно заключить, что про­
цесс включения магнитного поля в соленоиде приводит, во-первых, 
к деформации начального состояния - свободно распространяшегося 
волнового пакета -, аналогичной изменению импульса классической 
частицы под действием возникапцего при включении электрического 
поля, и, во-вторых, к появлению (пришли ) расходящегося ци­
линдрического волнового пакета - рассеяния Ааронова - Бона. 
Квантовый характер этого рассеяния становится очевидным, если 
учесть, что рассеянная волна возникает лишь в том случае, когда 
падапний волновой пакет охватывает соленоид (ось ол ). Это за­
ключение немедленно вытекает из формул (2.26) и (2.14). В кван­
товой механике классическая частица описывается узким волновым 
пакетом. Если классическая частица не пересекает соленоид, соот-
ветствупций волновой пакет не охватывает ось о г и рассеивается 
только индуцированным электрическим полем. Таким образом, в клас­
сическом пределе возникает знакомая классическая картина рассея­
ния. 
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3 . Изменение стадюнарннх состоянии электрона, двжжуцегося 
вокруг соленоида, при вклинении шаля 

Рассмотри {шиитное дввжевже электрона в пространстве между 
двумя коаксвальвынх цилиндрическими вепроницаемшш поверхностями 
с радкусамв а. к 6 . Пусть внутрв цилиндра меньяего радкуса & 
помещен соленожд, в котором в момент времени t = o создается 
магнитное поле, полна! поток которого равен Ф. В пространстве 
между цилиндрами это поле описывается векхор-потевпкалсм ( 2 . 1 ) . 
Распределевке магнвтвого поля и вектор-потенциала внутра солевов-
да здесь несущественно и может быть произвольным. 

Волновая функция электрона прж t>o может бить представлена 
в виде суперпозиции стационарных состоянии с заданное энергией: 

Yfx,v,t) = £С(£} ezp[-iftj ye (*.у) • <") 
(Тржвиальимн множжтель exp[-%it4*t-t-i£,* 1 , описыващи* свободвое 
двнкевже вдоль оси oi здесь опущен). 

Стационарные состоянжя овстеш можно запнсать в вжде 
«о 

% (*>Ч) = L #« Wexfifim у] , (3.2) 

где раджальвые волновые функции &т(р) должнн удовлетворять урав-
иенжв Бесселя 

и граничный условиям 

R (*)=£ (4) = о. 
Отсода шеей 

** <Р> - <£%<?> - C'N,^-
где ^ 

см У (p*J+cUJrt (pt) = o. 
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Эти уравнения и условие нормировки волновой функции определят 
возможные состояния системы, причем энергетический спектр задает­
ся уравнением 

у (PCL)N (P*)-J (pe>N(Pa> = о. l 3 6 ) 

Все корни этого уравнения вещественны, просты и стметричны от­
носительно точки Р = о /10/. для больших значений р * , рв 
используя асимптотику функций Бесселя, получаем 

Общее решение при t >о имеет вид 

(3.8) 

где CHm(jiJ - произвольные постоянные, удовлетворящие условии 
нормировки волновой функции 

Волновая функция, описывапцая произвольное состояние систе­
мы без магнитного поля при t<o , получается из (3.8) и ( 3 . 6 ' , 
если положить jz= о ; 

п.,т л ' 

Чтобы получить полное решение задачи при всех значениях t , 
нужно сшить решения (3.8) и (3.10) при t =о . условие непрерыв­
ности волновой функции при t = о имеет вид 

ZcH (o)Ri (РпМо)=Тс tf)R (P„,JJ»f), ( З Л 1 ; 

13.10) 
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где введено обозначение 

Суммы в обеих частях соотношения (З.П) представляют собой 
ряды Фурье - Бесселя '* ', что позволяет легко выразить коэффи­
циенты Сп т ( ° ) и C-niln(ji) друг через друга. Таким образом, по на­
чальному состоянию системы, заданному в виде произвольной супер­
позиции стационарных состояний с энергетическим спектром Р п т ( ° ) 
и спектральными коэффициентами с к , т

( 0 > -. «ожно однозначно опреде­
лить спектральные коэффициенты £„„(/!;, т.е. найти состояние, 
в которое переходит система после включения магнитного поля в 
соленоиде. Естественно, полученное состояние будет обладать дру­
гим энергетическим спектром, так как в процессе включения на 
электрон действовало индуцированное вихревое электрическое поле 
(2.3). Заметим, что классическая заряженная частица при таком 
воздействии также изменит свою энергию. Однако нас интересует 
здесь не это тривиальное изменение, а проявление специфического 
квантового эффекта взаимодействия с вектор-потенциалом, анало­
гичного эффекту Ааронова - Бома при рассеянии. Рассмотрим, в 
частности, вопрос о том, можно ли, анализируя состояние системы 
только при t > о и не имея никакой информации о ее состоянии 
при £ < о , определить, имеется ли магнитное поле в соленоиде, 
т.е. в области fi<a , недоступной для электрона? Ответ на 
этот вопрос, как и в случае рассеяния, зависит от величины уста­
новившегося потока магнитного поля. 

Действительно, пусть р = €• , где t - целое число. Тогда, 
производя замену индексов т - - Е = т ' в соотношениях (3.6) и 
(3.8), получим для волновой функции системы при Ь>о следущее 
выражение: 

Y(x. Ч.Ь->£=С) = exp[i€<f] yr(x.v,t;fi = o)t l 3.I3) 
где exp[i£(p] _ несущественный калибровочный множитель, всюду 
регулярный в области, где волновая функция отлична от нуля, а 
¥ ( x , y , t ; j t - ° ) - волновая функция некоторого другого состояния 
в отсутствие магнитного поля. 

3i!0 



В противоположном случае подобное преобразование невозможно, 
волновая функция электрона при включенном поле существенно отли­
чается от волновой функции в отсутствие магнитного поля. Ее энер­
гетический спектр оказывается совершенно другим, причем он не 
тол. .) сдвигается при включении магнитюгэ поля в соленоиде, как 
это имеет место в случае ротатора ' ' , но и деформируется так, 
что расстояния между уровнями энергии начинают зависеть от вели­
чины установившегося магнитного потока в соленоиде fi (по мо­
дулю £ ). Таким образом, совершенно очевидно, что волновая функ­
ция системы при Ь >о содержит определенную информацию о магнит­
ном поле в области, недоступной для электрона. Заметим, что,как 
и в случае рассеяния электрона, этот эффект проявляется лишь в 
том состоянии, когда волновая функция охватывает соленоид. Эф­
фект исчезает, если в цилиндрической полости, в которой движется 
электрон, поставить непроницаемую для него перегородку. В этом 
случае волновую функцию электрона при включенном поле с помощью 
калибровочного преобразования мокно свести к некоторой волновой 
функции в отсутствие поля. В клаггччесхом пределе, когда чаотща 
описывается компактным волновым пакетом, которая не охватывает 
соленоид, эффект также исчезает. 

Рассмотренный пример финитного движения представляется нам 
особенно поучительным при обсуждении эффекта Ааронова - Бома, 
так как он свободен от каких-либо математических неопределенно­
стей, связанных как с сингулярностью вектор-потенциала лрвр = о , 
так и с его слабым убыванием на бесконечности. С другой стороны, 
физическая проблема приготовления начального состояния системы 
здесь решается динамически и становится тривиальной. 

Заметим также, что в рамках нестационарного подхода видна яв­
ная несостоятельность высказанного в работах ' ' утверждения о 
допустимости многозначных волновых функций в многосвязном про­
странстве, так как в отсутствие поля пространство становится од-
носвязным, волновые функции однозначными и условия сшивания не 
могут быть выполнены. 

В целом нестационарный подход к эффекту Ааронова - Бома поз­
воляет лучше понять различие ролей вектор-потенциала в классичес­
кой и квантовой физике. 
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ИНДУЦИРОВАННЫЙ ЯДЕРНЫЙ 0-РЛСПАД 
В ИНТЕНСИВНОМ ЭЛЕКТРОМАГНИТНОМ ПОЛЕ 

И.М.Термов, В.Н.Родионов, О.Ф.Дорофеев 
Московский госудерственный университет им. М.В.Ломоносова 

Скоро исполнится 50 лет с момента создания первой теории од­
ного из интереснейших явлений ядерной физики - теории (5 - рас­
пада (Э.Ферми'1', 1934 год). Уже в раннем периоде исследования 
этого процесса пытались воздействовать на его ход за счет внеш­
них факторов: изменения температуры, давления, химического со­
става и до/ '. Но эти попытки не приводили к желаемым резуль­
татам. Причина подобных неудач становится понятной, если учесть, 
что энергия упомянутых внешних воздействий не превышает несколь­
ких электронвольт, в то время как характерная величина энергии, 
выделяющейся в ядерном [2>- распаде, лежит в области { Ю - 3 -
10) "> с , где т - масса покоя электрона. 

Последние годы развития физики характерны открытиями источни­
ков сверхсильных полей, статических и переменных во времени. 
Прежде всего это касается гигантских магнитных полей 1 0 - 1 0 3 

эрстед вблизи обнаруженных в 1967 году пульсаров - вращающихся 
нейтронных звезд. Значение напряженности таких полей приближается 
к критическому { т о к называемому швингеровскому) полю Н с = 
» w с3/(е X ) « 4,41 ТО13 эрстед *'. Пульсары представляют co­
il) Заметим, что эквивалентное этому значению электрическое поле 

способно "расшатать" электронно-позитронный вакуум и привести 
к рождении пер электронов и позитронов. 
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бой уникальные лаборатории для исследования вещества в экстре­
мальных условиях, поскольку наряду с сверхсильными полями для 
них характерны и сверхвысокие плотности вещества {10 -10 г/ 
- Ю 1 5 г / с м 3 ) . 

Подлинная революция в электронике и оптике, происшедшая в 
связи с развитием квантовой электроники, открыла невиданные воз­
можности концентрации энергии в пространстве и в заданном частот­
ном интервале. Важно заметить, что напряженноста» электрическо­
го поля световой волны лазера достигает 10-10 В/см, то есть 
является сравнимой с напряженностью внутриатомных полей. Лабо­
раторная техника создания электромагнитных волн большой интен­
сивности открывает новые возможности для наблюдения нелинейных 
эффектов взаимодействия частиц с волной. 

В ближайшем будущем предполагается получить сверхмощные кван­
ты электромагнитного поля методом обратного комптон-эффекта. 
При этом лазерный луч направляется на движущийся релятивистский 
пучок электронов и электроны передают отраженному, как от зер­
кала, пучку фотонов свою энергию (см. рис.1). Впервые такая 
схема получения фотонов с энергией ~ I ГэВ была реализована на 
синхротроне ФИАН О.Ф.Куликовым' '. 

Сверхсильные электромагнитные поля существуют также вблизи 
атомных ядер. В частности, на границе ядра урана значение иапря-

пучок электронов 

электроны повернуты 
магнитным полем 

Рис. I. Схема использования обратного Комптон-эффекта 
для получения фотонов высоких энергий. 

ж) В литературе' ' имеются описания проектов ( S L C , ВЛЭПЗ) 
получения гигантских квантов электромагнитного поля с энер­
гией ~ 100 ГэВ от электронов и позитронов, ускоренных в 
специальных ускорителях - коллайдерах. 
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женности поля достигает величины Е ~ Ю 1 9 в/см. Еще более сильные 
поля могут быть получены при столкновении двух ядер урана, когда 
на короткое время образуется кваэимолекула с зарядом Z « 184 l^t'. 

Перечисленные здесь примеры подчеркивает актуальность изучения 
возможности влияния на |6- распад экстремальных электромагнитных 
полей. Этой проблемой мы заинтересовались уже давно. Рассматривая 
общие вопросы движения и излучения заряженных частиц во внешнем 
поле методом "точных решений", когда поведение электронов описы­
вается волновой функцией s виде точного решения уравнения Дирака, 
мы вместе с Б.А.Лысовым и Л.И.Коровиной'"/ в 1964-65 годах рас­
смотрели р - распад нейтрона в сильном однородном магнитном поле. 

Нам удалось показать, что поскольку внешнее магнитное поле су­
щественно меняет характер движения заряженных частиц, это должно 
сказаться на структуре фазового пространства и тем самым ока­
зать влияние на процесс (Ь- распада. Так, в частности, магнитное 
поле приводит к возникновения резонансных особенностей в спектре 
энергии электронов распада. Резонанс имеет место, когда электрон 
после распада нейтрона захватывается на плоскую орбиту. Магнитное 
поле приводит к сильной локализации движения электрона, причем в 
полях, близких по напряженности к критическому значению Н с, элек­
трон движется по окружности "квантового" радиуса R =:£/(«. ), В 
этом случае резонансные кривые энергетического спектра электронов 
имеют яркую дискретную структуру (см.рис. 2). 

Влияние магнитного поля на полную вероятность f>- распада ней­
трона выражено слабее. Для случая Н « К С отношение вероятностей 

распада имеет вид 
W / W C B O 6 . 

Рис. 2. 

1 +в{Н/(Н с г^5) г , 

Спектр энергии 
0 - электронов 
для Н = 0 
для Н = 0 , Т Н с ~ 
для Н = Н„ 

( 1 ) 
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где 
8 0 « [н(2,Ю - 11(2+1 ,H-1)]/e - Д/(шо 2) 

- максимальное энерговвделение в единицах электронной массы, а 
и 0* 0 6- _ вероятность (Ь- распада в отсутствие поля, Q - число­
вой множитель порядка единицы. Этот результат справедлив для не-
поляризованного нейтрона. Таким образом, поправки к вероятности 
процесса растут квадратично с ростом поля. Численная оценка дру­
гого случая, когда Н=Н с(© 2-1)/2, показала, что 

W / W C B O 6 . , 5( &\ - D / fi| - 2,1 , (2) 
то есть вероятность (Ь- распада нейтрона при этих значениях поля 
возрастает более чем в два раза по сравнению с W с в о 0 \ а далее 
растет по линейному закону. 

Были исследованы также спиновые эффекты (см.'6') и установле­
но, что для нейтронов с ориентированным спином при Н « Н С зави­
симость от магнитного поля появляется в членах, линейных по на­
пряженности (см, также нашу работу^ , где для исследования вли­
яния магнитного поля следует исключить плоскую волну в конфигу­
рации более общего вида, изучаемой там) 
w/w .<£+ •Ч&са'+БЭ/з -£ 01 а(е 0+5»(н/н е) + 

+ (&0Ы% +8) - 8)(н/нс)2, 
. . 2^ 0(1 -o^o)/(l • 3 < ) , S - (б * - 1) 1/ 2. 

Здесь ot 0« G, /^v - отношение аксиальной и векторной констачт сла­
бого взаимодействия (o^0«I,25), 1Sn= -I - проекция спина нейтро­
на на направление внешнего магнитного поля, WCBo6' *Wo-$0 -
вероятность свободного )5- распада, а 

6 ( в 2 - i ) l / z i.£0 - е > 2 «*е (4) 
- функция Ферми. Характерно, что в случае р>- распада во внешнем 
поле зависимость от поляризации нейтрона сохраняется в выражении 
для полной вероятности процесса. В свободном £ - распаде подоб­
ная зависимость проявляется только в дифференциальной вероятно­
сти углового распределения электронов. Таким образом, проявление 
несохранения четности во внешнем магнитном поле обладает замет­
ной спецификой' '. 

В дальнейшем та же идея рассмотрения задачи о £- распаде ней­
трона в однородном магнитном поле была проведена в работах'®' ', 
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в которых Яыли получены близкие,к приведенным здесь, результаты 
в связи с исследованием ряда астрофизических процессов и пробле­
мам космологического "big bang". В окончательных формулах имеет 
место полное совпадение результатов Например, при Н « Н для 
А - распада нейтрона получается 

w / w c « o « . _ л _ 0 j 0 6 e ^ ( H / H c ) + о,17(н/н с) 2. (5) 
В 1965 году А.Газазян предпринял попытки рассмотреть /3 - рас­

пад в поле плоской электромагнитной волны'1 ', Однако сложность 
полученных им общих выражений (двукратный интеграл и бесконечная 
сумма) не дали возможности проведения каких-либо содержательных 
оценок. В 1974 году И.Баранов вернулся к той же задаче и провел 
оценки для случая сильного поля электромагнитной волны'* '. Эти 
оценки оказались, к сожалению, ошибочными. 

В 1978 году мы совместно с В.Г.Иулего и А.И.СтуДеникиным';' 
рассмотрели 6- распад нейтрона в сложном электромагнитном поле: 
постоянное однородное магнитное поле, совмещенное с электромаг­
нитной волной, распространяющейся вдоль его силовых линийг(кон­
фигурация Редмонда). Как было впервые показано в работе'1 ', 
уравнение Дирака для такой задачи имеет точное решение. Интерес 
к подобной задаче очевиден, поскольку она включает в себя как 
предельные случаи и поле плоской волны и постоянное однородное 
магнитное поле. При выключении электромагнитной волны результаты 
совпали с нашими работами' ', а при Н -*• 0 общие выражения нашли 
согласие с формулами рабог °' , однако нам удалось продвинуть­
ся значительно дальше и показать, что в области значений параме­
тра f = eE/<new)»I (предел постоянного скрещенного поля, 
здесь Е - электрическая напряженность поля волны, а со- ее часто­
та) все поправки к вероятности свободного /Ь- распада нейтрона 
определяется отношением В/н с: 

W/w'*"*' . 1 + 0,4(Е/Н } 2 (6) 
и никаких чрезмерных отклонений от W " в о 6•, как это предсказыва­
лось в работе' ', не существует (см. также (3)). 

В другом предельном случае, когда X - Е/Н с » Т , ми приходим 
к иному результату (см. рабоху' ' ) : 

w / wc*oe. ^ ( E / H ( j 3 ( , _ а г-> л ) > { 7 ) 

Отсюда следует, что вероятность j& - распада в сильном постоянном 
скреценюм поле увеличивается пропорционально JLr, в то время 
как для процесса распада в сильном постоянном магнитном поле ве-
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роятность растет линейно с ростом поля. Это можно объяснить раз­
личным характером влияния внешнего поля на фазовый объем состоя­
ний конечных частиц а этих двух случаях. Той же причиной объясня­
ется различие в численных коэффициентах в формулах (6) и (5), 
причем существенно, что в пределе скрещенного поля отсутствуют 
члены, линейные по полю. 

Недавно внезапный интерес к рассматриваемой задаче был вызван 
в США. Это было отмечено серией работ В.Беккера и др.' 1 3' 1 4', в 
которых авторы рассмотрели ядерный ^>- распад трития и свинца в 
поле электромагнитной волны лазерного типа. При этом утвержда­
лось, что скорость В - распада трития при малой величине энерго­
выделения 6Я «1,036 может возрастать на 3-4 порядка (аналогично 
результату работы' '). Важность изучения этого вопроса подчерки­
валась исследованиями по лазерному термоядерному синтезу. 

Критические замечания относительно справедливости этих резуль­
татов были высказаны в работах'1 , 1 6', тем не менее в них не 
содержалось альтернативных расчетов, полностью проясняющих ситу­
ацию. 

В настоящей работе мы рассматриваем задачу об электронном &-
распаде в поле плоской электромагнитной волны в обычном У-А ва­
рианте универсального слабого взаимодействия, причем амплитуда 
распада нейтрона в первом порядке теории возмущений имеет вид 

M-±G{%*(<+*.*№ Kr'O+v')*?). ( e ) 

где \J/p , Ц/п , t/̂  , Lp~ - волновые функции протона, нейтрона, 
электрона и антинейтрино; Q «1,4149 •ГО'^'эрг-см3 - постоянная 
слабого взаимодействия. В рассматриваемой задаче существенным 
параметром является величина максимального энерговыделеннл £<> . 
Поскольку это энерговыделение в общем случае достаточно мало, 
*° *$» и ^К. можно взять в нерелятивистском приближении, прене­
брегая при этом взаимодействием тяжелых частиц с внешним полем. 
Волновые функции для электрона мы берем в виде точных решений 
уравнения Дирака для частицы во внешнем поле электромагнитной 
плоской волны (функции Волкова'1 ' ) . 

Задача решается в представлении Фарри, когда в качестве вол­
новых функций нулевого приближения теории возмущений выбирается 
точные решения уравнения Дирака. Плоская электромагнитная волна, 
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характеризуемая частотой и> и напряженностью поля Е , предполага­
ется циркуляр»}- поляризованной ( £ « * П . При решении задачи о 
/6 - распаде возникают характерные параметры, входящие в выраже­
ние вероятности процесса: 
-X «-fctO/dnc2), У- « Е/Нс , *^ - %/Х • eE/(mc«j). (9) 
Параметр V • н е содержащий Л , является, по существу, классической 
величиной: он представляет собой работу электрического поля на 
расстоянии, равном длине волны, выраженную в единицах энергии 
покоя электрона. 

Не останавливаясь сейчас на деталях расчета полной вероятно­
сти (техника вычислений подробно изложена в работах'^"™' ̂ пе­
рейден к обзору основных результатов. Прежде всего остановимся 
на случае электромагнитной волны-со сравнительно малой частотой, 
когда -X » ft ь>/(тс ) « 1. 

Эта область включает энергии квантов, характерных для лазеров, 
когда Х * Ю , Анализ исходных выражений 'показывает, что 
электромагнитная волна вносит существенные изменения в энергети­
ческий спектр /6 - электронов. Дифференциальная вероятность ока­
зывается зависящей от параметра ^ . Как видно из представленных 
на рис.3 графиков,вместе с ростом параметра "̂  спектр энергии 
электронов, образующихся в процессе р - распада, смещается в ре­
лятивистскую область, причем число возможных энергетических со­
стояний электрона увеличивается по сравнению с (Ь - распадом в от­
сутствие поля. 

at Рис. 3. Распределение по ква­
зиэнергии электронов |Ь - рас­
пада трития (&0= 1,036) в 
поле электромагнитной волны. 
Параметр "£ = ~Е характеризует 
среднюю за период энергию 
электрона. I. "£= 0; 2. *? = 
= 0,2: 3. ̂  = 0,27; 4. у = 
= 0,4. 
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Волна служит резервуаром энергии, которую_получает электрон, 
поэтому спектр энергии не имеет обрыва при & - &0 , как это име­
ло место в свободном /Ь - распаде. Более того, начиная со значе­
ний Y * О* 2 7 Д* я трития и "̂  — 2,4 для нейтрона спектр энергии 
(Ь - электронов вообще не имеет общих точек со спектром свободно­
го распада. 

Положение однако существенно меняется при переходе к полной 
вероятности уд- распада. Из графиков рис.3 видно, что по мере ро­
ста параметра If соответствующие кривые отличаются падением ост­
роты пиков, то есть уменьшением спектральной вероятности. Числен­
ное интегрирование по спектру на ЭВМ, а также аналитический рас­
чет приводят к следующим выражениям для полной вероятности £-рас-
пада: при А < К 1 , ( Е / Н С ) ( & 2 - 1 Г 3 / 2 <К I 

*/*„ - * 0 • [«! + -Хв-Р (Е/Н с) 2, (10) 
где Ф 0 - функция Ферми (см.(4)), 
»0« уг е 0 Ыб 0 +(е*-о 1 / г) + (е|-1>(ге* - э е | - в>/зо, 
a 4j и Ф 2 соответственно равны 
* т- г/з е 01п(£ 0+(£*-1) у г)(1 + » Ч ; ) - V2(€§-I) r / 2( 1+4*4^3), 

Ф 2 . V6 g (1 + а*£)1д(£ 0 • {&1-%)л/г). 
Полная вероятность здесь зависит от ориентации спина ядра, что 
является отражением несохранения четности п слабых взаимодействи­
ях и существованием выделенного волной направления в пространст­
ве. Зависимость от поляризации волны выражена слабее. 

Суммируя и усредняя (10) по поляризациям волны, получим чис­
ленно: для нейтрона 

w/w с в о 6 ' - 1 + (о,4 + о,эа*?»)(в/н с) 2, ( п ) 
для трития 
*/• С В 0 6- - 1 + Ю*(1,Э + •И**?,ХЕ/Н С)? (12) 

Как видно из этих результатов, зависимость от параметра ^ в 

полной вероятности /в - распада выпадает. Таким образом, в весь­
ма широких пределах увеличение плотности потока энергии в волне 
не скажется на времени fi - распада, практически независимо от 
энерговыделения 6 0- Этот результат отрицает выводы работ ' Х * 
13,14/ # д,,, известных /5- активных ядер и реально существующих 
полей лазеров возможность наблюдения поправок к вероятности сво­
бодного уЬ- распада представляется не слишком оптимистической. 
Хотя в гипотетическом случае, когда £<,-*•!, величина электро-

330 



магнитного поля, способного оказать существенное воздействие на 
вероятность £>- распада, может оказаться весьма мало», 

Рассмотрим далее второй случай - область больших .̂ "тот, ког­
да .X • i W C m c ) & £ „ -1-Как показывает дальнейший аь. -з вы­
ражений для вероятности ядерного (6- распада, в случае воздей­
ствия мощной электромагнитной волны этот процесс может значитель­
но усиливаться. При этом существует целая область значений пара­
метров внешнего поля, для которых вероятность ядерного 6- распа­
да, индуцируемого интенсивной электромагнитной волной сильно воз­
растает. 

Так, в частности, если энергия кванта волны окажется достаточ­
ной для сохранения энергетического баланса в однохвантовых реак­
циях, то при 

V c i + Т 2 ) 1 / 2 « * / « £ 0 + > о 2 - ^ -1)1/г 
вероятность ув- распела оказывается существенно иной' и /. 

В этом случае при Ха>|€»,1>1 вероятность ядерного /5- распа­
да может полностью определяться параметрами внешнего поля, по­
скольку с увеличением значений Л индуцированный вклад быстро 
возрастает{W/w 0~ ^ Л 3 In Л ) . Вероятности распадов при £в>1 
и £ 0 < 1 практически совпадают и, таким образом, индуцированный 
ядерный (Ь - распад в этих условиях протекает независимо от вели­
чины и знака параметра энерговыделения &0 . Появление существен­
ной частотной зависимости полной вероятности f>- распада лишь в 
области достаточно больших энергий квантов волны можно трактовать 
как своеобразный фотоэффект в ядерном £>- распаде. 

Полное сечение процесса уб - распадного фотоэффекта имеет вид 
б . G 2m 4r 2\ 2/<30<K 2oC){[l + 5(1+g)/2lln2\-

-(95/24)(1+e) - 107/60}o(,e2/(fcc), r 0« e 2/(mc 2) 
и показательно, что оно не зависит от интенсивности волны f . 

Большое значение в рассматриваемом приближении имеют поляриза­
ционные эффекты, непосредственно связанные с проявлением наруше­
ния пространственной четности в слабых взаимодействиях при воз­
действии внешнего электромагнитного поля, в частности, при 
1п2.Х» 1 в (в- - О / 5 ( g . +1) ~ 1/6. 

С точки зрения возможных экспериментальных приложений получен­
ных результатов в области малых энергий квантов волны или при ис-
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следовании воздействия на в - распад достаточно слабого посто­
янного магнитного поля или постоянного поля, образованного рав­
ными по величине электрическим и магнитным полями, особый инте­
рес представляет анализ полевых поправок к вероятности процесса 
в двух характерных случаях: нерелятивистеком и ультрарелятивист-
скои. 

В случае малого энерговыделения (& 0-I « D из (3) с точно­
стью до членов, квадратичных по напряженности магнитного поля, 
можно получить 
W/t o-(4/105)(fi„-l) 7 / 2 (1 + 7/2а (Н/Нс) +(35/12)(Н/НС)2).(13) 

Для релятивистского распада (€0

:^>1) влияние относительно сла­
бого магнитного поля определяется выражением 
*/W 0« (£;j/15) [ 1 + 5 Е ^ ( Н / Н С ) + 5(Н/Н е) 2(1п2& 0 -1)] . (14) 
В формулах (13,14) не зависящие от магнитного поля слагаемые оп­
ределяют соответствующие предельные значения для вероятности 
"свободного'' /в- распада и совпадает с известными в литературе 
значениями (см., например/ 2 1'). Точные коэффициенты в слагае­
мых, зависящих от магнитного поля, вычислены нами и приводятся 
впервые. Поправки к вероятности процесса существенно зависят от 
величины отношения Н/й^, где Нц.Н^е 2, -I). 

Смысл величины Н с можно установить, если учесть, что в магнит­
ном поле характерной энергией является энергия циклотронного дви­
жения -fe «»>H -(H/H c)mc 2. Действительно, если при напряженности 
поля Н«Н С энергия t w H равна энергии похоя электрона, то в поле 
Н«Н С та же энергия "Ь со н соответствует максимальной кинетической 
энергии, выделяемой в нерелятивистском распаде. В случае реляти­
вистского распада (&0» I) эти рассуждения остаются в силе с 
той лишь разницей, что характерной частотой теперь является еин-
хротронная частота обращения электрона по орбите л> с*еН/(*»6 0). 

Таким образом, можно установить, что действительный параметр 
разложения вероятности по напряженности внешнего постоянного 
магнитного поля имеет вид 

„~ * р .n/sHeiel-i), & 0 - I « I , н/н„ = н/н р(«2. п „ J ( I 5 ) .„л 2 . 'о' Отсюда следует, что с уменьшением энерговыделения (£п—*Т) ели-
Н^с £о' Ьо»1-
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яние поля становится существенным даже в полях относительно ма­
лой напряженности по сравнению с Н с. 

В постоянной скрещенном поле, а также в поле рлектромагнитной 
волны при малой энергии квантов "fe«о<<те2(е£-1), из формул 
(10) с точностью до квадратичных членов следует при & -I « I 

*/w0 -u/io5)ce2 -i) 7 / 2 u + 35(B/HC)V8), (16) 
а при £, 0 » Г 

W/W 0 . & l ( 1 + 10(E/Hc)2(ln2 6 o - 4/3)). (17) 
Представляет интерес сравнить полученные результаты (16-17) с 
полученными ранее выражениями (T3-I4) в случае постоянного одно­
родного магнитного поля. 

Отличительной особенностью рассматриваемого здесь скребенного 
поля по сравнению с чисто магнитным полем является возможность 
совершения им работы за счет электрической составляющей. Это при­
водит к тому, что характерный параметр, определяющий влияние по­
ля ни распад, имеет 9ид, отличный от рассмотренного ранее случая 
магнитного поля. Смысл параметра просто установить, используя ка­
чественные соображения. Действительно, в постоянном скрещенном 
поле Н с может быть сопоставлена величина поля, создающего на 
комптоновской длине волны электрона работ;', равную его энергии 
покоя, тогда как в нерелятиЕИСтскои распаде характерное поле, со­
поставляемое Н с, создает на дебройлевской длине работу, равную 
максимальной кинетической энергии, выделяемой в распаде. 

В ультрарелятивистском случае ( £ 0 » 1 ) процедура определения 
Н с > как и ь случае чисто магнитного поля, сохраняется, однако 
кинематические характеристики имеют другой вид, поэтому при £,»! 
величина Н с = Н с £ д . 

Сравнение формул (13 - 14) с (16 - I?) показывает, что для 
неполяризованных ядер влияние поля, совершающего работу (посто­
янное скрещенное поле, поле электромагнитной волны) в случае ма­
лого энерговыделения ( S 0 - I « I ) оказывается более существенным. 
В ультрарелятивистском случае полевые поправки отличаются линь 
численными множителями. 

Следует подчеркнуть, что при •feo>>mc2(«2
1 -1) зависимость 

вероятности распада от частоты проявляется слабо и заметна толь­
ко в квантовых поправках 

~ 0[<*«/<-ег<**-1))3]. 
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Область частот i>«>j>mc (£.g - 1) характерна тем, что изменение 
полной вероятности в ней может стать весьма заметной даже при 
относительно низкой напряженности ̂поля, поскольку вид квантовой 
поправки меняется и имеет вид (H/H C) 2JT, где if» 'bw/mc (« 0-1)'. 

Это изменение можно качественно пояснить, сопоставив деброй-
левскую длину электрона распада V(mc(£^-i)' с длиной электро­
магнитной волны (с/ to ) . В том случае, когда c/*><fc/mc(«s 2-1) *2, 
определение характерной длины изменяется и зависимость от часто­
ты в этой области становится доминирующей. Как указывалось ра­
нее, в пределе больших частот X > 1 полевая поправка может да­
же превзойти вероятность свободного распада и в этом случае па­
раметром будет (fi/H c) 2A . Аналогичная ситуация может иметь ме­
сто и в области .*?*< I. В этом случае должно выполняться условие 
Е » H c(Sg-I) ' и характерным параметром длины будет 

1 0 ~ (#вЕ) / 3. 
На этой длине внешнее поле сообщает электрону распада энергию 
~ т ( Е / н с ) 2 / 3 . 

Таким образом, полевой вклад в вероятность распада в случае 
(Е/Н с) 2' 3» СЬ^" 1 ' оказывается определяющим и полная вероят­
ность пропорциональна (Е/Н с) ' . Величина Н. очень велика и на­
пряженность электромагнитного поля, способного привести к сущее*. 
векноцу изменению вероятности А - распада в этой области должна 
быть весьма значительной. 

Важной проблемой в ядерной физике и физике высоких энергий яв­
ляется определение массы покоя нейтрино ' . Проведенные недавно 
эксперименты позволяют оценить ее величину (и v ) значением по­
рядка десятков электронвольт. Эти оценки оказались чрезвычайно 
полезными в астрофизических приложениях'23'. 

Не останавливаясь на деталях расчета, укажем, что во внешнем 
электромагнитном поле проявление a v j О может оказаться весьма 
значительным. В частности, в постоянном однородном магнитном по­
ле Н « Н С , интегрирование дифференциальной вероятности распада 
приводит к результату'24' 

"^о " Ф.-/» 2* 3/6 + V2 •*£*< S+ Б3/3 - £0 ln| £ o +S|-
- /Д.2 2/2) - y6jc2( $- б 0 ш | & 0 + £ | ) , М- шу/ш . 

В случае малого энерговыделения (<5"<*с1) отсюда можно получить, 
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что для неполяризованного ядра при значении поля Н = ./5 Н^, где 
Нр « "V m/e, полевые поправки в точности компенсируют поправки 
по массе нейтрино. Для полей Н J» Н с доминирующий вклад в вероят­
ность распада будут давать состояния ф- электрона, близкие к 
основному. Выделяя случай H 5 H C ( S ^ -D/2, для которого единст­
венно возможным состоянием электрона в магнитном поле является 
основное ( OL= 0), имеем , 2 Г 

w/w o . У2( 1 + ьЩ,) % ( У + У 3/3 - <£ 0 m U 0 +d| - ^ / г ) } 

откуда следует, что поправки, обусловленные т ^ 0, растут линей­
но с ростом напряженности магнитного поля Н и при этом существен­
но зависят от ориентации спина ядра *?, = ± I. 
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ОМ RADIATIVE DETECTION OF NEUTRAL PARTICLES 
PRODUCED IN e+e~-COLLISIONS 

Yu.A.Gnedov, K.G.Klimenko, F.F.Tikhonin 
Institute for High Energy Physics, Serpukhov 

INTRODUCTION 
The intensive theoretical elaborations of suporsymmetry,as well 

as of supergravity''-''', brought us urgently to the necessity of 
the experimental research in this region. The basic direction here 
is a search for supersynmetric partners of ordinary par), ities nnri 
a graviton partner in a supergravitation doublet - the spin Л/2 
gravitino 5. The phenomenological analysis of possible mechanisms 
of their production and decay is 'mite as uncertain as their IMI de­
coupling constants and masses are; and, Lo this, Uie estimations 
of the latter, depending on the mechanism of siipersymmel ry breaking, 
vary in the extremely wide interval. For example, for m= this inter-

7 /9/ /?/ G 
val is from 10 keV'" to hundreds of GeV' ' . However, it seems 
quite necessary to make attempts for their search already at the 
present accelerators,at least to impose restrictions on raas. es and 
coupling constants. Search for these particles in hadror beams/'1'' 
is hampered by large background processes; therefore it seems that 
experiments on the e e'-colliding beams will be first real steps in 
this direction. Perhaps, the most attractive process here is the 
following one: 

e +e~ •* у + unobserved neutrals (1) 
(see refs. , especially the concluding sentence of paper / a e'). 

Due to the richness of the supersymraetric particles spectrum 
and the miscellaneous content of their spins, masses and coupling 
constants,one needs thorough calculations of the photon spectra. 
These spectra are the only source of information for different cases, 
and this information may be used to define the properties of the 
components from "unobserved neutrals". In particular, it may be use­
ful for the definition of their spin, as will be shown below, unfor­
tunately, previous works except ref.^*1', either underestimated 
this fact or contained incorrect calculations^50''-'/. In this paper 
we have also corrected the mistake of ref./ 5 e/ caused by the erro­
neous accout for the masses of photino у produced in process (1). 
Also the analysis of the possibilities to extend the integration 
range over the photon azimuthal 4̂ ij"='i:,Jj angle has been made, and 

337 



it was shown that one may place the detecting apparatus closer to 
the e"-beams than it was supposed. This would help to increase the 
number of events. Note also, that the results given here may be 
reffered equally well to more traditional questions, for example, 
counting the number of neutrino-types, search for neutral heavy 
leptons, etc. 

I. ON PHOTON AZIMUTHAL EMISSION ANGLE 
(ACCOUNT РОВ e^MASS) 

The high-energy limit (up to the Z - production threshold) of 
the cross-section of process (1), where "unobserved neutrals" = 
= i'.v., has the form'6': 1 1 2 2 "C„-

oxoy = - ; r l N " < g V + g A 2 > * *<*» • * * > • * ! • 

••"V'-^vVb (2) 
In this expression N„ is a possible number of neutrino types, g„ 
and g. are the Salam-Weinberg constants, x = E /E , у ж cos 0,, . In 

e" 
one of the earlier papers it was offered to use in practical cal­
culations the integration range of cross-section (2) over у in the 
limit 20° < в у •£ 160° in order to avoid possible mistakes because 
of the singular behaviour of the factor 3/(l-y2) at small Qy .Then 
this suggestion was used in the analysis of possible experiments'6'. 
At the same time, at these large angles we lose in the absolute va­
lue of the cross-section, since process (1) is a bremsstrahlung one. 
Besides, the rejected terms are sometimes comparable in magnitude 
with those taken into account. As an example, this may occur in the 
case of the single W-boson production in the reaction e +e~ •* 
- e"W +C^' 8'. Finally, the low-energy behaviour of the cross-section 
of process (3)may turn out to be useful, in particular, for the 
astrophysical applications^ '. All these arguments lead to the 
necessity to take into account the e _ mass. The corresponding cross-
section is given in the Appendix.lt also includes the resonance fac­
tor corresponding to the Z0-boson for the energies above the produc­
tion threshold of the latter. For comparison with (2) we give the 
cross-section integrated over the whole interval of у (А.1), in 
which only the terms, comparable with (2), are present, 

aofs 

2 
. « П 5 " -1) ( 1 - Х *• 5.) (3) 

m 2 8 
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practical calculations of the cross-sections both with the help of 
expression (A. 1) end (3) (see ref. 5 /) show that: 

1) the augmentation to the cross section due to m is small 
(it is only 4%); and, which is, probably, more important, 

2) expression (2) may be integrated up to very small 0 (to 1 
and smaller, though it seems that 8^£ 2° t 3° are practically use­
less), and the difference with the corresponding integrated expres­
sion (A.l) is insignificant. However, the analysis performed 
shows that in the experiments one may be not "afraid" to narrow в., 
because of possible differencies between the theory and practical 
results. 

2. MASSIVE SPIN 1/2 PARTICLE PRODUCTION BY MECHANISM O ) 

In recent' experiments at DESy' ®' no neutral heavy leptons with 
the electron quantum number have been found up to the masses - 24GeV. 
But it is possible that stable leptons with other quantum numbers 
exist with relatively small masses and mixed V- and A-type coup­
lings. In supersymmetry theories photino, for example, belongs to 
this type of particles. In any case,the search for them in the 
processes of type (1) needs a thorough theoretical estimations of 
production probabilities. In the recent paper' 5 6' comparatively 
full analysis of this question is given, but, unfortunately, it is 
based on the expression for the cross-section which is not quite 
correct in that part which deals with the account for masses m~ . 
Besides, the "correct" part of the analyzed cross-section refers 
only to the (V-A)-variant of the photino interaction, while for the 
particles of this type one should most probably expect a mixture of 
the V- and A-variants as in the Salam-Weinberg case. In ret/ ' 
the procedure of taking into account masses % consisted, in fact, 
in multiplying cross-section (2) for the massless pair by the 
'IP-wave factor" /33 = (1 - 4m|/s(l-x)) 3 /' 2

; taking into account the 
part x of the energy which is carried away by photon. Direct calcu­
lations do not justify such an assumption. To remove this inaccuracy, 
here we give the_cross-section with account for the masses of the 
produced pair (yy) m_ . The notations are the same as in (2): 

l°- -_ ! _ ! s

( g

2

 + g

y

2 ) i : x / j $ ' j___ 
dxdy 1 9 n 2 V B V B A ' x V J s(l-x) 2 " 

• > ^ - v > ^ - s < " f e H a - ^ + i x V . + 
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where t . ., are the coupling constants of the pair ( ?F ) with matter. 
It can easily be seen, that in the case of pure versions of (V-A) 
(f = f.) this expression turns into (2) with the factor 

A = [1 - 4m~/s(l-x)P[l - m~/s(l-x)], but not with B= [l-4m|/s(l-x)]^ 
as it is stated in ref./5e/ (in accordance with the remark made in 
the introduction to this point). To demonstrate the difference bet­
ween these two factors, we offer the table, which represents the 
ratio A/B for s 
ferent x: 

1444 GeV (PETRA energy) and m- = 10 GeV for dif-

Table 1 

X 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 

A/B 1.33 1.4 1 . 5 1.64 1.9 
-

2 .7 - 10 

As may be seen from this Table, the difference between two cross-
sections is rather substantial, even at small x. Moreover, the fac­
torization proposed in ref./ 5 e/ is absolutely unjustified in the 
case of the arbitrarily mixed variants V and A. 

In our practical calculations we mean a possibility of perfor­
ming the experiment at PETRA with energy 19x19 GeV 2. The Salam-
Wei nberg constants at sin z0„ = 0.23 were also used. The integration 
was carried out in the "traditional" interval 20°^ ву $ 160°. The 
V(A)-variant corresponds to f« f V4 = 0, fy/дч = 1, for (V+A)fA 

= fу = 1/2. One should pay attention to rather low values of i 
sections given below, i.e. in the average da/dx • 10" 3" 2m . These Q values may increase essentially first with the growth of s(o~s ), 
secondly, in the range of the peak caused by Z°-boson, they increase 
approximately by 4 orders (it is trivial to include the correspon­
ding factor, see Appendix), and, then in the case of the photino 
pair production the prefactor in (4) aG2. s(g^ -• g^)/12^ is replaced 
by la s/3ma , where ra~ is scalar quark mass (unknown). The ratio 

e R eR 
of the given "coupling constants" is in favour of the latter by 
2f3 orders, so that the restriction о i 10" cm which is necessary 
for the experiment, becomes greater in the case of a photino already 
at energies s = 1444 GeV 2 (PKTRA) for the wide mass range of a sea 
lar quark (up to m- e 50 GeV). One should also note, that x-depen-

eR 
dencies of different variants are such that they may be distinguis­
hed experimentally. And thus they will help to decide what pair is 
namely produced in the experiment. Here the greater the mass mjTis, 
the larger is the difference between the interaction variants. Howe­
ver, Table 2 speaks for itself: 
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Table 2 

m = 5 GeV m = 10 GeV 

X 
d» < V ) /dx 

(10' 3 9 cm 2 ) 

d*<A>/dx 

(10 _ 3 9cm2) 

d 0

( V - A ) / d x 

(10" 3 9cm 2) 

d * ( V ) / d x 

(10" 3 9cm 2) 

d* ( A ) /dx 

(10~ 3 9cm 2) 

d 0

< V - A ) / d x 

(10~ 3 9 /cm 2) 

0 . 1 33.4 28.7 31.6 32.1 19.4 25.7 

0 . 2 13.4 11.8 12.6 12.6 7.20 9 . 9 

0 . 3 6.98 6.07 6.52 6. 12 3.46 4.93 

0 . 4 3,99 3,45 3.72 3,49 1.79 2.64 

0 . 5 2.35 2.02 2.18 1.87 0.93 1.40 

0 . 6 1.36 1.18 1.27 0.88 0.46 0.66 

0 . 7 0.73 0.67 0.70 0.22 0.14 0.18 

0 . 8 0.32 0.34 0.33 ~ 0 ~ 0 - 0 

0 . 9 0.06 0.06 0.08 ~ 0 ~ 0 ~- 0 

3. GRAVITINO PHODUCTIOH IK PROCESS (1) 

Again by "gravitino" we mean any spin 3/2 particle (not only of 
a supersymmetric type) - this may be heavy leptons, probably, quarUs 
or "preons" composites. That is why one also chooses the type of 
interaction for them as a combination of V- and A-variants, namely 

J^' (x) = f0"(x)y ( l(h v +• h Ay )<J„(x) (5) 
where ф (x) is the Rarita-Schwinger spin-vector. In practical cal 
culations we put f= \/оГ. Differential cross section corresponding 
to this current reads' 1 1/. 

d 2 „ а 0 р < 8 у + Ф , 2 Л 1 2 2-2x«c2 , 
°__ = - Л * й [ ( l - x ) ( l - x - 4 m ? / s ) ] ? [ - ^ x 2 + - - ] • 
«xdy 8 6 4 * x ( l - x ) G 2 l y 2 

• I(hj; + h 2 ) - - - ( 2 h 2 + 8 h 2 ) ? - + ( 2 6 h 2 - 2 h ? ) Q 2 + ( 3 6 h 2 - 4 0 h 2 ) m 2 I ( 6 ) 
m i ra~ A v v A ~ 

G G 
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In this expression Q =s(l-x) the cross section with account of the 
initial particle masses is given in the Appendix with the same pur­
pose as in the case for spin 1/2 pair production. For the Case 
under consideration the integral over в. 
smallest values with no account for a 

/5c,e/ 

can be extended to the 
Nevertheless as we can 

see in other works integration was carried out in the limit 
of 2O°-S0V < 160 . As an example, we chose m_ = 5 GeV, ' G The x-distribution is presented in Table 3. 

Table 3 

x 
dw/dx 

0 . 1 0 . 2 0 . 3 0 . 4 
1 -
0.5 0 . 6 0 . 7 0 . 8 0 . 9 

fP(GGV)pb dx 0.577 0.181 0.072 0.030 0.012 0.004 0.001 = 0 SO 

•;-< '' P У)РЬ dx i i 
0.439 0.176 0.092 0.053 0.032 0.019 0,011 0.006 0.002 

v I' у with N„ = 3 In this Table photon x-distribution from e%»~ 
(see formula (2)) is presented for comparison. The Table does not 
give the results for the cases h - h =0.5 and hy = 0, h.»0.5, 
though they were calculated, and for mass values in the interval 
of 1 GeV ^ m_< JOGeV as well.These last cases do not change the ge-

G 
neral result,i.e. stronger dependence of photon x-distribution from 
e +e~ -» 65у , than from e +e~ -v v у as one can see from Table 3. 
This is just the result which is important for definition of the 
type of a pair produced in the process under investigation. In this 
connection one should make a note as follows. In Fayet 's work'^^ 
a similar process (e +e~ •• yG>) has been discussed to with the view 
to search for gravitino, but for practical estimations he used cross 
section (2) which is suitable only if both particles from "unobser­
ved neutrals" have spin 1/2. If so, we shall never be able to 
distinguish experimentally production of (GG) or (6"S) pair from that 
of the new neutrino pair if the number of types for the last one 
>3, In case of "pure gravitino" (which corresponds to supergravi-
tation) its coupling with matter is very small, that is 

-1» V 8»G„ 4-10 GeV "Newton •»-•"» "*=» • Then the only possibility to observe 
gravitino production at modern accelerators is when its mass is 
also very small: m «=10~7 ev. Then as one c?n see from formula (6) 

G 
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this possibility of observation will be obliged to its first mem­
ber in braces which is proportional to 3/mZ. in this case the dif-

G 
ference in the x-distribution for two processes is expressed as 
follows: 

» ( e V -< GGy) Ж (1-х)3 ~ ( e V - •' ?y) (7) 
dx dx l 1' 

and this difference can be observed in experiment. 

CONCLUSION 
Three main results of the paper are as follows. 
1. In the case of e+e"-» у + "unobserved neutrals" reaction the 

detection apparatus can be located in such a way as to cover the 
space as big as possible at an azimuthal angle 0 which helps to 
enlarge the counting rate. 

2. In the expression for cross section of the process e+e~ -
-> y+y + y mass effect of a produced pair is carefully taken into 
account because earlier calculations'56' were not correct. Evalua­
tions of у quantum distributions of thie reaction are made with 
the proper factors, corresponding to the case of a massive pair (yy) 

3. Production of particles of spin 3/2 in reactions of type (1) 
has been studied, x-dependence of photon distributions is shown 
to be able to serve as a signature for their search and it sharply 
differs from a smaller spins of a produced pair. The defect of 
work'50' where the x-distribution is wrong, has been corrected. 
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Appendix 

With account for the i n i t i a l par t i c l e masses m, the cross - sec ­
tion of the process e + e~ •* p ^ , takes the form 

aG| s ( l - x ) 
. — - - - - - l [ N ( , ( g 2 • g 2 ) 0 3 ( x , y ) *N„(g 2 - g 2 ) * 2 ( x , y > + 

d x d y 6"'vx 

2 ( ( g y + g A ) ^ j (x ,y ) + ( g v - g A ) 0 2 ( x , y ) ) . 

. ( l - s ( l - x ) m 2 ) ] / 
| ( l - s ( l - x ) / i n V + Г / т , ] + 2 A ( x , y ) l (A. l ) 

where 
2 2 

<*,(*,У) = ^U + ( 1 - х ) 2 - 3-5- (2-х) + -- - - - + 1 2 s s 1-х 

m« 
+ 4 "i ] ' 2 2 1 2 m 2 m 2 1 + v V 

s 2 ( 1 - v V ) - -x* - 2 - - - ( 1 - х - - - ) — , 
4 s s ' , 2 2ч2 

( 1 - v V ) 
З » 2 , I X m 2 , „ _ _ 2 i + v 2 v 2 i 

V x > y ) . . . . , ( 1 _ . 2 - - ) / ( 1 . v 2 y 2 ) . 2 n_ _ 2 . : v у } 
1 x ( l - v 2 y 2 ) 2 

The cross-sect ion of the reaction e + e - - » y+ G + 5 i s (m i s the mass 
of i n i t i a l leptons): 
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4*2 
,_ __e 

64 яг e-4in о 

Г 2 

• ( t e ( l - x ) - m* + - " I 2 + P z " ф ^ l F

1 < x > l * J f 1 + < ! - х > 2 + 

+ 4u + - - U i ( - - - ) f -2+2x - 4ux + 8 u 2 - x II + v 1-v J 

+ gf T l + d - x ) 2 - 12u + - *п(---)Г-2+2х-х 2 +16и-4их-24и 2 Ш + 

+ F 2 ( x ) M 2 g 2 [ - 4 ( l - x ) + | x n ( J ~ ) ( ( l - x ) 2 - 4 u ( l - x ) + l ] ] t . 

W h 6 r e 2 2 2 
2(Q - 2m-) 

F a ( x ) - - ( - • — - - - r 9 - ) l - ^ h 2 . - h 2 ) • |<Q 2 - 2 » | ) . 
9вя 

• ^ * ь;,1 • i w * - 4 . | , ^ • ^ : - 4 - ^ : ) ^ • # • 

4 9 9 . 
+ i ( ^ - h A ) ] • 

2<Q2+ 2ш|) <Q2- 2 . § > 2 

G 
16 2 2 2 2 

27Q^ G V A 

Q = s ( l - x ) , u = M 2 / S , v = %/ l -« 2 /E 2 . 
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MIRROR FERHIONS IN ТЛЕ PROBLEM 
OF P-PARITY VIOLATION IN WEAK INTERACTION 

A.G.Liparteliani, V.A.Monich, Yu.P.Nikitln, G.G.Volkov 
Institute for High Energy Physics, Serpukhov 

1. GAUGE SU I(2) LxSU I I(2) RxO(l)-HODEL WITH MIRROR FERHIONS 

To construct consistently a left-right LR-symmetric theory based 
on the diagonality principle, it is necessary to provide not only 
the diagonality of the Yukawa interaction, but also to compensate 
for the LR-diagram contributions (in particular, exclude them). This 
can be achieved by widening quark and leptonic families with new fer-
mions with the quantum number 'mirror"' 1 - 1 3'. As an example of such 
an approach, we may offer a model of electroweak interactions based 

on the SU I(2) rxSU I I(2)_xU(l)-g«uge group.Quarks (leptone) should be L К distributed in multiplets as follows: 
jo. 

<? -(г 4)-' * - ( ¥ ) , 
» /"Л>\ 2R K<£> 

i = 1,2,3, (1) 

V ) . ' • • ' - ' '. 1 ,; 

where v-(ea) and E?(0*) are mutually orthogonal combinations of the 
states (Vj, v 2 , i>3) and (E°, E°, E°), respectively. 

Under such a construction of fermion multiplets, LR-diagrams do 
not occur at least at the one-loop level. For this it is necessary 
to exclude the nixing of light (ordinary) and mirror (heavy) part­
ners, (v., Е Л and (£., E.), respectively. Spontaneous space sym­
metry breaking of electroweak interactions is connected with the 
fact that the masses of " mirror" objects seem to be greater than 
those of ordinary quarks and leptons. A similar mechanism respon­
sible for the difference in masses of ordinary and mirror fermions, 
seems to arise in the model with the gauge Sir(2)TxSU(2)RxU(l)B_,-
symmetry, including two types of Majorana neutrino (v and N ) . Indeed, 
the mechanism of the spontaneous breaking of SU(2),xSU(2) x U O ) » , -
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symmetry to SU(2)rxU(l) -symmetry violated the discrete LR-symmetry 
of the initial Lagrangian and resulted in the production of two 
Majorana neutrinos with different masses'nu, >> m v ' 1 2 ~ 1 6 ' . The mecha­
nism described is true only in the case of neutral components. 

It is also worth to note, that in the given approach there is 
a hope that the contribution from the diagrams with the Higgs boson 
exchange is negligibly small, as compared to the contribution from 
the diagrams with the gauge vector boson exchange only. 

Hence, the extension of the fermionic sector of matter fields in 
LR-symmetry models may be of great help in the solution of some 
problems, connected with the diagonality principle of neutral cur­
rents in rare processes, such as K° «» K°, /i -»ey, /i->3e, к£ -• £e,etc. 
Quite remarkable is the application of this model in the enhancement 
of such rare processes as p -* ey, p -»3e, К? - Де, etc. For instance, 

where m are neutral mirror lepton masses, m(W nj is the mass of a 
k +. В 

charged gauge W'-bo»on, 0,, are the mixing parameters of the current 
operator of R-transitions 

( El' E2' V * 8 ( E1' E2' E3 } < 3 ) 

- ^ - & Ш 2 ^ V . k = 1 > 2or3 

-10 - 9 / 1 8 / 
from the experiment, B(/i -> ey)< 1.9-10 , B(/i -> 3e)< 1.9-10 э 

2. THE HOLE OF NEUTRINO IN P-SYIMETRY BREAK INC. PROBLEM 
IN THEORIES WITH GAUGE SU(2)LxSU(2)RxU(l)-SYMMETRY 

It is necessary to consider in which way the non-zero neutrino 
mass problem is connected with the question of the P-parity viola­
tion mechanism. The modern experimental limitations on neutrino mas­
ses are as follows: 14 eV<m(f ) ̂ 46 eV, m(v )^65 KeV, m(v )£ 
< 250 HeV. In the case of a massless neutrino one may introduce a 
one parameter U(l)-group of chiral transformations for the neutrino 
field (fr(x): / +4 

u(o) vd(x)u _ 1(a) = exp(iy a) v(x), ф= I _j, (5) 

where Ф , Ф_ are two-component Weyl fields which transform accor­
ding to the Lorentz group representations (1/2, 0) and (0, 1/2).The 
matrix У = f 1 is taken here in the spinor representation. 
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The Lorentz transformations defined here as 

Ф*-Ь±Ф± ( 6 ) 

may be represented in the form 

Л ± = exp(i|(0 _f i;S)] , (7) 
where в and /3 are rotation and boost parameters, respectively.The 
corresponding independent Weyl equations for the spinors have the 
form 

a? <t>± = _+ Ф±, (8) 
where ф± correspond to the states with helicities _+ 1/2, a are the 
Pauli matrices and p is a neutrino momentum. 

In paper' 1 9' it was noted that the neutrino Baselessness followed 
from y.-invariance of the weak interaction Hamilton!an, and all this 
led to the (V-A)-theory of weak interactions. A certain connection 
between the presence of a finite neutrino mass and a possible exis­
tence of RH weak charged currents is quite admissible. Then the case 
of a massless neutrino would correspond to the fulfilment of the 
condition m(W R) - ~ . It Ш - land RH- neutrino fields are defined in 
the following way: ^ R • (ф*, О), ф^т (0,ф~), then their superpo­
sition (4D« Ф& + ф^ « „ Ф + л 5 0 will be Lorentz-Invariant 
even if m„ 4 0^ In this the Weyl spinors are not any longer eigen 
functions of op at an arbitrary momentum (but they become such at 
high energies, when E „ » m „ . Indeed, the spinors ф and ф_ satisfy 
then the Dirac equations 

(E - ah Ф - шф _ = 0, 
а ф + (E +<гр)ф = О. 

where p is a particle momentum, E = yJW + жГ is a particle energy. 
Since under space reflections ф+ -» ф\, then the theory invariance 
with respect to the P-transformations requires a unified considera­
tion of (1/2, 0) + (0, 1/2) Weyl spinors. As a result, we come to 

Р о с с 
the Dirac 4-component spinor ф^, where 0_ -»${) * У Ф', фп -. Фп = 

* 
= у ф , and p and с are corresponding operators of the space reflec­
tion and charge conjugation 

( : : ) • - . - & ? ) . 
Note, that conservavj.on of CP-invariance allows one to use only 

one Weyl spinor, since 
<t>* = °i Ф* • (10) 
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The invariance of the theory of masslees particles with respect to 
combined conjugation (10) is a consequence of the invariance with 
respect to helicity group (5). 

As it is desirable to construct a theory of elec.roweak interac­
tions in such a way that it would be LR-syrametrical with further 
spontaneous P-symmetry breaking, then one should describe a neutrino 
with a four-component spinor, putting it in the left and right 
multiplets. 

In this case we have a possibility to treat neutrino as a Majo-
rana particle and not as a Dirac one: 

<-"- (-Ц- ( Ш 

Then it has only two independent components.Two other independent 
components will participate in the construction of another Majorana 
neutral lepton N, and here spontaneous breaking of P-parity will, 
consequently, lead to the difference in the masses of neutrino '' and 
its mirror partner H. The above-considered problem was practically 
realized in the model with gauge SU<2)LxSU(2)RxU(l)Y-symraetry,where, 
apart from the Higgs multiplet (</>E(I/2, 1/2, 0)) of scalar particles, 
the Higgs multiplets with quantum numbers A L = (J,0,2), Л R = (0, 1,2) 
were also considered. 

The P-symmetry breaking was achieved by choosing the vacuum expec­
tation values <A L> 0 « 0 < Л Д > 0 = v ^ 0 : SII(2) LxS0(2) HxU(l) B_ L -

< Л В > / 0 v Y Q 
SU(2).xU(l) 1. Further breaking SU(2),xU(l) -» U(l) 4 takes 

к О place when a non-zero expectation value <ф> = ( ) ^ 0 appears. 
The appearance of the neutrino mirror partner N with a large mass 
in the model is mainly connected with the appearance of Majorana 
mass terms of the type i| ̂  ф in the Lagrangian. They violate the 

conservation law of the leptonic quantum number. The quoted models 
admit a direct experimental check, since they predict such rare pro­
cesses as double neutrinoless $-decay and can describe fi->ey, ц ->3е 
decays in agreement with the upper experimental limits. 

As a result, this approach allows one to relate a neutrino mass 
to that of the right helicity vector boson in the following way: 

»2 

which provides a smooth connection between Ш- and standard SU(2),X 
x U(l)-theories. Indeed, at m(W R) -> ~ , the gauge SU(2)LxU(l)-symmet­
ry is restored. »^-*0 
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Thus, in the theory with the gauge SU(2)LxSU(2)RxU(l)-symmetry 
the existence not only of light leftneutrino, as well as of right 
antlneutrino, but of heavy mirror right neutrino and left antineutri-
no is also admissible. The direct experimental observation of mirror 
leptons lb somewhat complicated, on the one hand, because of their 
sterility m ( W K ) » m(W L), and on the other hand, it is quite realis­
tic due to their large masses. 

3. BASIC FEATURES OF QUARTET MODELS 

Our understanding of the problem of P-parity restoration would 
be far from being complete, if we do not consider quartet models 
based on the hypothesis of the quark and leptonic number doubling at 
the account of mirror fermions'' - 1 1'. In such models the restoration 
of LR-symmetries may take place in the framework of a gauge group 
like G LxG RxU(l) or GjXGRxU(l)xU(l), where the unitary SU(4)-group 
(or simplectic SP(4)-group) is taken as G L- R )-group. The simplectlc 
SP(4)-group is a maximal SU(4)-subgroup, and it is free from axial 
Adler anomalies. Besides, many properties concerning symmetry brea­
king are analogous. 

The C L ( R \ к SU(4)-symmetry with a larger number of possible para­
meters will be considered here, since the stages with an intermediate 
symmetry SU(2),xSU(2) R (see, e.g., variants B,C,D,E in fig. 1) are 
of great interest in the study of the problem of P-parity violation. 

In such an approach leptons and quarks realize the fundamental 
representation of the SU(4)-group and are combined into quartets of 
the form/4/ 

С?' 1 =|СЧ; с\\ =1и*, d*. U 1, D 1 ; ,*, e 1, L 1, L o il. 

where index i runs over the values 1,2,3 and corresponds to the 
families e, ji, r ... for leptons and u,c,t ... for quarks. The objects 
L 1 = (E _, iT.r",...) L o i = (E°, 11°,Г°...) are mirror leptons and 
U 1 = (U,C,T...) D*= (D.S.B...) are mirror quarks. 

The insertion of new quarks (leptons) into the theory agrees with 
the hypothesis that the ordinary world with LH-weak currents (LH 
world) is connected with the known quarks (leptons): (u , d , i/1, 1*) 
and the mirror world (i.e. the RH-one) is connected with the fer-
mions (U1, D 1; L 1, L 0 1 ) ^ ' 2 ' 4 - 1 0 / . 

This section of the paper is devoted to the consideration of va­
rious types of spontaneous breaking of the initial SU(4) LxSU(4) Rx 
xU (1) symmetry theory to U^(l) (see fig. 1). Thus, in the variant A 
the Weinberg-Salam SU(2)^xU(l)-symmetry is constructed as an inter­
mediate one; as a result, the restoration of P-parity takes place 
only in the framework of the basic G,xG RxU (1) group, i.e. at effec-
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tive distances connected with the scale of this group r ~ 1/MQ, M ° ~ 
~ I 0 ^ T 1 0 ^ GeV. In the variant В P-parity is restored at an inter­

mediate stage in the framework of the "explicit" SU(2)j_xSU(2)RxUY(l) 
gauge symmetry considered in Section 1. In variants C,D, E we con­
sider intermediate stages characterized by gauge groups of the 

I II 
form SU(2) LxSU(2) B (where indices I (II) point to the fact that 
quarks and leptons within each generation are in general located 

I II 
differently in the corresponding multipiets of SU L(2), SU R(2)-grcup). 
Here the restoiation of the LR-symmetry is connected with the per­
mutation of ordinary and mirror fermions' ̂» *>, 30/_ The observed ef­
fects of P-parity violation in the modern experiments might be cau­
sed by the fact that mirror fermions are heavier than their corres­
ponding basic partners. 

In connection with this it would be rather interesting to search 
for the production of new heavy particles in electroweak processes. 
Indeed, no matter whether mirror quarks (leptons) have usual elect­
romagnetic properties, they must participate in weak interactions 
with "light" quarks (leptons). The search for the reactions in which 
these "heavy" objects are produced, has been and is being carried 
out in modern experiments. We mean the experiments with the attempts 
to observe charged and neutral leptons in neutrino beams, muon 
experiments of the "beam-dump" type. The observation of the fi •* ey, 
(i •• 3e decays at the branching ratio of >, 1 0 " ] 0 т 3 0 - 1 2 would be 
an indication of a possible existence of mirror neutral leptons. 

Note, that in the framework of quartet models there is an attrac­
tive opportunity to obtain a proper value for the mass difference 
of u and d-quarks. Really, in the gauge theories with SU(2) LxSU(2) Hx 
xU(l)-symmetry the calculated value for the mass difference of u-
and d-quarks has a wrong sign because of the contribution of the 
diagram with an intermediate photon. The contribution of such diag­
rams will,however, be suppressed, if one requires bare quark masses 
to be equal to zero; m u = m d = 0. In the framework of a quartet mo­
del a proper choice of the corresponding vacuum expectation value 
for the tensor (with respect to the gauge SU(4)jjxSU(4)j>-group Higgs 
fields) which realizes the interaction between II! (u,d,U,D) L and RH 
(u,d,U,D) R quadruplets, easily provides the equality of the bare 
quark masses to zero. 

4. ELECTROWEAK INTERACTION IAGRANGIAN AND HIGGS FIELDS 
IN SU(4) LxSU(4) axU Y(l) GAUGE MODEL 

Let us consider the mechanism of spontaneous violation of P-pa­
rity in quartet models^ 1 0/. The scheme with the SU(4) xSU(4) xU(l)-
syametry is characterized by the following commutation relations 
between the group generators: 
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t F L' F l f ] = i f a / 3 y F L t F R' F i ] = i f a , 3 y

F R 
[F£, F,f] = [F°, F°]= [FR F°l = 0 (13) 

C . FL' FR< 1,2,... 15), 
where f "/5 У are SU(4) group structure constants. Quarks and leptons ™9 *l from each family С-Ц' correspond to the following representations 
of the group under consideration: 

"i\ 
4L = ̂ -5 ^М 4' 1-" 3!' 4 

1-У 5J^kti,4,V3]. 

• 1 - ^ [4,1,-1] ; 
1-У= 

=[1.4,-1], 

where the quantum numbers corresponding to the generators (T,, Tp,Y) 
are given in the square brackets. 

The multiplets of the scalar Higgs fields, such as the tensor 
multiplet ^ ~ [ 4 , 4, ol, fundamental multiplets т,~ [ 4,1,-1], TJ_~ 
~[1,4,-1] and the adjoint multiplets X (15,1,0) and XR(1,15,0), 
should be introduced into the considered scheme, so that the prog­
ram of spontaneous violation be realized. Instead of the fields \,a, 
Xo it is more convenient tc examine the following linear combina­
tions: g 

V — 
4 .. 5. 

15 - _ 1 T « a 1 

IS *.--b vfl* 

3. X L *L 
ХЬ +"Д +^ ! Xb-^L; V' XL ; 

9 10 
*L""'*L 

2. •x. 
ix*; 

Y 8 V 1 5 * 

7. --Ч8 
v15 
XL . 13 14 

*L + i*L V U + . V 1 2 . v13..v14. _± Y1S 

(14) 
V2 o=l 

where A are the Gell-Mann matrices for the SU(4)-group, and the 
strength tensors here for the gauge fields A° A ,, 
ding to the generators F°, F L, F R have the form > Н correspon 
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FR> * ЯЛи - *A* * bSfly*iHv < 1 5 > 

We can represent the Lagrangian density in the given model as 

4 L(ii" 4 Rjti/ 4 far ь Р Ь R' ц Я 

+ T r K D ^ ) * » ^ ) ] v f [ 4 L ^ q R * q R <f>\] H (D^ X L ) * (D^ xL> * 

+ 1 т г ( 0 Л ) 2 . (L~R)) - P<* , , b , V x L , X R ) + 

+(gauge fixing terms). (16) 
As usual, the symbols D denote the covariant derivatives of the 
corresponding fields: 

V R S V>R * K A > * ' ч н ] ' i gA aR-f V 

.a 
.. s i °_ a Л D„ 4 = " П + = g A 4. - i g „ A r n , 

С L M L 2 о (i L T . L | ! 2 'L 

A 
"«• R " " " ' в * 2 g ° V R " 1 B R A R M " T 'B 
D„1 = i ? + - g A % - ig A" 

In expression (16) P stands for an arbitrary polynomial over the 
scale fields ф. r) , v , у (not higher than the fourth order), 
which is invariant witn respect to the considered gauge group 

P = а „ Т г ( Л ) + а,Тг(Л, 2+ ajTr^'V ) I 2 + b„ 4 + 7 + о j & о jj L 

+ b 1 ( 4 ^ L ) 2

 + b ] 2 4 ^ L 4 ^ R + C o T r ( X L X L ) • 

+ C l l T r < ^ L * l A * L > + C 1 2 T r < * l A > T r < * R * R > + 
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+ C 2 l T r ( x L X L > l z

 + d j 4hXLXL1h + d 2 Пьфф4 +й3г,ЛТг1ф *)«-

+ d 4 4 , L T r ( *L X b> + d 5 ' b 4 L T r ( *R V + 

* 1 1 1 Т Г < X L X L ) T r ( * 1 + ^ > + 1

1 2

Т г ( , ; 4 < 6 + \ \ ) + ( L " > R > - < 1 8 ) 

л л 
For s impl ic i ty the terms that are odd in f i e l d s x , , X R , i ) f , 'f,, 

are omitted in (18 ) . One can get rid of them, demanding that the Lag-
rang ian be invariant with respect to the corresponding d i s c r e t e 
transformations, e .g . of the form Gj= ( Jl^-* - 4 L , x L-« - X L i ' g -• 4 R , 

X R - X R , 0 - * ) or G 2(= ( ч ь - Ч ь , i . R . . _ i , B , X L - X L . XR - X R . Ф + Ф-
Lagrangian density (16) contains a LR-symmetry at g L = g R = g, i . e . 
a symmetry with respect to the following transformations: 

A L i S A R ' ' l * ^R- Ч г V * L ~ * R ' * - * + - < 1 9 ) 

The polynomial P( Ф, 1,, 1„, X., X„) also contains the LR-symmetry, 
L n L R but this does not mean that the vacuum expectation values of scalar 

fields must be left-right symmetrical. 
The P-parity violation in the model considered may be smoothly 

introduced, i.e. left-right asymmetric vacuum expectations are assig­
ned to the scalar Riggs fields. 

Without any loss of generality, we shall choose for the field ф 
its vacuum expectation value diagonal and real: 

\ o\ 
*3 (20) 
"4 /• 

The choice of (20) in the lower order in perturbation theory 
leads to the following values of quarks (leptonic) masses: 

"4, = fa a, m d = fa 2, mv в fa 3, mr, « fa 4 . 
Tables la and 2a of the Appendix give mass matrices for the gauge 
fields caused by the appearance of the non-zero vacuum expectation 
values. Due to the electrical charge conservation, the vacuum ex­
pectation values for the scalar fields 9 L and t)R, XT and xR,may 
be taken in the form 

< /« \ /« 
<4Lyo = у I <4R>o= у | (21) 

and 

ю 
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L о "Vo (L-R) (22) 

here a L + 0 L + >"L+ « L = «R + 0 R+ У а +S R 

The corresponding contributions to the mass matrices of the gauge 
vector fields caused by the non-zero vacuum expectation values of 
scalar fields are defined by formulae (3a-6a) (see Appendix). 

Under this choice of vacuum expectation values only photon will 
remain massless. As a result, the SU(4)LxSU(4)RxU(l)*-group is bro­
ken to U(1)Q corresponding to the conservation of the electrical 

2g0R charge e 
Л 2 +4ĝ  

The electromagnetic field has the form 

.em i 1 .o . 1..3 ,.,3 1 8 i 48 ч 1 ./51.15 ̂  .15.r 

5. QUARTET MODELS WITH STEP-BY-STEP GAUGE SYMMETRY BREAKING 

a. Intermediate SU(2)LxUY(l)-sy—etry 
у If it is necessary to break the SU(4)LxSU(4)RxU (l)-group down to 

the standard SU(2)jxUY(l)-symmetry, then the vacuum expectation va­
lues of the fields Ф, \ . , Х в, чь> 4R " u s t satisfy the following ad­
ditional conditions: 

«f>> 'l = a 2 = 0 : < V * 0 L = ^ ' UL = VI (23) 
<\>o»"L.0. 

The SU(2),xU(l)-symmetry group is defined by the generators 

T l a F l t T 2 £ F 2 ( T 3 = F 3 ( Y = 2 ( Q . T 3 L , 

Q = £* * (F> • Л + - i (F« + P») - / 3 - " • p' 5) 
2 о L R / y IJ я 3 L R 

with the corresponding commutation relations 
[Tif T j] = 1«иЛ. t Ti. v l = °-

(24) 

(25) 
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Fermione from any family C^ • (u , d , D , V ) and С « (i^, 1^, 
E", E?) may be put into raultiplets of the SU(2).xU(l)-group. For 

/"i\ 1 
instance, in the case of leptons we have doublets I I with T = 5 К 
Y = -1 and singlets with T = 0l(" i) R, d ^ g , <E~) R, (E°) R, (E")^ , 
(E°) 1 and with the hypercharge У = 0, -2, -2, 0, -2, О. i LJ The Weinberg angle can easily be defined in the given scheme: 

Sin2ew = [4 t -5- Г 1 . (26) 
4 g o 

The small invariance subgroup of the vacuum PC G = SU(4),xSU(4)Rx 
x U(l) is defined from the condition that the corresponding genera­
tors F / P turn the vacuum state into zero: 

F a I 0 > = 0. (27) 
More precisely, for a concrete model condition (27) is deciphered 
as follows: 

l*V <Ф о ' " " T <Ф£ " ° ' F L' < 4 R > o l • [*£ < V o l " 

(28) 
[FL' Ч * 1 m ' T <»#" ° 
[F°,< 4 R>O1 =- T<V<r<> 

[F^<;L>01=-[J, <X L> 0] -0 
, а л » л 
[Fg.O^o] = - [ - , < X R > 0 ] = 0 

All gauge fields corresponding to the small vacuum subgroup, re 
main massless, which follows directly from the formulae for gauge 
vector boson masses. 

b. Intermediate "Explicit" SU(2)LxSU(2)RxU(l)-Symmetry 

One may consider a variant of the theory when at some intermediate 
stage of spontaneous breaking of the initial symmetry an "explicit" 
left-right SW(2)LxStT(2)BxU(l) symmetry is realized with the follo­
wing arrangement of particles in the multiplets (as an example, fur­
ther we consider only leptons cj- which are doublets with respect to 
the groups StJ(2), and SU(2)_ 
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respectively, and singlets with respect to these groups: 
l i E \ * ( Е \ В '• < \ * - 0 ) -

To realize such a breaking of the initial symmetry, it is neces­
sary to impose the following requirements on the vacuum average va­
lues of scalar fields: 

< 0 > = » a = a „ = O , <n > => v = 0. <Va-> =?У, = 0 
1 L L R о L

 ( 2 g ) 

< X V o * ° L = "b' UL = VL = °. < V 0 * «R= PR ' "R " V 
Between the generators of thf initial group SU(4), xSlK4)„xU(l) and 

i< if the group SU(2),xSU(2) xU(l) there arises a correspondence: 
FL,R = < R ' t T b ' ^R1 = °' ( TL(R)' T U R ) ! = i £i j k

TL(R) 

[Т£ ( в ). V]=0, У = 2«J - T 3 L - T 3 R ) , (i,j,k = 1,2,3). 

c, Intermediate Svh2)xSV*1<?.)xuhl)xV™(l)xVY(l)-Syimetry 

Using the Higgs multiplets ( Ф, X, l), it is possible to break 
the symmetry SU(4)IxSu|I(4)xU^(l)xU^I(I)xUY(l) to the intermediate 
symmetry Su£(2)xSU^I(2)xU^(l)xu"xUY(3) with the following multiplet 
contents of the considered particles of the set С (>'., I., E*, E°) 
which are 

<- 1 ' 1 1) doublets with Tr = - and T~ = -
v . / • 

<.;> Q ) 
L R 

respectively, 
and 2) singlets with T, = 0, T R =0 
Uvih- ( 1iV EL- E R U < E i V ( EiV —'<-i) L. <еЛ'> 

respectively. The generators of the new group are related to the 
generators of the original group as follows: 

T L 1 } = F L 2 > i = 1 , 2 > 3 
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Ь 3 \ - 2 / N/3 

„8 2 ^ „15 F. + F. 
^ Ь ^ L (30 , 

2 
0 \ 1 3 2 8 /"2х

 1 5 

1 = - - (F R t F„ + V F " ) , 
1J y/T B vS" B J B 

•l°£' < R 1 - °' [ И " ' < в ! - °' [ Y ' < R ] - f ¥ - °b(B) I ) , = °-
For the vacuum expectations of scalar f i e l d s , when our method of 
symmetry breaking i s applied, the following condit ions are to be 
s a t i s f i e d 

<ф>о * a : = a 2 - a 3 - a 4 - 0 , < 4 > o » * L - o, < 4 R > o * y R =0 

<XL>o - V fih ' V L ' °- < V o * V V "R " VR * °' 
Then the mass term of the Lagrangian of gauge fielda will have the 
form: 

,2 B 2 , , v 2 Y L n . 4 + i 5 . 2 g 2 , ^ , . 4 + 1 5 , 2 

^2 

• ? • <vv2- "he'2* r« v v2* £'*Г |2 * 
. «J, «.„-,„,'. ,£i,tf V • £*< V V 2 • -г '«Г i2 * 

ft 2 2 . 9+ilO 2 e 2 9 9+ilO 2 + 5_(o - 8 ¥ ) Л 3 + 1 1 0 Г + * - ( „ - y ) 2 | A I + , , „ , 2 L L Л. ' 2 R 'В ' pR ' (32) 

* %fi • «-£* ^ » 2 * 4«A « 4 - 1 -1» 2 

Taking into account 2o + у * 8 «О, а + /3 + 2y . о and assuming for A* L I, R R R 
simplicity that y D = y,» /3, " y, , x = у • one gets for the vacuum 

к « 1* 1* H IJ 
averages of Higgs fields: 
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< X L > 0 = V 2 | 
'* О Г\ оу 

ю 
<Х > = v ? 

R о 

О "ь 
and 8 = -2а - у = в . Then the mass part of the Lagrangian of gau-L L L R 
ge fields is expressed by the formula 

g 2n , . 2 yL,,.4+i5.2 ,.11-112,2, 

•1 -»< 3 vV 2 4C 5 i 2 + " Г " * » - г ' 4 * W « 8 + г >' 

"Пь ' *|А« 
ML 
r.2 У 2 

13-il4i2 . .1+12,2,1 . 6 ,.,_ .. >2, L i „ .6+17,2 

+ | A e : i 7 | 2 ) ) + |_, 2,-1^,2 9*110, 2,, 
1 PR 2 L I» ' yh JiR 

9+ilO | 2, 
(33) 

,15 

4 o f ^ ML v^Mb 4 о С М В v/T V? 
Let us also give some useful formulae relating the initial gauge 

fields to the physical intermediate vector bosons: 

А ж W3 , m(W 3) = 0 , ( T 3 = F 3 ) , 

I 1 8 2 V ' 2 IS 
L ^ \ 3 F L 

2 / Т е 1 „ 1 5 . 

1 . 8 2 V 2 . 1 5 „1 , , „ , - - __ _ . 
-A . + —Г—A = Z , m ( u , ) = 0 , ( u , = F + —~ F. ) , 
3 CL Я fib jiL L T- — * * 

2 V2* 8 1 15 2 _ » _ ^ 

• T V s V i " ^ • ( v b ) * 0 ' ( VL = - f F L - i F P * 
- A V 4*1' = *v -<-v««•«- - ЛЙ-^"). 
ST»* 3 fR c R c R " 

. J _ A

3 . 2 / _ # д 1 5 = z l 
V 3 > R 3 ЦВ J pR fiR 

/ I J 1 I » 3 2 Я . / Т 1 5 , . 
(u = I F * F o + V — F ] ) , 

R ,ГГ" R V T 1 » 3 R 

(34) 

V T R 3 B 

< • " ' • » • 

NT3^ VT 
/ 2 % V ? 8 1 . 1 5 2 V -A - — A A = Z , m(v ) = 0 , (» ( v = V - F 3 - - ^ F 8 - V 5 ) 

3 > R 3 > R 3"MR CB' "" R' "' R 3 R 3 ' R 3 R ' • 
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In the matrix form relations (34) are represented in the follo­
wing form: 

»3 

(35) 

(36) 

The corresponding operators of the third spin projections V. p.Ur н> 
T are expressed by the formulae ' ' 

ur К 
. /', О 

v"4>-*. I v" * "\0\ ) 

, - • |'-"Ol , _./°o 0 \ 
3L 2 0 *3R " 2 -1 о °/ \o 1 

The operators of the electrical charge and weak hypercharge are de­
fined by the relations 

Q = T3L + T3R " " ^ ( U L + V + I = 

= T3L + T3R " ^ \ * V + ^ ( V b + V + i Го-

2 3 L К 2 о (lepton) 
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In our aodel the left-right symmetry of the Lagrangian is connected 
with the lnvariance with respect to the permutation v. - E91fi"E'7. 
The neutral fields fa T£, W ^ * ij. T^*oJ. Z* R* U » B„* Y re-
main masslees. The mass parts of the Lagrangian are represented below: 

neutral field Y £ о № 2 vT .8 1 .15., 2 

+ — IE A * g V : ( V ^ A - -—~ A - =A >J (38) 

"2 = < ' ^ 
neutral field y

2 „ f£2 2 y 2 /^ 2 

4 o , v'Tlf / a / Z 2B/i 4 2. 2 

/У z*1 + z*1 

.Yf A° - + 2 L 2 R 

„ 2 " g ° l/r 
»„ * — is a aassless field with the hyper-

' IF" JTTl 
4 < 

charge Y = 2 У5 <VL + V R ) «• F 

d). Intermediate S«j(2)xSP* (2)xP (l)-Symmetry 

To break the symmetry SD1(2)IxUI(l)IxSHII(2)DxUII(l)„xU(l) to the 
1 TI Y " * 

SU (2) xSO (2)_xH (1) group, it is necessary to additionally intro­
duce the Higgs multipleta 

( Ф°, Ф~2, Ф~3, Ф ° ) ь , ( Ф°у Ф~2, Ф1, 0 ° ) R 

with the following vacuum averages: (О, О, 0, A ) and (AB, 0,0,0). 
In this the mess tern in Lagrangians (38), (39) gets an addition in 
the form 
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* 1С 1 0 ' 2 **& * <*% * * v ^ * ^ к ' ^ » 4 _<4o> 

Under this choice of the Biggs fields the symmetry SB1(2).xSl/(2)Dx 
x U (J) is not touched upon. One may put again A, =A R. As a result 
there emerges a left-right symmetric model of the type SU (2)Tx 

II У ~ 

x SU (2)_xU (1) where the generator Y is constructed by the rule 

J 7 = - _J(U L • UR).v/| C V V R> + I F Q = (H L + H R) • I F 0 = 
~ 1 У *i *R ( 4 1 ) 

• <YL * YR>r ' Q " < T3L «3H» * 2 " < T 3 L
 + Г> * < T3R* Г> 

7 = ?L * V 
The generators H L and ML are defined as 

0 
L ^ ь v 3 h 

(42) 

The operators HL and HR may be used to define the "lef t" quantum 
number of the "heaviness" 1L of the " le f t" fermions ( Ф = — U ^ ) 

h ^ ( ^T- 4 > = °» ^ < Е т * ' ' - ^ Ь*<Е°> = - ь\фт) = О end, correspon-
l i L L ^ Ь 2 Ь Ь 2 В Ь l o » 

dingly, of the "right" quantum number 1c ("l ightness") h_4E , E )=0, 
h

D

( v » ) = Ь Ьо^п^ я " « Ь^(*„) = °- T h e earl ier constructed scheme K R 2 К *» 2 L R 
has a remarkable property of the l e f t - r i g h t symmetry in the mutual 
permutation of "light" it "heavy" fermionic f i e lds .Th i s means that in 
t h i s theory the restorat ion of the l e f t - r i g h t symmetry in electroweak 
interact ions at high energies i s caused by the exis tence of "heavy" 
mirror fermions, s imilar to the ordinary ones that are already known 
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and are interacting at large distances in the V+A-way; the masses 
of the left and right gauge bosons coincide: m(Wg'°' = m(W^ , 0>. The 
further concretization of the model is connected with the next stage 
of the symmetry breaking SU I(2) xSU I I(2) RxU Y(l) to the symmetry 1^(1). 
For this it is necessary to introduce into the theory one more pair 
of the quartet Higgs fields, for example, <5 „ s (<*,,<*?, "*2, #1) 

I Il> l * J ч L 
and 6 = (<£ , Ф„, Ф„, &.) , with the vacuum expectations <<4 > = 

IIR 1 2 1 3' 4 E H L о 
= < 0' V *3l/ °> 3" d <*IXB>« = ( 0' "2R' A3H- °>" 

It can easily be shown that in the framework of such a scheme of 
electroweak interactions one has charged currents (к.1.), , (E°,E.)„, 

I II 1 1 А л ^ l i K 
(m(W ) = m(W_)), two neutral currents [T3,*- T 3 B- Q sin^^JZj and 
the electromagnetic current. To this, one may demand n(Z 2) » m(Zj). 
The interaction of ordinary leptons (quarts) with the gauge vector 
neutral field Z, coincides in form with the neutral current of the 
GWS-model. At the given s-tage of the spontaneous breaking, the scheme 
contains a certain left-right symmetry caused by the simultaneous 
permutation of "light" (ordinary) and "heavy" (mirror) fermions.Apart 
from electromagnetic interactions, the possibilities of the produc­
tion of "heavy" particles in the "light" particle beam ore connected 
with weak interactions, due to a possible mixing of the neutral sta­
tes of v. and E?. In such a model, by introducing one more quartet 
Higgs field ф (a *0, i= 1,2,3,4) with the negligible vacuum expecta­
tions | a J « |<7/ >|, |<X">0|one can obtain a scheme in which the left 
and right worlds are mixed. 

In the variant of the quartet model of electroweak interactions 
it is possible to consider the second charge, different from the 
electrical one. For this it is necessary to extend the initial group 

Y Y Y to SO(4>IxSU(4)„xB *(1)хи 2(3), where the subgroup U 1(1> is connec-
h It ,t , ted with the fourth colour of liglr. (ordinary) leptons (quarks), 

v 2 
and the subgroup U (1) with that of heavy leptons and quark, re­
spectively. It is natural, that this approach implies that the ini­
tial symmetry of quarks and leptons SU E W(4) xS0 E W(4) xSU X(4 c)xSU I 1 :(4 c> 

i, к 
was successively broken in a chain fashion to SU(4) LxSU(4) BxSU^(3 c)x 
xS0»(3C)xW y i(l)xB Y 2(l)-.S0 1(2> LxSU I I(2) RxSU I(3 c)xSU I I{3 c)xU YI(l)x 
x U Y2(l)-,su I(3 c)xSU 1 I(3 c)xO Q l(3)xU Q 2(l).The symmetry groups S!JI(3C) 
and S U I I ( 3 C ) are connected with strong interactions of "light" (ordi­
nary) quarks and "heavy" (mirror) quarks, respectively. Then the 
conserved charges Q^ and Q 2 may be expressed in terms of the genera­
tors of the initial group as follows: 
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У 1 Y 2 
Q l " T 3 L + H 3R + T • «2 " T 3B + H 3 L + Г 

• Г'-И v -(\ ) '"' 
l(leptonic) I 0J ' 2(leptonic) I _j I 

In such two-charge theory two charges should be ascribed to par-
(Q,,Q„) tides e.g. according to (44), for leptons 1 ' ' one has 

Q j C 1 ) = 0, Q 3tE°) = 0, QjU") = -1(«,), Qj(E*) = 0 

Q 2 ( " 1 ) = 0 , Q 2(Ef) = 0, Q 2(l") = 0, Q 2(E*)=^1(« 2). 
The attractiveness of the electroweak interaction model with 

the considered fassion of spontaneous breaking of gauge symmetry 
follows from the fact that "soft" parity violation is caused by the 
appearance of the mirror quark-partners and leptons, whose masses 
are apparently larger. The left-right symmetry of the initial Lag-
rangian is broken, but it may be restored by the A-permutation pro­
cedure of the ordinary and mirror objects P' • PA As it follows 
from (44), the interaction of mirror and ordinary worlds can be 
(Gx-S Gr/\fT) both weak and gravitational within each of the gene­
rations. As far as the electromagnetic coupling of left and right 
charged objects is concerned, the model with the gauge symmetry 
SO I(4 c)xSU 1 I(4 c)xSU(4),xSO(4) R reveals a possibility to construct 
a two-charge theory. This way of introducing an additional electro­
magnetic field into the theory (another long-range interaction paral­
lel to the ordinary one), allows to conserve a new charge if 

Qi *2 
residual symmetry of the theory is 0 (1)хП (1). In this case mir­
ror quarks and leptons do not interact in the usual electromagnetic 
way. But if the symmetry 1) turns out to be only intermediate, 
i.e. it is broken further to U( 1)Q(electrical) i t h e n t h e e l e c t r o M a g _ 
netic interaction of mirror quarks and leptons with the ordinary 
world depends on the quantity of mixing of these groups. An inte­
resting possibility in this model would be to introduce the magne­
tically charged particles parallel to the ordinary ones which are 
electrically charged. For this it is necessary to identify Qj with 
the electrical charge and Q 2 *ith the magnetic charge, respectively. 
Then quarks (leptons) would be either purely electrically (Qj, 0) 
or magnetically (0, Q 2) charged. 
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e, Intermediate SU*(2)LxSUII(2JaxUV(1)-Symmetry 
(2-doublet scheme). 

To continue the consideration of different variants of the ini­
tial gauge symmetry SU(4),xSU(4)RxUY(l) breaking, let us examine 
the model based on the gauge group SUTZ^xSU <2) xU(I). This group 
is realized at one of the intermediate stages of the symmetry spon­
taneous breaking and has the following contents of the fermion raultl-
plets: 

/"1<Ф\ /Е°<Ф\ Л<Ф\ №&] 

i = 1,2,3 
" i ( f i > г ' 5 ' 1 c o s f i + E ° s i n f t , E°( (t) = - ^ s i n f 1 + E ° c o s f i , 

(45) 

The generators of the group are constructed from the symmetry 
generators Su"(4),xSu"(4)„xU(l) by the following rules: 

3 1 В /2 
F, + — F T -V-<f, 0) * T » . r £ + F», Т 2 = Р 2 . F « 3 F L 

15 F 3 R 

*R "R • 

F 3 + _2_ p8 . vf 
R V31 R 

(R) (R) 
1 T, ; 2 Y = Q - C T + T ) = F . 

(R) 

(46) 

The considered symmetry breaking may be realized, if one demands 
that for the vacuum expectations of the Higgs fields the following 
conditions are satisfied: 

k .eos ф. ъ ъ 
о 
о 

k L s m Фь 

- P L c o s 0 L 

- P L

s i n фь 

- P L s l n 0 L 

p.cos ф 

k L s i n «^ 
0 

-kjCOS фц 

3 1 X 1 eL(R)(kL(R)COS « И В ) " P L ( R ) C O S 0 U R ) ) = 

" " C O S ^ L ( R ) ( k L ( R ) S i n ФЫЮ+ P L ( R ) S i n * W ' 

<X > = L R о 

(47) 

R] 
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C O S f L ( R ) ( V ) C ° S ^ ( R ) + P L ( R ) C O S *b<R)> = 

= s i n f u B ) ( k L ( R ) s i n ФШГ P L ( R ) S i n * « « ) ' 

( i f (L = 0, then 0 L = 0 L + > 7 ) ( i f f R = 5, t:.en Фк= 0 R ) -

< f L > o = 0 < ^ o = 0 ' < * > = ° 
1 

If use one scalar multiplot X , which transforms in the adjo nt 
representation at ф^ = 0 , Ф, = n , k L = p, 

then the 811(4)^ group w i l l break to the subgroup SU(2),xU(2). .The 
gauge basonic masses corresponding to the group SU(4), are given 
by the mass number of the Lagrangian 

• (A 9
№> 2 * « $ * i . (48) 

2 The consideration of the second scalar nultiplet x. with the only, 
-zero, non-diagoral vacuum expectations ( ф.= -"/2, Ф = ff/2, 

kL = >b> 

leads to an additional cascade symmetry breaking SU(2),xU(2), to 
the subgroup of interest SU (2) L with the following additional mass 
term: 

J - A 3 A 8 + _ L A 3 A 1 5 + _ 1 _ A 8 A 1 5 
(49) 

For left-handed group SU(4) we consider the case when n T= 0. 
Li I* 

In an analogous way one considers the mechanism of the spontaneous 
breaking of the S0(4)R symmetry to SU X I(2) H at >)R= ir/2 ( фк = 0R) 
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As a result, at a certain stage of the spontaneous symmetry brea­
king we come to the •ubgroup of interest, which provides the left-
right symmetry of the model, connected with the leptonic permuta­
tions v «11°. The case of the arbitrary angles r/̂  and IJR, >;,+ IJ_= 
с ir/2 is considered quite by analogy. 

For further spontaneous symmetry breaking (e.g. through the chain 
S0 I(2) LxSU I I(2) RxU(l) — SVI(2) xU(l)-> l A l ) it is necessary to in­
volve the sets of quartet multiplots of scalar fields. In this mo­
del the mass of the right-handed WR-boson must not necessarily be 
increased as compared with the «L-boson mass. They may be put equal. 
But from experii^nts on neutral currents it is necessary to demand 
that m(Zg) > (2T-3)m(Z?), or one must consider the extension of the к ь symmetry group under study to the group SU(4) LxSU(4)_xUO)xu41). 

And, finally, discuss the possibility of breaking of the group 
Su44) LxSU(<0 RxU Ya) to Sir I(2) IxU Ua) IxSU I I(2) Rxi; u"a) xlI yO). 

The spontaneous breaking of the S^H),/») sroup to the subgroup 
SU(2).xU u(l), ,„) may be realized by introducing two scalar multi-
plets into the theory. One of them belongs to the regular represen­
tation of the SU(4) group with the vacuum expectation 

(50) 

О 
the other one belongs to the antisymmetrical representation Ф** 

of the SU(4) group.The covariant derivative is given by the expres­
sion of the form 

D« *« = V i j - i g w i i *u - ieKs v w« = А а *£ ( 5 i ) 

with the vacuum expectation 
/ 0 1 0 0\ 

f-1 0 0 Ot 
<Ф>0 = c I о О О l) (52) 

\ 0 0 -1 0 / 
The generators of the SU I(2) xlIU(l). ,„. group are related to 1ДК1 L(Iw the generators of the initial SU(4) L( Rj group through the following 

rules: 
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T L ( R ) = F L ( R ) 

T 3 ж F 3 

L(R) L(R) 

+ F ] 3 • L(R>' 

+ - i F 8 

V?T L(R) 

T 2 - P 2 P ] 4 

L(R) ~ L(R) L(l 

3 U R ) - 0 0 0 1 \ 
U 6 

T L ( R ) = F L ( R ) + F L ( R ) = 
[ 0 0 
1 0 J 
\ ] 0 

1 
0 
0 o/ 

г т и т 1 1 
1 l L ( R ) ' ' L ( R ) 1 

• 0; Q = T 3 L * T 3 R + F°. 

i = 1,2,3. 
With the account for the above-mentioned scalar multiplets,the 

Lagrangian mass term takes the form 

V ] 6 B 2 C 2 ( _ L A 8 - i - A 1 5 ) 2 - 4g 2c 'К" A 9 ) 2 

ML 

- 4g ; '•Ч 7ь • « • * 4 * 2 c 4 4

L 

1 5

 + 
. 1 1 + П 2 . 2 
"PL ' • 

The subroups О Т О ) and l e d ) condition neutral transitions like 
f 1 « E 1 0 , e~ » E i _ , ** - •>*, e - i « e _ i , E° «• E°, E~ - E^. In order 
to go over to a more general model, it is necessary to take into 
account possible rotations (o, „, /3, „) in the planes ( v , if), „ _ - ̂  ij, д ij, л fi L f R 
and (u. , M ). _, respectively. 

Li, К 
The analysis carried out shows that parity restoration in the 

framework of quartet models takes place either at the level of the 
initial gauge SU(4)IjxSlJ(4)R-symmetry, which corresponds to the ef­
fective distance r «. 1/H° (where M 0 ~ 10 4fl0 3 GeV (variant A)), or 
already at the intermediate stages of the spontaneous symmetry brea­
king (see fig. 1) there emerge effects connected with the P-parity 
restoration. In the last case (L-R)-symmetry at the intermediate 
stages may be connected (see variants (C,D), (E, F)) with the per -
mutation procedure of ordinary and mirror fermions, and the corres­
ponding energy scales could then be located in the range ЮОтЗОО GeV. 
As a result, the P-parity breaking at low energies (Едц;~100 GeV) 
is caused by that the masses of mirror quarks and leptons become 
heavier, as compared to the standard ones. 

On the one hand, the possibilities to detect mirror objects ob­
viously depend en the scale of their masses, and on the other hand, 
they are defined by mixing of the mirror (heavy) and ordinary worlds. 

If the mirror world does not mix with the ordinary one, or it 
does mix, but inessentially,then there must exist stable or long-
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living representatives of this world, A situation is possible which 
would lead to that mirror fermions would turn out to be sterile with 
respect to ordinary strong and electromagnetic interactions (the 
example of che two-charge approach), then at least the search for 
them in weak processes will remain possible. In the given case one 
cannot but mark out the specific role of neutrino experiments in 
detecting these objects. Since mirror fermions take part in weak 
interactions, described by SU(4) 1xSU(4) a-gauge group with the sup­
posed scale m(W)-£10 4, then it seems interesting to look for such 
objects (in particular, leptons) with comparatively small masses. 
Ir. particular, thus idea was used in the interpretation of the 
rare event detected in the "SCAT" chamber i'p + N -> M0-"-.. .11° - iTe*v 
(where M ° is a mirror partner for a 2 GeV neutrino). To calculate 
the M°-lepton production cross-section, an effective Lagrangian ba­
sed on the variant (D) was useu. As a result, the following ratio 

с t K
2 n и 2 < » т ) 2 is obtained: 6(к„ - 1Г)/о( v -ц-) =—! {——Ь-) . Note, that * <V 

in spite of that H°-lepton was assumed to be a mirror one, its pro­
duction may also be related to mixing in neutrino beam, realized 
through the neutral (V-A)-transltion v^ •* 11°. The M°-lepton life­
time depends on the intensity of charged (V+A)- and, maybe, (V-A)-
transitions (H° - J J ~ ) . According to the estimations obtained, it is 
rather long: r(M°) ~ 1 0 " l z sec. This hypothesis was not experimen­
tally verified, but one should not consider it completely closed. 
The modern estimations for the eleetromagnetically charged heavy 
leptons, according to the data obtained at e + e ~ - 'fcETRA" rings,sa­
tisfy the estimation m(lT) S-16 GeV. The upper limits on neutral 
"heavy" lepton masses are less reliable and depend on the value of 
mixing with ordinary leptons. 

As we have already pointed out, in addition to neutrino experi­
ments and those on e +e~-annihilation, mirror objects can effectively 
show themselves up in the physics of rare decays (p -» ey, р-> Зе, 
K° ->fi~e*), as well as in "beam-dump" experiments on measuring the 
1* 

polarization of direct" charged leptons. 
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i 
SarsCc f+ou/i 

(stm)t*S(/f*k *Щ) 

ущт[фи(1) 

sufysulO 

~~7 
Ш0* 

smjt * sufitursttfii'Sitfa) 

\ 
sa'h* si/ '®я*(/?/М//'$1#зО<?Ж) 

итл,*ию ** suhe> 'Si/fcj 
Fig. 1. Tbo chain of { i f » »j™p*tr7 braXlBf SSC4>,iSS(4>.xCX<» ащ| а?Н>,жт(4)_х 
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Appendix 

Here we show the contributions of the vacuum expectation values of 
scalar fields Ф , X , V into the mass matrices of gauge fields in 
the quartet SU(4) xSU<4) xU^CD-model of electroweak interactions. 1» К 
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