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Abstract

This thesis focuses on two complementary approaches to low-energy quantum chro-

modynamics (QCD). Specifically, they are a relativistic constituent-quark model and the

treatment of QCD in anti-de-Sitter (AdS) space. Beyond the set-up of these models for the

description of a series of hadron properties, we furthermore discuss and employ two al-

ternative tools for treating hadrons as few-quark systems, namely, a stochastic variational

method and an integral-equation approach that we have adapted to work with infinitely

rising confinement interactions.

First, we develop a relativistic constituent quark model that can describe all known

baryons of flavors up, down, strange, charm, and bottom in a universal manner. Its dy-

namics rely on a linear confinement and a hyperfine interaction deduced from an effective

Lagrangian that takes into account the spontaneous breaking of chiral symmetry of low-

energy QCD. The model reproduces the whole baryon spectroscopy in good agreement

with phenomenology. It is also successfully applied to electromagnetic, axial, and gravita-

tional nucleon form factors. These observables are produced in a relativistically invariant

manner using the point form of Poincaré-invariant quantum mechanics.

Second, in the AdS approach we step out from the QCD action in five-dimensional

space and use a holographic mapping to arrive at light-front QCD in ordinary (3+1)-

dimensional space. In this way we produce the spectroscopy of light-flavored mesons and

baryons with the correct Regge trajectories. In addition, we apply the AdS/QCD model to

calculate the nucleon electromagnetic form factors within the so-called soft-wall model

and find reasonable momentum dependences. While the two approaches give different

insights into the properties of QCD at low energies, they both pave the way for further

applications in hadronic physics.
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Chapter 1

Introduction

Going back as far as 80 years ago one primary task of physicists has been to explain

the building blocks of nature known as the elementary particles. Over the times more

and more of these particles were found in experiments and in fact most turned out to be

not elementary, but composed of more fundamental particles. This concerns the strongly

interacting hadrons, which, in the so-called valence-quark picture, are believed to be con-

stituted of quarks and antiquarks (in the case of mesons) or three quarks in the case of

baryons. In a first approach this seems like a straightforward problem but as always na-

ture is not so simple. One problem is the case of hadron spectroscopy. Naively one would

assume that the mass of a bound state of quarks and/or antiquarks would be approximately

the sum of the masses of the constituent quarks plus some binding energy. Evidence from

experiment tells us this is not the case especially for the lightest hadrons.

1.1 The Problem of Strong Coupling

It is now commonly assumed that the theory for the strong interaction between quarks

and antiquarks is quantum chromodynamics (QCD), proposed in the early 1970’s [8, 9].

QCD is a non-Abelian gauge theory, where the Lagrangian is given as

LQCD =
∑

n

ψ̄n

(
iγµDµ − mn

)
ψn −

1
4Ga

µνG
a µν. (1.1.1)

It couples quark fields ψn, of mass m with gluon fields Aa
µ. The sum over the quark

fields n runs from 1 to 6, commonly referred to as up, down, strange, charm, and bot-

1



1.1. The Problem of Strong Coupling 2

tom flavors. Here the covariant derivative is defined as Dµ = ∂µ − iαsAa
µT

a and Ga
µν =

∂µAa
ν−∂νA

a
µ+αscabcAb

µAc
ν is the gluon field strength tensor.

[
T a,T b

]
= icabcT c where a, b, c

are SU(3)C color indices, and αs is the strong coupling constant. While the proposal and

later experimental justification of this theory in the perturbative regime was a resounding

success, it was soon realized that a very deep problem arose. Unlike quantum electrody-

namics (QED) the field-theoretical predecessor to QCD, the strong coupling constant αs

is running and turns out to be quite large at low energies, typical of hadronic ground and

resonant states. This makes the usual method of perturbation theory unapplicable in this

domain. In an insight worthy of the 2004 Nobel Prize it was found that, as one increases

the energy scale, by which one probes the hadron, the QCD coupling constant becomes

very small and the constituents behave asymptotically as if they are free [10, 11]. This

phenomenon is known as asymptotic freedom. This notion has allowed very accurate

Figure 1.1: Experimental results which show the strength of the strong coupling constant

αs as a function of energy with which the hadron is probed [12].

calculations in the high-energy regime via perturbation theory. The problem that is puz-

zling physicists now for more than 40 years, is how to calculate anything sensible in the

low-energy, hence strong-coupling regime. Up until now we have seen several different

approaches to attacking the non-perturbative regime of hadron physics. Approaches such

as lattice QCD consist of brute-force computer calculations using the QCD Lagrangian
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with some assumptions as a starting point. In addition there is an abundance of other

models and effective theories. While far from being comprehensive some examples are,

chiral perturbation theory [13], Dyson-Schwinger equations [14,15], QCD sum rules [16],

light-front holography [17], and relativistic constituent-quark models (RCQM) [18].

The work in this thesis will rely most heavily on flavor-dependent RCQM’s as well as

some additional insights from light-front holography (AdS/QCD).



Chapter 2

Relativity and Quantum Mechanics

In this chapter we will present the physical and mathematical grounds that the models

and calculations in the subsequent chapters will be laid upon. The motivation is to con-

struct a model for baryons to be described as three-quark relativistic bound states. This

is undertaken along a relativistic constituent-quark model (RCQM), constructed with a

Hamiltonian for three spin-1/2 quarks. In order for such a quantum mechanical model to

satisfy relativistic invariance, it must satisfy the symmetry conditions of Poincaré invari-

ance.

2.1 Relativistic Quantum Mechanics

In this section we outline the requirements for our relativistic quantum-mechanical theory

following the motivations of Dirac [19] and Weinberg [20].

2.1.1 Quantum Mechanics

Physical states are represented by rays in a Hilbert space. If Φ and Ψ are state vectors

in this complex vector space then so is ξΦ + ηΨ, where ξ and η are arbitrary complex

numbers. The Hilbert space has a norm: for any pair of vectors there is a complex number

〈Φ|Ψ〉, such that

〈Φ|Ψ〉 = 〈Ψ|Φ〉∗ , (2.1.1)

〈Φ|ξ1Ψ1 + ξ2Ψ2〉 = ξ1〈Φ|Ψ1〉 + ξ2〈Φ|Ψ2〉 , (2.1.2)

4



2.1. Relativistic Quantum Mechanics 5

〈η1Φ1 + η2Φ2|Ψ〉 = η∗1〈Φ1|Ψ〉 + η∗2〈Φ2|Ψ〉 , (2.1.3)

〈Ψ|Ψ〉 ≥ 0 . (2.1.4)

Observables are represented by Hermitian operators. These are mappings Ψ → AΨ of a

Hilbert space into itself. These mappings are linear such that

A(ξΨ + ηΦ) = ξAΨ + ηAΦ , (2.1.5)

where A satisfies the condition A† = A. Here, A is any linear operator and its adjoint is

defined as

〈Φ|A†Ψ〉 = 〈AΦ|Ψ〉 = 〈Ψ|AΦ〉∗ . (2.1.6)

A state represented by a ray R has a definite value λ for the observable represented by an

operator A, if vectors Ψ belonging to this ray are eigenvectors of A with eigenvalue λ:

AΨ = λΨ for Ψ in R . (2.1.7)

If A is Hermitian then λ is real and eigenvectors with different λ’s are orthogonal.

If a system is in a state represented by a ray R and an experiment is performed to test

whether it is in any one of the different states represented by mutually orthogonal rays

R1,R2, . . . then the probability of finding it in the state represented by Rn is

P(R → Rn) = |〈Ψ|Ψn〉|
2 , (2.1.8)

where Ψ and Ψn are any vectors belonging to the rays R and Rn, respectively. If the state

vectors Ψn form a complete set then the sum of probabilities will result in unity∑
n

P(R → Rn) = 1 . (2.1.9)

2.1.2 Quantum Lorentz Transformations

Now that we have solidified what we require for our theory from a quantum mechanics

perspective we can move forward with how to marry this to special relativity. Einstein’s

principle of relativity is different from Galileo’s principle of relativity by the transforma-

tion connecting coordinate systems in different inertial frames. If xµ are the coordinates
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in one inertial frame (with xi being the usual Cartesian coordinates and x0 = t‡), then the

coordinate x′µ must satisfy

gµνdx′µdx′ν = gµνdxµdxν , (2.1.10)

or equivalently

gµν
∂x′µ

∂xρ
∂x′ν

∂xσ
= gρσ , (2.1.11)

where gµν is the Minkowski metric with diagonal elements, g11 = g22 = g33 = +1 and

g00 = −1. Any coordinate transformation xµ → x′µ that satisfies Eq. (2.1.11) is linear

x′µ = Λµ
νx

ν + aµ , (2.1.12)

where aµ are arbitrary constants and Λ
µ
ν is a constant matrix satisfying the condition

gµνΛµ
ρΛ

ν
σ = gρσ . (2.1.13)

The transformations Λν
µ form the so called Lorentz group. They are a subset of the larger

Poincaré group that is fundamental to defining relativistic quantum mechanics.

2.1.3 Poincaré Algebra

In the case of any Lie symmetry group much of the information is contained in properties

of the group elements near the identity. In the case of the Lorentz group, the identity is

the transformation Λ
µ
ν and aµ = 0. We want to study the transformations near the identity

Λµ
ν = δµν + ωµ

ν (2.1.14)

and

aµ = εµ, (2.1.15)

where ωµ
ν and εµ are taken to be infinitesimal. In this case the Lorentz condition from

Eq. 2.1.13 is

gρσ = gµν(δµρ + ωµ
ρ)(δ

ν
σ + ων

σ) (2.1.16)

= gσρ + ωσρ + ωρσ + O(ω2) . (2.1.17)

‡Throughout this thesis unless otherwise specified we use natural units with ~ = c = 1.
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Keeping only first-order terms we see that the implementation of the Lorentz condition

reduces simply to the antisymmetrization of ωµν

ωµν = −ωνµ . (2.1.18)

In four dimensions an antisymmetric second-rank tensor has 6 independent components.

Including the four components we get from εµ we see that this group, called Poincaré

group (or inhomogenous Lorentz group) is described by 6+4=10 parameters.

We introduce a unitary linear transformation on the vectors in the physical Hilbert

space

Ψ→ U(Λ, a)Ψ , (2.1.19)

where the operators U satisfy the composition rule

U(Λ̄, ā)U(Λ, a) = U(Λ̄Λ, Λ̄a + ā) . (2.1.20)

We see that since U(1, 0) carry any ray into itself it must be proportional to the unit

operator and by correctly choosing the phase can be made equal to the unit operator. For

the case of the infinitesimal Lorentz transformation, U(1 + ω, ε) must be equal to unity

plus terms linear in ωρσ and ερ.

U(1 + ω, ε) = 1 +
1
2

iωρσJρσ − iερPρ + · · · . (2.1.21)

Here, Jρσ and Pρ are operators independent of the infinitesimal transformations ω and ε.

In order for U(1 + ω, ε) to satisfy unitarity, Jρσ and Pρ must be Hermitian

Jρσ† = Jρσ , Pρ† = Pρ . (2.1.22)

In addition we know that ωρσ is antisymmetric, telling us that its coefficient Jρσ be also

Jρσ = −Jσρ . (2.1.23)

We are now interested in the Lorentz transformation properties of Jρσ and Pρ. Let us

consider the product

U(Λ, a)U(1 + ω, ε)U−1(Λ, a) , (2.1.24)

where Λ
µ
ν and aµ are now parameters of a new transformation unrelated to ω and ε. From

our composition rule defined in Eq. (2.1.20) the product of U(Λ−1,−Λ−1a)U(Λ, a) is equal
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to U(1, 0) which tells us that U(Λ−1,−Λ−1a) is the inverse of U(Λ, a). It follows that

U(Λ, a)U(1 + ω, ε)U−1(Λ, a) = U(Λ(1 + ω)Λ−1,Λε − ΛωΛ−1a) . (2.1.25)

Again to first order in ω and ε we get

U(Λ, a)
[1
2
ωρσJρσ − ερPρ]U−1(Λ, a) = (2.1.26)

1
2

(ΛωΛ−1)µνJµν − (Λε − ΛωΛ−1a)µPµ .

Equating the coefficients of ωρσ and ερ on both sides we get

U(Λ, a)JρσU−1(Λ, a) = Λ ρ
µ Λ σ

ν (Jµν − aµPν + aνPµ) (2.1.27)

U(Λ, a)PρU−1(Λ, a) = Λ ρ
µ Pµ . (2.1.28)

These transformation rules tell us a lot about the physics of the system. First it is evi-

dent from the transformation properties that Jµν is a tensor and Pµ is a vector. For pure

translations (with Λ
µ
ν = δ

µ
ν), we see that Pρ is translation invariant but Jρσ is not. In

fact we see that the space-space components of Jρσ under a spatial translation is just the

usual change of the angular momentum under a change of the origin relative to which the

angular momentum is calculated.

Applying Eqns. (2.1.27) and (2.1.28) to an infinitesimal transformation Λ
µ
ν = δ

µ
ν +

ω
µ
ν and aµ = εµ, with infinitesimals ωµ

ν and εµ unrelated to the previous ω and ε, then

using Eq. (2.1.21) and keeping only the first-order terms in ωµ
ν and εµ Eqns. (2.1.27) and

(2.1.28) become

i
[1
2
ωµνJµν − εµPµ, Jρσ

]
= ω ρ

µ Jµσ − ω σ
ν Jρν − ερPσ + εσPρ , (2.1.29)

i
[1
2
ωµνJµν − εµPµ, Pρ] = ω ρ

µ Pµ . (2.1.30)

Equating the coeffiecients of ωµν and εµ we find the commutation rules known as the Lie

algebra of the Poincaré group

i[Jµν, Jρσ] = gνρJµσ − gµρJνσ − gσµJρν + gσνJρµ , (2.1.31)

i[Pµ, Jρσ] = gµρPσ − gµσPρ , (2.1.32)

[Pµ, Pρ] = 0 . (2.1.33)
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Based on the commutation relations shown here, the identification of J23, J31, and J12

as the angular momentum generators is forced upon us. However the commutation re-

lations do not allow us to distinguish between Pµ and −Pµ so the sign of the ερPρ term

in Eq. (2.1.21) is a matter of convention. In quantum mechanics operators that are con-

served in time commute with the energy operator H = P0. The Poincaré algebra tells us

that the conserved quantities are the momentum three-vector and the angular momentum

three-vector

P =
{
P1, P2, P3} , (2.1.34)

J =
{
J23, J31, J12} , (2.1.35)

respectively. The remaining generators

K =
{
J01, J02, J03} (2.1.36)

form the boost three-vector. These are not conserved and hence the eigenvalues of K are

not used to label physical states. Explicitly the commutation relations of the Poincaré

algebra can be written out as

[Ji, J j] = iεi jkJk , (2.1.37)

[Ji,K j] = iεi jkKk , (2.1.38)

[Ki,K j] = −iεi jkJk , (2.1.39)

[Ji, P j] = iεi jkPk , (2.1.40)

[Ki, P j] = −iP0δi j = −iHδi j , (2.1.41)

[Ji,H] = [Pi,H] = [H,H] = 0 , (2.1.42)

[Ki,H] = −iPi . (2.1.43)

where i, j, k run from 1 to 3 and εi jk is the totally antisymmetric Levi-Civita tensor with

ε123 = +1. We have now reached the main point. These commutation relations are the

fundamental requirement for a system of relativistic quantum mechanics.

2.2 The Bakamjian-Thomas Construction

We have shown the requirements for a system of relativistic quantum mechanics, how-

ever, our previous analysis was only for interaction-free systems. To build up a model of
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interacting quarks we are naturally led to the problem of a system with interactions. It is

an important and non-trivial point to construct a theory with interactions that still fulfills

the Poincaré algebra. The way forward was first shown by Bakamjian and Thomas [21].

To outline the problem let us look at the commutation relation

[Ki, P j] = iHδi j . (2.2.44)

In the interaction-free case considered above H does not have an interaction term. Now if

we add an interaction term, it becomes

H = H0 + V . (2.2.45)

In non-relativistic quantum mechanics this does not pose any problem. In RQM we now

run into the problem that adding an arbitrary interaction term to the Hamiltonian doesn’t

allow the Poincaré algebra to close. In order to compensate for the V on the right-hand

side of Eq. (2.2.44) we must also add an interaction term to the left-hand side. We now

have three choices:

• add interactions only to Ki (instant form),

• add interactions only to P j (point form),

• add interactions to both Ki and P j (front form).

These cases refer to Dirac’s forms of relativistic dynamics [22]. In principle one can

parametrize space-time in a infinite number of ways by introducing some generalized co-

ordinates x̃(x), but in practice one should exclude all forms that can access one another by

a simple Lorentz transformation. This limits the number of different forms and obviously

excludes forms related by rotation angles. Dirac’s showed that there are basically three

different forms that cannot be mapped onto each other by a Lorentz transformation; they

are commonly referred to as the instant form, point form, and front form. The hyper-

sphere on which each form is initialized is different. As a consequence they can be seen

as an indication of how time is parameterized in the theory. In case of the instant form the

initial surface is a plane for constant time x0 = 0. In case of the point form we have the

initial surface x2 = τ2, where τ is a constant i.e. a hyperboloid that has the forward light
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Figure 2.1: The space-like hypersurface of Minkowski-space x0 = 0, which is invariant

under the instant-form kinematic group of spatial translations and rotations.

Figure 2.2: The forward light cone hyperboloid x2 = τ2 representing the invariant surface

of the point form.

Figure 2.3: The light-like hypersurface τ = x0 + x3 = 0 representing the invariant surface

of the front form.
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cone as an asymptote. In case of the front form the initial surface τ = x0 + x3 is a plane

tangent to the light cone.

Whatever we choose we must be careful that the other commutators are satisfied, for

example

[Pµ, Pν] = 0 (2.2.46)

and

[Ki,K j] = −iεi jkJk . (2.2.47)

In order to add interactions and fulfill the requirements of the Poincaré algebra we must

look at the Casimir operators of the Poincaré group. In this case there are two of them,

the mass-operator squared

M2 = PµPµ = H2 − ~P2 (2.2.48)

and the Pauli-Lubanski operator

Wµ =
1
2
εµαβγPαJβγ , (2.2.49)

where εµαβγ is the completely anti-symmetric Levi-Civita tensor in four dimensions. Let

us first look at the mass operator. If we say M2 represents the mass of the system then we

must imply the additional condition that M2 ≥ 0 such that

M = +

√
H2 − ~P2 . (2.2.50)

Following Bakamjian and Thomas we deconstruct the full mass operator M into a free part

Mfree and a part with interactions Mint. The linear composition of the full mass operator is

therefore

M = Mfree + Mint . (2.2.51)

It is imperative that the full mass operator fullfills the Poincaré algebra. In this way one

can add interactions to the system and maintain a fully relativistic theory. Below it is

outlined, how the Bakamjian-Thomas construction looks in the point form.

In the point form all interactions are contained in the space-time translations P j, while

the other six generator Jµν are kinematical (interaction-free). We define the set of 10

interaction-free generators in terms of auxiliary operators

{
Mfree, ~Vfree, ~Kfree, ~Jfree

}
(2.2.52)
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Mfree = +

√
H2

free −
~P2

free (2.2.53)

Vµ

free =
Pµ

free

Mfree
(2.2.54)

The next step is to introduce the full mass operator

M = Mfree + Mint , (2.2.55)

where Mint must now fulfill the commutation relations

[~Vfree,Mint
]

=
[~Kfree,Mint

]
=

[ ~Jfree,Mint
]

= 0 . (2.2.56)

The Poincaré algebra will now be fulfilled for an interaction theory with the set

{
M, ~Vfree, ~Kfree, ~Jfree

}
(2.2.57)

in the same way, as it was fulfilled in the free case of
{
Mfree, ~Vfree, ~Kfree, ~Jfree

}
. From here

one can now reconstruct the original set of operators, first encountered in the usual point

form Poincaré group, namely {
H, ~P, ~Kfree, ~Jfree

}
. (2.2.58)

Then it is evident that in the point form all components of the four-momentum are interaction-

dependent

Pµ = MVµ

free , (2.2.59)

while the six other independent generators Jµν remain free. This characterizes the Bakamjian-

Thomas construction in the point form. Analogous constructions for the instant and front

form are also possible and follow similar lines of reasoning. Details can be found in the

works by Choi [23], Biernat [24], and in the classic review article by Keister and Poly-

zou [25].



Chapter 3

The Relativistic Constituent-Quark Model

We first look at the description of hadrons through a historical lens beginning with the

work of Gell-Mann and Zweig in the 1960’s. Next we discuss various attempts to describe

hadron spectroscopy and note achievements and shortcomings. The culmination of the

chapter is the result of the Graz group via the flavor-dependent relativistic constituent-

quark model (RCQM) [18].

3.1 The Quark Model

Beginning with Gell-Mann’s eightfold way in 1961 a revolution in particle physics began.

Gell-Mann used this precursor to the quark model to predict the existence of an as yet un-

seen particle, the triply strange Ω−. This consisted of arranging the known particles in var-

ious geometrical arrangements according to their known properties; details can be found

in Appendix B. Indeed a few years later in 1964 experiments at Brookhaven National Lab

showed experimental agreement not only with the existence of the Ω− particle but also it’s

mass [26]. This great success only begged the question of why do the particles fall into

such patterns? Surely there must be some greater underlying principle. This led to the

idea of the quark model proposed independently by Gell-Mann [27] and Zweig [28, 29]

in 1964. The proposition was that baryons were not fundamental, instead they were made

up of three spin 1/2 particles. The mesons were considered to be made up to two spin

1/2 particles. It is an interesting historical note that although Gell-Mann proposed the

quark model he did not in the beginning, believe in their existence as real particles, only

14
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as theoretical constructs. This situation changed in 1969 when experiments at SLAC mo-

tivated by Feynman’s parton model [30, 31] and theoretical work by Bjorken [32, 33],

showed conclusively that the proton indeed had an inner structure [34, 35]. Gell-Mann’s

quark model only required three flavors of quark up, down, and strange. However in the

”November Revolution” of 1974 a bound state of a fourth-flavor charm quark was discov-

ered at Brookhaven National Laboratory and SLAC by detecting the J/Ψ meson [36, 37].

The fifth-flavor bottom quark was discovered in 1977 [38] and the top quark was experi-

mentally verified as recently as 1995 [39]. At present date our understanding is that there

are at least six flavors of quarks; up, down, strange, charm, bottom, and top. Since the

proposals of Gell-Mann and Zweig we have seen various quark models with increasing

levels of sophistication. What follows is a brief summary of a few of the historically

relevant iterations.

3.1.1 Flavor SU(6) Model

The flavor S U(6) model is built upon the hypothesis that the up, down, and strange

quarks are eigenvalues of the internal symmetry group S U(3)F . This internal symme-

try is extended to S U(6) in order to include spin S U(2)S , which is vital to provide the

proper splitting between the spin 1/2 and 3/2 baryons. So the total symmetry group is

S U(6) ⊃ S U(3)F ⊗ S U(2)S . This symmetry is broken so that the mass terms in the

theory depend only on diagonalizable operators. The result is the Gürsey-Radicati mass

formula [40]. For mesons

µ = µ2
0 + αS (S + 1) + γ

[
T (T + 1) −

1
4

Y2
]
, (3.1.1)

and for baryons

M = M0 + aS (S + 1) + bY + c
[
T (T + 1) −

1
4

Y2
]
, (3.1.2)

where Y is the hypercharge, T the isospin, and S the spin of the hadrons. For mesons µ0, α,

and γ are free parameters that are fit to the spectra. Respectively, for baryons M0, a, b, and

c are free parameters. Let us look at an example for baryons. By choosing

M0 = 1065.5 , a = 67.5 , b = −193 , and c = 32.5
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with all values in MeV, we can fit the lowest lying states very well as shown in Table 3.1.

This can be extended with the assumption that the quarks also have degrees of freedom

Baryon Theory [MeV] Experiment [MeV]

N( 1
2

+) 939 939

Λ(1
2

+) 1116 1116

Σ( 1
2

+) 1181 1189

Ξ( 1
2

+) 1325 1318

∆( 3
2

+) 1239 1230-1234

Σ( 3
2

+) 1384 1385

Ξ( 3
2

+) 1528 1533

Ω(3
2

+) 1672 1672

Table 3.1: Results for the lowest lying baryon states given by the Gursey-Radicati mass

formula, Eq. (3.1.2), with the parameters specified in the text.

due to angular momentum. This gives us S U(6) ⊗O(3) symmetry group and correspond-

ing mass formulas. This leads to a proliferation of parameters which is displeasing. In ad-

dition, if we want to add more flavors to our theory, i.e. charm and bottom, the symmetry

group becomes even more extended and the theory becomes less predictive. Furthermore,

excited states are not well described.

3.1.2 The Skyrmion Model

The Skyrme Model was proposed in 1962 by Skyrme [41]. The baryon number is con-

sidered as a topological quantum number. To illustrate the theory let us consider a pion.

Spin and isospin are isomorphic. The regular representation of isospin for the pion has

three isospin unit vectors

|π0〉 ,
1
√

2
(|π+〉 + |π−〉) ,

1
√

2i
(|π+〉 − |π−〉) (3.1.3)

which are isomorphic to angular momentum. This gives us an interpretation of the pions

as vectors in three-dimensional space, the same as we would for angular momentum in

physical space. If we couple the direction of the isospin vector t to the position vector

x by demanding t = x
|x| in isospin space we obtain a pion field consisting purely of π0
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along the z axis and a mixture of π0, π+, and π− with regard to rotations. A schematic

picture is shown in Fig. 3.1. This construction is known as the hedgehog solution, due

to the isospin vectors pointing outwards resembling a hedgehog. These hedgehogs are

x̂

ŷ

ẑ π0

i√
2
(π+ + π−)

i√
2
(π+ − π−)

Figure 3.1: Schematic form of the hedgehog solution.

stable because it would require infinite energy to reverse the orientation of the pion field,

meaning one would have to change π(x) in an infinite spatial domain x → ∞. So we see

that in this model a topological quantum number is defined that specifies how often π(|x|)

covers all isospin values for |x| → ∞. Baryons are identified with the different states

that have topological quantum number 1. This conjecture was again produced in 1983 by

Witten [42]. Some results from the model proposed by Adkins, Nappi, and Witten [43]

are shown below.

3.1.3 M.I.T. Bag Model

The M.I.T. Bag Model [44], is the first model we consider that was built after the es-

tablishment of QCD and in particular its property of asymptotic freedom [10, 11]; which

showed beyond doubt that QCD was the correct theory of the strong interactions. The

idea of the bag model was not only to describe hadron spectra but also to effectively

model confinement which is to say that there are no colored particles seen in nature. This

tells us quarks cannot exist freely in nature, only inside hadrons. The M.I.T. Bag Model



3.2. The Relativistic Constituent-Quark Model 18

Quantity Prediction Experiment

MN input 939 [MeV]

M∆ input 1232 [MeV]

Fπ 129 [MeV] 186 [MeV]

〈r2〉
1/2
l=0 0.59 [fm] 0.72 [fm]

〈r2〉
1/2
M,l=0 0.92 [fm] 0.81 [fm]

µp 1.87 2.79

µn -1.31 -1.91

|
µp

µn
| 1.43 1.46

gA 0.61 1.23

gπNN 8.9 13.5

gπN∆ 13.2 20.3

µN∆ 2.3 3.3

Table 3.2: Some results from the Skyrme model as calculated by Adkins, Nappi, and

Witten in Ref. [43].

simulated confinement by saying quarks could freely propagate within a certain region of

space (inside the bag) while implementing a hard boundary wall in which the confined

quarks could not escape. This model was a considerable step forward in understanding

confinement, however, it lead to several problems as well. The rigid boundary conditions

can lead to spurious motions, for example the oscillations of all quarks with respect to the

bag, furthermore it is not Lorentz invariant, which, we know, for hadrons is a fundamental

ingredient. There is a rich literature regarding this model. The interested reader is directed

to Ref. [45] to name only one source. In addition, extensive results and predictions can be

found in the original work [44].

3.2 The Relativistic Constituent-Quark Model

The final class of models that we will look at are known as quark models. In this thesis

many of the core results will emerge from contemporary versions of this class of model.

Usually they are based on a Hamiltonian

Ĥ = T̂ + V̂ (3.2.4)
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such that the kinetic energy operator can be either non-relativisitic or relativistic. In this

thesis we will concern ourselves only with fully relativistic models that fulfill the Poincaré

algebra. In addition different types of hyperfine interactions can be included in the poten-

tial. We will look first at the Bhaduri, Cohler, Nogami (BCN) one-gluon exchange model

(OGE) which was first formulated in a non-relativistic way [46]; however, we will inves-

tigate the relativistic version as presented in [47]. Finally, the flavor-dependent relativistic

constituent-quark model of the Graz group is presented [18].

3.3 The General Quark-Model Hamiltonian

In the (RCQM) for baryons we have a Hamiltonian such as

H = Hfree +

3∑
i< j

Vi j , (3.3.5)

where Hfree is a relativistic kinetic-energy operator given as

Hfree =

3∑
i=1

√
m2

i + k2
i , (3.3.6)

where mi represents the constituent-quark masses and ki their three-momenta in the center-

of-momentum frame. It is important to use a relativistic kinetic-energy operator so that

one can set up a Poincaré invariant mass operator.

Here we will focus on the potential.

Vi j = Vconf(~ri j) + Vhf(~ri j) . (3.3.7)

Vconf(~ri j) confines the three quarks to a finite volume and Vhf(~ri j) is the hyperfine interac-

tion.

3.4 One-Gluon-Exchange RCQM

3.4.1 OGE Confinement

In the OGE model confinement is described by a Cornell-type potential

Vconf(~ri j) = V0 + Cri j −
2b
3ri j

(3.4.8)
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The parameter V0 sets the scale of the potential giving the nucleon ground state. The other

two free parameters are C and b determine the strengths of the linear and Coulomb term

respectively.

3.4.2 OGE Hyperfine Interaction

The one-gluon-exchange hyperfine interaction is considered only with regard to the spin-

spin interaction and is given as follows

Vhf(ri j) =
αs

9mim j
Λ2 eΛri j

ri j
~σi · ~σ j . (3.4.9)

Here mi and m j are the constituent-quark masses and ~σi their spin operators, αs is the

effective strong coupling constant and Λ is a cut-off parameter. The numerical values of

the parameters as determined in Ref. [47] are given in Tab. 3.3.

mu = md [MeV] ms [MeV] αs Λ [fm−1] C [fm−2] V0 [MeV] b

337 600 0.59 2.7 3.12 -409 0.57

Table 3.3: Parameters of the relativistic version of the BCN OGE constituent-quark

model.

3.5 Goldstone-Boson-Exchange RCQM

3.5.1 GBE Confinement

Here the confinement potential is taken as

Vconf(ri j) = V0 + Cri j , (3.5.10)

Where C = 2.33 fm−2 is a constant with a strength of about the string tension of QCD. V0

is a constant needed to fix the nucleon ground state to 939 MeV.

3.5.2 GBE Hyperfine Interaction

The hyperfine potential has the form

Vhf = Voctet
χ + Vsinglet , (3.5.11)
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where Voctet refers to the exchange of the pseudoscalar octet mesons π, K, and η8. Vsinglet

to the exchange of the pseudoscalar singlet meson η0. In any case only the spin-spin part

is included, since this is the most dominant force component for baryon spectroscopy and

tensor as well as spin orbit forces can be neglected‡. The spin-spin potentials are given

by [18]

Voctet
χ (~ri j) =

[
Vπ(~ri j)

3∑
a=1

λa
i λ

a
j + VK(~ri j)

7∑
a=4

λa
i λ

a
j + Vη8(~ri j)λ8

i λ
8
j

]
~σi · ~σ j (3.5.12)

and

Vsinglet(~ri j) =

(
Vη0(~ri j)λ0

i λ
0
j

)
~σi · ~σ j (3.5.13)

The particular form of the meson-exchange potentials contains a Yukawa-type cut off and

is expressed by

Vγ(~ri j) =
g2
γ

2π
1

12mim j

[
m2
γ

e−mγri j

ri j
− Λ2

γ

e−Λγri j

ri j

]
(3.5.14)

for γ = π,K, η8, and η0. The prescription for the cut-off is

Λγ = Λ0 + κµγ (3.5.15)

where µγ is the mass of the exchanged meson. The various pre-fixed and fit parameters of

the GBE RCQM are summarized in Tab. 3.4.

3.6 Results for Spectroscopy

Spectral results for both the GBE and OGE RCQM’s are given in Tab. 3.5.

In general a good description of the experimental data is achieved for baryon ground

and resonant states below ≈ 2 GeV. This is especially true for the GBE RCQM which

also succeeds in reproducing the right level orderings of resonances both in the N and Λ

‡In Ref. [48] an extended GBE RCQM was constructed that includes all possible force components from

pseudoscalar-, vector-, and scalar-meson exchanges. It produces a very similar baryon spectrum.
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Quark masses [MeV] Exchange meson masses [MeV]

mu,md ms µπ µK µη µη0

340 500 139 494 547 958

Additional Parameters

g2
8

4π (g0/g8)2 Λ0 [fm−1] κ V0 [MeV] C [fm−2]

0.67 1.34 2.87 0.81 −416 2.33

Table 3.4: Parameters of the GBE RCQM.

spectra. On the contrary the OGE RCQM fails to reproduce the correct level orderings of

the N(1440) and N(1535) resonances. By comparing the Λ spectrum we learn that it is

crucial for the quark-quark interaction to be flavor-dependent, in order to simultaneously

produce the right level orderings in the N and Λ spectra. That the GBE hyperfine interac-

tion is responsible for the level orderings becomes evident by stepping out from the case

of confinement only and gradually increasing the coupling constant g2
8/4π.Plots showing

the level crossing as a function of hyperfine interaction strength are shown in Fig. 3.2

(reproduced from Ref. [18]).

Figure 3.2: The N and Λ baryon spectra as the hyperfine interaction is turned on.



3.7. Stochastic Variational Method 23

3.7 Stochastic Variational Method

The spectra in this thesis have been calculated by using two different methods. The first

we will discuss is the Stochastic Variational Method (SVM). The second is a modified

Faddeev integral-equation method which we will devote a deeper discussion to in the

following chapter.

The SVM represents a powerful tool to solve the eigenvalue problem of a given inter-

acting mass operator. Its application to RCQM’s has been covered extensively in the

following works [23, 49–51]. However, for completeness we will concisely summa-

rize it here. First proposed by Kukulin and Krasnopolsky [52] and later extended by

Suzuki and Varga [81] the SVM essentially exploits with its test functions all the flexi-

bility allowed by a given mass operator. Suitable basis functions for three-quark bound

states can be constructed stepping out from correlated Gaussians and considering all spin

and flavor degrees of freedom. They can be expressed in terms of Jacobi coordinates

x = (x1, . . . , xN−1). The three-particle basis functions then become

ψ(LS )JMJT MT (x, A) = S ·
{
e−

1
2 x̃Ax[ΘLML(x̃)χS

]
JMJ

φT MT

}
. (3.7.16)

Here J is the intrinsic baryon spin and MJ is its z-projection. The function χ describes the

spin part and φ describes the flavor part of the full basis function. ΘLML(x̃) is the angular

part of the the relative wave function. The Jacobi coordinates are represented as x, while x̃

are their transpose. A is a symmetric positive-definite square (N−1)×(N−1) dimensional

matrix. S is an operator that ensures the symmetry of the wave function with respect to

the interchange of identical particles.

Because of Fermi statistics the baryon wave function should be antisymmetric overall

because baryons are fermions. The baryon wave function is composed of several parts

Ψ = ψ(space)ψ(spin)ψ(flavor)ψ(color) . (3.7.17)

The color state being a colorless singlet must always be antisymmetric

ψ(color) =
1
√

6
(rgb − rbg + gbr − grb + brg − bgr) , (3.7.18)

where r, g, and b are the color charges red, green, and blue respectively. This means that

we can essentially ignore the color part, because it is spoken for, and our task is to make
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sure that the total of the other parts is symmetric:

ψ(space)ψ(spin)ψ(flavor) → symmetric . (3.7.19)

We are interested in finding the discrete eigenvalues and eigenstates of the general

mass operator M̂ or equvalently Hamiltonian Ĥ for the three-quark system. The Hamil-

tonian must be time-independent, Hermitian, and bounded from below. Its eigenvalue

problem reads

ĤΨn = EnΨn , n = 1, 2, · · · , . (3.7.20)

The eigenenergies En are real and we assume a non-degenerate ground state. The SVM

gives an approximate determination of the baryon energy states beginning with the ground

state via the Rayleigh-Ritz principle

E ≡
〈Ψ| Ĥ |Ψ〉
〈Ψ|Ψ〉

≥ E1 . (3.7.21)

In the Hilbert spaceH , Ψ can be expanded into a combination of basis functions that span

this Hilbert space. We want to minimize the energy functional with respect to the set of

variational parameters A. We calculate

〈Ψ(A)|H |Ψ(A)〉 = E(A)〈Ψ(A)|Ψ(A)〉 , (3.7.22)

where Ψ(A) is an arbitrary function in the Hilbert space normalized to 1, i.e. 〈Ψ(A)|Ψ(A)〉 =

1. The goal is to choose an optimized A that will give us the best approximation of the

ground-state energy and possibly the (first) resonances. In order to calculate the eigen-

states of the Hamiltonian including the excited states we apply the generalized Ritz the-

orem. Let us take at first the parameter set A to include only N linear parameters ci. So

A = {ci, i = 1, 2, · · ·N}, where ci are the coefficients of the N linearly independent basis

functions ψi. Hence we expand the variational wave functions as

Ψ(A) =

N∑
i=1

ciψ (3.7.23)

The test functions ψi do not neccesarily span the complete Hilbert space. As a conse-

quence the Ψ(A) corresponds only to approximates value of the true eigenvalues E of the

Hamiltonian. We can insert Eq. (3.7.23) into the principle eigenvalue equation (3.7.20)

giving us
N∑

i=1

N∑
j=1

cic∗j 〈ψ j|H |ψi〉 = EN

N∑
i=1

N∑
j=1

cic∗j〈ψ j|ψi〉 . (3.7.24)



3.7. Stochastic Variational Method 25

Now our generalized matrix eigenvalue problem is reduced to an N-dimensional state

space spanned by {ψi, i = 1, 2, · · ·N} resulting in

N∑
i=1

ciH ji = EN

N∑
i=1

ciB ji , (3.7.25)

where H ji and B ji are specifically

H ji = 〈ψ j|H |ψi〉 , B ji = 〈ψ j|ψi〉 , (3.7.26)

which are simply the matrix elements of the N × N matrices H and B. By extending N to

higher and higher order the upper bound provided by the SVM gets closer and closer the

the true value of the ground state.

The variational eigenfunctions for the N ground plus excited states are written as

Ψk =

N∑
i=1

ci,kψi, (k = 1, · · ·N), (3.7.27)

where the corresponding variational parameters are expressed as ci,k. The normalization

of the states is
N∑

j,i=1

c∗j,kB jici,k = 1 . (3.7.28)

Following the work of Suzuki and Varga [81] we will seek to optimize our basis in

order to decrease the error of our upper energy bound calculation. We will try a refined

ansatz where the basis functions depend in addition on a set of nonlinear variational pa-

rameters αi which may contain discrete quantum numbers as well as continuous parame-

ters arising from the spatial wave function.

Ψ(A) =

N∑
i=1

ciψ(αi) (3.7.29)

where {(ci, αi), i = 1, 2, . . .N} now contains both linear and nonlinear variational parame-

ters.

In order to arrive at not only the most important basis states for a particular problem

but also the pertinent selection of parameters via random selection, we outline a procedure

that has proven successful in previous work regarding baryon spectroscopy in RCQM’s

[23, 49–51]. The methodology consists of a trial and error procedure in conjunction with

an admittance test.
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Beginning with a single basis state we generate a number of random parameter sets

αrand
i then calculate the matrix elements of the Hamiltonian 〈Ψ(αrand

i )|H |Ψ(αrand
i )〉 for all

corresponding basis states. Next we chose the particular basis state that has the property

〈Ψ(α1)|H |Ψ(α1)〉 = mini 〈Ψ(αrand
i )|H |Ψ(αrand

i )〉 . (3.7.30)

In this way we add new basis states step by step.

Assuming we have already N basis states with the corresponding N eigenenergies

EN,n for the generalized eigenvalue problem we select the next N + 1 basis state by the

following procedure

• Generate a number of random parameter sets αrand
i

• Add the corresponding basis states separately to the basis and solve the resulting

N + 1 dimensional eigenvalue problems yielding in each case N + 1 eigenvalues

EN+1,n(αrand
i )

• Finally select as a new basis state ψ(αrand
j )

EN+1,1(αrand
j ) = miniEN+1,1(αrand

i ) (3.7.31)

The idea is to minimize the upper bound for the ground-state energy. It has been shown

that using a stochastic choice of basis parameters will lead to a path-independent conver-

gence of energy eigenvalues. This is an important point because it allows us to be sure

that we avoid falling into local minima, which can often happen in numerical methods.

It was shown by Wagenbrunn [49] that once N ≈ 40 there is very good convergence of

the upper bound. This tells us that even with a small amount of computer power we can

converge upon the true ground state of the baryon within a few MeV. Table 3.5 shows the

light and strange baryon spectra as calculated with the SVM for both the GBE and OGE

RCQM’s.
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Baryon JP GBE OGE Experiment

N(939) 1
2

+ 939 939 938-940
N(1440) 1

2
+ 1459 1577 1420-1470

N(1520) 3
2
− 1519 1521 1515-1525

N(1535) 1
2
− 1519 1521 1525-1545

N(1650) 1
2
− 1647 1690 1645-1670

N(1675) 5
2
− 1647 1690 1670-1680

N(1700) 3
2
− 1647 1690 1650-1750

N(1710) 1
2

+ 1776 1859 1680-1740
∆(1232) 3

2
+ 1240 1231 1231-1233

∆(1600) 3
2

+ 1718 1854 1550-1700
∆(1620) 1

2
− 1642 1621 1600-1660

∆(1700) 3
2
− 1642 1621 1670-1750

Λ(1116) 1
2

+ 1136 1113 1116
Λ(1405) 1

2
− 1556 1628 1401-1410

Λ(1520) 3
2
− 1556 1628 1519-1521

Λ(1600) 1
2

+ 1625 1747 1560-1700
Λ(1670) 1

2
− 1682 1734 1660-1680

Λ(1690) 3
2
− 1682 1734 1685-1695

Λ(1800) 1
2
− 1778 1844 1720-1850

Λ(1810) 1
2

+ 1799 1957 1750-1850
Λ(1830) 5

2
− 1778 1844 1810-1830

Σ(1193) 1
2

+ 1180 1213 1189-1197
Σ(1385) 3

2
+ 1389 1373 1383-1387

Σ[1560] 1
2
− 1677 1732 1546-1576

Σ[1620] 1
2
− 1736 1829 1594-1643

Σ(1660) 1
2

+ 1616 1845 1630-1690
Σ(1670) 3

2
− 1677 1732 1665-1685

Σ[1690] 3
2

+ 1865 1991 1670-1727
Σ(1750) 1

2
− 1759 1784 1730-1800

Σ(1775) 5
2
− 1736 1829 1770-1780

Σ(1880) 1
2

+ 1911 2049 1806-2025
Σ[1940] 3

2
− 1736 1829 1900-1950

Σ 3
2
− 1759 1784 -

Ξ(1318) 1
2

+ 1348 1346 1315-1321
Ξ(1530) 3

2
+ 1528 1516 1532-1535

Ξ[1690] 1
2

+ 1805 1975 1680-1700
Ξ(1820) 3

2
− 1792 1894 1818-1828

Ξ[1950] 5
2
− 1881 1993 1935-1965

Ω 3
2

+ 1656 1661 1673.45±0.29

Table 3.5: Light- and strange-baryon spectra for GBE and OGE RCQM’s as calculated

via the SVM. All values are given in MeV.



Chapter 4

The Faddeev Approach

In addition to the SVM illustrated in the previous chapter we can also calculate the baryon

spectra using the Faddeev integral-equation approach. This method was pioneered by

Faddeev in the early 1960’s when he proposed a way to circumvent that the Lippmann-

Schwinger equation does not necessarily have a unique solution for the three-body prob-

lem [54].

Large portions of this chapter are based on the article [5]. In the RCQM’s in S U(3)F

most of the strange baryons are made of light and strange quarks. In these models the

quarks are considered to be identical particles. The interaction is derived from the ex-

change of particles, like the exchange of Goldstone bosons. The constituent quarks of

different flavors have masses, which can be quite different.

In this chapter we demonstrate the performance of the Faddeev approach for RCQM’s

with different constituent-quark masses. In S U(2)F the u and d quark masses are taken

identical and the isospin symmetry is correct. Beyond that the strange quark mass is

considered, as a heavier particle, as seen in nature.

The relativistically invariant mass spectra are obtained by a Faddeev integral-equation

method, adapted to treating long-range interactions, such as the quark confinement. In the

Faddeev approach the wave function is broken into three components. If some pair of par-

ticles is symmetric, then the corresponding Faddeev components have the same functional

form. This allows one to reduce the number of components. Here we treat the two-light-

and-one-strange or two-strange-and-one-light quark systems in a two-component Faddeev

model. One component is responsible for the light-light or strange-strange pair, while the

28
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other one for the light-strange pair. This way we retain the S U(3)F limit as the interac-

tions are derived from this symmetry, but due to the explicit symmetry breaking of the

system, the masses of the constituent quarks are different, hence we do not impose any

explicit symmetry between light and strange quarks.

In Section 4.1 below we outline the Faddeev approach to three-quark systems with a

confining long-range potential. In Section 4.2 we discuss the consequences of the permu-

tation symmetry of the particles on the formalism. Then in Section 4.3 we describe the

application of the method to the GBE RCQM. In Section 4.4 we present the results of our

calculations as obtained along the Faddeev approach.

4.1 Faddeev Approach to Three-Quark Problems

We consider a three-particle Hamiltonian

H = Hfree + v1 + v2 + v3, (4.1.1)

where Hfree is the kinetic-energy operator and vα, with α = 1, 2, 3, are the mutual in-

teractions of the quarks‡. We represent it through the usual configuration-space Jacobi

coordinates: e.g. ~x1 is the coordinate between particles 2 and 3 and ~y1 is the coordinate

between the center of mass of the pair (2, 3) and particle 1.

The kinetic energy operator is given in the relativistic form

Hfree =

3∑
i=1

√
k2

i + m2
i , (4.1.2)

where mi are the quark masses and ki are the three-momenta of the quarks in the rest

frame, where the total three-momentum P =
∑3

i=1 ki = 0.

The quark-quark interaction is a long-range confining potential. In order that we can

apply the Faddeev procedure along the method presented in Refs. [59,82,83] we split the

quark-quark potential into confining and non-confining parts

vα = v(c)
α + v(s)

α , (4.1.3)

‡This is the same as Eq. (3.3.5) with
∑3

i< j Vi j written out explicitly.
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where superscripts c and s stand for confining and short-range, respectively. Then the

Schrödinger equation takes the form

H|Ψ〉 = (H(c) + v(s)
1 + v(s)

2 + v(s)
3 )|Ψ〉 = E|Ψ〉 , (4.1.4)

with

H(c) = Hfree + v(c)
1 + v(c)

2 + v(c)
3 . (4.1.5)

We introduce

G(c)(E) = (E − H(c))−1, (4.1.6)

and by rearranging (4.1.4), we have

|Ψ〉 = G(c)(E)(v(s)
1 + v(s)

2 + v(s)
3 )|Ψ〉 (4.1.7)

= G(c)(E)v(s)
1 |Ψ〉 + G(c)(E)v(s)

2 |Ψ〉 + G(c)(E)v(s)
3 |Ψ〉.

So, the three-particle wave function |Ψ〉 naturally splits into three components

|Ψ〉 = |ψ1〉 + |ψ2〉 + |ψ3〉 , (4.1.8)

where

|ψα〉 = G(c)(E)v(s)
α |Ψ〉, α = 1, 2, 3, (4.1.9)

are the so-called Faddeev components. They satisfy the following set of equations (Fad-

deev equations),

(E − H(c) − v(s)
1 )|ψ1〉 = v(s)

1 (|ψ2〉 + |ψ3〉)

(E − H(c) − v(s)
2 )|ψ2〉 = v(s)

2 (|ψ1〉 + |ψ3〉)

(E − H(c) − v(s)
3 )|ψ3〉 = v(s)

3 (|ψ1〉 + |ψ2〉) . (4.1.10)

Indeed, by adding up these equations and considering (4.1.7) we recover the Schrödinger

equation. With the help of channel Green’s operators

G(c)
α (E) = (E − H(c) − v(s)

α )−1, (4.1.11)

we can rewrite Eqs. (4.1.10) into integral equations,

|ψ1〉 = G(c)
1 (E) v(s)

1 (|ψ2〉 + |ψ3〉)

|ψ2〉 = G(c)
2 (E) v(s)

2 (|ψ1〉 + |ψ3〉)

|ψ3〉 = G(c)
3 (E) v(s)

3 (|ψ1〉 + |ψ2〉) . (4.1.12)
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Even for such a simple system like a three-quark system the wave function Ψ can be

rather complicated. The quark-quark potential for various angular momentum channels

may have strong attractive and repulsive components. This leads to a strong quark-quark

correlation in each of the possible subsystems of the three-quark system, which leads

to a complicated wave function. The Faddeev components possess a simpler structure.

For example, in Eq. (4.1.9), the short range potential v(s)
1 acting on |Ψ〉, suppresses those

asymptotic structures when particles 2 and 3 are far away. Consequently, |ψ1〉 contains

only one kind of physical situation when particle 1 is far away and particles 2 and 3

are in strong correlation. A similar statement is valid for |ψ2〉 and |ψ3〉. So, with the

Faddeev decomposition we achieve a splitting of the wave function into parts such that

each component possesses only one kind of asymptotic behavior and represents one kind

of two-quark correlations.

We need to introduce the appropriate orbital angular momentum basis. The orbital

angular momentum associated with coordinates xα and yα are denoted by lα and λα, re-

spectively, and they are coupled to the total orbital angular momentum L. The spin of

particles β and γ, S β and S γ, respectively, are coupled to sα, which is with the spin of

particle α, S α, coupled to the total spin S . Similarly, the isospin of particles β and γ, tβ

and tγ, respectively, are coupled to τα, which is with the isospin of particle α, tα, coupled

to the total isospin T . The angular momentum L and spin S are coupled to total angu-

lar momentum J. So, we adopted LS coupling, which is appropriate if the quark-quark

interaction does not have tensor terms.

4.2 Faddeev Equations with Identical Particles

A further advantage of the Faddeev method is that the identity of particles greatly sim-

plifies the equations (see, e.g. Ref. [62–64]). If particles β and γ, are identical the wave

function Ψ must be symmetric with respect to exchange of these particles. We denote Pα

the operator that exchanges particles β and γ. Then

Pα|Ψ〉 = pα|Ψ〉 (4.2.13)

where

pα = (−1)lα+sα−S β−S γ+τα−tβ−tγ , (4.2.14)
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if particles carry spin and isospin. The Faddeev component for β is defined by

|ψβ〉 = G(c)v(s)
β |Ψ〉. (4.2.15)

By applying Pα we have

Pα|ψβ〉 = PαG(c)v(s)
β |Ψ〉 = G(c)Pαv(s)

β Pαpα|Ψ〉. (4.2.16)

Considering that v(s)
β is the interaction between particles α and γ and the operator Pα

exchanges particles β and γ, we get

Pαv(s)
β Pα = v(s)

γ , (4.2.17)

and Eq. (4.2.16) becomes

pαPα|ψβ〉 = G(c)v(s)
γ |Ψ〉. (4.2.18)

The right-hand side of this equation is the defining relation for |ψγ〉. So, we can conclude

that

|ψγ〉 = pαPα|ψβ〉, (4.2.19)

and in a similar manner

|ψβ〉 = pαPα|ψγ〉. (4.2.20)

Since Pαv(s)
α Pα = v(s)

α , we get

Pα|ψα〉 = G(c)Pαv(s)
α Pαpα|Ψ〉 = pα|ψα〉. (4.2.21)

So, if particles β and γ are identical, then the angular channels for |ψα〉 have to be selected

such that pα = 1 for bosons and pα = −1 for fermions. On the other hand, the Faddeev

equation for |ψα〉 is given by

|ψα〉 = G(c)
α v(s)

α (|ψβ〉 + |ψγ〉) = (1 + pαPα)G(c)
α v(s)

α |ψβ〉. (4.2.22)

We should notice that 1 + pαPα is just twice the symmetrizing or anti-symmetrizing op-

erator. If we select the angular basis for |ψα〉 such that it ensures the correct symmetry or

anti-symmetry the value of 1 + pαPα is just 2.

Putting everything together and assuming that particles 2 and 3 are identical the three-

component Faddeev equations simplify to|ψ1〉

|ψ2〉

 =

 0 2G(c)
1 v(s)

1

G(c)
2 v(s)

2 G(c)
2 v(s)

2 p1P1


|ψ1〉

|ψ2〉

 . (4.2.23)
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If all three particles are identical, Eq. (4.2.23) gets further reduced to one single equa-

tion

|ψ1〉 = 2G(c)
1 v(s)

1 P123|ψ1〉, (4.2.24)

whereP123 = P12P23 is the operator for cyclic permutation of all three particlesP123|ψ1〉 =

|ψ2〉.

The solution of the Faddeev equations for confining potentials has been presented in

Refs. [82, 83]. We found that the simpler and faster method of Ref. [82] and the more

elaborated method of Ref. [83] provides results which are in a very good agreement with

each other. Therefore, in this paper we adopted the simpler method. These methods

entails a separable approximation of the short-range parts of the quark-quark potentials

on the three-body basis. Our basis is defined as before

〈xαyα|nν〉α = {〈xα|n〉〈yα|ν〉}, (4.2.25)

where 〈x|n〉 are the Coulomb-Sturmian functions. The curly bracket stands for angular

momentum coupling and for simplicity we have suppressed the angular momentum, the

spin and isospin indexes. In this method we need to evaluate numerically the matrix

elements 1〈nν|v
(s)
1 |n

′ν′〉2, 2〈nν|v
(s)
2 |n

′ν′〉1 and 2〈nν|v
(s)
2 |n

′ν′〉3, which can be done in con-

figuration space-representation. The Coulomb-Sturmian functions also have a nice an-

alytic form in momentum space, which facilitates the evaluation of matrix elements of the

Green’s operator G(c)
α as presented in Ref. [82].

4.3 GBE RCQM

We employ the GBE RCQM with the quark-quark interactions

vα = Vconf
α + Vhf

α , (4.3.26)

where the confinement potential has the linear form

Vconf
α = V0 + Cxα . (4.3.27)
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The hyperfine potential consists of the pseudoscalar meson exchanges for the octet

Vhf
α (~xα) =

3∑
F=1

Vπ(~xα)λF
β λ

F
γ ~σβ · ~σγ

+

7∑
F=4

VK(~xα)λF
β λ

F
γ ~σβ · ~σγ

+Vη8(~xα)λ8
βλ

8
γ~σβ · ~σγ, (4.3.28)

and for the singlet

Vhf
α (~xα) =

2
3

Vη0(~xα)~σβ · ~σγ, (4.3.29)

where ~σ and λF are the quark spin and flavor matrices, respectively.

So, in angular momentum basis we get a flavor dependent quark-quark interaction for

light quarks

Vu(d)-u(d)
α =

{
pu(d)−u(d)
α VπTα +

1
3

Vη8 +
2
3

Vη0

}
Σα, (4.3.30)

for the light and strange quarks

Vu(d)-s
α =

{
2pu(d)−s

α VK −
2
3

Vη8 +
2
3

Vη0

}
Σα, (4.3.31)

and for the strange quarks

Vs-s
α =

{
4
3

Vη8 +
2
3

Vη0

}
Σα. (4.3.32)

The spins of the quarks are evidently 1/2, particles and the isospin of the light quarks is

1/2, while the isospin of the strange quark equals 0. For the symmetry coefficients we

have

pu(d)−u(d)
α = (−1)lα+sα+τα−2 (4.3.33)

and

pu(d)−s
α = (−1)lα+sα−1, (4.3.34)

and the Tα and Σα isospin-isospin and spin-spin factors are given by

Tα = 2τα(τα + 1) − 3 (4.3.35)

and

Σα = 2sα(sα + 1) − 3, (4.3.36)

respectively.
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It is natural to incorporate Vconf into v(c) and Vhf into v(s). In Refs. [59, 82, 83] we

showed that in order to avoid the appearance of spurious solutions the splitting of the

quark-quark potential to v(c) and v(s) should be performed such that in the region of phys-

ical interest the resolvent G(c) does not have poles. To ensure this, we add a repulsive

Gaussian term to Vconf, which we subtract from Vhf

v(c) = Vconf + a0e−(r/r0)2
(4.3.37)

and

v(s) = Vhf − a0e−(r/r0)2
. (4.3.38)

The parameters of the auxiliary potential have been taken as a0 = 3 fm−1 and r0 = 1 fm.

By this choice of the parameter values any bound states of H(c) are avoided below ≈ 2

GeV. The values of a0 and r0 also influence the rate of convergence, but not the final

results. The other parameters of the calculations are the same as for the light baryons,

of Ref. [83]. The full parameter set for both OGE and GBE RCQM’s can be found in

sections 3.4 and 3.5 respectively.

4.4 Results from the Faddeev Approach for RCQM’s

The results of our calculations of ground and resonant states with the GBE and OGE

RCQM’s along the Faddeev approach for the baryons with flavors u, d, and s are given

in Table 4.1. For comparison, we present the results of the calculation along the SVM of

Ref. [58]. The results from both types of calculations agree quite well, generally within a

few percent. The spectra of the GBE RCQM are also shown in Figs. 4.1, 4.2, and 4.3 in

comparison to experiment.

We have now presented the general structure of the Faddeev method for two RCQM’s

that consist of hyperfine interaction plus a linearly rising confinement potential. Here we

consider the light quarks as identical and treat them in the framework of isospin symmetry.

The light and strange quarks are also identical in the chiral symmetric limit of the theory.

However, this symmetry is explicitly broken in nature hence the exchange bosons and

quarks acquire mass. Additionally the masses of the strange and light quarks acquire

different constituent masses via dynamical and explicit symmetry breaking. This mixture
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Figure 4.1: Spectra of N and ∆ baryons of the GBE RCQM as calculated along the Fad-

deev approach (red lines); in comparison to experimental data as reported by the Particle

Data Group [65] with uncertainties (green boxes).

of exact and broken symmetry can be treated nicely in the two-component version of

the Faddeev method. In our method the particles 2 and 3 are identical and the exchange

symmetry is exact. The symmetry between particles 1 and 2 or 3 is broken. The fact that

it is an exact symmetry in the chiral limit is ensured by the potential form of Eq. (B), and

in particular of Eq. (4.3.31). This treatment of broken symmetry will be very useful in

the case of heavy baryon models where the masses of the charm and bottom constituent

quarks will be ≈ 5mu and ≈ 15mu respectively. It is clear with regards to mass these

cannot be treated identically in any reasonable approximation.
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Baryon JP Faddeev SVM Experiment
GBE OGE GBE OGE

N(939) 1
2

+ 939 940 939 939 938-940
N(1440) 1

2
+ 1459 1578 1459 1577 1420-1470

N(1520) 3
2
− 1520 1521 1519 1521 1515-1525

N(1535) 1
2
− 1520 1521 1519 1521 1525-1545

N(1650) 1
2
− 1646 1686 1647 1690 1645-1670

N(1675) 5
2
− 1646 1686 1647 1690 1670-1680

N(1700) 3
2
− 1646 1686 1647 1690 1650-1750

N(1710) 1
2

+ 1779 1862 1776 1859 1680-1740

∆(1232) 3
2

+ 1240 1229 1240 1231 1231-1233
∆(1600) 3

2
+ 1718 1852 1718 1854 1550-1700

∆(1620) 1
2
− 1640 1618 1642 1621 1600-1660

∆(1700) 3
2
− 1640 1618 1642 1621 1670-1750

Λ(1116) 1
2

+ 1133 1127 1136 1113 1116
Λ(1405) 1

2
− 1561 1639 1556 1628 1401-1410

Λ(1520) 3
2
− 1561 1639 1556 1628 1519-1521

Λ(1600) 1
2

+ 1607 1749 1625 1747 1560-1700
Λ(1670) 1

2
− 1672 1723 1682 1734 1660-1680

Λ(1690) 3
2
− 1672 1723 1682 1734 1685-1695

Λ(1800) 1
2
− 1777 1844 1778 1844 1720-1850

Λ(1810) 1
2

+ 1799 1950 1799 1957 1750-1850
Λ(1830) 5

2
− 1777 1844 1778 1844 1810-1830

Σ(1193) 1
2

+ 1163 1200 1180 1213 1189-1197
Σ(1385) 1391 1376 1389 1373 1383-1387
Σ[1560] 1

2
− 1666 1718 1677 1732 1546-1576

Σ[1620] 1
2
− 1734 1827 1736 1829 1594-1643

Σ(1660) 1
2

+ 1605 1823 1616 1845 1630-1690
Σ(1670) 3

2
− 1666 1718 1677 1732 1665-1685

Σ[1690] 3
2

+ 1864 1986 1865 1991 1670-1727
Σ(1750) 1

2
− 1753 1783 1759 1784 1730-1800

Σ(1775) 5
2
− 1734 1827 1736 1829 1770-1780

Σ(1880) 1
2

+ 1891 2012 1911 2049 1806-2025
Σ[1940] 3

2
− 1734 1827 1736 1829 1900-1950

Σ 3
2
− 1753 1783 1759 1784 -

Ξ(1318) 1
2

+ 1345 1346 1348 1346 1315-1321
Ξ(1530) 3

2
+ 1526 1516 1528 1516 1532-1535

Ξ[1690] 1
2

+ 1797 1966 1805 1975 1680-1700
Ξ(1820) 3

2
− 1787 1886 1792 1894 1818-1828

Ξ[1950] 5
2
− 1875 1988 1881 1993 1935-1965

Ω 3
2

+ 1657 1659 1656 1661 1672.45±0.29

Table 4.1: Comparison of S U(3)F baryon spectra as calculated from the Faddeev ap-

proach with those of the SVM for both the GBE potential and the OGE RCQM’s. All

values are given in MeV.
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Figure 4.2: The same as in Fig. 4.1 for Λ and Σ baryons.
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Figure 4.3: The same as in Fig. 4.1 for Ξ and Ω baryons.



Chapter 5

The Universal RCQM

The CQM has a long history, and it has made important contributions to the understanding

of many hadron properties, think only of the fact that the systematization of hadrons in the

standard particle-data base [65] follows the valence-quark picture. Over the decades the

CQM has ripened into a stage where its formulation and solution are well based on a rel-

ativistic (or more generally Poincaré-invariant) quantum theory. Relativistic constituent-

quark models (RCQM) have been developed by several groups, however, with limited

domains of validity. Of course, it is desirable to have a framework as universal as possi-

ble for the description of all kinds of hadron processes in the low- and intermediate-energy

regions. This is especially true in view of the advent of ever more data on heavy-baryon

spectroscopy from present and future experimental facilities.

Here, we present a universal RCQM (URCQM) that comprises all known baryons

with flavors u, d, s, c, and b within a single framework. There have been only a few

efforts so far to extend a CQM from light- to heavy-flavor baryons. We may mention, for

example, the approach by the Bonn group who have developed a RCQM, based on the ’t

Hooft instanton interaction, along a microscopic theory solving the Salpeter equation [66]

and extended their model to charmed baryons [88], still not yet covering bottom baryons.

A further quark-model attempt has been undertaken by the Mons-Liège group relying on

the large-Nc expansion [68,69], partially extended to heavy-flavor baryons [70]. Similarly,

efforts are invested to expand other approaches to heavy baryons, such as the employment

of Dyson-Schwinger equations together with either quark-diquark or three-quark calcula-

tions [15, 93]. Also an increased amount of more refined lattice-QCD results has by now

39
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become available on heavy-baryon spectra (see, e.g., the recent work by Liu et al. [87]

and references cited therein).

Similar to the earlier RCQM our URCQM is based on the invariant mass operator

M̂ = M̂free + M̂int , (5.0.1)

where the free part corresponds to the total kinetic energy of the three-quark system and

the interaction part contains the dynamics of the constituent quarks Q. In the rest frame

of the baryon, where its three-momentum ~P =
∑3

i
~k2

i = 0, we may express the terms as

M̂free =

3∑
i=1

√
m̂2

i + ~̂k2
i , (5.0.2)

M̂int =

3∑
i< j

V̂i j =

3∑
i< j

(V̂conf
i j + V̂hf

i j ) . (5.0.3)

Here, the ~̂ki correspond to the three-momentum operators of the individual quarks with

rest masses mi and the Q-Q potentials V̂i j are composed of confinement and hyperfine in-

teractions. By employing such a mass operator M̂2 = P̂µP̂µ , with baryon four-momentum

P̂µ = (Ĥ, P̂1, P̂2, P̂3), the Poincaré algebra involving all ten generators {Ĥ, P̂i, Ĵi, K̂i},

(i = 1, 2, 3), or equivalently {P̂µ, Ĵµν}, (µ, ν = 0, 1, 2, 3), of time and space translations,

spatial rotations as well as Lorentz boosts, can be guaranteed. The solution of the eigen-

value problem of the mass operator M̂ yields the relativistically invariant mass spectra as

well as the baryon eigenstates (the latter, of course, initially in the standard rest frame).

We adopt the confinement depending linearly on the Q-Q distance ri j

Vconf
i j (~ri j) = V0 + Cri j (5.0.4)

with the strength C = 2.33 fm−2, corresponding to the string tension of QCD. The pa-

rameter V0 = −402 MeV is only necessary to set the ground state of the whole baryon

spectrum, i.e., the proton mass; it is irrelevant, if one considers only level spacings.

The hyperfine interaction is most essential to describe all of the baryon excitation

spectra. In a unified model the hyperfine potential must be explicitly flavor-dependent.

Otherwise, e.g., the N and Λ spectra with their distinct level orderings could not be

reproduced simultaneously. At least for baryons with flavors u, d, and s the type of

hyperfine interaction taking into account SBχS has been most successful over the past
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years. Obviously, it grabs the essential degrees of freedom governing the behavior of low-

energy baryons [73–75]. The RCQM constructed along this dynamical concept, i.e., on

Goldstone-boson exchange (GBE), has provided a comprehensive description of all light

and strange baryons [18, 76]. This is not only true with regard to the spectroscopy but to

a large extent also for other baryon properties, like electromagnetic and axial form fac-

tors [77] and a number of other reaction observables (for a concise summary see ref. [78]).

It has been tempting to extend this successful concept even to the heavier flavors c and

b. By such studies one should in addition learn about the proper light-heavy and heavy-

heavy hyperfine Q-Q interactions. Some exploratory work in this direction had already

been undertaken some time ago in ref. [79], hinting to promising results also for charm

and bottom baryons.

Therefore we have advocated for the hyperfine interaction of our universal RCQM the

SU(5)F GBE potential

Vhf(~ri j) =

[
V24(~ri j)

24∑
a=1

λa
i λ

a
j + V0(~ri j)λ0

i λ
0
j

]
~σi · ~σ j . (5.0.5)

Here, we take into account only its spin-spin component, which produces the most im-

portant hyperfine forces for the baryon spectra. While ~σi represent the Pauli spin matrices

of SU(2)S , the λa
i are the generalized Gell-Mann flavor matrices of SU(5)F for quark i.

In addition to the exchange of the pseudoscalar 24-plet also the flavor-singlet is included

because of the U(1) anomaly. The radial form of the GBE potential resembles the one of

the pseudoscalar meson exchange

Vβ(~ri j) =
g2
β

4π
1

12mim j

[
µ2
β

e−µβri j

ri j
− 4πδ(~ri j)

]
(5.0.6)

for β = 24 and β = 0. Herein the δ-function must be smeared out leading to [76, 80]

Vβ(~ri j) =
g2
β

4π
1

12mim j

[
µ2
β

e−µβri j

ri j
− Λ2

β

e−Λβri j

ri j

]
. (5.0.7)

Contrary to the earlier GBE RCQM [18], which uses several different exchange masses µγ

and different cut-offs Λγ, corresponding to γ = π, K, and η=η8 mesons, we here managed

to get along with a universal GBE mass µ24 and a single cut-off Λ24 for the 24-plet of

SU(5)F . Only the singlet exchange comes with another mass µ0 and another cut-off Λ0
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(g0/g24)2 Λ24 [fm−1] Λ0 [fm−1]

1.5 3.55 7.52

Table 5.1: Free parameters of the present URCQM determined by a best fit to the baryon

spectra.

Fixed Parameters

Quark masses [MeV] Exchange masses [MeV] Coupling

mu = md ms mc mb µ24 µ0 g2
24/4π

340 480 1675 5055 139 958 0.7

Table 5.2: Fixed parameters of the present URCQM predetermined from phenomenology

and not varied in the fitting procedure.

with a separate coupling constant g0. Consequently the number of open parameters in the

hyperfine interaction could be kept as low as only three (see Tab. 5.1).

All other parameters entering the model have judiciously been predetermined by ex-

isting phenomenological insights. In this way the constituent quark masses have been

set to the values as given in Tab. 5.2. The 24-plet Goldstone-boson (GB) mass has been

assumed as the value of the π mass and similarly the singlet mass as the one of the η′. The

universal coupling constant of the 24-plet has been chosen according to the value derived

from the π-N coupling constant via the Goldberger-Treiman relation.

5.1 Spectra

We have calculated the baryon spectra of the relativistically invariant mass operator M̂

to a high accuracy both by the stochastic variational method [81] as well as the modified

Faddeev integral equations [82, 83]. The present universal RCQM produces the spectra

in the light and strange sectors with similar or even better quality than the previous GBE

RCQM [18] (see Figs. 5.2 and 5.3). Most importantly, the right level orderings specif-

ically in the N, ∆ and Λ spectra as well as all other SU(3)F ground and excited states

are reproduced in accordance with phenomenology. The reasons are exactly the same as

for the previous GBE RCQM, which has already been extensively discussed in the lit-
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Figure 5.1: We see here the correct level ordering of the nucleon, the Roper, and N(1520).

This is a very important feature that was first realized in the original RCQM and has been

reproduced in the new universal model.

erature [18, 74, 76]. Unfortunately, the case of the Λ(1405) excitation could still not be

resolved. It remains as an intriguing problem for all three-quark CQMs.

What is most interesting in the context of the present work are the very properties

of the light-heavy and heavy-heavy Q-Q hyperfine interactions. Can the GBE dynam-

ics reasonably account for them? In Figs. 5.4 and 5.5 we show the spectra of all charm

and bottom baryons that experimental data with at least three- or four-star status by the

PDG [65] are available for ‡. As is clearly seen, our URCQM can reproduce all levels

with respectable accuracy. In the Λc and Σc spectra some experimental levels are not

known with regard to their spin and parity JP. They are shown in the right-most columns

of Fig. 5.4. Obviously they could easily be accommodated in accordance with the the-

oretical spectra, once their JP’s are determined. Furthermore the model predicts some

additional excited states for charm and bottom baryons that are presently missing in the

phenomenological data base.

5.2 Heavy Baryons

‡Only Ξc and Ξb are missing, as we are presently not in the position to calculate baryons with three

different constituent-quark masses.
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Figure 5.2: Nucleon and ∆ excitation spectra (solid/red levels) as produced by the

URCQM in comparison to phenomenological data [65] (the gray/blue lines and shad-

owed/blue boxes show the masses and their uncertainties).

5.2.1 Single Heavy

Of course, the presently available data base on charm and bottom baryon states is not yet

very rich and thus not particularly selective for tests of effective Q-Q hyperfine forces.

The situation will certainly improve with the advent of further data from ongoing and

planned experiments. Beyond the comparison to experimental data, we note that the

theoretical spectra produced by our present URCQM are also in good agreement with

existing lattice-QCD results for heavy-flavor baryons. This is especially true for the charm

baryons vis-à-vis the recent work by Liu et al. [87].

We emphasize that the most important ingredients into the universal RCQM are rel-

ativity, or more generally Poincaré invariance, and a hyperfine interaction that is derived

from an interaction Lagrangian built from effective fermion (constituent quark) and boson

(Goldstone boson) fields connected by a pseudoscalar coupling [74]. It appears that such

kind of dynamics is quite appropriate for constituent quarks of any flavor. The effects of

the hyperfine forces do not at all become tentatively small for baryons with charm and

bottom flavors. In some cases at least the heavy-light interactions are of the same im-

portance for the level spacings as the light-light interactions. This has already been seen
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Figure 5.3: Same as Fig. 5.2 but for the strange baryons.

for charm baryons in the work by the Bonn group [88] and is also true for our URCQM

(as will be detailed in ref. [84] too). It is furthermore in line with findings from earlier

lattice-QCD calculations [85].

As a result we have demonstrated by the proposed URCQM that a universal descrip-

tion of all known baryons is possible in a single model. Here, we have considered only the

baryon masses (eigenvalues of the invariant mass operator M̂). Beyond spectroscopy the

present model will be subject to further tests with regard to the baryon eigenstates, which

are simultaneously obtained from the solution of the eigenvalue problem of M̂. They must

prove reasonable in order to make the model a useful tool for the treatment of all kinds of

baryons reactions within a universal framework.
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Figure 5.4: Same as Fig. 5.2 but for charm baryons.

5.2.2 Importance of Hyperfine Interaction?

It is sometimes said with regard to heavy baryon spectroscopy that the most important

interaction is the confinement while the hyperfine interaction plays little to no role. We

have investigated this behavior and the results for the single heavy baryons are shown in

figures 5.6 5.7 and 5.8. The baryon energy levels with confinement only are shown by

the light blue lines on the left-hand side of each column. The magenta lines in the middle

of each column include confinement for all three quarks plus the hyperfine interaction

”turned on” only between light quarks. The full calculation with confinement and hy-

perfine interaction for all three quarks is shown by the red lines on the right side of each

column.

As we see, in fact, the hyperfine interaction plays an essential role also in heavy

baryons. This is in general true for both the light-light and light-heavy parts. Of course,

there are some levels, where the latter plays a minor role. One glaring example, where

both types produce level shifts of similar magnitudes is the 1
2

+
Λc state. A similar behav-

ior is found for the Σc
1
2

+ states. Only as soon a bottom quark is involved the light-heavy

hyperfine interaction becomes small (see Fig. 5.8).

5.2.3 Double Heavy

In the case of double heavy baryons there has been the claim of the Ξcc measurement by

the SELEX group at Fermilab in 2002 [86]. This baryon has never been independently
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Figure 5.5: Same as Fig. 5.2 but for bottom baryons.

reproduced and is currently ranked by the particle data group with a one star rating which

means ”evidence of existence of poor”. We always consider experiment the final verdict

in physics, however, given the dubious nature of this measurement we employ additional

comparison of our results with the lattice QCD [87] and a relativistically covariant quark

model based on the Bethe-Salpeter equation in instantaneous approximation [88]. The

results are shown in Fig. 5.9. We see that the experimental value [86] lies roughly 100

MeV below all theoretical predictions. We look forward to the resolution of this curious

measurement, however it is a bit discouraging that more than ten years later there has not

been an independent confirmation or update.

5.2.4 Triple Heavy

To date no triple heavy baryons have been observed experimentally. Here we list our

predictions. Mention something about the types of comparisons as well, e.g.; Bethe-

Salpeter equation in instantaneous approximation [88]; Quark Model [89]; Relativistic

Quark Model [90]; Relativistic Quark Model [91]; Lattice QCD [92]; DSE [93]; potential
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Figure 5.6: Evolution of the Λc baryon. The three-quark system with confinement only is

shown in light blue on the left hand side of each column. The magenta line in the middle

of each column includes confinement for all three quarks plus the hyperfine interaction

”turned on” between only light-light quark interactions. The full calculation with confine-

ment and hyperfine interaction for all three quarks is shown by the red line on the right

side of each column.

Non-Relativistic Quantum Chromodynamics (pNRQCD) [94];

5.3 Form Factors

The physics behind the baryon form factors is the idea of probing the structure of the

baryon. Of course, depending on what one uses as a probe one will gain will different

insights. For example, by probing the baryon with a photon (electromagnetic interaction)

one can learn something about the electromagnetic structure. In contrast, by probing with

a W or Z (weak interaction) one will learn about the axial structure. Another possibility

exists in probing the baryon with a spin-2 graviton (gravitational interaction). Let us

first look at the general formalism in connection with form factors. The hadronic current
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Figure 5.7: Same as Fig. 5.6 for the Σc baryons.

operator must satisfy the following conditions [95]:

∂Jµ(x)
∂xµ

= 0 (current conservation), (5.3.8)

U(Λ)Jµ(x)U(Λ)−1 = (Λ−1)νµJν(Λx) (Lorentz covariance), (5.3.9)[
Pν, Jµ(x)

]
= i

∂Jµ(x)
∂xν

(space-time covariance). (5.3.10)

Current conservation, ∂µJµ = 0, requires

(Pµ
f − Pµ

i ) 〈V ′,M′, J′,Σ′| Jµ |V,M, J,Σ〉 = 0 , (5.3.11)

where Pµ
i and Pµ

f are the initial and final four-momenta respectively. The Lorentz boosts

Λc(vin) = Λ−1
c (vf) =



cosh ∆
2 0 0 − sinh ∆

2

0 1 0 0

0 0 1 0

− sinh ∆
2 0 0 cosh ∆

2


(5.3.12)
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Figure 5.8: Same as Fig. 5.6 for the single bottom baryons Λb, Σb, and Ωb.

are such that

Λ−1
c (vf)Λc(vin) =



cosh ∆ 0 0 − sinh ∆

0 1 0 0

0 0 1 0

− sinh ∆ 0 0 cosh ∆


, (5.3.13)

where ∆ is defined through

sinh
∆

2
=

Q
2M

, (5.3.14)

with M the mass of the baryon and Q2 = −qµqµ. In the Breit frame (B) the initial and final

four-momenta are given as

Pµ
i (B) = MVµ

i = M
(

cosh
∆

2
, 0, 0,− sinh

∆

2
)
, (5.3.15)

Pµ
f (B) = MVµ

f = M
(

cosh
∆

2
, 0, 0, sinh

∆

2
)
. (5.3.16)

The invariant momentum transfer along the z-axis is qµ(B) = (0, 0, 0,Q). We can write it

as

q2(B) = −Q2 =
(
P f (B) − Pi(B)

)2
= −4M2( sinh

∆

2
)2
. (5.3.17)
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Figure 5.9: Double-charm baryons. The prediction of the URCQM is shown by the red

lines. The green line shows the experimental value from the SELEX collaboration [86].

The pink box shows the results from a Lattice QCD calculation with uncertainties [87].

The light blue line is the result of the Bonn group [88].

We can define the invariant form factors in the Breit frame as

2MFµ
Σ′Σ

(Q2) = 〈V f ,M′, J′,Σ′| Jµ(0) |Vi,M, J,Σ〉 (5.3.18)

In order to fulfill current conservation the (µ = 3) component of the standard current

matrix element must vanish in the Breit frame, because the momentum transfer qµ(B) =

Pµ
f (B) − Pµ

i (B) has a nonvanishing z-component. For spin J particles we should have

(2J + 1) independent form factors.

5.3.1 Elastic Electric and Magnetic Form Factors

Considering spin 1/2 particles we get two (one electric and one magnetic) elastic form

factors as expected. We can write the matrix elements

〈V f ,M, J =
1
2
,Σ′| Jµ(0) |Vi,M, J =

1
2
,Σ〉 = (5.3.19)

ū
(
P f ,Σ

′)[F1(Q2)γµ +
i

2M
F2(Q2)σµνqν(B)

]
u
(
Pi,Σ

)
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Figure 5.10: Double-bottom baryons. The prediction of the URCQM is shown by the

red lines. The green line shows the theoretical value from Roberts and Pervin [89]. The

orange line shows the theoretical value from Ebert et al. [90].

where u
(
P,Σ

)
is the Dirac spinor with four-momentum P and spin projection Σ. F1 is

the Dirac and F2 is the Pauli form factor. The spinor normalization is ū
(
P,Σ′

)
u
(
P,Σ

)
=

2MδΣΣ′ . Explicitly we write it as

u
(
P,Σ

)
=
√

E + M

 χΣ

~σ·~P
E+MχΣ

 , (5.3.20)

where χΣ is the two-component Pauli spinor. We can relate the Dirac and Pauli form

factors to the invariant form factors Fµ
Σ′Σ

as follows:

Fµ=0
Σ′Σ

(Q2) = χ†
Σ′

[
F1(Q2) −

Q2

4M2 F2(Q2)
]
χΣ (5.3.21)

~FΣ′Σ(Q2) = χ†
Σ′

i|~q(B)|
2M

[
F1(Q2) + F2(Q2)

]
(~σ × ẑ)χΣ (5.3.22)

In addition the invariant form factors are related to the electric and magnetic Sachs form

factors
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Figure 5.11: Mostly-charm baryons. The prediction of the URCQM is shown by the red

lines. The green line shows the theoretical value from Roberts and Pervin [89]. The light

blue line shows the theoretical value from Martynenko [91]. The dark blue line is the

result of the Bonn group [88]. The yellow line is Llanes-Estrada, et al. [94]. The black

line is Sanchis-Alepuz, et al. [93]

GE(Q2) = Fµ=0
1
2

1
2

(Q2) (5.3.23)

GM(Q2) =
2M
Q

Fµ=1
1
2
−1
2

(Q2) (5.3.24)

In the case of spin 3/2 baryons (i.e. ∆ and Ω), the Sachs form factors are given by

GE(Q2) =
1
2

(
Fµ=0

1
2

1
2

(Q2) + Fµ=0
3
2

3
2

(Q2)
)

(5.3.25)

GM(Q2) =
6M
5Q

(
Fµ=1

1
2
−1
2

(Q2) +
√

3Fµ=1
3
2

1
2

(Q2)
)
. (5.3.26)

5.3.2 Axial Form Factor

In the case of the axial form factor at the baryonic level we have

〈V f ,M, J =
1
2
,Σ′| Aµ

a(0) |Vi,M, J =
1
2
,Σ〉 = ū

(
P f ,Σ

′)[gAγ
µγ5

τa

2

]
u
(
Pi,Σ

)
. (5.3.27)
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Figure 5.12: Mostly-charm baryons. The prediction of the URCQM is shown by the

red lines. The green line shows the theoretical value from Roberts and Pervin [89]. The

light blue line shows the theoretical value from Martynenko [91]. The magenta line is the

result of the Meinel [92]. The yellow line is Llanes-Estrada, et al. [94]. The black line is

Sanchis-Alepuz, et al. [93]

At the quark level in the point form spectator model we have the matrix element of the

axial current operator Âµ
a between (free) three-particle states |k1, k2, k3;σ1, σ2, σ3〉. We

assume the form

〈
k1, k2, k3;σ′1, σ

′
2, σ

′
3

∣∣∣ Âµ
a |k1, k2, k3;σ1, σ2, σ3〉 = (5.3.28)

3
〈
k1, σ

′
1

∣∣∣ Âµ
a,SM |k1, σ1〉 2ω22ω3δσ2σ

′
2
δσ3σ

′
3
.

In the situation where quark 1 is the active point like quark, and quarks 2 and 3 are the

spectators we have the form

〈
k1, σ

′
1

∣∣∣ Âµ
a,SM |k1, σ1〉 = ū

(
k1, σ

′
1
)

gq
Aγ

µγ5
τa

2
u (k1, σ1) , (5.3.29)

where u (k1, σ1) is the usual quark spinor and gq
A = 1 the quark axial charge. Detailed

calculation can be found in the literature [23, 96, 97].
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Figure 5.13: URCQM prediction for the proton electric form factor in the point-form

spectator model (PFSM). Experimental data with error bars are also given for comparison.

5.3.3 Electric Radii Squared

The electric radii squared is defined as

r2
ch ≡ −

6
GE(0)

dGE(Q2)
d(Q2)

∣∣∣∣∣
Q2=0

(5.3.30)

5.3.4 Magnetic Moments

The magnetic moment is defined as

GM(Q2 = 0) (5.3.31)

We see that the URCQM compares well with experiment and previous work in the

RCQM [98].
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Figure 5.14: URCQM prediction for the neutron electric form factor in the PFSM. Exper-

imental data with error bars are also given for comparison.

5.4 Gravitational Form Factor

In the same way that the well known Pauli and Dirac electric form factors tell us about

the electric structure of particles, the gravitational form factor tells us about the matter

distributions within hadrons. Experimentally to probe a particle in this way would require

one to perform scattering experiments using a massless spin-2 particle (graviton) as a

probe. Currently this lies outside the reach of experimental capabilities, however this has

not been an obstacle to the theoretical community. Several different approaches have been

taken toward this problem, generalized parton distributions (GPD’s) [99], holographic

QCD (AdS/QCD) [100–104], chiral quark models [105], light cone representations [104,

106], heavy baryon chiral perturbation theory [107], and lattice QCD [108] to name only

a few. Within these approaches we see a long history of investigation of both bosonic and

fermionic matter distributions. In this work we present a calculation of a gravitational

form factor in a Poincaré invariant constituent quark model within the point form spectator

model approximation (PFSM).

The point form is characterized by the fact that only the four-momentum operator P̂µ

is affected by interactions. All other generators of the Poincaré group remain interaction-

free. As a result the spatial rotations and, most importantly, the Lorentz boosts are purely
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Figure 5.15: URCQM prediction for the proton magnetic form factor in the PFSM. Ex-

perimental data with error bars are also given for comparison.

kinematic. Consequently, the theory is manifestly covariant. The {QQQ} Hilbert spaceH

is spanned by the free states

|p1, σ1; p2, σ2; p3, σ3〉 = |p1, σ1〉 ⊗ |p2, σ2〉 ⊗ |p3, σ3〉 , (5.4.32)

which are direct products of free single-particle states |pi, σi〉, with pi and σi denoting the

individual (free) four-momenta and spin projections, respectively. In point form, instead

of working with the usual three-body states in Eq. (5.4.32), one introduces so-called ve-

locity states. They can be constructed by applying a specific Lorentz boost B(v) to the

free three-body states |k1, µ1; k2, µ2; k3, µ3〉 in the centre-of-momentum frame (for which∑
i
~ki = 0):

|v;~k1, µ1;~k2, µ2;~k3, µ3〉 = UB(v)|k1, µ1; k2, µ2; k3, µ3〉

=

3∏
i=1

∑
σi

D
1
2
σiµi[RW(ki, B(v))]|p1, σ1; p2, σ2; p3, σ3〉 . (5.4.33)

These velocity states also span the whole Hilbert space H . They have the important

advantage that under general Lorentz transformations the occurring Wigner D-functions

are the same for all three particles and the individual momenta are all rotated by the same

amount (what is not the case for the three-particle states of Eq. (5.4.32)). Of course, the

practical calculations are facilitated a lot by expressing the baryon mass eigenstates |ΨB〉
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Figure 5.16: URCQM prediction for the neutron magnetic form factor in the PFSM. Ex-

perimental data with error bars are also given for comparison.

in the velocity-state representation

〈v;~k1, µ1;~k2, µ2;~k3, µ3|vB,MB, J,Σ〉 ∼ δ3(~v − ~vB)ΨMBJΣ(~k1, µ1;~k2, µ2;~k3, µ3) , (5.4.34)

where ~v and ~vB are the total three-velocities of the bra and ket states, respectively.

5.4.1 Point Form Spectator Model

Here we outline the spectator model construction. The general translational-invariant am-

plitude between certain incoming and outgoing baryon states, |V,M, J,Σ〉 and 〈V ′,M′, J′,Σ′|,

is given by

〈V ′,M′, J′,Σ′| Ô |V,M, J,Σ〉 = (5.4.35)

= 〈V ′,M′, J′,Σ′| Ôrd |V,M, J,Σ〉 2MV0δ
3
(
M~V − M′~V ′ − ~Q

)
,

where Ô represents any electromagnetic, weak, or hadronic operator, and Ôrd is its re-

duced part. The baryon states are eigenstates of the four-velocity operator V̂ , the interact-

ing mass operator M̂, the (total) spin operator Ĵ, and its z-component Σ̂ (the corresponding

letters without a hat denoting their eigenvalues). The factor in front of the δ-function is

the invariant measure ensuring the correct normalization and transformation properties of

the states. The δ-function itself expresses the overall momentum conservation of the tran-

sition amplitude under the four-momentum transfer Qµ = Pµ−P′µ (for on-shell particles).
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Figure 5.17: URCQM prediction for the axial form factor in PFSM. We compare with the

world average using a dipole fit.

With the appropriate basis representations of the baryon eigenstates and inclusion of the

necessary Lorentz transformations the expression for the transition amplitude becomes

Figure 5.18: Here we see the graviton coupling with a quark inside the nucleon in the

point form spectator model
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〈V ′,M′, J′,Σ′| Ô |V,M, J,Σ〉 =
2

MM′

∑
σiσ

′
i

∑
µiµ
′
i

∫
d3~k2d3~k3d3~k′2d3~k′3

√
(ω1 + ω2 + ω3)3

2ω12ω22ω3

√√√(
ω′1 + ω′2 + ω′3

)3

2ω′12ω′22ω′3
Ψ?

M′J′Σ′

(
~k′1,~k

′
2,
~k′3; µ′1, µ

′
2, µ

′
3

)
∏
σ′i

D? 1
2

σ′iµ
′
i

{
RW

[
k′i ; B

(
V ′

)]} 〈
p′1, p′2, p′3;σ′1, σ

′
2, σ

′
3

∣∣∣ Ôrd |p1, p2, p3;σ1, σ2, σ3〉∏
σi

D
1
2
σiµi {RW [ki; B (V)]}ΨMJΣ

(
~k1,~k2,~k3; µ1, µ2, µ3

)
2MV0δ

3
(
M~V − M′~V ′ − ~Q

)
. (5.4.36)

The integral measures stem from the completeness relation of the velocity states (see

Eq. (5.4.34)), where the integrations over the velocities have already been performed ex-

ploiting the δ-functions in the velocity-state representations of the baryon states. In this

formula the individual quark momenta ~ki (and similarly ~k′i ) are restricted by the rest-frame

condition
∑

i
~ki = ~0. The Wigner rotations stem from the Lorentz transformations to the

boosted incoming and outgoing states, which have nonzero total momenta ~P = M~V and

~P′ = M′~V ′, respectively. The wave functions Ψ?
M′J′Σ′ and ΨMJΣ denote the (rest-frame)

velocity-state representations of the baryon states. The reduced operator Ôrd remains

sandwiched between the free three-quark states. The spectator-model approximation of

the current operator in point form (the PFSM) is defined by the expression Here the mo-

mentum transfer to the struck quark is given by

pµ1 − p′µ1 = q̃µ , (5.4.37)

where q̃µ , Qµ is uniquely determined by the overall momentum conservation and the

two spectator conditions. The relation between p1 and p′1 is complicated, because the

transferred momentum q̃ to the active quark inherits nontrivial interaction-dependent con-

tributions [114]. Writing the Belinfante energy momentum tensor matrix element in its

most general form for a spin 1/2 particle [115] we have

〈N(p′)|Θµν(0)|N(p)〉 =

= ū(p′)
[
γ(µP̄ν)A(Q2) + i

2M P̄(µσν)B(Q2) +
qµqν−q2gµν

M C(Q2)
]
u(p) . (5.4.38)
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where qµ = (P′ − P)µ, P̄µ = 1
2 (P′ + P)µ, a(µbν) = 1

2 (aµbν + aνbµ), and u(p) is the spinor of

the nucleon system. For the nucleon gravitational form factor we insert

〈p′1, σ
′
1; p′2, σ

′
2; p′3, σ

′
3|Θ

µν(0)|p1, σ1; p2, σ2; p3, σ3〉 = (5.4.39)

= 3N〈p′1, σ
′
1|Θ

µν
spec(0)|p1, σ1〉2E2δ

3(~p2 − ~p′2)2E3δ
3(~p3 − ~p′3)δσ2σ

′
2
δσ3σ

′
3

into Eq. (5.4.36). It has been shown previously that B(Q2) can be interpreted as the

anomalous gravitomagnetic moment [118] and must vanish due to the Einstein equiva-

lence principle. The C(Q2) term also drops out [117]. We are left with the task of calcu-

lating A(Q2). The energy momentum tensor matrix elements in the point form spectator

model reduce to

A(q2) = 〈p′1, σ
′
1|Θ

00
spec(0)|p1, σ1〉 (5.4.40)

To get this element we start with

〈
p′1, p′2, p′3;σ′1, σ

′
2, σ

′
3

∣∣∣ Θ̂µν

rd,PFSM |p1, p2, p3;σ1, σ2, σ3〉 = (5.4.41)

= 3N ū
(
p′1, σ

′
1

)
γ(µP̄ν)u (p1, σ1) 2p20δ

3
(
~p2 − ~p′2

)
2p30δ

3
(
~p3 − ~p′3

)
δσ2σ

′
2
δσ3σ

′
3
.

Looking explicitly at the Θ00 element at the quark level we have:

〈p′1, σ
′
1|Θ

00
spec(0)|p1, σ1〉 = (5.4.42)

= ū(p′1, σ
′
1)
(
γ0P′0+γ0P0

2

)
u(p1, σ1) =

(
E′1+E1

2

)
ū(p′1, σ

′
1)γ0u(p1, σ1)

We insert this relation into Eq. 5.4.36 to get our A(Q2) on the nucleon level.

5.5 Results

Our result for A(Q2) is plotted in Fig. 5.19. In physics comparison with experiment is

always the preeminent goal however, as stated in the introduction at the present moment

there is no experimental data to compare with for this quantity. Instead we compare

with other theoretical groups. We compare with a holographic soft wall model [100]. In

addition we compare with a gravitationally coupled Pomeron model [103] parameterized

from cross section data of pp and pp̄ scattering from the CDF
√

s = 1800 GeV data set.
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Figure 5.19: PFSM model result (URCQM) for the nucleon gravitational form factor

A(Q2) compared to a holographic (AdS/QCD) model [100] and a parameterization of a

gravitationally coupled Pomeron model (Domokos et al.) [103].
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Baryon JP URCQM GBE Experiment

N(939) 1
2

+ 939 939 938-940
N(1440) 1

2
+ 1454 1459 1420-1470

N(1520) 3
2
− 1558 1519 1515-1525

N(1535) 1
2
− 1558 1519 1525-1545

N(1650) 1
2
− 1666 1647 1645-1670

N(1675) 5
2
− 1666 1647 1670-1680

N(1700) 3
2
− 1666 1647 1650-1750

N(1710) 1
2

+ 1804 1776 1680-1740

∆(1232) 3
2

+ 1234 1240 1231-1233
∆(1600) 3

2
+ 1710 1718 1550-1700

∆(1620) 1
2
− 1675 1642 1600-1660

∆(1700) 3
2
− 1675 1642 1670-1750

Λ(1116) 1
2

+ 1141 1136 1116
Λ(1405) 1

2
− 1589 1556 1401-1410

Λ(1520) 3
2
− 1589 1556 1519-1521

Λ(1600) 1
2

+ 1650 1625 1560-1700
Λ(1670) 1

2
− 1702 1682 1660-1680

Λ(1690) 3
2
− 1702 1682 1685-1695

Λ(1800) 1
2
− 1787 1778 1720-1850

Λ(1810) 1
2

+ 1837 1799 1750-1850
Λ(1830) 5

2
− 1787 1778 1810-1830

Σ(1193) 1
2

+ 1210 1180 1189-1197
Σ(1385) 3

2
+ 1374 1389 1383-1387

Σ[1560] 1
2
− 1695 1677 1546-1576

Σ[1620] 1
2
− 1745 1736 1594-1643

Σ(1660) 1
2

+ 1711 1616 1630-1690
Σ(1670) 3

2
− 1695 1677 1665-1685

Σ[1690] 3
2

+ 1892 1865 1670-1727
Σ(1750) 1

2
− 1776 1759 1730-1800

Σ(1775) 5
2
− 1745 1736 1770-1780

Σ(1880) 1
2

+ 1950 1911 1806-2025
Σ[1940] 3

2
− 1745 1736 1900-1950

Σ 3
2
− 1776 1759 -

Ξ(1318) 1
2

+ 1342 1348 1315-1321
Ξ(1530) 3

2
+ 1501 1528 1532-1535

Ξ[1690] 1
2

+ 1842 1805 1680-1700
Ξ(1820) 3

2
− 1805 1792 1818-1828

Ξ[1950] 5
2
− 1865 1881 1935-1965

Ω 3
2

+ 1620 1656 1673.45±0.29

Table 5.3: Light and strange spectra for URCQM and GBE hyperfine interactions calcu-

lated via SVM. All values are given in MeV.
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Baryon JP URCQM Experiment

Λc
1
2

+ 2308 2286.46±0.14
Λc(2595) 1

2
− 2604 2592.25±0.28

Λc(2625) 3
2
− 2604 2628.11±0.19

Λc
1
2

+ 2750 -
Λc

3
2

+ 2834 -
Λc(2880) 5

2
+ 2834 2881.53±0.35

Λc(2940) 1
2

+ 2943 2938-2941r

Σc(2455) 1
2

+ 2447 2452-2455
Σc(2520) 3

2
+ 2489 2517-2519

Σc(2800) 1
2
− 2756 2787-2811r

Σc(2800) 3
2
− 2756 2787-2811r

Ωc
1
2

+ 2703 2694-2697
Ωc(2770) 3

2
+ 2732 2764-2768

Ξcc
1
2

+ 3673 3519-3520

Table 5.4: Single charm spectra for URCQM. All values are given in MeV. rThis state is

noted in the PDG [65] with JP assignment ??.

Baryon JP URCQM Experiment

Λb
1
2

+ 5644 5619.4±0.7

Σb
1
2

+ 5804 5809-5817
Σ∗b

3
2

+ 5819 5831-5837

Ωb
1
2

+ 6050 6031-6111

Table 5.5: Single bottom spectra for URCQM. All values are given in MeV.
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Baryon JP URCQM

Ξcc
1
2

+ 3642
Ξcc

3
2

+ 3683
Ξcc

1
2
− 3899

Ξcc
3
2
− 3899

Ξcc
1
2
− 4004

Ξcc
3
2
− 4004

Ξcc
1
2

+ 4032
Ξcc

3
2

+ 4064

Ωcc
1
2

+ 3753
Ωcc

3
2

+ 3783
Ωcc

1
2
− 4002

Ωcc
3
2
− 4002

Ωcc
1
2
− 4084

Ωcc
3
2
− 4084

Ωcc
1
2

+ 4141
Ωcc

3
2

+ 4084

Ξbb
1
2

+ 10279
Ξbb

3
2

+ 10292
Ξbb

1
2
− 10437

Ξbb
3
2
− 10437

Ξbb
3
2

+ 10553
Ξbb

1
2

+ 10573
Ξbb

1
2
− 10593

Ξbb
3
2
− 10593

Ωbb
1
2

+ 10369
Ωbb

3
2

+ 10378
Ωbb

1
2
− 10525

Ωbb
3
2
− 10525

Ωbb
3
2

+ 10641
Ωbb

1
2

+ 10635
Ωbb

1
2
− 10664

Ωbb
3
2
− 10664

Table 5.6: Double heavy baryon spectra. Predictions from the URCQM. All values are

given in MeV.



5.5. Results 66

Baryon JP URCQM

Ωccc
3
2

+ 4876
Ωccc

1
2
− 5106

Ωccc
3
2
− 5106

Ωccc
3
2

+ 5248
Ωccc

1
2

+ 5291
Ωccc

1
2

+ 5293
Ωccc

1
2
− 5440

Ωccc
3
2
− 5440

Ωccb
1
2

+ 8160
Ωccb

3
2

+ 8163
Ωccb

1
2
− 8344

Ωccb
3
2
− 8344

Ωccb
1
2
− 8393

Ωccb
3
2
− 8393

Ωccb
1
2

+ 8478
Ωccb

3
2

+ 8480

Ωcbb
1
2

+ 11429
Ωcbb

3
2

+ 11432
Ωcbb

1
2
− 11644

Ωcbb
3
2
− 11644

Ωcbb
1
2

+ 11700
Ωcbb

3
2

+ 11702
Ωcbb

1
2
− 11985

Ωcbb
3
2
− 11985

Ωbbb
3
2

+ 14692
Ωbbb

1
2
− 14851

Ωbbb
3
2
− 14851

Ωbbb
3
2

+ 14961
Ωbbb

1
2

+ 14984
Ωbbb

1
2

+ 14987
Ωbbb

1
2
− 15095

Ωbbb
3
2
− 15095

Table 5.7: Triple heavy baryon spectra. Predictions from the URCQM. All values are

given in MeV.
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Property Theory [fm2] Experiment [fm2]

Proton 0.851 0.769(28)

Neutron -0.127 -0.1161(22)

Σ− 0.463 0.6084±0.156

Table 5.8: Electric radii squared.

Particle Theory Experiment

P 2.694 2.792847356(23)

N -1.697 -1.9130427(5)

Λ -0.706 -0.613(4)

Σ+ 2.151 2.458(10)

Σ− -0.805 -1.160(25)

Ξ0 -1.219 -1.250(14)

Ξ− -0.629 -0.6507(25)

∆+ 2.10 2.7+1.0
−1.3 ± 1.5 ± 3

∆++ 4.197 3.7-7.5

Ω− -1.583 -2.02(5)

Table 5.9: Magnetic moments calculated from the universal model.



Chapter 6

The AdS/QCD Correspondence

6.1 The AdS/CFT Correspondence

There has been a deep historical connection between the pursuit of understanding the

physics of strongly coupled systems and string theory. String theory was proposed as an

explanation for the Regge trajectory pattern on bound states. This is the noted pattern

that when the angular momentum of hadronic excitations J are plotted versus the mass

or energy squared they form a pattern of lines. This pattern could be easily explained by

representing the mesons for example as two quarks bound together by a string. With the

emergence of QCD in the early 70’s this stringy explanation was abandoned however the

ideas of string theory persisted into a theory of quantum gravity. In 1997 it seems these

ideas finally came full circle. When Maldacena first conjectured the correspondence be-

tween a geometrical (gravitational) theory in anti-de Sitter space (AdS) and a conformal

field theory (CFT) [119] he generated a sensation in the theoretical physics community.

The reason for the interest was that the correspondence allowed one to relate a geomet-

rical theory on the boundary of some higher n-dimensional space to a (n-1)-dimensional

conformal field theory via the holographic principle [120]. Geometrically anti-de Sit-

ter space corresponds to a maximally symmetric spacetime with a negative cosmological

constant. The AdS/CFT duality has the interesting feature that when one side of the

correspondence is strongly coupled the other side is weakly coupled and vice versa. A

current goal amongst physicists is to extend our understanding of AdS/CFT to a possible

dS/CFT. This could be fruitful in several ways. The first is that de Sitter space-time has a

68



6.1. The AdS/CFT Correspondence 69

positive cosmological curvature therefore relates with current observations of the observ-

able universe. The second is the double edged sword that a de Sitter spacetime cannot be

supersymmetric. This poses the positive possibility that we can do away with supersym-

metric theories that so far have not shown their signature in the experimental data. The

downside is that without the added symmetry the dS/CFT correspondence is much less

well understood. I will briefly review the essentials points of the correspondence here,

however, readers interested in a deeper discussion should refer to [121] and references

therein.

6.1.1 Dp-Branes

The correspondence is best motivated by studying Dp-brane dynamics [122]. A Dp-brane

is a volume of spacetime that exists in p spatial dimensions. For example our usual

Minkowski space can be thought of as a D3-brane, (3+1) dimensions living a higher ten-

dimensional spacetime. In string theory D-brane’s are objects in ten-dimensional space-

time where strings can end. The low energy excitations of a D-Brane can be described

by a N = 4 supersymmetric U(1) gauge theory. Extending this one can ”stack” up N

D-branes to make a supersymmetric U(N) gauge theory. This theory can be decoupled

into U(N) = S U(N)×U(1), where the U(1) part corresponds to the center of mass motion

of the stack of branes. Given what we know about the standard model one can already

see the significance of this type of non-abelian group structure.‡ We can write down the

action for a D3-brane

S =

∫
d10x (6.1.1)

we can vary the action to get the metric

ds2
10 = H−1/2ηµνdxµdxν + H1/2(dr2 + r2dΩ2

5) (6.1.2)

where

H = 1 +
R4

r4 . (6.1.3)

R is the radius of the throat and r is the radius of the circle surrounding the throat as shown

in Fig. 6.1. Here dΩ5 is the five-sphere metric. We see that when r >> R then H ' 1

‡Although it must be stressed that to our current knowledge the standard model is not supersymmetric!
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Nc D3

AdS5×S5

R

Nc D3

Figure 6.1: Flat spacetime on the left. On the right spacetime is deformed by a stack of

D3-branes. Figure taken from [123]

the spacetime is basically flat. In the near horizon limit when R4/r4 >> 1 gravitational

effects become strong and our metric is

ds2 =
r4

R4η
µνdxµdxν +

R4

r4 (dr2 + r2dΩ2
5) (6.1.4)

we can make a change of variable, z = R2/r so our metric becomes

ds2 =
R2

z2 (ηµνdxµdxν + dz2) + R2dΩ2
5 (6.1.5)

We can now see transparently that the metric is AdS 5 × S 5.

R2

z2 (ηµνdxµdxν + dz2)︸                    ︷︷                    ︸
AdS 5

+ R2dΩ2
5︸ ︷︷ ︸

S 5

(6.1.6)

6.1.2 Holography

The holographic principle has origins in Bekenstein and Hawkings’ analysis of black

hole thermodynamics [120]. This first work showed that one can encode the degrees of

freedom within the volume of a black hole simply by understanding its area.

The holographic principle in the context of the AdS/CFT correspondence allows us to

encode the physics from the (d+1)-dimensional bulk theory into a d-dimensional gauge

theory. It seems clear that the d-dimensional xµ coordinates for a point within the bulk

correspond to the xµ position within the gauge theory. However, it is less clear how the

radial r or z component is encoded into the field theory.

One approach is to define your gauge theory as is done in most ”real” quantum field

theories, as a function of an energy scale. In a conformal field theory the resulting ef-

fective field theory will be independent of E but in a non-conformal theory such as QCD
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this result is a useful tool. If we consider a scale transformation xµ → λxµ, where λ is a

generic scale factor, we can also rescale the energy via E → E/λ. In addition this scale

transformation can be performed in the AdS metric (6.1.5), telling us that when xµ → λxµ

we also must have z → z/λ as a symmetry of the metric. Thus we can now relate both z

and r from the bulk theory to an energy scale in the gauge theory

E ∼
1
z
∼ r . (6.1.7)

One now gets a better understanding as to how the holographic coordinates z and r in the

bulk are related to degrees of freedom in the dual gauge theory. For example if one wishes

to propose a theory without any degrees of freedom integrated out then this corresponds

to the limit where E → ∞. We see from the relation in Eq. (6.1.7) that this implies as

z → 0 then r → ∞. As you integrate out higher-momentum degrees of freedom the dual

gauge theory gets projected inwards towards the horizon.

Figure 6.2: Holographic projection of the gauge theory via the holographic coordinate z.
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Why does holography give us (3+1) not (9+1)?

One important point is that naively one may ask why, when speaking of the ten-dimesional

spacetime AdS 5 × S 5, does one get a (3+1)-dimensional theory on the boundary instead

of a (9+1)-dimensional one as one would expect from a 10-dimensional bulk? Here it is

important to note that one can Weyl rescale the metric in Eq. (6.1.6) as so

R2(ηµνdxµdxν + dz2)︸                   ︷︷                   ︸
AdS 5

+ z2R2dΩ2
5︸   ︷︷   ︸

S 5

. (6.1.8)

This makes clear that at the boundary when z = 0, that the five-sphere disappears leaving

only AdS 5 to contribute to when the holographic principle is applied, allowing us to go

from a 5-dimensional theory in the bulk, to a 4-dimensional theory on the boundary.

6.2 AdS/QCD

We know that QCD in the usual sense is not a conformal field theory. The next section

explains the attempt to go from AdS/CFT to AdS/QCD. It should be stated up front that

although it is often argued in the literature that holographic QCD is dual to ”real” QCD,

we will take a more conservative approach; in the sense that what is presented in the

following sections, is what should be understood as a model that captures many of the

features that we know exist in real QCD, for example confinement and chiral symmetry.

The two most obvious differences between ”real” QCD and the N = 4 super Yang-

Mills theory that is the result of the usual type IIB AdS 5 × S 5 correspondence, is that at

our present level of understanding, QCD is neither conformal nor supersymmetric. The

problem of breaking the supersymmetry was resolved first by Witten [124], in which he

was able to show a description of large Nc gauge theories in four dimensions without

supersymmetry. The next task is to break the conformal symmetry. This is done in a

number of ways.

First one should note there are essentially two different approaches to AdS/QCD. The

first is what is commonly called the ”top-down” approach. This approach uses string

theory as the general motivation and starting point. From the string side one tries to build

a theory that resembles some holographic dual to QCD. An example of one of the most
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popular top-down models is the Sakai-Sugimoto model [125, 126]. This model relies

on the embedding of D8 and anti-D8-branes into a D4 background. By playing around

with different geometries one can break not only the conformal symmetry but also create

behavior that mimics chiral symmetry breaking. Due to these features Sakai and Sugimoto

were able to produce spectra and form factors for both baryons and mesons [127, 128].

The other type of approach, and the one that we are most interested in in this the-

sis, is what is known as the ”bottom-up” approach. This approach is motivated by QCD

and simply uses the gauge/gravity correspondence as a way to gain insight into the strong

coupling regime. We look specifically at the bottom-up model known as light-front holog-

raphy.

6.2.1 QCD on the Light Cone

Let’s begin by looking at the S U(3)C Lagrangian of QCD‡

LQCD =
∑

n

ψ̄n

(
iγµDµ − mn

)
ψn −

1
4Ga

µνG
a µν. (6.2.9)

summed over n flavors, the covariant derivative is defined as Dµ = ∂µ − igsAa
µT

a and

Ga
µν = ∂µAa

ν − ∂νA
a
µ + gscabcAb

µAc
ν is the gluon field strength tensor.

[
T a,T b

]
= icabcT c

where a, b, c are S U(3)C color indices.

A review of light-cone notation can be found in Appendix D.2. We can express the

hadron four-momentum generator P = (P+, P−, P⊥), P± = P0±P3, in terms of the dynam-

ical fields, the Dirac field ψ+ (where ψ± = Λ±ψ, Λ± = γ0γ±), and the transverse field A⊥.

Specifically we will work in light-cone gauge where A+ = 0, quantized on the light front

at fixed light-cone time, x+.

P− =

∫
dx−d2x⊥ψ̄+ γ

+ (i∇⊥)2 + m2

i∂+
ψ+ + (interactions), (6.2.10)

P+ =

∫
dx−d2x⊥ψ̄+γ

+i∂+ψ+, (6.2.11)

P⊥ =

∫
dx−d2x⊥ψ̄+γ

+i∇⊥ψ+, (6.2.12)

A physical hadron in 3+1 dimensional Minkowski space with four-momentum Pµ

‡This is Eq. (1.1.1) reproduced here for convenience.
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and invariant hadronic mass states PµPµ = M2 is determined by the Lorentz-invariant

Hamiltonian equation for the relativistic bound-state system

HLF |ψ(P)〉 =M2|ψ(P)〉, (6.2.13)

where HLF ≡ PµPµ = P−P+ − P2
⊥. The hadronic state |ψ〉 is an expansion in multiparticle

Fock eigenstates |n〉 of the free light-front Hamiltonian, |ψ〉 =
∑

n ψn|ψ〉. The Fock com-

ponents ψn(xi,k⊥i, λi) are independent of P+ and P⊥ and depend only on the momentum

fraction xi = k+
i /P

+, the transverse momentum k⊥i and spin component λz
i . To ensure

conservation of momentum we require that,
∑n

i=1 xi = 1 and
∑n

i=1 k⊥i = 0.

As first shown by Brodsky and de Teramond [17], it is possible to derive so-called

light-front holography, using a first semiclassical approximation to transform the fixed

light-front time bound-state Hamiltonian equation of motion in QCD (6.2.13), to a cor-

responding wave equation in AdS space. We expand the initial and final hadronic states

in terms of its Fock components. We may simplify the calculation by choosing the frame

P =
(
P+,M2/P+, ~0⊥

)
where P2 = P+P−. This results in

M2 =
∑

n

∫ [
dxi

][
d2k⊥i

]∑
q

(k2
⊥q + m2

q

xq

)
|ψn(xi, k⊥i)|2 + (interactions), (6.2.14)

plus similar terms for antiquarks and gluons (mg = 0). The integrals in (6.2.14) are over

the internal coordinates of the n constituents for each Fock state∫ [
dxi

]
≡

n∏
i=1

∫
dxi δ

(
1 −

n∑
j=1

x j

)
,

∫ [
d2k⊥i

]
≡

n∏
i=1

∫
d2k⊥i

2(2π)3 16π3 δ(2)
( n∑

j=1

k⊥ j

)
,

(6.2.15)

with phase space normalization∑
n

∫ [
dxi

] [
d2k⊥i

]
|ψn(xi, k⊥i)|2 = 1. (6.2.16)

Each constituent of the light-front wavefunction (LFWF) ψn(xi, k⊥i, λi) of a hadron is

on its respective mass shell k2
i = k+

i k−i − k2
⊥i = m2

i , i = 1, 2 · · · n. Therefore,

k−i =
(
k2
⊥i + m2

i

)
/xiP+ . (6.2.17)
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However, it is important to note that the LFWF represents a state which is off the light-

front energy shell

P− −
n∑
i

k−i < 0 , (6.2.18)

for a stable hadron. The invariant mass of the constituentsMn is

M2
n =

( n∑
i=1

kµi
)2

=
∑

i

k2
⊥i + m2

i

xi
. (6.2.19)

The LFWF, ψn(xi,k⊥i, λi) can be expanded in terms of n − 1 independent position coordi-

nates b⊥ j, j = 1, 2, . . . , n−1, conjugate to the relative coordinates k⊥i, where the sum over

position coordinates,
∑n

i=1 b⊥i = 0. Alternatively we may express Eq. (6.2.14) in terms of

the internal impact coordinates b⊥ j;

M2 =
∑

n

n−1∏
j=1

∫
dx j d2b⊥ j ψ

∗
n(x j, b⊥ j)

∑
q

−∇2
b⊥q

+ m2
q

xq

ψn(x j, b⊥ j) + (interactions).

(6.2.20)

The normalization is defined by

∑
n

n−1∏
j=1

∫
dx jd2b⊥ j

∣∣∣ψn(x j,b⊥ j)
∣∣∣2 = 1. (6.2.21)

To ensure conformal invariance the underlying classical QCD Lagrangian must be ex-

pressed in terms of massless quarks [129]. Due to this requirement, in this thesis with

regards to AdS/QCD, we will work only in the chiral limit, therefore confining our stud-

ies to the light hadron sector. With this restriction it is clear how one proceeds to map the

equations of motion and transition matrix elements to their corresponding conformal AdS

expressions.

As a simple example let us consider a two-parton hadronic bound state. In the limit of

zero quark mass, mq → 0

M2 =

∫ 1

0

dx
x(1 − x)

∫
d2b⊥ ψ∗(x, b⊥)

(
−∇2

b⊥

)
ψ(x, b⊥) + (interactions). (6.2.22)

We can factor the light front wavefunction in terms of angular dependence φ, longitudinal

depenence, X(x) and the transverse mode ϕ(ζ) by introducing the impact-space variable

ζ. Specifically for a two parton state as ζ = x(1 − x)b2
⊥

ψ(x, ζ, ϕ) = eiLϕX(x)
φ(ζ)√

2πζ
, (6.2.23)
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To simplify we write the Laplacian in circular cylindrical coordinates

∇2
ζ =

1
ζ

d
dζ

(
ζ

d
dζ

)
+

1
ζ2

∂2

∂ϕ2 . (6.2.24)

Next we factor out the angular dependence of the modes in terms of the SO(2) Casimir

representation L2 orbital angular momentum in the transverse plane. Using the factored

form of the wave function we write

M2 =

∫
dζ φ∗(ζ)

√
ζ

(
−

d2

dζ2 −
1
ζ

d
dζ

+
L2

ζ2

)
φ(ζ)
√
ζ

+

∫
dζ φ∗(ζ)U(ζ)φ(ζ), (6.2.25)

where L = |Lz|. Since we work in the chiral limit (mq → 0) the longitudinal mode

decouples. We can now see that the eigenvalue equation PµPµ |φ〉 = M2 |φ〉 can be written

in a general form as a light-front wave equation for φ

(
−

d2

dζ2 −
1 − 4L2

4ζ2 + U(ζ)
)
φ(ζ) =M2φ(ζ) . (6.2.26)

This is a relativistic light-front Schrödinger equation. The confinement properties of

QCD can be introduced via the effective interaction U(ζ) as will be shown in section

6.3. Extension to n-parton systems can be done by introducing an x-weighted impact

parameter where x = xn is the longitudinal momentum fraction of the active quark and

the impact parameter for a n − 1 spectator system is

ζ =

√
x

1 − x

∣∣∣∣ n−1∑
j=1

x jb⊥ j

∣∣∣∣ . (6.2.27)

6.2.2 Hadrons in AdS Space

The action for a spin J field in AdSd+1 space-time is given by

S =

∫
dd x dz

√
g eϕ(z)

(
gNN′gM1 M′1 · · · gMJ M′J DNΦM1···MJ DN′ΦM′1···M

′
J

− µ2gM1 M′1 · · · gMJ M′J ΦM1···MJ ΦM′1···M
′
J
+ · · ·

)
, (6.2.28)

where the ϕ(z) is the dilation background field,
√

g = (R/z)d+1, and DM is the covariant

derivative. M,N run over 1, · · · , d + 1. AdS coordinates, xM = (xµ, z), are written in terms
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of the usual Minkowski coordinates xµ and the holographic variable z. The dilaton back-

ground breaks the conformal symmetry by introducing an energy scale. It is a function

of the holographic coordinate z. It vanishes hence restores conformality in the ultraviolet

limit as z→ 0. We can express the effective action in terms of AdS fields ΦJ ≡ Φµ1···µJ

S =

∫
dd x dz

√
gJ eϕ(z)

(
gNN′∂NΦJ∂N′ΦJ − µ

2Φ2
J

)
, (6.2.29)

where the metric determinant is defined as
√

gJ = (R/z)d+1−2J. If we vary the action in

Eq. (6.2.29) we get the AdS wave equation for the spin-J mode ΦJ

[
−

zd−1−2J

eϕ(z) ∂z

(
eϕ(z)

zd−1−2J ∂z

)
+

(
µR
z

)2]
Φ(z)J =M2Φ(z)J, (6.2.30)

Here the eigenmode ΦJ is normalized following

Rd−1−2J
∫ ∞

0

dz
zd−1−2J eϕ(z)Φ2

J(z) = 1. (6.2.31)

Furthermore, we see that according to the scaling behavior of the AdS field near z → 0,

ΦJ = zτ. It follows that the AdS mass µ obeys the relation

(µR)2 = (τ − J)(τ − d + J). (6.2.32)

6.2.3 Light-Front Holographic Mapping

Now that we have an eigenvalue equation for hadrons in QCD on the light cone (6.2.26)

and also an eigenvalue equation for hadron within AdS space (6.2.30) we can make a

profound connection by mapping one equation to another. The first identification we must

make is realizing the connection between the z direction in AdS space and the impact

parameter in a QCD bound state ζ. Following this logic in Eq. (6.2.29) we make the

substitution z→ ζ and

φJ(ζ) = (ζ/R)−3/2+Jeϕ(ζ)/2ΦJ(ζ) . (6.2.33)

For d = 4 we can identify the form of the effective potential U(ζ) by comparing the form

of the the QCD light-front wave equation (6.2.26) to Eq. (6.2.29)

U(ζ) =
1
2
ϕ′′(ζ) +

1
4
ϕ′(ζ)2 2J − 3

2z
ϕ′(ζ) . (6.2.34)
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This light-front holographic mapping also tells us how the fifth dimensional AdS mass µ

is related to the kinematical generators in front form, specifically the angular momentum

projections in the light-front ẑ direction Lz, S z, and Jz.

(µR)2 = −(2 − J)2 + L2 (6.2.35)

As stated before the angular momentum projections are kinematical generators in the

front-form so they are natural quantum numbers to label the eigenstates.

Some important points to note. The result of this mapping gives us a heuristic guide

for a model of QCD via the mapping from AdS space to a light-front holographic wave

function. It should not be mistaken for a solution of QCD. Eq. (6.2.26) is a linear-quantum

mechanical equation of states in Hilbert space while on the other hand Eq. (6.2.30) is a

classical equation of gravity. Now that we have made this connection we need a way to

implement confinement. The need for confinement also requires us to break the confor-

mality of the theory. I will mention two possibilites for doing this, namely the so called

hard-wall and soft-wall models.

6.3 Conformal Symmetry Breaking

6.3.1 The Hard-Wall Model for Mesons

The hard-wall model within AdS/QCD was first introduced by Polchinski and Strassler

[130,138]. This model is the analog of the well known MIT bag model [132]. This type of

model allows the quarks and anti-quarks to propagate freely within a certain radius, how-

ever, there is sharp wall disallowing propagation outside of this boundary. Confinement

is implemented in this manner as a sharp cut-off in the potential

U(ζ) =

 0 if ζ ≤ 1
ΛQCD

,

∞ if ζ > 1
ΛQCD

.
(6.3.36)

The eigenvalues for the light-front wave equation (6.2.26) for this potential are determined

by the boundary conditions

φ(z = 1/ΛQCD) = 0 . (6.3.37)

The result can be given in terms of the roots of Bessel functions

ML,k = βL,kΛQCD . (6.3.38)
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The eigenmodes are nomalized as∫ Λ−1
QCD

0
dζ φ2(ζ) = 1 . (6.3.39)

Explicitly this gives

φL,k(ζ) =

√
2ΛQCD

J1+L(βL,k)

√
ζJL

(
ζβL,kΛQCD

)
. (6.3.40)

Results for mesons in the hard wall model are plotted below as originally shown in [133].

Although the results are reasonable the hard wall model has some shortcomings that we
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Figure 6.3: I = 1 light-meson orbital states in the hard wall model for ΛQCD = 0.32 GeV:

pseudoscalar mesons (left) and vector mesons (right). Figure taken from Ref. [134] however the

behavior was first shown in Ref. [133].

would like to improve on. One problem is the degeneracy of the meson model with respect

to the orbital quantum number L. This results in the failure to describe the important L =

|Lz| = 1 triplet splitting. Another shortcoming is the failure to reproduce the well known

Regge trajectory dependence. Namely, that when we take the asymptotic expansion of the

Bessel function for large arguments, we see that in fact the mass scales asM ∼ 2n + L,

which disagrees with the usual Regge dependenceM2 ∼ n + L, found in nature.

6.3.2 The Soft-Wall Model for Mesons

As opposed to the hard and physically undesirable cut-off in Eq. (6.3.36) it was proposed

to introduce a smooth dilaton profile ϕ(z) to simulate confinement [135]. The dilaton

background breaks the conformal invariance of the theory but as we will see also leads to
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the correct Regge trajectory behavior.

V(z) = mc2√g00 = mc2R
e±3κ2z2/4

z
. (6.3.41)

Mathematically both the positive and negative solution of the dilaton profile are valid

however we must take the positive solution based on physical arguments. In the case of

the negative solution the potential decreases monotonically so an object at the boundary

of the AdS space is unbounded from below and hence can fall to an infinitely large value

of z [136]. Taking the positive value for the dilaton profile

ϕ(z) = e+κ2z2
(6.3.42)

we get the result for the effective potential in the mesonic soft wall model

U(ζ) = κ4ζ2 + 2κ2(J − 1) . (6.3.43)

With this effective potential we can solve for the eigenfunctions φn,L(ζ)

φn,L(ζ) = κ1+L

√
2n!

(n+L)!
ζ1/2+Le−κ

2ζ2/2LL
n (κ2ζ2) . (6.3.44)

This leaves us simply to solve for the eigenvalues which give us the masses of the mesonic

bound state

M2
n,J,L = 4κ2

(
n +

J + L
2

)
. (6.3.45)

We can see this gives the correct Regge trajectories that we know from experiment as

well as resolves the important L = |Lz| = 1 triplet splitting that was absent in the hard wall

model.

6.4 Baryons

Similar to the case of mesons one can have either a hard or soft wall model for baryons. In

this thesis we will look only at the soft wall model. Interested readers may find extensive

coverage of the hard wall model in [134].
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Figure 6.4: I = 1 parent and daughter Regge trajectories for the π-meson family (left) with

κ = 0.59 GeV; and the ρ-meson family (right) with κ = 0.54 GeV. Figure taken from Ref. [134]

6.4.1 Soft-Wall Model for Baryons

What makes baryons much different from mesons in terms of the soft-wall is that they are

fermions. It has been shown that in AdS space fermion fields cannot break conformality

by introducing a dilaton profile in the soft-wall. It was shown in Ref. [137] that the dilaton

profile can be rotated away leaving the action still conformally invariant.

Beginning with the fermionic AdS action, we introduce a potential V(z) to explicitly

break the conformal symmetry.

S F =

∫
dd x dz

√
g

( i
2

Ψ̄eM
A ΓADMΨ −

i
2

(DMΨ̄)eM
A ΓAΨ − µΨ̄Ψ − V(z)Ψ̄Ψ

)
. (6.4.46)

The variation of the action (6.4.46) leads to the Dirac equation in AdS space[
i
(
zηMNΓM∂N +

d
2

Γz

)
− µR − RV(z)

]
Ψ = 0. (6.4.47)

By making the correspondence between the holographic variable z and the transverse light

front coordinate ζ we can identify the corresponding light front wave equation in physical

space time. We write the 2 × 2 spinor component representation for d = 4 as

d
dζ
ψ+ +

ν+

ζ
ψ+ + U(ζ)ψ+ = Mψ−,

−
d
dζ
ψ− +

ν+

ζ
ψ− + U(ζ)ψ− = Mψ+, (6.4.48)

where U(ζ) is some as yet unknown effective confining potential which can be related

to the potential V(z) that we introduced in the action via the light-front Dirac equation
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as U(ζ) = R
ζ
V(ζ). For the ansatz U(ζ) = κ2ζ, where κ is the parameter that previously

appeared in the soft-wall dilaton profile, the AdS Dirac equation results in(
−

d2

dζ2 −
1 − 4ν2

4ζ2 + κ4ζ2 + 2(ν + 1)κ2
)
ψ+(ζ) =M2ψ+(ζ), (6.4.49)

and (
−

d2

dζ2 −
1 − 4(ν + 1)2

4ζ2 + κ4ζ2 + 2νκ2
)
ψ−(ζ) =M2ψ−(ζ). (6.4.50)

We know the light front equation HLFψ± =M2ψ±, has the two-component solution

ψ+(ζ) ∼ ζ
1
2 +νe−κ

2ζ2/2Lνn(κ2ζ2), ψ−(ζ) ∼ ζ
3
2 +νe−κ

2ζ2/2Lν+1
n (κ2ζ2), (6.4.51)

where both the plus and minus solutions have equal probability when properly normal-

ized. This allows us to write the general solution for the eigenvalues of the mass operator

as

M2 = 4κ2(n + ν + 1), (6.4.52)

where n is the principle quantum number and ν is a free parameter which we will use

to set the overall mass scale. There are an extensive number of arguments regarding the

best way to set this parameter ranging from scaling behavior, chiral symmetry, to pure

physical reasons that can be found in Ref. [134]. For our purposes we simply state the

result,

ν+ = L +
S
2
−

1
4

, ν− = L +
S
2

+
1
4

(6.4.53)

where L is orbital quantum number and S is the internal spin i.e., S = 1
2 or 3

2 . Therefore

we have the mass operator for the positive parity baryons as

M
2 (+)
n,L,S = 4κ2

(
n + L +

S
2

+
3
4

)
, (6.4.54)

and the mass operator for the negative parity baryons as
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M
2 (−)
n,L,S = 4κ2

(
n + L +

S
2

+
5
4

)
. (6.4.55)

The Regge trajectories for the positive parity baryons are shown in Fig. 6.5.
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Figure 6.5: Regge trajectories for the N (left) and ∆ (right) baryons in the soft wall model.

Experimental values from the PDG [65] are plotted as points with corresponding error bars.

6.5 Form Factors

In AdS/CFT the hadronic matrix elements for the electromagnetic current take the form

of a convolution of string modes, for the initial and final hadrons with the external elec-

tromagnetic source which propagates in the the AdS space. In the Polchinski-Strassler

formalism with minimal coupling, the form factor takes the form∫
d4x dz

√
g AM(x, z)Φ∗P′(x, z)

←→
∂ MΦP(x, z) ∼ (2π)4δ4 (

P′− P − q
)
εµ(P + P′)µF(q2).

(6.5.56)

ΦP(x, z) is a normalizable mode representing a hadronic state, i.e. ΦP(x, z) = e−i·PxΦ(z),

with hadronic mass given as usual, namely PµPµ = M2. The M superscript indicates

Minkowski plus the holographic coordinate, xM = (xµ, z), such that M runs from 1 to 5. P

and P′ are the initial and final four-momentum respectively of the particle being probed.

The four-momentum transferred by the photon is q, with polarization εµ. We identify the

right hand side of Eq. (6.5.56) as the space-like QCD electromagnetic current in physical
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space time. To see this let us consider an electromagnetic probe propagating in AdS space

polarized along the Minkowski coordinates (Q2 = −q2 > 0)

A(x, z)µ = εµe−iQ·xV(Q2, z), Az = 0 (6.5.57)

where V(Q2, z) equals 1 at zero momentum transfer due to our normalization of the bulk

(inside AdS) solutions to the total charge operator. This ensures the boundary limit

Aµ(x, z→ 0) = εµe−iQ·x. This defines our boundary conditions as

V(Q2 = 0, z) = V(Q2, z = 0) = 1 . (6.5.58)

The propagation of the external current inside the AdS space can be described by the the

AdS wave equation [
z2∂2

z − z∂z − z2Q2]V(Q2, z) = 0 (6.5.59)

with boundary conditions as before, explicitly

V(Q2, z) = zQK1(zQ) (6.5.60)

where Kn(x) is the modified Bessel function of the second kind. If we substitute the

normalized Φ(xµ, z)P = e−iP·xΦ(z) into Eq. (6.5.56) we see

〈P′|Jµ(0)|P〉 =
(
P + P′

)µ R3
∫

dz
z3 Φ(z)V(Q2, z)Φ(z) . (6.5.61)

where R is the radius of the AdS space. The form factor in AdS space is given in the

holographic coordinate z, as the overlap of the normalizable modes ΦP and ΦP′ dual to

the incoming and outgoing hadrons with the non-normalizable mode V(Q2, z) dual to the

external source [138]. Thus from

〈P′|Jµ(0)|P〉 =
(
P + P′

)µ F(Q2) . (6.5.62)

we can identify the AdS form factor in the hard wall model explicitly as

F(Q2) = R3
∫

dz
z3 Φ(z)V(Q2, z)Φ(z) (6.5.63)

Using the integral representation of V(Q2, z)

V(Q2, z) =

∫ 1

0
dx J0

zQ

√
1 − x

x

 , (6.5.64)

we write the hard-wall AdS electromagnetic form-factor as
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F(Q2) = R3
∫ 1

0
dx

∫
dz
z3 J0

zQ

√
1 − x

x

 Φ2(z). (6.5.65)

We can compare this result directly for with the form factor in the front form. We compute

the matrix elements in the front form for the plus component of the current J+. This choice

is wise because it allows us to avoid coupling to Fock states with different numbers of

constituents. By expanding the final and initial meson states in terms of Fock components

we obtain the classic Drell-Yan-West expression in the q+ frame

FM(q2) =
∑

n

∫ [
dxi

] [
d2k⊥i

]∑
j

e jψ
∗
n/M(xi, k′⊥i, λi)ψn/M(xi, k⊥i, λi), (6.5.66)

where
[
dxi

] [
d2k⊥i

]
is the phase space factor. The final state light cone Fock components

for the struck constituent quark is k′
⊥,i = k⊥,i + (1 − xi)q⊥ while each spectator is k′

⊥,i =

k⊥,i − xiq⊥ As first shown by Soper [139] this expression for the form factor can also be

written in impact space as a sum of overlap terms of light front wave functions for the

j = 1, 2, · · · , n − 1 spectators.

FM(q2) =
∑

n

n−1∏
j=1

∫
dx jd2b⊥ j exp

(
iq⊥ ·

n−1∑
j=1

x jb⊥ j

) ∣∣∣ψn/M(x j, b⊥ j)
∣∣∣2 . (6.5.67)

This corresponds to a change of transverse momentum x jq⊥ for each of the n−1 spectators

with
∑n

i=1 b⊥,i = 0. Let us consider for example the π+ valence Fock state |ud̄〉. For n = 2,

Eq. (6.5.67) becomes

Fπ+(q2) = 2π
∫ 1

0

dx
x(1 − x)

∫
ζdζ J0

ζq

√
1 − x

x

 ∣∣∣ψud̄/π(x, ζ)
∣∣∣2 , (6.5.68)

where ζ2 = x(1 − x)b2
⊥ and Fπ+(q = 0) = 1. Now that we have the form factor in AdS

space, Eq. (6.5.65) and the form factor in usual front form, Eq. (6.5.68) we can see the

relationship of severable variables. Most importantly the identification of the holographic

variable z with the transverse light front impact variable ζ. We can simplify the AdS form

factor expression even more. Now that we have the exact expression for the form factor

in AdS, Eq. (6.5.65), we explicitly write the string mode Φτ(z) in the soft-wall model for

twist τ in the lowest radial n = 0 and orbital L = 0 mode

Φτ(z) =
1

R3/2

√
2Pτ

Γ(τ−1)
κτ−1zτe−κ

2z2/2, (6.5.69)
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which is normalized accordingly

〈Φτ|Φτ〉 =

∫
dz
z3 e−κ

2z2
Φτ(z)2 = Pτ . (6.5.70)

Pτ is the probability for the twist τ mode in Eq. (6.5.69). In the soft wall model the

electromagnetic bulk to boundary propagator can be written as

V(Q2, z) = Γ

(
1 +

Q2

4κ2

)
U

(
Q2

4κ2 , 0, κ
2z2

)
, (6.5.71)

where Γ(a) is the gamma function and U(a, b, c) is the Tricomi confluent hypergeometric

function. For the general case the multiplication of these two special functions result in

the exact integral equation

Γ(a)U(a, b, z) =

∫ ∞

0
e−ztta−1(1 + t)b−a−1dt . (6.5.72)

Writing the soft wall bulk to boundary in the integral representation we get

V(Q2, z) = κ2z2
∫ 1

0

dx
(1 − x)2 x

Q2

4κ2 e−κ
2z2 x/(1−x). (6.5.73)

In the limit that Q2 → ∞ this simply reduces to the solution for the AdS wave equation

as given in Eq. (6.5.60). Plugging in the string mode Φτ(z) and the bulk to boundary

propagator V(Q2, z) for the soft wall model into the equation for the hadronic form factor

F(Q2) = R3
∫

dz
z3 e−κ

2z2
Φ(z)V(Q2, z)Φ(z) (6.5.74)

and computing the integral we end up with a solution for the hadronic form factor in a

beautiful multipole form

Fτ(Q2) =
Pτ(

1 +
Q2

M2
ρ

)(
1 +

Q2

M2
ρ′

)
· · ·

(
1 +

Q2

M2
ρτ−2

) . (6.5.75)

It is important to note that the full form factor is just the sum of all twists that contribute

to the process you are looking at where the normalization is governed via Eq. (6.5.70)

F(0) =
∑
τ

Fτ(0) =
∑
τ

Pτ = 1. (6.5.76)
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Form Factor Results

Here we show the application of Eq. (6.5.75) in detail. Let us look at the case of the case

of the pion form factor in detail. In principle we should take all twist contributions into

our calculation.

Fπ(Q2) =
∑
τ

Fτ(Q2) (6.5.77)

In AdS/QCD the twist is defined as the sum of partons plus orbital quantum number L. An

important point in that for partons we only count q and q̄ partons. The reason is the gluons

are thought to be sublimated [141], meaning there are no constituent dynamical gluons.

This idea is supported by the flux tube picture of QCD where the gluons are sublimated

into a color confinement for quarks and antiquarks. Gluonic degrees of freedom only arise

at large virtuality. Thus, the Fock expansion for the pion is

|π〉 = ψL=0
qq̄/π |qq̄, L = 0〉τ=2 + ψL=0

qq̄qq̄ |qq̄, L = 0〉τ=4 + ψL=1
qq̄qq̄ |qq̄, L = 1〉τ=5 + · · · . (6.5.78)

In practice we can truncate at some twist depending on what accuracy we desire. In the

case of the pion it is useful to take up to twist 5. This means we must sum the twist 2, 4,

and 5 contributions,

Fπ(Q2) = F(τ=2)(Q2) + F(τ=4)(Q2) + F(τ=5)(Q2). (6.5.79)

For this first example it is useful and instructive to write out this equation in full detail

Fπ(Q2) =
P2(

1 +
Q2

M2
ρ

) +
P4(

1 +
Q2

M2
ρ

)(
1 +

Q2

M2
ρ′

)(
1 +

Q2

M2
ρ′′

) (6.5.80)

+
P5(

1 +
Q2

M2
ρ

)(
1 +

Q2

M2
ρ′

)(
1 +

Q2

M2
ρ′′

)(
1 +

Q2

M2
ρ′′′

) .
where the Pτ are fixed by Eqns. (6.5.69) and (6.5.70). In the twist-five pion case P2 =

0.908, P4 = 0.064, and P5 = 0.028. The ground and excited ρ mass states are given as in

Eq. (6.3.45), namelyM2
n,J,L = 4κ2

(
n + J+L

2

)
. One is able to make a connection between

the space-like and time-like form factors by making the analytic continuation as found for

example in Peskin and Schroeder [140],

Q2 → Q2 + iQΓ (6.5.81)
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where Γ is the decay width of the relevant particle. The analytic continuation allows us

to calculate the space and time-like form factors using the same function. The result is

shown below. Luckily for the process of e+e− → π+π− several experimental groups have
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Figure 6.6: Theoretical calculation for the pion form factor in AdS/QCD taking up to

twist 5 contributions into account.

measured the pion form factor. The result from Fig. 6.6 with comparison to data is shown

below as it appeared in conference proceedings [142]. We see remarkable comparison

with experiment especially in terms of the time like side. The next obvious step is to

make this calculation for processes not yet measured in order to make pure theoretical

predictions. Another process of current interest is with regard to two photon physics.

Currently there are proposed experiments in Japan (KEK) and the U.S. (SLAC) that will

measure some of these processes. Specifically, we calculate the process γγ → πω where

the exchange particle is the scalar 0++, a-meson. The game is now played similar to the

pion form factor except now we have

Fτ(Q2) =
Pτ(

1 +
Q2+iQΓa0
M2

a0

)(
1 +

Q2+iQΓ
a′0

M2
a′0

)
· · ·

(
1 +

Q2+iQΓ
a(τ−2)

0
M2

a(τ−2)
0

) . (6.5.82)
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Figure 6.7: Comparison with experiment as shown in proceedings [142]. The space-like

data are the compilation from Baldini et al. [143] (black) and JLAB data [144] (green and

red). The time-like data are from the recent precise measurements from BABAR [145]

(black) and CLEO [146] (red).(s = Q2)

again to arbitrary twist.

In Fig. 6.8 we see the full space and time-like result plotted. An important note is we

don’t know that the decay width is for the second excited state of the a-meson so we vary

the possibilities between 25 and 275 MeV in steps of 50 MeV. It is interesting to note that

the decay width Γ has no consequence on the space-like side as can be seen in Fig. 6.9.

However, we see on the time-like side there are quite significant consequences. One sees

that the height of the peak between 3-4 GeV2 is governed by the decay width. A smaller

decay width is related to a taller peak. Not having the experimental input can be seen as

a shortcoming; however one can argue, this can be seen as an indirect way to ”predict”

the decay width if one has experimental form factor data similar to the pion case as in

Fig. 6.7.

Nucleon Form Factors

As in the case of the universal RCQM we are interested in electromagnetic properties of

the nucleon. Precisely as in Eq. (5.3.19) the general form necessary to describe the elastic
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Figure 6.8: Space and time-like prediction for the γγ → πω form factor. The third decay

width of the a-meson is unknown experimentally so each colored line represents different

theoretical input values.

scattering of spin 1/2 particles is

〈P′|Jµ(0)|P〉 = ū(P′)
[
γµF1(q2) +

iσµνqν

2M
F2(q2)

]
u(P), (6.5.83)

where F1 and F2 are the Dirac and Pauli form factors respectively and q = P′ − P. As

we did with the mesons we look at the connection between the non-local coupling of an

external electromagnetic field AM(x, z) propagating in AdS space with ΨP(x, z) being the

fermionic mode.∫
d4x dz

√
g Ψ̄P′(x, z) eA

M ΓA AM(x, z)ΨP(x, z)

∼ (2π)4δ4 (
P′− P − q

)
εµu(P′)γµF1(q2)u(P), (6.5.84)

where eA
M =

(
R
z

)
δA

M is the vielbein with curved space indices M,N = 1, · · · 5 and tangent

indices A, B = 1, · · · , 5. The right side of Eq. (6.5.84) represents the Dirac electromag-

netic form factor in physical space time. This gives the electromagnetic matrix element

of the local quark current coupling to the constituents

Jµ = eqq̄γµq . (6.5.85)
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Figure 6.9: Space-like prediction for the γγ → πω form factor. The third decay width

of the a-meson is unknown experimentally so each colored line represents different theo-

retical input values. We see on the space-like side there is no obvious dependence on the

width.

As in the case for the mesons we can identify an exact correspondence between the trans-

verse light front impact variable ζ and the holographic variable z. This provides us with a

precise mapping of the light front matrix elements J+

G±(Q2) = g±R4
∫

dz
z4 V(Q2, z) Ψ2

±(z) , (6.5.86)

where Ψ+ corresponds to angular momentum Lz = 0, and Ψ− corresponds to angular

momentum Lz = +1. In order to determine the value of the effective charges g+ and g−

we must take the spin and flavor structure into account. These properties are not a priori

included in AdS/QCD models so we adopt the well known SU(6) spin-flavor symmetry

into our model. Explicitly we write either Nq↑ or Nq↓ to label the probability to find the

constituent quark in either a spin up or spin down position

Nu↑ =
5
3
, Nu↓ =

1
3
, Nd↑ =

1
3
, Nd↓ =

2
3
, (6.5.87)

for the proton and

Nu↑ =
1
3
, Nu↓ =

2
3
, Nd↑ =

5
3
, Nd↓ =

1
3
, (6.5.88)
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Figure 6.10: Time-like prediction for the γγ → πω form factor. The third decay width

of the a-meson is unknown experimentally so each colored line represents different the-

oretical input values. We see on the time-like side there is a large dependence on the

width.

for the neutron. The effective charges g+ and g− in (6.5.86) are computed by the sum of

the charges of the struck quark composed by the corresponding probability for the Lz = 0

and Lz = +1 components Ψ+ and Ψ−. The resulting effective charges are g+
p = 1, g−p = 0,

gn
+ = −1

3 and gn
− = 1

3 . Given this result we can now state in the SU(6)FS limit the Dirac

nucleon form factors are

F p
1 (Q2) = R4

∫
dz
z4 V(Q2, z) Ψ2

+(z), (6.5.89)

Fn
1(Q2) = −

1
3

R4
∫

dz
z4 V(Q2, z)

[
Ψ2

+(z) − Ψ2
−(z)

]
, (6.5.90)

where F p
1 (0) = 1 and Fn

1(0) = 0. As an example we write the plus and minus components

of the twist-3 nucleon wave function

Ψ+(z) =

√
2κ2

R2 z7/2e−κ
2z2/2, Ψ−(z) =

κ3

R2 z9/2e−κ
2z2/2 . (6.5.91)

These results are for the soft wall model with V(Q2, z) given as before in Eq. (6.5.71),

V(Q2, z) = Γ

(
1 +

Q2

4κ2

)
U

(
Q2

4κ2 , 0, κ
2z2

)
. (6.5.92)
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The results for F p,n
1 follow from the analytic form (6.5.75) for any twist τ. We find

F p
1 (Q2) = F+(Q2), (6.5.93)

and

Fn
1(Q2) = −

1
3

(
F+(Q2) − F−(Q2)

)
. (6.5.94)

We can write the general relation between F+(Q2) and F−(Q2) as

F+(Q2) = Fτ(Q2) , F−(Q2) = Fτ+1(Q2) . (6.5.95)

Here we write an explicit example for the twist-2 and twist-3 form factors

F+(Q2) =
1(

1 +
Q2

M2
ρ

)(
1 +

Q2

M2
ρ′

) , (6.5.96)

and

F−(Q2) =
1(

1 +
Q2

M2
ρ

)(
1 +

Q2

M2
ρ′

)(
1 +

Q2

M2
ρ
′′

) . (6.5.97)

The expression for the elastic nucleon form factor F p,n
2 follows from (6.5.83) and has been

independently derived by Abidin and Carlson [100],

F p,n
2 (Q2) ∼

∫
dz
z3 Ψ+(z)V(Q2, z)Ψ−(z). (6.5.98)

corresponding to

F p,n
2 (Q2) = F−(Q2). (6.5.99)

Furthermore we can write the electric and magnetic nucleon Sachs form factors as

GE(q2) = F1(q2) −
Q2

4M2 F2(Q2) (6.5.100)

and

GM(q2) = F1(Q2) + F2(Q2) . (6.5.101)

The results for the proton and neutron form factors give reasonable comparison to exper-

iment as can be seen in Figs. 6.11, 6.12, 6.13, and 6.14.
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Figure 6.11: AdS/QCD prediction for the proton electric form factor. Experimental data

with error bars are also given for comparison.
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Figure 6.12: AdS/QCD prediction for the neutron electric form factor. Experimental data

with error bars are also given for comparison.
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Figure 6.13: AdS/QCD prediction for the proton magnetic form factor. Experimental data

with error bars are also given for comparison.
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Figure 6.14: AdS/QCD prediction for the neutron magnetic form factor. Experimental

data with error bars are also given for comparison.



Chapter 7

Comparison of Approaches

Thus far we have presented a universal relativistic constituent quark model as well as a

model based on AdS/QCD. The starting point of each model is quite different however,

with regard to observables many of the results are quite complementary to each other.

In addition each model has its respective aim and strength. For example the AdS/QCD

method can do well in reproducing the light meson spectra as well as space and time-

like form factors in accordance with experiment. The universal RCQM has the strength

of building a microscopic three-quark system for baryons, whereas the AdS/QCD model

makes a quark-diquark approximation. In addition the universal RCQM gives us quite

robust results with regard to heavy baryon spectroscopy. The AdS/QCD model can indeed

be extended into this regime, however, current studies are still in their infancy [147]. At

the moment we are limited in both models to calculate baryons with two or all three quark

masses the same; for example, Ξc which consists of the flavors, u, s, and c, and thus has

quarks of three different masses is outside our present calculational abilities. The source

of this difficulty, however, lies in two different regimes for each respective model. In the

case of the universal RCQM it is simply a computational issue and in fact there are some

preliminary studies within a three-component Faddeev calculation that presently aim to

resolve this. In the case of the AdS/QCD model the problem lies in the quark-diquark

approximation. While one may consider Λc ([uu]c) or Λb ([uu]b) for example, (usc) is

not possible given the current state of the theory.

In so far as we can, we now proceed with comparisons of observables we have calcu-

lated here. As may be seen in Figs. 7.1 and 7.3 in the case of the proton both models agree

96
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can produce the electromagnetic form factors in reasonable agreement with experiments.

The situation with the neutron is more interesting. As can be seen in Fig. 7.2 the neu-
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Figure 7.1: Comparison of the URCQM with AdS/QCD for the proton electric form

factor. Experimental data with error bars are also given for comparison.

tron electric form factor of both models goes more or less through the experimental data

points. However, the URQCM hits the error bars at the lower end while the AdS/QCD

calculation hits the error bars at the upper end.

In addition below we compare the numerical spectra for three of the models we have

touched on in this thesis.
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Figure 7.2: Comparison of the URCQM with AdS/QCD for the neutron electric form

factor. Experimental data with error bars are also given for comparison.
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Figure 7.3: Comparison of the URCQM with AdS/QCD for the proton magnetic form

factor. Experimental data with error bars are also given for comparison.
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Figure 7.4: Comparison of the URCQM with AdS/QCD for the neutron magnetic form

factor. Experimental data with error bars are also given for comparison.

Baryon JP URCQM OGE AdS/QCD Experiment

N(939) 1
2

+ 939 939 1000 938-940

N(1440) 1
2

+ 1454 1577 1414 1420-1470

N(1520) 3
2
− 1558 1521 1581 1515-1525

N(1535) 1
2
− 1558 1521 1581 1525-1545

N(1650) 1
2
− 1666 1690 1732 1645-1670

N(1675) 5
2
− 1666 1690 1732 1670-1680

N(1700) 3
2
− 1666 1690 1732 1650-1750

N(1710) 1
2

+ 1804 1859 1732 1680-1740

∆(1232) 3
2

+ 1234 1231 1224 1231-1233

∆(1600) 3
2

+ 1710 1854 1581 1550-1700

∆(1620) 1
2
− 1675 1621 1581 1600-1660

∆(1700) 3
2
− 1675 1621 1581 1670-1750

Table 7.1: Comparison of the lowest-lying N and ∆ levels for the URCQM, the OGE

RCQM, and AdS/QCD with experiment [65].



Chapter 8

Conclusion and Outlook

In this thesis we have presented a universal RCQM and we have dealt with a model based

on AdS/QCD. First for the case of the universal RCQM the quark dynamics is based on

confinement and regarding the hyperfine interaction on the exchange of Goldstone bosons.

The latter is motivated by the consequences of spontaneous chiral symmetry breaking of

QCD in the low-energy regime. We have shown two different methods of calculating

spectroscopy in RCQM’s. First in Chapter 3 we showed a differential-equation approach

based on the stochastic variational method (SVM). Then we have presented a modified

Faddeev integral-equation method in Chapter 4.

Armed with these two powerful methods to calculate baryon masses and wave func-

tions we extended the original RCQM based on Goldstone-boson exchange to the univer-

sal RCQM that comprises baryons of all flavor compositions, u, d, s, c, and b. The ex-

tension to heavy-flavor baryons was accomplished with surprisingly good results. Specif-

ically we wanted to produce a framework that could accommodate all known baryons in

a single model. This aim has been achieved while remarkably not expanding the number

of open fit parameters that were needed for the original model in the light and strange

sectors. In the case of baryons containing a single heavy (charm or bottom) quark our

results agree reasonably with experiment. As we move to baryons with a larger number

of heavy quarks the experimental air becomes significantly thinner. The only baryonic

state measured with two heavy quarks is the Ξcc, which has been measured by only one

group more than ten years ago [86]. Since this measurement there has not been any fur-

ther experimental light shed on this issue. For this reason, among others, the Particle

100
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Data Group has listed the particle with a one star rating only [65]. This is the lowest

amount of confidence possible, and in their words states ”evidence of existence of poor”.

This is interesting because most theoretical models, including our own, predict a ground

state mass ≈ 100 MeV higher than the reported measurement. Due to the questionable

nature of this state we have compared our results with data by lattice QCD groups [87]

and from a relativistic constituent-quark model calculated with the Bethe-Salpeter equa-

tion [88]. Amongst theorists we agree well. Moving higher up the spectrum we only have

our theoretical brethren to compare with. We have made comparison with a number of

theoretical results ranging from lattice QCD [87, 92], quark models [89–91], and Dyson-

Schwinger equations [93] to name only a few. Our universal RCQM compares well with

other theoretical predictions. The results of our calculations ranging from the light sector

N all the way up to Ωbbb have been presented in Chapter 5. During this investigation we

have found our model has many unique strengths. Namely, we have comprised all known

baryons ranging from the light sector N all the way up to Ωbbb. Furthermore, all positive

features of the earlier GBE RCQM [18] have been kept, in particular the correct level

orderings of both the N and Λ spectra. In addition we have found that our method allows

the calculation of many excited states that are not currently accessible by many other the-

oretical methods. We hope the large number of predictions helps to illuminate the path

for future studies regarding heavy-baryon spectroscopy.

In addition to spectroscopy we have applied our universal RCQM to studies of the

baryon structures. Specifically, we have investigated electric, magnetic, axial, and gravi-

tational form factors. In the cases of the electromagnetic form factors the calculations of

the universal RCQM agree very will with experiment. The case of the gravitational form

factor is beyond the bounds of current experimental technology. Hence our results can

only be compared to other theoretical models and turn out to be quite reasonable.

Despite what has been achieved so far with the framework of the RCQM, a number of

challenging problems persist. While the baryon spectroscopy now seems to be well under

control, a simultaneous description of all kinds of meson spectra in a unified framework

still remains open. In the baryon sector itself, the investigation of resonances, taking into

account their very nature (contrary to excited bound states as in a confining quark model)

still represents a demanding task. First steps in this direction are under way in our group.
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Beyond the approach to low-energy QCD via RCQM’s in Chapter 6 we have studied

the connection between traditional light-front QCD and the corresponding equations in

AdS space via the method of light-front holography. In such an approach confinement

may be implemented in a number of ways. We have shown calculations in a soft-wall

model that more closely mimics confinement than previously assumed dynamics. Re-

sults for meson and baryon spectroscopy reproduce the well-known Regge behavior. In

addition to spectroscopy a major result has been to show a closed-form solution that com-

prises both space- and time-like form factors via one equation. In the case of the pion

form factor we have shown good agreement with experimental results. In addition we

have made predictions for other types of experiments that hopefully will be made in the

near future at high-energy facilities around the globe. Additionally we have extended our

mesonic form factor calculations to include baryons. We have calculated the electromag-

netic form factors for both the proton and the neutron, again in good qualitative agreement

with experiment.

Looking toward the future along the path of AdS/QCD we aim at applying insights

from the mesonic sector to the study of baryonic processes. One particular example is,

we have started preliminary studies that also concern time-like baryonic form factors.

These allow us to calculate such process as the Q-dependent cross-section for e+e− →

pp̄. Preliminary results are promising. In addition we hope that the small deviations at

low Q2 that arise due to the complex pole structure from the analytic continuation can

give us insights into the famous experimental proton radius puzzle. Additionally another

future project would be to use AdS/QCD to eliminate the factorization scale ambiguity

that currently plagues high-energy experiments. The resolution of both factorization and

renormalization scale ambiguities will be crucial both experimentally and theoretically

as we push forward beyond the standard model. Additionally another future direction of

investigation would be to make the model a full three-quark system, avoiding a quark-

diquark approximation used so far. With regard to spectroscopy we would like to extend

our current AdS/QCD model to heavier baryons. In this context it would certainly be

quite an accomplishment to one day produce the robust spectra exhibited in the universal

RCQM with similar quality.

In conclusion we see that both of these models provide complementary understanding
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of the properties of QCD and represent reasonable tools to study corresponding hadron

processes on the basis of existing phenomeonology. Still many open questions remain

for future researchers to ponder. Even 40 years after its inception QCD remains a very

interesting and elusive topic, in particular in the low-energy non-perturbative regime.



Appendix A

Generators

The GBE RCQM relies heavily on the flavor ”Gell-Mann” matrices. In this Appendix

we show extensive details and consequences due to considerations of the proper group

constructions.

A.1 SU(3)

In SU(N) we have (N2−1) generators, hence in SU(3) we have (32−1) generators. In this

case we have the usual 8 ”Gell-Mann” matrices. These are the 3×3 analogues of the Pauli

matrices. They are Hermitian and traceless. They are normalized so that Tr(λiλ j) = 2δi j

The following three couple the up and down quarks:

λ1 =


0 1 0

1 0 0

0 0 0

 λ2 =


0 −i 0

i 0 0

0 0 0

 λ3 =


1 0 0

0 −1 0

0 0 0

 .
The next ones couple the up and strange quarks:

λ4 =


0 0 1

0 0 0

1 0 0

 λ5 =


0 0 −i

0 0 0

i 0 0

 .
The following ones couple the down and strange quarks:

λ6 =


0 0 0

0 0 1

0 1 0

 λ7 =


0 0 0

0 0 −i

0 i 0

 .
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Finally λ8 mediates the coupling of all three (up, down, and strange) quarks:

λ8 =
1
√

3


1 0 0

0 1 0

0 0 −2

 .

A.2 SU(4)

In SU(4) we have (42 − 1) generators, so we need 16 ”Gell-Mann” matrices. The first 8

are just extensions from the SU(3) case.

Thus, these couple the up and down quarks:

λ1 =



0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0


λ2 =



0 −i 0 0

i 0 0 0

0 0 0 0

0 0 0 0


λ3 =



1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0


.

These couple the up and strange quarks:

λ4 =



0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0


λ5 =



0 0 −i 0

0 0 0 0

i 0 0 0

0 0 0 0


.

These couple the down and strange quarks:

λ6 =



0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0


λ7 =



0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0


.

As before, the λ8 mediates the exchange of up, down, and strange quarks:

λ8 =
1
√

3



1 0 0 0

0 1 0 0

0 0 −2 0

0 0 0 0


.
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In addition, the following ones couple the up and charm quarks:

λ9 =



0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0


λ10 =



0 0 0 −i

0 0 0 0

0 0 0 0

i 0 0 0


.

The next ones couple the down and charm quarks:

λ11 =



0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0


λ12 =



0 0 0 0

0 0 0 −i

0 0 0 0

0 i 0 0


.

The following ones couple the strange and charm quarks:

λ13 =



0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0


λ14 =



0 0 0 0

0 0 0 0

0 0 0 −i

0 0 i 0


.

Finally analogously to λ8, the λ15 mediates mediates the coupling of all up, down,

strange, and charm quarks:

λ15 =
1
√

6



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −3


.

A.3 SU(5)

In SU(5) we have (52 − 1) generators so we need 24 ”Gell-Mann” matrices. Matrices

1 → 8 are extensions of the SU(3) case, while matrices 9 → 15 are extensions of the

SU(4) case.
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Therefore, the following couple the up and down quarks:

λ1 =



0 1 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


λ2 =



0 −i 0 0 0

i 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


λ3 =



1 0 0 0 0

0 −1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


.

These couple the up and strange quarks:

λ4 =



0 0 1 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0


λ5 =



0 0 −i 0 0

0 0 0 0 0

i 0 0 0 0

0 0 0 0 0

0 0 0 0 0


.

These couple the down and strange quarks:

λ6 =



0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0


λ7 =



0 0 0 0 0

0 0 −i 0 0

0 i 0 0 0

0 0 0 0 0

0 0 0 0 0


.

As before λ8 mediates the coupling of up, down, and strange quarks:

λ8 =
1
√

3



1 0 0 0 0

0 1 0 0 0

0 0 −2 0 0

0 0 0 0 0

0 0 0 0 0


As in SU(4), the following couple the up and charm quarks:

λ9 =



0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0


λ10 =



0 0 0 −i 0

0 0 0 0 0

0 0 0 0 0

i 0 0 0 0

0 0 0 0 0


.
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These couple the down and charm quarks:

λ11 =



0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0


λ12 =



0 0 0 0 0

0 0 0 −i 0

0 0 0 0 0

0 i 0 0 0

0 0 0 0 0


.

These couple the strange and charm quarks:

λ13 =



0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 0 0 0


λ14 =



0 0 0 0 0

0 0 0 0 0

0 0 0 −i 0

0 0 i 0 0

0 0 0 0 0


.

The λ15 mediates the exchange of up, down, strange, and charm quarks:

λ15 =
1
√

6



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 −3 0

0 0 0 0 0


.

In addition, we now have the following to couple the up and bottom quarks:

λ16 =



0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0


λ17 =



0 0 0 0 −i

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

i 0 0 0 0


.

These couple the down and bottom quarks:

λ18 =



0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0


λ19 =



0 0 0 0 0

0 0 0 0 −i

0 0 0 0 0

0 0 0 0 0

0 i 0 0 0


.
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These couple the strange and bottom quarks:

λ20 =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 1 0 0


λ21 =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 −i

0 0 0 0 0

0 0 i 0 0


.

These couple the charm and bottom quarks:

λ22 =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 1 0


λ23 =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 −i

0 0 0 i 0


.

Finally, λ24 couples quarks of all flavors u, d, s, c, and b:

λ24 =
1
√

10



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 −4


.

Note on λ0

λ0 comes about as a generator of the U(N) group. Due to this it does not have the same

constraints as the other λmatrices which are generators of the SU(N) group. Most notably,

however it does not have the requirement of being traceless.

det[Û] = eiTr[λ] (A.3.1)

In general λ0 is given in U(N) as

λ0 =

√
2
N

1N×N (A.3.2)

In the case of our model this affects the coefficient of the the η′ interaction. Explicitly in

SU(N) we have a factor of

+
2
N

Vη′ (A.3.3)
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added to our potential to give the singlet representation. In group-theoretical representa-

tion it is the same 1 for all SU(N), namely, 3⊗ 3̄ = 8⊕1, 4⊗ 4̄ = 15⊕1, and 5⊗ 5̄ = 24⊕1.

The larger multiplet in each one of these representations is given by the generators of the

SU(N) group, while the singlet is represented by λ0. For further discussion on this topic

see Ref. [148].

Constructing Generators

Constructing the first N2−2 generators of any SU(N) group should be evident as we must

consider how to each particle can couple to each other. How to build the last matrix where

all are related is not obvious though. For λ8, λ15, and λ24 it is clear that we must have a

diagonal matrix. What is not clear is what is the coefficient of the matrix and the N × Nth

term. We can use this simple formula to calculate this matrix

λN2−1 =

√
2

N2 − N



1 0 0 . . . 0

0 1 0 . . . 0
...

. . .
...

0 . . . 0 −(N − 1)


(A.3.4)

Using this formula makes it easy to calculate the final matrix in any set of generators in

SU(N). We can exemplify using the above formula for the SU(2) case, for which we have

22 − 1 = 3 generators. The first two are as usual:

λ1 =

 0 1

1 0

 , λ2 =

 0 −i

i 0

 .
Then the third gives according to Eq. (A.3.4):

λ3 =

√
2

22 − 2

 1 0

0 −1

 =

 1 0

0 −1


Thus as one would expect the formula in SU(2) gives the Pauli matrices!

Hypercharge

The hypercharge Y for baryons can be calculated using the following simple formula

Y = S + C + B′ + T + B , (A.3.5)
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where S = strangeness, C = charm, B′ = bottomness, T = topness, and B = baryon

number. Another method is by comparing maximum and minimum charge in an isospin

multiplet.

Y = Qmax + Qmin . (A.3.6)

Take as an example is the ∆ resonance multiplet. We have ∆++ → Qmax = 2 and ∆− →

Qmin = −1. So the hypercharge is simply Y = 2 + (−1) = 1. Every particle in an isospin

multiplet has the same hypercharge.



Appendix B

Baryon Flavor Wave Functions

In all of the cases of SU(N) below all have similar symmetries [149]. Explicitly

N ⊗ N ⊗ N = ⊕ ⊕ ⊕ . (B.0.1)

The symmetric and antisymmetric states are self-evident. One always has two

sets of mixed symmetry states. We distinguish them by their behavior under exchange of

particles 1 and 2:

ψMS = 1 2
3

, ψMA = 1 3
2

. (B.0.2)

Here ψMS is symmetric under the exchange of particles 1 and 2 and ψMA is antisymmetric.

Hence they are called mixed-symmetric and mixed-antisymmetric states, respectively. So

it is clear that now for any three-quark flavor wave function we will have sets of totally

symmetric states, totally antisymmetric state, and two mixed-symmetric states.

We will quickly see how to calculate the values of Young tablaux for different config-

urations in SU(N). Always the calculation in terms of a ratio.

Here is how to compute the numerator: You take a diagram and put N down the

diagonal. Every box to the right you add one to N. The first box to the right is N + 1, the

second box is N + 2 and so on. Every box directly below contributes a factor of N − 1.

The general scheme is shown below. Now the numerator is the the product of all terms.

For example, a diagram like

(B.0.3)

112



Appendix B. Baryon Flavor Wave Functions 113

N N + 1

N − 1

N − 1

N

N

N + 1

N + 2

N − 2

N − 3

yields a numerator N(N + 1). A diagram like

(B.0.4)

gives us a numerator N(N + 1)(N − 1).

The next question is, how to calculate the denominator? This can be done by what is

known as the method of hooks [150]. You draw a line entering the right side of a diagram

and then exit out at the bottom. The number of boxes this line passes through goes in the

denominator. You must consider all combinations. We will continue with our previous

examples and calculate the denominator for the diagram in Eq. (B.0.3). We can enter in

once and come out of the bottom giving a factor of one. Then we can go out of the second

box giving us a factor of two. In total our denominator is now 2 × 1 = 2. Thus the total

value for this particular diagram is

=
N(N + 1)

2 · 1
(B.0.5)

Let us also complete the other example given in Eq. (B.0.4). To calculate the denom-

inator by the method of hooks we get 3 × 1 × 1 = 3. The total value for this diagram is

thus

=
N(N + 1)(N − 1)

3
. (B.0.6)
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Using the method outlined above, we can give a general formula for the representa-

tions of a baryons in SU(N):

⊗ ⊗ = ⊕ ⊕ ⊕ (B.0.7)

N ⊗ N ⊗ N =
N(N + 1)(N + 2)

6
⊕

N(N + 1)(N − 1)
3

(B.0.8)

⊕
N(N + 1)(N − 1)

3
⊕

N(N − 1)(N − 2)
6

.

This allows us to very know easily how many representations and exactly how many of

which type (i.e. symmetric, mixed-symmetric, mixed-antisymmetric, antisymmetric) to

expect. There are many good references that can be found regarding Young tableaux. The

preceding discussion closely followed the explanations given in Ref. [150]

Based on Eq. (B.0.8) we know what type and how many states we should have for the

case of SU(3), i.e.

3 ⊗ 3 ⊗ 3 = 10S ⊕ 8MS ⊕ 8MA ⊕ 1A (B.0.9)

∆++∆+∆0
∆−

Ω−

Σ− Σ+Σ0

Ξ− Ξ0

Figure B.1: Pictorial representation of the flavor-symmetric baryon decuplet with S = 3
2
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Baryon Quark Content Wave Function

∆++ uuu uuu

∆+ uud 1
√

3
(uud + udu + duu)

∆0 udd 1
√

3
(udd + dud + ddu)

∆− ddd ddd

Σ+ uus 1
√

3
(uus + usu + suu)

Σ0 uds 1
√

6
(uds + dsu + sud + dus +

usd + sdu)

Σ− dds 1
√

3
(dds + dsd + sdd)

Ξ0 uss 1
√

3
(uss + ssu + usu)

Ξ− dss 1
√

3
(dss + ssu + sus)

Ω sss sss

Table B.1: Decuplet of totally symmetric baryon states in SU(3)F

In SU(4) we get

4 ⊗ 4 ⊗ 4 = 20 ⊕ 20 ⊕ 20 ⊕ 4

Therefore one has 20 symmetric states. Since SU(3) ⊂ SU(4) we require 10 more than

before. In addition one has 20 mixed-symmetric and 20 mixed-antisymmetric hence we

require 12 more for each than in the previous SU(3)F case. Furthermore there are four

antisymmetric states, i.e. 3 more than in SU(3)F . The additional states are listed in Tabs.

B.5, B.6, B.7, and B.8.

In SU(5)F

5 ⊗ 5 ⊗ 5 = 35 ⊕ 40 ⊕ 40 ⊕ 10

Hence one has. Since SU(4) ⊂ SU(5) we include the previous SU(4) multiplet however

we require 15 more states than before. In addition one has 40 mixed-symmetric and 40

mixed-antisymmetric hence we require 20 more for each than in the previous SU(4)F case.

In addition we now have 10 totally antisymmetric states. The additional baryon states to

SU(4)F are listed in Tabs. B.9, B.10, B.11, and B.12.



Appendix B. Baryon Flavor Wave Functions 116

Baryon Quark Content Wave Function

P uud 1
√

6
(uud + udu − 2duu)

N udd − 1
√

6
(dud + ddu − 2udd)

Σ+ uus 1
√

6
(usu + suu − 2uus)

Σ0 sdu 1
√

12
(sdu+ sud+dsu+usd−

2dus − 2uds)

Σ− dds 1
√

6
(dsd + sdd − 2dds)

Λ uds 1
√

4
(dsu − usd + sdu − sud)

Ξ− dss - 1
√

6
(dss + sds − 2ssd)

Ξ0 uss - 1
√

6
(uss + sus − 2ssu)

Table B.2: Octet of mixed-symmetric baryon states in SU(3)F

Baryon Quark Content Wave Function

P uud 1
√

2
(udu − duu)

N udd 1
√

2
(udd − dud)

Σ+ uus 1
√

2
(usu − suu)

Σ0 sdu 1
√

4
(dsu + usd − sud − sdu)

Σ− dds 1
√

2
(dsd − sdd)

Λ uds 1
√

12
(sdu− sud+usd−dsu−

2dus + 2uds)

Ξ− dss 1
√

2
(dss − sds)

Ξ0 uss 1
√

2
(uss − sus)

Table B.3: Octet of mixed-antisymmetric baryon states in SU(3)F

Baryon Quark Content Wave Function

Λ0 uds 1
√

6
(sdu− sud + usd−dsu +

dus − uds)

Table B.4: Singlet of fully antisymmetric baryon state in SU(3)F
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Ξ0Ξ−

Σ−
Σ+

Σ0

n p

Λ

Figure B.2: Pictorial representation of the mixed-symmetric baryon octet with S = 1
2

Ω++
ccc

Ξ+
cc Ξ++

cc

Ω+
cc

Ξ0
c Ξ+

c

Σ0
c

Σ+
c Σ++

c

Ω0
c

Σ0

∆− ∆0
∆+

∆++

Σ+

Σ−

Ξ− Ξ0

Ω−

Figure B.3: Pictorial representation of the completely symmetric baryon flavor states in

SU(4)F
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Baryon Quark Content Wave Function

Σ++
c uuc 1

√
3
(uuc + ucu + cuu)

Σ+
c udc 1

√
6
(udc + dcu + cud + duc +

ucd + cdu)

Σ0
c ddc 1

√
3
(ddc + dcd + cdd)

Ξ+
c usc 1

√
6
(usc + scu + cus + suc +

ucs + csu)

Ξ0
c dsc 1

√
6
(dsc + scd + cds + sdc +

dcs + csd)

Ω0
c ssc 1

√
3
(ssc + scs + css)

Ξ++
cc ccu 1

√
3
(ccu + cuc + ucc)

Ξ+
cc ccd 1

√
3
(ccd + cdc + dcc)

Ω+
cc ccs 1

√
3
(ccs + csc + scc)

Ω++
ccc ccc ccc

Table B.5: The additional totally symmetric baryon states in SU(4)F

Λ Σ0

Σ−

Σ+

Ξ− Ξ0

p
n

Ω0
c

Σ++
c

Σ+
c

Ξ+
c

Σ0
c

Ξ0
c

Ω+
cc

Ξ++
ccΞ+

cc

Λ+
c

Figure B.4: Pictorial representation of the mixed-symmetric baryon flavor states in

SU(4)F
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Baryon Quark Content Wave Function

Σ++
c uuc 1

√
6
(uuc + ucu − 2cuu)

Ξ++
cc ucc − 1

√
6
(cuc + ccu − 2ucc)

Ω+
cc scc − 1

√
6
(csc + ccs − 2scc)

Σ0
c ddc 1

√
6
(dcd + cdd − 2ddc)

Λ+
c cdu 1

√
12

(cdu+cud+dcu+ucd−

2duc − 2udc)

Ξ+
cc dcc − 1

√
6
(dcc − cdc − 2ccd)

Σ+
c udc 1

2 (dcu − ucd + cdu − cud)

Ω0
c ssc 1

√
6
(scs + css − 2ssc)

Ξ+
c csu 1

√
12

(scu + suc + csu + usc−

2cus − 2ucs)

Ξ+
c usc 1

2 (scu − ucs + scu − cus)

Ξ0
c dsc 1

2 (scd − dcs + scd − cds)

Ξ0
c csd 1

√
12

(scd + sdc+csd +dsc−

2cds − 2dcs)

Table B.6: The 12 additional mixed-symmetric baryon states in SU(4)F

Λ+
c

Ξ+
c

Ξ0
c

Λ

Figure B.5: Pictorial representation of the totally antisymmetric baryon states in SU(4)F
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Baryon Quark Content Wave Function

Σ++
c uuc 1

√
2
(ucu − cuu)

Σ0
c ddc 1

√
2
(dcd − cdd)

Ω0
c ssc 1

√
2
(scs − css)

Ξ++
cc ucc 1

√
2
(ucc − cuc)

Ξ+
cc dcc 1

√
2
(dcc − cdc)

Ω+
cc scc 1

√
2
(scc − csc)

Σ+
c udc 1

√
12

(cdu−cud+ucd−dcu−

2duc + 2udc)

Λ+
c cdu 1

2 (dcu − ucd + cdu − cud)

Ξ+
c usc 1

√
12

(csu− cus + ucs− scu−

2suc + 2usc)

Ξ+
c csu 1

2 (scu − ucs + csu − cus)

Ξ0
c dsc 1

√
12

(csd−cds+dcs− scd−

2sdc + 2dsc)

Ξ0
c csd 1

2 (scd − dcs + csd − cds)

Table B.7: The 12 additional mixed-antisymmetric baryon states in SU(4)F

Baryon Quark Content Wave Function

Λ+
c udc 1

√
6
(sdu− sud + usd−dsu +

dus − uds)

Ξ+
c usc 1

√
6
(sdu− sud + usd−dsu +

dus − uds)

Ξ0
c dsc 1

√
6
(sdu− sud + usd−dsu +

dus − uds)

Table B.8: The three additional antisymmetric baryon states in SU(4)F
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Baryon Quark Content Wave Function

Σ+
b uub 1

√
3
(uub + ubu + buu)

Σ0
b udb 1

√
6
(udb+dbu+bud +dub+

ubd + bdu)

Σ−b ddb 1
√

3
(ddb + dbd + bdd)

Ξ0
b usb 1

√
6
(usb + sbu + bus + sub +

ubs + bsu)

Ξ−b dsb 1
√

6
(dsb + sbd + bds + sdb +

dbs + bsd)

Ξ0
cb ucb 1

√
6
(ucb + cbu + buc + cub +

ubc + bcu)

Ξ−cb dcb 1
√

6
(dcb + cbd + bdc + cdb +

dbc + bcd)

Ω−b ssb 1
√

3
(ssb + sbs + bss)

Ω0
cb scb 1

√
6
(scb + cbs + bsc + csb +

sbc + bcs)

Ω+
ccb ccb 1

√
3
(ccb + cbc + bcc)

Ξ0
bb ubb 1

√
3
(ubb + bub + bbu)

Ξ−bb dbb 1
√

3
(dbb + dbd + bbd)

Ω−bb sbb 1
√

3
(sbb + bsb + bbs)

Ω0
cbb cbb 1

√
3
(cbb + bcb + bbc)

Ω−bbb bbb bbb

Table B.9: The 15 additional totally symmetric baryon states in SU(5)F
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Baryon Quark Content Wave Function

Σ+
b uub 1

√
6
(uub + ubu − 2buu)

Σ−b ddb 1
√

6
(ddb + dbd − 2bdd)

Ω−b ssb 1
√

6
(ssb + sbs − 2bss)

Ω+
ccb ccb 1

√
6
(ccb + cbc − 2bcc)

Ξ0
bb ubb - 1

√
6
(bub + bbu − 2ubb)

Ξ−bb dbb - 1
√

6
(bdb + bbd − 2dbb)

Ω−bb sbb - 1
√

6
(bsb + bbs − 2sbb)

Ω0
cbb cbb - 1

√
6
(bcb + bbc − 2cbb)

Σ0
b udb 1

2 (dbu − ubd + bdu − bud)

Ξ+
b usb 1

2 (sbu − ubs + sdu − bus)

Ξ+
cb ucb 1

2 (cbu − ubc + bcu − buc)

Ξ−b dsb 1
2 (dbu − ubd + bdu − bud)

Ξ−cb dcb 1
2 (cbd − dbc + bcd − bdc)

Ω0
cb scb 1

2 (cbs − sbc + bcs − bsc)

Σ0
b bdu 1

√
12

(bdu−bud+dbu+ubd−

2dub − 2udb)

Ξ+
b bsu 1

√
12

(bsu−bus+ sbu+ubs−

2sub − 2usb)

Ξ+
cb bcu 1

√
12

(bcu−buc+cbu+ubc−

2cub − 2ucb)

Ξ−b bsd 1
√

12
(bsd−bds+ sbd+dbs−

2sdb − 2dsb)

Ξ−cb bcd 1
√

12
(bcd−bdc+cbd+dbc−

2cdb − 2dcb)

Ω0
cb bcs 1

√
12

(bcs−bsc + cbs + sbc−

2csb − 2scb)

Table B.10: The 20 additional mixed-symmetric baryon states in SU(5)F
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Baryon Quark Content Wave Function

Σ+
b uub 1

√
2
(ubu − buu)

Σ−b ddb 1
√

2
(dbd − bdd)

Ω−b ssb 1
√

2
(sbs − bss)

Ω+
ccb ccb 1

√
2
(cbc − bcc)

Ξ0
bb ubb 1

√
2
(ubb − bub)

Ξ−bb dbb 1
√

2
(dbb − bdb)

Ω−bb sbb 1
√

2
(sbb − bsb)

Ω0
cbb cbb 1

√
2
(cbb − bcb)

Σ0
b udb 1

√
12

(bdu−bud+ubd−dbu−

2dub + 2udb)

Ξ+
b usb 1

√
12

(bsu−bus+ubs− sbu−

2sub + 2usb)

Ξ+
cb ucb 1

√
12

(bcu−buc+ubc−cbu−

2cub + 2ucb)

Ξ−b dsb 1
√

12
(bsd−bds+dbs− sbd−

2sdb + 2dsb)

Ξ−cb dcb 1
√

12
(bcd−bdc+dbc−cbd−

2cdb + 2dcb)

Ω0
cb scb 1

√
12

(bcs−bsc + sbc− cbs−

2csb + 2scb)

Σ0
b bdu 1

2 (dbu − ubd + bdu − bud)

Ξ+
b bsu 1

2 (sbu − ubs + bsu − bus)

Ξ+
cb bcu 1

2 (dcu − ubc + bcu − buc)

Ξ−b bsd 1
2 (sbd − dbs + bsd − bds)

Ξ−cb bcd 1
2 (cbd − dbc + bcd − bdc)

Ω0
cb bcs 1

2 (cbs − sbc + bcs − bsc)

Table B.11: The 20 additional mixed-antisymmetric baryon states in SU(5)F
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Baryon Quark Content Wave Function

Ξ0
b usb 1

√
6
(sdu− sud + usd−dsu +

dus − uds)

Ξ
′+
cb ucb 1

√
6
(sdu− sud + usd−dsu +

dus − uds)

Ξ
′−
b dsc 1

√
6
(sdu− sud + usd−dsu +

dus − uds)

Ξ−b dsb 1
√

6
(sdu− sud + usd−dsu +

dus − uds)

Ξ
′0
cb dcb 1

√
6
(sdu− sud + usd−dsu +

dus − uds)

Ω0
cb scb 1

√
6
(sdu− sud + usd−dsu +

dus − uds)

Table B.12: The six additional mixed-antisymmetric baryon states in SU(5)F



Appendix C

Jacobi Coordinates

Figure C.1: Jacobi coordinates of three particles for different partitions.

A useful coordinate basis for a three-body system known as the Jacobi coordinates is

shown in Fig. C.1. Each particle is respectively labeled by 1, 2, and 3. We give them each

mass m1, m2, and m3. Naturally we label their position vectors ~r1, ~r2, and ~r3. Now that

we have defined these quantities we can introduce the Jacobi coordinates in configuration

space,

~ξi = ~r j − ~rk , (C.0.1)

~ηi = ~ri −
m j~r j + mk~rk

m j + mk
. (C.0.2)

We have i, j, and k being elements of the set (1,2,3). We also have a restrictive condition

placed on ~ξi that being (i, j, k) must form a cyclic permutation of the triplet (1,2,3). Using

the center-of-mass coordinate system and separating the center-of-mass motion we have

taken our three-body system down to only two Jacobi coordinates, namely (~ξi, ~ηi).
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One can transform the set of Jacobi coordinates (~ξi, ~ηi) of one partition to another

partition (~ξ j, ~η j), namely by

~ξ j = −
m j

m j + mk

~ξi − (−1)ε~ηi , (C.0.3)

~η j = (−1)ε
Mmk

(mi + mk)(m j + mk)
~ξi −

mi

mi + mk
~ηi . (C.0.4)

We denote the sum of the masses as M. ε is even if (i, j, k) is an even permutation of

(1, 2, 3); likewise if (i, j, k) is an odd permutation of (1, 2, 3) ε will also be odd.



Appendix D

Notation

D.1 Relativistic Quantum Mechanics

Lorentz vectors

Contravariant four-vectors of position xµ are written as

xµ = (x0, x1, x2, x3) = (t, x, y, z) = (x0, ~x) . (D.1.1)

In Minkowski space we adpot the metric tensor

gµν =



+1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


. (D.1.2)

It follows that the covariant four-vector xµ is given by

xµ = gµνxν = (x0, x1, x2, x3) = (t,−x,−y,−z) . , (D.1.3)

The scalar product is written as

x · p = xµpµ = x0 p0 + x1 p1 + x2 p2 + x3 p3 = tE − ~x · ~p , (D.1.4)

with four-momentum pµ = (p0, p1, p2, p3) = (E, ~p).
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Dirac matrices

Up to unitary transformations, the 4 × 4 Dirac matrices γµ are defined by the Clifford

algebra

{γµ, γν} = γµγν + γνγµ = 2gµν . (D.1.5)

Here, γ0 is Hermitean and γk anti-Hermitean. Useful combinations are β = γ0 and αk =

γ0γk, as well as

σµν =
i
2

(γµγν − γνγµ) , γ5 = γ5 = iγ0γ1γ2γ3 . (D.1.6)

They can be expressed in terms of the 2 × 2 Pauli matrices

I =

 1 0

0 1

 , σ1 =

 0 1

1 0

 , σ2 =

 0 −i

i 0

 , σ3 =

 1 0

0 −1

 . (D.1.7)

The two most common representations are the Dirac and chiral representation. In the

Dirac representation the γ matrices take the form

γ0 =

 I 0

0−I

 , γk =

 0 σk

−σk 0

 , (D.1.8)

γ5 =

 0 +I

I 0

 , αk =

 0 σk

+σk 0

 , σi j =

 σk 0

0 σk

 . (D.1.9)

In the chiral representation γ0 and γ5 are interchanged:

γ0 =

 0 +I

I 0

 , γk =

 0 σk

−σk 0

 , (D.1.10)

γ5 =

 I 0

0−I

 , αk =

 σk 0

0 −σk

 , σi j =

 σk 0

0 σk

 . (D.1.11)

(i, j, k) = 1, 2, 3 are used cyclically.

Projection operators

Combinations of Dirac matrices like the Hermitean matrices

Λ+ =
1
2

(1 + α3) =
γ0

2
(γ0 + γ3) and Λ− =

1
2

(1 − α3) =
γ0

2
(γ0 − γ3) (D.1.12)
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have projector properties, particularly

Λ+ + Λ− = 1 , Λ+Λ− = 0 , Λ2
+ = Λ+ , Λ2

− = Λ− . (D.1.13)

They are diagonal in the chiral and maximally off-diagonal in the Dirac representation:

(Λ+)chiral =



1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


, (Λ+)Dirac =

1
2



1 0 1 0

0 1 0 −1

1 0 1 0

0 −1 0 1


. (D.1.14)

Dirac spinors

The spinors uα(p, λ) and vα(p, λ) are solutions of the Dirac equation,‡

(/p − m) u(p, λ) = 0 , (/p + m) v(p, λ) = 0 . (D.1.15)

They are orthonormal and complete:

ū(p, λ)u(p, λ′) = −v̄(p, λ′)v(p, λ) = 2m δλλ′ , (D.1.16)∑
λ

u(p, λ)ū(p, λ) = /p + m ,
∑
λ

v(p, λ)v̄(p, λ) = /p − m . (D.1.17)

The Gordon decomposition of the currents is useful:

ū(p, λ)γµu(q, λ′) = v̄(q, λ′)γµv(p, λ) =
1

2m
ū(p, λ)

(
(p + q)µ + iσµν(p − q)ν

)
u(q, λ′) .

(D.1.18)

With λ = ±1, the spin projection is s = λ/2. We have the relations

γµ/aγµ = −2a , (D.1.19)

γµ/a/bγµ = 4ab , (D.1.20)

γµ/a/b/cγµ = /c/b/a . (D.1.21)

Polarization vectors

The two polarization four-vectors εµ(p, λ) are labeled by the spin projections λ = ±1. As

solutions of the free Maxwell equations they are orthonormal and complete:

εµ(p, λ) ε?µ (p, λ′) = −δλλ′ , pµ εµ(p, λ) = 0 . (D.1.22)

‡we use the Feynman slash notation, /p = pµγµ.
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The star (?) refers to complex conjugation. The polarization sum is

dµν(p) =
∑
λ

εµ(p, λ)ε?ν (p, λ) = −gµν +
ηµpν + ηνpµ

pκηκ
, (D.1.23)

with the null vector ηµηµ = 0.

D.2 Light-Cone Coordinates and Notation

In this thesis, when working on the light cone, we use the Brodsky-Lepage convention

[151–154]. In light-cone notation general contravariant four-vectors are written as

xµ = (x+, x−, x1, x2) = (x+, x−, ~x⊥) . (D.2.24)

The time-like and space-like components are defined by

x+ = x0 + x3 , (D.2.25)

x− = x0 − x3 . (D.2.26)

Here, x+ is referred to as the light-cone time and x− is the light-cone position. The metric

tensor is

gµν =



0 1
2 0 0

1
2 0 0 0

0 0 −1 0

0 0 0 −1


and gµν =



0 2 0 0

2 0 0 0

0 0 −1 0

0 0 0 −1


(D.2.27)

leading to

x2 = x+x− − ~x2
⊥ . (D.2.28)

We define the transverse vector components ~x⊥ = (x1, x2). We can also write the product

of two four-vectors as

u · v =
1
2

u+v− +
1
2

u−v+ − ~u⊥ · ~v⊥ (D.2.29)

Via the metric we see the effect of raising and lowering the indices:

x− =
x0 + x3

2
=

x+

2
, (D.2.30)

x+ =
x0 − x3

2
=

x−

2
. (D.2.31)

In addition we note that

∂+ =
1
2
∂− , ∂− =

1
2
∂+ (D.2.32)
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Dirac Matrices

The light-cone Dirac matrices are related to the usual ones via

γ± = γ0 ± γ3 , (D.2.33)

γ+γ+ = γ−γ− = 0 . (D.2.34)

Alternating products are

γ+γ−γ+ = 4γ+ , (D.2.35)

γ−γ+γ− = 4γ− . (D.2.36)

Projection operators are written as

Λ+ =
1
2
γ0γ+ =

1
4
γ−γ+ , Λ− =

1
2
γ0γ− =

1
4
γ+γ− . (D.2.37)

Dirac Spinors

u(p, λ = +1) =
1
√

p+
(p+ + βm + ~α⊥~p⊥)χ(↑) (D.2.38)

u(p, λ = −1) =
1
√

p+
(p+ + βm + ~α⊥~p⊥)χ(↓) (D.2.39)

v(p, λ = +1) =
1
√

p+
(p+ − βm + ~α⊥~p⊥)χ(↓) (D.2.40)

v(p, λ = −1) =
1
√

p+
(p+ − βm + ~α⊥~p⊥)χ(↑) (D.2.41)

where

χ(↑) =
1
√

2



1

0

1

0


, χ(↓) =

1
√

2



0

1

0

−1


(D.2.42)

Polarization Vectors

The null vector is

ηµ = (0, 2, ~0) , (D.2.43)
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The polarization vector takes the from

~ε⊥(λ) =
−1
√

2
(λ~ex + i~ey) , (D.2.44)

where ~ex and ~ex are unit vectors in the px− and px− direction, respectively. When working

in the light-cone gauge ε+(p, λ) = 0, therefore the polarization vector is

εµ(p, λ) =

(
0,

2~ε⊥~p⊥
p+

, ~ε⊥

)
, (D.2.45)

which satisfies pµεµ(p, λ) = 0.
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