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Abstract. A novel approach to determine the leading hadronic corrections to the muon g-2 is proposed. It

consists in a measurement of the effective electromagnetic coupling in the space-like region. This method

may become feasible at flavor factories, resulting in a determination potentially competitive with the dispersive

approach via time-like data.

1 Introduction

The motivation of this work [1] is due to a long-standing

discrepancy between experiment and the Standard Model

(SM) prediction for aμ, the muon anomalous magnetic mo-

ment. For this reason the hadronic corrections have been

kept under close scrutiny [2–6]. The hadronic contribu-

tion represents the largest uncertainty of the SM value

and is comparable with the experimental one. When the

new results from the g-2 experiments at Fermilab and

J-PARC will reach the unprecedented precision of 0.14

parts per million (or better) [7–9], the uncertainty of the

hadronic corrections will become the main limitation of

this formidable test of the SM.

Vacuum Polarization makes αem running assuming a well

defined effective value at any scale. Vacuum polarization

and the effective charge are defined by:

e2 → e2(q2) =
e2

1 + (Π(q2) − Π(0))
(1)

and

α(q2) =
α(0)

1 − Δα Δα = −Re(Π(q2) − Π(0)). (2)

Δα takes contributions from leptonic and hadronic ele-

mentary states among these the non-perturbative Δαhad

Δα = Δαlept + Δαhad + Δαtop (3)

Δα(5)
had(M2

z ) = −α M2
z

3π
Re

∫ ∞

4m2
π

ds
R(s)

s(s − M2
z − iε)

(4)
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A direct measurement of the running of αem(s/t) in

space/time-like regions can show the running of αem. It

can provide a test of duality far away form resonances and

ita has been done in the past by few experiments at e+e−
colliders by comparing well known QED processes with

some reference ( either data or MonteCarlo one ) normal-

ization:

(
α(q2)

α(q2
0
)
)2 � Nsignal(q2)

Nnorm(q2
0
)
. (5)

Nsignal can be any QED process as muon pairs production

or others similar ones and Nnorm can be the Bhabha pro-

cess, a pure QED channel as γγ pair production as well

as theory, or any other reference process. q0 represents a

scale chosen as starting point for the running.

2 aHLO
mu calculation

The leading-order hadronic contribution to the muon g-2
is given by the well-known formula [6, 13]

aHLO

μ =
α

π2

∫ ∞

0

ds
s

K(s) ImΠhad(s + iε), (6)

where Πhad(s) is the hadronic part of the photon vacuum

polarization, ε > 0,

K(s) =

∫ 1

0

dx
x2(1 − x)

x2 + (1 − x)(s/m2
μ)

(7)

is a positive kernel function, and mμ is the muon mass.

As the total cross section for hadron production in low-

energy e+e− annihilations is related to the imaginary part

of Πhad(s) via the optical theorem, the dispersion integral

in eq. (6) is computed integrating experimental time-like

(s > 0) data up to a certain value of s [3, 17, 18]. The high-

energy tail of the integral is calculated using perturbative

QCD [19].
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Alternatively, if we exchange the x and s integrations

in eq. (6) we obtain [20]

aHLO

μ =
α

π

∫ 1

0

dx (x − 1)Πhad[t(x)] , (8)

where Πhad(t) = Πhad(t) − Πhad(0) and

t(x) =
x2m2

μ

x − 1
< 0 (9)

is a space-like squared four-momentum. If we invert

eq. (9), we get x = (1 − β) (t/2m2
μ),with β = (1−4m2

μ/t)
1/2,

and from eq. (8) we obtain

aHLO

μ =
α

π

∫ 0

−∞
Πhad(t)

(
β − 1

β + 1

)2 dt
tβ
. (10)

Equation (10) has been used for lattice QCD calculations

of aHLO

μ [21]; while the results are not yet competitive with

those obtained with the dispersive approach via time-like

data, their errors are expected to decrease significantly in

the next few years [22].

The effective fine-structure constant at squared mo-

mentum transfer q2 is defined above and is Δα(q2) =

−ReΠ(q2). The purely leptonic part, Δαlep(q2), can be cal-

culated order-by-order in perturbation theory – it is known

up to three loops in QED [23] (and up to four loops in

specific q2 limits [24]). As ImΠ(q2) = 0 for negative q2,

eq. (8) can be rewritten in the form [25]

aHLO

μ =
α

π

∫ 1

0

dx (1 − x)Δαhad[t(x)] . (11)

Equation (11), involving the hadronic contribution to the

running of the effective fine-structure constant at space-

like momenta, can be further formulated in terms of the

Adler function [26], defined as the logarithmic derivative

of the vacuum polarization, which, in turn, can be calcu-

lated via a dispersion relation with time-like hadroproduc-

tion data and perturbative QCD [25, 27]. We will pro-

ceed differently, proposing to calculate eq. (11) by mea-

surements of the effective electromagnetic coupling in the

space-like region. The hadronic contribution to the run-

ning of α in the space-like region, Δαhad(t) (see eq. (3)),

can be extracted comparing Bhabha scattering data to

Monte Carlo (MC) predictions. The LO Bhabha cross sec-

tion receives contributions from t- and s-channel photon

exchange amplitudes. At NLO in QED, it is customary

to distinguish corrections with an additional virtual pho-

ton or the emission of a real photon (photonic NLO) from

those originated by the insertion of the vacuum polariza-

tion corrections into the LO photon propagator (VP). let

us consider a few simple points. In fig. 1 (left) we plot

the integrand (1 − x)Δαhad[t(x)] of eq. (11) using the out-

put of the routine hadr5n12 [30] (which uses time-like

hadroproduction data and perturbative QCD). The range

x ∈ (0, 1) corresponds to t ∈ (−∞, 0), with x = 0 for t = 0.

The peak of the integrand occurs at xpeak � 0.914 where

tpeak � −0.108 GeV2 and Δαhad(tpeak) � 7.86 × 10−4 (see

fig. 1 (right)). Such relatively low t values can be explored

at e+e− colliders with center-of-mass energy
√

s around or

below 10 GeV where

t = − s
2

(1 − cosθ)
(
1 − 4m2

e

s

)
, (12)

θ is the electron scattering angle and me is the electron

mass. Depending on s and θ, the integrand of eq. (11)

can be measured in the range x ∈ [xmin, xmax], as shown

in fig. 2 (left). Note that to span low x intervals, larger θ
ranges are needed as the collider energy decreases. In this

respect,
√

s ∼ 3 GeV appears to be very convenient, as an

x interval [0.30, 0.98] can be measured varying θ between

∼ 2◦ and 28◦. It is also worth remarking that data collected

at flavor factories, such as DAΦNE (Frascati), VEPP-2000

(Novosibirsk), BEPC-II (Beijing), PEP-II (SLAC) and Su-

perKEKB (Tsukuba), and possibly at a future high-energy

e+e− collider, like FCC-ee (TLEP) [31] or ILC [32], can

help to cover different and complementary x regions.

Furthermore, given the smoothness of the integrand,

values outside the measured x interval may be interpolated

with some theoretical input. In particular, the region below

xmin will provide a relatively small contribution to aHLO

μ ,

while the region above xmax may be obtained by extrapo-

lating the curve from xmax to x = 1, where the integrand is

null, or using perturbative QCD.

The analytic dependence of the MC Bhabha predic-

tions on α(t) (and, in turn, on Δαhad(t)) is not trivial, and

a numerical procedure has to be devised to extract it from

the data.This was not the case for example in [14, 15]:

there α(t) was extracted from Bhabha data in the very for-

ward region at LEP, where the t channel diagrams are by

far dominant and α(t) factorizes (see for example [16]).

In formulae, we have to find a function α(t) such that

dσ
dt

∣∣∣∣
data
=

dσ
dt

(
α(t), α(s)

)∣∣∣∣
MC
, (13)

where we explicitly kept apart the dependence on the time-

like VP α(s) because we are only interested in α(t). We

emphasise that, in our analysis, α(s) is an input param-

eter. Being the Bhabha cross section in the forward re-

gion dominated by the t-channel exchange diagrams , we

checked that the present α(s) uncertainty induces in this

region a relative error on the θ distribution of less than

∼ 10−4 (which is part of the systematic error).

We propose to perform the numerical extraction of

Δαhad(t) from the Bhabha distribution of the t Mandelstam

variable. The idea is to let α(t) vary in the MC sample

around a reference value and choose, bin by bin in the t
distribution, the value that minimizes the difference with

data. The procedure can be sketched as follows:

1. choose a reference function returning the value of

Δαhad(t) (and hence α(t)) to be used in the MC sam-

ple, we call it ᾱ(t);

2. for each generated event, calculate N MC weights

by rescaling ᾱ(t) → ᾱ(t) + i
N δ(t), where i ∈ [−N,N]

and δ(t) is for example the error induced on ᾱ(t) by

the error on Δαhad(t). Being done on an event by

event basis, the full dependence on α(t) of the MC

differential cross section can be kept;
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Figure 1. Left: The integrand (1 − x)Δαhad[t(x)] × 105 as a function of x and t. Right: Δαhad[t(x)] × 104.
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Figure 2. Left: Ranges of x values as a function of the electron scattering angle θ for three different center-of-mass energies. The

horizontal line corresponds to x = xpeak � 0.914. Right: Bhabha differential cross section obtained with BabaYaga [28] as a function

of θ for the same three values of
√

s in the angular range 2◦ < θ < 90◦.

3. for each bin j of the t distribution, compare the ex-

perimental differential cross section with the MC

predictions and choose the i j which minimizes the

difference;

4. ᾱ(t j) +
i j

N δ(t j) will be the extracted value of α(t j)

from data in the jth bin. Δαhad(t j) can then be

obtained through the relation between α(t) and

Δαhad(t).

We finally find, for each bin j of the t distribution,

dσ
dt

∣∣∣∣
j,data
=

dσ
dt

(
ᾱ(t) +

i j

N
δ(t), α(s)

)∣∣∣∣
j,MC
. (14)

We remark that the algorithm does not assume any simple

dependence of the cross section on α(t), which can in fact

be general, mixing s, t channels and higher order radiative

corrections, relevant (or not) in different t domains.
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In order to test our procedure, we perform a pseudo-

experiment: we generate pseudo-data using the parame-

terization ΔαI
had

(t) of refs. [18, 33] and check if we can

recover it by inserting in the MC the (independent) param-

eterization ΔαII
had

(t) (corresponding to ᾱ(t) of eq. 14) of

ref. [30] by means of the method described above. For this

exercise, we use the generator BabaYaga in its most com-

plete setup, generating events at
√

s = 1.02 GeV, requiring

10◦ < θ± < 170◦, E± > 0.4 GeV and an acollinearity cut

of 15◦. We choose δ(t) to be the error induced on α(t) by

the 1-σ error on Δαhad(t), which is returned by the routine

of ref. [30], we set N = 150, and we produce distributions

with 200 bins. We note that in the present exercise α(s)

and all the radiative corrections both in the pseudo-data

and in the MC samples are exactly the same, because we

are interested in testing the algorithm rather than assessing

the achievable accuracy, at least at this stage.

In fig. 3, Δαextr
had

is the result extracted with our algo-

rithm, corresponding to the minimizing set of i j: the fig-

ure shows that our method is capable of recovering the

underlying function Δαhad(t) inserted into the “data”. As

the difference between ΔαI
had

and Δαextr
had

is hardly visible

on an absolute scale, in fig. 3 all the functions have been

divided by ΔαII
had

to display better the comparison between

ΔαI
had

and Δαextr
had

.

In order to assess the achievable accuracy on Δαhad(t)
with the proposed method, we remark that the LO con-

tribution to the cross section is quadratic in α(t), thus we

have
1

2

δσ

σ
� δα
α

� δΔαhad (15)

Equation (15) relates the absolute error on Δαhad with the

relative error on the Bhabha cross section. Let us stress

here that:

1. From the theoretical point of view, the present ac-

curacy of the MC predictions [29] is at the level

of about 0.05%, which implies that the precision

that our method can, at best, set on Δαhad(t) is

δΔαhad(t) � 2 · 10−4. Any further improvement re-

quires the inclusion of the NNLO QED corrections

into the MC codes ( see Ref. [29] ).

2. Experimentally a measurement of aHLO

μ from space-

like data competitive with the current time-like eval-

uations would require an O(1%) accuracy. Statisti-

cal considerations show that a 3% fractional accu-

racy on the aHLO

μ integral can be obtained by sam-

pling the integrand (1− x)Δαhad[t(x)] in ∼ 10 points

around the x peak with a fractional accuracy of 10%.

Given the value of O(10−3) for Δαhad at x = xpeak,

this implies that the cross section must be known

with relative accuracy of ∼ 2× 10−4. Such a statisti-

cal accuracy, although challenging, can be obtained

at flavor factories, as shown in fig. 2 (right). With an

integrated luminosity of O(1), O(10), O(100) f b−1

at
√

s = 1, 3 and 10 GeV, respectively, the angular

region of interest can be covered with a 0.01% accu-

racy per degree. The experimental systematic error

must match the same level of accuracy.

A source of experimental systematic errors comes

from the machine luminosity, which can be normalized by

calculating a theoretical cross section in principle not de-

pending on Δαhad. We devise two possible options for the

normalization process:

1. To use the e+e− → γγ process, which has no depen-

dence on Δαhad, at least up to NNLO order;

2. To use the Bhabha process at t ∼ 10−3 GeV2 (x ∼
0.3), where the dependence on Δαhad is of O(10−5)

and can be safely neglected.

It is worth quoting that a detailed analysis of the system-

atic errors involved in the measurement of the luminosity

has been carried out at LEP by the OPAL collaboration

reaching the final accuracy of O(10−4) [15, 34].

3 Conclusions

We presented a novel approach to determine the leading

hadronic correction to the muon g-2 based on measure-

ments of the running of α(t) in the space-like region from

Bhabha scattering data.

This approach, even if challenging, may become

feasible by using data collected at present flavor factories

as well as those at future high-energy e+e− colliders.

The proposed determination can become competitive

with the accuracy of the present results obtained with the

dispersive approach via time-like data.

An alternative formula for aHLO
μ in the space-like re-

gion has been studied in detail. It emphasizes low values

of t ≤ 1GeV2 which can be explored at low energies

machines.

We have also argued that this requires a measure-

ment of the Bhabha cross section, at relatively small

angles, with an accuracy of the order 10−4 or better.

Reaching such an accuracy demands a dedicated ex-

perimental and theoretical work for the next few years.
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