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The Janossy density for a determinantal point process is the probability density that an interval
I contains exactly p points except for those at k& designated loci. The Janossy density associated
with an integrable kernel K = (¢ (x)¥ (y) — ¥ (x)@(y))/(x — y) is shown to be expressed as a
Fredholm determinant Det(I— K| ;) of atransformed kernel K= (p(x) 1/7 0)— 1; @)/ (x—y).
We observe that K satisfies Tracy and Widom’s criteria if K does, because of the structure that

the map (¢, ¥) — (@, V) is a meromorphic SL(2,R) gauge transformation between covari-
antly constant sections. This observation enables application of the Tracy—Widom method [7]
to Janossy densities, expressed in terms of a solution to a system of differential equations in
the endpoints of the interval. Our approach does not explicitly refer to isomonodromic systems
associated with Painlevé equations employed in the preceding works. As illustrative examples
we compute Janossy densities with £ = 1,p = 0 for Airy and Bessel kernels, related to the
joint distributions of the two largest eigenvalues of random Hermitian matrices and of the two
smallest singular values of random complex matrices.

Subject Index A10, A13, A32, B83, B86

1. Introduction

In the history of random matrix theory (RMT), which models the local fluctuation of energy levels of
quantum chaotic and/or disordered Hamiltonians typified by the Sinai billiard, the Anderson tight-
binding model, and the QCD Dirac operator, Gaudin and Mehta’s discovery that the distribution of
ordered eigenvalues or their spacings is expressed in terms of the Fredholm determinant or Pfaffian
of an integral kernel K; restricted on an interval / [1,2] has been known as long as the RMT itself.
Specifically, the distribution Pk (s) of the kth largest eigenvalue (centered and scaled) of random
Hermitian matrices is given as

1
Pk(S) = Eas (_az)k Det(]I - ZK(S,OO))) (1)

z=1

with K being the Airy kernel [3], and that of the kth smallest singular values of random complex
matrices is given by Eq. (1) with K being the Bessel kernel [4] (with replacements I = (s, 00) >
(0,s) and d; — —0y). These trains of peaks that gradually approach Gaussian in the spectral bulk [5]
constitute the spectral densities p;(s) = Z,fozl Py (s), as plotted in Fig. 1. For the practical purpose
of fitting some spectral data to the RMT to extract system-specific constants (such as the chiral
condensate and the pion decay constant in the case of QCD Dirac operators [6]), characteristic peaky
shapes of the individual distributions are better suited than the spectral density, as the oscillation of

© The Author(s) 2021. Published by Oxford University Press on behalf of the Physical Society of Japan.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

120z Jequiada( £z uo Jasn sauyjoljqiqienusz-AS3d A Z6578€9/LOVEL L/ L L/L 20Z/eone/deid/wod dno-olwapede//:sdyy woj papeojumo(



w2

PTEP 2021, 113A01 . M. Nishigaki

0.4+

0.3+

0.2+

Pk(s)

0.1+

0.0

Fig. 1. Distributions Py (s) of the scaled kth largest eigenvalues of random Hermitian matrices (Tracy—Widom
distribution) (right) and of the kth smallest singular values of random complex square matrices (left) (red
(k = 1) to blue (k = 8)), their sums Zizl Py (s) (grey dotted), and the spectral densities p; (s) (black).

Fig. 2. Histograms of the first (¢) and second (s) largest eigenvalues of random Hermitian matrices (left) and
of the first (#) and second (s) smallest singular values of random complex square matrices (right). Matrix
rank N = 128 and number of samples = 10 for each case, and eigen/singular values x are rescaled as: ¢ or
s = +/2N5(x — +/2N) and +/2Nx, respectively.

the latter tends to smooth out in the bulk and the data-fitting would yield little more than the mean
level density.

With this in view, the purpose of this article is to advance the formula (1) a step further and provide
a “user-friendly” analytic method to compute the joint distribution Pj...;(s1,...,sx) of the first to
kth largest/smallest eigenvalues of unitary-invariant random matrices, which is a constituent of the
k-point correlation function pg(sy, .. .,sx). To this end we apply the strategy of Tracy and Widom
[7] on the evaluation of Fredholm determinants of integrable integral kernels to the Janossy density
[8—11], i.e., the probability distribution that an interval contains no eigenvalue except for those at
k designated loci. As the simplest examples we shall evaluate the joint distributions P13 (¢, s) of the
first and second largest eigenvalues and smallest singular values (see Fig. 2 for their histograms), i.e.,
the first peak that constitutes the two-point correlation function p2(t,s) = Y, _, Pre(t,s), for the
Airy and Bessel kernels. Each case has been worked out previously in Refs. [12,13], which devised
an elaborate analytic procedure involving the Painlevé II and III transcendents and the associated
isomonodromic systems [ 14]. This approach is later simplified (for the Airy kernel) using a solution
to the Lax pair associated with the Painlevé XXXIV system [15]. Our alternative method presented
in this article, which does not explicitly refer to these systems and employs the familiar Tracy—
Widom method, has a clear advantage of permitting straightforward generalizations to a general
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Pj...; and/or to various finite-N and large-N kernels (Hermite, Laguerre, and other hypergeometric;
circular, beyond-Airy, g-orthogonal, etc.) appearing in the RMT.

This article is composed of the following parts: In Sect. 2 we list known formulas on Janossy
densities of a determinantal point process, and then express them in terms of Fredholm determinants
of the “transformed kernel” K. The latter is a novel presentation to the best of our knowledge,
except for the simplest (k = 1) case of the sine kernel previously treated in Ref. [16]. In Sect. 3
we demonstrate that K satisfies Tracy and Widom’s criteria for their functional-analytic method to
be applicable if the original K does. In Sect. 4 we evaluate Janossy densities and joint distributions
of the first and second extremal eigenvalues from the Airy and Bessel kernels by the Tracy—Widom
method. In Sect. 5 we conclude with listing possible applications and extensions of our approach.
Numerical data of Janossy densities for the Airy kernel and the Bessel kernels at v = 0,1 are
attached as supplementary material. Throughout this article we follow the notations of Ref. [7],
hereafter denoted as TW.

2. Janossy density

First we collect some facts on determinantal point processes (DPPs). Let X be a countable set.
Consider an ensemble of finite subsets of X consisting of N elements (“particles”) (ny, ..., ny), and
assign to them a joint probability in a determinantal form:

1
Pny,...,ny) = ]W det [K(n,-,nj)]?;zl , n;€X. (2)

Here K = [K(n,m)], mex is an operator in the Hilbert space L*(X), i.e., an infinite-dimensional
matrix indexed by the points of X. The operator K, which we also call a kernel, is required to be
real, symmetric, projective, and normalized:

K=K*=K', K- K=K, tK=N. 3)
These requirements lead to the k-point correlation function pg (n1, . . ., ng), i.e., the joint probability
that & particles occupy the points #1, . . ., 1k, to be given in a determinantal form as well:
k
or(ni, ..., ng) = det [K(n,-,nj)]i’].zl := detk. 4)

The Janossy density Ji (ny, ..., ng; 1) is defined as a probability that there is no particle in a subset
I C X except for k particles, one at each of the & designated loci ny, . . ., i (see part (2) in Fig. 3).
The restriction that n; € I could actually be lifted. Using Eq. (4), the Janossy density is given in
terms of the kernel restricted on /7, K; = [K(n,m)], e (see, e.g., p. 341 of Ref. [9], where it is
denoted as 7 (X)):

Jeln, . omis ) = det(L— Ky) - det [{mil K, (@ = KD~ )7, (5)

We interchangeably use notations A(n,m) = (n|A|m) for the (n, m)-element of a matrix A. Now,
A B
copl= detD - det (A — CD~!B) repeatedly, we present two
alternative expressions for the Janossy density [17]:

making use of an identity det

[—K (i, nj)]i,/:l ..... k [—K (@, nj)]ne];j:l,...,k

Je(ny, ... ne D) = (—=1)F det
[_K(nia m)]i:l ..... k; mel [8117}1 - K(l’l, m)]n,me[
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Fig. 3. Distribution of particles in a DPP. (1) N particles distributed exclusively on N loci ny, ..., ny in X. (2)
Exactly k particles in /, one at each of the k designated loci ny, ..., n; in 1. (3) k particles, one at each of the
k designated loci ny, . . ., n; and other exactly p particles on p undesignated loci in /.
—K —k
= (=1)¥ det
=1 —K 1-K;
= detk - det (H—K1+(k’lc_1k)1). (6)

Equation (6) indicates that the Janossy density is a gap probability for a DPP with a transformed
kernel

K=K -k'c 'k, (7)

multiplied by the k-point correlation function det k. The projectivity and the normalization conditions
(3) with N — N — k can be verified for K in a straightforward manner. Note that

_ pp+k(m1>~ . -7mp>n19~ . 9nk)

P
pr(ny, ..., ng) '

Pp(my, ... ,mp;ny, ..., 0p) - = det [f{(mi,mj)] (8)

ij=1

represents the conditional joint probability that p particles occupy the points my, . .., m, under the
presumption that k& particles already occupy the points ny,...,n;. Obviously, this fact could as

well be deduced from the very definition of the conditional joint probabilities; e.g., for £ = 1, the
K(m,n)K (n,m)

transformed kernel K (m, m") = K (m,m’) — satisfies
K(n,n)
5 (min) = p2(m,n) _ K(m,m)K(n,n) — K(m,n)K(n,m) — R (m.m),
p1(n) K(n,n)
p2(my,ma;n) = palm1, mz, 1) )
p1(n)
_ K(my,m)K (my, my)K (n,n) = (5 terms) — det [f((m,-,mj)]z ,
K(n,n) ij=1

etc., without any recourse to Janossy densities. We could have reversed the course of derivation of
Janossy densities (6) and started backward from Eq. (8).

Generalization to the probability Ji ,(n1, ..., ng; 1) that there are exactly p particles in I except
for k particles, one at each of the £ designated loci, is straightforward (see part (3) in Fig. 3); we
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introduce a parameter z so that Ji ,(n1, ..., ng; I) is given by

1 _ k
Jrp(r, .. g l) = o (—0-)P det(I — zK;) - det [ (n;|K; (I — zK/) llnj)]ile , (10)

z=1

as the derivation of Eq. (1) carries over to this case. The product of two determinants in Eq. (10) can
as well be written as

_ _J7k -
)k « vk | - det(I — zK;). 1
(—1)* det LU 1K detk - det(I — zK7) (11)

Either by definition or from Egs. (10) and (11), the Janossy density Ji ,(n1,...,n; 1) reduces
to: (i) for k = 0, the gap probability Eo(/) = det(I — K;) (or its generalization E,(I) =
1/p! (—0,) det(I — zK;)|,—) of finding no (or exactly p) particles in /, and (ii) formally for / = ¢
and p = 0, to the k-point correlation function (4). Note also that the factor detk = pg(ny,...,ng)
in Eqs. (6) and (11) is canceled when we consider the conditional probability J; p(M1, ..., ng; 1) that
there are exactly p particles in a subset / under the condition that & particles are already at each of
the k£ designated loci,

(12)

z=1

~ 1 ~
Jep(ni, ... ng; 1) = s (—9.)P det(I — zK/)

All the above formulas carry over to a continuous DPP on R and for a set of intervals / C R.
Trivial modifications are needed to regard K and K; as integral operators

K -f)(x) = / Ay K )f 0) (K )@ = /1 dy K@ )f 0) (13)

acting on the Hilbert space of square-integrable functions L?(R) and L*(/), and to reinterpret joint

probabilities o, ok, ,p,jk ,p as joint probability distributions. For the case of continuous DPPs the

expression (x|A|y) = A(x,y) (denoted as A = A(x,y) in TW) means that the integral operator

A has a kernel equal to A(x,y). Namely, the Janossy density Ji(xq,...,xx; /) is defined as the

probability density of finding exactly & particles in / and one at each of the & infinitesimal intervals

(xi,xi + dx;) C I, and is given by the Fredholm determinant Det (I — K;) times the (ordinary)
determinant of the resolvent kernel of K;:

_ k

Je (1, ... ,xg; 1) = Det (I — Ky) - det [ (x; | K; (I — K;) 1|xj)]l.’j:1

=detr -Det(I-K;), K=K — k'« 'k. (14)

Likewise its generalization Jy ,(x1, . .., Xx; /) is given by

1 .
Jep&1, .. xi; D) = detk - — (—3.)P Det (I — zK;) (15)
P p!

z=1

Finally we note that the joint probability distribution of k£ leftmost or rightmost particles is derived
from the Janossy density for a semi-finite interval / = (s, 00) or (—00, 5%) as

O, Jk—1(815 - -+, Sk—1; (Sk, 00)) (51> >s¢)
— 05 Jk—1(S15 - -, 8k—1; (=00, 5¢)) (51 <

(16)

Prog(st, . ,80) =
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3. Applicability of the Tracy—Widom method
3.1.  Inheritance of the Tracy—Widom criteria

Consider a kernel of an integral operator K of the Christoffel-Darboux form

_ oY) — v e»)
= P )

K(x,y) (17)

with its component functions satisfying a pair of linear differential equations

m(x)i ) | _ A(x)  B(x) @(x) (18)
dx | ¥(x) —Cx) —Ax) P (x)
with some polynomials m, 4, B, C.

The tracelessness of the 2 x 2 matrix on the right-hand side of Eq. (18) is essential. As a unifying
approach to their preceding works on the sine [18], Airy [3], and Bessel kernels [4], Tracy and
Widom have shown in TW that the Fredholm determinant Det(I — K;) of an operator K satisfying
the criteria (17), (18) is always determined through a closed system of PDEs in the boundary points
{a;} € 9I. This involves the boundary values of the functions Q;(x) = ((I — K;)_l - X @) (x)
and P;j(x) = ((I — K;)~! - ¥ ) (x), and the inner products of Q; and P; with ¢ and ¥ such as
uj = f[ dx ¢(x)Qj(x). A large part of the TW system (Egs. (1.7a)—~(1.9) and (2.12)+(2.18) of TW) is
universal and the rest (Egs. (2.25), (2.26) of TW) parametrically depends on the coefficients of the
polynomials m(x) = Zj /ijj, Ax) = Zj otjxj, etc.
Now we present a theorem:

tHEOREM If the kernel of K satisfies the TW criteria (17), (18), so does the transformed kernel of K.

Proof. Since the kernel of K® forthe J anossy density Ji (x1, . . ., xg; ) is obtained from the kernel of
K% for the the Janossy density J;_1(x1, . ..,x;—1; 1) by adding an extra locus of particle x; = ¢,

KO @,y) =KDV @,y) =KD nk P, 0" K4 V), (19)
by induction it is sufficient to prove Theorem for £ = 1. Then the transformed kernel is
K(x,y) = K(x,y) —K(x, DK (6,0) 'K (1, ). (20)

Here we assume that the density of particles p; (1) = K (1,1) = ¢’ (t)y (1) — ' (£)p(¢) at the designated
locus ¢ is nonzero (otherwise the Janossy density would vanish by definition). The transformed kernel
(20) is again of the Christoffel-Darboux form

_ WY e) — ¥ (090

K(x,y) 1)
xX—y
where
500 = 00 — S0 )y — gy - 2D V) 0= IO
K0 X1 with V0] ] (22)
T = w00 — 0Dy gy — AP0 Z BV ) IO
K(t,1) x—t NG
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Using Eq. (18), they are shown to satisfy a set of linear differential equations

d| ¢@ |_| 4Ax Bx || ¢&
mw%[ e }‘[ ~C) —Aw) M &(x)} @)
with

@*B(x) — b*C(x)  ab(2abA(x) + a*B(x) + b*C(x) — m(x))

A(x) = A(x) +

X —1 (x _ t)Z ’
2 2 2 _
B = BO) — 2b(bA(x) + aB(x)) N b* (2abA(x) + a*B(x) J; P2C(x) m(x))’ o4
x—t (x—1)
2 2 2 _
Cw) = (o + 24@AOTICW) | @ QbAD B0+ P00 ()

Since the coefficient functions m, 4, B, and C are polynomials in x, so are the new coefficient functions
after redefinition (x — #)2m(x) — m(x), (x — t)zﬁ(x) — ;I(x), etc. OJ

3.2.  Conditioning particles’loci as gauge transformation

Below we unravel the origin of inheritance of the TW criteria (17) and (18) from K to K.

(i) The Christoffel-Darboux form (17): suppose that K is composed of polynomials orthogonal
with respect to a weight w(x) or their asymptotic limits. Then K is composed of polynomials
orthogonal with respect to a weight w(x) = (x — £)?w(x) or their asymptotic limits, with the
factor (x — )2 originating from the Vandermonde determinant squared.

(i) The tracelessness of the 2 x 2 matrix in Eq. (18): Eq. (18) specifies a covariantly constant
section W (x) of an R%-bundle over R with an s((2, R) connection A(x),

_ | o)
(O + AW (x) =0, ¥(x) = { o) }

1| 4® B o _
Ax) = s |: LCo) A j| satisfying tr A(x) = 0, (25)

and Eq. (22) is an SL(2, R) gauge transformation,

B = U@, b = [ o) }

¥ (x)
! ab b?
UKx) = xa_zt xcit satisfying detU(x) = 1. (26)
— 1+
X —t x—1

Then the gauge-transformed section W (x) must be covariantly constant

(3 + AP (x) =0, Ax) =U@A@UE) ™ = UE) - UE) ! (27)

717
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(iii)

for the gauge-transformed sl(2,R) connection ;l(x) that remains traceless, tr /i(x) = 0.
Repetition of gauge transformations of the form

L ai by bi {_ aibi b%
u(x): X — X X — Xk X — X1 X — X1 28
_ ai 1+ akbk _ a% 1+ a1b1 ( )

X — Xp X — Xp X — X1 X — X1

on W (x) yields the kth-order Janossy density Ji (x,...,xx; /). Although the gauge transfor-

mation U/ (x) has poles at x = x1, . .., X%, the transformed section U (x) is regular and vanishes
there.
Meromorphy of A(x) inherits down to A®) by Eq. (27) (which is equivalent to Eq. (24)), as

U (x) is meromorphic.

Accordingly, the TW method is applicable to the evaluation of Janossy densities of any continuous

DPP if it is applicable to the evaluation of its gap probability, and Ji ,(x1, ..., xx; I) is expressible

in terms of a solution to a system of partial differential equations (PDEs) (containing xi, ..., X

parametrically) in the endpoints {a;} of /.

A few comments are in order:

[e]

[e]

By construction (20), the transformed kernel K (x,y) vanishes when one of the arguments is
equal to ¢:

K(x,t) = K(t,y) = 0. (29)
This leads to, for Vf e L2(]),

(K/-f)() =0 andthus ((I—K)™"- 1)) =£(). (30)

As mentioned above, the functions ¢(x) and ¥ (x) also vanish at x = ¢. This leads to

g(t) = (M=KD ¥@)t) =¢5(1) =0,
i) = (M=KD P (0) =Py ) =0 31)

forj € N. These could serve as part of the boundary conditions for the TW system, but we later
use them only for a consistency check of the solution g;(s) and p;(s) derived from a different
boundary condition imposed either at s > 1 or s < 1.

sin(x —y) X J12(00)J_120) —J-12()J1/2()
T(x—y) 2 xX—y

the spectral bulk of unitary ensembles, Forrester and Odlyzko [16] previously considered the

For the sine kernel K (x,y) = governing

Fredholm determinant of its transformed kernel [19] (which they denoted as K instead of our
K) with k = 1 and 7 set to 0 without loss of generality,

VXY S30000120) —J120)520) 1 <Sin(x —y) sinxsiny (32)
2 -y . xX—y x oy )

Ki(x,y) =

They did apply the TW method to Kj(x,y) and expressed the Fredholm determinant on a
symmetric interval Det(I — Kj|(—ss) ) in terms of a solution to the TW system of ordinary
differential equations (ODEs). However, in order to invoke the TW method they paid attention
to an apparent fact that K is related to K by a unit shift of the indices of the Bessel functions,
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rather than by an SL(2, R) gauge transformation I/ (x) = [ _;,1 ? ] that retains the tracelessness

of A(x) = [‘{ - ] . Nor did they explicitly write K; in a form of the right-hand side of Eq. (32),
which would have meant K (x,y) — K (x, 0)K (0,0) 'K (0, y). Our formulation is a systematic
generalization of the spirit of their work to arbitrary kernels of the TW type, to any interval /,
and to any number (k > 2) of conditioned particles.

4. Applications to random matrix theory

In this section we consider a DPP of eigenvalues {x;} of an N x N unitary-invariant random matrix
ensemble with measure

N N
[ Texiwn - [Tos —xp*. (33)
i=1

i>j

There the functions ¢ (x) and v (x) are (asymptotic forms of) the Nth and (N — 1)th of the polynomi-
als orthogonal with respect to the weight w(x). In this case, the conditional probability distributions
Pp(X1, ..., Xpst1, ..., 1) (8) and ]k,p(tl, ..., 153 1) (12) described by the transformed kernel K are
nothing other than unconditional probability distributions of eigenvalues of a random matrix ensem-
ble with weight function w(x) = w(x) ]_[]]-‘:1 (x — tj)z, and ¢(x) and &(x) are (asymptotic forms of)
polynomials orthogonal with respect to w(x).!

If the values of the resolvent kernel R(x,y) = (x|K1 I-Kp~! |y> for arbitrary x,y € I (not just
its boundary values R(a;, a;) at a;,a; € 91, as derived in TW) were analytically available for various
kernels appearing in the RMT, the Janossy densities would readily be computed from the first line of
Eq. (14). Since this path is infeasible (despite the fact that numerical evaluation of (x|K1 I-Kp) y>
or Det(I — K;) by the quadrature approximation is always possible [22]), we choose the second line
of Eq. (14) as an alternate route. As illustrative examples, we compute Janossy densities for the Airy
and Bessel kernels by applying the TW method to their transformed kernels.

4.1. Janossy density for the Airy kernel

The Airy kernel governs local fluctuation and correlation of scaled eigenvalues of random Hermitian
N x N matrices at the soft edge where the global density descends to zero as (—x)!/2. It consists of

p(x) = Ai(x), ¥(x) =Ai'(x) (34)
from which it follows that
mix)=1, Ax) =0, B(x) =1, C(x) = —x. (35)

As an example we concentrate on the simplest of Janossy densities, Ji(¢; 1) with I = (s, 00), and
already set z to unity. Note that P15(¢,s5) = O(t — s5)0dsJ1 (¢; (s, 00)) represents the joint distribution
of the first and second largest eigenvalues (%, s) of unitary ensembles, previously derived in Ref. [13]
via Ref. [12] using a much more elaborate method than this work.

! This fact was previously used to compute the p-point correlation functions of the “massive" Bessel and
sine kernels corresponding to the microscopic scaling limit of unitary-invariant random matrix ensembles with
weights w(x) = ex* [T, (x + m)O ) [20] and w(x) = e~ []°, (* + m?) [21] (see, e.g., Eq. (33) of Ref.
[20]), as effective models of 4- and 3D QCD with k (pairs of) dynamical quarks of masses {m;}.
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The coefficient functions (24), whose degrees are increased by two after the redefinition (x —
H2m(x) = m(x), (x — H?4(x) — A(x), etc., read

mx) = (x — 1)

Ax) = —ab(@®> — 1) — d*t + (a2 +ab® — bzt)x + b2x? = 0 ozjxj
]:
~ 2 .
B(x) = b*(a* — 1) + 2abt + * — (2ab + b* + 21) x + x? = ijo B (36)
~ 3 .
Cx)=a*@ —1)— (ab—1)*x —2(ab — )x> — x> =) v
]:
with
Al (t Ai(t
g= DO A ) = AT — AL 37)

VG p1 ()

Equation (36) could be slightly simplified by using the relation a®> — b?t = 1 but we refrain. By
taking the right endpoint a; of I to +o0, all terms in the TW system that contain a, vanish because
of the exponential decay of the Airy kernel. Then the quantities involved,

R(s) = (leI I — I~(1)_1 |s) (abbreviated notation of R(s, s)), (38)
ar(s) = (I =KD~ % @) (), pels) = (I—=Kp)~'-xF)(s),

w@=ﬁwﬂw%m—&r“@m,m@=£w&mf@—er@m,

w®=ﬂw@w%m—K>P%m,wwzﬁW&mﬁ@—K>*@m,

are all treated as functions of the left endpoint a; = s alone, and their parametric dependence on ¢
is implicit. The system of ODEs (Egs. (2.25)—(2.26), (2.15)—(2.18), (2.12)—(2.14) of TW) takes the
form (' = 9y, and the arguments (s) are suppressed):

2 1 2
(s=07gp=) (0‘1 D kvt ) Vj+k+1uk> qj — voqo

j=0 k=0 k=0

2 1 1
+y (ﬂj + ) ekt Y ,3j+k+lvk) pj + uopo,

k=0 k=0

3 1 2
(s—0*po = Z <—Vj + Zaj+k+1wk + Z Vj+k+1\7k) qj — Woqo

j=0 k=0 k=0
2 1 1
D3I TS SUNSUES SIS RS
j=0 k=0 k=0

/ / /
Uy = —40q0, Uy = —qoq1, Uy = —4092,
/ / /
VO = —4opo, V] = —qo0P1, V2 = —qop2,
/ —
WO =

—popo, Wi = —pop1,
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q1 = 540 — voqo + Uopo,

92 = 5°q0 — Voq1 — viqo + top1 + uipo,

q3 = S3qo — Vog2 — V141 — V2qo0 + uop2 + u1p1 + uzpo,
P1 = 5Po — woqo + Vopo,

p2 = 5"po — woq1 — wiqo + Vop1 + V1po,

Vo = Vo,

Vi = v1 — voVo + uowo,

Vo = vy — voV1 — ViVo + ugwi + uiwy .

The exponential decay of the Airy kernel and thus the transformed kernel (log K (x, y) ~ log K (x, y) ~
—%x3/ 2 for x >> 1 and y, ¢ fixed) leads to the boundary conditions for s >> 1:

qo(s) = ¢(s), po(s) = ¥ (s),

u (s) ~ /Oodxxk¢(x)2, vi(s) >~ foo dxxkgz?(x)&(x), Wi (§) =~ /00 abcxkxﬂ(x)2 . (40)

N N

The diagonal resolvent (Eq. (1.7b) of TW) and the Fredholm determinant of the transformed kernel
K; are expressed in terms of the solution to the ODEs (39):

R(s) = 0 log Det(I — K(s,00) = po(s)94(s) — qo(s)p(s). (41)

For numerical evaluation of the solution, in practice we impose the boundary condition ¢o(A) =
@(A), etc., at a sufficiently large positive A (~ 10). Since go(s) and po(s) are regular at s = ¢ (they
are actually zero by Eq. (31)), apparent “double poles” at s = ¢ in the first two nonuniversal equations
of Eq. (39) are guaranteed to be canceled by the double zeroes on the right-hand side. Nevertheless,
this could potentially cause loss of numerical accuracy when solving the TW system of ODEs from
s = A downtos < t,e.g., by the explicit Runge—Kutta method. We have verified that this apparent
stiffness at s = ¢ can be circumvented by adding to ¢ a tiny imaginary part € of the order of O(10~10).
With appropriately chosen values of € = JIm(t), the real parts of go(s) and po(s) are stable upon
varying €, and go(Je(?)) and po(Ie(r)) vanish up to the accuracy of O(¢) as they should. In Fig. 4

we display the joint distribution of the largest eigenvalue ¢ and the second largest eigenvalue s
o0
Pra(t,s) = O(t — 5)0g (,01 (t)Det(I — K(s,oo))) = O(t — s)p1(H)R(s) exp (—/ dS/R(S/)) (42)

obtained by this prescription. The two-point correlation function p,(¢,s) = p1(¢)p1(s) — K (¢, )2,
which is composed of peaks of joint distributions P (t,s) of the kth and £th largest eigenvalues
for t > s (k < ¢£), is overlaid for comparison. We have checked that the Fredholm determinant
Det(I — I~((S, A)) = €exp (— fSA ds'R(s’ )) obtained by the TW system is in perfect agreement with
numerical values from the Nystrom-type quadrature approximation [23,24]

- - M
Det(I — K(sn)) ~ det [5ab - K(xa,xb)«/—wawb]a o (43)
where (x1,...,x); w1, . .., wy) is the Gauss—Legendre quadrature of the interval (s, A). Specifically,

for a cutoff value A = 10, relative deviations between fSA ds'R(s"), computed from the TW system

11/17

120z Jequiada( £z uo Jasn sauyjoljqiqienusz-AS3d A Z6578€9/LOVEL L/ L L/L 20Z/eone/deid/wod dno-olwapede//:sdyy woj papeojumo(



PTEP 2021, 113A01 S. M. Nishigaki

P12(t, s)

Fig. 4. The joint distribution of the first and second largest eigenvalues Py, (%,s) (orange) and the two-point
correlation function p,(t,s) for ¢ > s (transparent blue) of random Hermitian matrices.

Table 1. Relative deviations of log Det(I — K 10)) for the Airy kernel at + = —2 and various values of
s computed by the TW method (3m(f) = 1072, WorkingPrecision — 4 MachinePrecision)
versus the ones by the Nystrom-type approximation (M = 200).

s —7 —6 =5 —4 -3 -2
Rel. dev. 420 x 10711 —4.41 x 10712 —7.72 x 10~ 8.93 x 10711 9.12 x 10~ —2.33 x 10~10
—1 0 1 2 3 4 5

—733x107% 239 x 107" 198 x 1071  6.65x 1071 294 x 107 3.08 x 1071* 2.55 x 10~°

(39), (40), (41) using Mathematica’s NIntegrate (for the preparation of boundary values) and
NDSolve (for solving coupled ODEs) with € = 107!2 and at quadruple WorkingPrecision,
and — log Det(I — K(s, A)) computed by the Nystrom-type approximation (43) with quadrature order
M = 200, are between 10~ and 10~3 for arange of variables —7 < s,¢ < 5 (see Table 1 fort = —2
and s = —7,...,5). The table of numerical data for the Fredholm determinant Det(I — K(s,oo)) is
attached as online supplementary material.

4.2.  Janossy density for the Bessel kernel

The Bessel kernel governs local fluctuation and correlation of scaled eigenvalues of random positive-
definite N x N Hermitian matrices H at the hard edge where the weight function behaves as w(x) ~
x'®(x) (v > —1). Equivalently it also governs local fluctuation of near-zero singular values of
random complex N x (N + v) matrices W (i.e., the square root of the eigenvalues of Wishart
matrices H = W W) by a redefinition of variables x — x2. It consists of

o) =J(VX), Y(x) = \/T; (So—1 (V%) = o1 (V) , (44)
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from which it follows that
1
mix)=x, Ax) =0, Bx)=1, C(x) = Z(x — vz). (45)

Again we concentrate on the simplest of Janossy densities, J; (¢; ) with I = (0, s), and already set z
to unity. P13 (t,s) = —O(t — 5)04J1 (¢; (s, 00)) represents the joint distribution of the first and second
smallest eigenvalues (¢, s) of unitary ensembles, previously derived in Ref. [ 12] using more elaborate
methods. The new coefficient functions in Eq. (24) are, after redefinition,

mx) = x(x — z‘)2

- b2 b? b2 b?
_ 2 oo 2 A vty 07 g
Ax) = —a“(ab+t) + ) (ab t)—l—(a + ab 4(ab t) + ) )x 4x
= _j:Oajxj
4.2 4
B(x):(ab+z)2—bTv+(—b2+%—2(ab+z))x+x2
2 .
=3 B (46)
2 2 2 3
o) =t — ab— 02—t Yiah— 2 — Y ah — L n_ V)2
Clx)=a 4(ab 1) +( a +4(ab t) 2(ab t)>x+<2(ab f) 4)x + 1
3 .
= jzo)/jxf
with
Vi (1D = Jo1 (VD) J(V1) 1
= :bzv > t:_Jv\/Ez_Jv— \/;Jv \/; .
a WeTo T P10 = 5 (WD = (i (D)

The TW system of ODEs again takes the form (39), with the first two nonuniversal equations replaced
by

2 1 2
s(s — % gy = Z (aj + Zaj+k+1vk + Z ]/j+k_|_1uk> qj + 2tvoqo — 2viqo — voq1,

=0 k=0 k=0
2 1 1
+> (ﬂj + ) okt ) ,3j+k+lvk> pj — 2tuopo + 2u1po + uop1,  (47)
=0 k=0 k=0

3 1 2
ss—07ph=) (-Vj + ) e+ ) Vj+k+1\7k) gj + 2t woqo — 2w190 — woq1,
j=0 k=0 k=0

2 1 1
+> (—ij + ) ok Y ,Bj—i-k-i-lwk) pj — 2t Vopo + 2V1po + Yop1,
=0 k=0 k=0

and the next eight universal equations sign-flipped:

Uy = qoqo, Uy = qoq1, Uy = 40q2,Vy = qopo, V] = qoP1,Vs = qop2, Wy = popo, W, = pop1. (48)
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0.18 !':'.

0.10!

Pyz(t, s)
o.osf/
E

0.00 L= . ! — L .
v 2 4 6

Fig.5. The joint distribution of the first and second largest singular values Py, (%, s) (orange) and the two-point
correlation function p,(¢,s) for ¢ > s (transparent blue) of random complex matrices with v = 0 (left) and
v = 1 (right).

Note that by setting the left endpoint a; of / to 0, all terms containing a; either vanish or decouple.
Accordingly all quantities are treated as functions of the right endpoint s alone, and their parametric
dependence on ¢ is implicit. Boundary conditions for s < 1 are:

qo(s) == @(s), po(s) = Y (s),

uy(s) >~ /s dxxkgf)(x)z, Vi (s) =~ fs dxxkgﬁ(x)tﬁ(x), wi(s) >~ /S a’xxklﬁ(x)2 . (49)
0 0 0

The diagonal resolvent and the Fredholm determinant of the transformed kernel K; are expressed in
terms of the solution to the ODEs (47):

R(s) = —dy log Det(I — K(o,5)) = po($)qp(s) — qo(s)pp(s)- (50)

For numerical evaluation of the solution, in practice we impose the boundary condition go() =
@(w), etc., at a sufficiently small positive & ~ 10710, The apparent stiffness in the first two nonuni-
versal equations of Eq. (47) at s = ¢ can be circumvented by adding to ¢ a tiny imaginary part €
of the order of O(10~19). With appropriately chosen values of € = Jm(¢), the real parts of go(s)
and po(s) are stable upon varying €, and at s = 9e(¢) they vanish up to the accuracy of O(e).
The joint distribution of the smallest eigenvalue ¢ and the second smallest eigenvalue s of random
positive-definite Hermitian matrices,

Pi2(t,5) = =O(s = )3, (p1(ODetl = Ko, ) = O(s = 01 (OR(s) exp (— /0 ds/R(s@), (51

obtained by this prescription for v = 0 and 1, and the corresponding two-point correlation function
p(t,s) = p1(®)p1(s) — K(t, )% for t < s are converted to those of the singular values of random
complex matrices by the replacements ¢ > 12,5 + s> and Piy +— 4ts Py, p2 — 4ts py and
are plotted in Fig. 5. Again we have confirmed that the Fredholm determinant Det(I — K, ) =
exp (— / : ds'R(s' )) obtained by the TW system is in perfect agreement with numerical values from
the Nystrom-type quadrature approximation. Specifically, for a cutoff value ;1 = 107!2, relative
deviations between | ;i ds'R(s"), computed from the TW system (47)—(50) using Mathematica with
e = 10710 and at quadruple WorkingPrecision, and — log Det(I — K(O,s)) computed by the
Nystrom-type approximation with quadrature order M = 200, are between 10~'% and 10~ for a
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Table 2. Relative deviations of log Det(I — I~((10_12,S)) for the Bessel kernel (v = 0) at # = 4 and various values
of s computed by the TW method (Im(t) = 107'°, WorkingPrecision — 4 MachinePrecision)
versus the ones by the Nystrom-type approximation (M = 200).

s 1 2 3 4 5 6
Rel. dev. —3.62x 10712 —279x 10712 —138x 1072 —6.66x 10713 —832x 10710 —1.05x%x 10~°
7 8 9 10 11 12 13
8.04x 10710 —301x10710 424x107'° —1.19x10° —257x1071% —185x10"° —242x 1010

range of (original) variables 0 < s,¢ < 81 (see Table 2 forv = 0, = 4,ands = 1, ..., 13). The table
of numerical data for the Fredholm determinant Det(I — K(O,S)) (after replacements ¢ — 2,5 > s2)
is attached as online supplementary material.

5. Conclusion and perspectives

In this article we have shown that the TW method is applicable to the evaluation of Janossy densities
and joint eigenvalue distributions for a kernel K = (¢ (x)¥ () — ¥ (x)¢(y))/(x —y) if it is applicable
to the gap probability. Essential to the inheritance of the TW criteria from K to the transformed
kernel K = (¢(x)1/7(y) - i/?(x)é(y)) /(x — y) is the structure that the map between the component
functions (¢, V) — (@, ¥) is an SL(2, R) gauge transformation to a covariantly constant section of

1 | Ax) Bx)
mx) [ —C(x) —A(x)

the spirit of Ref. [16], which computed a special case of Janossy density for the sine kernel by the TW

an R2-bundle with an s[(2, R) connection A(x) = :| Our formulation generalizes

method. As the simplest examples we evaluated the joint distributions of the two extremal eigenvalues
P12 (t,s) for the Airy and Bessel kernels by the TW method and by the quadrature approximation as
well, and confirmed their agreement to very high accuracies. These results (Figs. 4 and 5) precisely
fit the measured histograms from Gaussian-randomly generated matrices (Fig. 2).

We list the pros and cons of our approach. In contrast to the model-specific approaches in the
preceding works [12,13,15,16], which computed only the first-order Janossy densities for the Bessel,
Airy, and sine kernels, our method is universally and systematically applicable to any kernel satisfying
the TW criteria, including but not limited to g-orthogonal, beyond-Airy, and various finite-N kernels,
and to any kth-order Janossy densities. In exchange, the intrinsic connection between our formulation
and the isomonodromic systems associated with Painlevé transcendents and integrability in these
works is completely obscured. Our approach is not well suited for asymptotic analysis for [t —s| > 1
or [t —s| < 1, either.

Finally we comment on possible extensions and physical applications of our approach.

© The joint distribution Pj..x(s1,...,s;) of the first £ extremal eigenvalues is trivially obtained
by repeating the procedure (19) (k — 1) times, which increases the order of the polynomials
;l(x), etc. by 2(k — 1). The joint distribution Py, ..., (sp,, - . . , Sp,) of the pth, ..., p,th extremal
eigenvalues follows from Pq...(s1, ..., S;) by integrating out k£ — ¢ eigenvalues in an ordered
cell, such as Pi3(sq,s3) = f;ﬁ dsy P123(s1,52,53).

o Forthe applicability of the TW method to inherit from K to K, the requirement of the Christoffel—
Darboux form (17), characteristic of U(V) invariant ensembles, can actually be relaxed to more
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generic, asymmetric kernels of the integrable class [25]:

Koy = Y 80O 80 iy g =0 (52)
—1 y Y

Here r-component real functions f(x) = (f{(x),...,/(x)) and g() = (€1(),...,& )’
are covariantly constant sections for some meromorphic sl(r, R) connections A(x) and B(y),

respectively. In this generalized case, an SL(», R) gauge transformation on them,

K(x,1)

F @) = F o) =) = 22 f (0 = UWF ) s
. K(1,y) 1 , Ux) =T— OG=D (53)
g — g0 =g — Xa t)g(t) =UQy) gl Pl

maps K (x,y) to K(x, y) = f (x) - g(»)/(x — y) while retaining f (x) - g(x) = 0. An example of a
kernel of type (52) is the Pearcey kernel (with » = 3) governing spectral correlations of random
matrices in an external source, H = Hgug + cdiag(ly /2, —Iy,2) in the critical regime where
a gap in the eigenvalue support closes at the origin [26]. This ensemble schematically models
the QCD Dirac operator at finite temperature [27]. Application of our strategy to its Janossy
density by the generalized TW method [28] will be reported in a separate publication.

© Ensembles of Dirichlet L-functions are acknowledged as ideal quantum-chaotic systems for
their distributions of zeroes on the critical line [29,30]. It is well anticipated but worth verifying
that the joint distributions of the two smallest zeroes of L-functions are described by Janossy
densities for the Bessel kernels (51) at v = £1/2, depending on the sign in the functional
equations of the L-functions.

© In the context of noncritical string theory, conditioning the loci of some (k) of N eigenvalues
of matrix models at (multi)criticality (i.e., beyond Airy) outside their main support has been
interpreted as introducing k ZZ branes to the Liouville theory [31,32]. As all efforts have been
concentrated on extracting leading nonperturbative corrections to the free energy in the large-N
limit, it is worthwhile to apply our analytic strategy for computing the Janossy density Ji ({x}; 1)
to those models and obtain unapproximated, fully nonperturbative free energy that incorporates
all D-brane contributions.

o It seems less promising to extend our strategy to Janossy densities of quaternion kernels
[11] governing orthogonal and symplectic ensembles [33], or transitive ensembles interpo-
lating different symmetry classes. Nevertheless, the observation that the Janossy density for
these cases is expressed as a Fredholm Pfaffian of the transformed quaternion kernel [34,35],
Det (H — (K —k'k k) 1) 1 2, always permits numerical evaluation by the quadrature approxi-
mation. Currently we are exploring the application of this strategy to the quaternion kernel of
the chGSE—chGUE transitive ensemble [36], to obtain individual distributions of the staggered
Dirac operator of two-color QCD at finite baryon-number chemical potential i and with dynam-
ical quarks of masses my introduced as the conditioned eigenvalues x; = —m]%, extending our
previous work [6] on the quenched case.
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Supplementary material

Numerical data of the Fredholm determinant Det(I — K(S,Oo)) for the Airy kernel in the range —7 <
s,t < 5 are attached as FDAiry .dat. Numerical data of the Fredholm determinant Det(I — K(O,s))
(after replacements ¢ — t2,s — s%) for the Bessel kernels at v = 0 and v = 1 in the range
0 <t,s <9 are attached as FDBessel0.dat and FDBessell.dat.
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