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Abstract: Dynamical symmetries, time-dependent operators that almost commute with the Hamilto-
nian, extend the role of ordinary symmetries. Motivated by progress in quantum technologies, we
illustrate a practical algebraic approach to computing such time-dependent operators. Explicitly we
expand them as a linear combination of time-independent operators with time-dependent coefficients.
There are possible applications to the dynamics of systems of coupled coherent two-state systems,
such as qubits, pumped by optical excitation and other addressing inputs. Thereby, the interaction
of the system with the excitation is bilinear in the coherence between the two states and in the
strength of the time-dependent excitation. The total Hamiltonian is a sum of such bilinear terms
and of terms linear in the populations. The terms in the Hamiltonian form a basis for Lie algebra,
which can be represented as coupled individual two-state systems, each using the population and the
coherence between two states. Using the factorization approach of Wei and Norman, we construct a
unitary quantum mechanical evolution operator that is a factored contribution of individual two-state
systems. By that one can accurately propagate both the wave function and the density matrix with
special relevance to quantum computing based on qubit architecture. Explicit examples are derived
for the electronic dynamics in coupled semi-conducting nanoparticles that can be used as hardware
for quantum technologies.

Keywords: Lie algebra; coherent quantum dynamics; computing by observables; CdSe

nanoparticle dimers

1. Introduction

The dual role of operators that commute with the Hamiltonian as symmetries and as
constants of the motion was established very early in quantum mechanics. The application
of symmetry was developed in detail as ‘group theory’, and it became a central component
in the bag of tools of chemists, see, e.g., [1]. It was only in the sixties of the previous
century that the notion of symmetry was extended to groups of operators that do not
necessarily commute with the Hamiltonian, see, for example, the seminal paper of Lewis
and Riesenfeld [2]. As far as we know, there were at least three lines of independent
developments at the time. In retrospect, these developments are closely related. The first
development is primarily of a mathematical nature. It is to seek analytical solutions of
exponential forms of linear differential equations of the first order. The time-dependent
Schrédinger equation for the wave function is an equation of this type, as are other well-
known equations of mathematical physics (e.g., the diffusion equation, the master equation).
Among these equations, the Schrodinger equation is almost unique in that it describes
reversible dynamics. A rigorous exponential type solution was presented by Magnus [3].
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An early application of this work in physicochemical dynamics is by Pechukas and Light [4],
and a detailed review of the earlier work is by Wilcox [5]. An early application in optics
was by Hioe and Eberly [6]. See also [7], Dattoli [8-11], and Altafini [12,13]. Below, we use
a complementary early mathematical representation of the exponential by Norman and
Wei [14,15]. The essential difference with the earlier work is that we will seek methods
that can also be used to describe and solve the time evolution of the quantum mechanical
density matrix, a quantity that is bilinear in the quantum amplitudes [16]. Beginning in pure
mathematics, there was also a more general approach that sought to identify symmetries
of more general differential equations [17,18]. See also the papers [9,19-24]. The work
of Wulfman, with special reference to time dilation, as summarized in his book [25], is
perhaps the best known application in chemical physics. The second development was
motivated by the physics of elementary particles. The notion of a dynamical symmetry
was introduced there, and a detailed review is by Bohm, Ne’eman, and Barut [26]. An
early application of this concept in scattering theory is by Alhassid and Levine [27], see
also [28]. Early overviews are [29-31]. It was also shown [32] that by elevating time to the
role of a dynamical variable, the dynamical symmetries become stationary constants of the
motion. The third development was motivated by extending the notion of a coherent state
as discussed in the books [33-35]. See also [36—40].

Our intention in this paper is to report on the actual explicit construction of dynam-
ical symmetries using a variant of the procedure of Wei and Norman [14,15]. We start
in Section 2 by defining dynamical symmetries. Then, in Section 3, we outline our presenta-
tion of the Wei-Norman approach. This provides an explicit, product form for the evolution
operator, and this operator can then be applied to any initial quantum wave function. We
then use the product form of the evolution operator to propagate operators of interest. Our
approach differs in an essential manner from the derivation of Alhassid and Levine [28].
Their derivation is simpler at the important price that it applies only to the particular initial
state of interest. On the other hand, the derivation in Section 3, a derivation based on the
product form of the evolution operator, applies to a general initial state.

The construction of an evolution operator can be used to propagate the wave function
in time. But our intention is to propagate, in time, the density matrix, a bilinear quantity
that lives in Liouville space [16,41] rather than the wave function that lives in Hilbert space.
We suggest that this is not only an alternative approach but a method that brings dynamical
symmetries to the forefront. A computation is done by a physical system that changes its
state by an application of an external input. The density matrix is a most suitable framework
to describe this. The key point, a point that will be elaborated in the technical discussion,
is that the density matrix itself is a dynamical symmetry (in classical mechanics this is
often stated as the Liouville theorem). The dynamical symmetries are therefore an optimal
basis of operators for expressing the density matrix. In this paper we deal specifically
with systems of coupled qubits (that is, coupled two-level systems) but our method is
a general approach that has other potential applications. Explicit results for a two-level
system and the generalization to a N-level system are discussed in Section 4. The factor-
ization of the evolution operator is both interesting and potentially practical. Our longer
range motivation is quantum technologies, and so, we make the obvious statement that a
two-level system is a qubit and proceed in Section 5 to show that the N-level system can be
discussed as N(N—1)/2 coupled qubits, see Section 3 below. We illustrate the advantages of
our approach by computing the electronic dynamics for models of semi-conducting single,
small, 3-nm in diameter, colloidal CdSe nanoparticles and nanoparticle dimers, which are
optically addressed [42]. Devices based on semi-conducting nanoparticles are used in a
wide range of applications in nanotechnologies [23,43-48]. Algorithm implementations
based on spin in solid-state quantum dot hardware have been proposed since the early
days of quantum computing [49-53]. We showed that colloidal CdSe nanoparticles can
be assembled in multilayered devices, operate at room temperature [54,55], and provide a
suitable hardware for implementing quantum algorithms [56,57].
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2. Dynamical Symmetries
Dynamical symmetries, A, (t), are operators defined as
id A,(t)/dt = idA,(t)/ot — [H, A,(t)] =0 (1)

with the initial condition, .A,(0) = A,, where A, is an operator in the usual Schrodinger
picture. We use boldface symbols for operators because we aim for a practical construction,
which means that we will work in a finite dimensional Hilbert space where an operator is
a matrix.

By comparing Equation (1) to the Heisenberg equation of motion for an operator, one
can say that since the unitary time evolution operator U(t) satisfies U’ (—t) = U(t), the
dynamical symmetries are Heisenberg picture operators that move backwards in time,

A (t) = U(HAU (1) )

we use the usual boundary conditions that U(t) = I

The aim of this paper is to construct a form of the evolution operator of the Hamil-
tonian H that is particularly useful for computing the dynamical symmetries starting
with the formal solution, Equation (2), particularly so when given a set of operators
{A;}, r =1,...,n that forms a Lie algebra meaning that the set is closed under commuta-
tion, [Ar, As] = ¥}; CL,A;. In the mathematical literature mentioned in the introduction,
it is typically assumed that the generator of the time evolution that, for us here, is the
Hamiltonian H itself, is in algebra and that it can be time dependent in form

H=Y h(HA, 3)

The operators {A,} are members of Lie algebra and the time-dependent coefficients
are real or complex as needed so that the Hamiltonian is Hermitian. For this special form
of the Hamiltonian, the dynamical symmetries can be expressed as linear combinations of
the operators of algebra

A (t) =) ars(t)As (4)

A central aim of this paper is to determine the time-dependent coefficients a,s(t) in a
systematic and realistic manner valid for any operator A, (0) = A,. In principle, one can
substitute Equation (4) for A, (t) as an ansatz in Equation (1) that defines the dynamical
symmetries. This will provide a set of coupled equations of motion for the time dependence
of the set of coefficients a,,(t) that can be solved for a particular set of initial conditions
ays(0). Our aim here is to find a general solution that we do, as we now discuss, by first
solving for the evolution operator, see Equation (2). Thereby, we have a general scheme.

We can equally regard the dynamical symmetries as operators in the Schrodinger
picture. The Heisenberg picture operators that correspond to the Schrodinger picture are
u'(t).A,(t)U(t) = A, thereby providing a clear indication that the dynamical symmetries
are constant of the motion. To a mathematician this follows from the result that they
commute with H — id/ot.

A proof in terms of expectation values starts with density operator p(t), which de-
scribes the system at time . p(t) evolves in time according to the well-known Liouville-von
Neumann equation, idp /0t = [H, p], where H is the Hamiltonian, and we took & = 1. The
formal solution is a unitary time evolution p(t) = U(t)p(0)U' (t). It then follows that the
expectation value of a dynamical symmetry is conserved

Tr(p() A1) = TH(U(1)p(O)U (NUHALL (1)) = Tr(p(0)A,) ©)

In this paper, we take it that a practical procedure is typically limited to a Hilbert space
that is of a finite dimension, N. The dimension can be large but finite. It follows that, for
our purpose, an operator can be represented as an N by N matrix, and this is why we use
boldface symbols. A suitable basis of operators are the N> Hermitian operators, {|i) (j|},
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where |i), |j) fori,j € {1,...N}, are linearly independent N basis states in the Hilbert
space. Then the diagonal elements, the populations, are specified by the mean values of the
N states |i)(i|. The coherences are specified by the N(N — 1) complex numbers (|7)(j|),
which are pairwise conjugates to one another, that is by N(N — 1) /2 real numbers. These
N? operators are the generators of Lie algebra U(N). In an advanced text, they will be
called the Cartan—-Weyl basis for that algebra. If we separately require that the populations
are normalized, then we need a total of only additional N> — 1 basis operators and the
algebra will be SU(N).

One can be concerned that the assumption about the linear structure of the Hamil-
tonian, Equation (3), is too restrictive. Indeed, in many body problems in physics and
chemistry and particularly in highly correlated systems, it is convenient to start with a
Hamiltonian that is bilinear in the physically motivated observables. It is then natural to
approximate the solution using a mean field approximation to linearize the Hamiltonian.
Others and we [40,58-60] have discussed and demonstrated how an effective approximate
linearization can be achieved. Here we proceed in a different way by pointing out a re-
ality of our digital age. In many realistic applications, we will work in an enumerable,
N dimensional, Hilbert space. Then, there is a Cartan-Weyl type basis for U(N), as dis-
cussed above. It can well be that smaller algebra is enough, but with N 2 operators, we
can take a system of N states that are pairwise coupled and write the Hamiltonian as a
linear sum over N? terms, H = Yi, Hijli) (j|- This is an idea that goes back to Dirac [61],
where each basis quantum state is shown to be mathematically analogous to a classical
harmonic oscillator. One can, if it proves useful, also consider such a Hamiltonian as
being of an Ising type. This requires that one thinks of each ‘spin” asa state, and these
states are pairwise coupled. Another useful relation is to write the Ising Hamiltonian as
H =YY (Hli) (i| + Hjlj) {j| + Hi;(|i) (j| + [7) (i|, which shows that the Ising Hamil-
tonian can be rewritten as a sum of N(N — 1)/2 coupled two-state systems. This is our
direct connection to quantum computers constructed as coupled qubits.

3. The Evolution Operator in a Product Form

Our aim is to determine explicitly the dynamical symmetries as an explicit expression
in terms of the time independent closed set of operators {A;}. To do so, we need to
propagate these operators in time, actually backwards in time. Previously [28,30], we
directly solved the Heisenberg equation of motion, Equation (1), for the set of operators
that are relevant in the system of interest. Here, we aim to allow for a more general initial
state. To move in time for any quantum mechanical state, we need the evolution operator.
For the given closed set of operators and when the Hamiltonian is a linear expression of
members of the set, Equation (3), we follow the construction of Wei and Norman [14,15]
to obtain the evolution operator for the Hamiltonian. We caution already very early that
while we use the approach of Wei and Norman to determine the evolution operator, the
time correlation matrix that we are after is different from the time correlation matrix of Wei
and Norman. Both matrices are tightly defined, and there is a good reason why they are
quite different. The matrix we require propagates operators backwards in time under the
action of the full Hamiltonian of the system. We need to propagate in Liouville space. The
correlation matrix of Wei and Norman propagates wave functions in Hilbert space.

The starting technical development is the parametrization of the time evolution opera-
tor in a product form as proposed by Wei and Norman [14,15]

U(t) = exp(g1 () X1 )exp(g2()X2) ... exp(g (£)X,) ©)

where v is the number of generators of the algebra and the g’s are functions of time that
needs to be determined. From here on, we use the notation Xj to denote generators that are
skew-Hermitian operators, i.e., where the { —iX} } are Hermitian. With this condition the
evolution operator U(t) of Equation (6) is unitary when the {gx(t)} are real.
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The N-state system unitary evolution operator U is comprised of v different factors
exp(gxXx). The factors can be grouped into sets of three, each constituting an SU(2) group.
There are  groups with v = 37.

The three skew-Hermitian generators of each group are taken to involve two quantum
states. Labelling the two quantum states i and j, the three generators of each SU(2)
subgroup have the form

X, = i(Eij + Eji); X, = (Eij — Eji); Xc = i(Eii — Ejj) @)

where E;; = |i)(j|, is the coherence or, for i = j, the population observable. Sometimes the
{E;;} are called Gelfand operators.

In the following, we very briefly sketch the factorization approach for one SU(2) group
using the generators as shown in Equation (7). A more detailed discussion is provided in
the Supplementary Materials, Section S1.2 and also in the ref. [62]. We then construct the
factorization of the evolution operator and the construction of the dynamical symmetries
for a 3-state system described by three coupled SU (2) algebras, based upon a generalization
of the construction for an N state system. See also the work of Hioe and Eberly on three
coupled states [63].

Equation (7) is not the most common basis for SU(2). However, it is a basis previously
used to advantage by Altafini [12,13] and in ref. [62], and it proves convenient for our
purpose of computing the group parameters {gx } that, for the skew Hermitian operators X
are then real for a unitary U.

This approach also has the advantage of providing a direct generalization for N state
systems. For a system of N quantum states, there will be y = N(N — 1) /2 distinct pairs of
states, so 7 is therefore the number of coupled SU(2) algebra. There are three generators
X per each SU(2), so the total number of generators is v = 37. The values of v and 7 are
given in Table 1 for different values of N.

Table 1. Number, 7, of directly coupled SU(2) algebras for systems of N quantum states and number
of generators, v.

N 7=N(N-1)/2 v=3y
N=2 n=1 v=3
N=3 n=23 v=9
N=4 n==6 v=18

The dependence of the evolution operator in the product form, Equation (6), on the
set of parameters {gj } is [14]

ou/ag, = ([T exp(g7%) ) X ([ T_p xp(8X))) ®

To write this in a more compact form Wei and Norman define a matrix & with, the
elements ¢ of which are defined as

(BU/agk)U_1 = (Hj:ll exp (ng]-))Xk (H}:k—l exp(fg]-Xj)> = 2:121 Eonk X 9)

Here, the matrix elements ,,; depend on (v — 1) g5, uk(81,82,---,8v—1)- As de-
fined, m is an index of a row of the & matrix while k is an index of a column. See the
Supplementary Sections S1.1 and S2.1 for a full enumeration of the 2- and 3-state Z’s,
respectively, in the skew-Hermitian basis defined by Equation (7). The matrix elements
&k, through the {gx(t)}, are functions of time, &, (g1 (), £2(¢), ..., gv—1(t)). As a function
of {gx}, E can therefore be determined from the commutation relations of the algebra
without reference to any particular Hamiltonian. The correlation matrix &(g1, 82, ..., 8v-1)
is an invertible, non-symmetric v by v matrix. Its specific form depends on the form
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of the operators used to close the algebra and of their order in Equation (6). Using
a notation of matrix algebra, an alternative form of the kth column of the & matrix is
exp(g1adX; )exp(g2adXy)...exp(gx_1a4dXy_1) X, where the operation adX,, on an operator
X, is defined as (adX;) Xy = [Xm, Xi], so that (adX,)* Xy = [Xom, [Xom, Xi]], etc.

The equations of motion for the {gi(t)} are derived by differentiating (6) wrt time.
This is described in detail by Wei and Norman and, in our notation, in Section S1 of the
Supplementary Materials

We write the matrix elements &, as functions of the {gy } because they are determined
by the algebra for all the possibly time-dependent Hamiltonians that are linear functions of
the generators. The matrix Z is a real analytic function with an initial value of I at f = 0.
We have explicit v equations of motion separately for each one of the v parameters of the
evolution operator

dgn/dt =Y, (5—1)mkhk(t), m=1,...,v (10)

We reiterate that the matrix Z is a function of the {gx }. So, the equations of motion
are first order in time but they are not linear equations, and they are coupled. The initial
values for all are gx(t = 0) = 0, so that there is an explicit solution at least for short times.

The next step is to extend the definition of the matrix elements, ¢, Equation (9), for
all v sets of parameters, ¥ = 1,2,...,v

(1T exp (87%)) ) Xe (T exp (=87%)) ) = Tica G Xo (1)
Vr=12...,v &= Em(81,82 -, 8

For the case = v, this expresses the full dynamical symmetry X (t) = U(t)X U (t)
as a linear combination of time independent, Schrédinger picture, operators, Equation (12)

(1) = Y0y o (DX (12)

We next intend to demonstrate a computation of the dynamical symmetries as coupled
SU(2) algebras, where each algebra is a coherent two-level system and so, a qubit. We
present analytical results for one qubit system and for three coupled qubits, as well as the
generalization for the N(N — 1)/2 coupled qubits that can be built for a N state system.
Our too], as already hinted earlier, is to write the Hamiltonian as a linear combination of
the diagonal operators |i) (i| and the off diagonal ones |i) (j|, where the {|i) } are the basis
states, typically these are the eigenstates of the Hamiltonian in the absence of input so that,
without input, the state of the system is stationary.

4. Explicit Solution of the Two-Coupled Level System

For the coupled qubits problem and to be consistent with the notation in Lie algebraic
papers, we use X;s for the Schrodinger operators with E;; = [i) (j|. For a two-level system

I=Ey; +Ex» (13)
0 i )

X; = (i 0> =i(Ex2 + En) (14)

X = (_01 (1)) = (E;p — Ex) (15)
i 0 .

X3 = <0 —i) =i(Ey; — Ep) (16)

This is almost the same basis as was used by Altafini [12,13] and in ref. [62]. The input is
provided by a time dependent optical pulse E(t), so that the full Hamiltonian operator

H(f) = 0Eq; — E(t)"l/lEu — E(f)]/lEzl + aEy) (17)
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where p is the transition dipole moment. In matrix form, in the two-dimensional

Hilbert space,
_( 0 —EMm
HO = (g ) 1
The ground state is taken to be at energy zero, so that « is the energy of excitation. Equation (18)
can be rewritten in terms of the SU(2) operators

H = iE(t)uX; + i%X3 + %1 (19)
so that the vector of the coefficients of the operators in the Hamiltonian, h(t)
(see Equation (3)) is

h'(t) = (iIE(H)p 0 a/2) (20)

The commutation relations of the SU(2) operators in the form that we use are Table S1.
The evolution operator is chosen to be in a sequential order of operators

U(t) = exp(g1(t)X1)exp(g2(t)X2)exp(g3(t)X3) (21)

where for our choice of skew-Hermitian operators {Xj }, we will need to verify that the
results for the {gx } are real in order that the evolution operator is unitary.

Using the commutation of the SU(2) operators, we compute the elements of the &
matrix that governs the time evolution of the {gx} (Equation (10)).

The E matrix, as solved in the Supplementary Materials, and its inverse are

1 0 —sin(2¢72)
E = (0 cos(2g1)  cos(2g2)sin(2g7 )
0 —sin(2gy) cos(2g2)cos(2g1
(1 tan(2g,)sin(2¢1) tan(2g2)cos(2g1))

~— —

(22)

11

0 cos(2¢1 —sin(2g1)
0 sec(2g2)sin(2g1) sec(2g2)cos(2g1)

and from g = —iE~'h(t) (Equation (10)) we get three coupled differential equations for the
{gx(t) } where the overdot denotes a time derivative

g1=E(t)u+ tan(zgz)cos(zgl)
g2 = —5sin(2g1) (23)
g3 = 5sec(2g2)cos(2g1)

where as stated below Equation (10), g1(0),= £2(0) = g3(0) = 0. After solving these
coupled differential equations for the {gx(t)} as a function of time we have an explicit
form of the evolution operator, U(t), as a product of three exponential terms. Each such
term can be represented in Hilbert space as a two by two matrix. Multiplying the three
matrices, we get a matrix representation for the evolution operator of a two-state system,
see Supplementary Section S1.2,

u=
( gigS (cos(g1)cos(g2) — i sin(gy) sin(g2)) e*fg3 (cos(g1) sin(g2) +7sin(g1) cos(g2)) ) (24)
—e'83(cos(g1) sin(gn) —isin(gy) cos(g2)) e '83(cos(g1) cos(g2) + i sin(gy) sin(g2))

e~'83(cos
e'83(cos

To compute the dynamical symmetries, and because U is unitary, we also need its inverse

u'=
(81)cos(g2) + isin(g1)sin(g2)) —ei?3(COS(g1)Sin(gz)+isin(g1)COS(gz))) (25)
(81)sin(g2) — isin(g1)cos(g2)) ¢'83(cos(g1)cos(g2) — isin(g1)sin(g2))
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Lastly, we bring from the Supplementary the form of the dynamical symmetry operators of
SU(2) as X (t) = uX u—.

21(t) = cos(2g2) cos(2gs) X; + (sin(2g,) sin(2g2) cos(2g3) — cos(2g) sin(2g3)) X

+(cos(2g;) sin(2g2) cos(2g3) + sin(2g7) sin(2g3)) X
X, (t) = cos(2g2) sin(2g3) X1 + (cos(2g;) cos(2g3) + sin(2g1) sin(2g2) sin(2g3)) X: (26)
+(cos(2g,) sin(2g2) sin(2g3) — sin(2g1) cos(2g3)) X

X3(t) = —sin(2g2) X7 + sin(2g1) cos(2g2) Xy + cos(2g1)cos(2g2) X3

the time correlation matrix from the Schrodinger picture to the dynamical symmetries,
Equation (12), is derived in the Supplementary, Section S1.4. The X’}’s are Heisenberg
operators that move backwards in time, and one verifies that the two time correlation
matrices are indeed inverse to one another. For more detailed results of the two-state
system, see Section S1 of the Supplementary.

Using the evolution operator, one can propagate in time any initial state that can be
specified by the three generators, p(t) = U(t)p(t = 0)U '(t). When at time t = 0, the
system is in its ground state, and we have

p) =t ( o o Jur o) =exp(ut (- ixy))u ()

—exp(hr-iza() = (102 )

where

p11(t) = cos?(g1) cos?(g2) + sin’(g1) sin*(g2)
p12(t) = —(cos(g1) sin(g2) + i sin(g1) cos(g2))(cos(g1)cos(g2) — i sin(g1)sin(g2)) 27)
p21(t) = i (sin(g1)cos(g2) +1 cos(31)sin(g2)) (cos(g1)c0s(82) + 7 sin(g1) sin(g2))
px(t) = sin’(g1) cos?(g2) + cos?(g1) sin?(g2)

The final matrix form is an explicit result and shows that the elements of the density matrix
of exponential form in a dynamical symmetry are not necessarily simple exponentials.

Matrix multiplication explicitly verifies that the expectation values of the dynami-
cal symmetries for the density matrix at time ¢ are time independent and equal to the
initial values of the generators (that are 0, 0, and i, respectively—see Section S1.4 of the
Supplementary Material).

5. Generalization to a N-Coupled Level System

The N-level unitary evolution operator is given in product form in Equation (6) above.
For N levels, we have 7 = N(N — 1) /2 pairs of states. Each pair of states corresponds to a
qubit and is described by three skewed-Hermitian generators, constituting SU(2) algebra,
Equation (7). The 17 SU(2) algebras are coupled because they have states in common.
We have a set of v = 31 operators (Table 1), 27 generators for the coherences, and 7
generators for the population differences. This set of v = 3% generators is closed under
commutation. We give in this section the generalizations of the approach outlined for two
levels in Section 4 to N levels. Examples of a three-level and nine-level model are presented
in Section 6.

Using Equation (7) above, for a three-level system, we have three pairs of states 1,2,
1,3, and 2,3, each described by SU(2) algebra, which leads to nine generators

X, = i(E1p + En); Xy = (E12 — Ex1); Xc = i(Eq; — Ep)

Y, = i(E;3 +E31); Yy = (E13 — E31); Ye = i(Eq1 — E33)
Z, = i(Ex3 +E3); Zy = (Ex3 — E3p); Ze = i(Ex — Es3)
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The operators of each SU(2) group obey the commutation relations, i.e., for states 1,2
[Xa/Xb} = -2X,; [Xu/Xc] = 2X,; [Xb/Xc] = —-2X, (28)

For the commutators between generators that have a state in common, i.e., 1,2 and 1,3,
one gets
[Xa, Ya] = Zb,' [Xa, Yb] = Z,Z,' [X,Z, YC] = _Xb
[Xbr Ya] =—Z; [sz Yb] = _Zh? [Xb/ Yc] =-X; (29)
(Xe, Ya] = =Yy [Xe, Yp] = Xa; [Xc, Y] =0

If the two SU(2) algebras do not have a state in common, their generators commute. This
will happen for a system with N > 4. We generalize the commutation relations for the
complete set of operators of an N-level system, {Xj}, as

[Xm/ Xn} = Cm,nX[m,n] (30)

where m and # label a pair of generators and c;, , is the structure constant for the generator
X[, that results from the commutation relation. The functional form wrt, the {gx(t)} of
the time correlation matrix & defined in Equation (9), as well as of the time-correlation
matrix that propagates the dynamical symmetries, Equation (12), only depend on the
commutation relations Equation (30). They are valid for any Hamiltonian of the form
of Equation (3).

The building blocks for building these time correlation matrices are the factors
exp(gmadXy ) X,. Expanding exp(gmadX;;)X, in a Taylor series and using commutator
relations, such as Equations (28) and (29), one gets the following expression

exp(gmadXy, ) X, =
X+ gtsin (oo ) X + s (1= €05 (€un ) ) Xio )

Con, m,n) Con,[m,n)

(31)

The actual values of the coefficients {g(t)} as a function of time are given by Equation (10),
in matrix form ¢ = —iE~'h(t), and do depend on the coefficients h(t) of the generators of
the Hamiltonian

H(t) =) 5 (B Xi (32)

In Section 6 below, we present examples of N = 3- and 9-level systems, where the levels
are coupled through the dipole interaction with the time-dependent electric field of a light
pulse, —E(t). p. In the Gelfand basis of generators, E,;;;, the Hamiltonian takes the form

H(t) =Y Hyun(t)Eum

n=1,m=1
With

Hym () = Oy forn =m
e —E(t)pnm forn #m

The diagonal coefficients Hy;, (t) corresponds to the energies of the levels, with the lowest
energy, a1 = 0 so that &y, n > 1, are the transition energies from the ground state to the
excited states. The coefficients, I (t) of the generators in Equation (32) are obtained from
the following relations:

iE(t) pum forMod(k—1, 3) =0
he(t) =<0 forMod(k—2,3) =0 (33)
i%(—an +ay) forMod(k, 3) =0
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Once the values of the {g,(¢)} have been computed by integrating Equation (10),
we can readily compute the coefficients of the time-correlation matrix A(t) = {a,,, ()},
Equation (12), from the Schrodinger picture to the dynamical symmetries:

Xk(i’) = UXkU’l = (H;/:l exp (g] (t) adX]))Xk = Zir/nzl Clkm(i')Xm (34)

From A(t), one also readily obtains the coefficients of the time correlation matrix from the
Schrodinger picture to the Heisenberg operators, B(t) = {b km(t) }, which is the inverse of
A(t) or compute them directly using:

_ 1
Xi(t) = Xp(—1) = U XU = ([T, exp (—gi(H)adX;) ) Xe = Xy, b (DX, (39)
See Supplementary Section S2 for more details.

6. Applications to the Electronic Dynamics of CdSe Nanoparticles
6.1. Electronic Dynamics for a Single CdSe Nanoparticle: An N = 3 Model

Small CdSe nanoparticles have been studied extensively for exploiting their optical
properties [64-71], and coherences between electronic states have been measured using
2 dimensional electronic spectroscopy (2DES) [54,55,72-78]. To illustrate our approach, we
begin with a simple three-level model describing the electronic dynamics of a small 3 nm
in diameter CdSe nanoparticle, optically excited by a VIS few fs laser pulse. The three
electronic states that we consider are the ground electronic state (GS), and the two lowest
excitonic states, 1S and 2S of the nanoparticle [54,55,65,66,79,80], made of two hole-electron
pairs: the hje exciton for S1 and the hye exciton for 2S. 1S and 2S are 2.2 eV and 2.8 eV above
the GS respectively and their transition dipole from the GS are set equal: y;, = p13 =1.27
Debye (0.5 a.u.). The level structure is shown in Figure 1.

a b
o [2)
3
Full algebra = Z su);
a3 =2.8eV [1) i
18 SU(2), = SU@2), = SU2); =
a,=2.2eV g (X1, X2, X5) (X4 X5, X} (X5, X5, Xo)
; \
Hi3=1.27D
iz =1 27 D X, = i(Ey; + Epy) | Xy = i(Ey3 + E3y) | X7 = 1(Eqa + E3p)
X = (Eqp— Eyy) | X5 = (Eyz— E3y) | X = (Ez3 — E3z)
Xy =i(Eyy — Ey) | Xg = i(Eyy — Es3) | Xo = i(Ezz — E33)
|0}

Figure 1. (a) Level structure of the three-state model of a CdSE nanoparticle. Two excited electronic
states, 1S and 2S are optically coupled to the ground state. (b) The corresponding three coupled
SU(2) algebras leading to 8 generators Xj.

This model is relevant when the spectroscopic energy resolution used to probe the
electronic dynamics is not high enough to resolve the fine structure of excited states 1S
and 2S.

The CdSe nanoparticle is addressed by a sequence of three identical fs pulse with a
Gaussian envelope in time broad enough in time to have a sufficient large energy bandwidth
for exciting the states 1S and 25 and building electronic coherences, as is done in the
2DES [54,55,72-78] for probing electronic coherences in view of application to quantum
technologies [43]:

2
E(t) = Egexp <_(tz;2t0)> cos (we(t —ty)) (36)
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with a Full Width at Half Maximum (FWHM) = 2v/2In2¢ = 5.86 fs, a carrier frequency, w,
of 2.5 eV. The strength of the electric field, Ej is set to 0.007 a.u.

This three-level system corresponds to three coupled qubits, described by three cou-
pled SU(2) algebras with nine generators, three for each pair of levels: {X1,Xp, X3} for
the GS and 1S, {Xy, X5, X¢} for the GS and 2S and {X7, Xg, X9} for 1S and 2S. Note that,
in this case, the three pairs of levels each have a state in common. The commutation
relations between the nine operators are given in Table S3 of the Supplementary as well
as the explicit functional form of the three-state time correlation matrix B (Equation (35),
see Supplementary, Section 53.3)) and an example of the dynamical symmetries” depen-
dence on of the {gx(t)} (Equation (34), see Supplementary Section S3.4).

In term of the {Xj}, the Hamiltonian takes the form, see Equation (33)

H(t) = %(062 +az) [+ iE(t)p12 X + i%& +iE(t)p13 Xy + i%Xs + %i(—lxz + a3)Xo

We show in Figure 2a—c the computed time dependence of the pairs of g coefficients,
{g1(t),82(t)}, {ga(t), g5(t)} and {g7(t), gs(t)} that correspond to the pairs of generators
{X1,X2}, {X4, X5} and {X7, Xg} describing the real and imaginary parts of the electronic
coherences. ¢3(t), g6(t) and g9(t) which corresponds to the operators associated with
the population differences X3, X¢ and Xg are plotted in Figure 2d. After the pulse, the
{g1(t),82(t)}, {ga(t), g5(t) } and {g7(t), gs(t)} coefficients oscillate between constant val-
ues while the g3(t), g¢(t) and go(f) increase monotonically with a step-fine structure.

3 3 s =
:— o 3 -
f L - L
3 T - e
- oY - F
A N : =
] Ry E R
0 20 40 60 0 20 40 60
Time (fs) Time (fs)
- 1.4 - 1.4
5 go |- @ g
; 07 73 [ 8¢ 07 =
5 = =
3 S 60 I~ S
E o . A K] o
E 0.0 g S 40 x 0.0 \%
B ~_ !
2 E i B
: —-0.7 m 20 99 4 -0.7
_0-3:,..I...l...l._14 o= . . ... gy
0 40 60 0 20 40 60
Time (fs) Time (fs)

Figure 2. The nine g; which govern the evolution operator U (Equation (6)) of the three-state system.
Panels (a—c) show g; which are associated with coherence operators, and panel (d) shows g; which
are associated with the population difference operators. All panels also show the three pulses E(f)
applied at tg = 14.5 f5s,29 fs and 43.5 fs.
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The oscillations that appear in each {g(¢),gm(t)} are determined by the energies
of states coupled by the SU(2) to which this pair corresponds. When an SU(2) couples
two states i and j, the {gn(t), gm(t)} of this SU(2) will contain oscillations related to the
frequency Aw;; and to the Aay j of all states k between i and j.

The values of {g,(t)} coefficients only depend on the Hamiltonian. Once the {g,(¢)}
have been determined one can readily compute the constant values of the dynamical
symmetries, (X (t)) = Tr [p(t) X(t)] and the time-dependent values of the Schrodinger
operators (Xi(t)) = Tr [p(t) Xi| for a given initial state. Both can be computed by determin-
ing the time correlation matrices from the Schrodinger picture to the dynamical symmetries,
Equation (34), and to the Heisenberg operators, Equation (35) in terms of the {gx(¢)}. Since
we describe the response of the nanoparticle to an optical excitation, the initial state is
the ground electronic state. The latter has coefficients on two generators only, X3 and
X;, with equal initial mean values (X3(0)) = i and (X4(0)) = i. All other initial mean
values are 0. It means that for this particular initial state, two dynamical symmetries only,
X3(t) and X4(t), have a constant mean value different from 0: (X3(0)) = (X4(0)) = i,
all the other (X;(0)) = 0 for k # 3, 6. For such an initial state, which has coefficients
on a limited number of generators, there is a considerable saving of computer time and
storage for propagating the mean values (X (t)) of the generators corresponding to the
coherences and to the population differences. This can be seen explicitly from Equation (37)
below which gives the time evolution of the mean values of the nine generators { (X (t))}
using Equation (35):

(X1 (t)) bi1 b1z b1z by bis b by big by
(X2(t)) byt by byz bog bys bag byy bag b
(X5(t)) b3t bz bzz b bss by b3y b3y by
(X4 (t)) byy by byz by bsy by byy byg by
(Xs5(t)) | = | bsi bsa bsz bsy bss bsg bsy bsg bsg (37)
(Xs(t)) be1 be2 bes besa bes bes bsy bes beo
(X7(t)) bs1 by byz bza bys bz by; brg by
(Xs(t)) bg1 bgr bz bsa bss bge bgy bsg bgo
(Xo(t)) bo1 boy boz bos bos bog boy bog bgg

O O O = OO = OO

The time evolution of the mean values of the nine observables is given by two columns of the
time correlation matrix only, the 3rd and the 6th, marked in gray shade
in Equation (37), meaning only 18 coefficients need to be derived. Their derivation is
further simplified by exploiting the commutation relations between the {X} } generators, as
explained in Section 53.3 of the Supplementary where their explicit expressions in terms of
the {gx(f)} coefficients are given. The resulting real and imaginary parts of the coherences
and the population differences are plotted in Figure 3 as a function of time. Note that it
is the excitation by the second pulse that builds coherence between states 2 and 3. The
population difference Xy (t) shown in Figure 3d, between states 1S and 2S is small because
the two states are about equally populated. This can be seen from the amplitude of the
oscillations of the real and imaginary parts of coherence between these two states shown
in Figure 3c.

6.2. Electronic Dynamics in a Nine-Level Dimer of CdSe Nanoparticles

We next consider a realistic model of a dimer of small, ~ 3 nm in diameter, CdSe
nanoparticles [55,81]. In this model, we take into account the spin-orbit coupling between
the spin of the hole and its orbital quantum number in computing the energies of the
excitons for each CdSe nanoparticle [54,65,66] Each dimer has therefore 8 excited states, in
the energetic order 1S§/2, 15?/2, 1SlL/2, 1552, 25§/2, 25?/2, ZSlL/2 and 28{{/2. In refs [55,81],
we show that the electronic coherences between these excited states can be probed by
coherent 2DES. The ladder of 9 states (8 excited states + the ground state) is shown in
Figure 4, as well as the structure of the corresponding 36 coupled SU(2) algebra, leading
to 108 generators {X;} and 108 gix(t). We here apply a sequence of 3 fs laser pulses
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(Equation (36)) at 14.5 fs, 29 fs, and 43.5 fs. The three pulses have the same parameters:
FWHM =2+/2In20 = 5.86 fs, a carrier frequency, w, of 2.45 eV, and the electric field strength,
Ey, is set to 0.003 a.u. Figure 5 shows the time evolution of the selected values of the {gx () }.

0.8 0.8 14
0.6 — 0.6 —  —(iXs)
0.4 F 3 0.4 f{X) | 07 3
~ 02E § —~02F 5
s 02f 4 s 02f :
X 0F o X of o
e S oy T 3 =
| 02 02 F
“E 9 “E S
—04 F = —04 F o
—0.6 F —-06 F
_0.8 s —0_8 T T S 1.4
0 20 40 60 0 20 40 60
Time (fs) Time (fs)
1.4 1.0 _ 1.4
0.6 F F d —(iX3)
s 0.8 F
04k 07 3 - 07 3
~ 02F g 06 - 8
2 of 00 o X [ 00 ©
== C - ~ 04 i
' o2E e ! -~
“r E 02k o)
04 F —-0.7 m “F —0.7 iy
—06E 0.0 F
) SPTANTS S B g
0 20 40 60 0 20 40 60
Time (fs) Time (fs)

Figure 3. The nine (X (¢)) of the three-state system, plotted as — (iXy (t)). Panels (a—c) show — (iX) (f)
of coherence operators, and panel (d) shows the — (iXj(¢)) of the population difference operators. All
panels also show the sequence of three pulses E(t), which drives the dynamics.

258 |8)
a ag=3.20eV 4 yz 7 ) b
28f,, |7)
a=298eval, " Jg) y Y
3/2
s =2.90eV j ZSLI 5) Y —
@ =2.75 eV A 3/2 % - 3 Full algebra = Z: sU(2),
= H
@y =2.69eV 4 15172 'y =\
15t A3) L= sU@), = SU@); = | sv@se=
ay=2.55eV 4 i/ 2) T (X1, X2, Xa) (X0, X5, Xo) (X106 X107, X10a)
=2.44eV 15! 3 -
ay eV a 3/2 1) T+ ——— —_—
1 ——— =
a; =2.29eV 4 184, y == i
Hog =9.5D \"
Hg7=11.0D
Hos =18.6D
Hos =12.4D
Mos =6.3D X, = B+ Ea) | Xy = (B + Eso) Xyos = i(Eqo + Eug)
Moz =5.4D X, = (B, —Eyy) | X = (BEyy — Eyy) ees |Xigr = (Egs — Eg)
2 = 20.1D
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Figure 4. (a) Level structure of the dimer of Cdse nanoparticles. The ground states are coupled to

eight excited states (1S§/2, 15?/2, 15%/2, 1552, 253L/2, 2551/2, 25%/2 and 25{1/2) by optical excitation.

(b) the generators { X} } of the nine-level system is constituted of 36 SU(2) algebras.



Nanomaterials 2024, 14, 2056

14 of 19

gm (1071

gm (1072)

gm (1071)

=2

-4

-1

1.0 1.0
B 25 b=
__'a g1 E b g3
- 05 20 \ — 05
e = o ! il o
" b | 3 F |. 'l H l 3
S "'Hmlnh £ s b s ¥
) '-' 0.0 - |H i ol ul Y el (0
C g g S e o * g
- .rl i - L ' \ |l|'i Ay
I —~ 10 1 —
: 1114 O : ;; § O
" ! 05 2 . i " 05 O
0 E(t) ? ¢ E E(t) !
-IllllllllI!lltl]llllIi!llllllllll] —1.l] o -llllllllltllllIlllllilllllltllill _I.D
0 30 40 50 60 70 0 10 20 30 40 50 60 70
1.0 40 1.0
[ d G2a
05 30 ; i - os
> s ! 7 ¥
3 L slt -:' h ]
g L l,'l ¥ S
b i p““ |‘1| 'ﬂ T
0.0 = mEa 20 __;¥:|.:|||,t‘“1‘|1 ||| |",f|,|“,,‘._____ 0.0 =
i N B i it —
: S L O
- 24 - i 1 E(t) 23]
L -05 10 |- i -05
-IIII|IIIIIIIIIIIIII'Illlllllllllll 71.0 0 -llllllllllllllIllllllllllllllllll ‘;l_u
10 30 40 50 &l 70 0 10 20 30 40 50 60 70
1.0 2 1.0
E 0.5 1 — 05
; s - o
- S — i =
: 'd'u PI‘! B 'd“:s
- i =] i I
0.0 - 0 -— 00
2 = = C =
L St E - —
E = = i o
- S S
- =4 ™ 53]
= -0.5 -1 -0.5
- : E(t)
—llIlllllIllllllllllllllllll _10 _2 -llllllllllIIIIIIIII!III!III _.U
0 20 60 B0 100 120 140 0 20 40 60 80 100 120 140
Time (fs) Time (fs)

Figure 5. Six of the 108 g; which govern the time evolution operator U (Equation (6)) of the
9-state system. Panels (a,cef) show g; which are associated with coherence generators, and
panels (b,d) show g; which are associated with population difference generators. Panel (a) shows g1,
which is associated with X7 = i(E12 + E»1); Panel (b) shows g3, which is associated X3 = i(E1; — Ep);
Panel (c) shows gy, which is associated with Xp; = i(E1g + Eg; ); Panel (d) shows gp4, which is as-
sociated with Xp4 = i(E1; — Egg); panel (e) shows g»5, which is associated with Xp5 = i(Ep3 + E3p);
and panel (f) shows g4, which is associated with Xy = i(E34 + E43). All panels also show the
three pulses E(t).

Since the initial state is the ground state, only two dynamical symmetries have a mean
value different from 0, (X3(0)) = (X(0)) = i, all the other (X(0))’s = 0. As for the
three-level system discussed in Section 6.1, only two columns, the third and the sixth ones,
of the time correlation from the Schrodinger to the Heisenberg picture, Equation (35), need
to be derived to propagate the observables, meaning 216 coefficients out of 1082 = 11,664.
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The time dependence of (Xj(t)) corresponding to the gi () plotted in Figure 5 are plotted
in Figure 6. Note that each (X (t)) depends on several gi(t).
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Figure 6. Six of the 108 (X (t)) of the nine-state system, plotted as —(iXy(t)). Panels (a,c,e,f) show
—(iX;(t)) of coherence operators, and panels (b,d) show —(iX(t)) of population difference operators.
All panels also show the time profile of the electric field, E(t), made of a sequence of three pulses,
which drives the dynamics.

7. Conclusions and Perspectives
A practical approach to computing quantum dynamical symmetries is discussed

and implemented for systems of coupled two states (=qubits), which provides a direct
connection to quantum computing designs implemented on currently available quantum
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hardware [82] and to Ising Hamiltonians [83,84]. To address the optical, the Hamiltonian
can be written as (H = }; ; H;;|i) (j| ), and it is of an Ising form when each quantum level is
encoded on the spin state of a qubit. One can choose the three generators for each SU(2)
algebra such that the factorized evolution operator is guaranteed unitary. The factorization
is successive. Each SU(2) algebra results in its own factor in the evolution operator, and
each such factor is a sequence of terms, one for each of the three generators (see Table 1).
As reported in detail in the Supplementary Materials and shown in the examples discussed
in Section 6, this leads to a very stable and compact numerical scheme, even for strong
coupling, and to considerable savings in terms of computer time and storage.

Beyond the application to computing with coupled qubits, the methodology we
discussed can be applied to many aspects of dynamical systems. This is because we
compute the evolution operator, which is valid for any initial state. The one restriction is
that in this paper, we compute a unitary evolution operator so that we do not describe
dissipation. From the evolution operator, we generate the dynamical symmetries, Section 2.
The key point towards applications is that a function of dynamical symmetries is itself a
dynamical symmetry.

As a practical application, we compute how expectation values that are needed to
describe the system can be computed without appeal to a wave function. This is the role of
the time correlation matrix that relates initial values to the expectation values of observables
at time t. Its expectation value at time f is explicitly given as an expectation value of a
dynamical symmetry over the initial state.

(A1) = Tr(p(O)UH (DA (O)U(F) = Tr(p(0)A(~t) = Tr(p(0)Lq Astrs(—t)) =
Y (As)(t = 0)ays(—t). It is most practical to determine dynamical symmetries when the
Hamiltonian is specified as a matrix, as we do in this paper. In this case, the states of the
system are pairwise coupled and the dynamics can be cast as coupled two-state systems.

Dynamical symmetries are used not only to describe the dynamics of operators. They
also play a key role in the complementary task of propagating the state of the system
in time. This is because the density operator under a unitary time evolution is itself a

dynamical symmetry. A simple example is when the initial state is, say, the ground state,
def

Aq =p(0) :’i> (i ’ then the state at a later time is p(t) = A,(t). In a more general case,

when the initial state is specified by a number of operators p(0) = f({A;}), then the
unitarity of the evolution operator implies that at a later time p(t) = f({.A;(—t)}). The
operators {A;} can be the set of skew Hermitian opertators {X;} of Section 6 or any Lie
closed set. An important special case is when the initial state is a density operator of
maximal entropy. Then the set {4;} is the set operator whose mean value is given and
it constraints the entropy. It follows that at all subsequent times, the density matrix is
of maximal entropy subject to the mean values of the dynamical symmetries, see [28,30].
Of course, the mean values of the dynamical symmetries remain unchanged in time. But
Equation (4), A, (t) = Y ars(t)As shows how the state at time ¢ can be expressed in terms
of the time independent Schrodinger picture operators p(t) = f({Y¥s ars(—t)As}). Explicit
results for systems with coherences show that the distribution of populations at time ¢t is
not necessarily simple exponentials and is often a sum of such terms. It may be of interest
to draw an analogy with classical distributions of maximal entropy. These can also be not a
single exponential, for example, when there are several paths leading to the same final state.
If P(j, n) is the probability of state j via the distinct path n and P(j) is the total probability
of the state j, then P(j) = }_,, P(j,n). It remains to be clearly understood whether this is
analogous to the inherently parallel processing in quantum computing,.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390 /nano14242056/s1, The Supplementary Material provides the
details of the derivations of the results of the coupled two-state SU(2) system discussed in the main
text and for the three- and nine-coupled states models.
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