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Evaluating the leading hadronic corrections to the muon g-2: a new approach”
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Abstract. A novel approach to determine the leading hadronic corrections to the muon g-2 is proposed. It
consists in a measurement of the effective electromagnetic coupling in the space-like region. This method
may become feasible at flavor factories, resulting in a determination potentially competitive with the dispersive

approach via time-like data.

1 Introduction

The motivation of this work [1] is due to a long-standing
discrepancy between experiment and the Standard Model
(SM) prediction for a,,, the muon anomalous magnetic mo-
ment. For this reason the hadronic corrections have been
kept under close scrutiny [2—6]. The hadronic contribu-
tion represents the largest uncertainty of the SM value
and is comparable with the experimental one. When the
new results from the g-2 experiments at Fermilab and
J-PARC will reach the unprecedented precision of 0.14
parts per million (or better) [7-9], the uncertainty of the
hadronic corrections will become the main limitation of
this formidable test of the SM.

Vacuum Polarization makes ., running assuming a well
defined effective value at any scale. Vacuum polarization
and the effective charge are defined by:
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A« takes contributions from leptonic and hadronic ele-
mentary states among these the non-perturbative Aajqq
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A direct measurement of the running of a,,(s/f) in
space/time-like regions can show the running of a@,,. It
can provide a test of duality far away form resonances and
ita has been done in the past by few experiments at e*e”
colliders by comparing well known QED processes with
some reference ( either data or MonteCarlo one ) normal-
ization:

0(612) 2 Nsignal(qz)

a'(q(z)) Nnorm(Q(z)) .

Niignar can be any QED process as muon pairs production
or others similar ones and N,,,, can be the Bhabha pro-
cess, a pure QED channel as yy pair production as well
as theory, or any other reference process. g represents a
scale chosen as starting point for the running.
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The leading-order hadronic contribution to the muon g-2
is given by the well-known formula [6, 13]
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where Ilp,4(s) is the hadronic part of the photon vacuum
polarization, € > 0,

x2(1 - x)

1
K(s) = j(; dx X2+ (1 = x)(s/m?) 7

is a positive kernel function, and m, is the muon mass.
As the total cross section for hadron production in low-
energy e*e” annihilations is related to the imaginary part
of ITy,q(s) via the optical theorem, the dispersion integral
in eq. (6) is computed integrating experimental time-like
(s > 0) data up to a certain value of s [3, 17, 18]. The high-
energy tail of the integral is calculated using perturbative
QCD [19].
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Alternatively, if we exchange the x and s integrations
in eq. (6) we obtain [20]

1
a =2 | g (x = 1) aalt(0)], ®)
M T Jo

where Myq(f) = Mpaa(#) — Thaa(0) and

xzmﬁ
t(x) = <0 )
x—1

is a space-like squared four-momentum. If we invert
eq.(9),wegetx=(1-p) (t/Zmﬁ), with 8 = (1—4mlzl/t)1/2,
and from eq. (8) we obtain

o @ 0 _ B—1\ dri
a, = ;Iwnhad(t)(,m) B (10)

Equation (10) has been used for lattice QCD calculations
of @ [21]; while the results are not yet competitive with
those obtained with the dispersive approach via time-like
data, their errors are expected to decrease significantly in
the next few years [22].

The effective fine-structure constant at squared mo-
mentum transfer ¢> is defined above and is Aa(g?) =
—Rell(¢?). The purely leptonic part, Aaiep(g?), can be cal-
culated order-by-order in perturbation theory — it is known
up to three loops in QED [23] (and up to four loops in
specific ¢* limits [24]). As ImIl(¢?) = O for negative ¢2,
eq. (8) can be rewritten in the form [25]

1
alo = g dx (1 — x) Aapaalt(x)] . (11
! 7 Jo

Equation (11), involving the hadronic contribution to the
running of the effective fine-structure constant at space-
like momenta, can be further formulated in terms of the
Adler function [26], defined as the logarithmic derivative
of the vacuum polarization, which, in turn, can be calcu-
lated via a dispersion relation with time-like hadroproduc-
tion data and perturbative QCD [25, 27]. We will pro-
ceed differently, proposing to calculate eq. (11) by mea-
surements of the effective electromagnetic coupling in the
space-like region. The hadronic contribution to the run-
ning of @ in the space-like region, Aapaq(%) (see eq. (3)),
can be extracted comparing Bhabha scattering data to
Monte Carlo (MC) predictions. The LO Bhabha cross sec-
tion receives contributions from #- and s-channel photon
exchange amplitudes. At NLO in QED, it is customary
to distinguish corrections with an additional virtual pho-
ton or the emission of a real photon (photonic NLO) from
those originated by the insertion of the vacuum polariza-
tion corrections into the LO photon propagator (VP). let
us consider a few simple points. In fig. 1 (left) we plot
the integrand (1 — x)Aanag[#(x)] of eq. (11) using the out-
put of the routine hadr5n12 [30] (which uses time-like
hadroproduction data and perturbative QCD). The range
x € (0, 1) corresponds to ¢ € (—o0, 0), with x = 0 for £ = 0.
The peak of the integrand occurs at xpeax = 0.914 where
foeak = —0.108 GeV? and Aahaa(fpeax) = 7.86 X 107* (see
fig. 1 (right)). Such relatively low ¢ values can be explored

at ee” colliders with center-of-mass energy +/s around or
below 10 GeV where

2
r=-2a- c0s9)(1 - 4’"‘-’), (12)
2 s

0 is the electron scattering angle and m, is the electron
mass. Depending on s and 6, the integrand of eq. (11)
can be measured in the range x € [Xmin, Xmax], @S shown
in fig. 2 (left). Note that to span low x intervals, larger 6
ranges are needed as the collider energy decreases. In this
respect, /s ~ 3 GeV appears to be very convenient, as an
x interval [0.30, 0.98] can be measured varying 8 between
~ 2° and 28°. It is also worth remarking that data collected
at flavor factories, such as DAONE (Frascati), VEPP-2000
(Novosibirsk), BEPC-II (Beijing), PEP-II (SLAC) and Su-
perKEKB (Tsukuba), and possibly at a future high-energy
e*e” collider, like FCC-ee (TLEP) [31] or ILC [32], can
help to cover different and complementary x regions.

Furthermore, given the smoothness of the integrand,
values outside the measured x interval may be interpolated
with some theoretical input. In particular, the region below
xmin Will provide a relatively small contribution to azLO,
while the region above x,,,x may be obtained by extrapo-
lating the curve from xy,.x to x = 1, where the integrand is
null, or using perturbative QCD.

The analytic dependence of the MC Bhabha predic-
tions on a(f) (and, in turn, on Aay,q(?)) is not trivial, and
a numerical procedure has to be devised to extract it from
the data.This was not the case for example in [14, 15]:
there a(r) was extracted from Bhabha data in the very for-
ward region at LEP, where the 7 channel diagrams are by
far dominant and «(¢) factorizes (see for example [16]).
In formulae, we have to find a function a(r) such that

do

dt
where we explicitly kept apart the dependence on the time-
like VP a(s) because we are only interested in a(f). We
emphasise that, in our analysis, a(s) is an input param-
eter. Being the Bhabha cross section in the forward re-
gion dominated by the t-channel exchange diagrams , we
checked that the present «(s) uncertainty induces in this
region a relative error on the 6 distribution of less than
~ 107* (which is part of the systematic error).

We propose to perform the numerical extraction of
Aary,q(1) from the Bhabha distribution of the t Mandelstam
variable. The idea is to let a(¢) vary in the MC sample
around a reference value and choose, bin by bin in the ¢
distribution, the value that minimizes the difference with
data. The procedure can be sketched as follows:

data i{—j(a(r), a/(s))|MC, a3)

1. choose a reference function returning the value of
Aapaq(?) (and hence a(t)) to be used in the MC sam-
ple, we call it @(?);

2. for each generated event, calculate N MC weights
by rescaling a(f) — a(t) + ﬁ'é(t), where i € [-N, N]
and 6(7) is for example the error induced on a(t) by
the error on Aap,q(f). Being done on an event by
event basis, the full dependence on a(¢) of the MC
differential cross section can be kept;
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Figure 1. Left: The integrand (1 — x)Aapaq[#(x)] X 10° as a function of x and . Right: Aapq[#(x)] x 10*.
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Figure 2. Left: Ranges of x values as a function of the electron scattering angle 6 for three different center-of-mass energies. The
horizontal line corresponds to x = Xpeax = 0.914. Right: Bhabha differential cross section obtained with BabaYaga [28] as a function

of 6 for the same three values of +/s in the angular range 2° < 6 < 90°.

3. for each bin j of the ¢ distribution, compare the ex-
perimental differential cross section with the MC
predictions and choose the i; which minimizes the
difference;

4. a(t)) + 1%6(@-) will be the extracted value of a(t))
from data in the j” bin. Aapag(tj) can then be
obtained through the relation between «(f) and

Aarpag(1).

We finally find, for each bin j of the ¢ distribution,

do do i

el :—Ext+—6t,as’ . (14
g = g @O+ po@sa@) (4
We remark that the algorithm does not assume any simple
dependence of the cross section on a(f), which can in fact
be general, mixing s, ¢ channels and higher order radiative
corrections, relevant (or not) in different + domains.
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In order to test our procedure, we perform a pseudo-
experiment: we generate pseudo-data using the parame-
terization Aaflad(t) of refs. [18, 33] and check if we can
recover it by inserting in the MC the (independent) param-
eterization Aaj! (f) (corresponding to a(r) of eq. 14) of
ref. [30] by means of the method described above. For this
exercise, we use the generator BabaYaga in its most com-
plete setup, generating events at /s = 1.02 GeV, requiring
10° < 8. < 170°, E. > 0.4 GeV and an acollinearity cut
of 15°. We choose 6(¢) to be the error induced on a(?) by
the 1-0 error on Aap,q(f), which is returned by the routine
of ref. [30], we set N = 150, and we produce distributions
with 200 bins. We note that in the present exercise a(s)
and all the radiative corrections both in the pseudo-data
and in the MC samples are exactly the same, because we
are interested in testing the algorithm rather than assessing
the achievable accuracy, at least at this stage.

In fig. 3, Aaj] is the result extracted with our algo-
rithm, corresponding to the minimizing set of i;: the fig-
ure shows that our method is capable of recovering the
underlying function Aap,g(?) inserted into the “data”. As
the difference between Aak’m 4 and Aot is hardly visible
on an absolute scale, in fig. 3 all the functions have been
divided by Aa{é 4 to display better the comparison between
Acj ; and A}

In order to assess the achievable accuracy on Aapaq(?)
with the proposed method, we remark that the LO con-
tribution to the cross section is quadratic in a(f), thus we
have

16—0- = (5_& = 6Aa/had (15)
20 a

Equation (15) relates the absolute error on Aap,q With the
relative error on the Bhabha cross section. Let us stress
here that:

1. From the theoretical point of view, the present ac-
curacy of the MC predictions [29] is at the level
of about 0.05%, which implies that the precision
that our method can, at best, set on Aap,g(f) is
SAap(t) =~ 2 - 107, Any further improvement re-
quires the inclusion of the NNLO QED corrections
into the MC codes ( see Ref. [29] ).

2. Experimentally a measurement of @, from space-
like data competitive with the current time-like eval-
uations would require an O(1%) accuracy. Statisti-
cal considerations show that a 3% fractional accu-
racy on the @ integral can be obtained by sam-

pling the integrand (1 — x)Aanaq[#(x)] in ~ 10 points
around the x peak with a fractional accuracy of 10%.
Given the value of O(1073) for Aap,g at x = Xpeaks
this implies that the cross section must be known
with relative accuracy of ~ 2 x 107, Such a statisti-
cal accuracy, although challenging, can be obtained
at flavor factories, as shown in fig. 2 (right). With an
integrated luminosity of O(1), O(10), O(100) fb~!
at 4/s = 1, 3 and 10 GeV, respectively, the angular
region of interest can be covered with a 0.01% accu-
racy per degree. The experimental systematic error
must match the same level of accuracy.

A source of experimental systematic errors comes
from the machine luminosity, which can be normalized by
calculating a theoretical cross section in principle not de-
pending on Aay,q. We devise two possible options for the
normalization process:

1. To use the e*e~ — yy process, which has no depen-
dence on Aap,g, at least up to NNLO order;

2. To use the Bhabha process at ¢ ~ 107> GeV? (x ~
0.3), where the dependence on Ay, is of O(107%)
and can be safely neglected.

It is worth quoting that a detailed analysis of the system-
atic errors involved in the measurement of the luminosity
has been carried out at LEP by the OPAL collaboration
reaching the final accuracy of O(107%) [15, 34].

3 Conclusions

We presented a novel approach to determine the leading
hadronic correction to the muon g-2 based on measure-
ments of the running of a(¢) in the space-like region from
Bhabha scattering data.

This approach, even if challenging, may become
feasible by using data collected at present flavor factories
as well as those at future high-energy e*e™ colliders.

The proposed determination can become competitive
with the accuracy of the present results obtained with the
dispersive approach via time-like data.

An alternative formula for a/*? in the space-like re-
gion has been studied in detail. It emphasizes low values
of t < 1GeV? which can be explored at low energies
machines.

We have also argued that this requires a measure-
ment of the Bhabha cross section, at relatively small
angles, with an accuracy of the order 107* or better.

Reaching such an accuracy demands a dedicated ex-
perimental and theoretical work for the next few years.
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