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Abstract
Quantum speed limit (QSL), the lower bound of the time for transferring an initial state to a target
one, is of fundamental interest in quantum information processing. Despite that the speed limit of
a unitary evolution could be well analyzed by either the Mandelstam–Tamm or the
Margolus–Levitin bound, there are still many unknowns for the QSL in open systems. A
particularly exciting result is about that the evolution time can be made arbitrarily small without
violating the time-energy uncertainty principle, whenever the dynamics is governed by a
parity-time (PT ) symmetric Hamiltonian. Here we study the QSLs with both PT and anti-PT
Hamiltonians, and pose the QSL as a brachistochrone problem on a non-Hermitian Bloch sphere.
We then use dissipative trapped-ion qubits to construct the Hamiltonians, where the state
evolutions reach the QSL governed by a generalized Margolus-Levitin bound of the non-Hermitian
system. We find that the evolution time monotonously decreases with the increase of the
dissipation strength and exhibits chiral dependence on the Bloch sphere. These results enable a
well-controlled knob for speeding up the state manipulation in open quantum systems, which
could be used for quantum control and simulation with non-unitary dynamics.

1. Introduction

Quantum speed limit (QSL) is a fundamental concept in quantum mechanics, which describes how fast a
system could evolve from an initial state |ψi⟩ to a target state |ψf⟩. The QSL plays an essential role in the fields
of quantum computing [1–3], quantum communication [4], quantum metrology [5, 6], quantum
non-equilibrium thermodynamics [7], and quantum coherent control [8, 9]. In a closed system, the fastest
evolution is bounded by the limit of τ =max(τMT, τML), where the Mandelstam-Tamm bound
τMT = π h̄/2∆E [10–13] and the Margolus–Levitin bound τML = π h̄/2⟨E⟩ [14, 15], relating the maximum
speed of evolution to the energy uncertainty and the mean energy of the system respectively.

Despite the well-established limit for the unitary dynamics, there does not exist a single standard for the
QSL in open systems, due to the complexity of the coupling between the system and the environment. In
recent years, intensive theoretical studies have been devoted to explore how fast an open quantum system can
evolve [16–27]. One of the particular examples is that for a non-Hermitian PT -symmetric system, the state
transfer can speedup and the flipping time will approach to an infinitesimal time scale without violating the
time-energy uncertainty principle [28, 29]. Meanwhile, both PT [30, 31] and anti-PT - symmetric
non-Hermitian Hamiltonian [32, 33] have been experimentally constructed in trapped ions. In this paper,
we report the first experimental study of the QSL in the PT -symmetric system of trapped ions with
controllable state-dependent dissipation coupled to the diagonal terms of the Hamiltonian.
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It is noted that the speedup of the non-Hermitian system has been experimentally explored in the optical
cavity quantum electrodynamics (QED) [34] and the two-qubit nuclear magnetic resonance system [35], but
the speedup mechanism is quite different with that of our experiments. In the former, the speedup is due to
the environment induced coupling to the coherence terms which is the off-diagonal terms of the
Hamiltonian. In the latter, the speedup is the result of the post-selection of the non-Hermitian subspace of
the unitary evolution of the two qubits.

In this work, we first map the non-Hermitian Hamiltonians to a variant Bloch sphere modified by the
CPT theorem [28]. By choosing the evolution along the geodesic lines on the sphere, we demonstrate that
the speed of the state transfer in a single 171Yb+ ion qubit is beyond the QSL of the unitary evolution. The
maximum speed matches the extended ML bound in open system derived from the Bures metric approach. It
is noted that the trapped-ion experiments have already realized the state transfer of picosecond time scale
[36, 37], where the absolute speed is much faster than our results. But those speeds still remain within the
QSL of the unitary dynamics, and the fast evolution is due to the strong coupling strength with the ultrafast
lasers. Instead, our result is obtained with standard microwave pulses, where the QSL under the unitary
dynamics is surpassed due to the non-Hermitian term of the dissipation.

2. Results and discussion

2.1. Construction of thePT Hamiltonian with trapped-ion qubits
In order to experimentally study the speedup evolution enabled by the PT -symmetric quantum theory, we
construct a passive PT -symmetric system with the energy levels of the trapped 171Yb+ ion [31, 33], as
shown in figure 1(a). The ion can be initialized to either |0⟩= |F= 0,mF = 0⟩ or |1⟩= |F= 0,mF = 1⟩ in
2S1/2 electronic ground state. A microwave with the frequency of 12.643GHz is used to couple the two spin
states. A 369.5 nm laser beam with π polarization and adjustable intensity is employed as a dissipation beam
to excite the ion from |1⟩ to |F= 0,mF = 0⟩ in 2P1/2 electronic excited state. The ion will spontaneously
decay to either one of the three ground states (|F= 1,mF = 0,±1⟩) of 2S1/2 with the same probability. This
configuration can be simplified to a two-level open system |0⟩ and |1⟩, with |a⟩= |F= 1,mF ± 1⟩ taken as
the environment. The population of state |1⟩ or |0⟩ is measured by the standard fluorescence counting rate
threshold method. But, in this experiment, the population in |1⟩ cannot be detected directly because the
population of |1⟩ and |a⟩ are simultaneously pumped by the detection beam which contains both σ± and π
polarization. Instead, we first apply an extra Rabi π pulse to exchange the population of |0⟩ and |1⟩, then
detect the total population of |1⟩ and |a⟩ using the detection beam. Since the population in all involving
states remains unity, we could infer the population of |0⟩, which is the initial population of |1⟩ before the
exchange. The experimental setup for non-Hermitian trapped-ion qubits is detailed in appendix A.

The two-level open system can be described by an effective non-Hermitian Hamiltonian (h̄= 1):

Heff = J(|0⟩⟨1|+ |1⟩⟨0|)− 2iγ |1⟩⟨1| , (1)

where J is the coupling rate and γ is the dissipation rate. It can be mapped to the non-Hermitian
PT -symmetric Hamiltonian in equation (1) by adding an identity matrix HPT =Heff + iγIII. HPT describes a
balanced gain and loss two-level system. To calibrate this PT -symmetric system, we measured the eigenvalue
spectrum, quantum fisher information, and phase diagram of the non-unitary dynamics, which are included
in appendix B.

2.2. QSL on the non-Hermitian Bloch sphere
From the geometric point of view, the QSL in a Hermitian system can be obtained using the Fubini-Study
metric method, i.e. the geodesic line in the Hilbert space [38, 39]. In order to extend the geometric
treatment to a non-Hermitian system, we need to build a variant Bloch sphere. We first write down a general
PT -symmetric Hamiltonian with

HPT =

(
iγ JeiϕJ

Je−iϕJ −iγ

)
, (2)

where ϕJ is the phase of the driving field. A linear operator C, which commutes with both the Hamiltonian H
and the operator PT , and C2 = 1, can be defined. Then, a new form of inner product
⟨a|b⟩CPT = (CPT a) · b can be constructed, where the complex conjugate is replaced by the CPT -conjugate
[40–42]. For a certain |ψ⟩, the value of the new inner product can be written as ⟨ψ|ψ⟩CPT = ⟨ψ|PTCT|ψ⟩.

Using the CPT conjugate, the eigenstates |ε±⟩ of HPT in equation (2) become a set of complete
orthogonal basis. We are then motivated to use this basis to construct the new Bloch sphere, which depends
on the operator C with
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Figure 1. The experimental system of a passive non-Hermitian PT -symmetric Hamiltonian. (a) The related energy levels of a
171Yb+ ion . The involved five levels, |F= 0,mF = 0⟩ and |F= 1,mF = 0,±1⟩ in the electronic ground state 2S1/2 and

|F= 0,mF = 0⟩ in the electronic excited state 2P1/2, can be simplified to a three-level non-Hermitian system with

|0⟩= |2S1/2,F= 0,mF = 0⟩, |1⟩= |2S1/2,F= 1,mF = 0⟩ and |a⟩= |2S1/2,F= 1,mF =±1⟩, where the population on |1⟩
dissipates to |a⟩ with a rate of 4γ. (b) The schematic diagram of the experimental setup. The magnetic (B) field, the dissipation
beam and the microwave (MW) are illustrated. (c) The timing sequences in the experiment.

C =
1√

1−
(
γ
J

)2

(
i e−iϕJ γ

J 1
1 −i eiϕJ γ

J

)
. (3)

For ϕJ = 0, this definition of C is reduced to the formula suggested in [41].
Based on equation (3), we establish a mapping between a Hermitian Bloch sphere and a PT -symmetric

non-Hermitian Bloch sphere, which can be described as f : |ψ⟩ → |ψ⟩CPT . The state
|ψ⟩= cos θ2 |0⟩+ eiϕ sin θ2 |1⟩ is well described in a normal Hermitian Bloch sphere with the orthogonal basis
|0⟩ and |1⟩. In CPT -conjugate Hilbert space, using |ε+⟩ and |ε−⟩ as the basis, |ψ⟩CPT can be written as

|ψ⟩CPT = Rcos
Θ

2
|ε+⟩+R sin

Θ

2
eiΦ|ε−⟩, (4)

where R,Θ and Φ are functions of θ, ϕ and ϕJ : R= R(θ,ϕ,ϕJ),Θ=Θ(θ,ϕ,ϕJ),Φ = Φ(θ,ϕ,ϕJ). More
details can be found in appendix C.

By fixing the value of R to
√
⟨1|1⟩CPT , a PT -symmetric non-Hermitian Bloch sphere can be

constructed, where |1⟩CPT evolves under unitary evolution. We note that the PT -symmetric
non-Hermitian Bloch sphere can be regarded as the generalized Hermitian Bloch sphere under the distorted
effect due to the dissipation. This is illustrated in figure 2(a), when γ= 0, the Hamiltonian in equation (2)
becomes Hermitian, and the non-Hermitian Bloch sphere turns into a Hermitian Bloch sphere. It is noted
that a special case of the non-Hermitian Bloch sphere with ϕJ = 0 has been constructed in [17].

As γ gradually increases, due to the effect of C operator, the non-Hermitian Bloch sphere gets more and
more distorted. With the distortion, the geodesic ‘distance’ between |0⟩ and |1⟩ becomes shorter and shorter
with increasing γ/J, as shown in figures 2(b)–(d). As γ/J approaches the unity, i.e. the exceptional point, the
‘distance’ become infinitesimally small.
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Figure 2. The non-Hermitian PT symmetry Bloch sphere mapped from the Hermitian Bloch sphere. The red sphere (blue cube)
represents |1⟩CPT (|0⟩CPT ) mapped from state |1⟩(|0⟩) described in the Hermitian case. We scan θ from 0 to π/2 and ϕ from 0
to 2π, taking 10 100 points on average in the Hermitian Bloch sphere. The values of γ are (a) 0, (b) 0.48J, (c) 0.80J and (d) 0.96J,
respectively. The orange and green curves in (b) represent the trajectories of the evolution from |1⟩ to |0⟩ and from |0⟩ to |1⟩,
respectively.

The distorted sphere also shows chiral dependence of the evolution time on the path. The evolution
makes a longer trip along the geodesic line on the opposite direction as illustrated in figure 2(b). From the
geometrical point of view, the whole period for a round trip from state |1⟩ to |0⟩, and back to |1⟩, should not
be smaller than two fold of the Margolus–Levitin bound in the Hermitian case [43]. This dissipation induced
distortion of the Bloch sphere is in analogy to the distortion of space-time by the gravitation field in
Einstein’s general theory of relativity, which is dubbed as the wormholelike effect in [28].

The QSL of a non-Hermitian system had been investigated by various methods, but still remains an open
question [20, 25, 26, 44]. Here, we give the ML- and MT-type QSL using two different methods for the
PT -symmetric Hamiltonian of equation (2). For the ML bound, [26] provides τML ⩾ h̄

2Eτ
sin2[L(|ψ0⟩, |ψτ ⟩)]

using the Bures metric for a closed system, where Eτ =
1
τ

´ τ
0 ⟨Ht⟩dt is the time-averaged energy and

L(|ψ0⟩, |ψτ ⟩) = arccos |⟨ψ0|ψτ ⟩| defines the geodesic length between the initial state |ψ0⟩ and the final state
|ψτ ⟩ of the quantum system. These formula can be applied to the PT -symmetric Hamiltonian using the
CPT symmetry framework [45]. Following the CPT symmetry defined above, if the system evolves from
the state |1⟩ to the final state |ψτ ⟩= (cos(θτ/2), sin(θτ/2)) = |0⟩, we have

τML =
(π − 2arcsin(γ/J)) h̄

2J
√
1− (γ/J)2

, (5)

with detailed derivation in appendix F. For the MT bound, [25] provides the bound of τMT ⩾ 2
√
2θ2Tr(ρ0

2)

π
√

Tr[(L†
s ρ)2]

,

which is based on relative purity metric. Ls is the time-dependent super operator with Lsρ=
dρ
dt , and ρ0 is

the initial state. For the system evolving from the state |1⟩ to the final state |0⟩, θ = π/2 giving

τMT =
π h̄

2
√
J2 + 2γ2

(6)

also with the derivation in appendix F.

4



New J. Phys. 26 (2024) 013043 P Lu et al

Figure 3. The non-Herimitian state transfer of a trapped-ion qubit. The dependence of the evolution time from (a) |1⟩ to |0⟩, (b)
|0⟩ to |1⟩, and (c)|1⟩ to |ψs⟩ on the γ/J. The coupling strength J≈ 0.16MHz in (a)–(c). The black circles and the error bars are
obtained from the experiment data. The red line in (a), (c) and (b) correspond to the theoretical estimation from equations (5)
and (8), respectively. The dashed blue line in (a) correspond to the theoretical estimation from equation (6), which is not a tight
bound for our case. The inset pictures in (a) and (b) show the theoretical evolution time for the extended range of γ/J ∈ [0,1].
(d) The fidelities of the final states obtained from quantum state tomography for five different γ/J in (c).

2.3. Experimental demonstration of QSL in thePT system
In a trapped-ion qubit, the coupling rate J and the dissipation rate γ can be adjusted by tuning the intensity
of the microwave and the dissipation beam, respectively. Initially, the system is prepared in the |1⟩. After a
certain time τ of the non-unitary evolution, the population in |1⟩ becomes

ρ11 (τ) = e−2γτ

[
cos(χτ)− γ sin(χτ)

χ

]2
, (7)

where χ =
√
J2 − γ2. The equation (7) can be obtained from the effective Hamiltonian of equation (1),

where ρ11(τ) = |⟨1|exp(−iHeffτ)|1⟩|2. In appendix D, a detailed derivation of equation (7) is also given by
the Lindblad master equation. The coupling rate J can be determined from the measurement of Rabi
oscillation. For a fixed J, the dissipation rate γ can be obtained by fitting the population curve according to
equation (7).

We measure τML under the different dissipation intensities γ/J and find excellent agreement with the
theoretical predictions, as shown in figure 3(a). When γ/J= 0, the Hamiltonian reduces to Hermitian, and
τML = τMT = π h̄/2J, corresponding to the Rabi flipping time with a unitary evolution. As the dissipation
strength is increased (0< γ < J), the evolution time becomes smaller and smaller.

As shown in figure 3(a), the experimental data agree well with the ML bound τML (the red solid line). It is
noted that the MT bound τMT (the blue dash line) is higher than the ML bound τML in the regime of
γ/J< 0.7, indicating the MT bound of equation (6) based on the relative purity metric is not a tight bound
for our system. For the larger dissipation γ/J> 0.7 (the inset of figure 3(a)), τMT provides a tighter bound,
but experimental data of the flipping time is lacking due to the degraded signal-to-noise ratio (SNR) resulted
from the large dissipation. For the experimentally accessible region, because τexp = τML, then the ML-type
QSL is successfully reached by our experiments.

We investigate the chiral dependence of the flipping time τ ′
f , where the system evolves along the opposite

direction from |0⟩ to |1⟩. Its flipping time follows
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Figure 4. The non-Hermitian quantum state tomography. The comparison between experimentally and numerically
reconstructed density matrix for (a) γ/J= 0.03, τs = 4.92µs and (b) γ/J= 0.48, τs = 3.90µs, which correspond to the first and
fifth point in figure 3(c). Each density matrix is averaged five times, and in each time every element of the density matrix consists
of ten measurements. The red bars are the experimental results, and the blue bars are the simulation results.

τ ′
f =

π + 2arcsin
(
γ
J

)
2J

√
1−

(
γ
J

)2
, (8)

which gets longer with larger γ/J, as shown in figure 3(b).
We also perform the qubit rotation from the initial state |1⟩ to the normalized superposition state

|ψs⟩= 1√
2
(|1⟩− i|0⟩). By measuring the time-dependent population in |1⟩ and fitting it according to

equation (7), the evolution time τ s is acquired, as shown in figure 3(c). The speedup effect is also observed.
The flipping time τ s becomes smaller and smaller as γ increases.

In order to quantify the coherence of the non-unitary evolution, we have measured the fidelity of the
non-Hermitian state transfer for each operation. This is done by preparing the qubit to |ψexp⟩, where τ s is
precisely set for the applied duration of dissipated laser and microwave. The theoretical |ψth⟩ is solved from
|ψth⟩= e−iHeffτs/h̄|1⟩. Its corresponding density matrix ρexp = |ψexp⟩⟨ψexp| is reconstructed and measured
with the quantum state tomography, whose details is described in appendix E. Then, the fidelity

F= |Tr[ρ̄thρ̄exp]|√
Tr[ρ̄2th]Tr[ρ̄

2
exp]

is obtained [46–48], where ρ̄= ρ(t)
Tr[ρ(t)] . In figure 4, the comparison of the density matrix

between the theory and the experimental results for γ/J= 0.03 (τs = 4.92µs) and γ/J= 0.48 (τs = 3.90µs)
are illustrated, respectively. The measurements agree with the theoretical calculations well.

In figure 3(d), the fidelities for small dissipation strength γ/J< 0.2, are close to the unity. These data
indicate that when the dissipation is small, the non-Hermitian approximation remains valid as discussed in
appendix D. So the dynamics could reserve excellent quantum coherence under the non-Hermitian
Hamiltonian. The non-Hermitian dynamics avoids the decoherence by disregarding the quantum jump
terms, which ensures the coherence regardless of the dissipation. But the significant error arises for the larger
γ/J> 0.2, as shown in figures 3(b) and (c). The increase of the error with the dissipation strength is due to
the fact that the approximation of non-Hermitian Hamiltonian get worse when the dissipation is large, and
we need consider the decoherence induced by the quantum jump term. On the other hand, we use a purely
dissipative system to map the balanced gain-loss one, where the population exponentially decays over time,
as illustrated in figures B2(b) and (c). The fast reduction in population leads to the decrease in the SNR of
the data for the larger dissipation rate. This limitation hinders the high fidelity data when increasing
γ/J> 0.5. The additional technical issues in the experiments include the large fluctuation of the laser beam
intensity and the stray magnetic field. These can be addressed by employing feedback control of the laser
intensity and the dynamical decoupling sequences [49].

2.4. Speedup with the anti-PT Hamiltonian
In order to confirm such non-Hermitian induced speedup is also valid for an anti-PT -symmetric
Hamiltonian, we measure the state evolution from |φ1⟩ to |φ2⟩ using an anti-PT -symmetric Hamiltonian,
as illustrated by the purple geodesic line in figure 5(a). To solve the brachistochrone problem with the
anti-PT -symmetric Hamiltonian, we define a new series of the non-Hermitian operators as A1 = iσ ′

x/2,
A2 = iσ ′

y/2, A3 = iσ ′
z/2, which satisfy the structure of the Lie algebra su(2) = ⟨A1,A2,A3 : [A1,A2] =

A3, [A3,A1] = A2, [A2,A3] = A1⟩, with

σ ′
x = |ε−⟩⟨ε+|+ |ε+⟩⟨ε−|=

(
0 i
−i 0

)
, (9)
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Figure 5. The trajectories on the non-Hermitian Bloch sphere. (a) The green pentagon and magenta triangle represent

|φ1⟩= |0⟩CPT+|1⟩CPT√
2

and |φ2⟩= |0⟩CPT−|1⟩CPT√
2

, respectively. The purple trajectory indicates the evolution from |φ1⟩ to |φ2⟩. The
simulation parameter γ = 0.09MHz, J = 0.19MHz. (b) The fidelities of the state transfer operation along purple trajectory in
(a), the experimental data is obtained from quantum state tomography for five different γ/J. Each density matrix is averaged five
times, and in each time every element of the density matrix consists of ten measurements. The insert picture in (b) is the flipping
time from |φ1⟩ to |φ2⟩ under different γ/J.

σ ′
y = i |ε+⟩⟨ε−| − i |ε−⟩⟨ε+|=

1√
J2 − γ2

(
J −iγ

−iγ −J

)
, (10)

σ ′
z = |ε+⟩⟨ε+| − |ε−⟩⟨ε−|=

1√
J2 − γ2

(
iγ J
J −iγ

)
, (11)

where σ ′
z is a PT -symmetric operator, and σ ′

y is an anti-PT -symmetric operator. The rotation operator U ′

= exp(−in ·σ ′/2) is defined on the non-Hermitian Bloch sphere, where σ ′ = (σ ′
x ,σ

′
y ,σ

′
z ). Note that the

unitary of the rotation is still guaranteed by the CPT conjugate defined with the anti-PT -symmetric
Hamiltonian.

The anti-PT -symmetric Hamiltonian is constructed experimentally by adding extra microwave pulses

using the method shown in our previous work [33]. We measure the transition from |φ1⟩= |0⟩CPT+|1⟩CPT√
2

to

|φ2⟩= |0⟩CPT−|1⟩CPT√
2

. It can be viewed as a rotation around the Y axis on the non-Hermitian Bloch sphere, as

shown in figure 5(a), which is symmetric to the orange geodesic line. The fidelity maintains a high value
when γ/J is less than 0.3 shown in figure 5(b).

3. Conclusions

We have experimentally realized a faster-than-Hermitian state transfer using a trapped-ion qubit with
PT -symmetric and anti-PT -symmetric Hamiltonians. The evolution time gets shorter with the increasing
dissipation strength, which approaches the QSL of the ML bound associated with the non-Hermitian
Hamiltonian. This QSL can be well explained with non-Hermitian Bloch sphere using the Bures angle
metric. Meanwhile, the fidelity of the quantum state evolution remains above 98% when the dissipation
strength is relatively small.

The presented QSL offers a novel perspective for achieving optimal quantum control [45, 50]. We have
constructed the CPT -symmetric Bloch sphere, giving a geometric interpretation for the QSL in the
non-Hermitian quantum systems. Enabled by the rotation operators in the Lie group, the optimal state
preparation and evolution in the presence of the dissipation can be designed. The shortest trajectory along
the geodesic line, i.e. the QSL can always be achieved, by choosing an appropriate set of operators satisfying
the structure of the Lie algebra. Many potential applications can be envisioned, e.g. the extension of the
single-qubit non-Hermitian Bloch sphere to N-qubit case [51], which could facilitate a better understanding
of N-qubit gate operation in open quantum systems.

Furthermore, the QSL under non-Hermitian conditions provides a potential solution for seeking novel
precision measurement approaches. There exists the intrinsic relation between the QSL with the quantum
Fisher information and the quantum Cramér-Rao bound [25, 52], so the precision of measurement is
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directly related to the speed of dynamics. Approaching the QSL could enhance the precision of quantum
measurement in a non-Hermitian system.

In the end, the exploration of the QSL could help to resolve many intriguing questions in open
systems [53], such as whether the speedup of state transfer could also enhance the rate of generating
entanglement, whether the energy cost of the state transfer is minimized by reaching the QSL, etc.
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Appendix A. Experimental setup for non-Hermitian trapped-ion qubits

A single 171Yb+ ion is confined and laser cooled in a linear Paul trap consisting of four gold-plated ceramic
blade electrodes. The schematics of the blade trap are shown in figure 1(b). The radio frequency (RF) signal
and direct current (DC) voltages are applied to two RF electrodes (RF1 and RF2) and two DC electrodes,
respectively. Each DC electrode is divided into five segments so that there are more degrees of freedom to
manipulate the ion. We define the trap axis as x axis, other two axes perpendicular to the trap axis as y and z
axis. The trap has an axial trap frequency of νx = 2π × 0.744MHz and two radial trap frequency of (νy,νz)=
(2π × 1.382MHz, 2π × 1.655 MHz). In the system, a pair of Helmholtz coils create a magnetic field around
6 Gauss along vertical z axis, which not only shifts the degeneracy of the three magnetic levels, but also
prevents the ion from getting pumped into a coherent dark state. The microwave signal for driving the qubit
rotation consists of a 12.611 580GHz signal from standard RF source (Rohde and Schwarz, SMA 100B) and a
31.25MHz signal from an arbitrary waveform generator (AWG, Spectrum Instrumentation). The relative
phase of the microwave is precisely controlled by the input functions and parameters on the AWG. A 1GHz
signal from standard RF source is used as the AWG reference.

For the timing control, the switching of the cooling laser, pumping laser, dissipation beam, and detection
beam are all controlled by switching the acoustic-optic modulators (AOM, Brimose TEM-200-50-369) with
RF switches (Mini-Circuits, ZASWA-2-50DR+), to which TTL (Transistor–Transistor Logic) signals are fed
from ARTIQ (Advanced Real-Time Infrastructure for Quantum physics) device (M-Labs, Sinara Kasli). The
synchronization of the microwave and the dissipation beam is precisely controlled. The intensity of the
dissipation beam can be tuned by adjusting the RF power applied on the AOM.

Appendix B. The properties ofPT -symmetric Hamiltonian

We investigate the PT symmetry breaking transition. In figures B1(a) and (b), the evolution of the
eigenvalues in a passive PT system is shown with γ for a constant J. At γ= 0, the system is a Hermitian
system and has two real eigenvalues. As it increases from 0 to J, the imaginary part of the eigenvalue Im[λ]
appears and decreases linearly with−iγ from 0, while two real parts Re[λ] follow the upper and lower halves
of the circle

√
J2 − γ2 and gradually converge. At γ = J, Re[λ]= 0 and Im[λ]=−γ, this is so-called the

exceptional point (EP). When it further increases, the real part stays 0, whereas the imaginary part separates
into two modes, one is slow decay mode (upper branch) and follows the hyperbolic line according to
−γ+

√
γ2 − J2, while the other is fast decay mode (lower branch) and follows the hyperbolic line according

to−γ−
√
γ2 − J2. The region of 0⩽ γ < J is defined as PT -symmetric phase, whereas the region of γ > J is

defined as PT -broken phase. The overlap between two eigenstates |α⟩ and |β⟩ in both PT -symmetric and
PT -broken region, which satisfies |⟨α|β⟩|=min(γ/J, J/γ), is shown in figure B1(c). Near the EP point, the
two eigenstates of Hamiltonian coalesce into one.
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Figure B1. The real part (a) and the imaginary part (b) of the eigenvalues. In both (a) and (b), the rectangles represent the
experimental data, while the red line represents the theoretical solution. In (b), the imaginary part in the PT -symmetric phase is
negative and decreases with−iγ due to a passive PT -symmetric system. It separates into a slow (upper branch) and a fast(lower
branch) decay mode in the PT -broken phase. (c) The overlap between the two eigenstates |α⟩ and |β⟩ in both PT -symmetric
and PT -broken phases, satisfying |⟨α|β⟩|=min(γ/J, J/γ) (red line). (d) The theoretical quantum Fisher information (QFI) of
damping rate F= 2

J2−γ2 (red line) for J> γ, compared with the experimental measurement (black circles).

In addition, the eigenstates of the non-Hermitian Hamiltonian Heff can be used for measuring γ. The
explicit formula of the quantum Fisher information (QFI) for the two-dimensional density matrices is
written as [54]:

Fγ = Tr(∂γρ)
2
+Tr(ρ∂γρ)

2
/detρ. (B.1)

It can be used to obtain the QFI of damping rate F= 2
J2−γ2 for J> γ, as is shown in figure B1(d). As γ

approaches J, the magnitude of QFI goes to infinity. We show here the location of the EP can be precisely
determined by utilizing this feature of QFI. One can also employ this feature to obtain a very good precision
of damping rate γ [55] by tuning the coupling strength J to EP. It is worth to notice, the enhanced sensitivity
near the EP bears similarities to weak value amplification [56, 57].

Then, we directly measure the density matrix elements of ρ00(t) by performing non-Hermitian evolution,
thus obtaining the population in |0⟩ state. Color maps of the population on |0⟩ versus t for various
dissipation strengths γ are shown in figure B2(a). The evolution dynamics of the population is further
studied by comparing it in PT -symmetric phase (figure B2(b)) with the one in PT -broken phase
(figure B2(c)). In figure B2(b), red squares, blue circles, green diamonds and yellow hexagons correspond to
γ/J= 0.04, 0.07, 0.16 and 0.26, respectively. When γ increases with respect to J, the population shows a
damping oscillation with the damping proportional to the strength of the γ. In figure B2(c), red squares, blue
circles, green diamonds and yellow hexagons correspond to γ/J= 1.06, 1.16, 1.87 and 2.40, respectively. In
PT -broken phase, the population decays in a single exponential form and it decays slower with larger γ/J. It
is also evident, the dynamical behavior changes from damping oscillations to exponential decay with
increasing γ, when the system transits from PT -symmetric phase to PT -broken phase.

Since the passive PT -symmetric system and the PT -symmetric system with balanced gain and loss
share the same topological features, they have one-to-one correspondence according to equation (2) of the
main text. Thus, the investigations of the former system offer the ability to explore the dynamics of the latter
system [58]. Consequently, the dynamical process such as the evolution of the population in the dissipative
PT -symmetric system can be accurately mapped to a balanced gain and loss PT -symmetric system through
the relation ρPT (t) = e2γtρ(t). The mapped population dynamics in the balanced gain and loss
PT -symmetric system are shown in figures B2(d) and (e). In figure B2(c), the evolution of population in |0⟩
state with time for γ/J= 0.1 in dissipative PT -symmetric phase is mapped to a PT -symmetric system with
balanced gain and loss. Similarly, in figure B2(d), the evolution of population in |0⟩ state with time for

9
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Figure B2. (a) Color maps of the population on |0⟩ versus t for various dissipation strengths γ. In our system, the coupling
between |0⟩ and |1⟩ is kept at J= 0.148MHz. The evolution of the population in |0⟩ with time for different γ/J in both
dissipative PT -symmetric phase (b) and PT -broken phase (c), illustrating the evolution dynamics between |0⟩ and |1⟩. In (b),
red squares, blue circles, green diamonds and yellow hexagons correspond to γ/J= 0.04, 0.07, 0.16 and 0.26, respectively. In (c),
red squares, blue circles, green diamonds and yellow hexagons correspond to γ/J= 1.06, 1.16, 1.87 and 2.40, respectively. (d) The
evolution of the population in |0⟩ with time for γ/J= 0.07 in dissipative PT -symmetric phase is mapped to PT -symmetric
system with balanced gain and loss, since both of the systems share the same topological features. (e) The evolution of |0⟩ state
with time for γ/J= 1.87 in passive PT -broken phase is mapped to PT -symmetric system with balanced gain and loss.

γ/J= 1.87 in dissipative PT -broken phase is mapped. It can be clearly seen, the population dynamics in |0⟩
for γ/J= 0.07 retains a Rabi-oscillation-like profile after mapping. However, the population dynamics in |0⟩
for γ/J= 1.87 displays an exponential increase with time.

Appendix C. The mapping ofPT -symmetric non-Hermitian Bloch sphere

For a PT -symmetric Hamiltonian which has specific phase ϕJ in the off-diagonal terms (equation (2)). By
defining α≡ arcsin γJ , the eigenstates of equation (2) become:

|ε+⟩=
√

J

∆E

(
eiϕJeiα/2

e−iα/2

)
, |ε−⟩=

√
J

∆E

(
i eiϕJe−iα/2

−i eiα/2

)
(C.1)

where∆E≡ 2
√
J2 − γ2 is defined as the difference between two eigenvalues. State

|ψ⟩= cos θ2 |0⟩+ eiϕ sin θ2 |1⟩ can be represented with the basis of |ε+⟩ and |ε−⟩:

|ψ⟩=m1

(
θ,ϕ,

γ

J
,ϕJ

)
|ε+⟩+m2

(
θ,ϕ,

γ

J
,ϕJ

)
|ε−⟩ (C.2)

wherem1 andm2 are complex numbers

m1

(
θ,ϕ,

γ

J
,ϕJ

)
=

√
J

∆E

[
e−

iα
2 eiϕ sin(θ/2)+ e

iα
2 e−iϕJ cos(θ/2)

]
,

m2

(
θ,ϕ,

γ

J
,ϕJ

)
=

√
J

∆E

[
i e

iα
2 eiϕ sin(θ/2)− i e−

iα
2 e−iϕJ cos(θ/2)

]
.

(C.3)

Thus, the state can be rewritten as:

|ψ⟩= r1e
iΦ1 |ε+⟩+ r2e

iΦ2 |ε−⟩ (C.4)

10
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where

r1 =

√
1+ sin(θ)cos(α−ϕ −ϕJ)

2cos(α)
,

r2 =

√
1− sin(θ)cos(α+ϕ+ϕJ)

2cos(α)
.

(C.5)

As |ψ⟩ in equation (C.4) is a four parameters vector, by extracting a common phase, |ψ⟩ turns into:

|ψ⟩CPT = Rcos
Θ

2
|ε+⟩+R sin

Θ

2
eiΦ|ε−⟩ (C.6)

where R≡
√
r12 + r22, Φ≡ Φ2 −Φ1 andΘ≡ 2arcsin(

√
1−sin(θ) cos(α+ϕ+ϕJ)

2+2 sin(α) sin(θ) sin(ϕ+ϕJ)
). This helps us deriving the

distribution of the state represented by Bloch sphere in CPT -conjugate inner product space. Moreover, the
evolution operator UHPT = e−iHPT t/h̄ become unitary by setting R=

√
⟨ψ0|ψ0⟩CPT , where |ψ0⟩ is the

initial state. In the main context, R=
√
⟨1|1⟩CPT because the system is initialized to |1⟩. Consequently, a

non-Hermitian Bloch sphere have been constructed.

Appendix D. Lindblad evolution of the five-level system

In the physical process described in the paper, the population of a qubit with |0⟩= |F= 0,mF = 0⟩ and
|1⟩= |F= 1,mF = 0⟩ dissipates via a pumping laser to state |4⟩= |F= 0,mF = 0⟩ in 2P1/2, which then
decays rapidly to the state |1⟩ and |a⟩= |2,3⟩= |F= 1,mF =±1⟩ in 2S1/2 with the decay rate
γ0 = γ1 + γ2 + γ3 (γ1 ≈ γ2 ≈ γ3 = 2π×19.6MHz). Such an evolution of the qubit can be obtained by
numerically solving the master equation of the involved five energy levels: (h̄= 1):

dρ

dt
=−i [HC,ρ] +

∑
k=0,1

(
LkρLk

† − 1

2

{
Lk

†Lk,ρ
})

, (D.1)

where ρ(t)is a 5× 5 density matrix, dρ
dt is the time derivative, HC = Jm|0⟩⟨1|+ Jl|1⟩⟨4|+ h.c represents the

sum of the microwave coupling between |0⟩ and |1⟩ and the laser coupling between |1⟩ and |4⟩ in the rotating
frame. Lk is the Lindblad dissipation operator with L1 =

√
γ1|1⟩⟨4|, L2 =

√
γ2|2⟩⟨4| and L3 =

√
γ3|3⟩⟨4|. The

dagger represents the Hermitian conjugate.
Because the microwave drive and the dissipation laser beam only act on the qubit, the dynamics of |a⟩ is

decoupled from qubit states, therefore we focus on the qubit subspace of the whole system, where the qubit
retains its coherence and its dynamics is governed by an effective PT -symmetric Hamiltonian Heff in an
approximated three-level system model as illustrated in figure 1(a) of the main text. The condition of the
approximation is that the coupling strength between state |1⟩ and |4⟩ is much smaller than the linewidth of
the level |4⟩. The comparison of the evolution of the entire five-level master equation and the evolution of
the effective PT -symmetric Hamiltonian is shown in the figure D1. The qubit evolution in this
approximated three-level system can be described by the following Lindblad master equation (h̄= 1):

dρ

dt
=−i [HC1,ρ] +

(
L1ρL1

† − 1

2

{
L1

†L1,ρ
})

, (D.2)

where ρ(t) is a 3× 3 density matrix, HC1 = J(|1⟩⟨0|+ |0⟩⟨1|) is a coupling Hamiltonian. L1 =
√
4γ |a⟩⟨1| is

the dissipation operator which accounts for the population probability decay from level |1⟩ to |a⟩, where 4γ
is the effective dissipation rate from |1⟩ to |a⟩ with γ = J2l (γ0 − γ1)/γ

2
0 . By omitting the quantum jump term

in equation (D.2), the qubit dynamics is given by the following equations:

dρ

dt
=

(
iJ(ρ01 (t)− ρ10 (t)) i(Jρ00 (t)+ 2iγρ01 (t)− Jρ11 (t))

−2γρ10 (t)− iJ(ρ00 (t)− ρ11 (t)) −iJ(ρ01 (t)− ρ10 (t))− 4γρ11 (t)

)
. (D.3)

When the system was initialized in the |1⟩ state, the population in each qubit state can be obtained by solving
equation (D.3). In addition, when we regroup equation (D.2), we can get the below expression:

dρ

dt
=−i

[(
HC1 −

i

2
L1

†L1

)
ρ− ρ

(
HC1 +

i

2
L1

†L1

)]
+ L1ρL1

† (D.4)
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Figure D1. The comparison of the evolution of the master equation of the entire 5-level and the evolution of the effective
Hamiltonian. The red solid curve and the blue dashed curve represent the numerical solution of the five-level master equation
and the solution of the effective two-level Hamiltonian, respectively. The simulation parameters are Jm = 2π× 26KHz,
Jl = 2π× 189KHz, γ = 2π× 0.4KHz.

When we also discard the quantum jump term L1ρL1
†, we can get the effective non-Hermitian Hamiltonian

Heff =HC1 − i
2L1

†L1. This is the equation (1) in main text. Likewise, the population in state |0⟩ and |1⟩ can
be obtained from the effective Hamiltonian Heff, where

ρ00 (τ) = |⟨0|exp(−iHeffτ) |1⟩|2 =
e−2γtJ2 sin(χ t)2

χ 2

ρ11 (τ) = |⟨1|exp(−iHeffτ) |1⟩|2 = e−2γt

[
cos(χ t)− γ sin(χ t)

χ

]2
,

(D.5)

where χ =
√
J2 − γ2. Experimentally, the population on state |0⟩ (|1⟩) was fit to the exponentially decaying

sine function in equation (D.5) to determine the decay rate and the Rabi oscillation frequency.

Appendix E. Non-Hermitian quantum state tomography

The 2× 2 density matrix ρ̂ can always be represented by:

ρ̂=
1

2

∑3
i=0Siσ̂i (E.1)

where the σ̂i matrices are σ̂0 =

(
1 0
0 1

)
, σ̂1 =

(
0 1
1 0

)
, σ̂2 =

(
0 −i
i 0

)
, σ̂3 =

(
1 0
0 −1

)
, and the Si values

are given by Si = Tr{σ̂i ρ̂}. Physically, each of these parameters directly corresponds to the outcome of a
specific pair of projective measurements:

S0 = P|0⟩ + P|1⟩

S1 = P 1√
2
(|0⟩+|1⟩) − P 1√

2
(|0⟩−|1⟩)

S2 = P 1√
2
(|0⟩+i|1⟩) − P 1√

2
(|0⟩−i|1⟩)

S3 = P|0⟩ − P|1⟩

(E.2)

where P|ψ ⟩ is the probability to measure the state |ψ ⟩. We need to measure the population of these six basis
vectors in the experiment because the sum of P|0⟩ and P|1⟩ is not the unity under non-Hermitian evolution.
The experimental procedures to obtain the density matrix are listed below.

(1) For measuring the population of P|0⟩, we first prepare the system in the initial state |1⟩. After time t of
non-unitary evolution, we detect the state |0⟩. (2) For measuring the population of P|1⟩ , we first prepare the
system in the initial state |1⟩. After time t of non-unitary evolution, we add an appropriate π flip to exchange
the population of the state |0⟩ and |1⟩ of the hyperfine manifold. Finally, we detect the total population of
state |1⟩ and |a⟩, and the initial population of state |1⟩ can be inferred from the unity population of all states.
(3) For measuring the population of P 1√

2
(|0⟩+i|1⟩), we first prepare the system in the initial state |1⟩. After time

t of non-unitary evolution, we add an appropriate π/2 flip. Finally, we detect the state |0⟩ to get P 1√
2
(|0⟩+i|1⟩) .

(4) For measuring the population of P 1√
2
(|0⟩−i|1⟩), we first prepare the system in the initial state |1⟩. After time

t of non-unitary evolution, we add an appropriate π/2 flip. Finally, we detect the state |0⟩ to get P 1√
2
(|0⟩−i|1⟩) .

(5) For measuring the population of P 1√
2
(|0⟩−|1⟩), we first prepare the system in the initial state |1⟩. After time

t of non-unitary evolution, we add an appropriate π/2 flip. Finally, we detect the state |0⟩ to get P 1√
2
(|0⟩−|1⟩) .
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(6) For measuring the population of P 1√
2
(|0⟩+|1⟩), we first prepare the system in the initial state |1⟩. After time

t of non-unitary evolution, we add an appropriate π/2 flip. Finally, we detect the state|0⟩ to get P 1√
2
(|0⟩+|1⟩).

Appendix F. The derivation of bothML andMT-type QSL

TheML bound based on the method using Bures metric. For a driven closed system, the ML bound is
written as τML ⩾ h̄

2Eτ
sin2[L(ρ0,ρτ )] [26], where Eτ = 1

τ

´ τ
0 ⟨Ht⟩dt is the time-averaged energy , and

L(ρ0,ρτ ) = arccos
√
⟨ψ0|ρτ |ψ0⟩ (L(|ψ0⟩, |ψτ ⟩) = arccos |⟨ψ0|ψτ ⟩|) defining the geodesic length between the

initial state and the final state of the quantum system. Considering the state evolution represented by the

time-dependent θt , the average energy Eτ can be rewritten as Eτ =
1

θτ−θ0

´ θτ−θ0
0 ⟨Hθt⟩dθt, where

⟨Hθt⟩= (|Tr{Hρtρ0}|+ |Tr{ρtHρ0}|)/2 (F.1)

H=

(
0 E+
E+ 0

)
. (F.2)

In our system, given the initial state |ψ0⟩(θ0,ϕ0) and the final state |ψτ ⟩(θτ ,ϕτ ), |ϕτ −ϕ0|= 0 if we define

appropriate coordinate and |⟨ψ0|ψτ ⟩|= cos( |θτ−θ0|2 ). In this work, we start from the state |1⟩ to the final
state |ψτ ⟩(cos(θτ/2), sin(θτ/2)). The time-averaged energy Eτ =

1
θτ−θ0

´ θτ−θ0
0 E+ cos(θt/2) sin(θt/2)dθt,

where E+ =
√
J2 − γ2 is the energy gap. Considering boundary condition that E0 = 0, we can get the ML

bound under driven dynamics τML =
h̄(θτ−θ0)

2E+
. In the Hilbert space of non-Hermitian dynamics, the

ML-type QSL from |1⟩ to |0⟩ can be expressed as

τML =
(π − 2arcsin(γ/J)) h̄

2J
√
1− (γ/J)2

, (F.3)

where θτ − θ0 equals π − 2arcsin(γ/J), which describes the angle between |1⟩ and |0⟩ in non-Hermitian
Hilbert space. Noting that this angle is smaller than π as the two states lose orthogonality, as shown in
figure 2 of the main text. It is also noted that, according to [45], for this specific PT -symmetric
Hamiltonian, the Bures angle method will make the MT type bound coincident with the ML bound.
The evolution time by solving quantum brachistochrone problem . The evolution operator of effective

PT -symmetric non-Hermitian Hamiltonian can be written as

U= e−iHefft =

 e−tγ
(
cos [tχ ] + γ sin[tχ ]

χ

)
− ie−tγ J sin[tχ]

χ

− ie−tγ J sin[tχ]
χ e−tγ

(
cos [tχ ]− γ sin[tχ]

χ

)  , (F.4)

where χ =
√
J2 − γ2.

To solve this problem, one can choose the basis so that the initial and final states are given by: |ψ i⟩=(
0
1

)
,
∣∣ψ f

〉
=

(
a
b

)
. Here, the system is initialized in the |1⟩ state. The relation

∣∣ψ f

〉
= e−iHefft |ψ i⟩

(h̄= 1) takes the form(
a
b

)
=

e−tγ

cos
[
arcsin

[
γ
J

]]
 −i sin

[
t
√
J2 − γ2

](
cos

[
t
√
J2 − γ2 + arcsin

[
γ
J

]])  . (F.5)

If b= 0, the evolution time from |1⟩ to |0⟩ can be deduced

t=
π − 2arcsin

[
γ
J

]
2J

√
1−

(
γ
J

)2
(F.6)

which is exactly the same as τML.
TheMT bound based on the method of relative purity metric. The relative purity [25] between the

initial state ρ0 and the final state ρt is defined as f(t) = Tr(ρ0ρt)/Tr(ρ20). The maximum instantaneous
evolution rate of the system satisfies

νQSL = |df(t)/dt|⩽

√
Tr

[(
L†
s ρ0

)2
]

Tr [ρ20]
, (F.7)
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where Ls is the time-dependent super operator. Let f(t) = cosθ(θ ∈ [0,π/2]) and consider f(t)⩽
´ t
0 νQSLdt

′,

then we can obtain τMT ⩾ 4θ2Tr(ρ0
2)

π2
√

Tr[(L†
s ρ)2]

.

When the initial and final states are orthogonal pure states, the expression τMT is given by τMT =
h̄√
2∆E

(θ = π/2). However, we can find that this expression must multiply by a factor π/
√
2 to return to the closed

system MT type boundary τMT =
π h̄
2∆E . Similarly, in open systems under non-Hermitian Hamiltonian

Heff =

(
iγ J
J iγ

)
=

(
0 J
J 0

)
− i

(
γ 0
0 γ

)
=H− iΓ, (F.8)

where H and Γ are both Hermitian operators, so that Lsρ=−i[H,ρ]/h̄−{Γ,ρ}/h̄. Finally, the MT bound
can be obtained by multiply a factor π/

√
2 to the Mandelstam–Tamm relation

τMT ⩾
π√
2

4θ2Tr
(
ρ20
)

π2

√
Tr

[(
L†
s ρ
)2
]

=
4θ2Tr

(
ρ20
)
h̄

π

√
2Tr

(
− [H,ρ]2 −{Γ,ρ}2 − 2i [H,Γ]ρ2

)
=

4θ2h̄

2π
√
∆H2 +(⟨Γ2⟩+ ⟨Γ⟩2)− i⟨[H,Γ]⟩

=
π h̄

2
√
J2 + 2γ2

,

(F.9)

where θ = π/2. This is then used as a MT type QSL for open quantum systems and compared with our
experimental data.
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