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Abstract

Abstract

This thesis investigates how tensor networks can inform our design of
algorithms for near-term quantum devices. We primarily work in the
paradigm of variational quantum algorithms where tensor networks
can be used as a variational model ansatz tuned to the underlying
problem’s entanglement structure. This allows for the efficient use of
resources, a problem of particular importance for today’s small-scale
noisy quantum computers. In particular, this thesis focuses on studying
quantum tensor networks for quantum simulation and machine learn-
ing. We develop algorithms designed to simulate large quantum sys-
tems in the thermodynamic limit, implementing tools from classical ten-
sor network literature which allow us to represent these infinite states
using finite circuits. In doing so, we design an algorithm to study the
groundstate properties of the transverse field Ising model through the
quantum critical point. We also design and implement a time evolution
algorithm that utilises this infinite tensor network ansatz. The design
of the algorithm allows for portability between various architectures,
a feature we demonstrate by testing the algorithm on both Google’s
superconducting and Quantinuum’s trapped-ion architectures. Collab-
orative benchmarking in this way provides data that can be used to
investigate impacts of device specific characteristics such as device
error or shot budgets on the performance of the algorithm. In addition,
the testing highlighted specific areas of improvements for current gen-
eration device which provides vital information for hardware teams on
directions towards quantum advantage. Tensor network ansatzes also
provide a model family of interest for quantum machine learning. We
utilise the close correspondence between classical and quantum ten-
sor networks to demonstrate a heuristic technique to mitigate barren
plateaus, a problem of significant importance for any quantum machine
learning model. Subsequently, we propose a native tensor network al-
gorithm to find supervised learning models. In summary, this thesis
leverages the utility of the rich literature developed in classical tensor
networks to design near-term quantum algorithms in a range of fields.
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Impact Statement

Impact Statement

Current generation quantum computers are small and noisy, which lim-
its their usefulness in applications such as quantum simulation and
machine learning. We develop techniques which leverage classical
tensor network ideas to develop quantum algorithms tailored to near-
term devices. Our focus is on solving quantum simulation problems,
including ground state optimisation and time evolving a translationally
invariant tensor network ansatz. Additionally, we utilise this tensor net-
work approach to address quantum machine learning problems, in-
cluding initialising quantum models and devising novel techniques for
generating classifiers.

Within academia, the impact of this work is a better understanding
of the connection between tensor networks and quantum circuits, po-
tentially as an avenue to achieve quantum utility. We have undertaken
experiments using state-of-the-art quantum devices owned by Google
and Quantinuum to showcase and benchmark their quality. In doing
so we provide end user insight into the utility of their devices for ques-
tions of interest in condensed matter physics, with methods that can
be directly compared to classical techniques. Ultimately, the goal of
this line of research is to develop protocols for using quantum comput-
ers to address vital challenges such as materials discovery. The work
included in this thesis, though removed from this goal, aims to provide
some preliminary insights into studying large quantum systems on a
quantum device.
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1. Introduction

Chapter 1
Introduction

Computing technology is a central tool for our ability to understand the
physical world. It allows us to make predictions about systems at scale
with incredible accuracy. This predictive capability and understanding
is the driver behind many modern technological advancements. Our
progress is built not just upon the development of novel algorithms, but
also on the design and manufacture of better chips. Modern comput-
ers use binary logic gates and bits to perform computation. We have
steadily reduced the size of these components and improved their pro-
cessing capabilities to produce orders of magnitude improvements in
their processing capabilities since their original implementation. How-
ever, in the case of simulating the physical world, the game is still
rigged against us.

Fundamentally, nature does not compute using bits. Our current
best model for the physical world, particularly when it comes to simu-
lating matter, comes from quantum mechanics. For systems of modest
size, brute force computation requires resources beyond the capabil-
ities of even our largest supercomputers. In fact, simulating quantum
systems directly is a fundamental limitation of modern computers, in
general requiring resources which scale exponentially in the system
size. To circumvent this issue we consider shifting our paradigm of
computing. By taking inspiration from nature, perhaps we can build a
new kind of computer.

A quantum computer is a computer whose fundamental unit of in-
formation is a quantum system, often referred to as a qubit. Its oper-
ation is modelled under the laws of quantum mechanics. This is not
just a replacement for classical computing, this is a different model of
computation altogether. In a quantum computer, the majority of the
information is stored in the correlations between parts of the quantum
system, quantified as the system’s entanglement. Classical comput-
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1. Introduction

ers struggle to simulate systems with significant entanglement as the
classical description of systems with significant entanglement is pro-
hibitively large, thus limiting its ability to simulate interesting quantum
matter. However, quantum computers have the potential to utilise the
laws of quantum mechanics to generate large amounts of entangle-
ment, thereby providing a route to solve problems that may require
entanglement such as simulating quantum matter. This is not just a
theoretical proposition; our ability to control quantum systems has de-
veloped to the degree that we can build small-scale, noisy quantum
computers.

Building a quantum computer is hard. To maintain entanglement,
particles the size of individual atoms have to be completely isolated
from their surroundings. Miniscule temperature fluctuations and less
than perfect isolation of these qubits can result in the loss of any use-
able information through decoherence. However, we also have to be
able to control the particles, breaking this isolation briefly to apply the
quantum gates necessary for us to perform the computation. These
fundamentally contradictory requirements mean that building a quan-
tum computer is a seemingly impossible task. However, in recent
years, we have been able to do just that. There are currently many
platforms that have 10s-100s of noisy qubits. The question now is,
can we do anything useful with these devices? Quantum computing
technology has promised many novel theoretical feats, from simulating
materials to breaking cryptographic protocols. The race is now on to
fulfil some of these promises.
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1.1. Outline of the thesis 1. Introduction

1.1 Outline of the thesis

This thesis proposes approaches to simulating condensed matter sys-
tems using near-term quantum devices. The size and performance
of these devices require efficient use of resources. To do so, we use
insights from a branch of classical computational methods known as
tensor networks to design these quantum algorithms. We demonstrate
that these insights are not just applicable in the context of quantum
simulation, but also for the purposes of quantum machine learning.

» Chapter 1 introduces the background necessary for the remain-
der of the thesis. In particular, we focus on the basics of quantum
computation and tensor networks.

The remainder of this thesis is divided into two parts. The first
part discusses utilising quantum circuits representing tensor networks,
which we refer to as quantum tensor networks, for quantum simulation.

» Chapter 2 presents quantum tensor networks as a variational
ansatz for groundstate optimisation in the thermodynamic limit.

» Chapter 3 utilises the previous quantum tensor network ansatz
to perform time evolution. We test this algorithm on a quantum
device by attempting to reproduce the dynamical quantum phase
transition of the transverse field Ising model.

» Chapter 4 develops on the previous chapter by proposing a novel
classical and quantum time evolution algorithm that preserves
local information during the evolution.

The second part of this thesis applies insights from tensor networks
to problems in quantum machine learning.

» Chapter 5 considers the problem of initialising a quantum ma-
chine learning model appropriately to avoid common pitfalls in
training these models.

» Chapter 6 proposes an algorithm for deterministically generating
a tensor network classifier and further refining it.
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1.2. Quantum computation 1. Introduction

1.2 Quantum computation

1.2.1 Introduction to quantum computing

Computing, in its broadest form, involves designing and implementing
physical devices that process information; it is the bedrock of devel-
oping technologies. Modern computers used in practice today, which
we call classical computers, utilise macroscopic properties of materi-
als to implement binary logic gates on vast scales. This computational
model has had great success, including aiding in our understanding
of quantum physics. However, the modern processor and binary logic
gates are not the only computers available to us. Since the 1980s, it
has been proposed that quantum systems could form a fundamental
unit of computation, with a model of computation utilising the laws of
quantum mechanics.

This field, called quantum computation or quantum information, has
been subsequently studied in great theoretical detail. Initial results in-
cluded the development of universal quantum computation [1, 2] show-
ing that this model of computation could produce a universal computer.
A primary focus of quantum computing from its inception was the de-
sire to simulate quantum systems directly. Classically, this problem is
challenging as the resources required to simulate quantum systems
naively scale exponentially with system size. As quantum computers
rely on quantum mechanics to process information, they are proposed
as offering a way to simulate large quantum systems directly. In addi-
tion, it is proposed that quantum computers may have much broader
impacts, with a zoo of algorithms proposed in many fields, including
machine learning, optimisation and cryptography [3]. A full review of
quantum computing is beyond the scope of this thesis, but in the follow-
ing section, | will introduce the fundamental building blocks necessary
for the remainder of this thesis.

Fundamentals of quantum computing

Though several models of quantum computation exist, we focus on
the digital quantum circuit model with qubits. The basic building blocks
of this paradigm are qubits, quantum gates, and measurements. This
model also includes a diagrammatic language, which we outline in par-
allel in the discussion below. From a mathematical perspective, a qubit
is a 2-dimensional complex vector (a, b) where the elements of the vec-
tor have a norm of 1 i.e. |a|?*+|b|*= 1. In the Dirac bra-ket notation, they
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1.2. Quantum computation 1. Introduction

are often represented as acting on the |0) and |1) basis states. There-
fore, a general qubit can be written as |¢)) = « |0) + b|1). As multiple
qubits are combined, the tensor outer product is taken to represent the
system’s overall state. This means that the space required to represent
an arbitrary state of n qubits scales as 2". The qubits are normally ini-
tialised to the |0) state in digital quantum computers. A set of n = 3
qubits initialised as such are represented as

0) ———
0)%* = |0) ——— . (1.2.1)
10)

As quantum computers obey the laws of quantum mechanics, uni-
tary operations represent general processes which manipulates infor-
mation on a quantum computer. A unitary U acting on n qubits can
be represented by a complex matrix of size 2" x 2" and satisfies the
property UUT = UTU = I. Depending on the particular universal gate
set of a quantum device, the native gates available to a user of a quan-
tum computer vary. Generally gates are represented diagrammatically
as rectangles with annotation. There are many common gates which
come up throughout this thesis. Firstly, the Pauli rotation matrices,
which are exponentiations of the Pauli matrices X, Y and Z, are given
by

R.(0) = e /2 = R, , (1.2.2)

where x € {X,Y, Z} and ¢ is a rotation angle. A Hadmard gate is also
a single qubit gate given by

1 (1 1
H:ﬂ(l _1): H . (1.2.3)

Finally, common 2-qubit gates are the controlled operation gates. This
is where the action on the second (target) qubit is only applied if the
first (control) qubit is in the state |1). A controlled operation which
applies an arbitrary single-qubit unitary U is represented by

CU = | . (1.2.4)

U

A common example of this type of operation is the C NOT gate, which
flips the state of the target qubit if the control qubit is |1). The CNOT
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1.2. Quantum computation 1. Introduction

is often represented as

CNOT = - . (1.2.5)

o o o =
o O = O
_ o O O
o = O O

Once a quantum computer has processed the information, it has to
be extracted. The process of extraction is done using quantum mea-
surements. In general, all measurements in this thesis are projective
measurements. Projective measurements measure a qubit in the basis
of a Hermitian operator. In most instances, this will be specified by the
computational basis of the quantum device. A projective measurement
is represented diagrammatically as

meas = | KA. (1.2.6)

Not all the qubits used in the computation will be measured in some
instances. In these cases, the computation can be represented in the
density matrix formalism, with a partial trace being applied over the
qubits that have not been measured.

Many algorithms have been derived to solve various tasks using
this digital quantum circuit formalism. However, implementing these
algorithms is not simply a theoretical question. Quantum computing,
in practice, relies on the careful control of quantum systems and their
interactions. The current iteration of devices has imperfect control,
resulting in large amounts of noise. The following section introduces
these types of devices, which form the focus of this thesis.

1.2.2 Near-term quantum computing

Generally, quantum algorithms with theoretical guarantees of solving
problems beyond the scope of current classical computers require fault-
tolerant quantum computers. Full fault-tolerant quantum computing re-
quires overcoming noise when performing fine control over quantum
systems. Doing so not only requires refining experimental processes,
due to the sensitivity of qubits to their environment and the likelihood
of decoherence [4] it is likely that processing quantum information in
a fault-tolerant manner involves the use of quantum error correction
protocols; where a number of physical qubits are used redundantly to
produce a logical qubit [5]. However, quantum error correction at scale
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1.2. Quantum computation 1. Introduction

is beyond the capabilities of current-generation quantum devices. This
is partly because a single error-corrected logical qubit requires many
physical qubits. Scaling qubit numbers whilst maintaining or improving
qubit quality is exceptionally challenging. In recent years, there have
been proof of concept experiments for several error-corrected qubits
on various platforms. However, scaling this technology up is a non-
trivial problem [6].

In the meantime, the utility of existing quantum devices is an open
research question. Across various architectures and research groups,
there are currently many quantum devices that contain of order 10 —
10® physical qubits. Examples include IBM’s superconducting archi-
tecture with 127 physical qubits [7], Quantinuum’s trapped-ion archi-
tecture with 56 physical qubits [8] and QuEra’s neutral atom architec-
ture with 280 physical qubits [9, 10]. The term often used to refer to
these devices are noisy intermediate-scale quantum (NISQ) devices
[11]. As we are working with physical qubits on these devices, the
noise and behaviour of these qubits vary significantly depending on
the platform. Designing noisy intermediate-scale quantum (NISQ) al-
gorithms requires careful consideration of this noise and an adaptable
algorithm that can accommodate devices with different characteristics.

A broad range of underlying technologies is utilised to design and
build NISQ devices that generally determine their performance [12].
For the purposes of this thesis | focus on trapped-ion devices and
superconducting devices as these were the architectures available to
us for our experiments. The original design of trapped-ion quantum
computers were ions in a RF Paul trap where the energy levels of the
ions served as the qubit states whilst the shared ion motional modes
were used as a quantum bus between qubits [13, 14]. The benefit
of these devices is that the qubits generally have relatively long co-
herence times, with some ions having hyperfine coherence times of
around 50s, with limited depolarising errors as long as the number of
qubits are well controlled. Additionally, since all the qubits are fun-
damentally identical, they are not affected by fabrication errors in the
ways that superconducting circuits are. In addition, platforms like that
of Quantinuum’s H-series have advantageous protocols such as all-
to-all connectivity and mid-circuit measurement [8]. However, scaling
this technology to a high number of qubits is generally quite challeng-
ing, with control of increasing numbers of qubits becoming less reli-
able. In addition, it is known that scaling the number of ions in a chain
leads to the crowding of the oscillation spectrum. Beyond a point it
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1.2. Quantum computation 1. Introduction

becomes challenging to single out one motional mode which impacts
performance and can lead to strong decoherence [15]. Finally, read-
out times can be slow with trapped-ion technologies, with readouts
times being of the order of us [16]. In contrast, superconducting de-
vices like that of Google’s Sycamore processors are generally rela-
tively scalable, whereby they can leverage pre-existing semiconductor
fabrication technologies. The underlying design of superconducting
qubits can vary significantly but there are three main qubit architec-
tures, namely charge qubits, flux qubits and phase qubits [17]. One
of the most popular design for qubits is the Transmon qubit comprised
of two Josephson junctions shunted by capacitors [18]. Generally, su-
perconducting quantum computers are highly configurable and they
are readily fabricated and controlled using existing semiconductor and
microwave control technology [17]. However, unlike trapped-ion tech-
nology qubit connectivity of superconducting devices is fixed by the
topology of the device. They are often larger than trapped-ion quan-
tum computer and require significant cooling to operate [15]. In ad-
dition, superconducting qubits generally have a short coherence time
of order ms [19]. Decoherence effects and crosstalk are exacerbated
as the qubits scale and must be carefully considered when designing
superconducting devices [20]. Beyond trapped-ion and superconduct-
ing devices, there remains a broad array of experimental approaches
to designing and building quantum computers, including technology
based on neutral atoms [10] and photonics [21].

With the rise in near-term quantum devices came the experimental
push to design experiments that show a quantum advantage. Though
diverse in their attempts, quantum advantage experiments look to demon-
strate a computation that can readily be performed on current-generation
quantum devices that would be intractable to compute classically. One
of the first claims of quantum advantage came from the Google Al
Quantum team in 2019, where they used their 53 qubit Sycamore pro-
cessor to perform random circuit sampling [22]. Following this, in 2020,
the Jiuzhang photonic quantum computing platform performed Gaus-
sian boson sampling [21]. Both these experiments focus on problems
designed around the specific device’s characteristics. Quantum ad-
vantage in general refers to a provable algorithmic speed-up to known
classical methods. There exists a more experimentally focussed no-
tion, referred to as quantum utility, which looks to use quantum com-
puters for solve specific physical or useful problems better than all
known classical algorithms. This standard means that a quantum al-
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1.2. Quantum computation 1. Introduction

gorithm which demonstrates quantum utility could be used in place of
the analogous classical algorithm to solve a problem of practical use-
fulness. A recent example of an experiment where quantum utility is
the explicit goal is the work by the IBM Quantum group in 2023 [7],
where they looked to calculate expectation values and perform Trot-
terised time evolution of a 2D transverse-field Ising model. Despite the
variety of approaches and increasing frequency of results, these ex-
periments have not unanimously demonstrated quantum advantage or
utility. Following these experimental results, classical algorithms have
been proposed theoretically and experimentally, which either match or
outperform the outcomes of these results. In particular, tensor net-
works have been a potent tool when performing numerical simulations
of these experiments [23, 24].

Many NISQ algorithms rely on a hybrid quantum-classical paradigm
often referred to as variational quantum algorithms. These algorithms
rely on encoding the problem they are trying to solve as an optimisa-
tion problem where a parameterised quantum circuit acts as part of
the model to be optimised. The following section contains an outline of
variational quantum algorithms.

1.2.3 Variational quantum algorithms

Variational quantum algorithms (VQAs) refer to a broad range of al-
gorithms which utilise a hybrid quantum-classical approach to solve
problems. They have been particularly popular on NISQ devices due
to their ability to overcome some of the shortcomings of NISQ devices,
such as their size and noisiness. In addition, variational quantum algo-
rithms (VQASs) have a general purpose structure, making them easy to
adapt to several different problems. Algorithms that bear the structure
of VQAs have been proposed in fields ranging from groundstate and
dynamical simulation to error correction and compilation [25].

VQAs utilise parameterised quantum circuits to encode the target
problem as the optima of an objective function. The optimisation it-
self is done classically and utilises a number of tools readily available
in classical computing, particularly in well-developed fields like ma-
chine learning. The parameterised quantum circuits within the objec-
tive function essentially act as a model class in a similar manner to a
neural network within machine learning. This section outlines the ba-
sic building blocks of VQAs, including constructing an objective func-
tion, the parameterised quantum circuit ansatz and their optimisation.
Figure 1.1 shows an outline of these steps. In addition, despite the
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Figure 1.1: Overview of variational quantum algorithms: A vari-
ational quantum algorithm is a relatively flexible framework which en-
codes the problem as an objective function O(#) parameterised by a
set of parameters 0 of an ansatz quantum circuit. This ansatz could
include sections of the quantum circuit that are not parameterised, for
example, some state preparation or basis change prior to measure-
ment which might be based on the input. The problem is solved by
iteratively optimising the objective function. At iteration ¢, the quan-
tum circuit highlighted in grey is evaluated, providing the value of the
objective function O(6,). This passes into a classical optimisation al-
gorithm, which proposes a new set of parameters 6, to test the ob-
jective function, which gets passed back to the quantum device. Once
the optimisation has converged, the output is extracted.
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prevalence of VQAs in NISQ research there are several challenges in
utilising them. Some of these challenges are outlined at the end of this
section.

The objective function

The objective function or cost function encodes the problem the VQA
is trying to solve. In particular, the objective function is parameterised
by a set of parameters ¢ and outputs some real number. The objec-
tive function is designed such that the global minima corresponds to
the solution of the problem and is given by the parameters 6*. As-
suming the parameterised quantum circuit representing the trainable
ansatz is expressed as U(6). In general, there will be some set of in-
puts, {p;} and some observables {O;} that are measured to construct
the objective function. Hence, the overall objective function could be
represented as

O(8) = X fu(Tr[OU () iU (6)]). (127)

k

where f; is some post-processing function that may be classical [25].

The quantum ansatz

The potential advantage of VQA comes when the objective function is
not classically simulable. This occurs when the parameterised quan-
tum circuit U (0), often referred to as the quantum ansatz, is sufficiently
expressive so as not to be classically simulable. However, the choice
of ansatz can have various tradeoffs related to trainability. Conver-
gence speeds may be slower with more expressive ansatz, and on
NISQ devices, a deeper circuit ansatz is more prone to error. Two
common types of ansatz are problem-inspired ansatz and hardware-
efficient ansatz [3].

The problem-inspired ansatz constructs the unitary operator as a
sequence of time evolutions under a Hamiltonian h; such that

Uz(ez) = e_ihiei, (1 28)

where the parameter 0; acts like time. In the problem-inspired ansatz,
the overall unitary is constructed by a set of operations that are mo-
tivated by the problem. A common example of this type of ansatz is
the unitary coupled cluster ansatz used in quantum chemistry prob-
lems [26]. Problem-inspired ansatzes can benefit over the hardware-
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efficient ansatz by using information about the problem to restrict the
search space of the variational ansatz. Computationally, problem-
inspired ansatz have been shown to converge quicker, with fewer ansatz
layers and optimiser iterations, than hardware-efficient ansatz [27].
However, they are often challenging to realise on NISQ hardware due
to the restricted connectivity of these devices, the specific gate set they
implement and the limited depth they can achieve with good fidelity.

An alternative approach is a hardware-efficient ansatz that priori-
tises device constraints to construct U(¢). Generally, the hardware
efficient ansatz is constructed from repeatedly applying a subcircuit
comprising of a set of two-qubit and single-qubit gates. Each of these
subcircuits is called a layer. Assuming a single layer is given by U;(6;),
the full hardware efficient ansatz is given by

U(6) = TL U6, (1.2.9)

where the layers are repeated L times. The exact choice of the layers
in the hardware efficient ansatz will depend on the device character-
istics, including its topology, gate set and performance. One of the
advantages of hardware-efficient ansatz is its flexibility, and it is often
applied in the context of problem-agnostic algorithms. In general the
expressibility and entangling capability of a hardware-efficient ansatz
is controlled by the number of parameters in each layer, and the num-
ber of layers applied, and has been studied for a variety of ansatz
classes [28, 29]. However, the choice of ansatz will also impact how
fast the VQA can converge to its solution, and the hardware-efficient
ansatz is often challenging to train.

Optimisation

The main classical computation in VQA comes from the optimisation of
the objective function to find an optimal parameter set 6*. Performing
optimisation in the context of NISQ devices is particularly challenging
due to the noise present and the scaling of measurements needed
with the number of qubits measured. The optimisation strategies fall
into two broad classes: gradient-based optimisation and gradient-free
optimisation.

One of the most common classical methods for optimising an objec-
tive function O(0) is using the gradient with respect to the parameters
0 = (61,0s,...0y). The gradient at a point provides information about
the direction of the greatest change of the objective function in param-
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eter space at that point. Hence, algorithms such as gradient descent
[30] will take a step in the direction of the greatest negative change to
attempt to find the global minima. The update rule for gradient descent
is as follows

Oitt = 0" — no,0(0), (1.2.10)

where ¢ is the step in the iterative update of ¢' and n is a hyperpa-
rameter corresponding to the learning rate. A common strategy for
extracting the gradient from a quantum device is the finite difference
method and similar variations specific to quantum ansatzes, such as
the parameter shift rule [31, 32]. To get accurate computations of the
gradients using these methods often requires a large number of mea-
surements.

Gradient-free methods do not rely on gradient information from the
quantum device to perform their optimisation. There is a broad range
of gradient-free optimisation strategies. Examples include sequential
minimal optimisation [33], where the problem of optimising the entire
high-dimensional objective function is broken down into smaller prob-
lems. In the quantum domain, the Rotosolve and Rotoselect algo-
rithms utilise this approach to optimise parameterised quantum circuits
[34]. Alternatively, in situations where evaluating the objective function
is expensive, surrogate model-based optimisation may be preferable
[35]. In this approach function evaluations from all parameter values
are used to construct an approximation of the search space, named
the surrogate model. The optimisation itself happens on the surrogate
model.

The noisiness of NISQ devices and the sampling times of some
quantum devices make resolving an objective function and thus opti-
mising parameterised quantum circuits particularly challenging. Often,
optimisation algorithms are chosen that are known to be noise resilient
and offer good sampling efficiency. In particular, the simultaneous per-
turbation stochastic approximation (SPSA) algorithm [36] is a noise-
resilient optimiser that does not require explicitly evaluating the gradi-
ent on the quantum device. The algorithm approximates the gradient
in each iteration step by evaluating the objective function twice. The
number of evaluations is independent of the number of parameters,
and this optimiser is considered noise resilient; therefore, it is used in
many NISQ algorithms.
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Challenges

One of the primary challenges of VQAs is the barren plateau prob-
lem. This problem arises when the cost function landscape produced
by the objective function is very flat. Barren plateaus are known to
be caused by a number of factors including overly expressive param-
eterised quantum circuitss (PQCs) [37], the choice of initial states and
measurement [38] and even noise [39]. Recently, the presence of
barren-plateaus has been linked to the curse of dimensionality [40].
The consequence of the gradients of the cost function landscape are
exponentially vanishing for an arbitrary choice of parameters, mean-
ing gradient-based optimisation requires many samples to determine
gradients [41]. It has been shown that even gradient-free optimisa-
tion strategies find it challenging to deal with barren plateaus as an
exponentially high number of measurements are needed to gain any
information from this cost-function landscape. The causes of barren
plateaus vary but are often associated with a more expressive quan-
tum ansatz. Using a problem-inspired ansatz or a reduced ansatz may
improve the trainability of the VQA. However, this reduced ansatz may
not have a solution within its expressible domain.

In addition, working with NISQ devices inevitably means dealing
with a large amount of noise. The choice of using VQAs on NISQ
devices in this thesis was due to the fact that these algorithms are in-
herently noise resilient. As the optimisation trains on the NISQ device,
the training allows for a parameter set to be chosen that is somewhat
adaptable to the noise present on the device. This is particularly true
for coherent noise [42], which can be represented mathematically as
unitaries and often involves a shift in the desired gate angle, where
variational quantum algorithms have been shown to theoretically and
experimentally adapt to such noise [43, 44]. However, training param-
eterised quantum circuits in the presence of noise can be challeng-
ing despite the existence of noise-resilient optimisers such as simul-
taneous perturbation stochastic approximation (SPSA). To counter the
noise on a device, a variety of error mitigation strategies have been
proposed for NISQ device. The tradeoff of the reduction in noise and
the increased cost of running error mitigation needs to be carefully
accounted for when designing VQA.
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1.3 Representing Quantum Tensor Networks

1.3.1 Introduction to Tensor Networks

Tensor networks refer to a broad class of numerical and theoretical
techniques predominantly focused on solving problems related to strongly
correlated quantum systems and classical statistical mechanics. De-
scribing such systems requires handling large Hilbert spaces that are
often impossible to represent and manipulate directly. An overarching
theme of tensor networks is defining and manipulating mathematical
descriptions of the Hilbert spaces of these systems based on their en-
tanglement structure [45, 46].

One of the most straightforward classes of tensor networks, and a
model class of focus in this thesis, is the matrix product state (MPS)
[47-49]. The MPS is a simple ansatz class for representing 1D spin
systems, with seminal results including the analytical study of AKLT
[50, 51] states and consequently translationally invariant finitely cor-
related states [48]. Numerically, links between MPSs and the density
matrix renormalization group (DMRG) algorithm [52, 53] lead to MPSs
being the state-of-the-art ansatz when investigating gapped 1D sys-
tems [45]. Beyond theory, there exist a number of numerical tech-
niques based on finite size scaling and finite-entanglement scaling
which allows MPS techniques to be used to study critical and gap-
less quantum systems [45, 54-56]. In addition to this, one can use
tensor networks to study higher dimensions, such as through the use
of projected entangled pair state (PEPS) models to study 2D systems.
Models also exist to study gapless and critical systems through multi-
scale entanglement renormalisation ansatz (MERA) networks [57].

Despite originally being developed within the context of condensed
matter physics, tensor networks have proved their utility in a broad
range of fields. For example, MERA networks are known to have close
links with renormalisation theory and have been used to investigate
problems in AdS/CFT [58]. They can be used to understand and in-
vestigate several results in quantum information, with tools such as the
ZX-calculus having close ties to tensor networks [59]. Classical tensor
network algorithms have recently been devised for problems entirely
outside quantum physics. This includes tensor networks being used
as models in the context of machine learning [60, 61] and solvers for
fluid dynamics problems [62].

This thesis focuses on the link between tensor networks and quan-
tum algorithms. For this purpose, MPS based models are advanta-
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(@) (b) (c)

Figure 1.2: Example Tensors: Examples of tensors in the diagram-
matic formalism. The tensor v (a) is a vector, M (b) is a matrix and A
(c) is an order-4 tensor.

geous as there is a direct translation between canonical MPS and
quantum circuits [63, 64]. Though quantum computers have only been
available recently to test these ideas, the link between MPSs and se-
guential generation of quantum states through unitaries has been well
understood since the mid-2000s [65—67]. Given the flexibility of MPS
and their direct link to quantum circuits, there has been significant re-
cent interest in using tensor networks to design quantum algorithms
[61, 63, 68, 69]. This thesis focuses on applying insights from MPS
literature to solve problems in quantum simulation and quantum ma-
chine learning.

1.3.2 Tensor Network Basics

This section introduces the basics of tensor networks necessary for
the remainder of this thesis. To begin, we introduce the fundamen-
tal primitives needed for working with tensor networks, including the
graphical calculus that often simplifies the tensor network notation.

Tensor networks are fundamentally graphs comprised of nodes, re-
ferred to as tensors, and edges that define a contraction between the
tensors on the edge. A tensor can be viewed as a multi-dimensional
array, usually comprised of complex numbers [70]. They are a gener-
alisation of vectors and matrices to more dimensions. The order of a
tensor is the number of indices it has. Therefore, a vector is an order-
1 tensor, and a matrix is an order-2 tensor [71]. Diagrammatically, a
node on a graph draws a tensor of arbitrary order with the same num-
ber of edges out of the node as the order of the tensor as shown in
Figure 1.2.

Contractions form the foundational routine of tensor network algo-
rithms. If two pairs of indices have an edge connecting them in the
tensor network diagram, then a contraction is performed on this index.
Mathematically, this is equivalent to setting both these indices to have
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the same value and performing an summation over the repeated in-
dex following the Einstein convention. The edge represented by the
repeated index is sometimes referred to as the virtual index, and the
size of its space is known as the bond dimension. Several primitive
operations in linear algebra can be written in this form. For example,
the inner product between two vectors 7 and i is written as

@5 =3 v = @—@) (1.3.1)

or a matrix multiplication between matrix A and B amounts to

AB=Y AixBy; = (1.3.2)
k

[46]. As can be seen, the diagrammatic notation that tensor networks
utilise can represent equivalent mathematical expressions much more
simply. This is particularly true as the networks become significantly
more complex.

Contraction is one of the most frequently used primitives in most
tensor network algorithms. Therefore, carefully considering the cost of
contracting a tensor network is important. Like many important prop-
erties of tensor networks, the cost of contraction scales with the bond
dimension y. Another important factor to consider when contracting
an entire network is the order in which the edges are contracted. Dif-
ferent contraction orders can result in vastly different computational
costs. For a general tensor network, the question of the optimal con-
traction sequence is known to be an NP-hard problem. However, for
many common networks, such as MPSs, used throughout this thesis,
the optimal contraction is relatively easy to find [71].

In addition to combining tensors using contraction, several factori-
sation routines are used to split tensors. One of the most common
routines is the singular value decomposition (SVD), a widely used fac-
torisation throughout mathematics. The SVD takes in an arbitrary com-
plex matrix A with dimension d; x d, and decomposes it into

A=UAVT, (1.3.3)

Assuming d; > d; then U is an isometry of dimension d; x ds, A is
a diagonal matrix containing the singular values of A of dimension
dy x dy and V is a unitary of dimension d, x d,. For tensors of or-
der > 2, the indices are grouped to form a matrix before passing the
entire object into the SVD and ungrouped afterwards as necessary.
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SVD

(b) (c)

Figure 1.3: Diagrammatic SVD: Diagrammatic equations demon-
strating the SVD factorisation of a order-3 tensor. The bottom two legs
are grouped to form a matrix to apply the SVD to. The tensor U is an
isometry containing the bottom legs. It satisfies the isometry condition
outlined by b). This tensor connects to a diagonal tensor A containing
the singular values of A. Finally the tensor V' represents a unitary
operation satisfying c).

Figure 1.3 shows the application of the SVD to an order-3 tensor and
shows diagrammatic equations for the isometry conditions UTU = I
and VIV = VVT = I where I is the identity.

The SVD is a beneficial routine for the truncation of bond dimension
[57]. Truncation refers to approximating a tensor network by reducing
the bond dimension of the composite tensors. ldeally, the output of
the tensor network is not significantly affected by the reduction of bond
dimension. Several truncation techniques can be chosen based on the
problem and model being investigated. One general-purpose method
is to approximate a tensor by only preserving a subset of the singular
values in the SVD. This can be done by preserving a fixed number
of the largest singular values or assigning some threshold magnitude
for the singular values, below which they are cut off. The exact effect
of performing this truncation varies depending on the network, but for
quantum states, this is related to performing an approximation whilst
preserving the 2-norm or Frobenius norm of a state [48].

The utility of tensor networks comes from their ability to represent
high-dimensional Hilbert spaces using a low-dimensional factorisation.
For example, consider a standard quantum many-body state. For this
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Figure 1.4: Decomposing quantum state into tensor networks:
Tensor networks can represent states in a high-dimensional Hilbert
space such as ¢ using a factorisation of low-dimensional tensors.

example, we consider a set of N spin-1/2 systems. Each spin con-
tributes two levels to the overall system. The general wavefunction for
the overall system can be written as follows

V) = ‘ Z ‘ Ui ioin |11) @ |i2) @ ... i), (1.3.4)
21,225 N

where |i;;) refers to the local basis for the k-th particle. This equation
requires a representation of the object ¥, which scales exponentially
with N, containing 2V complex numbers. Therefore, directly represent-
ing ¥ for any system of reasonable size quickly becomes intractable
with increasing system size. The main idea behind tensor networks is
to break down this large object ¥ into a set of much smaller objects,
usually with a polynomial scaling with system size [70]. Figure 1.4
summarises this idea. Usually, the underlying structure of the network
of smaller objects is inspired by information about the entanglement
structure of the state we are trying to simulate [45]. An example of this
applied to 1D spin systems are discussed in the next section.

1.3.3 The Matrix Product State (MPS)

The matrix product state (MPS) is a class of tensor networks repre-
senting 1D systems [47, 53, 70, 72, 73]. They are comprised of a
sequence of tensors connected in a chain. There is one tensor per
lattice site, and the edges (virtual indices) connecting the tensors have
a bond dimension of size D. The open edges are called the physical
indices and have dimension d. These indices represent the physical
degrees of freedom of the local Hilbert space of the system. Mathe-

31 of 148



1.3. Representing Quantum Tensor Networks 1. Introduction

Figure 1.5: Representing an iMPS: Representing an translationally
invariant matrix product state (iIMPS) requires identifying a unit cell
and repeating that unit cell. This diagram shows a single-site unit cell
highlighted in green.

matically, a finite MPS with open boundary conditions can be written
as
W)= > AYAY . AV iy . in). (1.3.5)
i1,02,..in=1

Diagrammatically this equation is

) = . (1.3.6)

10 11 12 iN

For periodic boundary conditions, the equation is readily modified to in-
clude a trace on the open edges on either end. Furthermore, an trans-
lationally invariant matrix product state (iMPS) can be represented by
simply repeating the unit cell and forming a chain. For example, a sin-
gle site unit cell IMPS can be written as shown in Figure 1.5, where the
unit cell is highlighted in green.

Given an arbitrary wavefunction |¢), an MPS can be readily con-
structed using a sequence of SVDs. To do this, consider an arbitrary
legs is .. .iy together to form a matrix and perform an SVD such that
U ligein] = USVT, where S contains D eigenvalues. The isometry U
becomes first tensor A; = U and is connected to the remaining object
Wi, . = SV with a bond of dimension D. This procedure can be
applied repeatedly in sweeps to each subsequent ¥’ to produce the
MPS [48]. During this process approximate MPS can be generated
by truncating the singular values in the SVD. Figure 1.6 outlines the
process of generating an MPS using SVD sweeps. Note this proce-
dure is not usually necessary to prepare a MPS. Often the specific
routine used will depend on the problem. For example, when prepar-
ing groundstates of Hamiltonians an algorithm such as DMRG will be
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Figure 1.6: Generation of MPS using SVD: Generating an MPS
from an arbitrary quantum state requires a sequence of SVDs. The
physical legs are grouped to include one physical leg on the left, the
virtual index on the left, and the remaining physical legs on the right.
After applying an SVD the tensor representing the isolated physical leg
is formed. The singular values are combined into the remaining tensor.
This process is applied repeatedly until the MPS is formed.

used to prepare the MPS representing the groundstate.

MPS have a gauge invariance that allows an arbitrary MPS to be
put in canonical form [48]. Gauge invariance refers to the fact that an
arbitrary unitary U can be inserted onto the virtual indices as UTU = I
and absorbed into the tensors without affecting the action of the MPS
in the physical space. This is useful as it allows us to transform an
arbitrary MPS into useful forms, such as their canonical form. It should
be clear from the SVD sweep procedure above that generating an MPS
in this way enforces the following isometry condition to each tensor

- 1a7

Here the tensor A contracted with its conjugate tensor A on the phys-
ical and left virtual index is an identity map on the right virtual indices.
When all the tensors in an MPS satisfy this property, it is called a left-
canonical MPS. Note that performing the SVD sweep in the reverse
direction allows for the tensor to satisfy the reverse condition

= ) (1.3.8)

and is referred to as the right-canonical form of the MPS. In addition,
we can select a site i on an MPS such that all the tensors to the right
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of the site are in right-canonical form and all the sites to the left of
this site are in left-canonical form. This process results in a mixed
canonical form of the MPS.

The canonical forms are useful as they allow us to greatly reduce
the complexity of evaluating tensor network diagrams. For example,
consider evaluating the expectation value of a single site operator O
on site 7 of an abitrary MPS [¢). Diagrammatically, this expectation
would be written as

(1.3.9)

The computational complexity of contracting two MPSs together scales
with bond dimension D as O(D?). As this contraction is the basic oper-
ation for calculating quantities such as expectation value or correlation
functions, MPS can be used to calculate these quantities efficiently.
Furthermore, if the MPS is in mixed canonical form with the central
site at site i, then the expectation value highlighted earlier can be writ-
ten as

, (1.3.10)

thus greatly reducing the cost of computing this quantity further.

The basic properties of MPS have been studied in great detail an-
alytically. In general, MPS can represent any arbitrary quantum state
simply by increasing D [70]. MPSs follow an area law in the entangle-
ment entropy where the entanglement entropy of the half-chain scales
as S = log, D [74]. As low energy states of gapped quantum sys-
tems in 1D often follow an area law [75], this means that MPSs are
very efficient at capturing properties of such states with a fixed finite
bond dimension. MPS have a finite correlation length as the correla-
tions between two sites decay exponentially with the distance between
the sites. This means that MPS have trouble representing critical sys-
tems where correlation lengths are known to diverge. However, in 1D,
this divergence is polynomial in D, and MPS can still represent these
states efficiently [49].

Numerically, MPS are an extremely flexible model class which forms
the core for several algorithms in condensed matter physics. For ex-
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ample, it is state of the art for performing variational state optimisation,
such as the preparation of groundstates in 1D using the density matrix
renormalization group (DMRG), that can be formulated in the language
of MPS [48]. For performing time evolution, several algorithms exist,
including time-evolving block decimation (TEBD) and time dependent
variational principle (TDVP) [57]. In recent years, MPSs have been
adapted to solve problems in other fields, including working as a model
class for machine learning problems [60] and solving partial differential
equations in fluid dynamics [62].

1.3.4 Tensor Networks on Quantum Circuits

Quantum circuits can be used to represent isometric tensor networks
exactly. This section outlines a method to embed a canonical MPS
onto a quantum circuit. This is done through sequential generation
using a staircase of unitaries as shown in Figure 1.8 [63, 66].

Consider the tensors of a canonical MPS. We show that for a MPS
of bond dimension D and a physical index space of size p can be rep-
resented by a sequence of unitaries of size log,(Dp). Take for example
a left-canonical MPS represented by equation 1.3.5 with the tensor at
index j given by AZ'].,%H. Note that we have suppressed the tensor
index 5 in this notation. The index «; corresponds to the virtual index.
The left canonical isometry condition written explicitly states that

> (A% VAR s =Tt o (1.3.11)

i, 0

where T is the identity map. The tensor A’ can therefore be viewed
as an isometry mapping acting on a larger Hilbert space |«y, ix) where
the left virtual index and the physical index are grouped. The mapping
has an output in the space of the right virtual index |ay.1). An isometry
can always be embedded in a unitary acting on some reference state
without block encoding. This can be done by finding a set of orthogonal
vectors to the ones in the isometry and filling out the remaining space
of the unitary. Projecting on the reference state removes this arbitrary
set of orthogonal vectors. We can view the tensor as

A s = (ki U g1, 0) (1.3.12)
We choose U, to represent the embedding unitary. The reference state
the unitary acts on is the |0) state, the standard initial state prepared
on a quantum device. The embedding is summarised in Figure 1.7.
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Figure 1.7: Embedding an MPS tensor in unitary: Figure a) shows
how to embed an arbitrary left canonical tensor into a unitary such that
the overall MPS forms a staircase sequential circuit. This embedding
satisfies the isometry condition given by b) which maps to the circuit
equation c).

The figure shows that this unitary embedding readily satisfies the left
canonical condition.

We can now see that the number of qubits necessary to represent
the unitary is n = log,(Dp). If the tensor A" has a bond dimension D
and the physical domain of size p, the unitary U* acts on a space of
size Dp. The number of qubits necessary to represent a unitary of this
size is log,(Dp). Hence, there seems to be an exponential reduction in
resource requirements for representing an arbitrary MPS on a quan-
tum device. Connecting these unitaries up to represent the full MPS
results in a circuit forming a staircase as shown in Figure 1.8a.

For a spin 1/2 system where p = 2, the number of qubits necessary
to represent this unitary is log,(D) + 1. Therefore, an MPS represent-
ing a spin 1/2 system with bond dimension 2 is comprised entirely of
2-qubit unitaries. As the exact decomposition of 2 qubit unitaries is
possible using the KaK decomposition [76], these MPSs can be rep-
resented exactly on a quantum circuit. For a higher bond dimension,
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decomposing an arbitrary unitary of size log,(D) can eliminate the ad-
vantage gained by reducing the resources required to represent the
circuit. Approximate decomposition routines have been proposed for
such unitaries. One such procedure specific to MPS is to decompose
the unitary representing an individual tensor by a reverse MPS with a
smaller bond dimension . When applied with a smaller MPS of bond
dimension 2, this method corresponds to a brick wall circuit of fixed
depth and has been applied to time evolution problems [63].

Assuming an arbitrary bond dimension MPS unitary can be rep-
resented on a quantum circuit, the quantum computer is efficient at
evaluating valuable quantities. For example, looking again at a single-
site operator O, to evaluate the expectation value, we first decompose
the operator into a sum over measurable quantities such as Pauli oper-
ators; O = ¥, ay0;. We then run the circuit, measuring the expectation
on each Pauli term o; sequentially and summing with the weights «;
to calculate the expectation value. Given a quantum device of suffi-
cient size, these quantities can be measured in parallel, thus resulting
in a circuit that scales polynomially with the number of sites and log-
arithmically with the bond dimension. Similar costs hold true for other
quantities, such as correlators and order parameters.

The staircase MPS circuit is not the only way to sequentially gen-
erate an MPS on a quantum device. An alternate circuit form is shown
in Figure 1.8b for devices with measurement and reuse protocols. The
measurements have been moved forward in time, and the physical in-
dex space is constantly measured and reset. As opposed to relying on
a large number of qubits but a reasonably short coherence time, such
as in the staircase layout, this new layout relies on fewer qubits but a
longer coherence time. Therefore, we refer to the staircase layout as
the space-like layout throughout this thesis and the alternate circuit as
the time-like layout. As the space-like circuit grows in the number of
qubits to increase bond dimension or number of sites, the time-like cir-
cuit will increase analogously in circuit depth. Therefore, the efficiency
in representing these two types of circuit are equivalent, however, they
may perform differently based on the hardware. The ability to rewrite
MPS in this way to emphasise the potential strengths of a given de-
vice dramatically increases the portability of these algorithms between
different NISQ architectures.
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Figure 1.8: MPS expectation as quantum circuits: The expectation
value of a single site operator on the MPS tensor two as a sequential
circuit. The figure a) shows the space-like version of this circuit with a
state unitary U? and b) shows the time-like version of the circuit with a
state unitary U;. The space-like and time-like unitaries are equivalent
up to a SW AP gate. The virtual index is highlighted by the thick wire.
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Looking Forward

The next section of this thesis extends the study of the quantum MPS
ansatz for the purposes of quantum simulation. In particular, | adapt
the staircase MPS representation to perform groundstate optimsation.
Unlike prior algorithms which utilise this ansatz [68], this algorithm al-
lows for the preparation of arbitrary states without analytically finding
the parameterisation and gate angles required to represent a state. |
test the feasibility of this algorithm on Google’s Sycamore processor
and subsequently develop a novel time evolution algorithm inspired by
tensor network techniques.
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2. Ground state optimisation

Chapter 2
Ground state optimisation

The variational principle is a powerful tool for studying the ground
state behaviour of strongly correlated systems. This chapter uses the
variational principle with a translationally invariant MPS (iMPS) circuit
ansatz to prepare ground states for a quantum system in the ther-
modynamic limit. This method requires representing and optimising
the local expectation values of iIMPS circuits using finite circuits. We
present an algorithm that can perform this optimisation whilst consider-
ing the restrictions of near-term quantum devices. Finally, we present
some results from applying this ground state optimisation algorithm on
Google’s Sycamore architecture to study the ground state properties
of the transverse field Ising model across a quantum critical point.

This work was done in collaboration with Andrew Green, James
Dborin, Fergus Barratt, Eric Ostby and Thomas O’Brien. My contribu-
tions include contributing to the code to run and analyse the results
from this algorithm on Google’s device. | was also involved in discus-
sions on adapting the algorithm based on the device performance of
Sycamore architecture. This work and its results are published and
form part of Ref [77].
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2.1 Ground state optimisation algorithm

2.1.1 Variational ground state optimisation

A general problem of interest in condensed matter physics is preparing
and calculating ground state properties. Many body physics is gener-
ally concerned with macroscopic features of the systems where the
size of the system N could be of order 10?® [78]. Though systems of
this size may not be directly simulatable, we can calculate the prop-
erties of these systems by taking N — oco; thereby taking the ther-
modynamic limit. Tensor networks provide a class-leading technique
to calculate the ground state properties of various quantum systems.
The MPS is known to exactly represent ground states of gapped 1D
local Hamiltonian [79].

Like many numerical techniques, tensor networks calculate ground
states using the variational principle. Given a Hamiltonian 7, the vari-
ational principle states that finding the ground state v, of H amounts
to minimising the expectation of the energy given by

= WA (2.1.1)

(Y1)

Tensor networks restrict the variational class for the variational prin-
ciple. Hence, the state optimisation occurs within the manifold of the
specific tensor network state. For example, a foundational algorithm in
tensor networks is the density matrix renormalization group (DMRG)
algorithm [48]. Here, the optimisation occurs over the set of MPS with
a restricted bond dimension of D. Optimisation occurs iteratively by
updating a single site (or two) whilst keeping the remaining tensors
constant.

For this work, we focus on the translationally invariant matrix prod-
uct state (iIMPS) ansatz class. Using this ansatz requires careful con-
sideration of the behaviour of states in the thermodynamic limit. The
energy diverges with system size, so we need to optimise energy den-
sity in the thermodynamic limit. Many classical methods optimise en-
ergy density using the iIMPS ansatz either indirectly or directly. Infi-
nite DMRG (iDMRG) methods involve optimising the central site and
growing the chain repeatedly until the central site converges, usu-
ally verified by solving some fixed point equation. Recently, tangent
space methods, such as the variational uniform matrix product states
(VUMPS) algorithm [80], have been developed which directly optimises
the global iIMPS state by minimising the energy density directly. Alter-
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natively, one can prepare ground states using imaginary time evolution
methods such as the infinite time-evolving block decimation (iTEBD)
algorithm [45, 57].

We outline a quantum algorithm to perform ground state optimisa-
tion using a quantum circuit ansatz analogous to the classical iIMPS.
This algorithm - in the spirit of classical algorithms like VUMPS - per-
forms global updates on the quantum iMPS circuit ansatz to minimise
the energy density. This section outlines the core aspects of the al-
gorithm for performing ground state optimisation. Initially, we present
the circuits required to represent iIMPS states on quantum computers.
Following this, we outline methods to calculate and optimise the ex-
pectation value of local observables, such as energy density.

2.1.2 Local observables of iMPS circuits

Translationally invariant 1D systems can be regarded as homogenous
when considering a large enough unit cell, therefore the iIMPS in the
thermodynamic limit is a chain of uniform state tensors. Hence, a
translationally invariant d level spin system is comprised of local sites
with an index n and a basis {|s),,s = 1,...,d} and a total Hilbert
space |s) = ®,s, can be approximated by an iIMPS as

) =211 A™Is), (2.1.2)

in graphical tensor network notation

| |¢| |- -

(2.1.3)
Note for the remainder of this section, we consider spin 1/2 systems
where d = 2 and limit ourselves to the graphical tensor network nota-
tion where possible.

A core object when calculating properties of iIMPS is the state trans-

fer matrix given by
- —@

@ . (2.1.4)
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The transfer matrix can be viewed as a D x D dimensional operator
in the virtual index space. Numerically, we can calculate the leading
order eigenvalue n of the transfer matrix and the left and right fixed
points [ and r of the eigenvalue equations which satisfy

g« T

(2.1.5)
To properly normalise the iIMPS, we require that the tensors A are
rescaled such that A — A/,/n and the fixed points / and r are rescaled
such that T'r(Ir) = 1.

The importance of the transfer matrix becomes clear when calcu-
lating the energy density. For example consider a hamiltonian H made
up of a sum of uniform nearest neighbour interactions h; ;. such that

Calculating the energy density amounts to calculating the expectation
value of h; a local expectation on two sites. Everything to the left and
right of the local expectation looks like repeated applications of £ and
hence can be replaced by [ and r. Diagrammatically, this is repre-
sented as

In effect, the left and right fixed points, alternatively referred to as en-
vironments, encapsulate the behaviour of the infinite state outside of
the action of the operator. Hence, to extend finite MPS quantum cir-
cuits to the infinite case require finding circuit representations of the
environments.

To construct the circuit environment, consider an analogous quan-
tum IMPS circuit where we are concerned with observables on the
central two sites. As outlined in the background, we can represent the
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IMPS state as a staircase circuit, diagrammatically given by

(2.1.8)

When calculating local observables, the infinite staircase to the left and
right of the observable can be represented exactly by environments [
and r embedded as the column of unitaries L and R as shown by the
equations

=)
~
a
v
a
D
=
=

|0) b—i ]—1 |0)

(2.1:10)
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Note that for this discussion, we will represent the circuits in the space-
like form for simplicity but equivalent circuits can be drawn in the time-
like form.

In practice, to embed the state we put it in left canonical form, sim-
plifying one of the environments. In this form, the environment [ is the
identity; hence, the environment unitary L resolves to the identity. In
addition, we can resolve the right environment unitary R. To do so, we
recognise that the right environment is Hermitian and so has a decom-
position r = UAUT and we can subsequently embed this U in a unitary
V' such that we can rewrite R as

10) — — 10)

0) —_ % 7 — 10)

(2.1.11)

Therefore, we can write a fixed point equation to resolve for V/

|0)
v
|0)

pr . (21.12)

Iteratively applying the fixed point equation allows us to construct an
efficient representation of the right environment as we expect this iter-
ative application to converge exponentially.

The local expectation values of iIMPS circuits are constructed by
measuring local observables on finite circuits using these environments.
The observable of interest is broken down into sums over Pauli strings
on local sites. The expectation of each Pauli string term can be cal-
culated using the circuits shown in Figure 2.1. These circuits show
calculations of a 3-site Pauli string in space-like and time-like repre-
sentations. Note that the measurements shown in these diagrams in-
clude a potential Pauli rotation to put the measurement in the correct
basis for the Pauli string term.

Calculating local observables of iIMPS quantum circuits is a pow-
erful tool in itself. Doing so has allowed for the measurement of a
topological phase transition using the space-like layout [68] and prob-
ing chaotic dynamics in the time-like layout [69].
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(a)
U (o U, U,
l0) [ [ [
Vi Ut Uy Uz

(b)

Figure 2.1: Circuits for expectation of iMPS states: The circuits
shown here calculate the expectation value of a 3-site local observable
from an iIMPS state using finite circuits in the a) space-like and b) time-
like layout. The state unitaries are denoted by a) U, and b) U, and the
environments as a) V; and V;. Note these state unitaries only differ by
a SW AP gate at the end.
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2.1.3 The fidelity density cost function

Given that we now have a way of representing and calculating local
observables of iIMPS circuits, we move on to performing ground state
optimisation using the variational principle. To do so, we outline a vari-
ational quantum algorithm that uses the iIMPS circuit as a variational
ansatz and derives a suitable cost function based on this ansatz. The
local observable circuits outlined in the previous section provide a way
of constructing cost function terms that minimise energy density.
Previously, we outlined an iterative method to calculate the envi-
ronment unitary V. However, we would like a cost function term that
solves the fixed point equation 2.1.12 through variational optimisa-
tion. A trivial term such as the overlap Tr(p;p,) would not work as the
terms on the left and right sides are reduced density matrices. Hence,
when p;, = p,. = p this term would amount to optimising the the purity
of p which is not the correct behaviour. An alternative cost function
term to solve the fixed point equation is to minimise the trace distance
Tr [(p1 — pr)?]. Expanding out the trace distance cost function, we find

Tr [(pr = po)?) = Te(p7) + Tr(p?) = 2 Te(pupr)- (2.1.13)

The trace distance cost function terms can be calculated on the quan-
tum device using the non-destructive SWAP test [81]. The circuits for
these terms are given below

—
o f— »
14 |0y —| I —
) —_|—o A v
Trp? = - Trprpr = 0) | El
10) — —
v 0) —
1 v
0) ———{# 1~ 0 — | =

|
=}
[

[ =
[=]
[3]

Therefore, to perform the ground state optimisation, we choose to op-
timise the energy density and the trace distance cost function for the
environment simultaneously in a combined fidelity density cost function

C'=(H) + Tr[(p — pr)?]. (2.1.14)
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2.2 Ground states on Sycamore

2.2.1 Model Choice - The transverse field Ising model

We apply the ground state optimisation algorithm using the iMPS cir-
cuit ansatz to examine the transverse field Ising model (TFIM). The
TFIM Hamiltonian H is given by

H =Y oio}, +go}, (2.2.1)

where g is the strength of the transverse field and ¢ is the Pauli matrix
a € {X,Y, Z} acting on index .

The ground state behaviour of the TFIM can be analytically solved
using the Jordan-Wigner transformation [82]. Given that we know the
analytic behaviour of this model, there is a known ground state quan-
tum phase transition when ¢ = 1. In addition, classical MPS algorithms
capture the ground state behaviour of this model at low bond order de-
spite there being a critical point. Therefore, this model is a good initial
test for the quantum ground state optimisation algorithm run on NISQ
devices as the results can be readily compared to analytic and classi-
cal numerical methods.

2.2.2 Adapting to Sycamore

We ran the ground state optimisation algorithm on Google’s Rainbow
device - one of two devices using the Sycamore architecture. The
larger version of this architecture was used in Ref. [22] which was
comprised of 54 superconducting transmon qubits running in a two-
dimensional grid layout with nearest-neighbour coupling with median
qubit frequencies at readout of 5.750MHz. Rainbow was a smaller
device comprised of 23 qubits. The benefits of this platform are the
relatively high clock speeds and readout times with typical repetition
rates of around 1-5kHz. However, this device has high error rates, par-
ticularly decoherence errors, with 77 times at idle frequency of 15.54 s
[22]. These errors require significant development of error mitigation
strategies.

The characteristics of Rainbow lends itself well to the space-like
representation of the iIMPS circuits. Figure 2.2 shows the structure of
the circuits used to represent the terms in the cost function equation
2.1.14 and its layout. These circuits represent a iMPS of bond dimen-
sion D = 2, where the 2 qubit state unitaries U are highlighted in blue
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and the 2 qubit environment unitary V' are highlighted in red.

Both the state unitaries U and the environment unitaries V' have
a restricted parameterisation, with only four parameters in each uni-
tary. Though the restricted parameterisation does not allow for the
representation of an arbitrary iIMPS, it significantly reduces the costs
associated with the optimisation and limits the effects of issues such
as barren plateaus.

Calculating the full cost function for ground state optimisation re-
quires the parallel calculation of each term. The circuits in figure 2.2a
and 2.2b measure the energy density of the iIMPS state by measur-
ing each Pauli term in 2.2.1 independently and the sum is calculated
classically. Figure 2.2c and 2.2d calculate the fixed point term by mea-
suring each term in 2.1.13 using the SWAP test. Note that due to the
size of Rainbow (with 23 qubits in the grid layout), all of the circuits
cannot fit on the device at one time. Therefore, the circuits are laid out
such that the three energy terms are measured simultaneously and
then the three fixed point terms are measured simultaneously. Figures
2.2b and 2.2d show example layouts of these runs. Experimentally, we
used Google’s performance metrics, which were updated on a daily
basis, to adapt the layout based on the best performing qubits and
connectivity.

2.2.3 Error mitigation

Running any algorithm on a NISQ device requires careful considera-
tion of errors. Several common techniques are utilised to account for
errors from these devices without running total error correction. These
techniques are often broadly classified as error mitigation. We con-
sider three error mitigation techniques when working with Sycamore.
Firstly, near-term devices often have readout errors, where the ac-
tual output of the device is not what is measured. Often, the causes
of readout error [42] are bit flips during measurement and can be re-
solved using a confusion matrix. To do so, we run circuits on the device
with known outputs, allowing us to build a matrix of transition probabil-
ities A between the ideal measurements M4eq and the measurements
from the device M,qsy. This matrix of transition probabilities A is the
confusion matrix. To reduce the readout error, we invert the confusion
matrix and apply it to any measurements from the device as outlined
by
Mdeal = A_anoisy- (2-2-2)
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Figure 2.2: iMPS circuits used to perform ground state optimisa-
tion. a) Circuits representing the three terms in the energy density
of transverse field Ising model Hamiltonian. The state unitaries U are
highlighted in blue, and the environment unitaries V' are highlighted in
red. A reduced parameterisation is used with 8 parameters in total,
4inU and 4 in V. The R, gate is a parameterised Pauli-Y rotation
gate with a single parameter. The W gate is an arbitrary Pauli rota-
tion with three variational parameters. b) An example layout for the
energy density circuit terms. The optimal layout was chosen based on
the performance of the qubits every day on Rainbow. c) The circuit
terms representing the trace distance between the left and right-hand
terms of the fixed point equation for the environment unitary. The re-
gion highlighted in green is the circuit elements required to perform the
SWAP test. d) An example layout of the circuit terms representing the
trace distance. This figure forms part of the published work in Ref [77].
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This method is not scalable as the size of the confusion matrix in-
creases exponentially with the number of qubits measured. Fortu-
nately, we found that as we were measuring the probability of a partic-
ular bitstring, applying the confusion matrix did not significantly change
the results.

Daily variations in the performance of the Sycamore processor were
common. Due to limitations in the control systems of NISQ devices
and variations in fabrication processes, even individual qubit perfor-
mance can vary significantly. To account for this, we reviewed calibra-
tion metrics run on the device daily and carefully selected the qubits
and layout of the circuit for each experiment. We used the estimates
of single qubit gate error that Sycamore provides to choose the qubits.
In particular, we used the single qubit 7; [83] times and readout er-
rors that are estimated using randomised benchmarking. This pro-
cess mostly allowed us to eliminate qubits with particularly poor per-
formance. Given that the circuits we run for have a 1D chain structure,
we utilise the two-qubit calibration metrics to construct chains with op-
timal performance on the device. Sycamore provides two-qubit gate
errors using cross-entropy benchmarking, and we used the Pauli er-
rors between connected qubits to build the chain. In addition, running
multiple copies of the circuit in parallel in a process known as qubit
averaging can also account for uncorrelated variations in device per-
formance. Due to the limited size of the device, multiple copies of the
ground state optimisation algorithm cannot be run in parallel. How-
ever, changing qubits and layouts of the circuit between runs achieves
a similar effect. Having access to the actual hardware allowed us to
develop protocols which were the most effective at managing errors
on the device. We found that these qubit selection and qubit averag-
ing techniques were essential when running on Sycamore, as specific
qubits often had anomalously bad performance. Despite the theoreti-
cal algorithm being relatively hardware agnostic, practically running on
a near-term device requires tuning to it’s particular error profile.

Depolarisation error is a significant source of error in many NISQ
architectures, particularly on Sycamore. This error is mathematically
described when the states of individual qubits probabilistically mix with
the completely mixed state. This leads to a shift in the measured en-
ergy <E> A common technique for accounting for depolarising error
is to shift or rescale the outputs of the circuits based on some known
reference value. In the case of ground state optimisation, we param-
eterise the circuit to a known energy (E). Following this, we run the
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circuit on the device and measure the output energy given by <E>
Measuring on the device provides an upper bound on the energy of the
prepared state. The rescaling parameter for the remaining circuits of
this structure is therefore (E) /<E> We calculate the reference value
using the transverse field Ising model (TFIM) where g = 0, thus produc-
ing a ground state energy of —1. The parameterisation of the ground
state using our MPS circuits requires setting all the variational param-
eters close to 0. We measure the output energy of this circuit and use
this rescaling parameter for all values of g.

2.2.4 Ground state results

We optimised the combined cost function using Rainbow; Figure 2.3
shows the outcome of this experiment. To do the optimisation on
Rainbow, we used the simultaneous perturbation stochastic approxi-
mation (SPSA) algorithm - a classical optimisation algorithm known to
be noise resilient. The results show that this approach worked well
within the phases on either side of the critical point.

When approaching the ground state phase transition, we gradually
tuned the transverse field term in the Hamiltonian to reach the criti-
cal point in a quasi-adiabatic manner. This involved using the optimal
parameters from previous values of ¢ to initialise the optimisation for
the next value as we approach g = 1. Figure 2.3b shows an example
optimisation curve using this quasi-adiabatic approach.

Given this approach and correctly rescaling to account for the de-
polarisation errors, the results from Sycamore match very closely with
the exact value within the ansatz we used. Note that the deviation
from the exact in ansatz curve with the analytically exact curve comes
from the fact that we are using a reduced parameterisation of our state
and environment unitaries. Though this limitation is required given the
performance of Rainbow, with subsequent improvements in quantum
devices, the reduced parameterisation can be generalised. Despite
this, the performance of this algorithm is good, even near the critical
point of ¢ = 1. The point of most significant deviation from the exact in
ansatz results is at ¢ = 0.4. This performance can be explained by Fig-
ure 2.3c, which shows a typical optimisation curve for this point. There
are periodic oscillations in the optimisation curve on the device with
a period of about half an hour. Though this oscillation was present
throughout the experiment, it seemed to be particularly bad for the
g = 0.4 curve, thus likely preventing the optimiser from performing cor-
rectly. The source of this oscillation is likely a hardware issue.
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Figure 2.3: Results from ground state optimisation on Sycamore:
a)The calculated value of energy at each value of the transverse field
g. The dashed purple curve gives the analytic results calculated in
the thermodynamic limit. In this experiment, the blue curve gives the
result from classically optimising the ground state using the reduced
parameterisation for the bond dimension 2 iIMPS ansatz. The devia-
tion between the ansatz and the analytically exact curves at large g is
due to the reduced parameterisation. The orange and green curves
show the measured ground state energy from optimising the iMPS cir-
cuit ansatz on Rainbow, both without and with the rescaling. The inset
shows the deviation between the rescaled energy measured on Rain-
bow and the exact energy in ansatz. The largest deviation is found at
g = 0.4 with an error of about 2.2%. In b) we demonstrate the quasi-
adiabatic preparation of the ¢ = 1.2 state. Figure c) shows a typical
optimisation curve for ¢ = 0.4, demonstrating a systematic oscillation
during the optimisation that likely caused the larger error at this value.
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2.3 Discussion

This chapter outlined a method to variationally prepare iIMPS circuits
representing the ground states of quantum systems in the thermody-
namic limit. To do so, we represent the infinite states on finite quantum
circuits to measure local observables using environment unitaries to
capture the effects of the infinite states. Subsequently, we outline a
cost function for a variational quantum algorithm that allows you to si-
multaneously optimise energy density and the environment. We imple-
ment this ground state optimisation algorithm on Google’s Sycamore
architecture with appropriate error mitigation strategies. Having ac-
cess to a real device allows us to investigate the error mitigation strate-
gies and optimisation protocols that are actually required for the algo-
rithm to have good performance. We find that Loschmidt rescaling is
a particularly effective strategy against decoherence errors prevalent
on Sycamore. We can reproduce the ground state properties for the
transverse field Ising model across the quantum critical point, demon-
strating the feasibility of this algorithm on near-term quantum devices.

Whether this algorithm provides a potential route to quantum ad-
vantage remains an open question. As outlined in the background,
there is a route to quantum advantage in the contraction of MPS cir-
cuits with high bond dimension on a quantum computer. However,
consideration has to be made for the added complexity of representing
and optimising states with high bond dimension. It is unclear whether
there is a generic way to parameterise high bond dimension iIMPS cir-
cuit states and environments such that the circuit depths are shallow
and the optimisation avoids barren plateaus.

Near-term quantum algorithms must be adaptable to devices with
significantly different characteristics due to variations in the underly-
ing architecture. MPS circuits with space-like and time-like layouts
greatly enhance their portability. Sycamore utilises superconducting
qubit technology and is characterised by relatively short coherence
times and high qubit numbers. This architecture feature means it is
particularly well suited to the space-like layout of the circuits. Alter-
natively, many devices, such as trapped-ion architectures, have fewer
qubits but much longer coherence times and mid-circuit measurements.
The time-like layout of the MPS circuits are more suitable for these de-
vices. It would be helpful to systematically study the tradeoffs between
these layouts with different device characteristics to quantify this algo-
rithm’s portability further.

Investigating increasing bond dimension using iMPS circuit is likely
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a fruitful direction for further study. Optimising the transverse field Ising
model does not produce an appreciable difference when scaling the
bond dimension from D = 2 to D = 4. However, other models of in-
terest in condensed matter physics, such as the Heisenberg model,
need larger bond dimensions for accurate results. A core requirement
for achieving this scaling is improving device fidelity and error mitiga-
tion techniques. However, as quantum devices develop rapidly, these
tensor network circuits provide a systematic way of increasing the com-
plexity of simulation towards problems of practical utility.
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Chapter 3
Quantum state evolution

Simulating the Hamiltonian time dynamics of quantum systems is an-
other route to the utility of near-term quantum hardware. Trotter evo-
lution of quantum matrix product state circuits could provide access
to physically relevant states with high entanglement but relatively low
complexity [63] that can be difficult to simulate directly classically. Here
we outline an algorithm that uses the iIMPS ansatz, introduced in the
previous chapter, to perform time evolution. This protocol develops the
variational quantum algorithm proposed in Ref [84]. Here, we define
a fidelity density cost function to perform time evolution inspired by
classical MPS time evolution methods. We apply this to two current-
generation quantum computing architectures to investigate the dynam-
ical quantum phase transition (DQPT) of the transverse field Ising model
(TFIM). Adapting the algorithm to current-generation devices requires
careful consideration of sources of error and developing novel tech-
niques to perform optimisation. As a result, we present an architecture-
aware and tunable algorithm to run on superconducting and trapped-
ion architectures.

This work was done in collaboration with Andrew Green, James
Dborin, Lesley Gover and Fergus Barratt. In addition, running on
guantum hardware required collaboration with teams from both Google
Quantum Al and Quantinuum. My contributions included discussing
and developing the quantum algorithm and contributing to the code for
the devices. Some of this work and its results are published and form
part of Ref [77].
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3.1 Dynamics with iMPS circuits

3.1.1 Classical MPS time evolution

The time evolution algorithm outlined in this chapter is inspired by
classical techniques used to evolve MPSs. In this section, we review
two key classical MPS time evolution algorithms, namely time-evolving
block decimation (TEBD) [85, 86] and the time dependent variational
principle (TDVP) [87, 88]. Both these algorithms have features that
can be used to understand our quantum time evolution algorithm. For
a complete review of modern time evolution methods using the MPS
ansatz, refer to Ref [89].

Time-evolving block decimation (TEBD)

To time evolve a state |¢(0)) for some time 7', we can consider dis-
cretising the evolution into N steps of size dt = T//N. This discretisa-
tion requires finding a good approximation for the incremental evolution
U(dt) = e~ This evolution is subsequently applied to the state at
time ¢ (|¢(t))) so as to prepare the state at time ¢ + dt (|¢(t + dt))).
In TEBD, the state is parameterised as an MPS, and we apply a time
evolution operator to it approximated using a Trotterisation of U(dt).
Trotterised evolution is unitary and thus decomposable into quantum
gates.

The Trotterisation of nearest neighbour Hamiltonians - such as the
TFIM - in 1D can be constructed as follows. The Hamiltonian H can is
decomposed as

H=3 i, (3.1.1)

where }AZZ'7Z'+1 is the component of the Hamiltonian acting on adjacent
sites 7 and ¢ + 1. The exact time evolution operator U(dt) is given by

U(dt) = e~ = oi(Hevent-Hoga)dt, (3.1.2)

Here, we note that the Hamiltonian H can be broken down into the
sum of two segments. The first segment consists of a Hamiltonian
representing all the even lattice sites - Heyen = Y, EM-H where i is
even. The second segment represents all the odd lattice sites - Hogq =
>, hi i1 Where i is odd.

Using the Baker-Cambell-Hausdroff formula, we can approximate
the sum in the exponential as
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U(dt) — e_i(f{even-i-ﬁodd)dt
— 6—’ilflevendte—iﬁodddte—i[ﬁeven,ﬁodd]dt (31 3)

~ e_iﬁevendte_iﬁodddt =

Utegp1

This construction gives the first order Trotter decomposition Urggp1(dt).
Note that e~iflevendt gnd ¢~iHoasdt gre straightforward to construct as each
of the individual terms in heven and hogg cOmmute with each other.

To see why this is a first-order Trotter expansion, consider the ex-
pansion of the commutator term in dt

eii[HevenﬁOdd]dt ~1- i<dt)2[Hodd7 Heven]- (3.1 .4)

Therefore U(dt) = Urespi(dt) + O(dt?) which means each time step
contributes an error of order dt. Calculating the error over the longer
time T, since we have a total of N = T/dt steps, the total error is

L O(dt?) = O(dt) - a first order error in dt over the course of the entire
evolution.

Higher-order Trotter formulae can be generated by considering higher-

order approximations of the exponentiated commutator. Relevant to
the future discussion is the second-order Trotterisation given by

Urespa(dt) = e ewns ¢~ iHoaadt o —illeweny 3.1.5
TEBD2 )

which has a third order error in the approximation of U(dt) and hence
a second order error in the approximation of the overall evolution.

To access the full time evolution up to time T classically, TEBD
represents Urgpp(dt) as an matrix product operator (MPO) that gets
applied N times to the initial state. The tensor network diagram for a
MPS state evolved using MPOs representing the first order Trotterisa-
tion is shown in Figure 3.1.

To get the MPO representing the evolution, one can apply sequen-
tial SVDs to find the local tensors. Each pair of sites where there is
an interaction e~wi+14¢t has an MPO bond dimension of at most o2,
whereas the identity interactions have a bond dimension that is trivially
1 [89]. Therefore each application of ¢~ievendte=iHoaadt ngcessarily has
a constant bond dimension o2 throughout the chain. Higher order Trot-
terisation can evolve for longer dt with lower error but may require a
higher bond dimension for a single time step.

Repeated application of the time evolution MPOs as required by
TEBD can result in an exponential growth in bond dimension for long
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Figure 3.1: Outline of classical TEBD for a 2 site Hamiltonian: The
initial state |¢(0)) represented by the blue MPS is evolved by the first
order Trotterised TEBD operator which is given by the MPOs on the
even and odd site W,(dt) = e~ and W,(dt) = e " respectively.
The dashed virtual indices of the MPOs indicate that the bonds where
no local Hamiltonian is applied. Hence, they are trivial with a bond
dimension of 1. This diagram shows two applications of Urggp1(dt)
hence resulting in a total evolution time 7" = 2dt.

times. Therefore, repeated applications of the Trottersised unitary are
interleaved with truncations using SVDs to keep the bond dimension
under control. However, this is a leading source of error in TEBD. In
the context of performing a quantum analogue of MPS time evolution,
this SVD truncation step also cannot be directly translated onto a near-
term quantum device.

Time dependent variational principle (TDVP)

In comparison to TEBD, which necessarily leaves the MPS manifold,
TDVP constructs a set of equations that evolves the state whilst re-
maining in the MPS manifold. We can use insights from TDVP to stay
on the iIMPS circuit manifold during the quantum time evolution algo-
rithm.

To understand the key aspects of TDVP for this work, we focus on
the application of TDVP to the uniform matrix product state (UMPS)
manifold [80]. To begin, consider the time-dependent Schrddinger
equation applied to a uMPS with state tensor A,

0
i WO(A)) = H[0(A4)). 3.1.6)
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Generally, this equation’s path leaves the MPS manifold immediately.
However if we want to restrict the path such that it remains on the
manifold - |¢)(A(t))) - then we need to project equation 3.1.6 onto the
tangent space of A(t)

z'gt [W(A(1))) = PawyH [¥(A(2)))

‘ (3.1.7)
= |o(4; 4))

Here P, is the projector onto the tangent space and |¢(B; A)) is a
representation of the tangent vector at A parameterised by B. Note
that finding A the tangent vector that provides the best approximation
to H |¢(A)) can be done directly by constructing the projector onto the
tangent space or by performing the following minimisation

A = argmin|| H [ (A)) — [(B; A)) 13- (3.1.8)

For a formal construction of the projector and subsequent TDVP equa-
tions, see Refs [80, 89]. For the quantum time evolution algorithm
outlined in this chapter, it is important to highlight that projecting back
onto the manifold can be solved using a minimisation problem that can
be variationally optimised.

3.1.2 Quantum iMPS time evolution algorithm

We utilise Trottersiation and projecting back onto the iIMPS ansatz to
perform time evolution in the thermodynamic limit on near-term quan-
tum devices. To evolve the state, like in TEBD, we discretise the time
T into time steps of size dt. At each time step, we prepare the state at
time ¢ using a parameterised iMPS circuit /(U (t))) with state unitaries
U(t). Then we apply a time evolution operator to prepare the state
‘w(t +dt) = e tHd |1/;U(t))> - the evolution operator is approximated by
a Trottersiation. We subsequently project back onto the iMPS manifold
by finding the unitary U(t + dt) that satisfies

U(t + dt) = argmax| ((W)| e [ (U(1))) |. (3.1.9)

The projection of the evolved state back onto the iIMPS manifold is
reminiscent of TDVP. Indeed equation 3.1.9 has a built-in minimisa-
tion problem with a fidelity cost function that can be optimised to find
U(t + dt). Figure 3.2 summarises the overall time evolution algorithm.
Hence, we can use the variational quantum algorithm paradigm to per-
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[Y(t + dt)

[ (U(E + dt)))

Figure 3.2: Overview of the time evolution algorithm: At each time
step ¢ the state is represented by |U(¢)) on the iIMPS manifold. The
state is then evolved using a Trotterised evolution operator, which takes
it out of the manifold to state | (¢ + dt)). Subsequently, we project
the state back onto the manifold by solving a minimisation problem
resulting in the state on the iIMPS manifold at time ¢ + dt given by
\U(t + dt)).

form the update at each time step.

Due to working in the thermodynamic limit, the fidelity of states is
only non-zero when the states are identical. Hence, the cost function
has to be modified to calculate the fidelity density between the up-
dated state |¢ (¢ + dt)) and the parameterised state on the iIMPS man-
ifold |/(U”)). The fidelity density is the leading order eigenvalue of the
mixed transfer matrix Ey- ; between these two states and is given by

AU)  AU)

We(dt)

Ey v (dt) = Wo(dp)

AWy Ay (3.1.10)

As in the groundstate optimisation problem, we can construct finite
circuits to represent the fidelity density cost function. Therefore, at
each step in the time evolution, we perform a variational optimisation
on the quantum device to find the updated states at the next step. The
details of constructing the fidelity density cost function circuits will be
outlined in section 3.3.1. However, first, | will outline the dynamical
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model we are interested in investigating using this algorithm.

3.2 Model choice - DQPT

A good test for the proposed quantum time evolution algorithm would
be a dynamical model with interesting features in the short to medium
time scales. A suitable model, with significant recent analytical and
numerical developments, is the dynamical quantum phase transition
(DQPT). This model refers to non-analytic behaviour in physical quan-
tities of interest as a function of time [90]. A control parameter usually
drives phase transitions; typical examples of control parameters are
temperature and pressure. This control parameter is time in the case
of DQPT.

A common model used to produce DQPT involves a global quench
across an equilibrium critical point. To perform a quench we prepare
the groundstate |y) of an initial Hamiltonian Hy = H(\)). H()) is
some general Hamiltonians parameterised by \. Following this at time
t = 0, we turn on some real-time evolution under a new Hamiltonian
H, = H()\1). The state at time ¢ is therefore represented by | (1)) =
et 1)), To produce DQPT usually involves a global quench across
an equilibrium phase transition, including in the case of the 1D TFIM,
our main focus in this chapter.

The witness for the DQPT during a global quench is the Loschmidt
echo. The Loschmidt echo £(¢) is the fidelity between the evolved state
at time ¢ and the initial state and is given by

L(t) = [(wol e Jeho) > (3.2.1)

In general, this quantity is exponentially suppressed by the size of the
system N. As we are working in the thermodynamic limit, we can
define a rate function A(¢) that is well-defined as the system size scales
and follows

L(t) = e N0, (3.2.2)

In systems that display DQPT, there is non-analytic behaviour in
the Loschmidt echo that is present as kinks in the rate function A(¢)
at certain critical times t.. These changes are analogous to the non-
analytic behaviour of free energy in the context of equilibrium phase
transitions. Non-analytic behaviour in the rate function during a global
guench has been demonstrated in a number of 1D and 2D system
including Chern insulators [91] and the 2D Ising model [92].
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rate function A(?)

o~ e 2

c time ¢

Figure 3.3: Example dynamical quantum phase transition: An ex-
ample plot of rate function over time for a system showing a DQPT.
In particular, this is a sketch of the behaviour of the rate function for a
global quench of the TFIM across a groundstate critical point. This fig-
ure is prepared from real data and comprises of a quench from g = 1.2
to ¢ = 0.5. Note that there is non-analytic behaviour in the rate func-
tion \(¢) at some critical time ¢.; this is a marker for the presence of the
phase transition.

The DQPT demonstrated by the transverse field Ising model is par-
ticularly interesting for our discussion. This model is helpful as the
analytic behaviour of the rate function is known [93], and this phase
transition can be captured well by low bond dimension MPS simula-
tion. Figure 3.3 for a demonstration of these kinks in the rate function
for a DQPT using the transverse field Ising model. Therefore, the prob-
lem provides a sound test system to demonstrate a proof of concept
for our time evolution algorithm.

3.3 Adapting for NISQ Devices

3.3.1 Fidelity density cost function

As mentioned in Section 3.1.2, the primary subroutine for implement-
ing the IMPS time evolution algorithm is optimising the fidelity cost
function. As the time evolution operator is applied globally, the full
circuit for the cost function involves the Trottersied evolution operators
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W (dt)

W (df)

W (dt)

W (df)

U
10)
U W, (dt)
0)

W, (dt)

(b)

Figure 3.4: Fidelity cost function circuit using the iMPS circuit
ansatz: a) The fidelity cost function with a second order Trotterisation.
b) The fidelity cost function with an effective error of O(dt) according
to the TDVP equations due to translational invariance, equivalent to a
first-order Trotterisation.

sandwiched between the iIMPS circuit representing the state at time
t - |¥(U(t))) - and the ansatz iIMPS state to optimise over - |¢(U")).
Figure 3.4a shows the circuit representation of the infinite cost func-
tion using a second-order Trotterisation. Note that all discussion in this
chapter uses bond dimension 2 iIMPS circuits.

We can choose to optimise the fidelity density, thereby compress-
ing this infinite circuit onto a finite one. In addition to compressing to a
finite circuit, direct application of this fidelity cost function on near-term
quantum devices is challenging due to device performance. Hence,
we find adaptations to the cost function by experimenting with current-
generation hardware. The following sections outline critical progress
in defining the fidelity density cost function using Google’s supercon-
ducting Sycamore architecture as a test bed for this development.

65 of 148



3.3. Adapting for NISQ Devices 3. Quantum state evolution

Order of Trotterisation

Firstly, implementing the time evolution operator can often be one of
the deepest parts of the circuit. The tradeoff between increasing the
order of Trotterisation and increasing the circuit depth needs to be
carefully considered. With a higher order of Trotterisation the depth
of the circuit increases however a larger time step can be accurately
simulated as the error per time step is smaller. Therefore, fewer Trot-
ter steps are required for a given evolution. The entire cost function
is shown in Figure 3.4a for the second order Trotterisation will perform
well for a reasonably large dt. In practicality, circuits like the one shown
in Figure 3.4b, showing what looks like a half Trotter step, work much
better on devices like Sycamore that are dominated by decoherence
errors.

In fact, the circuit shown in Figure 3.4b corresponds to an error
equivalent to a first-order Trotterisation. The reduced size of the circuit
is possible since the system we are working with is translationally in-
variant. Hence projecting back onto the iIMPS manifold using the TDVP
equations suggest the circuit shown in Figure 3.4b produces errors in
dt of order O(dt). Hence, this results in a higher order error than one
would expect naively when treating Trotter errors.

Power method to calculate fidelity density

As we are working in the thermodynamic limit, we are interested in
calculating the fidelity density A. In the circuit picture, this can be found
by calculating the leading order eigenvalue of the mixed transfer matrix
Ey i given by

U W (dt) Ut

U Ut

(3.3.1)

Similarly to groundstate optimisation, we can calculate the fidelity
density using environment unitaries. Due to this being a mixed trans-
fer matrix, the left environment is no longer the identity. Therefore, we
need to calculate the left and right environment unitaries L and R, re-
spectively. Figure 3.5a shows the overall circuit for the fidelity density.
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Figure 3.5: Exact circuits for calculating the fidelity density for
the time evolution cost function. Figure 3.5a shows the full fidelity
density cost function circuit. Figures 3.5b and 3.5¢ show the fixed point
equations that need to be satisfied to represent the environments.

If we are to explicitly calculate the environment unitaries L and R,
we now have to optimise two fixed point equations simultaneously. The
circuit diagrams for these equations are given in figure 3.5b and 3.5c.
These fixed point equations vary each time the ansatz unitary U’ is
modified - meaning the optimiser changes the unitaries each time. The
combined cost function to solve these fixed points and optimise the
fidelity density becomes prohibitively expensive for time evolution.

However, we do not need to explicitly solve fixed point equations to
calculate the fidelity density ). Instead, we utilise the power method to
approximate A. The power method states that given an approximate
representation of the left and right eigenvectors L and R of the mixed
transfer matrix Ey 1/, the leading order eigenvalue of the mixed transfer
matrix, and therefore the fidelity density, can be approximated by
LEL R C (U U

’ = lim ————

A= lim =

— = : 33.2
= LEG R wse Oy (U,U) 8:32)

It turns out that, given an excellent approximation to the eigenvectors,
even a low order n for the power method provides a route to estimate
the fidelity density. In addition, the fraction need not be calculated as
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n applications of the transfer matrix approximate the nth order power
on the fidelity density A, i.e. C,,(U,U’) =~ \".

Optimising States

We test the power method for state optimisation to demonstrate low
orders of the power method can accurately calculate fidelity density. In
this experiment, we randomly initialise an arbitrary iMPS circuit with a
state unitary U which is known. We then optimise the fidelity density
cost function (without time evolution) to relearn U from a random ini-
tialisation of the state ansatz U’. This method amounts to optimising
the overlap between the known state | (U)) and the parameterised
state |¢(U’)). An example circuit for C,, (U, U’) from the power method
is shown in Figure 3.6. Here we show an order n = 6 of the power
method with the approximations L =T and R = |0) (0].

There is a tradeoff between the circuit’s depth and the power method’s
accuracy. Fortunately, this method of calculating overlaps has a natu-
ral error mitigation method, which involves rescaling the calculations of
C,(U,U") by the Loschmidt echo circuit C,, (U, U). The Loschmidt echo
circuit should always resolve to the identity, but depolarisation errors
increase as the depth of the circuit increases. Hence, the Loschmidt
echo provides a good way of rescaling the output of the original power
method circuits with the same complexity to account for depolarisation
errors.

Before performing state optimisation, we tested various orders of
the power method on Sycamore to determine the most accurate order
given the decoherence errors. Figure 3.6b shows the performance of
this technique when calculating fidelity density between two arbitrary
states for various orders of the power method. We see that by n = 4,
there is good agreement between the exact fidelity density A and the
one calculated on the device. The point at n = 6 seems to be an out-
lier due to errors in calculating the Loschmidt echo rescaling. Through
interpolation, we find that an estimate of the n = 6 point without this
error lies much closer to the accurate A\. As we can see by the vari-
ance shown in the figure, for order n > 7 of the power method, there
is a significant error in calculating fidelity density caused by decoher-
ence errors on the device that the Loschmidt rescaling can no longer
account for.

We then perform state optimisation using order n = 4 of the power
method. Figure 3.6d shows the outcomes of this optimisation experi-
ment. For this optimisation, this technique works well, with a fidelity of
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0.98 within 50 steps of SPSA optimisation. Further optimisation steps
do not improve the performance due to errors on the device. These
results are promising, but due to the added depth of the time evolution
operators, we need to carefully construct the approximate eigenvec-
tors of the mixed transfer matrix and the order of the power method
before implementing this algorithm to perform time evolution.

Approximating the eigenvectors

A central challenge in utilising the power method to calculate fidelity
density is finding good approximations to the left and right eigenvec-
tors. If the left and right eigenvectors are exact, the power method
is equivalent to our explicit calculation for fidelity density at n = 1.
In the profiling cost function section below, we perform some prelim-
inary testing on Sycamore of approximations to the environment for
n = 2 where we use a classical simulator of the power method cost
functions to determine if they can effectively reproduce the dynamical
phase transition of the transverse field Ising model.

We find the left and right environments are well approximated to the
identity, and a single additional iteration of the state unitary U(t) con-
tracted with its conjugate UT(t) respectively. Heuristically, this makes
sense as the Trotterised evolution operator will act with a relatively
small dt, and these approximate left and right environments should be
accurate to order O(dt?).

Reduced parameterisation

During groundstate optimisation using iMPS circuits, we found that us-
ing reduced parameterisations of arbitrary two-qubit unitaries was nec-
essary to make the optimisation feasible. Inspired by the groundstate
ansatz, we use a modified repeated ansatz shown in Figure 3.7a for
time evolution. This ansatz reduces the number of parameters needed
from a full SU(4) unitary, requiring 15 parameters, down to 8 parame-
ters.

In addition, as the time evolution unitaries act over two qubits, we
can readily parameterise them using a KaK decomposition [76]. Apply-
ing the KaK decomposition and optimising the compilation of the time
evolution unitaries leads to circuits like the one shown in Figure 3.7b.
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Figure 3.6: State optimisation results on Sycamore: a) The cir-
cuit representing the C,(U,U’) term required to calculate the fidelity
density using the power method. This circuit represents n = 5 and
works by iteratively applying n copies of the transfer matrix highlighted
in red and calculating the probability of all zero state |0>®(”+1). b) The
raw output of measuring C,, (U, Up) for various values of n is given
by the blue curve. Depolarisation error is a significant contribution to
the decay of the signal. This can be corrected for by measuring the
Loschmidt echo C, (U4,U,4) at each value of n and rescaling. The
error bars give the standard deviation from 10 repetitions of the mea-
surement. We use 10° samples so sampling error is likely limited and
this is predominantly influenced by noise. c¢) The estimates for fidelity
density using the power method at each value of n. These results in-
clude the Loschmidt rescaling to mitigate for errors. The dashed line is
the exact value calculated classically. By n = 4, the measured value of
the fidelity density on the device closely matches the exact value. As n
increases, the results seem to converge to the correct value. Asn > 7,
the deplorising error dominates the results. Note that the pointatn = 6
is an outlier, likely due to an error in calculating the Loschmidt rescal-
ing. By interpolating the Loschmidt rescaling as shown in b), this value
can be corrected for. d) Stochastic optimisation of the fidelity density
circuits for n = 4 to show that these fidelity density circuits can be used
for state preparation.
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Figure 3.7: Parameterisation of unitaries for time evolution. Figure
a) shows the parameterisation for the state unitaries. The gates R,
and R, are rotation gates given by R,, = exp(—io;#) where o; is the
respective Pauli operator. This decomposition is a reduced parame-
terisation of the full SU(4) unitary, which requires 15 parameters down
to a parameterisation which only requires eight parameters, one for
each rotation gate. Figure b) shows the parameterisation of the time
evolution unitaries after being decomposed into a Kak decomposition
and compiled by Google’s compiler for the Sycamore processor. The
gates labelled U; represent arbitrary rotation gates and S represents
the viSW AP two-qubit gate, which is native to Sycamore.

Profiling Cost Function on Sycamore

We profile the cost function at various time steps on Sycamore to verify
the fidelity density cost function circuits. To do so, we select a set of
time steps and calculate the optimal parameters at the start and the
end of the optimisation. We draw a linear path from the initial point
in the optimisation to the optimal point and beyond, selecting evenly
spaced points on this path. The fidelity cost function circuits are run on
Sycamore at each point to get a picture of the cost function landscape
on the device.

Several error mitigation techniques were used to give the best pos-
sible performance on the device. We use a method we refer to as
Loschmidt rescaling to account for depolarisation error (note that this
is not directly related to the Loschmidt echo in DQPT). In this case, we
require circuits with equivalent complexity to the Trotterised evolution
operator that resolves to the identity. Analogous to the rescaling used
in groundstate optimisation, we are able to prepare a circuit with a sim-
ilar complexity to the target circuit with a known output value (an all |0)
state). A simple way to implement this is to perform the Trotterised evo-
lution with an extremely small dt using the initial state unitary and its
Hermitian conjugate as the state ansatz on either side of the operator.
From 3.6 this technique has a limitation that when the circuits become
too large the signal from the circuit is too small to accurately rescale.
In addition to Loschmidt rescaling, we used qubit selection and qubit
averaging to account for stochastic variations in device performance
over the run of the experiment. Figure 3.8b shows the cost function
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profiling experiment results for the chosen orders of the power method
and optimal environment. The key takeaway from this experiment is
that the optimal parameters, given at parameter step 5, are the opti-
mal points of the cost function both when calculated classically and on
Sycamore’s processor.

The results from Sycamore suggest this cost function can per-
form time evolution using iIMPS circuits on near-term devices. Figure
3.9 outlines the approximate fidelity density cost functions in both the
space-like and time-like layout. However, running the entire time evo-
lution requires careful consideration of how to effectively perform the
optimisation, including accounting for noise-resilient and shot-efficient
routines.

3.3.2 Tuning Optimisation

Due to noise on NISQ devices, the choice and tuning of the classical
optimisation algorithm are vital in the success of any quantum vari-
ational algorithm [94]. Many native quantum optimisation algorithms
work by utilising the properties of the underlying parameterised quan-
tum circuit to perform classical optimisation. However, we choose to
use SPSA for our optimisation due to its noise resilience and the fact
that it has been used in other variational experiments using near-term
guantum devices.

Despite this choice, sampling costs can be a fundamental limita-
tion for variational quantum algorithms, potentially preventing quantum
advantage [95].The issue of sampling can be particularly problematic
for platforms like the trapped-ion systems, where gate times can be of
order 10?15 [96].

At first glance, our time evolution algorithm is in a dire situation,
requiring an optimisation loop at each time step. However, choosing
a good initialisation can significantly reduce the number of samples
an optimiser needs. When time evolving a state, we expect the pa-
rameters in parameter space to vary smoothly. Therefore, given infor-
mation about the parameters at previous time steps, the optimisation
can be initialised by a simple extrapolation that can be performed ef-
ficiently classically. The extrapolation method can vary in complexity,
from something as simple as polynomial spline to as complicated as
a classical machine learning model. The complexity of the classical
extrapolation method needed will be correlated with the shape of the
paths in parameters space. A good choice in circuit parameterisation
could lead to a more straightforward path and hence a less compli-
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Figure 3.8: Profiling fidelity density cost function on Sycamore:
Figure a) shows classically simulated data to measure the dynamical
quantum phase transition of the transverse field Ising model through a
global quench from g = 1.2 to ¢ = 0.5. The blue curve shows the ana-
lytically exact result from the literature. The orange dashed curve the
evolution produced by optimising the leading order eigenvalue of the
mixed transfer matrix classically. This curve uses the same reduced
parameterisation for the state unitaries that is used on the circuit. The
dashed-dotted green curve shows the optimisation of noiseless simu-
lation of the proposed fidelity density cost function circuits. This shows
that the circuit cost function can faithfully track the behaviour of the dy-
namical phase transition. Figure b) shows the cost function evaluated
on Rainbow. The parameters at each time slice highlighted by the grey
vertical bars in a) are taken, and a line is drawn from the initial param-
eter at time ¢ and the optimal parameters at time ¢ + dt. Equally, space
points are taken along this line and the value of the circuit cost function
is measured on Sycamore. Parameter step 0 is the parameter at the
initial point of the optimisation, and step 5 is the optimal point. The
green curves show the measured values on Sycamore and the blue
curve shows the exact. The circuit values are error-mitigated using
Loschmidt rescaling. Note that the optimal value calculated classically
matches the optimal parameters on the device.
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Figure 3.9: Approximate cost function circuits for time evolution:
Both circuits show second-order power method circuits with a time evo-
lution operator (shown in green) with errors equivalent to the first-order
Trotterisation of the evolution operator. The state unitaries are given in
blue, and the state unitary at time ¢ is given by U, whereas the ansatz
state unitary to optimise over is given by WW. The regions highlighted in
red represent the environments. Figure a) shows a space-like layout
of the circuit, which is in left canonical form. The left environment L is
the identity and the right environment R is repeated applications of the
state unitary U. Figure b) shows a time-like layout of the circuit in the
right canonical form. Hence, the left environment L is repeated appli-
cations of the state unitary U and the right environment is the identity,
amounting to not measuring the right environment qubits.
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cated extrapolator. When viewed in this paradigm, the quantum com-
puter can be regarded as making stochastic corrections on a classical
model for the evolution of the state.

3.3.3 Dynamics on a trapped-ion device
Experiment outline

We performed an entire run of the time evolution algorithm on Quantin-
uum’s trapped-ion H1 device. We initialise the evolution with the ground
state of the TFIM for ¢ = 1.5. We perform a quench using the time
evolution algorithm with a Hamiltonian of the TFIM at ¢ = 0.2. The
Loschmidt echo for the time-evolved state is measured at each time
step to determine whether a DQPT is observed.

We use the time-like versions of the fidelity density circuits to eval-
uate the cost function. The circuit shown in Figure 3.9b represents
Cy(A, B) from the power method (Equation 3.3.2) and is the circuit we
ran on the device. We use the same approximations to the environ-
ment used in the Sycamore circuits with a SWW AP gate added to the
ansatz to map the space-like ansatz used on Sycamore to the time-
like form. Whereas the space-like circuit was well suited to Sycamore,
this time-like rewrite uses the longer coherence times and presence
of mid-circuit measurement of the qubits on H1. Given the excellent
coherence times on Quantinuum’s device, we found that error mitiga-
tion schemes such as Loschmidt rescaling are unnecessary. However,
the restricted shot budget placed significant limitations on performing
variational quantum algorithms on this device.

We optimise the cost function using SPSA with an initialisation
based on a linear extrapolation. This simple classical method worked
due to a fortunate choice in the parameterisation for state unitaries
U. Due to this choice, there is a restriction in the gauge of the state
unitaries so that the parameters vary relatively linearly in parameter
space during the evolution. Using this initialisation scheme, we can re-
duce the shots required for a full time evolution by around three orders
of magnitude, effectively making our algorithm feasible on near-term
quantum devices. To utilise this extrapolation in the experiment, we
classically find the first two steps in the optimisation by optimising the
classical transfer matrix representation of the fidelity cost function. We
then use these initial parameters to seed the next steps’ extrapolation.
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Results

Figure 3.10 shows the results of using our time evolution algorithm to
investigate a DQPT of the transverse field Ising model. This figure
shows the results of this experiment for a single run on H1 overlaid
(shown in black) over 50 runs on the classical emulator of H1 (shown
in grey).

The results from the H1 device and emulator qualitatively show the
DQPT clearly. A deviation in time is seen both in the results and using
the classical in ansatz simulation using the transfer matrix. There-
fore, the deviation is likely due to the reduced parameterisation of the
state unitaries. The variance of the 50 emulator runs could be due
to either fidelity error due to device performance or sampling error,
as we were limited to 6000 shots per optimisation. In an ideal sce-
nario a higher shot budget would be possible for improved optimisa-
tion, up until the device errors begin to dominate. Figure 3.10b shows
a further simulation with the same number of shots and gates with
no noise. The noiseless simulation’s variance is similar to the emula-
tor’s (which accounts for the gate noise present on H1). This suggests
that this experiment was limited by sampling error instead of device
fidelity. As near-term devices develop, shot budgets will likely increase
significantly, suggesting that this algorithm will improve considerably
with device performance. In addition, more sophisticated initialisation
schemes could be investigated which would utilise the currently avail-
able shot budget better.
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Figure 3.10: Full run of time evolution on Quantinuum’s H1 device:
Figure a) shows the results of running the full time evolution algorithm
using the time-like fidelity density cost function on Quantinuum’s H1
device. The results show the recurrence behaviour we expect from
the dynamical quantum phase transition of the transverse field Ising
model. As previously, the red curve and the yellow curve show the
analytically exact and transfer matrix simulation respectively. The grey
curves show 50 runs on the emulator for the H1 device, giving an idea
of the variance of this method. The black curve shows a run on the H1
processor. A significantly optimised SPSA was used with only approx-
imately 6000 shots per time step. We utilise classical linear extrapo-
lations of previous time step parameters to initialise the optimisation.
Figure b) demonstrates the variance expected with perfect gates us-
ing the same number of shots. As can be seen the variance is still
large, suggesting the sources of the variance are predominantly due
to sampling noise as opposed to device fidelity.
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3.4 Discussion

In this chapter, we develop a proof of concept for a variational algo-
rithm to time-evolve quantum states using the quantum iIMPS ansatz.
This work involved the implementation of a fidelity density cost function
that evolves the state at each time step using a Trotter evolution and
subsequently projects the state back down onto the quantum iIMPS
manifold. We demonstrate the feasibility of this algorithm for probing
a subtle quantum dynamical problem, the dynamical quantum phase
transition of the transverse field Ising model, using superconducting
and trapped-ion hardware. To do so required careful consideration of
each type of architecture and an algorithm readily adaptable to each
device’s individual strengths. In addition, an initialisation strategy is
proposed, significantly reducing the sampling requirements for the op-
timisation steps in the time evolution after some initial time steps. Con-
sequently, the results suggest that current-generation quantum com-
puters can capture interesting features of quantum dynamical systems.

Though this proof of concept was successful, work is still required
to get true quantum advantage when dynamically simulating quantum
systems. As with the groundstate optimisation problem, a clear route
to this would be to increase the bond dimension. This is particularly
relevant during time evolution as we expect the entanglement of states
to grow systematically with each Trotter step. Hence, a straightforward
adaptation of this algorithm, where the bond dimension of the ansatz
state in the fidelity density cost function is increased, could provide a
route to time-evolving states beyond what is currently feasible using
standard classical MPS methods.

A core open question remains how to efficiently increase bond di-
mension whilst maintaining reasonable sampling. Initialising the quan-
tum optimisation using a simple classical model proved to be a power-
ful method for reducing the sampling complexity in this instance. This
procedure would have to be generalised to incorporate increasing the
bond dimension. As the bond dimension increases, the number of pa-
rameters required to represent a state unitary increases significantly.
Therefore, more sophisticated classical models, such as polynomial
splines or machine learning, may be necessary to account for the in-
crease in the size of the parameter domain.

During the experiment with the H1 device, we noticed that the de-
vice’s fidelity was not the dominant source of error. Therefore, the
tradeoff between the order of Trotterisation and the time step size may
not be optimal. This device profile may accommodate a higher order
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Trotter step and, thus, an increased time step while still providing good
accuracy. Increasing the time step offers additional benefits, such as
reducing the amount of sampling necessary to evolve for a given time
as the time step sizes are larger. Hence, subsequent experiments
could look into how the algorithm could be tuned further for the de-
vice characteristics of H1. This feature of the algorithm, to be tunable
to particular device characteristics, emphasises the portability of this
algorithm to different NISQ devices.

Finally, this time evolution algorithm prioritises state fidelities; how-
ever, this may not be a good metric to preserve for achieving long
time evolution. Recent developments in classical tensor network meth-
ods for time evolution have found that preserving local properties of
states, namely local reduced density matrices, is a more efficient way
of achieving long time evolution. The underlying principle behind this
choice is that relatively local correlations often bound physical prop-
erties of interest. Therefore, one can achieve long time evolution by
prioritising local observables, which inherently limit the bond dimen-
sion growth during evolution. Analogues of this idea using the iIMPS
ansatz are further explored in the following chapter.

79 of 148



4. Local density matrix evolution

Chapter 4
Local density matrix evolution

A problem of particular interest in condensed matter physics is how
macroscopic thermal properties arise from non-equilibrium dynamics
[97]. Answering this question through simulating real-time dynamics
is particularly challenging for large systems as resource requirements
grow significantly with system size [98]. Applying standard tensor net-
work techniques to evolve the entire state, such as in the case of
TEBD, for MPSs would result in an exponential increase in the bond di-
mension with time [89]. Therefore, accurate simulation is only possible
for a short time.

Do we need to represent the entire state at all times? Many quan-
tities of interest, such as single spin polarisation, are local [99]. Fur-
thermore, thermodynamic properties are often calculated by breaking
down the quantity into a sum of local operators. Perhaps all that is
required is preserving the state up to some local patch, i.e. preserving
the local density matrix of the state during evolution. Further motiva-
tion for this approach can be found given that thermal density matri-
ces, a representation of quantum systems at long times, have efficient
tensor network representations. Given that thermal correlations often
decay exponentially [100], there is strong evidence that 1D and 2D
Gibbs states above a finite 5 can be represented accurately by finite
bond dimension tensor networks. Hence, given a thermal correlation
length ¢, simulating a patch size of order O(¢) accurately allows for the
calculation of any thermal properties once thermalised.

This section outlines an approach to perform real-time evolution
whilst optimising the local density matrix at each step. We are in part
inspired by several recent approaches in this field with similar ideas, in-
cluding density matrix truncation (DMT) [101] and dissipation-assisted
operator evolution (DAOE) [102]. Previous approaches focus on using
MPOs to represent density matrices and evolve the state whilst pre-
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serving local density matrices through methods including preserving
a hierarchy of operators about the boundaries or artificial dissipation.
Our approach performs the evolution on a iIMPS state ansatz whilst
performing the evolution by preserving local density matrices using a
trace distance metric. A benefit of this method is that we utilise the
structure of the time evolution algorithm proposed in Chapter 3 with a
modified cost function that can be implemented on a quantum device.

This chapter first introduces a classical algorithm for performing
the time evolution. We apply this algorithm to the dynamical phase
transition problem outlined in Chapter 3. Finally, we propose analo-
gous local density matrix cost functions that can be represented on a
quantum device. The work in this chapter is my own and was done in
collaboration with Andrew Green.
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4.1 Preserving local information

Generally, time evolution algorithms look to preserve the full state fi-
delity at all times. However, doing so requires significant computational
resources. As an example, consider quench dynamics in 1D spin sys-
tems. Usually, quantum quenches start with easy-to-prepare states,
such as the ground states of gapped Hamiltonians, where an efficient
MPS representation is known to exist. As the system evolves, the
bond dimension D needed to accurately capture the unitary dynamics
of arbitrary Hamiltonian scales as O(exp(t)) [103]. We can heuristi-
cally motivate this result by recognising that the Trotterised propagator
et jn TEBD can be represented by an MPO with a bond dimension
x. The number of MPOs needed to reach a total evolution time ¢ scales
linearly with ¢. Evolving the state involves contracting this sequence of
MPOs with the initial MPS. The bond dimension of the resultant MPS
when an MPOQ is applied to it is the product of the original MPS bond di-
mension and the MPO bond dimension, hence the exponential scaling
in the bond dimension when evolving to the total time ¢ [48].

However, on the other side of long-time evolution, thermalised 1D
systems are known to have an efficient MPO representation [104].
Thermal density matrices are represented by the Gibbs state p =
e PH /7, where Z is the partition function, H is the Hamiltonian and
g is the inverse temperature. Thermal expectation values of an opera-
tor A are calculated by sampling the Gibbs state

(A) (4.1.1)

B

AeBH
=T
7]

where 7 is the partition function. It is known that the Gibbs state shows
a decay in correlations between observables separated by a distance
[ on a lattice. In 1D translationally invariant systems, there is an expo-
nential decay in correlations [105], namely correlations decay as e /¢
where ( is some thermal correlation length. This results in the bond
dimensions required for sampling thermal systems being dependent
on intrinsic properties such as the thermal correlation length and inde-
pendent of the system size [100, 106].

We propose constructing classical algorithms whereby the quantity
preserved is not the global fidelity but the observables over some lo-
cal patch. In 1D, results suggest that the D needed to represent local
observables on k sites with error ¢ is D < exp(k/e). Hence, heuris-
tically, algorithms that can maintain this bond dimension up to some
thermalisation time can potentially simulate thermalising dynamics for
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local observables. Several recent algorithms have been proposed that
prioritise preserving local observables whilst controlling bond dimen-
sion. Examples include density matrix truncation, where a hierarchy
of operators is used to preserve information close to the boundary
in 1D systems [101], the dissipation-assisted operator evolution that
uses dissipation operators to remove weights from non-local operators
[102], and the time evolution of local information where the dynamics
of an information lattice are modelled directly [99]. These algorithms
can often simulate thermalising systems with even lower bond dimen-
sions than the theoretical limits suggest. This is likely due to underly-
ing structures in the Hamiltonians we are interested in simulating that
results in intrinsic properties requiring fewer resources than the theo-
retical results.

In this chapter, we devise our algorithm that preserves local infor-
mation during time evolution. We adapt the time evolution algorithm
proposed in Chapter 3, where we preserve local density matrices in-
stead of preserving the global fidelity of a state. This adaptation pri-
marily requires rewriting the cost function that projects the state back
onto the iIMPS manifold. We begin by discussing a classical version of
this cost function and propose the adaption to the quantum time evo-
lution algorithm that has the potential to be applied on current NISQ
devices.

4.2 Evolving local density matrix

To construct a cost function that preserves local density matrices, we
first propose a method to represent local density matrices classically
using the IMPS ansatz. Once we have this representation, we can con-
struct a classical cost function analogous to the fidelity density one that
preserves a metric based on local density matrices. The requirements
for this construction include remaining within the thermodynamic limit
and being readily translatable to a quantum cost function. We also
propose methods for applying time evolution operators to the density
matrix representation.

Density matrices are constructed by calculating the outer product
of a state and its adjoint. The same operation can be applied to IMPS
states to construct the density matrix p = |¢) (¢|. In the thermody-
namic limit the states |¢) are represented by iIMPS, an infinite chain of
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repeated state tensors. Therefore p is written diagrammatically as

(4.2.1)

To construct the local density matrix pr over a region R of size L using
this ansatz requires taking the partial trace over all the legs in p not in
the region. Hence, pr can be written as

pR:...

(4.2.2)

The chain of traces can be replaced by the action of the environments
on either side of the region R. Assuming that r and [ represent the right
and left eigenvectors of the state transfer matrix, pr can be written as

PR =

(4.2.3)

Note that if we are in left canonical form, [ will reduce to the identity.

We can extend this prescription for local density matrices to include
time evolution operators. Assuming the iIMPS state tensor at the initial
time is A(0), to time evolve the density matrix at initial time p(A(0))
up to a time ¢ under a Hamiltonian H requires the application of a
propagator U(t) = e~ such that

p(A(0):1) = U(6)p(AO)UT (1), (4.2.4)
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As with the state evolution algorithm, the propagator U(¢) can be con-
structed using Trotterisation. Consider the Trotterisation of a two-site
Hamiltonian up to first order; the evolution of the density matrix can be
represented diagrammatically as

(4.2.5)

Note that in this diagram the green connections represent the even and
odd Trotterised evolution operators. The conjugation of operators in
the adjoint space is implied. As in the density matrix with no evolution
case, we represent the local density matrix over a region R of size L by
performing a partial trace over the infinite chain. Selecting the region
R to be of size 2, the evolved local density matrix is

(4.2.6)

Given the fact that the propagator U(¢) is a unitary and therefore sat-
isfies UUT = UTU = I, this infinite contraction can be reduced using
this condition and the environments [ and r of the state transfer matrix.
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Hence the reduced contraction of pr(t) can be written as

(4.2.7)

Note that this construction is specific to the order of Trotterisation and
region choice. Different orders of Trotterisation or choice of region
may change the structure of the diagrams needed to represent local
density matrices. Additionally, this local density matrix represents only
one application of the Trotter operators. Multiple applications of the
Trotter operators will also extend the diagrams.

Now that we can construct local density matrices, the following sec-
tion outlines constructing cost functions based on preserving the trace
distance between the local density matrix of an evolved state with the
local density matrix of an ansatz state to be optimised.

4.3 Optimising local cost function

As in Chapter 3, we can formulate the time evolution algorithm within
the framework of a variational algorithm. We discretise the overall evo-
lution time T into steps of size dt, and at each step, we encode the
evolution within the optimisation of a cost function. We perform this op-
timisation over a region R of length L. Therefore, note that all density
matrices p(-) below are constructed over the patch R. The target den-
sity matrix is the time-evolved reduced density matrix p(A(t);dt) that
we construct by applying the evolution propagator U(dt) to the local
reduced density matrix p(A(t)) as outlined in Seciton 4.2. We optimise
the distance between p(A(t); dt) and the reduced density matrix of the
ansatz state p(A’) within the left canonical IMPS manifold. We can use
several different metrics to perform this optimisation; the one used in
this chapter is the trace distance of the local reduced density matrices.
Hence, the state tensor within the ansatz at the time ¢ is given by

A(t) = arg min Tr[(p(A(t); dt) — p(A))?]. (4.3.1)
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The procedure is identical to the time evolution algorithm outlined
in Chapter 3. In fact, as L — oo, the fidelity density cost function
is identical to the reduced density matrix cost function. We expect
that there will be some minimal patch size L = L., that needs to
be preserved such that the dynamics and behaviour of the state are
preserved faithfully. However, in most instances, we expect L;je,, 10
be sufficiently small due to thermal correlations decaying exponentially
in 1D. The bond dimension on p(A’) needed to track the dynamics
accurately is also bounded by the size of the patch (L) Necessary
to preserve dynamics.

4.3.1 Derivative of local cost function

To optimise this cost function using gradient-based methods, this sec-
tion shows how to calculate the derivative of the local density matrix
cost function with respect to A’. The cost function has two terms which
depend on A', namely Tr[p(A')p(A")| and Tr|p(A(t); dt)p'(A’)|. Dia-
grammatically, these two terms for a patch region R of size L = 2 can
be written classically as

@)
T p(A(0): d)o' (4') = (@) )
@) (4.3.2)

(4.3.3)

where ps; = p(A(t);dt). Calculating the derivative requires removing
A’ at each position where it appears and summing over all these terms.
For example consider the derivative of the Tr [p(A(t); dt)pT(A’)] term of
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the cost function. The sum for this term can be written as

% Tr p(A(0); )pt(A") =- -

(4.3.4)

Both cost function derivative terms have an infinite sum to the left
and right of the region R that need to be represented. To compute
this infinite sum, we utilise the pseudoinverse as outlined in Ref [80].
Consider the sum of all the derivative terms to the right of the region R
of Tr [p(A(t); dt)p'(A')]

oo B ()

(4.3.5)
Fundamentally, this term requires evaluating the infinite sum over pow-
ers of the transfer matrix £. The pseudoinverse arises from the fact
that the transfer matrix can be broken down into a regularised term E
and a projector term P onto the fixed points [ and r such that

S ET=YE"+ Y P (4.3.6)
n=0 n=0 n=0

The projector term >, P* = P may be divergent but does not con-
tribute to the derivative; hence, we can project out this fixed point term.
As the spectral norm of E is less than 1, the geometric sum can be
written as -
S Er=(1-E)"=(1-E" (4.3.7)
n=0
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In this equation, the second term refers to the pseudoinverse operator
where the fixed point of F is first projected out and then the inverse
is taken. Note that direct inverse calculation is not necessary numer-
ically; instead, one can set up generalised eigenvalue equations to
construct representations of the pseudoinverse for computing deriva-
tives.

Given the use of pseudoinverses to represent the infinite sum, we
can now write the full derivative for the cost function. First we consider
Tr|p(A(t); dt)p(A")] for L = 2 that has two derivative terms from the
region R and two further gradient terms from the infinite sum to the left
and right of the patch. Hence, the overall derivative for this term in the
cost function is given diagrammatically as

2T p(A(); dt)pT (A7) =

(4.3.8)

The diagrammatic representation for the term Tr [p(A/)pT(A/)] can also
be constructed and is given by

@

o Trp(A)pt () = 2x | @)

. (4.3.9)

where o'y = p(A').
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4.3.2 Optimising the local density matrix cost

Since we can now construct derivatives, we can apply gradient de-
scent to optimise the classical local density matrix cost function. At its
simplest, the updated tensor A’ is given by A’ = A+ uD where A is the
original tensor, 1 is some learning rate and D is the derivative tensor.
We refer to this direct update scheme as the uniform update.

However, we would like to preserve the isometric form of the iIMPS
when optimising. This can be achieved by performing a polar decom-
position on A’ once the uniform update is applied. This method ef-
fectively finds the nearest isometric tensor to A’ after performing an
arbitrary update. However, this method can be unstable and slow to
converge. To improve this technique, we apply ideas from the Rieman-
nian optimisation of isometric tensor networks [107]. In Riemannian
optimisation, we calculate a gradient tensor from the derivative that is
used to update A whilst (approximately) preserving its canonical form
throughout the update. In other words, the derivative calculates a gra-
dient that remains in the tangent space of the isometric tensor A.

The manifold of isometric MPS tensors is the Grassmann mani-
fold. This manifold comprises of all state tensors A that satisfies the
isometric condition ATA = T and are invariant under the gauge AU
where U is an arbitrary unitary. The following discussion summarises
the necessary constructions for Riemannian gradient descent on the
Grassmann manifold as applied to the MPS tensor A. For a full review
of Riemannian gradient descent methods applied to isometric tensor
networks, see Ref [107].

The first step in Riemannian optimisation is to map the derivative
D into a gradient on the tangent space G. This projection is applied
using a Euclidean metric and results in the following mapping between
the derivative D and the gradient G,

G=D— AA'D. (4.3.10)

Given a gradient tensor GG, we can perform a retraction to update the
state tensor A. A retraction is a generalised way of updating the matrix
A'in the direction of a tangent vector whilst preserving the properties of
the manifold. The choice of retraction is not unique, and several exist
for the Grassmann manifold [107]. Given a tangent vector X = uG,
where 1 is a tunable hyperparameter equivalent to step size, we use
the following retraction.
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_XT
RA(X) = (4 V)exp ()O( g( ) (4.3.11)

In this equation, V' is a unitary completion of A.

We now have all the components required to perform Riemannian
gradient descent. Given an initial tensor A, we first calculate the pro-
jection of the partial derivative D to calculate the gradient G within
the tangent space. We then use the above retraction to calculate the
updated tensor for the state at the next optimisation step. Although
this is out of the scope of the current work, one can also construct
vector transport equations to use information about gradient tensors
from previous optimisation steps. This information is crucial for more
sophisticated optimisation algorithms like conjugate gradient methods.

The efficiency of this algorithm can be improved by applying suit-
able preconditioning to the gradient tensor G before performing the
retraction. In MPS literature, it is common to use a preconditioner as
follows

G — G(r+ |G|, (4.3.12)

where r is the right fixed point of the transfer matrix. In this instance,
the preconditioner acts as a regulariser. When this preconditioner is
applied in the context of Riemannian optimisation of MPSs it has links
to imaginary time evolution using TDVP [107].

To test the impact of applying Riemannian gradient descent, we
consider the speed of convergence of an arbitrary optimisation. We
utilise the local density matrix cost function on a patch of size 2 to
optimise an ansatz tensor to match a random initial iIMPS. Figure 4.1
shows the convergence of the trace distance between the two local
density matrices over the patch and the gradient norms. These results
show that the Riemannian update with no preconditioning is slower
than a straightforward uniform update, with a final trace distance worse
than a uniform update. This decrease in performance may be due to
the additional restriction of forcing the update to remain in the canon-
ical MPS manifold. Despite this, the gradient norm is smaller in the
Riemannian update with no preconditioning case than in the uniform
update after 100 iterations. However, with preconditioning, Rieman-
nian gradient descent converges significantly quicker and to a lower
minimum than alternative optimisation strategies. The final trace dis-
tance between the ansatz and target states is lower after 500 iterations
for the manifold update with preconditioning compared to the uniform
update.
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Figure 4.1: Comparing optimisation for local density cost func-
tion: Here, we show a trace of the optimisation at one time step using
gradients calculated on the uniform MPS with no modification. In addi-
tion, we show Riemannian descent on the Grassmann manifold, with
and without the preconditioner. Note that although the uniform update
is effective, it does not preserve the isometric conditions of the un-
derlying tensor network. The Riemannian descent optimisation on the
Grassmann manifold with a preconditioner converges to a significantly
lower trace distance from the original evolved reduced density matrix
and has a significantly smaller gradient norm of the update at the final

step.
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4.3.3 Testing with dynamical phase transition

To test this time evolution algorithm, we benchmark it using the DQPT
of the TFIM as detailed in Section 3.2. As we are interested in applying
this algorithm to study the system’s medium to long-time behaviour, we
evolve the system up to ¢t = 5. The patch size used for this experiment
is L = 4. Note that we expect this algorithm to be more accurate as
patch size increases. The optimisation algorithm used is Riemannian
gradient descent using the Grassmann manifold with preconditioning.
The iIMPS representing the ansatz is limited to a maximum bond di-
mension of D = 4.

Figure 4.2a demonstrates that this update procedure works well for
this experiment, particularly at early times, as three recurrences of the
Loshcmidt echo are observed. However, at early times, some points
do not entirely lie on the analytical curve, such as around ¢ = 1. After
t = 6, the results begin to diverge significantly from the analytical. This
figure also compares our algorithm to iTEBD with a maximum bond
dimension 190 at t = 10. The dynamics produced using iTEBD match
the analytical curve exactly, and we will use them as a reference for
the performance of our local cost function algorithm.

The Loschmidt echo curve that we use to determine the perfor-
mance of this algorithm is a global measure of the state and is depen-
dent on state fidelity. However, as our algorithm attempts to preserve
the local density matrix equivalent, we prefer to construct a local mea-
sure of the Loschmidt echo, which we refer to as the trace Loschmidt
echo. The trace Loschmidt echo is given by

AL(t) = 7 Tog (Trlpx (A(D)o(AO))]), (4.3.13)

where py(A(t)) is the local density matrix with patch size L at time .
As L — oo, the trace Loschmidt echo approaches the state fidelity-
based Loshcmidt echo. Figure 4.2b shows the trace Loschmidt echo
at all times for iTEBD and our local cost function algorithm. The early
time performance for our algorithm tracks the iTEBD trace Loschmidt
echo significantly better. At late times, the performance breakdown
seems to happen slightly later and in a more controlled manner, where
the recurrences’ shape is still present.

Figure 4.2c shows the error measured as the fidelity density with
the state found using iTEBD. As this is a global measure of close-
ness, we expect our algorithm to deviate significantly. The deviation
of fidelity density from the iTEBD curve seems to line up well with the
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Figure 4.2: Simulating DQPT using local density matrix cost func-
tion: a) Shows the Loschmidt echo for the quench dynamics of the
TFIM using the analytical results, iTEBD and the local density matrix
evolution algorithm. The bond dimension of iTEBD was unbounded
and rose to D = 190 by the end of the simulation. The density ma-
trix cost function was bounded to a bond dimension of D = 4. b)
In the same experiment, we measure the local density matrix equiva-
lent of the Loschmidt echo, the trace Loschmidt echo given by equa-
tion 4.3.13. The local measure was constructed using a patch size of
N = 4. c) The fidelity density of the state found using our algorithm
compared to iTEBD. d) The trace distance of the reduced density ma-
trix formed using iTEBD and our algorithm on a patch size N = 4.
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decay in performance of the Loschmidt echo curve, with a significant
decrease in fidelity at around ¢ = 5. In contrast, Figure 4.2d shows
the trace distance between the local density matrix found using our
algorithm and iTEBD for a patch of size N = 4. Until time ¢ = 6, this
error is well controlled at order 1072, seemingly maintaining a lower
value for longer times than the fidelity density. After this time, the error
increases significantly, possibly due to the limited bond dimension or
the support of the operators spreading beyond the patch size. This
behaviour of the trace distance error may explain the divergence in
the trace Loshcmidt echo performance at late times. In theory, as the
patch size is increased the behaviour of the algorithm should tend to-
wards that of iTEBD. However, if our hypothesis for developing this
algorithm is correct, there will be a finite patch size beyond which local
measures remain accurate throughout the evolution. Thus requiring
less resources than the implied infinite patch size of iTEBD whilst still
providing good understanding of the physics behind thermalisation in
the long time limit.

4.4 Local density preserving circuits

Evolving the state by prioritising local density matrices can be adapted
to run on a quantum device. We adjust the algorithm in Chapter 3,
where we implement the local density matrix cost function instead of
the fidelity density cost function. To calculate the local density matrix
cost function in equation 4.3.1 requires evaluating each of the three
terms in this cost as independent circuits. As an example, take the
Tr[p(A(t); dt)p(A")] term, the circuits for this term are shown in Figure
4.3. Once again, we have flexibility in the structure of the circuits to be
in the space-like or time-like form. The choice of circuit structure will
depend on device performance, allowing this algorithm to be portable
between different architectures.

There is a potential advantage in adapting these circuits onto a
quantum device due to the advantage in evaluating the cost for large
patch sizes. Growing the patch size on a quantum device linearly in-
creases the depth and width of the circuits, even for large bond dimen-
sion. Classically, this is prohibitively expensive, aside from a relatively
small range of patch sizes, as larger patches might require higher bond
dimensions and an increase in the number of contractions with patch
size. However, optimising these circuits on NISQ devices will likely
require similar considerations to the ones used when optimising the
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Figure 4.3: Local density matrix cost function circuits The
a) space-like and b) time-like circuits needed to calculate the
Tr[p(A(t); dt)p(A")] term of the local density matrix cost function. The
unitary U represents the state tensor A(t) and the unitary U’ repre-
sents the state tensor A’. The measurements will once again be used
to perform the SWAP test. The evolution operators in this figure cor-
respond to a first-order Trotterisation. The operators W, and W, refer
to the Trotterised evolution terms e~ *#i* where H; is H.,., and H,u
respectively.

96 of 148



4.4. Local density preserving circuits 4. Local density matrix evolution

fidelity density cost function. In particular, carefully considering the
approximations to the left and right environments, considering poten-
tial methods to reduce the shot cost associated with optimisation and
developing error mitigation techniques for NISQ devices will be neces-
sary.
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4.5 Discussion

This chapter proposes a novel algorithm for performing real-time evolu-
tion by preserving local density matrices. By optimising the cost func-
tion based on the trace distance between the local reduced density
matrix, we can evolve a iIMPS state ansatz through a global quench.
To do so, we show how to calculate the derivatives of this cost func-
tion classically with the translationally invariant ansatz. Furthermore,
we outline how to optimise this cost function so that it remains on the
manifold of canonical iIMPSs through Riemannian optimisation. We
can reproduce the DQPT of the TFIM up to a long time with a small
patch size. Furthermore, we propose quantum circuit equivalents for
the classical cost function, which can be optimised to perform this evo-
lution on a quantum device.

The proposed purpose of this algorithm is to investigate thermalis-
ing systems. Rapidly thermalising systems such as the non-integrable
regime of the TFIM, as outlined in Ref [108], would be a good test of
the classical algorithm. We hypothesise that this algorithm will require
patch sizes independent of the system size and instead dependent on
intensive quantities such as thermal correlation length. A systematic
investigation of the necessary patch size to simulate a thermalising
system based on intensive properties of the underlying Hamiltonian of
the evolution would be a promising next step.

Varying the patch size requires improving the efficiency of con-
structing the derivative tensors and optimisation. The naive order of
contraction outlined in this chapter may not be optimal. There are sev-
eral redundant portions of contraction; therefore, caching and improv-
ing contraction ordering can significantly enhance the performance of
this algorithm. Furthermore, the Riemannian optimisation algorithm
outlined here is analogous to gradient descent. More sophisticated
optimisation algorithms, such as conjugate gradient methods, could
be used to improve the convergence rate.

In addition to the experimental development of this local density
matrix cost function, there are open questions regarding its theory.
Given this cost function, writing explicit equations of motion for the
tensor would be beneficial. Theoretically, there should be similarities to
the TDVP equations, which can be derived from the fidelity density cost
function. If explicit equations can be constructed from optimising the
local density matrix cost function, it would be interesting to consider its
behaviour as the patch size L — oco. We hypothesise that there should
be similarities between these equations and the TDVP equations for
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state optimisation.

This algorithm has been designed to map the cost function to a
quantum device directly. Quantum devices will likely have an advan-
tage given the polynomial increase in the size of the circuits with patch
size. Analogous to Chapter 3, implementing this algorithm on NISQ
devices requires careful consideration of the optimisation strategies
when applying the local density matrix cost function on a quantum de-
vice. Porting ideas such as the classical initialisation scheme, it is
worth running the DQPT problem on a quantum device using the local
density matrix cost function as a test. Further development is required
to grow the circuit’s patch size and bond dimension.
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Chapter 5

MPS Pre-Training

In this chapter, we propose an improved approach to the training of
PQC by intialising it with a classically trained MPS. We apply this pro-
cedure to quantum machine learning (QML) to train a variational quan-
tum classifier. In particular, we suggest that this technique effectively
reduces the effects of exponentially flat cost function landscapes, oth-
erwise known as barren plateaus. Training the classical MPS for ma-
chine learning tasks required an implementation of the DMRG inspired
optimisation scheme outlined in Ref [60]. We show that initialising a
general brick wall circuit with the classically trained tensor network
improves accuracy and reduces loss compared to random and iden-
tity initialisations. This technique broadly applies to other variational
problems which are candidate areas for quantum advantage, includ-
ing quantum simulation and combinatorial optimisation, as shown in
Ref [109]. However, | focus on machine learning for brevity and clarity
in this section. Warme-start initialisation techniques like this are likely
to be crucial for efficient optimisation on near-term hardware due to
device error and hardware limitations.

This chapter begins with an introduction to variational quantum
classifiers and discusses barren plateaus. Following this, | outline the
classical MPS classifier algorithm outlined in Ref [60] that we use to
train the MPS before embedding. | then outline the overall algorithm
for initialising classically trained MPSs onto parameterised quantum
circuits that we refer to as the MPS pre-training algorithm. Finally, we
show the utility of the MPS pre-training algorithm for training a brick
wall circuit to classify images from the Fashion-MNIST dataset.

This project was done in collaboration with James Dborin, Fergus
Barratt, Lewis Wright and Andrew G Green. My contributions involved
coding up and training the classical MPS before embedding on the
quantum classifier. This work is published and forms part of Ref [109].
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5.1 Variational quantum classifiers

Utilising quantum computers for machine learning tasks is a field of
significant recent interest. QML is a broad field with several parallel re-
search directions. For example, quantum algorithms could represent
full quantum models or speed up linear algebra subroutines needed
for pre-existing classical algorithms. Differentiation has been made be-
tween the performance of quantum models for quantum data and the
performance possible when loading classical data. Variational quan-
tum models - utilising PQC - stick closely to the view of machine learn-
ing models presented in algorithms such as neural networks. Here,
the quantum circuits provide a model ansatz trained over variationally.
Alternatively, it has been proposed that the route of encoding data in a
high dimensional Hilbert space means that QML is more reminiscent
of kernel-based methods. A full review of QML literature is beyond the
scope of this thesis; however, Ref [110] provides a broad introduction
to modern techniques in this field. This section reviews the aspects of
QML most relevant to this thesis, namely training PQCs (sometimes
referred to as quantum neural networks) for supervised learning.

5.1.1 Overview of supervised learning

Supervised learning is one of the two main learning problems we are
interested in solving in machine learning. This task has an input do-
main X and an output domain Y. We are given a labelled dataset D,
a set of NV points (z;,y;) where y; is the point in the output domain
corresponding to x; in the input domain. This correspondence comes
from an unknown underlying probability distribution p(y,z). The task
in supervised learning is to generate a model for which an unclassified
input z € X will produce a corresponding output y € Y that follows the
distribution p(z,y).

Generally, supervised learning is done under a restricted model
family f. For example, in classical machine learning, the particular
architecture of the neural network may restrict the model family. Gen-
erally, the optimal model within the family is found by minimising loss
function L(f(z),y). Loss measures the differences between the pre-
diction a particular model makes f(x) with the actual value y. The opti-
mal model is defined as the one having the minimum average value of
L, averaged over the entire data domain. In classical machine learn-
ing, the model family is often optimised by variationally updating model
parameters 6,.
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Figure 5.1: Overview of variational quantum classifiers: a) Some
data, whether quantum or classical, is embedded in a quantum wave-
function using a quantum data encoding. The entire dataset wave-
function |D) is a superposition of individual data points | (z)). b) A
general quantum model f,(z) represented by a parametrised unitary
U(z, ). Note that in this diagram, the data embedding and model are
represented by the same unitary. This quantum view allows for general
protocols such as data reuploading where the data embedding is in-
terspersed with the PQC representing the model. The quantum model
fo(x) is trained using the variational quantum algorithm paradigm out-
lined in Section 1.2.3.

There is a natural correspondence between minimising the loss of
classical machine learning models and optimising the cost function of
PQCs. We must specify three main concepts to fully specify the trans-
lation of the classical machine learning ideas to QML. Namely, how
data can be encoded, how quantum models are constructed and how
the loss is optimised in the context of variational quantum algorithms.
Figure 5.1 outlines the first two steps.

5.1.2 Quantum data encoding

Assuming we can represent the input data classically, it is necessary
to embed the data into quantum states to process them on a quantum
device. The choice of quantum feature map - the process of convert-
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ing classical data into a quantum state - can heavily determine the
quantum model’s efficiency and performance. Several feature maps
exist, including basis encoding, amplitude encoding and Hamiltonian
encoding. It is also possible to train the feature map [111] to improve
the performance of the quantum model. Here, we give an overview of
two simple examples of quantum feature maps: basis encoding and
amplitude encoding.

Basis encoding

The basis encoding is one of the simplest methods of encoding in-
put data. It involves representing the input data point x on a binary
sequence of length 7. This binary sequence is then loaded onto the
qubit register. If the input = has more than one dimension, then each
dimension has a specified sub-length 7,, and the entire input bit string
is constructed by concatenating the bit strings of each dimension.

For example consider an input data vector x = (2, 7) encoded on a
input bit string of length 7 = 6. We can consider each dimension of the
input vector encoded onto a bit string of length 7, = 3 and concatenate
the two bit strings to get the input bit string. In this case the input
vector is encoded as (2,7) — (|010),|111)) and the final input state is
|010111).

In general an input bit string x = (b1, bs,...,b,) with b, € 0,1 of
length n requires a quantum state |z) = |by, bs, ..., b,) Of n qubits. For
a single data point, this is readily loaded into a quantum computer
using a single layer of Pauli X rotations on each qubit : where b, =
1. Hence, this representation requires at most n gates and is gate
efficient. Although many qubits may be needed to represent data with
high precision.

The data can be loaded in superposition to represent an entire
dataset 2™ € D with M data points. This ends up being a super-
position of the basis states |z™) and corresponds to

1 M
D) = NeYi 2_: |z™) . (5.1.1)

The full Hilbert space of the quantum state represented by n qubits is
much larger than the number of input data points M. Due to this spar-
sity, there are some efficient algorithms for loading data onto quantum
devices [112]. In addition, quantum random access memories refer to
devices that are supposed to perform these sorts of data-loading op-
erations in parallel efficiently. However, designing and building this
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hardware remains an open problem [113] with issues including the
exponential scaling of resources when adding memory elements, in-
creased circuit depths leading to issues with noise on NISQ devices
and limitations around no-cloning theorems limiting readout.

Amplitude encoding

Instead of representing data on the basis of quantum states, one can
also prepare an arbitrary complex input vector z € C¥ in the amplitude
of a quantum state such that

N-1
lz) = > i) (5.1.2)

=0
This encoding requires the input vector to be normalised, i.e. 3;|z;|*=
1 and its length has to be padded such that N = 2" where n is the
number of qubits.
In this instance the full dataset D = {z', 2% ... 2™} of length M
can also be loaded in superposition such that

1 M-1

|D) = W Z_:O |z™) |m) . (5.1.3)

Amplitude encoding requires a number of qubits n > log,(NM).
Preparing an arbitrary quantum state in the single and entire dataset
case might be necessary. In general, arbitrary state preparation has a
cost that is exponential in n.

5.1.3 The quantum model and training

The quantum model, as used in this thesis, defines a model family
fo by a parameterised quantum circuits (PQC) with circuit parameters
6. In the most general case, the quantum model and data loading
procedure is represented by a unitary U(x, #). Therefore, the action of
a particular quantum model for input data = can be written as

fo(w) = (0| UT(z,0)MU (2, 0) [0) = (M), 4, (5.1.4)

where M is some Hermitian operator defining a quantum observable.
A diagrammatic representation of a quantum model is shown in figure
5.1b.

Like variational quantum algorithms, this quantum model is trained
using a classical optimiser. This structure is sometimes called a quan-
tum neural network in quantum machine learning literature. Hence, to
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train this PQC requires defining a cost function that evaluates the loss
function of the quantum model. A common example of a cost used in
QML is one which, for a given input data point z;, minimises the trace
distance between the label y; and the model prediction fy(x;) given by

C(0) = Z[yi — (0| U (x,0) MU (x,6)]0)]2. (5.1.5)

The optimisation algorithm, like in the case of PQC, is usually de-
cided based on heuristics about device and model performance. Some
of the most popular optimisation algorithms in quantum machine learn-
ing involve evaluating gradients of the cost function. It turns out that
performing gradient-based optimisation using quantum models requires
careful consideration due to the presence of barren plateaus.

5.1.4 Barren plateau

A challenge when utilising quantum algorithms is the question of train-
ability of the PQC. Examples of problems with trainability include vari-
ational training getting stuck in local minima [114, 115] or model ex-
pressibility being limited [116, 117] and hence no solution exists in the
variational ansatz. A problem of significant research interest is the
issue of barren plateaus [40, 118].

Fundamentally, barren plateaus refer to flat variational landscapes
where changing the parameters 0 in the PQC produce exponentially
small changes in the cost function C(0), and hence partial deriva-
tives of the cost function. Mathematically, a barren plateau is defined
when the variance of the cost Vary[C(0)] € O(b~") where b > 1 [40].
As cost functions on quantum computers are evaluated using sam-
pling, the exponentially small gradients require significant precision
and hence exponential scaling in the number of shots to optimise [25].
Barren plateaus pose a significant problem in gradient-based optimi-
sation schemes as the gradients at a randomly chosen point are van-
ishingly small. As gradient-free optimisation is based on evaluating the
cost function at multiple points, if the loss landscape is sufficiently flat,
these techniques will still have challenges optimising cost functions
which display barren plateaus.

Barren plateaus arise from several different sources. Initially, they
were found in the context of randomly initialised PQCs [118]. Sub-
sequently, a wide variety of causes for barren plateaus have been
found, including but not limited to ansatz expressibility [119], exces-
sive entanglement in the PQC [37], when the cost function depends
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Figure 5.2: Parameter initialisation for barren plateaus: A
schematic of a loss function £(#) which has a barren plateau. The
landscape looks flat on average, as shown by the regions annotated
as barren plateaus. However, some barren plateaus may have a train-
able region around their minima at ¢*, such as the region highlighted
in blue. The idea behind parameter initialisation is to have a method
of starting the training of the optimiser with an initial point 6, that is
within the trainable region. Hence, in this region, the gradient is not
suppressed and gradient information can be used to train the model.

on a global observable [120] and Pauli noise representative of device
noise if a circuit scales linearly with the number of qubits [39]. In recent
years, there has been significant theoretical interest in barren plateaus,
and several of the causes outlined previously have been linked to the
curse of dimensionality [40]. To see this, consider a simple exam-
ple where the cost function is a function of the Hilbert-Schmidt inner
product Tr(pTO(e)). Here p is the input state as a density matrix, and
O(9) = UT(0)MU represents the represents the PQC and measure-
ment operators. Note that any random choice of # and a sufficiently
large Hilbert space containing these operators will not align in the inner
product. Hence, the inner product will be vanishingly small. Variational
training schemes try to optimise functions of these inner products and,
therefore, will not have sufficient information to train on unless the al-
gorithms are tuned carefully.

Several heuristically and theoretically motivated strategies exist to
avoid barren plateaus. When the problem is physically motivated or
has a structure to the problem that can be utilised, restricting the
ansatz is an effective way to reduce the effects of barren plateaus.
For example, knowledge of a parent Hamiltonian’s structure can limit
the ansatz for learning mixed states [121]. One can also design an
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ansatz to be shallow, thus producing an architecture resistant to bar-
ren plateaus. An example of this is the quantum convolutional net-
work [122]. Note that shallow circuits are not enough to prevent barren
plateaus. Designing the cost function limited to local terms may also
be necessary to avoid barren plateaus [120] in general.

Alternatively, certain cost-function landscapes displaying barren plateaus
sometimes include small regions with non-vanishing gradients around
some minima. This feature is sometimes called a narrow gorge [123].
A random initialisation of parameters is likely to produce a barren plateau
as it will be far from the minimum. However, initialising the parameters
of the PQC close to the minima can mitigate the effects of the barren
plateau. Figure 5.2 demonstrates a sketch of this strategy to avoid bar-
ren plateaus. There are various strategies to initialise the parametri-
sation such as by initialising blocks of the circuit to close to the identity
[124], or pre-training the parameters using a classical neural network
[121]. In a similar vein, training the parametrised quantum circuit in lay-
ers allows for increasing the depth of the PQC whilst remaining close
to the minima in a controlled way [125]. Note that the technique of
initialising the time-evolution using a simple classical model we use in
Chapter 3 could be viewed as an example of this. This chapter outlines
a strategy inspired by this layerwise learning approach to mitigating
barren plateaus whilst utilising the MPS quantum circuit ansatz.

5.2 Tensor network machine learning

Quantum machine learning also studies classical techniques motivated
by ideas from the quantum community, often referred to as quantum-
inspired techniques [110]. One example of such a technique is the de-
velopment of tensor network machine learning algorithms. In these al-
gorithms, tensor networks of various architectures are used as a model
family, which is optimised to perform a particular machine learning task
[60, 61, 126]. Different classical optimisation techniques are also ap-
plied to these algorithms, including gradient descent-based methods
that are applied to neural networks and DMRG inspired methods na-
tive to tensor networks [126].

A full review of all available tensor network machine learning meth-
ods is beyond the scope of this thesis. However, in this section, we
outline one of the first algorithms used to perform supervised learn-
ing in tensor network machine learning as outlined by Ref [60]. This
algorithm for performing supervised learning classically using a MPS
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ansatz forms the basis of the training of the classical MPS in the pre-
training work. The algorithm proposed consists of three main steps: a
data encoding step to encode classical image data, a model evalua-
tion step to process the encoded data through the model and a DMRG
inspired optimisation algorithm.

5.2.1 Data encoding

As in the case of loading classical data onto a quantum computer,
the data vector is encoded onto a quantum state to be processed
by the MPS classifier. A product state encoding is proposed, where
the input data = = [z1,2,...,2y] iS encoded onto a state ¢(z) =
b1(11) ® Po(w2) @ ... ¢n(xN). Here, the state ¢ is a d¥-dimensional
Hilbert space comprised of local d dimensional spaces represented by
the local embedding ¢;. As we are working with spin 1/2 systems, we
set d = 2. This feature map is reminiscent of the amplitude encoding
outlined in section 5.1.2. The local feature map proposed in Ref [60] is
given by

oj(x;) = {cos (ng>,sin (;Tx])] (5.2.1)

5.2.2 Evaluating the model

To classify a particular instance of an encoded input vector ®(z), we
contract it with the model represented by W by evaluating |V - &(z)].
In the case where there are two classes A and B, the contraction
evaluates the probability of being in one of the classes; for example,
the probability of A is P(A) = |WW - ®(x)|, and the probability of B is
P(B) = 1— P(A). The bond dimension of the MPS model IV deter-
mines the expressibility of the model.

If there are | > 2 classes, this algorithm employs a one-versus-all
strategy to determine the class. In this view, [ classifiers are trained,
one for each class, and the classifier with the largest contraction with
®(x) determines the model’s prediction label. A brief notation for rep-
resenting this is to turn the MPS classifier into an MPO with a single
output leg of dimensionality [, represented by WW'. In the diagrammatic
notation, the contraction of W' with the encoded input vector ®(z) is
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represented by

i) = W' o) =

5.2.3 DMRG-inspired optimisation

To train the MPS classifier, Ref [60] proposed a DMRG-inspired opti-
misation algorithm. The cost function that motivates this optimisation
is the quadratic cost function given by

ZZ (W @ () — vh)> (5.2.3)

Note that the sum over m is over the M input data vectors, and ¢/,
represents the one hot encoded label for the input vector z,,. One hot
encoding refers to the fact that when [ is the correct label for z,, then
y. = 1, otherwise y!, = 0. This quadratic loss is analogous to the
guantum machine learning cost function outlined in equation 5.1.5.

The optimisation algorithm works similarly to 2-site DMRG, optimis-
ing two adjacent sites simultaneously. Consider optimising the sites j
and j + 1, and the first step is to calculate the gradient of the cost func-
tion concerning this combined tensor. Consider combining the tensors
Aland A, at site j - note in this instance it is assumed that site j also
holds the label leg [. Differentiating the cost function with the combined
vector B results in a gradient tensor AB' given by the diagram

AB' =3, W d(m) = Yol dm

l

|£ P(@m) — yh,)

CLPTIIN
. (5.2.4)

Note that the second line of this equation represents AB! where j = 1.
The ®(z) in the first line refers to an effective projection of the input
vector and the differential of W' with respect to B.
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The next step in the optimisation is to perform a gradient descent
update. Hence, the tensor B! is replaced by a tensor B" = B! + uAB!,
where u is a small step size. After the update, the updated model
must be put back into the MPO form. In addition, the label leg [/ has to
be swapped with the following site so that this optimisation algorithm
can sweep correctly across the length of the model. These objectives
can be achieved simultaneously by performing an SVD with the label
leg grouped with the j + 1 leg. Specifically, the updated tensor is bro-
ken down using an SVD such that B}, |, = ¥, U;:5:xV{ ;,, and the
updated tensors at site j and j + 1 are A} = U; and A}, = SV}, re-
spectively. As with the usual 2-site DMRG, truncation of the diagonal
matrix S allows one to control the bond dimension of the model. In ad-
dition, this optimisation algorithm involves sweeping along the model
and moving the label as necessary.

In subsequent work, the optimisation algorithm was modified to fit
with traditional machine learning optimisation frameworks using stochas-
tic gradient descent. However, we implement the DMRG-inspired opti-

misation scheme for this work.

5.3 MPS pre-training a quantum classifier

The MPS pre-training algorithm we propose fits into a class of heuristic
warm start techniques to avoid barren plateaus. Such techniques use
the fact that although on average the cost function landscape of a par-
ticular PQC may exhibit barren plateaus, there may be regions where
the variance of the cost function landscape does not decay exponen-
tially. This may be the case for areas around the minima of the cost
function landscape. Therefore, initialising the parameters in the optimi-
sation close to the minima is one way to mitigate barren plateaus and
speed up training efficiency. Figure 5.2 demonstrates a sketch of this
procedure.

Using the fact that MPS of a (small) finite bond dimension can be
trained efficiently, we can train a classical MPS to initialise the param-
eters of a PQC. In a method we call MPS pre-training, we first train
an MPS of a fixed bond dimension classically. Then, we compile this
trained MPS onto a PQC by using the translation of MPSs onto a stair-
case quantum circuit. Finally, we continue to generalise the initialised
PQC to a brick wall circuit and continue its training. This way, initialis-
ing the brick wall circuit allows us to significantly increase the speed of
training the PQC.
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In Ref [127], we demonstrate the flexibility of this initialisation paradigm
for various settings. We demonstrate this algorithm for quantum sim-
ulation through the initialisation of VQE [43, 128]. To gain the initial
MPS state, in this case, we utilise imaginary time TDVP to prepare the
ground state. Additionally, we demonstrate that this technique works
in optimisation problems by training it to solve Max-Cut optimisation
[129]. The initial MPS is generated here by encoding the optimisa-
tion problem onto a Hamiltonian and finding the ground state of this
Hamiltonian using imaginary time TEBD. In this chapter, | focus on the
utility of MPS pre-training when solving machine learning problems.
We focus on the binary classification of t-shirts and trousers from the
Fashion-MNIST dataset [130], a general image classification problem
used in machine learning.

5.3.1 Training MPS

To prepare the initial MPS for classifying Fashion-MNIST data, we
utilise the algorithm outlined in Section 5.2. Before training the MPS,
the data size must be reduced to fit on a circuit with a few qubits.
Fashion-MNIST data is a 28 x 28 pixel image, with each pixel taking
a value between 0 and 255 to denote the darkness of the pixel. To
compress these images, we use principal component analysis (PCA)
to find the principal components of the training data. To do so, we
collate the training data set into a matrix of X. We then calculate the
covariance matrix ¥ = X7 X. Performing an SVD of the covariance
matrix produces the principal components

> = UDUT, (5.3.1)

where the columns of U correspond to the principal components. Given
N qubits, the first N principal components are taken from U. For a
given image in the training set z, the data point can be represented on
the basis of the principal components by taking the inner product with
the normalised principal component. For the jth principal component
u; the new value z; would be given by

Hence, the new 7 is the input to the data encoding on an N qubit
circuit. In particular, the data encoding used here was the rotation
angle on a parametrised Pauli R, gate for each qubit. We use this and
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the classical MPS classifier training algorithm to initialise the quantum
circuit.

5.3.2 Compiling MPS and training general PQC

Once the MPS classifier is trained classically, it needs to be compiled
onto a PQC. The DMRG inspired optimisation scheme means that the
model remains canonical throughout the training and can, therefore,
be readily embedded onto a staircase circuit. During the training, the
classical MPS is restricted to bond dimension two. Therefore, only
two-qubit unitaries are needed to represent each state tensor. We can
efficiently compile these unitaries onto a PQC using the Cartan or KaK
decomposition [76]. The circuit diagram for the KaK decomposition is
shown in Figure 5.3c. To initialise with higher bond dimension MPSs
may require a more general decomposition routine. Certain classes of
higher bond dimension MPS can be intialised using reverse-staircase
circuits [63].

Once the MPS is used to initialise a PQC, this method allows us
to train a more expressive PQC. This more general circuit may have
been challenging to train before this initialisation due to issues such as
barren plateaus. A natural way to generalise the staircase circuit pro-
duced by the MPS compilation is to embed it in the diagonal of a brick
wall circuit. Brick wall circuits are general parametrised quantum cir-
cuits restricted to nearest-neighbour interactions. Hence, the diagonal
of the brick wall circuit is initialised to the parameters of the MPS com-
pilation, and the off-diagonal elements can be initialised to the identity.
In doing so, the PQC has performance at least as good as that of the
embedded MPS at the start of the training. Then, the optimiser is free
to train the angles on all of the gates in the circuit and should converge
within a relatively low number of updates. In the next section, we show
this for the case of classifying Fashion-MNIST data.

5.4 Results - classifying Fashion-MNIST

To verify the MPS pre-training procedure with the binary Fashion-MNIST
dataset, we compare the performance of initialising the optimisation
using an MPS to random initialisation and identity initialisation. lden-
tity initialisation is a common technique [124, 125] where some subset
of the rotation angles inside a circuit are set close to zero. As men-
tioned in section 5.3.1, the input data is encoded using a R, () rota-
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Figure 5.3: Quantum circuits for MPS pre-training: a) The circuit
model used to train the quantum classifier for Fashion-MNIST. The
classically trained MPS is embedded onto the diagonal of the brick wall
using the U unitaries shown in blue. The unitaries needed to embed a
classical MPS of bond dimension two span two qubits. Therefore the
KaK decomposition [76] is used to embed these unitaries, as shown in
c). The unitaries U(#) in the decomposition correspond to an arbitrary
single-qubit rotation parametrised by three angles. The X X (x), YY (y)
and ZZ(z) correspond to Pauli parity gates raised to a power given by
the input. The off-diagonal given by the W unitaries are initialised to
the identity and subsequently trained after the classical MPS is em-
bedded. The Y (#) unitary is a Pauli o, rotation gate with angle 6. The
controlled X (0) is a controlled Pauli o, rotation gate. The data vector
7 is embedded onto the circuit using Y (z;) gates on the ith qubit. The
component z; is given by the projection onto the ith principal axis of
the training data. The decision function f(Z) is given by the probability
of measuring all 0s. The label 0 is assigned if f(Z) < 0.5; otherwise,
the label one is assigned.
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tion gate on each qubit with the rotation angle 6 given by each element
of the input vector x. The parametrisation of the circuit representing
the quantum model is given in Figure 5.3. The diagonal unitaries in
the brick wall represent the MPS and the parameters are found by the
KaK decomposition, and the off-diagonal unitaries are parametrised by
two R, (¢) rotation gates and a controlled R, (¢) rotation gate. As this
is a binary classification problem, the output of the model f,(z) given
an input z is either 0 or 1. Therefore, the probability of the all |0) state
gives fy(z). Hence, if fy(x) < 0.5, then the data x is assigned class 0
or else it is assigned a class of 1.

To train the PQCs, we utilise the binary cross-entropy loss, which
is given by

C0) = —]1[ > prloglfawn)] + (1 — g logll — fole],  (G41)

where z; and y; are the ith input and label data from a dataset of size
N. Noiseless simulation is used to train the PQC, which is done using
the Adam optimiser. Training is done stochastically in batches of the
input data, and an epoch is defined as when one full run of the entire
dataset occurs.

Figure 5.4 shows the results from training the PQC using random
initialisation, identity initialisation and MPS pre-training. Note that the
MPS initialisation used five epochs of classical training before compil-
ing on the PQC. The classical pre-training results in an initial MPS with
an accuracy of 70 — 90%. The results show that the MPS pre-training
provided a lower loss and higher accuracy throughout the optimisa-
tion. In particular, at the early stages of the optimisation, the MPS
pre-training worked significantly better, only taking two further epochs
of training to reach a plateau compared to the other methods that re-
quired at least four epochs. Early epochs show a much better perfor-
mance in the MPS pre-trained circuits, showing that the circuits are
initialised much closer to the optimal point in the cost function land-
scape. Hence, this technique may be resistant to barren plateaus in
certain instances.
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Figure 5.4: Results from MPS pre-training: The binary accuracy and
loss is given for training a PQC using random initialisation, zero initiali-
sation and MPS pre-training. These are given as a function of the train-
ing epoch to determine the strategy that converges the most efficiently.
The classical MPS was trained for five epochs before being compiled
onto the quantum circuit as in Figure 5.3. Pre-training the circuit using
an MPS allows the training of the PQC to converge within two epochs.
Compared to the other methods requiring at least four epochs for the
training to converge, MPS pre-training is more efficient on the quantum
device. There is a tradeoff being made here where additional classical
resources are needed for training. The idea is that using classical re-
sources on a smaller model can initialise a more complex PQC whilst
avoiding a barren plateau. The MPS pre-trained circuits also start the
training at a much lower loss and higher binary accuracy, suggesting
they are in a region of the loss landscape that is easier to train. To
confirm this hypothesis, however, would require training on a problem
which clearly shows a barren plateau.
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5.5 Discussion

This chapter outlines a method that utilises the efficiency of classically
trained MPS to help train general PQCs. Our method initialises the
variational quantum circuit in a place in the cost function landscape
close to the minima of the loss, thereby allowing for efficient train-
ing. We demonstrate this technique for training a variational quantum
classifier on a binary classification problem from the Fashion-MNIST
dataset. We classically train the MPS using a tensor network-inspired
classical training scheme. We propose that this technique effectively
heuristically mitigates the effects of barren plateaus as regions around
minima are likely candidate areas for non-vanishing gradients. This
initialisation scheme allows for training of PQCs that might otherwise
be difficult to train.

The proposed technique is similar to other techniques to mitigate
the effects of barren plateaus. A broad class of warm-start techniques
initialise quantum circuits to improve trainability. Other classical pre-
training methods, such as neural networks, can initialise the param-
eters of a PQC [131]. The PQC can be sequentially grown based
on insight about the physical problem, allowing for an ansatz that is
restricted in its expressibility based on the problem [132]. For some
PQCs, the parameters for a problem concentrate around particular val-
ues; hence, parameters can be transferred between different models
[133], allowing for an effective initialisation. These warm-start tech-
niques are known to be some of the most promising techniques for
mitigating the effects of barren plateaus [40] and are reminiscent of
the heuristic success that parameter initialisation has in classical ma-
chine learning literature. This technique is a general one which can
be applied beyond the context of machine learning. In Ref [127], we
explore how this technique can be used for problems in quantum sim-
ulation and combinatorial optimisation. Alternatively, we could use in-
sights around warm-start techniques to improve the initialisation of the
optimisation in the variational time evolution algorithm developed in
Chapter 3 of this thesis.

The MPS pre-training technique has an interesting relationship with
layerwise learning strategies [124, 125]. Here, a PQC is divided into
layers, and one layer is trained at a time whilst the remainder stays
fixed. In theory, this is very similar to the MPS pre-training scheme,
as the layers of the circuit are often chosen to be a patch of up to the
depth two nearest-neighbour interacting unitaries. This type of circuit
can be efficiently represented by a low bond dimension MPS. Hence,
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this type of training can be viewed as the training of a finite correlation
length MPS. The parametrisation of the layers is often a more restric-
tive ansatz than the more general MPS representation. Hence, classi-
cally training and embedding the MPS may provide a better initialisa-
tion than layerwise training. The MPS pre-training technique could be
readily adapted to represent layerwise learning. Classical MPS tech-
niques allow for gradually growing the bond dimension. When viewed
in the context of MPS pre-training, this corresponds to gradually in-
creasing the size of the diagonal of a brick wall circuit.

A natural extension of this algorithm is to consider alternative ten-
sor network architectures. Depending on the problem, alternative ten-
sor network geometries may be more suitable. In fact, in the context of
machine learning, PEPS [134], MERA [135], and tree tensor network
[61] architectures have been proposed. In theory, the choice of ansatz
may require motivation based on the entanglement behaviour of the
underlying data. In addition to this, we only consider MPS classifiers
in one canonicalisation. This choice in canonicalisation means that the
depth of the circuit needed is linear in the number of qubits. However,
a mixed canonical circuit reduces the depth necessary to initialise a
circuit representing this MPS. This may allow the classical MPS with
the same bond dimension to efficiently initialise a PQC more densely,
further improving the initialisation. Overall, many directions for future
study may further enhance the performance of such tensor network
initialisation schemes.
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Chapter 6

Deterministic Tensor Network
Classifier

As shown in Chapter 5, there has been recent interest in tensor net-
work inspired methods for machine learning. Here, we present a novel
algorithm to produce a tensor network based feature extractor by sum-
ming quantum state representations of classical images. We show
how this sum state feature extractor can be used as a classifier and cal-
culate the performance of such a classifier on the MNIST and Fashion-
MNIST datasets. This algorithm could be used as a precursor to pre-
pare a classical MPS classifier that can be embedded into a quantum
circuit for quantum machine learning.

In addition to generating this sum state classifier, we present a
method to improve this classifier through ideas inspired by quantum
stacking [136]. We propose introducing a stacking unitary to multiple
copies of the output of the feature extractor. In doing so, this method
has similarities to data reuploading in the quantum machine learning
literature. In this work, we outline potential methods for initialising this
stacking unitary and compare it to classical training on the output of
the feature extractor.

In this chapter, | first outline the construction of the sum state fea-
ture extractor and its use as a classifier. Following this I introduce the
notion of stacking and the construction and refinement of the stacking
unitary. This work is done in collaboration with Lewis Wright, Brian
Coyle and Andrew Green. My contributions include discussion into the
development of the sum state algorithm and stacking ideas. | devel-
oped the code and ran experiments related to stacking, particularly
in improving the stacking cost function. A pre-print of portions of this
work is available at Ref [137].
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Figure 6.1: Data encoding for deterministic classifier: The data
encoding for 2D image data first involves flattening the data by con-
catenating the rows along one axis. The resulting array can be viewed
as the amplitude of a basis set. Through a sweep of SVDs this basis
state can be turned into an MPS.

6.1 Data encoding

The deterministic generation of a tensor network feature extractor first
requires encoding the data as a quantum state. As in Chapter 5, we
work with image data from the MNIST and Fashion-MNIST datasets.
Each image is represented by a 2-dimensional array of size m x m.
Each image is flattened by concatenating each row, producing a 1-
dimensional vector of size L = m?. The flattening of the image is
equivalent to an amplitude encoding on a quantum state represented
by log, (L) qubits.

Given the data is now represented as a quantum state, we can
compress the quantum state by representing it as a MPS of a fixed
bond dimension. The image can be represented without compres-
sion using an MPS of bond dimension D = /L = m. Compression
on an MPS state can be achieved through a sequence of SVDs whilst
maintaining a fixed maximum bond dimension D,,,... as outlined in Sec-
tion 1.3. Compressing using a sequence of SVDs also means that the
state tensors left behind will be isometries, allowing the image MPS to
be placed in canonical form. We choose to put the images in mixed
canonical form about the central site where sites to the left satisfy the
left canonical property and sites to the right satisfy the right canonical
property. Figure 6.1 summarises the process of encoding image data
onto an MPS.
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Figure 6.2: Circuit representation of data encoding: The mixed
canonical MPS produced by the data encoding can be represented
on a quantum circuit as shown above. The circuit on the left shows a
fully expressive image MPS with no compressions and the circuit on
the right is a compressed circuit MPS using a truncation to a bond
dimension y = 4.

The fact that the final image is in mixed canonical form means that
the image MPS is readily embedded on quantum circuits. Figure 6.2
shows circuit representations of the image MPS for both the full quan-
tum state and the truncated state. Note we are using the space-like
staircase representation for these circuits. In addition, since we are
now working in the mixed canonical form there are two staircase cir-
cuits about the orthogonality centre. Compression or truncation of the
SVD during the sweeps amounts to reducing the size of the unitaries in
the circuit representation. This quantum circuit intuition is particularly
useful for the refinement procedures outlined in Section 6.3.

6.2 Feature Extraction

Given the tensor network encoding of image data, we propose a de-
terministic method to generate a feature extractor by generating a su-
perposition of these image states. This is done through MPS addition,
firstly of images in the same class to produce a sum state of images in
a given class. Subsequently, the sum states of each class is combined
into an MPO representing the feature extractor with a single output leg.
The label is encoded in the bitstring of the output leg of the MPO. The
intuition behind this approach is that given enough data for a given la-
bel, the sum state for a given class is a prototypical representation of
the class. In this section, we outline the construction of the sum state
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for a given class, followed by the generation of the feature extractor by
adding the label leg. Using this construction, we outline the process
of classifying an arbitrary image using the sum state feature extractor.
We also describe the effects of orthogonalising the feature extractor so
that it can be embedded directly onto a quantum circuit.

6.2.1 Generating the sum state

To construct the prototypical sum state |%;) for a given class [ we take
the unweighted sum of all the image MPSs with the class label [. The
sum, in this case, is done using the standard addition of MPS. To out-
line this procedure, consider adding three MPSs |A) , | B) and |C) given
by tensors {a;}, {b;}, {c;} fori =1,2,... N, where N is the length of
the MPS. For a general site at index n the sum state tensor o, is given
by

a, 0 0
on,=1|10 b, 0]. (6.2.1)
0 0 ¢,

Note that the first and last site are special cases as they have no left
and right virtual bond dimension respectively. The first sum state site
is given by

o1 = (a1 by cl), (6.2.2)

and the last sum state site is given by

an
on=|by|- (6.2.3)

CN

The block diagonal addition of MPS tensors produces a significant
increase in the bond dimension, therefore, compression is required.
This compression is achieved using sequential SVD sweeps as was
used to convert the amplitude encoded image state to an MPS. Once
again, if the maximum bond dimension of the SVD sweep is larger than
the one required to represent the entire Hilbert space of the summed
states then no compression is applied.

Creating the entire block encoded MPS sum state for a given class
prior to compression is not practical for a large training set. Therefore,
batches of data are taken and sequentially combined and compressed
using an intermediate batching bond dimension D,.,. These batches
are combined hierarchically until the desired sum state is reached, as
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Figure 6.3: Batching to generate sum state: The sum state is gen-
erated in batches due to resource restrictions. This diagram shows
refers to the data point i in the j** level of batching. Each data point
is batched in groups of 10, requiring two layers of batching to produce
the final sum state.

outlined in Figure 6.3. If Dy, is less than the maximal bond dimen-
sion required, then each intermediate batching involves a compres-
sion. In some cases, this may be beneficial as it regularises the im-
ages, reducing the likelihood of overfitting. This effectively performs
repeated local principal component analysis at each batching layer.

6.2.2 Constructing the feature extractor

The circuit representation of a mixed canonical MPS can be interpreted
as an isometric MPO acting on a reference state. This interpretation
allows for the construction of a combined feature extractor from the
sum state MPSs |X;) where [ is the class label. This is done by con-
sidering the embedding of these MPSs as MPOs acting on different
reference states. By encoding the class labels on a bitstring state |b;)
and acting on the |0) reference state for the remaining sites we can
draw the feature extractor as the MPO show in in Figure 6.4. Note that
as we are encoding the bitstring onto qubits the number of label qubits
iS 1085 (Nejasses) Where Nqqses 1S the total number of classes. Hence the
original sum state for a given class [ can be written as

o) = Ui p) |b) (6.2.4)

where [p) = [0)*"* are the padding qubits.

The sum states when constructed in this way can be readily used to
classify MPS encoded images. This procedure amounts to calculating
the maximal overlap of an MPS encoded image with a given bitstring.
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Figure 6.4: Classification using deterministic sum state classifier:
Here, we show the sum state classifier (in blue) classifying an arbitrary
image state (in green). In a) the classifier is a mixed canonical MPO
with the central site containing the label space. In b), the classifier is
represented as a quantum circuit.

The label £ is therefore assigned to an image state |image) given
k= mlaX|<z'mage| U p) |bi) 2. (6.2.5)

This procedure is done classically by performing the explicit tensor
contractions. The feature extractor can also be directly translated onto
a quantum computer. On a quantum computer the probability am-
plitude over each bitstring is necessary which may require significant
post selection.

The individual MPO unitaries U, can be combined and orthogo-
nalised to form a single MPO U which represents the feature extractor.
Doing so follows the same procedure as summing MPS as shown in
Section 6.2.1. Note that the central site now has a class label § there-
fore the combined tensor of the central site is as follows

=0 0 0] (6.2.6)

Hence the central site also has a different SVD procedure as it carries
the class label. Due to the additional label space, the central tensor
can no longer be converted to a unitary without loss of information. To
achieve a unitary central site we can perform a polar decomposition,
which produces the best unitary approximation to the tensor. After this
summing procedure the resulting MPO can be used to classify the test
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Figure 6.5: Results from deterministic classifier on Fashion-
MNIST: The training and test accuracy when applying the determinis-
tic MPO classifier to the Fashion-MNIST dataset. Figure a) shows the
results when Dy;,,; is varied whilst fixing D.,coqe @Nd Dyqer, 10 be max-
imal. Figure b) Shows the accuracy when all three bond dimensions
D are set equal to each other and varied. The results are shown both
with and without orthogonalisation (applying a polar decomposition to
the final MPO tensor). Orthogonalisation is necessary to translate the
MPO onto a quantum device.

image as before, assigning a class label k£ to an image state |image)
given
k= mlaXWmage] U p) |br) | (6.2.7)

Note that instead of individual unitaries for each class U, now we use
a single unitary U. Figure 6.4 shows the explicit classification of an
image using both the MPO and quantum circuit notation.

Figure 6.5 shows the results from applying this MPO feature ex-
tractor to the Fashion-MNIST dataset. The overall performance is con-
trolled by the maximum bond dimension of the final feature extractor
D¢inai- FoOr a Dyng 2 20 the test accuracy is 69.75%. However, the
bond dimension of the encoded image D....... and the batching bond
dimension Dy, also constrain the performance of the feature extrac-
tor and need to be sufficiently large; for no compression the required

bond dimension is D = 32.

6.3 Stacking Refinement

The performance of the sum state feature extractor for classification
can be further improved through training. The first option to train an
improved classifier is to directly improve the feature extractor unitary
U. Thus, the sum state classifier is treated as an initialisation of a
variational model. As this construction would involve manipulating a

125 of 148



6.3. Stacking Refinement 6. Deterministic Tensor Network Classifier

large object directly, it may be challenging to train and would under-
utilise the insights of the deterministic scheme. Alternatively, training
can be done on the output of the feature extractor, which involves a
much smaller label space. Inherently, this smaller space will likely re-
quire fewer parameters to train and be more trainable. We focus on
training on the output, referring to this refinement procedure as stack-
ing. Stacking in classical machine learning literature refers to training a
single classifier on the output of potentially multiple feature extractors.

At first, we focussed on training classically on the feature extractor
output. To do so, we apply the feature extractor unitary U on the en-
tire dataset and calculate the amplitude of the resulting state on each
padded bitstring, thus forming the data points for a new dataset to
train on. We train a neural network using the new dataset to improve
the classifier performance. We use a single fully connected layer with
a sigmoid activation function. This allows for sufficient non-linearity to
be present within the model. To train the neural network, we utilise a
categorical cross-entropy loss and apply stochastic gradient descent,
training until the cost function converges. We limit the number of pa-
rameters in the model to ~ 27000 to prevent overfitting [138]. With
the MNIST dataset, we show this stacking procedure works, reach-
ing 100% training accuracy. As shown in Table 6.1 both MNIST and
Fashion-MNIST show ~ 10% improvement in performance.

Similarly, we can train on the feature extractor output using a quan-
tum circuit and the idea of data reuploading to introduce non-linearity.
In this procedure we classically take multiple copies of the projection of
the image state onto the label subspace after the feature extractor and
encode it as the input to a larger stacking unitary V. The schematic for
this procedure is outlined in Figure 6.6. The label space state |¢) of a
given image |image) is defined as

10) = (0N U |image) . (6.3.1)

The feature extractor has a limited performance as the label space
data points |¢;) and |¢,,) in classes [ and m respectively are not com-
pletely distinguishable as they are not necessarily orthogonal if [ # m.
However, we can copy (reupload) the states M times such that |¢,)®"
and |¢,,)®" are orthogonal if M — oo, meaning that the states can
become distinguishable. The procedure of data reuploading shares
similarities to multi-class amplitude amplification and is in accord with
quantum classification being interpreted as a kernel method [110].

An explicit procedure is necessary to construct the stacking unitary
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Figure 6.6: Refining classifier using stacking: The quantum stack-
ing scheme is similar to date reuploading. The label space |¢) is
copied M times. This can be viewed as running the classification
circuits shown in Figure 6.4 M times with post-selection onto the |0)
for the padding qubits. The stacking unitary V' is then applied to this
copied label space. The measurement is applied to the first label
space, and the remaining labels are processed by tracing or post-
selection.

V. Classification under this data reuploading paradigm is performed
by projecting onto the bitstring of the first label space and tracing out
the remaining qubits. Hence classification occurs according to

k= max (6" VIlbr) (b @ 1MV [9)* (6.3.2)

This equation can be used to construct an approximation of V. Given
a perfect classification of the state using V' we expect the following
output

0, = Jim (6" VI[lbr) (0] @ TV [9) (6.3.3)

where [, is the class of the state ¢. In the limit of M — oo the states
become orthogonal and this equation can be written as

S 19) (0% 614, & VI[Ibr) (b @ T#M 1V (6.3.4)
]

This equation can be used to construct a good initialisation for V' for
a finite number of copies. The matrix V' is an element of the group
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MNIST Fashion MNIST
Training Accuracy | Test Accuracy | Training Accuracy | Test Accuracy
(%) (%) (%) (%)
Initial 78.42 80.33 73.10 71.65
Single layer neural network 100 91.07 89.39 82.60
SVM 92.10 90.46 82.47 81.14
Quantum stacking: 2 Copies 86.63 87.63 75.37 74.22
Quantum stacking: 3 Copies 90.95 89.80 76.24 74.92

Table 6.1: Accuracies for stacking refinement: The results from
training on the outputs of the MPO classifier with D;,;,;, = 32. The
classical training procedures are the single layer neural network and
the SVM. The quantum stacking utilises the data reuploading scheme.
Note that the classical neural network is likely to be difficult for the
quantum model to compete with as it includes a significant amount of
non-linearity. Therefore, the SVM is likely to be a better comparison as
guantum models are known to be representative of kernel methods. In
addition to this, adding layers to the classical neural network means it
performs so well that this test is more of a benchmark for the quantum
technique rather than a test of quantum advantage.

SU (2MaverxM) “which can be broken down into a grid of 2Nibet x 2Niavei
matrix elements, one for each label. The factor [I*M~1® |b;) (b;|] means
that data from a given class [ only contributes to the /** column in this
grid. Hence each of these columns of V' can be initialised by construct-
ing the left hand side of equation 6.3.4 for each class independently.
To restrict this to be unitary we take an SVD of this object for a given
class [ resulting in WIAIWIT. The Ith column of V is then given by
V; = VAW, where only the 21Nt singular values are kept. Once
the full V' is constructed by concatenating the individual V. To orthog-
onalise, the entire V' has a final polar decomposition applied to it.

We find that the quantum stacking procedure shows improvements
over the feature extractor even for a single additional copy of the data.
Table 6.1 shows the improvement in performance using the quantum
stacking procedure, where 2 copies refers to a single additional copy
of the data. We compare our results to the classical neural network
and one obtained by a classical support vector machine (SVM), which
shares a similar philosophy to quantum stacking. We were only able to
achieve 3 copies of the quantum stacking due to computational limita-
tions but despite this we see continuous improvement in the classifier
performance as new copies are introduced.
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Figure 6.7: Label space qubit histograms: Each label space qubit
i acts like a binary classifier. To investigate the boundary between the
two classes at each qubit, we show the histograms for the 2 classes in
each of the 4 qubits in the label space. The red histogram represents
images that should project to |0) in the label space qubit i, and the blue
histogram should project to |1).

6.3.1 Improving stacking cost function

Despite working to improve the quantum classifier's performance, the
stacking unitary’s overall performance remains significantly off the per-
formance of both classical methods, the single layer neural network
and the SVM. We propose that the performance of the stacking uni-
tary can be improved, without additional copies, by modifying the cost
function that is implicit in equation 6.3.3. Considering each label space
qubit as a binary division separating two classes, the implicit stack-
ing cost function applies a hard boundary between different bitstring
classes and treats all label space qubits equally. Figure 6.7 shows
that, in reality, the classes tend to overlap and the degree of overlap
varies by the qubit index.

Therefore, a modified cost function could be used to find the stack-
ing unitary that allows for a softer class boundary and can tune the
boundary by the label space qubit. We propose such a cost function
that we refer to as the tanh cost function and is given by

C = tanh(A; (& VBV [6:)) 6L, 5). (6.3.5)
2Y)

where P; is a projection onto the |0) state of the label space qubit ;.
The term in the tanh function calculates the amplitude of this state of
the j** label space qubit after the action of the stacking unitary V' act-
ing on |¢;) that represents M copies of the label space for the image
i. A hyperparameter A; controls the boundary’s hardness for the label
space qubit; a higher value of A results in a harder boundary. Given
that there is a different A; for each label space qubit, the hardness of
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the boundary can be tuned for each qubit and can be modified during
training. Heuristic methods were developed to select A; during train-
ing, namely the more overlap the classes for a given qubit, the softer
the boundary.

The previous optimisation scheme to find the stacking unitary no
longer works with the tanh cost function. We utilise gradient descent
to optimise V' to test the new cost function. The derivative D with
respect to V1 of equation 6.3.5 is

D = Y"1 tanh(A; (6| VIEV [60)) ) (A BV [60) (@x])6 (1, 7). (6.3.6)
7

A simple gradient descent algorithm using this gradient update results
in V' becoming non-unitary. However, we would like to remain on the
unitary manifold to effectively compare against the previous optimisa-
tion scheme. As in Chapter 4, we rely on Riemannian optimisation to
update V' whilst remaining on the unitary manifold. Generally, one can
update a unitary by applying V exp(A) where A is anti-hermitian. We
can write the derivative D in an anti-hermitian form by writing

A:;WD—DW) (6.3.7)

Applying the exponential at each update incurs a high numerical cost.
Therefore, we consider the leading order term in the Taylor expansion
of this update is dV = V A. Hence, the gradient descent update to the
stacking unitary V' = V + udV given a derivative D using the Taylor
expansion of a general update to a unitary as the retraction can be
written as

dV:;D—VNW. (6.3.8)

This update is unitary only up to the leading order hence after each
step, a polar decomposition is applied.

Using the tanh cost function with a gradient update that preserves
unitarity improves the classifier’s performance. To compare, we calcu-
late the training accuracy for Fashion-MNIST from the previous op-
timisation strategy to this one. With no copies, the improvements
are limited, resulting in only a 0.4% improvement in training accuracy.
However, for 2 copies, the improvement is more significant at a 1.1%
improvement in training accuracy resulting in an overall accuracy of
76.5%. Despite this improvement, we are still significantly off the clas-
sical boundary of 82.47% produced by the SVM and 89.39% produced
by the single-layer neural network. Due to the additional computational
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complexity of calculating the gradients and applying the new cost func-
tion, performing this comparison for 3 copies proved too computation-
ally expensive.
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6.4 Discussion

The deterministic sum state feature extractor algorithm outlined in this
chapter is a flexible algorithm for generating tensor networks to classify
amplitude-encoded image data. Our algorithm is broken down into two
steps. Implementing the sum state feature extractor U can be consid-
ered a feature selection step that reduces the problem’s dimensionality.
Subsequently, the stacking step of training on the output of the label
space is reminiscent of the standard training of a classifier. The quan-
tum version of our stacking scheme is based on data reuploading. We
propose a basic quantum stacking scheme followed by a refinement
that considers features of the label space of the data. There are sev-
eral future directions this research could take. Note that in Ref [137],
we demonstrate the flexibility of this algorithm to different tensor net-
work architectures by applying it to train image data encoded as tree
tensor network (TTN) in addition to MPS.

In addition, it is worthwhile to consider whether the type of data
encoding used affects the performance of this algorithm. We used a
trivial amplitude encoding to embed our data onto a quantum state.
It has been shown that the choice in data encoding can significantly
affect the performance of quantum machine learning algorithms [110].
The amplitude encoding we choose results in a loss of locality in the
quantum state. An encoding scheme that preserves this locality in
some way may perform better. In addition to modifying the encoding
type, utilising a tensor network architecture such as PEPS that is spe-
cific to 2D data may be worthwhile, although it is unclear whether the
additional computational effort of using a 2D network structure would
provide significant improvement. A systematic review of data encod-
ing as it relates to this algorithm and 2D tensor network architectures
could be a fruitful avenue for future research.

Training using the tanh cost function is expensive. This is mainly
a problem given the degree of hyperparameter tuning necessary for
this cost function to be practical, given each label space qubit has a
different hyperparameter A; assigned to it. Currently, simple heuristics
are used to set A;. However, research is necessary to find a more sys-
tematic way of assigning these hyperparameters. It should be possible
to parallelise the training and hyperparameter selection by utilising the
fact that updates to each label space qubit can be calculated indepen-
dently.

To improve the computational performance of this technique, it may
be worthwhile to consider alternative ways to weigh data near the de-
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cision boundary. Instead of constructing the tanh cost function directly,
it may be preferable to duplicate data near the boundary with some
blurring to improve the classifier’s performance. This duplication can
be done as a function of the tanh cost function gradient. The optimi-
sation of the stacking unitary then follows the trivial stacking routine
we initially proposed. We call this idea sketching and believe it to be a
promising strategy for improving the training of this classifier.

Our algorithm shows that we can deterministically initialise uni-
taries that perform remarkably well as feature extractors and classi-
fiers by utilising the geometric structure of the Hilbert space of quan-
tum states. Applying these findings to improve the development of
quantum machine learning algorithms could be useful more broadly.
As shown in Chapter 5, this initialisation could be a good starting point
for training a PQC. In addition, the core methods required to generate
the sum state classifier rely on simple linear algebra subroutines such
as SVD. Given that there are several quantum algorithms to perform
such linear algebra tasks [83], it may be possible to design a purely
quantum algorithm to implement such a sum state classifier. In partic-
ular, it is clear that scaling the quantum stacking routine is an issue.
Designing a quantum native stacking algorithm may provide a route
to representing larger stacking unitaries. This quantum native method
could circumvent a number of the bottlenecks with variational quantum
algorithm based QML techniques such as barren plateaus. Overall it
is unlikely that quantum advantage is to be found with quantum algo-
rithms acting on classical data. Therefore, investigating how to adapt
the techniques outlined in this chapter towards quantum data may pro-
vide a clearer route to quantum advantage.
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Chapter 7
Conclusion

This thesis introduces several connections between tensor networks
and quantum algorithms capable of running on near-term quantum
computers. In particular, we focus on quantum versions of the MPS.
This conclusion summarises the work of this thesis and provides con-
nections and potential future directions for the different projects.

In part one, ideas developed for MPS help us use current-generation
quantum devices to simulate quantum systems in the thermodynamic
limit. Initially, we focus on representing an iMPS on a quantum device,
utilising the variational principle to prepare a ground state across a
quantum critical point. This experiment proved that Google’s Sycamore
architecture can represent interesting states of quantum matter. This
algorithm had not been implemented on near-term hardware prior to
this work which meant that we were able to develop and quantify the
impact of various error mitigation strategies and adaptations to the al-
gorithm.

After this proof of concept, we develop algorithms towards a poten-
tial avenue for quantum utility, namely time-evolving quantum systems.
Entanglement naively increases exponentially during time evolution in
quantum quench experiments, quickly leading to classical techniques
being unable to simulate many systems of interest. Trotterised evolu-
tion on quantum circuits requires only a linear increase in the depth
of the circuits with time, hence providing a likely avenue for quantum
utility. However, current-generation quantum devices have too much
noise to evolve directly for a long time and are too small to overcome
finite-size effects. Chapter 4 introduces a variational quantum algo-
rithm that performs time evolution of an iIMPS using a fidelity density
cost function. Testing this algorithm is done using the dynamical quan-
tum phase transition (DQPT) of the transverse field Ising model (TFIM),
first by profiling the fidelity density cost function on Google’s Sycamore
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processor, followed by performing a full-time evolution using Quantin-
uum’s H1 processor. From these experiments we find that particular
hardware characteristics can be accommadated for by the flexibility of
this algorithm. For example, Google’s superconducting architecture
allowed for shallower circuits utilising a high number of qubits, thus
being well suited for the space-like layout of the circuit. In addition,
the depolarising error on this device required the use of Loschmidt
rescaling. In contrast the longer coherence times on Quantinuum’s
hardware allowed for the time-like rewrite, and the additional overhead
of Loschmidt rescaling was not necessary. However, the limited shot
budget required careful consideration of the initialisation of the optimi-
sation.

Finally, we propose adaptations to the cost function so that the al-
gorithm outlined in Chapter 3 preserves local information during the
evolution. Developments in classical tensor network techniques inspire
this approach. These algorithms preserve only necessary local infor-
mation to reduce the resource requirements of simulation. However,
whereas prior classical algorithms have no direct mapping to quantum
circuits, our proposed algorithm can be readily adapted to prepare the
local density matrix cost function on a quantum device.

We present many adaptations to the algorithm and error mitiga-
tion strategies that allow us to run on current-generation quantum de-
vice. Essential in these adaptations is the flexibility of the MPS cir-
cuits to switch between the time-like and space-like format. In addi-
tion, time evolution allows for warm-start protocols to optimise the cost
function, drastically improving the sampling costs of our time evolution
algorithm. However, it is clear that the resources available on current-
generation devices does not allow us to push this algorithm to demon-
strate quantum advantage. One aspect of the development required
is better algorithms to perform more efficient optimisation with better
cost functions as outlined in this thesis. However, ideally the hardware
available will develop which mix the strengths of both the Google and
Quantinuum device, namely better quality qubits with lower decoher-
ence coupled with increased shot budgets.

The time evolution algorithm provides the most promising avenue
towards quantum advantage. The suggested next steps for this algo-
rithm is to adapt the local density matrix cost function onto a circuit and
run this experiment on a near-term device. To push quantum advan-
tage requires allowing for an adaptable bond dimension. Therefore,
investigations into strategies for increasing the bond dimension within
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the framework of the time evolution algorithm are needed. Given these
improvements, a good test of this algorithm is to simulate a rapidly ther-
malising system. Furthermore, higher dimensional models that are
more challenging to simulate classically should be considered, likely
requiring adapting alternative isometric tensor networks aside from
canonical MPSs. Ultimately, the goal is to simulate the evolution of
a quantum system that is impractical to perform on a classical device.

The second part of this thesis demonstrates that quantum MPSs
can be used outside of quantum simulation, primarily focussing on ma-
chine learning. We saw that initialising a parameterised quantum cir-
cuit improves trainability in the time evolution work. This problem of ini-
tialisation is also present in quantum machine learning. It is a standard
heuristic method to avoid barren plateaus, which prevent the training
of quantum machine learning models altogether. Chapter 5 presents a
way that MPS circuits could initialise a more expressive quantum circuit
using a small classical simulation. We applied this approach to train
a classifier for the MNIST image dataset. This technique is adaptable
to practically any problem that utilises parameterised quantum circuits,
including the time evolution algorithms outlined in the first part of this
thesis.

The training routine used to prepare the classical MPS in Chap-
ter 5 uses a variational DMRG-inspired approach. In Chapter 6, we
outline an alternative approach to training the classical MPS classifier
using a deterministic procedure based on the principle of superposi-
tion to prepare a sum state. Using inspiration from data reuploading,
we designed techniques to refine the performance of this classifier.

Overall, the algorithms in this thesis are a proof of concept for the
utility of tensor networks as a framework for thinking about quantum al-
gorithms running on near-term hardware. We emphasise the flexibility
of this paradigm. In this thesis, the scope of study is quantum simu-
lation and quantum machine learning. However, there are many other
areas of active research where classical tensor networks are relevant,
such as solving partial differential equations [62] or speeding up sig-
nal processing routines [139]. Insights from this work could be used
to develop quantum algorithms for these applications. The utility of
this approach is the focus that tensor networks place on entanglement
as the resource of value in quantum computing. Trading insights from
classical tensor networks to the design of quantum algorithms and vice
versa provides the opportunity to advance both fields and provide clear
boundaries between quantum and classical computing.
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