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ABSTRACT: We calculate the low-lying glueball spectrum, several string tensions and some
properties of topology and the running coupling for SU(N) lattice gauge theories in 3 + 1
dimensions. We do so for 2 < N < 12, using lattice simulations with the Wilson plaquette
action, and for glueball states in all the representations of the cubic rotation group, for both
values of parity and charge conjugation. We extrapolate these results to the continuum
limit of each theory and then to N = oco. For a number of these states we are able to
identify their continuum spins with very little ambiguity. We calculate the fundamental
string tension and k = 2 string tension and investigate the N dependence of the ratio. Using
the string tension as the scale, we calculate the running of a lattice coupling and confirm
that g2(a) oc 1/N for constant physics as N — co. We fit our calculated values of /o with
the 3-loop SB-function, and extract a value for Ag;z, in units of the string tension, for all our
values of N, including SU(3). We use these fits to provide analytic formulae for estimating
the string tension at a given lattice coupling. We calculate the topological charge @ for
N < 6 where it fluctuates sufficiently for a plausible estimate of the continuum topological
susceptibility. We also calculate the renormalisation of the lattice topological charge, Zg(/3),
for all our SU(N) gauge theories, using a standard definition of the charge, and we provide
interpolating formulae, which may be useful in estimating the renormalisation of the lattice
0 parameter. We provide quantitative results for how the topological charge ‘freezes’ with
decreasing lattice spacing and with increasing N. Although we are able to show that within
our typical errors our glueball and string tension results are insensitive to the freezing of )
at larger N and 3, we choose to perform our calculations with a typical distribution of )
imposed upon the fields so as to further reduce any potential systematic errors.
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1 Introduction

In this paper we calculate various physical properties of SU(N) gauge theories in 3 + 1
dimensions. We do so by performing calculations in the corresponding lattice gauge
theories over a sufficient range of lattice spacings, a, and with enough precision that we
can obtain plausible continuum extrapolations. We also wish to be able to extrapolate to
the theoretically interesting N = oo limit and to compare this to the physically interesting
SU(3) theory. To do so we have performed our calculations for N = 2,3,4,5,6,8, 10,12
gauge theories.

Our main aim is to provide a calculation of the low-lying ‘glueball’ mass spectrum
for all quantum numbers and all N. This means calculating the lowest states in all the
irreducible representions, R, of the rotation group of a cubic lattice, and for both values
of parity P and charge conjugation parity C'. We also calculate the confining string tension,
0, so as to provide a useful scale for the glueball masses. In addition we calculate a number
of other interesting quantities. However these are side-products of our glueball calculations
rather than being dedicated calculations of these quantities. The first is the k = 2 string
tension, op—9 and the nature of its approach to N = oo. The second is an estimate of
the scale parameter Aq;g for all our SU(N) gauge theories. Thirdly, in order to monitor
the topological ‘freezing’ as a becomes small at fixed N, or N becomes large at fixed
a, we calculate the interval (in units of our Monte Carlo steps) between changes in the
topological charge, as well as the renormalisation of that charge, and also the topological
susceptibility.

Our calculations of the glueball spectrum are intended to make necessary improvements
to previous work. We recall that the pioneering glueball calculations in [1, 2] were restricted
to obtaining the continuum masses of the lightest and first excited J©¢ = 0t glueballs
and the lightest 271 glueball, in units of the string tension, with the continuum spin
assignments being based on plausible assumptions. This sufficed to provide the first fully
non-perturbative demonstration that the basic physical quantities of the SU(3) gauge theory
are ‘close to’ those of SU(0), as had long been hoped, but it did not provide the kind of
detailed N = oo glueball spectrum that would be useful in testing theoretical approaches.
Such a detailed spectrum was subsequently provided in [3] where the lightest masses in all
the irreducible representations of the rotation group of the cubic lattice were calculated
for N € [2,8] and extrapolated to N = oco. In addition a serious effort was made in that
work to identify those states that might be multi-glueball ‘scattering’ states or finite volume
artifacts (based on conjugate pairs of winding flux tubes), rather than being the single
glueballs that one would obtain in an infinite volume. The important drawback of this
calculation is that it was made at a fixed value of the lattice spacing a (‘fixed’ in units
of the deconfinement temperature), corresponding to a value of 8 ~ 5.895 in SU(3). This
corresponds to a coarse lattice discretisation, typically between the two largest lattice
spacings used in our present work. This has two important adverse consequences. The first
is that it leaves uncertain the values of the masses in the desired continuum limit. (Although
the calculations in [3] and earlier SU(3) calculations left room for being optimistic about
the limited size of any lattice corrections.) The second problem is that since the lattice



masses aM are large when q is large, as in that paper, it makes the extraction of heavier
glueball masses much more ambiguous and the statistical errors much larger than they
would be at smaller values of a. A corollary is that it renders continuum spin assignments
more ambiguous, except for the very lightest glueballs, since the spin assignment depends
on observing near-degeneracies amongst states in appropriate irreducible representations
of the lattice rotation group, and for this it is clearly essential to achieve an adequate
precision in the various mass estimates. In addition to this earlier work, there recently
appeared a potentially more relevant paper [4] when our work was largely completed. This
paper provides a pioneering calculation of the masses of the lightest glueballs in all the
irreducible representations, of a number of continuum Sp(2N) gauge theories with an
extrapolation to N = oco. In principle this extrapolation is equally relevant to the N — oo
limit of SU(N) gauge theories, as pointed out in [4], since the Sp(2N) and SU(N) gauge
theories share a common (perturbative) planar limit. In practice, however, the usefulness
for SU(N — o0) turns out to be very limited. Firstly, Sp(2/V) has no C' = — sector, so
there are no predictions for half the SU(N — oo) spectrum. Secondly the limited range of
N in [4], coupled with the fact that in Sp(2/V) the leading correction to N = oo is O(1/N)
renders the large- N extrapolations less convincing and much less precise when compared to
SU(N) where the leading correction is O(1/N?). The net result is that the errors on the
SU(N — o0) glueball masses obtained in [4], are larger by a factor of ~ 5-20 compared to
the values obtained in this paper, and the mass estimates are mainly for just the ground
states in each channel. This means that the evidence for the assignment of a continuum
spin J only appears plausible for the J¥ = 07,07,2%,2~ ground states. Of course, none of
these comments detract from the success of [4] in their primary aim of elucidating the mass
spectrum of Sp(2N) gauge theories.

In this paper we provide a calculation of the masses of the ground states and some
excited states in all the irreducible representations R of the rotation group of our cubic
lattice with an extrapolation of these masses (in units of the string tension) to the continuum
limit. To make this extrapolation more reliable and more precise we extend the range of
our calculations to much smaller lattice spacings than earlier work. This enables us to
extract the masses of the heavier ground states and most of the first few excited states
much more reliably than earlier calculations. As an important by-product, all this will allow
us to make a significant number of continuum spin assignments after the extrapolation to
the continuum limit. We recall that the assignment of a continuum spin typically depends
on observing near-degeneracies amongst both ground and excited states in the various
irreducible representations of the lattice rotation group, and this requires both precision in
the mass estimates and small enough lattice spacings for the masses of the heavier excited
states to be plausibly estimated. We also extend the range of our calculations to larger
values of N. This is not only to make the extrapolation to N = co somewhat more reliable
and precise but also, and perhaps more importantly, to help in excluding from our N — oo
glueball spectrum any multiglueball scattering states and finite volume states, since these
states will decouple from our single trace operators as N 7.

This kind of calculation is of course standard in the case of SU(3), see for example [5-11],
and what we have attempted to do is to bring the SU(/V) calculations towards a similar level



of sophistication. The computational cost of performing calculations at larger N means
that further improvement to our work is still desirable. (It would also be very interesting
to see the existing calculations at very large N using space-time reduction [12] extended
to calculations of the glueball spectrum, just as they have been in 2 + 1 dimensions [13].)
Nonetheless we are able in this paper to provide the first calculation of the masses of the

RPC channels of the continuum SU(N — 0o) gauge theory, as well

ground states in all the
as some excited states in most channels.

The plan of the paper is as follows. In the next section we introduce our lattice
setup and describe how we calculate energies from correlators. We discuss some of the
main systematic errors affecting these calculations and how we deal with them, with a
particular focus on the rapid loss of tunneling between sectors of differing topology as
N 7. In section 3 we describe in detail our calculation of the confining string tension,
o, which we will later use as the physical scale in which to express our glueball masses.
As a side product we also calculate the string tension, or—o, of the lightest flux tubes
carrying k = 2 units of fundamental flux. In section 3.4 we study the approach of the
ratio og—o/0 to the N = oo limit so as to address the old controversy concerning the
power of 1/N of the leading correction. In section 4 we show how our precise calculation
of the fundamental string tension, a?c, as a function of the lattice coupling enables us to
confirm the expected scaling of g? with N, and motivates (lattice improved) perturbative
fits that allow us, in section 4.2, to estimate a value for Ag;g as a function of N. We
also provide, in section 4.3, some analytic interpolation/extrapolation formulae for the
variation of the string tension with the coupling, which may be of use in other calculations.
We then turn, in section 5, to our main calculation in this paper, which is that of the
low-lying glueball spectrum. We calculate the masses on the lattice, extrapolate to the
continuum limit, and then extrapolate to N = oco. Although these states are classified
according to the representations of the rotation group of our cubic lattice, we are able to
identify the continuum spins in many cases, as described in section 5.7. In doing all this
we need to address the problem of the extra states that winding modes introduce into
the glueball spectrum and also the possible presence of multi-glueball ‘scattering’ states.
We complete section 5 with a brief comparison of our results with those of some earlier
calculations. We then return, in section 6, to some of the properties of the topological
fluctuations in our lattice fields. After illustrating in section 6.1 how our cooling algorithm
reproduces the topological charge of a lattice field, we calculate in section 6.2 the rate of
topological freezing with increasing N and with decreasing a() and compare our results
to the simplest theoretical expectations. In section 6.3 we provide our results for the
topological susceptibility in the continuum limit of SU(N < 6) gauge theories and in the
N — oo limit. Then, in section 6.4, we calculate the multiplicative renormalisation of our
lattice topological charge for each SU(N) group and provide interpolating formulae which
may be useful in calculations with a 6 parameter in the lattice action. Section 7 summarises
our main results.

Finally we remark that in parallel with the present calculations most of our SU(3)
calculations, which are of particular physical interest, have recently been published sepa-
rately [11].



2 Calculating on a lattice

2.1 Lattice setup

We work on hypercubic lattices of size L3L; with lattice spacing a and with periodic
boundary conditions on the fields. The Euclidean time extent, alL;, is always chosen large
enough that we are in the confining phase of the theory, at a temperature that is well below
the deconfining phase transition [14]. Our fields are SU(N) matrices, U;, assigned to the
links [ of the lattice. The Euclidean path integral is

Z - /DUexp{—ﬁS[U]}, 2.1)

where DU is the Haar measure and we use the standard plaquette action,

1 2N
BS = /3%: {1 - NReTrUp} ; B= (2.2)

g7

Here U, is the ordered product of link matrices around the plaquette p. We write § = 2N/ g%
since in this way we recover the usual continuum action when we take the continuum limit
of the lattice theory and replace g% — ¢2. The subscript L reminds us that this coupling is
defined in a specific coupling scheme corresponding to the lattice and the plaquette action.
Since g% is the bare coupling corresponding to a short distance cut-off a, it provides a
definition of the running coupling ¢? (a) = g7 on the length scale a. Since the theory is
asymptotically free g7 (a) — 0 as @ — 0 and hence 3 — oo as a — 0 and so we can decrease
the cut-off @ and so approach the desired continuum limit of the theory by increasing 5.
Our calculations of this lattice path integral are carried out via a standard Monte Carlo
using a mixture of Cabibbo-Marinari heat bath and over-relaxation sweeps through the
lattice. We typically perform ~ 2 x 10% sweeps at each value of § at each lattice size, and
we typically calculate correlators every ~ 25 sweeps and the topological charge every 50 or
100 sweeps. Naturally we choose values of § that place us on the weak coupling branch
of the lattice theory. We discuss the ‘bulk’ transition that separates weak coupling from
strong coupling, and becomes a first order transition for N > 5 [15], in section 5.4. There
are of course other possible choices for the action, and we briefly comment upon our choice
in section 5.9, where we compare our results to those of other recent calculations.

We simulate SU(NV) lattice gauge theories for N = 2,3,4,5,6, 8,10, 12 over a range of
values of § so as to be able to plausibly obtain, by extrapolation, the glueball spectra and
string tensions of the corresponding continuum gauge theories. A summary of the basic
parameters of our calculations is given in tables 1-8. For each of our SU(N) calculations
we show the values of 3, the lattice sizes, the average plaquette, the string tension, a?c,
and the mass gap, amg. In the header of each table we show the approximate spatial size
in units of the string tension. Since finite volume corrections are expected to decrease with
increasing N we decrease the lattice volume as we increase N. This expectation needs to
be confirmed by explicit calculations which we shall provide in section 5.2.



2.2 Energies and correlators

We calculate energies from correlation functions in the standard way. Suppose we wish to
calculate glueball masses in some representation RC. If one picks an operator ¢(t) with
quantum numbers RPC and momentum p = 0 then the correlator will provide us with the
energies F; of states with those quantum numbers

C(t) = (61(1)6(0)) = 3 leal* exp{—Ent} =% |co|* exp{—Fot}, (2.3)
n=0

where E, < E,11 and Ejy is the lightest state with RFPC quantum numbers — which will
often be the lightest glueball in that sector. (If ¢ has vacuum quantum numbers then one
uses the vacuum subtracted operator.) Since on the lattice time is measured in lattice units,
t = ans, what we obtain is the value, aFEy, of the mass in lattice units. If we calculate two
masses, aM and ap, in this way then the lattice spacing drops out of the ratio and if we
calculate the ratio for several values of a() we can extrapolate to the continuum limit in
the standard way, using

aM(a) — M(a) N M(0) ca i’
an(a) ~ pla) = p(0) T 24

once a(f) is small enough. (This standard tree level extrapolation could be improved with

perturbative corrections [16] and with higher order power corrections but our calculations
are not so extensive and precise as to motivate such modifications.)

The starting point for an operator ¢ is the trace of a closed loop on the lattice. For an
operator that projects onto glueballs the loop should be contractible. A non-contractible
loop that closes across the periodic spatial boundary will project onto a confining flux tube
that winds around that spatial torus. For the contractible glueball loop one takes a suitable
linear combination of rotations of that loop for it to be in the desired representation R of
the lattice rotation group and together with the parity inverse this allows us to form an
operator with parity P. The real and imaginary parts of the original loop will correspond
to C' =+ and C = — respectively. Summing this linear combination over all spatial sites at
time t gives us the operator with p = 0.

The statistical errors on C(t) are roughly independent of ¢ while its value decreases
exponentially with ¢, so if we are to estimate aFy from C(¢) in eq. (2.3) we need to be able
to do this at small ¢. (The fluctuations of ¢(¢)¢(0) involve the higher order correlator
(¢T(t)$(0))? which typically has a vacuum channel and this is independent of ¢.) For this
to be possible we need the operator ¢ to have a large overlap onto the state |n = 0) that
corresponds to Ep, i.e. that |co|?/ >, |cn|?> ~ 1. One can achieve this using iteratively
‘blocked’ link matrices and loops [17, 18] as described in detail in, for example, [2]. To
monitor the approach of C(t) to the asymptotic exponential decay in eq. (2.3) it is useful
to define an effective energy

Clany)
Clalm =1y — P l-aBen(n)}. (25)

(In practice we use a cosh modification of this definition to take into account the periodicity
in the temporal direction.) If, within errors, aFeg(n;) = const for n; > 71y then we can



use aFeq(n) as an estimate for aFp, or we can do a simple exponential fit to C(t) for
nt > ny — 1 to estimate aFj.

To calculate not just the ground state energy but also some usefully precise excited
state energies from C(t) in eq. (2.3) would require a precision that is at present unachievable.
Instead the standard strategy is to use a variational calculation. One chooses some basis of
no operators {¢;(t) : i = 1,...,ng}, calculates the cross-correlators Cj;(t) = <¢2T(t)¢j(0)> and
finds the linear combination, ® = ®g, that maximises C(t) = (®f(#)®(0)) for some suitable
small ¢ = tg. This is then our best estimate of the wave-functional of the ground state
|n = 0). We then extract aEy from the asymptotic exponential decay of C(t) = <<I>B(t)<bg(0)).
To calculate the first excited energy aF; we consider the subspace of {¢; : i =1,...,n0}
that is orthogonal to ®y and repeat the above steps. This gives our best estimate ®; for
|n = 1) and we estimate aFE; from the asymptotic exponential decay of the correlator of
&4 (t). Similarly by considering the subspace of the operator vector space that is orthogonal
to ®g and ®; we can obtain estimates for the next excited state and so on. As with any
variational calculation, the accuracy of such estimates will depend on having a large enough
basis of operators.

2.3 Systematic errors

In addition to the statistical errors in the calculation of energies and masses, which can be
estimated quite reliably, there are systematic errors that are harder to control. We will now
briefly point to some of these, leaving a more detailed discussion till later on.

Since the error to signal ratio on C(n;) increases at least as fast as o« exp{+aFon:},
the range of n; which is useful rapidly decreases when the energy aFy increases, and an
obvious systematic error is that we begin our fit of the asymptotic exponential decay at too
small a value of t = any. Given the positivity properties of our correlators, this means that
as the true value of Ej increases, so does our overestimate of its value. For any particular
state this problem will become less severe as we decrease a, and this provides some check
on this error.

The correlator of an excited state, using our best variational choice of operator, may
contain small contributions from lighter excitations since our basis is far from complete. So
at large enough n; these will dominate the correlator and the effective mass will drop below
that of the mass of the state of interest. This does not appear to be a severe problem for us
because the pattern of our statistical errors, which grow rapidly with n;, prevents us from
obtaining values at large n;. In any case we attempt to identify at most an intermediate
effective mass plateau from which we extract the desired mass.

If a state has too small an overlap onto our basis of operators then, given the exponential
growth with ¢ of the statistical error on the effective energy, the state will be, at best,
assigned a mass that is much too high and so it will typically not appear in its correct
order in the mass spectrum. If so this means that there will be a missing state in our
calculated glueball spectrum and this will not be helpful if, for example, one wishes to check
theoretical models of the spectrum against the lattice spectrum. To reduce the possibility
of this occurring one needs to use a large basis of operators, just as in any variational
calculation.



The states we are primarily interested in are single particle glueball states rather
than multi-glueball scattering states. (In our finite spatial volume multiglueball states
are interacting at all times but for simplicity we refer to them as scattering states.) We
use single trace operators which should ensure that at large N our correlators receive no
multi-glueball contributions but this is not necessarily the case at smaller N. This is of
course related to the fact that at smaller N heavier glueball states may have substantial
decay widths. Later in the paper we will provide an exploratory analysis of this issue by
combining single and double trace operators.

The spectrum in a finite spatial volume will differ from the spectrum in an infinite
volume. One type of correction to a glueball propagator comes, for example, from a
virtual glueball loop where one line of the two in the loop encircles the spatial torus. Such
corrections are exponentially small in, typically, MqgL where Mg is the mass gap (the
lightest scalar glueball) and L is the spatial size [19]. These corrections will be very small
in our calculations. For the intermediate volumes on which we work a much more relevant
finite volume correction comes from a confining flux tube that winds once around one of the
spatial tori. Such a flux tube is often referred to as a torelon. By itself a torelon has zero
overlap onto local particle states. However a state composed of two torelons, where one is
conjugated, will in general have a nonzero overlap. Such a ‘ditorelon’ will not only shift
the energies of the usual particle glueballs but will introduce extra states into the glueball
spectrum. These extra states can be identified through their volume dependence and in
some other ways as we shall see later on.

In addition to the usual gradual loss of ergodicity as the lattice spacing decreases,
the tunnelling between sectors of differing topological charge () suffers a much more rapid
supression not only as a — 0 at fixed N but also as N increases at fixed a. This affects a
significant part of our calculations and we discuss next how we deal with it in practice.

2.4 Topological freezing

We begin by briefly summarising the reason that one loses ergodicity in the topology of
lattice gauge fields much faster than in other typical quantities as a — 0 at fixed NV and
as N — oo at fixed a, when using a local Monte Carlo algorithm,. We then describe
where this impacts on our particular calculations and why this inpact should be minor on
theoretical grounds. We provide explicit calculations to confirm this expectation and, finally,
we describe the additional procedure that we follow to minimise any remaining systematic
errors. It is important to note that all these arguments are for pure gauge theories and
would have to be reconsidered in the presence of light fermions as in QCD.

In a periodic four-volume a continuum gauge field of topological charge () cannot
be smoothly deformed into a gauge field of charge Q' # Q. So in a sequence of lattice
fields that have been generated using a Monte Carlo algorithm that is local any change
in the value of @) should be increasingly suppressed as we approach the continuum limit.
This statement can be made quantitative as we do below. But before that we note that
there is a separate suppression that occurs at any fixed small value of a when we increase
N. To smoothly deform a lattice field from, say, @ = 1 to ) = 0 in a finite volume
with periodic gauge potentials, the core of an original extended instanton must gradually



shrink until it disappears within a hypercube, leaving a simple gauge singularity centered
on that hypercube. Before it does so it will be a small instanton (assuming a is small)
which we can describe using standard semiclassical methods. So its effective action will
be Si(p) ~ 872 /g%(p) where p is the size of the core and provides the relevant scale, and
the probability of it existing in a field will be oc exp{—S;(p)} ~ exp{—872/g?(p)} per unit
volume up to a 1/p* volume factor and some less important factors [20, 21]. Now at large
N the 't Hooft coupling A = g?>N needs to be kept constant for a smooth limit [22, 23].
In terms of the running coupling this means A(I) = ¢g?(I)N is independent of N up to
corrections that are powers of 1/N, where [ is measured in some physical units, e.g. the mass
gap. So the weight of a small instanton vanishes as o exp{—872N/\(p)}, i.e. it vanishes
exponentially with N [25, 26]. Since the process of going ‘smoothly’ from a field with
Q =1 to a field with Q = 0 necessarily involves at an intermediate stage of the process the
presence of fields containing such small instantons, we immediately infer that the change
in topology must be at least exponentially suppressed with increasing N once a is small.
Such a strong suppression has indeed been observed in earlier lattice calculations [1, 27].
Returning to the a — 0 limit at fixed IV we note that one can use the one-loop expression
for g%(p) and this leads to a suppression of the tunnelling between topological sectors that
is the appropriate power of p and hence of a, once p ~ O(a).

In our calculations we normally start a Monte Carlo sequence with the trivial @ = 0
gauge field U; = I,VI, and ‘thermalise’ with some tens of thousands of sweeps to reach
the ‘equilibriated’ lattice gauge fields which we can begin to use for our calculations. As
described above, for larger N and smaller a the topological tunnelling can become sufficiently
rare that the fields remain at @) = 0 even after our attempted equilibriation. In practice
this proves not to be an issue for any of our SU(2), SU(3), SU(4) and SU(5) calculations.
For SU(6) it becomes a problem for the smallest values of a and for SU(N > 8) it is a
problem for all but our largest values of a. That is to say, within our statistics and our
range of a topological freezing is largely an issue to do with N 1 rather than with a |. This
distinction is important since the currently accepted theoretical picture [28] tells us that
we are sitting in a vacuum with periodicity in the 6 parameter of 2r N rather than 27. (It
is other interlaced #-vacua that provide the expected 27 periodicity.) This implies that
higher moments in ) disappear as inverse powers of N, and so does the correlation between
the topological charge and gluonic operators. Lattice calculations [29] have confirmed this
expectation. This tells us that at large enough N the loss of ergodicity should not affect
physical quantities such as glueball masses.

Of course we do not know in advance what value of N is ‘large enough’ and so it is
useful to perform an explicit check of how such freezing affects the physics we are interested
in. For this we choose to work in SU(8) at § = 45.50 where changes in topology are
extremely rare, but which is close to the value N = 6 where we begin to encounter a serious
loss of topological ergodicity in our calculations. We begin with a comparison of two sets of
about 2 x 100 fields on a 14320 lattice, with glueball and flux tube ‘measurements’ taken
every 25'th update. One set of fields has ) = 0 throughout while the other has what one
expects to be the correct distribution of ) imposed through about 40 different starting
configurations as described above. We calculate glueball and flux tube correlators in exactly



the same way in both ensembles of fields and perform the usual variational calculation for
each representation RC. Note that here we include all the states that we obtain and make
no attempt to identify any of the finite volume ditorelon states alluded to in section 2.3.
In most, but not all, cases the effective energy plateau in the effective energies, aFeg(t),
defined in eq. (2.5) begin at t = 2a. So we show in table 9 the values of aFeg(t = 2a) that
we obtain in each of the two sets of fields, for the ground states and some of the lowest
lying excited states. We see that the two sets of values are remarkably consistent within
errors, with only a small handful of heavier states differing by slightly more than 2¢. In
addition to the glueball effective energies we also show those for the lightest two states of a
flux tube that winds around the spatial torus. We do so for the flux in the fundamental
representation (k = 1) and for the flux in the (k =2) = (k = 1) ® (k = 1) representation.
Here too we see consistency within statistical errors. In addition to this study on the 14320
lattice we perform a similar one on a smaller 12320 lattices at the same /3. This is the lattice
size, in physical units, that is used in our calculations later on in this paper, and we recall
that in general the local effects of constraining the topological charge should increase with
decreasing volume (see e.g. [30]). Again we have consistency within errors for almost all
the states. The conclusion of these explicit calculations is that within our typical statistical
errors the physical quantities we calculate in this paper are not affected by constraining the
total topological charge to @ = 0.

Although both the theory and our above explicit checks suggest that the loss of
topological ergodicity in our calculations will have very little effect on our measured glueball
spectrum, we implement the following additional procedure that is designed to reduce any
remaining biases. Suppose we are confronted with topological freezing on a lattice of size
L3L; at some value of 3 in some SU(N) theory. Now instead of starting with a Q = 0 field
with U; = I,VI, we produce a set of sequences in parallel which start with fields that have
various values of ). We choose the ensemble of these starting fields to roughly reproduce
the expected distribution. What is ‘expected’ we infer from what we observe at the lower
values of N where there is no topological freezing and also from the values obtained at the
same value of N but at the larger values of a(f3) (if any) where the freezing has not yet set
in. This is a plausible strategy since we find that in those cases where the distribution of
() can be determined there is little variation in the distribution of () with either N or a
on an equal physical volume. To produce such a starting field with some ) we generate a
sequence of SU(3) fields on the same size lattice as our SU(V) one and we pick out a field
with the desired charge (). We ‘cool’ this field to produce a field with minimal fluctuations
apart from the net topological charge. (See section 6 for details.) We then embed this
lattice field of 3 x 3 complex matrices into a suitable corner of our set of N x N unit
matrices, so as to produce a set of SU(N) matrices with charge Q. If we have topological
freezing then this starting distribution of () will be maintained in our set of Monte Carlo
sequences. This method has some disadvantages but also some advantages. One advantage
is that the lack of topological tunneling is a better representation of the continuum theory:
we are sampling disconnected sectors. After all, the field configurations near the point of
topological tunnelling have no continuum correspondence and are a lattice artifact. The
major disadvantage is that we necessarily have a rather limited set of parallel sequences



(typically 20 or 40) and hence values of ), and so only the most probable values of @) are
properly represented. Lattice fields with values of ) that have a low probability simply
do not appear. That is to say we are missing the tail of the @ distribution, and so any
physics that depends on higher moments of ) will be something we cannot address here.
However theory tells us that the correlation between such higher moments of ) and our
gluonic operators will be suppressed as a correpondingly higher power of IV, so any bias
should be a small fraction of what, as we have seen above, will be at most a very small
shift to the glueball masses.

In conclusion, our explicit calculations, the theoretical arguments, and our additional
procedure of imposing upon our fields something quite close to the expected distribution of
() makes us confident that within our typical statistical errors any systematic error from
the freezing of topology is negligible in our glueball calculations.

3 String tensions

Let us label the sites of the hypercubic lattice by the integers ng,, ny,n.,n;. To project onto
a fundamental (k = 1) flux tube the simplest operator we can use is Tr(l;) where [; is the
product of link matrices along a minimal path encircling the spatial torus. This is just the
usual spatial Polyakov loop. For example, if the spatial lattice size is L then the Polyakov
loop in the x direction is

Ne=L

lp(ny,nz,ng) = H Uz (g, ny, iz, ny). (3.1)
ny=1

We also use such Polyakov loops composed of blocked links and we translate the operator
along the z direction. Clearly the parities of such states are positive. This loop is
translationally invariant along the flux tube direction and so the momentum along the flux
tube is zero; p| = 0. It is rotationally invariant around its axis, so J = 0. Because of the
usual centre symmetry (see below) the C' = + and C' = — flux tubes are degenerate. We
then sum [ f(ny, Ny, N¢) OvVer ny and n; so that the transverse momentum p, = 0. Thus
the lightest state onto which this final operator projects should be the ground state of the
winding flux tube that carries fundamental flux. To project onto a k = 2 flux tube we do
the same using linear combinations of the operators Tr(lfly) and Tr(lf)Tr(ly). For k =3
we use linear combinations of Tr(Iflsly¢), Tr(lflf)Tr(ly) and Tr(lf)Tr(lf)Tr(ly), and so on
for higher k. The defining property of a k-string that winds around the spatial torus in
say the x direction is that under a transformation of the link matrices Uy (ng, ny, n.,ny) —
exp{i27 /N }Uy(ng, iy, 12, nyg) for all ny, n,, n; and at some fixed value of ng, it will acquire
a factor exp{i2kmw/N}. Since this transformation is a symmetry of the theory (the action
and measure are unchanged) and at low temperatures the symmetry is not spontaneously
broken, any two operators for which this factor of exp{i2km/N} differ will have zero mutual
overlap. So we have separate sectors of flux tubes labelled by k with the fundamental
k =1 strings existing for N > 2, the k = 2 strings for N > 4, the k = 3 strings for N > 6,
and so on. We note that our basis of operators for a k-string could easily be extended by
multiplying the operators by factors such as Tr(l f)Tr(l;rc), but while this might be useful to
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improve the overlap onto massive excitations it would be very surprising if it improved the
overlap onto the ground state which is what we are interested in here.

3.1 Finite volume corrections

As described above, we calculate the ground state energy of a flux tube that winds once
around a spatial torus. If the lattice has size [3l;, this flux tube has length | and we
generically denote the energy by Fj(l), where k = 1 corresponds to a flux tube carrying
fundamental flux and k to a k-string (carrying k units of fundamental flux). The string
tension oy is the energy per unit length of a very long flux tube

o = lim 7Ek(l)

l—o0 l

(3.2)

In practice our tori are finite and so we expect that there will be corrections to the leading
linear dependence of Fj(l). In our calculations we will normally estimate the asymptotic
string tension oy, using the ‘Nambu-Goto’ formula

NI

Ex(l) = ol (1 - 33:12) . (3.3)
When expanded in powers of 1/0[? this formula generates all the known universal terms [31-
34] and, at least for fundamental flux, proves to accurately describe numerical calculations
for the range of [ relevant to our calculations [35]. However, strictly speaking, these results
hold for flux tubes that are effectively in an infinite transverse volume, while in our case,
in order to maintain the rotational symmetry needed for our glueball calculations, the
transverse size is [ x [ and so decreases when we decrease [. We therefore need to perform
some explicit checks, i.e. to check whether eq. (3.3) encodes all the finite-l corrections that
are visible within our typical statistical errors.

We see from eq. (3.3) that the relevant scale is [ in units of the string tension, i.e. I\/o.
These scales are listed in the headers of tables 1-8 and they vary from Iy/o ~ 4 for lower
N to l\/o ~ 2.6 for our highest values of N. As far as glueball masses are concerned the
theoretical justification for this decrease in the volume is that we expect finite volume
corrections to decrease as N grows and the practical reason is that the expense of the SU(N)
matrix product calculations grows as oc N3. In order to check whether there are significant
corrections to eq. (3.3) at the values of | we use, we calculate o on larger (sometimes
smaller) lattices at selected values of 5. These calculations are summarised in table 10.
For N = 8,10, 12 the scale [ /o ~ 2.6 corresponds to [ = 12 in the table, and we see that
the value of a+/o is the same for the longer [ = 14 flux tube, suggesting that there are no
significant finite [ corrections to eq. (3.3) for these values of N. The same conclusion holds
for the other groups in table 10. All this provides evidence that the fundamental string
tensions quoted in tables 1-8 do not suffer significant finite volume errors, at least within
our typical statistical errors.

The energies of £k > 2 flux tubes are larger and therefore so are the statistical and
systematic errors in estimating them. Since the energies grow with k, we have only attempted
a finite volume study for k£ = 2 flux tubes. This is presented in table 11. The message
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here is more nuanced than for k¥ = 1: while any finite [ corrections to eq. (3.3) appear
to be insignificant when /o 2 3, and hence for our N < 6 string tension calculations,
there is strong evidence that there is a correction of ~ 1.9(5)% to the values obtained with
l\/o ~ 2.6, which are the values we emply for N > 8. This is something we will need to
consider when we estimate the errors on our k£ = 2 string tensions. Presumably the £ = 3
and k = 4 string tensions show corrections at least as large, but we do not have any finite [
study of these.

3.2 Fundamental (k = 1) string tensions

We calculate the ground state energies of the fundamental flux tube for the lattices, couplings
and gauge groups listed in tables 1-8. We then use eq. (3.3) to extract our estimates of the
infinite volume string tensions. The energies are obtained by identifying effective energy
plateaux as described in section 2.2. As an example we show in figure 1 the effective energies
that lead to the SU(8) string tension estimates in table 6. As one increases  and hence
decreases a, the energy in lattice units decreases so that we can obtain precise effective
energies over a larger range of n; which in turn makes it easier to identify a plateau and so
estimate the corresponding value of Eeg(n; — oo). Although we attempt to show in figure 1
the error bands on our estimates of the corresponding flux tube energies, these are almost
invisible because the errors are too small on the scale used in the plot. We therefore replot,
in figure 2, the effective energies for g = 47.75, which is the calculation that is the closest to
the desired continuum limit, with a sufficient rescaling to expose the errors on the effective
masses. On the plot we show the best estimate for the energy obtained from a fit to the
correlation function, together with the energies corresponding to +1 standard deviations.

For the corresponding SU(3) plots we refer the reader to figure 1 of [11]. The fact
that the SU(3) lattices are (much) larger than the SU(8) ones at similar values of a\/o
means that the flux tubes are more massive, so the correlators decrease faster with n; and
the extraction of Eeg(ns — 00) is less compelling — despite the fact that the calculations
extend closer to the continuum limit in the case of SU(3). These SU(3) plots are typical of
our NV < 4 calculations, where the lattices are chosen to be particularly large, while the
SU(8) plot is typical of N > 8 where the spatial volumes used are smaller.

In the case of SU(2) and SU(3) we have also calculated the string tension on smaller
volumes which are still large enough for the flux tube calculations even if too small for
reliable glueball calculations. This enables us to extend the calculations to smaller values of
ay/o at modest computational cost. The purpose of these calculations is to feed into our
analysis of the running coupling later on in this paper. We list the results of the calculations
in tables 12, 13.

3.3 k = 2 string tensions

One expects that as N — oo the k = 2 flux tube will become two non-interacting k& =
1 flux tubes and we will have op—o — 201—;. However, as earlier calculations have
shown [27, 35, 36], at lower values of N one finds that o;— is substantially less than 20j_1,
so that one can think of it as behaving like a bound state of two fundamental flux tubes.
This suggests that at lower values of N the k = 2 flux tube can be treated as a single ‘string’
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with finite volume corrections well described by eq. (3.3). As we increase N the k = 2 flux
tube should increasingly look like two fundamental flux tubes that are loosely bound with
the binding energy vanishing as N — oco. Here one might expect each of these two flux
tubes to have finite volume corrections given by eq. (3.3) so that the overall finite volume
behaviour of the energy of a k = 2 flux tube becomes significantly different:

1 1
small N 2T \? Nooo 4\ 2

with op—o = 20;—1. One can expect a smooth transition between these two behaviours
which clearly creates ambiguities in extracting the string tension a?c;—s from the flux tube
energy aFy—o(l).

Assuming for now that we can treat the k = 2 flux tube as a single string with finite
volume corrections as given by eq. (3.3) we calculate ox—o on our various ensembles of lattice
fields. Using the previously calculated values of oy = 0,—1 we form the dimensionless ratio
or=2/0¢ which we then extrapolate to the continuum limit using eq. (2.4). We show the
extrapolations in figure 3. For N < 6 these appear to be under good control, but for larger
N that is less clear. One would expect the slope of the extrapolation to vary smoothly
with NV, and that is certainly what one sees for N = 4,5,6. But then there is a violent
break in the behaviour between N = 6 and N = 8 and wild oscillations when comparing
the N = 8,10, 12 slopes. It may be that this is due to our use of smaller spatial volumes
for N > 8. In any case, we calculate the continuum limits from these fits and the results
for our various gauge groups are presented in the second column of table 14. As remarked
earlier, there is good evidence from table 11 that for the smaller lattices that we have used
for N > 8 we should apply an additional finite volume correction of ~ 1.9(5)%. Doing this
leads to the values in the third column of table 14, which are the values we consider to
be more reliable. There is a caveat here: at our largest values of N the values of oy—o/0 ¥
are quite close to the asymptotic value of two, and so we might expect that we are in the
range of N where the stronger finite volume behaviour displayed in eq. (3.4) is setting in.
To settle this question would require a dedicated calculation that is beyond the scope of
this paper.

We have also obtained continuum extrapolations of the k£ = 3 and k = 4 string tensions.
These have been obtained from the corresponding flux tube energies using eq. (3.3) and this
undoubtedly underestimates the finite volume corrections. Indeed as N — oo we expect
o — koy as the k-string becomes k non-interacting fundamental strings, and then we

expect a version of eq. (3.4),

1

1
N—oo 2 2 2km \ 2
Er(l kol |1 =orl (1 . .

k( ) — kof < + 3O'fl2> Ok ( + 3Jkl2> (3 5)

Given this uncertainty and the increasing ambiguity with increasing k of extracting an
effective energy plateau (because of their increasing energies), we do not discuss these values
any further here.
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3.4 N — oo extrapolations

An interesting question about the ratio o,—s/0s concerns its dependence on IN. On general
grounds we expect the leading correction to the asymptotic value to be O(1/N?). However
there are old ideas under the label of ‘Casimir Scaling’, that the (string) tension of a flux
tube should be proportional to the smallest quadratic Casimir of the representations that
contribute to that flux, as though the flux tube joining two sources behaved, in this respect,
just like one gluon exchange. For the k£ flux tube the relevant representation is the totally
antisymmetric one and this predicts

or 05 k(N —k) Nooo ,  k(k—1)  k(k—1) (1)
of N-1 o F N N O

RE (3.6)
so that the leading correction is O(1/N) rather than O(1/N?). Previous lattice calculations
have often favoured Casimir scaling as a good approximation [39] so it is interesting to test
this idea against our k = 2 values listed in table 14. In figure 4 we plot our continuum
values of oj—o /0y against 1/N2. In addition we know that Op=2/0f =2 at N = 0o so we
impose this as a constraint in our fits. In figure 4 we show our best fit in powers of 1/N?

Oh=a _ ., L28(19) 4.78(90)

. > = (3.7)

with a x? per degree of freedom of ~ 0.5 and an alternative best fit in powers of 1/N?

Ok

-2 14.43(60) ~ 73.8(12.1)
—= =20- 5 1
of N N

(3.8)

with a x? per degree of freedom of ~ 2.2. The former fit is clearly better, but the latter
cannot be entirely excluded. On the other hand while the fit in powers of 1/N is very good,
the coefficients are very different from those obtained if we expand the Casimir scaling
prediction, as in eq. (3.6). One may speculate that for the range of N where the k = 2
flux tube is a bound state the N dependence of the string tension is best described in
powers of 1/N while once N is large enough that it has become a weakly interacting pair
of fundamental flux tubes, the dependance will be best described in powers of 1/N2. At
which N this transition occurs will depend on the length [ of the flux tube. If we use
the formula in eq. (3.3) for the fundamental and k¥ = 2 flux tubes and if we assume that
ok—2 = 20 — O(1/N), then one finds that the lightest state will be the weakly interacting
pair of fundamental flux tubes for [ < I. where [, /o x N 2, (This essentially reflects a
competition between the leading linear terms and the O(1/l) Luscher corrections.) That
is to say, for any fixed length [, the (very) asymptotic leading correction is O(1/N?) as
expected by the usual large- N counting. However one has to be careful in which order one
takes the I — co and N — oo limits.

4 Running coupling

A question of theoretical interest is whether our calculations show that we should keep the
't Hooft coupling ¢°N fixed as N — oo in order to have a smooth large-N limit. A question
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of phenomenological interest is whether we can estimate the scale A of our SU(N) gauge the-
ories, from the calculated running of the gauge coupling, and in particular whether we can do
so for SU(3). Finally something that is often useful in lattice calculations is to have an inter-
polation function for a(3). These are the three issues we address in this section. A summary
of the technical background to the perturbative calculations has been placed in appendix A.

4.1 Scaling with N

Since the lattice coupling g7 defined in eq. (2.2) provides a definition of the running coupling
on the scale a, and our above calculation of the (fundamental) string tension at various
[ enables us to express a in physical units, i.e. as a\/o, we can use these calculations
to address some questions about the properties of the running coupling in SU(N) gauge
theories. Before doing so we recall that this lattice coupling, corresponding to the particular
coupling scheme defined by the lattice and the plaquette action, is well-known to be a ‘poor’
definition of a running coupling in the sense that higher order corrections will typically be
very large. This is indicated, for example, by the relationship between the scale parameters
Ap and Ajzg in this scheme and the standard MS scheme [37, 38]:

Am 37'['2

This is a long-standing issue that has led to the formulation of a number of improved
couplings. (For a review see [40].) Here we shall use the ‘mean-field’ improved coupling of

Parisi [41], , .
L (Em,), (12)

gi 9N
which has a nice physical motivation as the effective coupling experienced by a background
field (in a simple approximation). Denoting the corresponding scale by A, one finds

Am AL Am w1 371'2
MsS = = - 38.853 —— ¢ ~2.633 4.3
A A; Ap eXp{ 250} . P TTIN? (43)

using eq. (4.1) and egs. (A.12), (A.17), with the value of Ar/A; being obtained using
eq. (A.7) for each A, with g% and g2 related by eqs. (A.16), (A.17), and then taking g — 0.
This already suggests that g% has the potential to be more-or-less as good as gi/[—s. One
can also show [42] that this coupling tracks quite accurately the Schrodinger-functional
coupling [43, 44] over a very wide range of scales. (See [42] for a detailed discussion.) So
from now on, in this section, we shall use g?(a) as our lattice running coupling.

The main question we address concerns the N dependence of g%(a). The usual large
N counting tells us that we expect to approach constant physics as N — oo if we keep g N
fixed. For the running coupling this means that if we plot g7(a)N against the calculated
values of a\/o in our SU(N) gauge theories, they should approach a common envelope as
N — oo. The interesting question is whether the approach is slow or fast, indicating that our
values of N are ‘far from’ or ‘near to’ N = oo respectively. In figure 5 we plot our calculated
values of the running 't Hooft coupling ¢g7(a)N against a./o for all our values of N. The
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results are quite remarkable: even SU(2) is very close to SU(o0) in this respect, and it is
only when the lattice spacing becomes large that appreciable differences appear. It is also
interesting to see what happens if one uses the poor g7 (a) coupling instead of g7(a), and one
finds that while the convergence to a large N limit is still evident, the corrections at lower N
are substantial indicating that, not surprisingly, higher order non-planar contributions are
important using this coupling scheme. Finally we comment that these conclusions are not
unexpected or novel: similar analyses have appeared in for example [1, 42], albeit usually
with less accuracy and over more limited ranges of N and a+/o.

4.2 Perturbative running and Agyg

The second question we address is whether the running coupling dependence displayed in
figure 5 can be described by the usual perturbative S-function for at least some N once a
is small. If so we can extract a value of A for each such N and a corresponding value of
A5 using eq. (4.3). Our analysis will broadly follow that of [42] and we refer the reader to
that paper for background and context; here we merely outline the calculation, with more
details in appendix A. To fix our notation we begin with the standard S-function for the
lattice bare coupling g%:

997

" Hloga? = —bogi — big} — byg} + ...+ O(a?), (4.4)

Blgr) =

where the scheme independent coefficients by, b; and the scheme dependent b} are given
in eq. (A.12) and eq. (A.18) of appendix A. As shown in appendix A this motivates the
following 3-loop expression for a:

2 bl —b2 s bl o2
by 1 _lfgl(a)d2 0bg —b7 —b1b59
2 9 3 520 0210201 o4
3loop ﬁ(o) 0 b3 +bgb19%+b3bsg

av/o(a) A (1 + caa20> (bw%(a))iﬁ e 097 ¢

(4.5)
Here the first factor on the right after the coefficient is a non-perturbative tree-level lattice
spacing correction. The motivation is that we could just as well use some physical mass,
p(a), as a scale in place of \/o(a) and since pu(a)/v/o(a) = u(a = 0)/\/o(a = 0)(1+0(a?)) it
must be the case that we have, in general, a factor (1 + O(a?)) multiplying the perturbative
expression [42, 45]. Here we choose to use o as our scale for a?: using some other p?
would only change the O(a?) term and we will assume that a is small enough that we can
neglect any O(a*) terms. We evaluate numerically the integral in the exponential for any
given value of gr(a): for such a smooth integrand any simple technique will be able to
give accurate results. We now describe the result of fitting this function to our values of
a+/o, as listed in tables 12, 13 for SU(2) and SU(3) and in tables 3-8 for SU(4) to SU(12).
In performing these fits one can either use the measured values of a?c in the (1 + c,a?0)
lattice correction factor, or the value calculated from the formula itself. In the latter case
eq. (4.5) becomes a quadratic equation for a\/o. Not surprisingly, for the range of g%(a)
where eq. (4.5) provides a good fit to our calculated string tensions, the difference between
the two methods is insignificant, and we choose here to use the measured value in the
correction term.
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The results of our fits using eq. (4.5) are shown in table 15. For each value of N we
fit our lattice values of a\/o discarding the largest values until we obtain a reasonably
acceptable fit. The range of lattice spacings for the fits is listed for each N, together with
the x? per degree of freedom, x2/ ngs. In the few cases labelled by * in table 15 the fits are
very poor with x2/ ngr > 3, and so we quadruple the stated error in those cases in the hope
that this encodes the increased uncertainty. Referring to tables 1-8 we see that the number
of values used within a given fit varies from 6 in SU(3) to 4 in SU(10) and SU(12). Since
we have 2 parameters in our fit, 4 points is a very small number for a fit. Moreover, for
SU(10) and SU(12) the lattice spacings do not extend to values as small as for lower N.
Hence one should treat the resulting fits with extra caution.

In table 15 we also list the fitted values of the perturbative scale parameter, Aj, in
units of the continuum string tension. We then convert this to the corresponding A7z scale
in the widely used M S coupling scheme, using the N-independent relation Aq;5/A; ~ 2.633
from eq. (4.3) and the results are listed in the last column of table 15, again in units of the
string tension. The quoted errors on our values of A; are very small, but they are purely
statistical and their smallness reflects the very small errors on the string tensions that are
fitted. The systematic errors involved in, for example, the truncation of the beta-function
may be much larger. To get some measure of this error we also perform an extra fit using
the exact 2-loop running,

b

__1 b 1 262
av/o(a) 2loop cr (1 + c(,,]aza) e 2097 —; +— °. (4.6)
The resulting 2-loop values of A are also listed in table 15. We see that A?OOp is typically

about 10% smaller than the A?IOOP . We have decided to use half of this difference as
a measure of the error associated with dropping 4-loop and higher coefficients from the
3-loop calculation. This is added as a second error, within square brackets, to the resulting
3-loop values for A7z that are listed in the last right-hand column of table 15. Unlike the
statistical errors, this error will affect the results for all values of N in the same direction.

In figure 6 we display the values that we obtain from our 3-loop fits for Ag;c/\/0 as a
function of N. (We use only the statistical errors in these fits.) It is clear that the variation
with IV is very weak. If we fit all our values for N < 12 we find the fit,

0.306(12)

Ai
—MS — (.5055(7)[250] + ER

Vo

which is displayed in figure 6. Although the x?2/ ngy is not good, the calculated values appear

X*/ngr =2.70, N €[2,12], (4.7)

to be scattered around the fit in a random pattern. Other possible fits include

Ao 0.258(12)

\/LUS = 0.5067(11)[250] + ——5— X*/ngr =1.65, N € [4,12],
Ars 0.303(13

7\%.5 = 0.5060(8)[250] + ]Vg), X2/ndf = 3.81, N e [23 8]’

0.206(38)

Ai
—M5S — (,5093(16)[250] + 2

Vo

. X%/ng =044, N €[4,8]. (4.8)
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In all the above fits we have included within square brackets an estimate of ~ 5% for the
systematic error associated with the truncation of the perturbative expansion. We note
that this systematic error is much larger than the differences between the various fits above,
and is the dominant source of uncertainty.

To finish we turn briefly to the case of SU(3) where the value of Aj;g has phenomeno-
logical interest. Here we can attempt to transform our value into MeV units as follows. We
begin with its value in units of the string tension, as listed in table 15, and we then transform
this into a value in terms of the Sommer length scale ¢ [46] using a recent calculation [11]
that gives rg\/o = 1.160(6). A recent review [47] of calculations in lattice QCD with light
quarks concludes that ro = 0.472(5)fm = 1/418(5)MeV 1. The usual expectation is that
the value of 7y is not very sensitive to the inclusion of light quarks, so we use this MeV
value in the pure gauge theory. (This is of course the arguable step.) Doing so we arrive at

Ai
SMS| —0.5424(13)[185] = roAgrg = 0.629(4)[22] = Agrg = 263(4)[9]MeV,  (4.9)

Vo lsus
where the first error is statistical and the second is systematic. This value is consistent with
the values recently obtained in the dedicated calculations [48, 49] that use very different
methods, and our value has a similar accuracy. This adds confidence that our calculations
of A5 for the other SU(NV) groups are also reliable.

4.3 Interpolating and extrapolating functions for a(3)

It can often be useful to know the value of a(f8), in physical units, at some value of .
This can be provided, for example, by the value of a\/o. However calculations of a/o
are obtained at a number of discrete values of 8 within some finite range 8y < < 51
and the g value of interest may lie outside this range, or may be within this range but
not at one of the discrete values where a\/o has been calculated. In the latter case one
needs to find an interpolating function that will work in the range g8 € [fo, 81| and since
a+/o typically varies smoothly in this range this is easy to do: a few sensibly chosen terms
from almost any complete set of functions will work adequately. However if the § value of
interest lies outside the range [y, 51] and, in particular, if it is at some weaker coupling,
then extrapolating such a ‘random’ interpolating fit will invariably work badly unless the
original interpolating function has a form motivated by weak coupling perturbation theory,
in which case it should (in principle) be reasonably accurate. In the section above we have
used precisely such functions. We will here present a fit in an explicit form so that the
reader can readily employ it.

Our fit will be in terms of the mean-field improved coupling g? defined in eq. (4.2).
This requires that one know the value of the average plaquette; this is always calculated in
a Monte Carlo but one needs to record the average, which is normally done so as to provide
a first check on the calculation. (And if not, one can obtain a value with adequate accuracy
very quickly using small lattices and modest statistics.) The interpolating function we will
use is a variation on the ones used above and is as follows:

av/a(a) = co (1+ ¢;a’a(a)) P (g1), (4.10)
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where
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The first two factors of Fy 4 (gr) constitute the exact dependence when (g) is truncated
to the first two terms. The last factor on the right is the extra dependence if one keeps
in the exponent the leading O(b}) term to O(g?). That is to say, it is ‘more’ than 2 loops,
but ‘less’ than 3 loops. Hence the subscript 2i+ on F'(g). This is of course an arbitrary
truncation with no guarantee that it does indeed do better than the 2-loop one; however we
use it because, as we shall see below, it turns out to be very close to the 3-loop result, but
without the need to perform any numerical integrations. Note that here we choose to use

2

in the o< a®o correction term the value given by fitting the formula to our data since this is

the mode in which it needs to be used in an extrapolation.

To make use of eq. (4.11) we need to fit the constants ¢y and ¢, to our calculated values
of a/o, at each N. Once the constants ¢y and ¢, have been fitted we can solve eq. (4.10),
which is quadratic in a\/o, at any value of 5r:

av/o(a) ! @ (1 - [1 - 4c§caFgl+(61)2]) . (4.12)

2cocq Forq

In eq. (4.11) the values of b, b1, b} need to be specified. The values of by and b; are universal
and are given in eq. (A.12). The value of bl is as given in eq. (A.18)

by = by + waby — wiby, (4.13)

where we use eqs. (A.13), (A.15) in eq. (A.14) to obtain the explicit expression for b5 and
then inserting that together with the functions in eq. (A.17) and eq. (A.12) into eq. (4.13)
we obtain the explicit expression for bé for any N.

It only remains now to give our fitted values of ¢y and ¢, for each of the SU(N) groups
for which we have calculated the string tension. This we do in table 16. There we show
for each N our best fits to these two parameters as well as the fitted range and the x? per
degree of freedom of the fit. In performing these fits we systematically drop the largest
values of a\/o from the fit until we obtain an acceptable 2. This is appropriate since our
interpolating function is based on weak-coupling perturbation theory. Note that being
based on weak coupling the resulting function is not designed to work for values of a or g?
greater than the range within which it provides a good fit.

As an aside it needs to be emphasised that all the above fits are only relevant if one
uses the Wilson plaquette action. As a second aside, we note that if one wants a(3) in terms
of some physical scale p instead of /o then one can straighforwardly modify the above
formula for a\/o to one for ay by using the relation u/\/o = dy + dia’c if it accurately
holds in the range of couplings of interest.
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5 Glueball masses

5.1 Quantum numbers

The glueballs are colour singlets and so our glueball operator is obtained by taking the
ordered product of SU(N) link matrices around a contractible loop and then taking the trace.
To retain the exact positivity of the correlators we use loops that contain only spatial links.
The real part of the trace projects on C' = 4 and the imaginary part on C' = —. We sum all
spatial translations of the loop so as to obtain an operator with momentum p = 0. We take
all rotations of the loop and construct the linear combinations that transform according to
the irreducible representations, R, of the rotational symmetry group of our cubic spatial
lattice. We always choose to use a cubic lattice volume that respects these symmetries. For
each loop we also construct its parity inverse so that taking linear combinations we can
construct operators of both parities, P = +. The correlators of such operators will project
onto glueballs with p = 0 and the R”C quantum numbers of the operators concerned.

The irreducible representations R of our subgroup of the full rotation group are usually
labelled as Ai, Ao, E,T1,T5. The A is a singlet and rotationally symmetric, so it will
contain the J = 0 state in the continuum limit. The A is also a singlet, while the F
is a doublet and T} and 15 are both triplets. In section 5.7 we will outline the detailed
relationship between these representations and the continuum spin J. Since, for example,
the three states transforming as the triplet of T, are degenerate on the lattice, we average
their values and treat them as one state in our tables of glueball masses and we do the
same with the Tj triplets and the E doublets. (Just as we would treat the 5 states of a
continuum J = 2 glueball as one entry.)

5.2 Finite volume effects

For reasons of computational economy we wish to calculate on lattice sizes that are small
but, at the same time, large enough that any finite volume corrections remain smaller than
our typical statistical errors. Since the computional cost of calculating in SU(N) gauge
theories grows roughly oc N2 (the multiplication of two N x N matrices) and since finite
volume corrections are expected to decrease as powers of 1/N, we reduce the size in physical
units of our lattices as we increase N, as shown in tables 1-8.

There are two important types of finite volume corrections. The first can be thought of
as arising when the propagating glueball emits a virtual glueball which propagates around
the spatial torus. The resulting shift in the mass of the propagating glueball decreases
exponentially in mgl where mg is the mass gap and [ is the length of the spatial torus [19].
As we see from tables 1-8 the value of amg X /a is quite large in all of our calculations, so
we can expect this correction to be small.

The second type of finite volume correction consists of states composed of multiple
flux tubes winding around a spatial torus in a (centre) singlet state. The lightest of these
will be a state composed of one winding flux tube together with a conjugate winding flux
tube, which we refer to as a ‘ditorelon’. (A single winding flux tube is usually referred to
as a ‘torelon’.) Since it can have a non-zero overlap onto the contractible loops that we
use as our glueball operators, it can appear as a state in our calculated glueball spectrum.
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Neglecting interactions, the lightest ditorelon will consist of each flux tube in its ground
state with zero momentum and will have an energy, F,, that is twice that of the flux tube
ground state, g = 2Ey. Interactions will shift the energy but this shift should be small on
our volumes so we shall use E; ~ 2E; as a rough guide in searching for these states. This
ground state ditorelon has simple rotational properties and only contribute to the A{ " and
ETT representations. If we allow one or both of the component flux tubes to be excited
and/or to have non-zero equal and opposite transverse momenta we can populate other
representations and produce towers of states. However these excited ditorelon states will be
considerably heavier on the lattice volumes we employ and so we will not consider them
any further in this paper, although they certainly warrant further study.

The first of the above corrections leads to small shifts in the masses of the glueballs. The
second leads to extra states in the glueball spectrum. The signature of such an extra ditorelon
state is that its mass grows roughly linearly with the lattice size: aEp ~ 2aEy ~ 2a20fL
where L is the relevant spatial size in lattice units and oy is the (fundamental) string
tension. So to test for finite volume effects we perform calculations at the same value of
B on different lattice sizes and compare the glueball spectra. To identify any ditorelon
states we look for extra states in the A] " and E+™ spectra whose masses increase roughly
linearly with the volume. Since the mass shift associated with the first kind of correction
decreases exponentially with the lattice size any shift on a significantly larger volume should
be much smaller than on the smaller volume; so to check that it is negligible compared to
our statistical errors we simply compare the masses of the states that are not ditorelons
on the different volumes. As we see from tables 1-8 the lattice sizes we use fall into three
groups: ly/o ~ 4.0 for SU(2),SU(3),SU(4); I\/o ~ 3.1 for SU(5),SU(6); I\/o ~ 2.6 for
SU(8),SU(10),SU(12). We will exhibit a finite volume analysis for a representative of each
of these three groups.

We begin with SU(2). In table 17 we list the low-lying glueball spectra that we obtain
on 3 lattice sizes, together with the energies of the ground and first excited states of the
winding flux tubes. In physical units the L = 12,14, 20 spatial lattice sizes correspond to
l\/o ~2.9,3.4,4.8 respectively and we recall that the typical lattice size we use in SU(2) is
l\/o ~ 4. For the glueball states we list the effective energy at ¢t = 2a or, where applicable,
the energy of the fit to the effective energy plateau when that begins at ¢ = 2a. (These
two measures differ very little in practice.) These are obtained from the correlators of our
variationally selected best operators. For most of our lighter states the value of aFeg(t = 2a)
is very close to our best estimate of the mass. For these finite volume comparisons we prefer
this measure to the mass itself because it serves to minimise the statistical errors and makes
any finite volume corrections more visible. Putting aside the R = A} and the E* spectra
for the moment, we see that most of the glueball energies on the L = 14 and L = 20 lattices
are consistent within one standard deviation and all within two standard deviations. The
energies from the L = 12 lattice are broadly consistent but there are now some examples,
such as the AEL and E~ ground states, where there appear to be significant differences. We
now return to the A and the ET spectra listed in table 17 to see if there is any evidence of
the extra ditorelon states. We do indeed see these on the L. = 12 and L = 14 lattices in both
the A and the ET spectra: these states are displayed in the table with no corresponding
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entries at other lattice sizes. Their effective energies increase with L and are just a little
heavier than twice the flux tube energy. For the L = 20 lattice any ditorelon state would
be much heavier than any of the states shown: at such energies the spectrum is denser, the
errors are larger, and so identifying an ‘extra’ state becomes ambiguous. The remaining
states in the A] and the E* spectra are broadly consistent across the lattice sizes, except
for the lightest £+ on L = 12 and the first excited A] on L = 14, both of which are quite
close to their respective ditorelons and possibly mixing with them. Also the 4th state in
the L = 12 Af spectrum shows a shift. Since the typical lattice size we use in SU(2) is
[\/o ~ 4 (except for the relatively unimportant calculations at the largest values of a(53))
we can estimate the ditorelon states to have energies Ep ~ 20l ~ 2(l\/o)\/o ~ 8y/0 and we
shall therefore only perform continuum extrapolations of A7 and E7 states that are lighter
than ~ 8,/0, although it is still the case that the heaviest states in these channels may be
perturbed by ditorelon contributions. As for the other channels, since the size [ /o ~ 4 falls
between our L = 14 and L = 20 lattices at 8 = 2.427, we can conclude from the above that
there should be no finite volume corrections that would be visible outside our statistical
errors. We have performed similar finite volume checks in SU(3) in our earlier paper [11]
and we refer the reader to that paper for details, in particular for a check of the C' = —
states. In the case of SU(4) we have performed a finite volume analysis comparing the
spectra on 18320 and 22% lattices at 5 = 11.02, which has helped us identify the positions of
the ditorelon states in the spectra at other values of 3, and to remove these states from our
spectra. With all these checks we have some confidence that our SU(2), SU(3) and SU(4)
continuum spectra will not be afflicted by significant finite volume corrections.

Our SU(5) and SU(6) calculations are on significantly smaller volumes, typically with
l\/o ~ 3.1, and therefore deserve a separate finite volume study to the one above. To do
so we compare the low-lying glueball spectra that we obtain in SU(5) on 14320 and 18318
lattices at § = 17.46, together with the energies of the ground and first excited states
of the fundamental and £ = 2 winding flux tubes. In physical units these L = 14 and
L = 18 spatial lattice sizes correspond to [y/o ~ 3.06 and 3.93 respectively and we recall
that the typical lattice size we use in SU(5) and SU(6) is [y/o ~ 3.1 i.e. close to that of
the smaller of our two lattices. As in SU(2) we readily identify the extra ditorelon states
in the Af+ and ETT representations, which have energies very close to twice that of the
winding fundamental flux tube. (The ditorelon on the L = 18 lattice will lie outside our
energy range.) They appear to be well separated from neighbouring glueball states and so
we can readily identify and exclude them from our SU(5) and SU(6) glueball spectra and
exclude them from our continuum limits. The other energies on our two lattice sizes are
mostly within errors of each other, with a few out by up to two standard deviations, and
two states a little more than that. Given the large number of states being compared, such
rare discrepancies are inevitable and we can claim that we see no significant finite volume
corrections to any of our listed states.

We now turn to our largest N calculations where we use the even smaller spatial
lattice size /o ~ 2.6. Our finite volume study is in SU(12) on 12320 and 14320 lattices at
= 103.03, where the 12320 lattice represents our typical physical size, and the energies
are listed in table 18. In contrast to the previous tables, we list under the A7+ and B+
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representations our best estimate of the true glueball spectrum with the ditorelons removed.
We will return to the identification of the latter shortly. We observe that most of the
energies are the same within errors and all are within two standard deviations. That is to
say, any finite volume shifts in the energies are within our statistical errors at these values
of N, despite the fact that the L = 12 lattice volume is quite small.

The situation with respect to the ditorelons is more complex. The first complication is
that on the 12320 lattice the ATL ditorelon is nearly degenerate with the first excited Afr
glueball, so that these states may well mix even if the overlaps are small due to the large- N
suppression. Moreover the same occurs in the E+T representation where the ditorelon is
nearly degenerate with the ground state E++ glueball. The second complication arises
from the fact that the overlap of the ditorelon double trace operators onto the single trace
operators that we used to calculate the glueball spectrum is suppressed since N is large.
This should be an advantage and indeed if the overlap is small enough then the ditorelon
will not appear in the spectrum obtained from the single trace operators so that there is no
issue. However it may well appear as a minor component of a state that at first sight is
quite massive but then its aEeg(t) drops towards the ditorelon energy as t increases and
the more massive components die away. This can lead to ambiguities and indeed does on
both our lattice sizes.

Since all our SU(12) glueball calculations, and also those in SU(10) and SU(8), are
on lattices of roughly the same physical size as our 12320 one at 3 = 103.03, we need to
address these problems with the ditorelons. We do so as follows. First we find that if in
constructing our glueball operators we use blocked links whose extent is smaller than the
lattice size then the overlap of ditorelons onto these operators is small enough that we do
not see any ditorelon state in the A1 spectrum but we do see it embedded as a small
component in more massive states in the ETT spectrum. Since a link at blocking level bl

201=1g apart, this means keeping to blocking levels bl = 1 — 4 on our

joins sites that are
[ = 12a and [ = 14a lattices. If we now do something that may appear less reasonable
and include bl = 5 blocked links, which join lattice sites 16a apart, so that the operators
formed out of these links wrap multiply around the spatial torus in all spatial directions,
we find that the ditorelon overlaps are much larger and the ditorelon states now appear
quite clearly in the resulting spectrum. The results of these various calculations are shown
in table 19. As usual the energies shown are aFEeg(t = 2a) and so are often slightly higher
than the value of the effective energy plateau. Consider first the A" spectra on the 12320
lattice. We see that the second and third states in the bl = 1 — 5 spectrum are nearly
degenerate, with masses close to what one might expect for the ditorelon, i.e. 2aE; ~ 0.96,
but only one of them appears in the bl = 1 — 4 spectrum. Thus we infer that one of those
two (or a mixture of the two) is a ditorelon. On the 14320 lattice we also see an extra state
in the bl = 1 — 5 spectrum, as compared to the bl = 1 — 4 spectrum, but now the state is
heavier, as we would expect for a ditorelon since 2aF; ~ 1.2 on this lattice. Turning to the
E+ representation on the 14320 lattice we find an extra state using the bl = 1 — 5 basis, as
compared to using the bl = 1 — 4 basis, with roughly the expected mass of a ditorelon. On
the 12320 lattice things are a bit different: the second state in the bl = 1 — 5 spectrum has
no obvious partner in the bl = 1 — 4 spectrum, but there is a state in the latter spectrum
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where aEsf(t) decreases rapidly with increasing t to a comparable value. This is the second
entry in the table and the mass from the ‘plateau’; indicated in square brackets, is similar
to the energy of the second state in the bl = 1 — 5 spectrum. We interpret this as follows:
the ETT ditorelon has a substantial overlap onto the bl = 1 — 5 basis and only a small
overlap onto the bl = 1 — 4 basis, but large enough to appear within what appears to be a
higher excited state. This mass is somewhat smaller than that of the state we identified as
a ditorelon on the 14320 lattice which is what one expects. We note that unlike the states
we identify as ditorelons, most of the other states have nearly the same energies on the two
lattice sizes, as one expects for states that are not ditorelons. Recalling that the lattice
sizes we use in our N > 8 calculations are of the same physical size as our 12320 lattice at
B = 103.03, we can use the above results in all those cases to identify ditorelon states and
remove them from our glueball spectra. The same type of technique is useful for N = 5, 6.
A final comment is that the rotational symmetries of the ditorelon states — and indeed
multitorelon states — remain those of our finite volume, i.e. 7/2 rotations, even in the
continuum limit. That is to say, even in that limit they will fall into the representations of the
cubic subgroup of the continuum rotation group. The genuine glueballs, on the other hand,
will fall into representations of the full continuum rotation group in the continuum limit once
the volume is large enough, up to corrections that are exponentially small in the spatial size,
and this difference can also be useful in distinguishing ditorelons from genuine glueballs.

5.3 Lattice masses

As described earlier, we calculate glueball masses from the correlators of suitable p = 0
operators. These operators are chosen to have the desired RC quantum numbers, where
R € {A1, Ay, E, T, T3} labels the irreducible representation of the cubic subgroup of the
rotation group and P = 4+ and C' = £ label parity and charge conjugation. We typically
start with a set of 12 different closed loops on the lattice. (For N = 2,3 we used 27, but we
then observed that we can get almost equally good spectra by using a suitable subset of
12 loops.) We calculate all 24 rotations of the loop and construct linear combinations of
the traces that tranform as R. We do so separately using the real and imaginary parts of
the traces, which gives us operators with C' = + respectively. We also calculate the parity
inverses of each of these twelve loops, and of their rotations, and by adding and subtracting
appropriate operators from these two sets we form operators for each R with P = 4. To
ensure that we have non-trivial operators for each set of quantum numbers it is useful to
include some loops that have no symmetry under rotations and parity inversion. With
our particular choice of 12 (or 27) closed loops we are able to construct the number of
independent operators shown in table 20. This is the number of operators at each blocking
level and we typically use 4 or 5 blocking levels in our calculations. This makes for quite a

RPC quantum numbers, and indeed a very large number for

large basis of operators for all
most of them. However this large number is slightly deceptive as at any given 5 only two
or perhaps three blocking levels make an important contribution to the low-lying spectrum.
In addition the states in the E representation are doubly degenerate and in the 77 and 75
are triply degenerate, so one should divide the corresponding numbers in table 20 by 2 or 3

in order to estimate the number of different energy levels accessible to the basis.
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For completeness we list our 12 basic loops in table 21. The links are labelled by 1,2, 3
to indicate their spatial directions, with negative signs for backward going links, and the
path ordering is from left to right. So, for example, the plaquette in the 2 — 3 plane would
appear as {2,3,—2,—3}. Our list includes the plaquette, three 6 link loops, four 8 link loops
and four 10 link loops. We also show for each loop which representations it contributes
to once we include all the rotations and the inverses, doing so for the real (C'= +) and
imaginary (C' = —) parts of the traces separately. This basis is used for N > 4. For SU(2)
and SU(3) we use a larger basis of 27 loops that includes the 12 listed here. For some finite
size studies we have used a reduced set of 8 loops.

We use these bases of operators in our variational calculations of the glueball spectra. In
each RPC sector we calculate a number of the lowest masses from the correlation functions
of the operators that our variational procedure selects as being the best operators for those
states within our basis. This relies on identifying an effective mass plateau in the correlator,
as described in section 2.2, and performing an exponential fit to the data points on that
plateau. So an important question is: how reliably can we identify such a plateau? We
will illustrate this with our calculations in SU(8) on the 20330 lattice at 8 = 47.75. This
is at our smallest value of a(/3) which, being the closest to the continuum limit, is one
of the most important values in our subsequent extrapolations to the continuum theory.
Also it provides the best resolution in ¢ of our correlation functions. We begin with the
effective masses, aEeg(t = any), of the three lightest A" states and of the two lightest
A7 states, as shown in figure 7. As we will see below, the lightest two A7 and A7
states become the lightest two JP¢ = 07+ and 0~ glueballs in the continuum limit. The
third A]™ state is most likely part of the nonet of spin states making up the 47+ glueball
ground state (see below), although if not then it would probably be the third scalar glueball.
It is clear from figure 7 that we have plausible effective mass plateaux for all the states,
with the weakest case being the excited A7 " state. The solid lines show our best mass
estimates as obtained from fits to the correlation functions, together with their error bands.
The error band on the lightest Af+ state, which is the mass gap of the gauge theory, is
invisible on this plot, so given the importance of this state we replot it in figure 8 with an
axis rescaling that exposes the errors. Here the solid line is the best mass estimateand the
dahsed lines bound the +1 stadard deviation error band. Figure 7 illustrates the obvious
fact that as the masses get larger, the error to signal ratio grows at any fixed value of n;, so
that at large enough masses the effective energies becomes too imprecise to unambiguously
indicate the values of n; where the effective mass plateau begins. In this case we can turn
to our calculations of the excited A}t state at the smallest lattice spacings in SU(2) and
SU(3), where there is much better evidence for the effective mass plateau beginning at
aMeg(ny = 3a), and use that in estimating that the effective mass plateau in this SU(8)
calculations begins at n; = 3a. This is the type of argument we use for a number of the
heavier states at larger values of N where our calculations do not extend to very small
values of a(f).

As an aside, we also show in this plot the effective mass plot for the ditorelon. It shows
every sign of plateauing to a value not far from ~ 2aE; ~ 0.59 as one would expect. It
is clearly important to make sure that one excludes such a state from the scalar glueball
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spectrum, as we have done here, since it is located near the first excited glueball state and
would create a false level ordering if included.

We turn next to states which become J = 2 glueballs in the continuum limit. As we
shall see below, the five components of a J = 2 state are spread over the two components of
an F energy level and the three of a Ts. As always we average the masses of the ‘degenerate’
doublets of R = E and the triplets of R = T and 75 to provide single effective masses in
each case. What we show in figure 9 are the resulting effective mass plots for a number of
such pairs of E and T states. The equality of the ETT and T. 2+ * masses for the lightest two
pairs is convincing, as it is for the lightest E~1 and T, *. It is also plausible for the lightest
E~7,T, " pair, and the lightest E+*,T2+ ~ pair, and there is some convergence for the
second B~ T. 2_+ pair, even if these more massive states do not show unambiguous plateaux.
Again we show the ditorelon, this time in the E* representation. In this spectrum it
is nearly degenerate with the £ ground state. The fact that it does not appear in a
nearly degenerate T, * state confirms that it is a finite volume state, reflecting the limited
rotational symmetries of the spatial volume.

If we examine the effective mass plots for the T states that we shall later argue
approach J =1 in the continuum limit, we see that while the lightest Tfr ~ glueball has a
well-defined effective mass plateau, this is less evident for the more massive states. Finally
we remark that if we plot the effective masses of our heaviest states, such as those of the
lightest five A] ~ states, the evidence for the effective mass plateaux is not strong, although
one can speculate on the presence of some the plateaux. This will clearly result in substantial
systematic errors on the corresponding mass estimates, which we cannot readily quantify.

One lesson of the effective mass plots is that the heavier the state the less reliable will
be our error estimate. However these plots also tell us at what ¢t = an; the effective mass
plateau begins for those states where this can be identified. Since the iterative blocking
means that when we vary § our variationally selected operators are of roughly constant
physical size and shape, we can assume that the overlap of a given state onto our basis will
be roughly independent of 8 and hence that the effective mass plateau will begin at a value
of t = a()n; that is roughly constant in physical units, i.e. at smaller n; as a(3) grows. So
at larger values of a(f) where aFeg(t) may be too large for us to identify a plateau, we can
nonetheless use the value of aFeg(tp), where ty is the value where our above calculations
tell us that a plateau begins, as an estimate of the mass. This is something we do in our
calculations, where appropriate.

We turn now to the glueball spectra that we obtain by the methods described above. We

obtain the spectra for the lightest glueballs in each R

sector for each of our gauge groups.
As an example we display in 22 our results for SU(8). Here we have removed the finite
volume ditorelon states in the AI’JF and BT sectors whenever they are present, as discussed
in section 5.2, so that what we present in the table is our best estimate of the infinite volume
glueball spectrum. A similar table for SU(3) has been published separately in [11]. All this
assumes of course that none of these states is a multiglueball state. Since we use single
trace operators, their overlap onto multiglueball states should decrease with increasing N
and in any case they would be quite heavy. Some explicit calculations that provide evidence

that such mutliglueball states do not appear in our spectra are described in section 5.8.
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The reader will note that in some cases what we list as a higher excited state has a
lower mass than what is listed as a lower excited state. This typically involves states that
are nearly degenerate. Our procedure is to order the states according to the values of their
effective masses at ¢ = a which is the value of ¢ at which our variational calculation typically
operates. This nearly always corresponds to final mass estimates (from the plateaux) that
are in the same order, but very occasionally this not the case. In the very few cases where
the difference is well outside the statistical errors we invert the ordering, but otherwise we
do not. In addition it may be that the continuum extrapolation leads to a level inversion;
again we only take that on board if the difference is well outside the errors. We have a
good number of states that are nearly degenerate with a neighbouring state and in these
cases the variational procedure itself is likely to mix them, and if that is done differently at
different values of 3 it can lead to poor extrapolations to the continuum limit.

Finally we remark that the ensembles of lattice fields used at each N and S have
a reasonable distribution of topological charge, either because the tunnelling between
topological charge sectors is sufficiently frequent, or because we have imposed such a
distribution on the initial lattice fields of the collection of sequences that make up the total
ensemble, as discussed in section 2.4.

5.4 Strong-to-weak coupling transition

Before moving on to the continuum extrapolation of the lattice masses that we have
calculated above, we briefly remark on the ‘bulk’ transition that interpolates in 3 o 1/g?
between the strong and weak coupling regimes. From egs. (2.1), (2.2) we see that the naive
expectation is that at strong coupling, S — 0, the natural expansion of a lattice quantity is
in positive powers of 8 while at weak coupling, 8 — oo, the natural expansion is in positive
powers of 1/5. On the weak coupling side asymptotic freedom promotes the dependence of
physical quantities to exponentials, o< exp{—cf3}, and it is important to make sure that our
calculations are indeed in the weak coupling regime.

As remarked in section 2.1, for SU(N < 4) the transition is known to be a smooth
crossover, while for SU(5) it is weakly first order, and for SU(N > 6) it is strongly first
order. For SU(N < 4) the location of the crossover coincides with a dip in the mass gap
which then drives a peak in the specific heat. (The specific heat is proportional to the
sum of the plaquette-plaquette correlator and so peaks where the correlation length has
a peak, i.e. where the mass gap has a dip.) For SU(2) this peak is around  ~ 2.15 as
we see, for example, in figure 8 of [50], while for SU(3) the peak is around § ~ 5.4 as
we see, for example, in figure 4a of [51]. For SU(4) the dip in the mass gap can be seen
in figure 1 of [1] and is located around 5 ~ 10.45. For larger N the transition has been
shown in [14] to be first order, and strongly first order for N > 6. In that case we have
a strong hysteresis, i.e. if we lower § slowly from large values then the transition occurs
at § = 5#, while if we increase § slowly from small values then the transition occurs at
8= ﬁg, with 52 significantly larger than 5#. Values for these transitions can be found listed
in table 16 of [14]. As described in that paper, calculations performed in the weak coupling
false vacuum just above g = ﬂi, and well below § = ﬁg, show no sign of being affected by
the simultaneous presence of the deeper true vacuum elsewhere in field space. This fact has
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been exploited in previous large N calculations. For example all but one of the 5 values in
the SU(8) calculations in [2] lie within this hysteresis window, as does the SU(8) calculation
in [3]. As is clear from tables 1-8 all our calculations have been performed on the weak
coupling side of the cross-over or transition. In addition we note that none of our SU(5) or
SU(6) calculations fall within the hysteresis window, only one of our SU(8) calculations lies
within this window, while some of the SU(10) and about half of the SU(12) calculations lie
within the window.

As remarked above, the main effect of the crossover at smaller N is an anomalous dip
in the value of the mass gap, i.e. that of the lightest scalar glueball amg++. This dip is
caused by a nearby critical point which lies at the end of a first-order transition line in an
extended fundamental and adjoint coupling plane, at which critical point the scalar glueball
mass vanishes. For a detailed calculation in SU(3) see for example [52]. (The fundamental
coupling is the one that which appears in our path integral.) As N increases the first-order
line intersects the fundamental axis and provides the first-order bulk transition separating
weak and strong coupling. However until the critical point has moved far away from the
fundamental axis there may still be a dip in the mass gap near the first-order transition.
Indeed one can see some plausible evidence for this occuring in the behaviour of the SU(6)
and SU(8) mass gaps listed in [2]. Since there is no theoretical reason to expect that this
dip can be encoded in the weak coupling expansion of the lattice action in powers of a2,
we minimise the risk to the continuum extrapolation of the scalar glueball mass by simply
excluding from the continuum fit the value obtained at the largest value of 8 when including
this value would require adding an additional a* correction to the fit. As it turns out, we
need to do this for all our SU(N) groups except for SU(2).

5.5 Continuum masses

For each of our SU(N) lattice gauge theories we now have the low-lying glueball spectra for
a range of values of a(/3). These are all given in lattice units as aM, and to transform that to
physical units we can take the ratio to the string tension, ay/o, that we have simultaneously
calculated. We can then extrapolate this ratio to the continuum limit using the standard
Symanzik effective action analysis [53] that tells us that for our lattice action the leading
correction at tree-level is O(a?):

aM(a) _ M (a) _ M(0)
ay/o(a)  o(a)  o(0)

Here we have used the calculated string tension, a0 (a), as the O(a?) correction. Clearly

+ a®c(a) + O(a). (5.1)

we could use any other calculated energy, and this would differ at O(a?) in eq. (5.1). It is

20 (a) since its calculated value has very small errors.

convenient to use a

The results of these continuum extrapolations are listed in tables 23-30 for the gauge
groups ranging from SU2) to SU(12). (As always, each E doublet, and each Ty or T} triplet
appears as a single state in our tables and discussions.) A few entries are accompanied
by a star denoting a poor fit, 2.5 < X2/ndf < 3.5, or a double star denoting a very poor
fit, x?/nas > 3.5. For SU(10) and SU(12) we have only 5 values of 3 and since the masses

at the coarsest value of 8 often have to be discarded from the fit (not surprisingly) and
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since we are fitting 2 parameters, we often have only 2 degrees of freedom. For lower N we
usually have 3 and sometimes 4 degrees of freedom, which gives much more confidence in
the extrapolations. All of which is to say that while the fits for larger N are certainly not
trivial, it would be good to be able to do better in future calculations.

We now illustrate the quality of these linear continuum extrapolations for our most
interesting glueball states. We do so for SU(4). In figure 10 we show our extrapolations
of the lightest two A{ ", BT+ and T2+ T states. These states are of particular importance
because, as we shall see latter on, they correspond to the lightest two JP¢ = 0+ and
27T states. We see that all the linear fits are convincing, even if in some cases we have to
exclude from the fit the value at the largest a(3). In figure 11 we show the corresponding
plot for P = — which, as we shall see latter on, correspond to the lightest two J©¢ = 0=+
and 27T states. The lightest states have very plausible continuum extrapolations, although
the excited states, which are heavier than those for P = +, begin to show a large scatter
indicating a poor fit. In figure 12 we show the extrapolations of various T{¢ states that
we shall later argue correspond to J = 1, and again we see fits that appear convincing for
the lighter states and quite plausible for the heavier states. Even for the heaviest states to
which we can plausibly assign a continuum spin, such as the states that pair up to give the
JPC¢ =27~ and 2%~ ground states and the states that provide the seven components of
the 37~ ground state, where the larger errors lead to a greater scatter of points, continuum

2

fits linear in a“o are still plausible.

5.6 N — oo extrapolation

Amongst the various SU(N) calculations, the one that is most interesting from a phenomeno-
logical point of view is the SU(3) one, and that is why we devoted a separate paper to that
case [11]. From a theoretical point of view however the most interesting glueball spectra
are those of the SU(N — o00) theory since the theoretical simplifications in that limit make
it the most likely case to be accessible to analytic solution, whether complete or partial.

To obtain the N = oo spectrum from our results so far, we use the fact that in the
pure gauge theory the leading correction is O(1/N?). So we can extrapolate the continuum
mass ratios in tables 23-30 using

Mi . Mz C; 1
Jol= 7o +N2+0(N4). (5.2)

The results of these extrapolations are presented in table 31. In this table the stars point

[e.9]

to poor fits exactly as described earlier for the continuum fits. The very poor fit for the
first excited A{ is due to a large mismatch between the SU(5) and SU(6) mass estimates
which may well be due to an inadequate treatment of the ditorelon influence. (We can
obtain a good fit to N > 6 and this gives a mass ~ 5.85(9) which is the same within errors.)
Most of the fits are to N > 2 or N > 3 but some are over a more restricted range of N
and this is indicated by a dagger.These states are the A; * ground state, fitted to N > 4,
the T, T second excited state, also fitted to N > 4, the T, ~ ground state, again fitted
to N > 4, and finally the A~ ground state which is more arguable since it was fitted to
N < 8. From the practical point of view the most important extrapolations are for those
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states to which we are able to assign a continuum spin (in the next section). We therefore
show these extrapolations in figures 13, 14, 15 for states with J = 0, 2, 1 respectively.

5.7 Continuum spins

So far we have used the representations of the rotational symmetry of our cubic spatial
lattice to label our glueball states. However as we approach the continuum limit these
states will approach the continuum glueball states and these belong to representations
of the continuum rotational symmetry, i.e. they fall into degenerate multiplets of 2J + 1
states where J is the spin. In determining the continuum limit of the low-lying glueball
spectrum, it is clearly more useful to be able to assign the states to a given spin J, rather
than to the representations of the cubic subgroup which have a much less fine ‘resolution’
since all of J =0,1,2,...,00 are mapped to just 5 cubic representations. How the 2J + 1
states for a given J are distributed amongst the representations of the cubic symmetry
subgroup is given, for the relevant low values of J, in table 32. So, for example, we see
that the seven states corresponding to a J = 3 glueball will be distributed over a singlet
Ao, a degenerate triplet T7 and a degenerate triplet 75, so seven states in total. These Ao,
Ty and Ty states will be split by O(a?) lattice spacing corrections, generated by irrelevant
operators. So once a is small enough these states will be nearly degenerate and one can use
this near-degeneracy to identify the continuum spin.

This strategy works for the lightest states but becomes rapidly unrealistic for heavier
states. The latter will have larger statistical errors and will fall amongst other states that
become more densely packed as the energy increases, so that identifying apparent near-
degeneracies between states in different representations becomes highly ambiguous. There
exist more sytematic ways of assigning continuum spin to lattice states, such as [8, 9, 54|, but
these are beyond the scope of this work. Accordingly we shall limit ourselves to the lightest
states where any ambiguity in identifying near-degeneracies is either small or non-existent.

The states whose spin J we feel confident in identifying are listed in table 33 and the
resulting continuum masses are listed in table 34 and table 35. We will now briefly illustrate
the argument for the assignments, taking SU(8) as a typical example. Consider the masses
in the SU(8) column of table 35. We have obtained these by interpreting the masses listed
in table 28 as follows. The ground state of R”“ = A} is much lighter than any other mass
and so must be the singlet JP¢ = 07+ ground state. The first excited AIFJF state certainly
has no ‘nearly-degenerate’ partners amongst all the other P, C' = +, 4 states and so it must
be the first excited 07" glueball. The ground states of the doubly degenerate E++ and
the triply degenerate T, T states are nearly degenerate and there are no other states with
similar masses, so together they must provide the five components of the J7¢ = 2++ ground
state. Similarly the first excited ETT doublet and T2+ * triplet have no nearly degenerate
companion states elsewhere, and so they provide the first excited JP¢ = 2+ state. The
argument for the ground and first excited 0~ states is equally straightforward, as it is
for the E~F and the T, ™ ground states forming the 2=+ ground state. The first excited
E~* and the T, T states are consistent with forming the first excited 2=+ state, but here
there is some ambiguity: it is also possible that these states pair with the second excited
A7 state and the Ty T ground state to make up the 4=F ground state. This ambiguity
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arises because the errors are sufficiently large that both possibilities can be entertained.
Here we can resolve the ambiguity by observing that for neighbouring values of N, SU(6)
and SU(10), the ambiguity is not present and the first excited £~ and the T, T states
form the first excited 27 state, strongly suggesting that this is also the case for SU(8).
This choice is not as solid as the earlier choices and fortunately it is not an argument we
need to make very often in coming to our choices of J. With this choice we can plausibly
assign the lightest T * state to the 1=+ ground state. (The second excited AI+ state has
a similar mass but there are no further partners allowing us to assign it elsewhere according
to table 32.) Similar arguments to the above lead to the J*~ and J~~ choices in table 33
and the corresponding masses in table 35. Determining the spin J in the above way, clearly
requires us not to miss any intermediate states in the mass range of interest. For this one
needs a good enough overlap onto all the low-lying states and for that one needs a large
basis of operators, which has been our goal in these calculations.

Using the arguments sketched above we infer the JP¢ glueball masses listed in ta-
bles 34, 35, from the various masses listed in tables 23-30. In addition by inspecting the
remaining states in tables 23-30 we can infer some lower bounds on the ground states in
some other channels, and these are listed in table 36. These estimates are fairly rough and
at that level apply to all our SU(N) theories.

The most interesting glueball spectra are those for SU(3) and for SU(c0): the former
for its potential phenomenological relevance and the latter for its potential theoretical
accessibility. The SU(3) theory is sufficiently close to the real world of QCD that it makes
sense to attempt to present the masses in physical units, using scales that one believes to
be relatively insensitive to the presence of quarks. We refer the reader to [11] for a more
detailed discussion. Here we simply recall from our earlier discussion that the Sommer scale
ro, which is defined by the heavy quark potential at intermediate distances, is believed to
vary weakly with quark masses, with a physical value of 7y ~ 0.472(5)fm [47]. One can
extract from the published data the value r¢y/o = 1.160(6) [11] This allows us to translate
masses in units of /o to units of ry and finally to units of GeV. Doing so we obtain the
masses listed in table 37. This table is similar to that in [11] except that we have included
lower bounds for most of the masses where we previously lacked entries.

We now turn to our main focus: the N — oo limit. We extrapolate the masses in
tables 34, 35 with O(1/N?) corrections, as in eq. (5.2). The extrapolations for most of these
states are displayed in figures 13, 14, 15. This leads to the masses (in units of the string
tension) listed in table 38. In making these extrapolations we have sometimes excluded
the mass for the smallest value of N (N =2 for C' =+ and N = 3 for C' = —), in order to
achieve a significantly better fit. This we have done for the 27, 1= and 17~ ground states.
This presumably reflects the need for at least a further 1/N* correction, but our number
of data points is too small for this. In some cases we obtain better fits by excluding the
N = 12 values, and although this could be argued for on the basis that our range of a for
the continuum extrapolation is relatively limited in that case, the danger of ‘cherry-picking’
has led us to avoid doing so.

The main features of these continuum spectra are that the lightest glueball is the
JPC = 0t scalar, with the JP¢ = 2+ tensor about 50% heavier, and with the JF¢ = 0—+
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pseudoscalar just slightly above that. The next state is the J¥¢ = 1t~ vector, which is
special in that it is the only relatively light C' = — glueball, with most C' = — states being
very heavy. Just a little heavier than this vector is the first excited 07" and then the 27T
ground state. The N dependence of nearly all these states is weak and readily absorbed
into a O(1/N?) correction down to at least SU(3); all this confirming that the SU(3) gauge
theory is indeed ‘close to’ SU(00).

5.8 Scattering states

A given operator will project onto all states with the quantum numbers of that operator.
In particular our single trace glueball operators will project onto multi-glueball states in
addition to the glueballs that we are interested in. This means that some of the states in
the ‘glueball’ spectra that we have calculated may in fact be multi-glueball states. In the
ideal case of a very large spatial volume these will be scattering states where at sufficiently
large times the states are far apart

There is some ambiguity here of course. Sufficiently heavy glueballs will be unstable,
and will decay into multiglueball states but to the extent that their decay width is not too
large, we still regard them as glueball states. Indeed as N increases the decay widths and
the overlap of multiglueball states onto our single trace basis of glueball operators should
decrease. So although we expect this to be an issue primarily at smaller N, it is clearly
important to address. We do so here in some detail because it has been addressed only
briefly and occasionally in past glueball calculations.

A full analysis of scattering states and glueball decays would involve different techniques
to those used in this paper and so are outside the scope of this work. Here we will, instead,
perform some exploratory calculations to obtain an indication of the impact of multiglueball
states on our calculated glueball spectra. We limit ourselves to considering states consisting
of two glueballs since these are the lightest ones and our calculated glueball spectra do not
extend to masses that are much higher. If there is weak mixing between double trace and
single trace operators then we can introduce two glueball scattering states by using double
trace operators, such as

Pab(t) = (Pa(t) = (¢a))(P6(t) — (P6)) = ((Pa — (Da)) (Db — (D1)))- (5.3)

Here ¢, and ¢y are single trace operators. The vacuum subtractions ensure that ¢, does
not have a projection onto the vacuum or a ‘trivial’ projection onto single glueball states
through terms such as (¢q)@p(t). One can calculate the mass spectrum obtained when
one adds such double trace operators to the basis of single trace operators and compare
it to that obtained using just the single trace operators. If the resulting spectra are the
same then this strongly suggests that the spectrum obtained using single trace operators
already includes two glueball states. If, on the other hand, the spectrum obtained using
the expanded basis produces extra states that can be plausibly interpreted as two glueball
scattering states, then this suggests that the states obtained with our original basis of single
trace operators does not contain such states and that categorising them as single glueball
states is probably correct.
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The potential number of operators ¢, is clearly too huge to be practical here and so
we severely limit the number for our study as follows. Firstly, we take both ¢, and ¢ to
have zero momentum, so both the total and relative momenta are zero. Of course this does
not mean that the relative momentum of the two glueballs has to be zero, since the relative
momentum is not a conserved quantum number in an interacting system, but one naively
expects that the main overlap will be onto zero relative momentum. Secondly we only keep
the 2 or 3 blocking levels that are most important at the 3 we calculate. (We systematically
avoid using the largest blocking levels so as to exclude unwanted ditorelon states.) Thirdly,
we take the same blocking levels for ¢, and ¢;. For ¢, we use only the rotationally invariant
sum of (blocked) plaquettes. That is to say it is in the ATJF representation. So ¢gp will
be in the same representation as ¢;. For ¢, we take 3 different loops chosen so that we
can have projections onto all representations including P = 4+ and C' = 4. The lightest
energy of the corresponding asymptotic two glueball state would be the sum of the lightest
AT mass plus the lightest mass in the representation of ¢y, if we were in an infinite spatial
volume. Since our spatial volume is finite the glueballs are interacting at all times and there
will be a shift in the total energy. However, to the extent that our spatial volume is not
very small, this shift should be small and we will use the naive sum as the quantity against
which to compare our supposed scattering states.

We perform calculations in SU(3), which is the most physically interesting case amongst
our lower N calculations, and in SU(8) which is representative of our large N calculations. In
SU(3) we work at 3 = 6.235 on the same 26% lattice used in our above glueball calculations.
For completeness we have also carried out some calculations on 18326 and 34326 lattices
at the same value of 3. In SU(8) we work at 3 = 46.70 on a 16324 lattice which, again, is
the same as that used in our glueball calculations. The spatial volumes at larger N are
smaller than those at smaller IV, taking advantage of the expected suppression of finite
volume corrections with increasing NV, and this is the reason for this additional calculation
in SU(8).

We calculate correlators of the double trace operators with each other as well as with
the single trace operators, since all of these are needed in the variational calculation using
the basis that combines single and double trace operators. Because we need high statistics
for glueball calculations, we calculate the correlators at the same time as we generate the
lattice fields. At that stage we do not know the values of the vacuum subtractions in eq. (5.3)
and so we need to calculate a number of other correlators so that at the later analysis stage
we can reconstruct the desired subtracted correlators. The relevant expressions are given in
appendix B.

We begin with our SU(3) calculation. In figure 16 we show the effective masses of
the lightest few states in the Af’ representations obtained using the basis of single trace
operators (open circles) and the same basis extended with our double trace operators (filled
points). We see quite clearly that the two sets of states match each other well except for
one state, whose effective masses are represented by a ¢, and which clearly has no partner
amongst the states from the single trace basis. This state appears to asymptote, at larger ¢,
to an energy that is close to twice the lightest A# mass, i.e. that of the lightest free two
glueball state, and so we infer that this is indeed the lightest two glueball state. Apart from
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this state, the lightest 4 states in the two bases match each other quite precisely. That is to
say, we have good evidence that the ATF continuum masses listed in table 24 are indeed
those of single glueball states.

It is interesting to ask what kind of A] " energy spectrum one obtains if one uses a
basis consisting only of the double trace operators. The result is shown in figure 17. We
see that the state that is lightest at small ¢ is consistent with being the lightest 2 glueball
state, and that our variational wave-functional has a good overlap onto that state. What is
equally interesting is the state that is the first excited state at small ¢ and whose effective
mass drops monotonically below that of our two glueball state as t increases, consistent
with heading towards the mass of the lightest glueball. This presumably represents the
overlap of our double trace basis onto the lightest glueball. A rough estimate suggests that
this variationally selected operator has an overlap (squared) of ~ 10% which again points
to little mixing of scattering states into our low-lying glueball spectrum.

Clearly we would like to repeat our above analysis of the A] " spectrum for all the
other representations. However once the lightest state in some R representation is much
heavier than in the above case the energy of the predicted scattering state lies in a dense
part of the spectrum, all the energies have much larger statistical errors and we cannot
follow the effective energies beyond the smallest values of t. That is to say, the analysis
becomes hopelessly ambiguous. We will therefore restrict ourselves to a few cases where
the energies are still manageably small. That is to say, we will look at the T2+ * which
contains 3 components of the lightest J = 2% state, the A1_+ where the lightest state is
the interesting 0~ t pseudoscalar (the lightest P = — glueball), the E~T where the lightest
state is the 27 pseudotensor, and the T~ which is the lightest C = — state and where
the lightest 3 component state is the C' = — vector. We do not analyse any R™~ states
since they are all too heavy.

We begin with the 75 " representation. Here our double trace operator would project
onto a two glueball state consisting of the lightest A7 and T, glueballs if there were no
mixing. Neglecting interactions its energy is just the sum of these masses. This case differs
from the A]™ representation discussed above because this is not the lightest scattering
state one can construct. Two Af 1 glueballs with two units of angular momentum are
lighter, although one can expect an angular momentum threshold suppression factor that
would need to be quantified. Such a state requires the use of operators with non-zero
momentum which would mean extending our basis of operators well beyond our choice for
this exploratory study. It is plausible that what we learn using our heavier two glueball
states would also apply to these lighter ones. So we carry out for the T, representation
the analogue of the analysis in figure 16 for the A7 . Once again we find that the inclusion
of our double trace operators leads to an extra state although because of the denser packing
of the states it is less prominent than in the A7" case. However the effective energy of
this state is consistent with decreasing towards that of a scattering state composed of the
lightest A7 1 and T, glueball, albeit with substantial statistical uncertainty. So it is very
plausible that it is a scattering state composed of the lightest AT'F and T2+ * glueballs. The
spectrum from the double trace basis shows quite clearly that the state that is lightest at
small ¢ has an energy roughly equal to the sum of the lightest A7 " and T, glueballs,

~ 34—



showing it to be a scattering state. It is also clear that the projection of these double trace
operators onto the lightest T2+ T glueball is very small. All this makes it plausible that
the five or six lightest states in the T, " channel are single glueballs. However we recall
our above caveat that there are lighter scattering states that could, in principle, behave
differently.

With the T}~ representation our double trace operators project onto the lightest two
glueball state since the lightest Tfr ~ is the lightest C' = — state. Here we again find that
the addition of the double trace operators to the single trace basis does produce an extra
state and that the effective energy of that state appears to be decreasing towards the energy
of the lightest scattering state, up to the point where the errors grow too large to allow a
statement. From this we infer that the lightest five Tl+ ~ states obtained using the single
trace basis are not scattering states. In addition we find that in the spectrum obtained
using just the double trace operators the lightest state appears to approach the expected
scattering state and that there apears to be no significant component of the lightest single
glueballs present in this basis, providing further evidence for little overlap between our
single and double trace operators.

In the case of the AI+ representation our double trace operators naturally project onto
a state with both an A7 and an A7 glueball. Just as for the A]™ this should be the
lightest possible scattering state: although one can obtain P = — through unit angular
momentum one would need a glueball with non-zero spin to take us back to an overall A;
state. We show in figure 18 how the inclusion of our double trace operators affects the
spectrum. While the ground and first excited states are unaffected, there is clearly an extra
state just above these, and a significant shift in the mass of the next state above this. The
effective energy of the (probable) extra state descends rapidly towards the energy of the free
scattering state, but the rapidly growing errors prevent us from telling if it asymptotes to
this value or continues to decrease. For further evidence we plot in figure 19 the spectrum
obtained in the basis with only the double trace operators. Here we have a quite dramatic
contrast to what we have seen above in the ATJF, T2+ * and T1+ ~ representations: the lightest
state is clearly the ground state of the single trace spectrum. This tells us that here we
have a large overlap between single trace and double trace operators. So here we can have
legitimate concerns about the presence of multiglueball states in the low-lying spectrum
obtained using single trace operators.

The E~T representation contains the second lightest state in the P,C = —, + sector,
after the A7 T ground state. Neglecting interactions, our double trace operators would
project onto the two glueball states composed of an A7 and an E~* glueball. There are
scattering states that are slightly lighter but they should have angular momentum threshold
factors that effectively cancel that advantage. (For example, the lightest A] " and A7
glueballs with two units of angular momentum.) We find, when plotting the effective masses,
that the addition of the double trace operators to the single trace basis does produce an
extra state. However this state is nearly degenerate with another state so it is unclear which
is the extra one. (It is quite possible that our variational procedure mixes the two.) In
either case the effective energy of that state appears to be decreasing towards the energy
of the lightest scattering state, up to the point where the errors grow too large to allow a

— 35 —



statement. The spectrum of states with just the double trace basis shows quite clearly that
the lightest state is the scattering state and that there is no significant overlap of our double
trace operators onto the low-lying spectrum obtained with the single trace operators.

In summary, the above study in SU(3) shows that two glueball states have very little
overlap onto most of the spectrum one obtains from single trace operators for the lighter
and hence most interesting states in our calculated glueball spectra. This is something of a
surprise in SU(3) since one would not expect to be able to invoke a large- N suppression
for N = 3. The one apparent exception concerns the Al_+ representation which contains
the 0~ pseudoscalar which is of particular theoretical interest. This clearly merits a much
more detailed investigation.

We now turn to a similar study in SU(8). This we should do since for N > 8 we use
considerably smaller spatial volumes than for SU(3), taking advantage of the expected
large-N suppression of finite volume corrections. We perform our study on a 16324 lattice
at f = 46.70 which corresponds to a lattice spacing that is slightly larger than that of
the above SU(3) study if measured in units of the string tension, o, although equal when
measured in units of the mass gap. Our results are very much the same as for SU(3): in the
A;ﬁ, T2+ +, Tfr ~ and E~ T representations there appear to be very small overlaps between
our would-be two glueball operators and the single trace operators in the low-lying part of
the spectrum that is of interest to us in this paper. The striking exception, as in the case
of SU(3), is the A1_+ representation. This is intriguing both because this representation
contains the interesting J©¢ = 0=t pseudoscalar glueball and because one would have
naively expected the large-N suppression of such overlaps between single and double trace
operators to have taken effect by N = 8. There is perhaps some hint of this in comparing
the approaches to the respective A7 masses of the ground states.

These results for SU(3) and SU(8) provide some reassurance that our spectra in the
glueball calculations of this paper are indeed those of single glueballs, at least for the lower
lying spectrum that is of the greatest physical and theoretical interest.

5.9 Some comparisons

It is useful to compare our glueball results against those of earlier calculations both as
a check on the reliability of our errors, particularly the systematic errors that are the
most difficult to control. To reduce the comparison to manageable proportions we limit
ourselves to the continuum limit of the JF¢ = 0++ 2++ 0=+ 2=+ 1t= 3t~ 27~ ground
states and to calculations that have appeared after the year 2000. The first five states
are the lightest ground states and are easy to identify, while the sixth involves a more
challenging identification of near-degeneracies amongst the cubic irreducible representations,
and the last is an example of the much heavier states over which we have less control. We
will also limit ourselves to SU(3), where there are several calculations, and to SU(8) as a
representative of our larger N calculations.

We list the SU(3) and SU(8) comparisons in tables 39 and 40. The calculations
in [1, 2, 9] are broadly of the same type as those in the present paper, making a comparison
straightforward. The calculations of [1, 2] were designed to explore the approach to the large
N limit and focussed upon the masses of the J¥¢ = 07+, 2+ ground states and the string
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tension. The primary goal of [9] was to calculate the masses of higher spin glueballs which
cannot be identified using the naive approach of searching for near-degeneracies, as used in
the present paper, and this required the application of novel dedicated techniques. The
calculations in [10] are significantly different to all of these, in that they use an alternative
‘improved’ lattice action and anisotropic lattices with a temporal lattice spacing, a;, smaller
than the spatial lattice spacing, as, by a factor of (roughly) 3 or 5. In addition the continuum
glueball masses are expressed in units of the Sommer scale g rather than the string tension
o. We have used the value roy/o = 1.160(6), as fitted in [11], to translate the values given
for roM¢ in [10] to the values Mq/+/o listed in table 39.

We begin with the SU(3) comparison in table 39. Overall we see that the results of the
different calculations agree within about 2 standard deviations for all the states. In particular
the values in [9] are within one standard deviation of our values. On the lighter ground
states our errors are far smaller than those of the earlier calculations. However on the two
heaviest states the errors in [10] are similar to ours, demonstrating the expected advantage
of highly anisotropic lattices for calculating the masses of heavy glueballs. Focussing now
on possible differences, we note that all the mass estimates from [10] are slightly above ours,
and indeed above those of [9] It is possible that this has to do with the scale ry. This scale
is determined as the spatial distance at which the heavy quark potential has a certain value
of its derivative. Thus its value is expressed in units of the spatial lattice spacing, i.e. as
ro/as, and this has to be expressed as rg/a; in order to serve as a scale for a lattice glueball
mass, a;M¢q. This rescaling is clearly sensitive to even small shifts of the anisotropy from
the tree level values of 3 or 5. Moreover the values of as used in [10] are large which means
that 79/as is not large, and this makes the accurate determination of its value more delicate.
So it is possible that all this is enough to lead to a 1 — 2% shift in the estimates of M/ /o
in this calculation. Turning now to [1, 2] we see that the 07 mass is about two standard
deviations higher than our value (or that of [9]). A possible source of this is the fact that
these older calculations have a more limited range of higher £ values and include in their
continuum extrapolations the smaller values of 8 where there is some effect of the dip in
the mass gap associated with the strong-to-weak coupling bulk transition, as discussed in
section 5.4. This dip in the mass at larger lattice spacings may then bias the straight line
fit in a0 so that its @ = 0 intercept is a little too high. In the present calculations the
statistical errors are small enough that a good straight line fit is no longer possible if one
includes such large a values and by excluding them any such bias becomes smaller and the
continuum intercept is a little lower. This discussion is only relevant to the mass gap, since
the other glueballs appear to be insensitive to the bulk transition and have, for the most
part, a small dependence on the size of the lattice spacing.

Turning now to the SU(8) comparison in table 40, we see that for the states other than
the 0" the masses from the different calculations agree within one standard deviation,
although the errors on the earlier calculations are typically about ten times larger than
ours, leaving room for potential discrepancies. The mass gap shows a signficant discrepancy
but both of the earlier calculations include masses calculated close to the bulk transition at
8= Blf where the mass gap appears to have a significant dip, as discussed in section 5.4,
which may well explain this minor difference.

— 37 —



The above comparisons naturally raise the question of why we chose to use the traditional
Wilson plaquette action instead of some alternative ‘improved’ action, such as the one used
in [10]. In glueball calculations the main improvement observed, for SU(3), is to largely
remove the dip in the mass gap as one transitions from strong to weak coupling. This means
that calculations at coarser lattice spacings, and so on smaller lattices, may be used in the
continuum extrapolation of the mass gap. However a larger lattice spacing means that the
correlator signals tends to disappear into the statistical noise before one has a well defined
effective mass plateau. To remedy this one can use an anisotropic lattice action with the
temporal spacing a; much less than the spatial as. However using contemporary resources
there is no need to worry about the dip in the mass gap: one can easily do calculations
far from the dip, at much weaker coupling, as we have seen in this paper. Moreover if
one works at coarse lattice spacings using such an improved action one does not know
in advance whether the behaviour of other glueballs will be improved or worsened. And
in any case, as we have seen in figures 10, 11, 12, the lattice corrections to the glueball
masses are already quite modest with the standard Wilson plaquette action. An advantage
of the simple plaquette action is that it is known to have exact reflection positivity and
hence the transfer matrix has real positive eigenvalues between zero and one, just as if it
was the exponential of a Hamiltonian. This means that one does not need to be cautious
in applying a variational calculation of the glueball spectrum. Of course one can use an
anisotropic plaquette action, which will also possess reflection positivity. Such a calculation
would produce a finer resolution in time of the correlator and so could be very useful for
calculating heavier glueball masses. However it has a disadvantage in setting the scale as
described just above. One needs to know the relation between as and a; and since the
chosen tree level anisotropy will receive corrections, this need to be estimated, and the error
on this estimate may be significant. Thus our suggestion for a better calculation than the
present one is that one does two calculations in parallel. One calculation should be with an
isotropic action, and this will provide very accurate continuum values for the light glueballs,
including the mass gap Mg, in units of, for example, the string tension, o, or the Sommer
scale rg. The second calculation should be with a strongly anisotropic action and provided
that one has a large enough basis of operators, this should provide accurate calculations of
the heavier glueball masses in units of, say, the mass gap. Here it is important that the
spatial lattice spacings should extend to small values, just as in the isotropic calculations, in
order to guarantee the credibility of the continuum extrapolations. Putting together both
calculations allows all the masses to be expressed in units of o or ry. The action used could
be either the plaquette action or some improved action, although maintaining reflection
positivity is desirable from a practical point of view.

6 Topological fluctuations
Euclidean D = 4 SU(N) gauge fields possess non-trivial topological properties, characterised

by a topological charge ) which is integer-valued in a space-time volume with periodic
boundary conditions. This charge can be expressed as the integral over Euclidean space-time
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of a topological charge density, Q(z), where

Q) =

(z) = WeﬂVPUTr{FMV(‘T)FPU(x)}‘ (6.1)

Since the plaquette matrix U, (z) = 1+ a?F,(z) + ... on sufficiently smooth fields, one
can write a lattice topological charge density @ (z) on such fields as

QL) = 5 TH{U (1)U ()} = a*Q(a) + O(a). (6.2

However this definition lacks the reflection antisymmetry of the continuum operator in
eq. (6.1), since all the plaquettes U, (z) are defined as forward going in terms of our
coordinate basis, so to recover these symmetry properties we use the version of this operator
that is antisymmetrised with respect to forward and backward directions [55] (although
this is unnecessary on smooth fields).

The fluctuations of Qp(z) are related to the expectation value of the composite
operator Q7 (x) whose operator product expansion contains the unit operator [55], so
these fluctuations are powerlike in 1/3. On the other hand, the average of Qr(z) is O(a*)
and hence exponentially suppressed in 3. Thus as 8 increases the fluctuations around
Qr(z) and Qr = Y, Qr(x) diverge compared to the physically interesting mean values. In
addition the composite operator @ (z) also receives a multiplicative renormalisation Z ()
such that Z(f) < 1 at accessible values of § [56].

In practice all this means that one cannot extract the topological charge of a typical
lattice gauge field by directly calculating Q7 = >, Qr(x) on that gauge field. However
we note that the fluctuations obscuring the value of () are ultraviolet, while the physically
relevant topological charge is on physical length scales. Thus if we perform a very limited
local smoothening of the fields to suppress the ultraviolet fluctuations, this should not
affect physics on long distance scales, and the value of Qr, =Y, Qr(z) calculated on these
smoothened fields should provide a reliable estimate of ). Moreover, recalling that the
total topological charge of a gauge field is unchanged under smooth deformations, we can
expect that even under a moderately large amount of continued smoothening the value
of @, will not change, even though Qr () itself does gradually change. One convenient
way to smoothen the gauge fields is to locally minimise the action. Such a ‘cooling’ of the
original ‘hot’ lattice gauge field [57] involves sweeping through the lattice one link at a time,
precisely like the Monte Carlo except that one chooses the new link matrix to be the one
that minimises the total action of the plaquettes containing that link matrix. This is a
standard technique that one can find described in more detail in, for example, [58]. An
alternative and attractive smoothing method with perturbatively proven renormalisation
properties is the gradient flow [59-61] which has been shown to be numerically equivalent
to cooling [62-64]. Cooling typically performs nearly two orders of magnitude faster than
the gradient flow and since we are aiming for large statistics we adopt the simplest cooling
method. After the first couple of cooling sweeps the fields are already quite smooth, as we
shall see below. Since we are minimising the action and since in the continuum the minimum
action field with a given @ is a multi-instanton field, we expect that under systematic
cooling the lattice field will be driven to become some multi-instanton field, which one
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can see by calculating the distribution Qr,(x) on such a field. Of course, because of the
discretisation of space-time the topological properties of lattice fields are only approximately
like those of a continuum field. One can deform a large instanton by gradually shrinking its
non-trivial core and on a lattice this core can shrink to within a hypercube. At this point
what was an instanton has been transformed into a gauge singularity and the value of @)
will now differ from its original value by one unit. (Equally, one can gradually grow an
instanton out of a hypercube.) This process can occur during cooling but it can equally
occur during the course of our Monte Carlo. In the latter case, it is these changes in @
that allow us to sample all possible values of ) and hence maintain the ergodicity in Q
of our Markov process. As 1 the distance between physical and ultraviolet scales grows
and these changes in ) become increasingly suppressed — in fact more strongly than the
usual critical slowing down (see below). This is as it should be: after all, the changes in
topological charge are no more than a (useful) lattice artifact.

We have outlined in section 2.4 the specific reasons for the suppression of changes in
Q1 when a(8) — 0 at fixed N and when N — oo at fixed a(3), and how we deal with
this problem in our glueball and string tension calculations. Below, in section 6.1, we will
give some evidence that the value of r on a cooled lattice field does indeed reflect the
topology of the original lattice field. Then, in section 6.2, we will give some results on the
rate of critical slowing down, both as a(8) — 0 and as N — oco. In section 6.3 we present
our results for the continuum topological susceptibility in those cases, 2 < N < 6, where
the topological freezing is not too serious an obstacle. Finally in section 6.4 we present
our numerical results for the factor Z(f) that relates the value of @, before cooling to its
value, @)1, after cooling. Our study of lattice topology has some limitations of course: it is
not a dedicated study but is constrained by being a byproduct of our glueball and string
tension calculations. Finally we remark that it is only in the calculations of the topological
susceptibility that the topological freezing is an obstacle; in our other calculations in this
section it does not matter whether the topological charge we study is introduced by hand
or appears spontaneously.

6.1 Topology and cooling

As we cool our lattice fields the fluctuations in the measured value of ) decrease and it
rapidly settles down to a value that is close to an integer. As a typical example we plot in
figure 20 the number of fields with a given topological charge Q)1 after 2 coolings sweeps
and the number after 20 cooling sweeps, taken from sequences of SU(5) fields on a 16320
lattice at § = 17.63. With respect to the calculations in this paper, this corresponds to
an intermediate value of N, and of a(f3), and of the lattice volume. As we see, after 20
cooling sweeps the values of )1, are very strongly peaked close to integer values. The reason
that the peak is not at an integer, even when the cooling has erased the high frequency
fluctuations, is that for an instanton of size p on a lattice, we only obtain Qr — 1 in the
limit p/a — oo, with deviations from unity that are powers of a/p. However, as is clear
from figure 20, there is no significant ambiguity in assigning to each field after 20 cooling
sweeps an integer valued topological charge which we label Q;. We can expect ()5 to
provide our most reliable estimate of the topological charge () of the original lattice gauge
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field. For the calculations with the largest values of a(3) identifying the value @y can be
less clear-cut, but such lattices are of little importance in determining continuum physics.
We also see from figure 20 that even after only 2 cooling sweeps the fields fall into groups
that only overlap slightly. Since 2 sweeps cannot affect anything other than the most local
fluctuations, we can assume that this segregation into differing topological sectors directly
reflects the topology of the gauge fields prior to any cooling.

As a second example we show in figure 21 the same type of plot for several sequences
of SU(8) fields generated at 3 = 47.75 on a 20330 lattice. This corresponds to our smallest
lattice spacing in SU(8). Here we see an even sharper peaking after 20 cooling sweeps
and, more interestingly, a very clear separation between the various sectors even after only
2 cooling sweeps. In contrast to the SU(5) example, in this case there is essentially no
tunnelling between topological sectors, and the observed distribution of @) has been imposed
on the starting configurations for the various sequences.

The loss of ergodicity with respect to the topological charge is illustrated for SU(8) in
figure 22 where we show the values of @1, after 2 and 20 cooling sweeps taken every 100
Monte Carlo sweeps for two sequences of 50000 sweeps generated at § = 47.75. In one
sequence we have QJ; ~ 1 and in the other we have QJp ~ 2. It is interesting that even
after only 2 cooling sweeps the separation in the measured values of Q7 is unambiguous. A
similar plot for SU(5) fields generated at 8 = 17.63 is shown in figure 23. Here the value of
@1, remains unchanged over subsequences that are typically a few thousand sweeps long,
but the changes are sufficiently frequent that in our overall ensemble of ~ 2 x 106 fields
we may regard @1, as ergodic. But just as for SU(8) the values of @1, after only 2 cooling
sweeps track the values after 20 cooling sweeps.

The close relationship that we observe in figure 22 and figure 23 between the values of
Q1 after 2 and 20 cooling sweeps is confirmed explicitly in figure 24. Here we have taken all
the 8 = 47.75 SU(8) fields on which we have calculated Q)1 and we have extracted the three
subsets that correspond to Qr >~ 1,2,3 after 20 cooling sweeps. For each subset we plot
the values that Q) takes on fields after 2 cooling sweeps. As we see in figure 24 the three
distributions do not overlap. So we can assign to each field a value of @) that is completely
unambiguous (at least for our statistics) on the basis of the value of @ measured after
only 2 cooling sweeps, where the long-distance physics should be essentially unchanged
from that of the original uncooled lattice fields. As an aside, we show in figure 25 the same
plot as in figure 24, but with values of (J;, calculated after only 1 cooling sweep. Here the
distributions are broader, so that one can no longer use the value of (0 to unambiguously
assign the field its value of @), but the fact that even after 1 cooling sweep the values of Qr,
strongly reflect the value of @@ after 20 cooling sweeps is evident.

It is instructive to see how the measured values of () vary with the number of cooling
sweeps n.. As an example, we take an ensemble of fields that have a topological charge
@ = 2, as determined by the value of QQ;, after 20 cooling sweeps. For this same ensemble we
calculate how the average value of Q) varies with n. and also how the standard deviation
of its fluctuations vary with n.. These quantities, labelled Q; and 0@, respectively, are
shown in table 41 for three different values of 8 in SU(8). As we see, in the uncooled
(n. = 0) fields the fluctuations o¢, are so large compared to the average charge Qr,(n. = 0)
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of those fields, that one cannot hope to estimate for individual fields the true value of Q)
from the value of Qr at n. = 0. However we also see that even after only 1 cooling sweep
the value of Qr/ 0q, increases by a factor ~ 20 and after 2 cooling sweeps by ~ 80, so
that one can, with rapidly increasing reliability, assign a value of ) to an individual field
on the basis of the value of Qr(n.) at the first few cooling sweeps. What we also see in
table 41 is that beyond the lowest few values of n. there is little difference between the 3
ensembles, despite the fact that the lattice spacing changes by a factor ~ 1.7. For larger
n. the value of Qr(n.) decreases slightly with decreasing 8 as one expects because the
typical instanton size will decrease in lattice units and the discretisation corrections are
negative. For n. = 0 the decrease in )y, is larger and reflects the S-dependence of the
renormalisation factor Z(f) which is driven by high frequency fluctuations, as analysed
more quantitatively in section 6.4. The rapid increase of og, with increasing f is driven
by two competing factors: the high frequency fluctuations per lattice site decrease as an
inverse power of 3, but since these fluctuations are roughly uncorrelated across lattice sites,
there is a factor proportional to the square root of the lattice volume in lattice units which
increases exponentially with g if our volumes are roughly constant in physical units. At
larger 8 the latter factor will dominate and it therefore becomes rapidly harder to relate
Q from Qr(n. = 0) as we approach the continuum limit. On the other hand, after the
first few cooling sweeps the high frequency fluctuations have been largely erased and the
fluctuations of @1, no longer increase with increasing (3, so that it becomes easier to identify
the value of ) from the value of Q7y.

As a footnote to the above we have calculated the same quantities as in table 41 but
now for different SU(N) groups. The calculations are at roughly the same value of a\/o
as for the SU(8) fields at § = 46.70 in table 41, i.e. at roughly the same value of the 't
Hooft coupling, so that the contribution of the high frequency fluctuations is roughly the
same. We find that the variation in og, (n. = 0) with N is consistent with being due to
the difference in the square root of the lattice volumes. At larger n. the value of og, (n.)
decreases with increasing N, which tells us that larger-scale non-perturbative fluctuations,
such as in the instanton size, are decreasing. Finally, the main practical point is that there
is very little variation with N of @ at any value of n.

6.2 Tunneling between topological sectors

In the continuum theory ) cannot change under continuous deformations of the fields
unlike most other quantities, such as glueball correlation functions, so one expects to lose
ergodicity in () much faster than in such other quantities as one approaches the continuum
limit in a lattice calculation using a local Monte Carlo algorithm such as the heat bath. In
this section we shall provide our data on this ‘freezing’ of @) as a function of @ and N and
then compare this to some theoretical expectations.

As described earlier, the value of ) changes if the core of an instanton shrinks and
disappears within a hypercube (or the reverse of this process). When a is small enough
such instantons can be described by dilute gas calculations since these very small instantons
are very rare and the effect on them of other background field fluctuations that exist on
physical length scales will be negligible. So the basic process is for () to change by one
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unit. Therefore we use as our measure of topological freezing the average number of sweeps
between changes of @) by one unit. We call this 7g. Since the probability of such a process
is clearly proportional to the space-time volume, which is not something we have tried
to keep constant in our calculations, we rescale our measured values of 7¢g to a standard
physical volume, which we choose to be Vy = I* with [\/o = 3.0, so that we can compare the
results of different calculations. Our calculations of ) have not been performed after every
sweep, but typically with gaps of 25 or 50 or 100 sweeps depending on the calculation. Our
estimates of 7g can only be reliable if they are much larger than this gap, since otherwise
there could be multiple changes of () within the gaps that we are missing, and so we do not
includes those ensembles where this issue arises — typically at the coarser lattice spacings.
However even if 7g appears to be much larger than the gap, we will occasionally see that
AQ), the change in () across a gap, is greater than unity. In this case we assume that there
have been |AQ)| jumps within the gap and we make that part of our final estimate of 7q.
In practice this makes a very small difference to our results. By counting the number of
changes of () in our total sequence of lattice fields we can obtain the average distance
between such changes, 79, once we have renormalised to our standard volume Vj.

As 79 — oo the above definition is adequate. However when 7¢ is not very large
one can worry about the unwanted contribution of near-dislocations that occur across a
measurement of (). We have in mind a small instanton that appears out of a hypercube
shortly before a measurement, survives the cooling (because of its environment) and so
contributes to the value of @), but then quickly disappears without becoming a larger
physical instanton long before the next measurement. In a sequence of measurements of )
such an event would be characterised by a jump AQ = +1 at one measurement followed by
the opposite jump, AQ = F1, at the next measurement. Of course it could be that when
this happens we are seeing two independent events, with an instanton appearing from one
hypercube and after the measurement an anti-instanton appearing out of a quite different
hypercube. The characteristic of the latter events is that the signs of the changes in @ at
neighbouring measurements are uncorrelated. Correcting for these we obtain the measure
7o (normalised to our standard volume) which excludes this estimate of near-dislocations.
Whether this estimate is entirely reliable is arguable, so it is reassuring that the differences
between 7 and 7¢g are not large, and which one we use does not alter our conclusions below.

We present in table 42 our results for 7o and 7¢g from the sequences of fields generated
in our glueball and string tension calculations. The excluded values of /3 either correspond
to cases where 7¢ is not much larger than the gap between measurements, and this includes
all of our SU(2) calculations, or where 7g has become so large that we see no changes in @
at all, which includes almost all of our SU(10) and SU(12) calculations. The prominent
qualitative features of our results are that for any given gauge group both 7¢ and 7 increase
rapidly as a(f) decreases and, at roughly equal values of a(f), they increase rapidly as
N increases.

One can formulate some theoretical expectations for the behaviour of 7¢ as one decreases
a and increases N. Just before shrinking through a hypercube an instanton will be very
small with size p ~ a where the number density, D(p)dp can be estimated using the standard
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semiclassical formula [21]

11 872 1 $r2 NV p=a,  av_

D(p)apsgyvexp{—m} Ngcoopg){exp{—gz(p)N}} X" (ah)F P, (6.3)
where A is the dynamical length scale of the theory. This is of course a very asymptotic ex-
pression: we have neglected the powers of g because they only contribute powers of log(aA),
and we have used the 1-loop expression for g2(a) which is, as we have seen in section 4, inad-
equate for our range of bare couplings. We also note that this expression only tells us what
is the probability of a very small instanton. In addition there will be a factor for the small
instanton with p ~ O(a) to finally shrink completely within a hypercube: this ‘tunneling
event’ may contribute an important factor depending on the lattice action being used.

The first qualitative feature of eq. (6.3) is that if we increase N at fixed a, we should find

LN _5

TQOCDEP)OC{;A} ’ — In{rg} =b+cN, (6.4)
where ¢ depends on the value of a and b is some undetermined constant. In our simulations
we have some that correspond to almost equal values of a+/o, and hence of aA, across
several values of N. These are for N = 3,4,5,6 at ay/o ~ 0.15 and for N = 8,10,12 at
ay/o ~ 0.33. In figure 26 we plot the values of In{7g} against N and we see that the

behaviour is roughly linear as predicted from egs. (6.3), (6.4).
The second qualitative feature of eq. (6.4) is that if we vary a at fixed N, we should find

LN _ 5

TQO(D}p)O({alA} ’ —>ln{7‘Q}:b—|—{113N—5}ln{alA}. (6.5)
In figure 27 we show plots of In{7g} versus In{1/a+/c} for N € [3,8] and we see that the
plots are roughly linear as predicted by eqs. (6.3), (6.5). (As an aside, the fact that the SU(2)
values of 7g never become large enough to be useful is no surprise given that the asymptotic
dependence predicted by eq. (6.5) is quite weak, 7¢ o< a’l3 .) The fitted coefficients of the
In{1/a\/o} term are listed in table 43 and compared to the value in eq. (6.5). We do not
expect a good agreement since we know that the one loop expression for g2(a) is a poor

approximation in our range of bare couplings but it is interesting that our calculated values
listed in table 43 do reflect the trend of the asymptotic theoretical values.

6.3 Topological susceptibility

The simplest topological quantity that one can calculate is the topological susceptibility,
xt = (Q?)/V, where V is the space-time volume. This is a particularly interesting quantity
because of the way it enters into estimates of the physical ' mass through the Witten-
Veneziano sum rule [66, 67]. There have been many calculations of this quantity and here
we will add to these our calculations for the gauge groups SU(2), SU(3), SU(4), SU(5) and
for those of our SU(6) ensembles where there are enough fluctuations in the value of @ to
make an estimate plausible.

We typically calculate the topological charge @) after every 25 or 50 or 100 Monte Carlo
sweeps on most of the lattice ensembles that we use for our glueball and/or string tension
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calculations. We estimate the value of () from the value of the lattice Q;, after 20 cooling
sweeps. The assignment of an integer value, Q7, after 20 cooling sweeps is, as we have seen,
largely unambiguous. In tables 44, 45 and 46 we list our values for Q2 on the lattices and
at the couplings shown.

To obtain the continuum limit we perform a conventional extrapolation

1 1
4 4
% = % + ca’o, (6.6)
a 0
where we systematically remove from the fit the values corresponding to the largest a until
we get an acceptable fit. We show the resulting continuum extrapolations for N = 2,3,4,5
in figure 28 and list the resulting continuum values in table 47. For SU(2) and SU(3) we do
not include the value at the smallest a since it is clearly too low and it is plausible that
it is due to a gradual loss of ergodicity in ) accompanied by an increasingly unreliable
estimate of the errors. We see from figure 28 that As we increase N our fits are able to
include values from increasingly coarse a((3). This is presumably related to the fact that the
‘bulk’ cross-over/transition between strong and weak coupling becomes rapidly sharper as
N increases [15]. (It is particularly smooth for SU(2).) As shown in table 47 all the fits are
acceptable. We have performed separate continuum extrapolations of the susceptibilities
obtained from the non-integer lattice charges, (01, and the integer charges, @1, labelling
these xr and yj respectively. In the continuum limit these should be the same and we see
from table 47 that this is indeed so, within errors, for all except the case of SU(2), where
the difference between the two values can be taken as a systematic error that is additional
to the statistical errors.
Once we have the continuum susceptibilites we can extrapolate them to N = oo as
shown in figure 29:

1
X} 0.471(15)
2L =0.3681(2 _— :
- 0.3681(28) + N (6.7)
N
and )
X3 0.448(15)
2L =, 2 — :
Jo 0.3655(27) + 2 (6.8)
N

The two are within errors as one would expect. We note that this value is consistent
within errors with the N = oo extrapolation in [68] which uses a novel technique [69] for
ameliorating the problem of topological freezing.
Finally we return to the case of SU(3) since it also has some phenomenological interest.
Here our analysis differs slightly from our earlier analysis in [11] and our final result
1
X

= 0.4246(36) (6.9)
Vo SU(

3)

is about one standard deviation higher. To transform this into physical units we translate
from units in terms of /o to the standard scale rg and then to MeV units just as we did in
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eq. (4.9) of section 4.2, giving
1
roy/o = 1.160(6) = x I = 206(4)MeV.. (6.10)

1

This is within errors of the value we presented in [11] and the value x} S 208(6)MeV

obtained in [70] using the gradient flow technique. As an aside we note that the value
1

of x}/v/o at N = oo, as given in eq. (6.7), is ~ 13% lower than the SU(3) value, i.e.
~ 179‘MeV’ if we simply rescale the value in eq. (6.10).

6.4 Zg(B) and lattice 8 parameter

Consider the ensemble of Monte Carlo lattice gauge fields that correspond to an integer
valued topological charge Q). If we calculate the charge Q1 of each of these fields, prior to
any cooling, the average value will be related to @ by [56]

< QL >=Zg(B)Q, (6.11)

where Zg(5) will depend (weakly) on N and negligibly on the lattice volume (as long as
it is not very small). Since the deviation of Zg (/) from unity is driven by high frequency
lattice fluctuations, it is of little physical interest in itself. However its value is important if,
for example, one wishes to study the # dependence of the theory by adding a term 6@ to
the continuum action and, correspondingly, a term i6;(;, to the lattice action, since one
sees that [71]

0L~ Z5' (8)0. (6.12)

Primarily for this reason we have calculated Zg(/5) in our lattice calculations and will also
provide interpolating functions that will give Zg (/) at values of /5 that lie between our
measured values.

A first estimate for Zg () can be obtained in perturbation theory, giving at one loop [56]

B0

Zo(B) " ="1—(0.6612N2 — 0.5); +0(67%) (6.13)

which already tells us that for our range of 3 we will have Zg() <« 1. The fact that the
one loop correction is so large tells us that the one loop estimate is likely to be not very
accurate, and indeed that proves to be the case. Moreover as we increase the lattice spacing
the typical instanton becomes smaller and the value of ()7, acquires significant corrections
that are powers of a(5) and which are additional to any perturbative corrections. So in
constructing our interpolating function for Zg we simply use the form

_ 2N?
/8 Y

where ¢?N is the 't Hooft coupling, and we make no attempt to constrain the parameters

Z54(B) =1— 26’ N — 21(¢°N)?;  ¢>N (6.14)

zp and 21 to perturbative values. This turns out to be an adequate fitting function to our
values of Zg(f). It is however important to note that while this works as an interpolating
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function, it is likely to fail increasingly badly the further one uses it away from the fitted
range of 5 as an extrapolating function.

Our values for Zg(f) are obtained from fits such as those shown in figure 30, and are
listed in tables 48 and 49. Interpolating these values with eq. (6.14) gives the values for zg
and z; listed in table 50. Physically the most relevant interpolating function is the one for
SU(3):

Z34(B) £ 1 - 0.162(10)g° N — 0.0425(31)(¢°N)?,  x*/ngr = 0.62 (6.15)

In the case of SU(2) we have only a few entries because most of our earliest calculations did
not include calculating @7, on the fields prior to cooling. In addition in the case of SU(2)
the identification of an integer @ after 20 cooling sweeps possesses small but significant
ambiguities, which rapidly disappear as N increases. We can also fit our interpolating
functions in NV, thus obtaining

0.08(15
zp = 0.179(12) — ]\7(2), X2/ndf = 1.00 (6.16)
and 0.072(50
z1 = 0.0482(46) — ng)’ X /ng = 1.13 (6.17)

which should be reliable over a wide range of N as long as we are not too far outside the
range of the t'Hooft coupling A = ¢g>N of our calculations in tables 48 and 49. Finally
we remind the reader that all these results for Zg(3) only apply to calculations with the
standard Wilson plaquette action and with the definition of the lattice topological charge
@1, used here.

7 Conclusions

Our primary goal in this paper has been to calculate the glueball spectra of a range of
SU(N) gauge theories, in the continuum limit, with enough precision to obtain plausible
extrapolations to the theoretically interesting N = oo limit. This provides the first
calculation of the masses of the ground states in all the R”C channels, as well as some
excited states in most channels, in the continuum limit of the N — oo gauge theory.

Our results, for N = 2,3,4,5,6,8,10, 12, were obtained using standard lattice gauge
theory methods. Although the issue of topological freezing at larger N in SU(N) gauge
theories is not expected to be important for glueball spectra [28, 29], we confirmed this
explicitly in some extensive SU(8) calculations, and in addition we chose to minimise any
remnant bias at larger N by modifying the usual update algorithm, explicitly imposing the
expected distribution of topological charge on the starting lattice fields of our ensemble
of Monte Carlo sequences. We employed a large basis of single-trace glueball operators,
which allowed us to calculate the ground state and some excited states for each of the RC
channels, where R labels the representation of the rotation symmetry group appropriate to
our cubic lattice, and P, C label the parity and charge conjugation. The large basis gives
us confidence that we are not missing any low-lying states and this in turn allows us to
match near-degeneracies between states with different R so as to assign continuum spin
quantum numbers to a significant number of glueball states.
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Our results have greatly extended existing calculations while largely confirming existing
results; in particular the important conclusion that SU(3) is ‘close to’ SU(oc0). As before,
one finds that the lightest glueball is the JP¢ = 07+ scalar ground state, with a mass that
ranges from My++ ~ 3.41,/0 for SU(3) to My++ ~ 3.07/c for SU(oc0), where o is the string
tension, and that the next heavier glueballs are the tensor with a mass My++ ~ 1.5My++,
and the pseudoscalar, 0~F, which is nearly degenerate with the tensor. One then has
the 17~ with M+~ ~ 1.85Mj++, and this is the only relatively light C = — state. At
roughly the same mass is the first excited 0" and then the lightest pesudotensor with
My—+ ~ 1.95My++. All other states are heavier than twice the lightest scalar, with most
of the C = — ground states being very much heavier than that. One sees a number of
near-degerenacies which may or may not be significant. The continuum glueball masses (in

RPC channels are listed in tables 23-31 and for

units of the string tension) for the various
the JPC channels in tables 34-38.

Since our calculations are on a finite spatial volume we have had to identify and exclude
the ‘ditorelon’ states composed of a pair of mutually conjugate flux tubes that wind around
our periodic spatial torus. These are states whose projection onto our single trace operators
will vanish as N — oo. We also need to exclude any multiglueball scattering states. Our
(albeit partial) explicit calculations using the corresponding double trace operators strongly
suggest that these states do not appear in the glueball spectra that we claim to obtain
using our single trace basis.

In calculating the glueball spectra we have also calculated a number of other quantities
that could be calculated simultaneously. Our calculations of the string tension were primarily
intended to provide a scale in which to express our glueball masses. However they also
provided a scale for the lattice spacing a at each value of the bare lattice coupling, gr.(a),
which we were able to use to obtain values of the dynamical scale Az for all our values of
N. These improved upon earlier calculations of this kind and for SU(3) provided a value
in physical units of Aj;5 ~ 263(4)[9]MeV which is consistent with values obtained using
more dedicated methods At the same time we were able to confirm that keeping fixed the
running 't Hooft coupling g?(a)N, with a being kept fixed in units of the string tension, is
the way to approach the N = oo limit along lines of constant physics.

In addition to the fundamental string tension we calculate the tension of k = 2 flux
tubes, in order to analyse the way that op—o/0 approaches N = oco. We find that a
leading O(1/N) correction works better than the O(1/N?) expected from standard large- N
counting, but that the latter cannot be completely excluded. We speculate that the O(1/N)
behaviour is sub-asymptotic, with the O(1/N?) correction settling in for flux tubes of length
I <. once N is large enough that the £ = 2 flux tube becomes a pair of weakly interacting
fundamental flux tubes for [ <. with [. T as N 1. That is to say, the [, N — oo limit is
not uniform.

Since for our glueball calculations we need to monitor the onset of the freezing of the
topology of our lattice fields, we have performed extensive calculations of the topological
charge along with the glueball calculations. Using these calculations we obtain values for
the continuum limit of the topological susceptibility for the SU(N < 6) gauge theories.
The freezing of topology means that we have no values for N > 6 or for our smaller SU(6)
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lattice spacings. Nonetheless this does not prevent us achieving a usefully precise value of

the NV = oo topological suseptibility, X[%/ Vo = 0.3681(28). We have also calculated the
renormalisation factor Zg(f) that relates the value of our particular (but standard) lattice
topological charge, as obtained on the Monte carlo generated lattice gauge fields, to the
true integer valued topological charge of those fields. This is useful if one wishes to include
a topological f-term in the action, and so we also include functions that interpolate between
our values of 8. We can do so for all our SU(N) groups because these calculations can be
equally well determined using ensembles of fields where the topological charge has been
inserted through the initial fields of the Markovian chains.

The present study could be improved in several ways. A definitive study of ditorelon

RPC sectors would be useful. The heaviest

states and the lightest multiglueball states for all
states need a finer resolution in the correlation functions for the mass identification to
become completely unambiguous: this could be achieved by using an anisotropic lattice
such that the timelike lattice spacing is much smaller than the spacelike one, a technique
that has occasionally been put to good purpose in the past [7, 10, 50, 51]. Perhaps most
important would be the incorporation of more effective techniques for determining the
continuum spins of the glueball states, as for example in [54] for 2 space dimensions and

in [9] for our case here of 3 spatial dimensions.
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A Lattice running couplings

For pure gauge theories the perturbative S function for the running coupling in a coupling
scheme s is given by

09s

Blgs) = —a7 > = —bogd —brgl — b3l + ..., (A1)

where a is the length scale on which the coupling is calculated and on which it depends. The
first two coefficients by and by are scheme independent while the coefficients b}, depend on
the scheme. Integrating between scales ag and a, we obtain

g(a) ¢
a4 = exp —/ 99, (A.2)
ao g(ao) B (g)
(The label s on g is to be understood.) The integrand is singular as ¢ — 0 and for any
calculations it is convenient to separate out the singular pieces. Since the issue arise for
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g — 0 we can expand 1/5(g) in powers of g and we then readily see that we can separate
out the singular terms as follows,

g(a) _ re(a) 1 by 1
a _ €+ g(ao)dg( +b 93)6 g(ao)dg( (9) bgg+b093)
ao
2 3 1 S SRS (S N R |
o g (a) 0 T2y 2(a)_ 92(ag) g(ag) 9\ Bl b2g ' bog3 A
=\ $2(a0) e e 0 . (A.3)

In the second line we have integrated the ‘singular’ terms, and the remaining integral will
now be finite as g(ag) — 0. So we can break up the integral as

g(a) 1 b 1 g(ag) b g(a) b 1
- g(ag) dg(ﬁ ?1+b0g ) +f0 d (W_ﬁ—‘rboig) fO d ( (9)_Tl+bog ) (A 4)

[& 09

where each integral will be well-defined since the singularities at g = 0 have been removed.
Separating the terms in a and ag in eqgs. (A.3), (A.4) we can write

a  Flg(a)
aw ~ Flglao))’ (4.5)

where we define

Pl = (ng?) e o) (A.6)

Note that the factor of by that we have inserted in the first term on the right of eq. (A.6)
will cancel in eq. (A.5) so we are free to insert it if we wish. We see from eq. (A.5) that
a/F(g*(a)) is independent of the scale a on which the coupling is defined and is a constant.
So we can now define a dynamical energy scale A by

A

aq _l a
Flglao)  *~ a7 0(@)

- % (bogz) bl@ e 2b0g e

The scale A defined here coincides with the conventional A parameter that appears in the

(a)
R Coar ) (A7)

standard 2-loop expression for the running coupling. (It is to ensure this equality that we
inserted the factor of by above.) This scale will clearly depend on the coupling scheme and
within a given scheme the value we obtain for it will depend on our approximation to 3(g).

For our lattice action only the first 3 coefficients in the S-function are known. In that
case, collecting terms, it is convenient to rewrite eq. (A.7) as

2

9%(a) 2( bobz—bf—blbw )
Ad9*\ 370523 1
et gamret) = Loy, (a8)

3100p 1 %

b1 L
2 22 bog2(a)
1 (og(@) 75 e e

where we denote by Fj;(g) the 3-loop approximation to F'(g). The integrand is a smooth
function of g? and so the integral can be calculated accurately for any given g(a) using any
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elementary numerical integration method. If we retain only the first 2 coefficients of 3(g)
then we can do the integral analytically to obtain

b1

2loop 1 —% (bl 1 )21;2
a =" —e os@? ( — 4 )70
A b5 bog*(a)

as the exact 2-loop result, where we denote by Fy/(g) the 2-loop approximation to F(g).

~ Fug(a) (4.9)

The above perturbative expressions for aA can be turned into expressions for ap where
1 is some physical mass or energy:

It
A

- % (1+ cua®p? + O(a*)) F(g(a)), (A.10)
a a=0

ap = al

where F(g(a)) is defined in eq. (A.6) and ¢, is an unknown constant. Here we use the
standard tree-level expansion for a dimensionless ratio of physical energy scales, which here
is u/A. This expression marries perturbative (logarithmic) and power-like dependences on
a in a plausible way. It is of course arguable: for example the perturbative expansion is at
best asymptotic and this can introduce other power-like corrections. In practice we shall
use this for the string tension, u = /o, and we will drop O(a?) and higher order terms.
That is to say we will attempt to fit the calculated string tensions with

ay/o = \Xj (1 + cpa’a)F3(g(a)) (A.11)

a=0

and we shall be doing so in the mean-field coupling scheme s = I. To calculate F3;(g(a))
in that scheme we only need to know the coefficient b=/, since by and b; are scheme
independent with values

1 11 1 34
bp= ———N, b = N2, A.12
0T @m2 3 VT (4mt 3 (4.12)

We can begin with the well-known value of b5=M5 [72]

s _ 1 2857 g
2 (47)6 54

(A.13)

To obtain b5 in the improved lattice coupling scheme I we first transform to the plaquette
action lattice coupling scheme, s = L, using [73]

by = 2635 — b1y + boly, (A.14)
where

1
lo = == — 0.16995599N, L=

= o +0.018127763 — 0.0079101185N2.  (A.15)

~ 128N2

The lattice coupling, g7, satisfies the 3-function in eq. (A.1) with s = L, and the mean-field
coupling will satisfy a S-function with the same by and by coefficients but with a different
coefficient, bl of the g7 power. To determine b4 one can use the expression for (TrU,) as a
power series in g% to write g% as

1
97 = 917 TUp) = g7, (1~ wigh —wagh —...) . (A.16)
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where [74]

(N2 —1)

—, (A.17)

w1 =

= (N? - 1) (0.0051069297 — ——— | .
( ) (0 0051069297 128N2>
We now insert the expression for g7 in eq. (A.16) into the S-function for g2 in eq. (A.1)
giving us, after some elementary manipulation,

bé = b% + wobg — w1b1. (A18)

So: using egs. (A.13), (A.15) in eq. (A.14) we obtain the explicit expression for b5 and then
inserting that together with the functions in eq. (A.17) and eq. (A.12) into eq. (A.18) we
obtain the explicit expression for bl for any N. We now have the explicit expressions for by,
by and b} which allow us to calculate the value of F3;(g7(a)) in eq. (A.11) for any value of
N and gs(a).

B Scattering states

We will restrict ourselves to states of two glueballs. We probe such states with product
operators ¢q(t)¢p(t) where ¢, and ¢y are typical single loop zero momentum operators that
are expected to project primarily onto single glueballs with chosen quantum numbers. Both
the individual and product operators will in general need vacuum subtraction for this to be
the case. As usual we will have some basis of single loop operators so the generic correlator
will be of the form

Ca(t) = ($a ()85 (t)8c(0)Pu(0)) — (D dh) (Sedin), (B.1)

where ¢/, (t) = ¢a(t) — (o) etc. This equation subtracts any vacuum contribution to the
individual operators as well as to their products. We have taken the operators to be real.
If, for example, we were to include operators ¢;(t), ¢;(t) with opposite non-zero momenta
then these would be complex. In that case we should change ¢4 (t), ¢p(t) — o5 (t), qﬁl(t) in
eq. (B.1) and below.

Our glueball calculations require high statistics so we calculate our correlators during
the generation of the sequence of lattice fields. At this stage we can only calculate the
correlators of the fields ¢ without any vacuum subtraction — we will only be able to
calculate the vacuum expectation values at the end of the computer simulation. A short
calculation tells us that the correlator of the ¢, fields in eq. (B.1) can be written in terms
of the correlators of the unsubtracted ¢; fields as follows:

Ca(t) = (Pa(t) (1) Pc(0)¢a(0))
= (¢a){(@5(t)0c(0)$a(0)) — (Pb)(¢a(t
= (9e) (Da(t)P6(1)9a(0)) — (¢a)
(Da)(de) (D0(t)$a(0)) + (Pp)(¢e
(Da)(¢a) )+
—

- -

(
$a)(a)(P6(t)c(0)
Da®b){PcPa) + 2(Padb)(Pc)(Pa) + 2{PcPa) (Pa) (D) — 4(Pa)(Pb){(Pc)(Pa). (B.2)
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Of course when some of the operators have non-vacuum quantum numbers, then the
corresponding vacuum expectation values will vanish and the above expression will simplify
in obvious ways.

In addition to the above we may also be interested in the overlap of single loop operators,
which mainly project onto single glueballs, with the above product operators, which one
expects to mainly project onto two glueballs. That is to say correlators such as

Cs(t) = {du(£)p(£)c(0)) — (Pudp) (@) = (80 ()04 (1).(0)) (B.3)

since (¢.) = 0 by definition. In terms of the unsubtracted operators we find

C3(t) = (Pa(t)P(t)9c(0)) — (¢a)(D5(t)Dc(0)) — (P5) (Pa(t)dc(0))
- <¢c> <¢a¢b> + 2<¢a><¢b> <¢c> (B'4)

In this paper we can only calculate light masses with any reliability so we restrict
ourselves to double loop operators where one loop is in the A] ' representation and therefore
has some projection onto the lightest glueball. The second operator will then be in the
representation RTC in which we happen to be interested. If RP¢ # A" then eq. (B.2)
simplifies drastically

Ca(t) = (Da(t)dp(t)c(0)0a(0)) — (Pa)(P6(t)Pc(0)Pa(0))
— (@) (a(t) D1 (t)$a(0)) + (Pa) (Pe) (¢6(1)2a(0)) — (Dap) (PcPa) (B.5)

since with ¢, ¢. being AT ™ and ¢y, ¢4 not being A7+ means that not only (¢) = (¢pg) =0
but also that products like (¢,¢p) are zero. Similarly if ¢, in eq. (B.3) is A7 and ¢y is in
some RPC £ Af™T then ¢. must be in the same RY # Af™ for C5(t) not to be zero. In
that case we will have

03(t) = <¢a(t)¢b(t)¢c(0)> - <¢a> <¢b(t)¢c(0)> (B'G)

If however ¢, and ¢, are in A" then we need the full expression.
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SU(2) ; I\/o~4
64 Bl 1ReTr(U,) a\/o amg
22986 12316 | 0.6018259(46) 0.36778(69) 1.224(16)
2.3714 14316 | 0.6226998(36) 0.29023(50)  1.025(12)
2427  20°16 | 0.6364293(15) 0.24013(41) 0.8469(76)
2.509 22320 | 0.6537214(10) 0.18011(22) 0.6563(56)
2.60 30 | 0.6700089(5) 0.13283(30) 0.5001(41)
270  40* | 0.6855713(3) 0.09737(23) 0.3652(35)

Table 1. Parameters of the main SU(2) calculations: the inverse coupling, 3, the lattice size, the

average plaquette, the string tension, o, and the mass gap, mq.

SU@3) ; I\/o~4
g Bl iReTr(U,) a\/o amg

5.6924 10316 | 0.5475112(71) 0.3999(58)  0.987(9)

5.80 12316 | 0.5676412(36) 0.31666(66)  0.908(12)
5.8941 14216 | 0.5810697(18) 0.26118(37) 0.7991(92)
599 18 | 0.5925636(11) 0.21982(77) 0.7045(65)
6.0625  20%* | 0.6003336(10) 0.19472(54) 0.6365(43)
6235 26 | 0.6167723(6) 0.15003(30) 0.4969(29)
6.3380  30% | 0.6255952(4) 0.12928(27) 0.4276(37)
6.50  38% | 0.6383531(3) 0.10383(24) 0.3474(22)

Table 2. Parameters of the main SU(3) calculations: the inverse coupling, 3, the lattice size, the

average plaquette, the string tension, o, and the mass gap, mq.

SUM4) ; I\/o~4
B Bl 1ReTr(U,) a\/o amg
10.70 12316 | 0.5540665(24)  0.3021(5)  0.8406(48)
10.85 14320 | 0.5664268(15) 0.25426(38) 0.7611(54)
11.02 18320 | 0.5782610(11) 0.21434(28) 0.6605(33)
11.20  22% | 0.5893298(6) 0.18149(49) 0.5709(34)
1140 26% | 0.6004374(4) 0.15305(34) 0.4864(30)
11.60 30 | 0.6106057(3) 0.13065(21) 0.4132(44)

Table 3. Parameters of the main SU(4) calculations: the inverse coupling, 3, the lattice size, the

average plaquette, the string tension, o, and the mass gap, mg.
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SUB) ; I\/o ~ 3.1
B Bl 1ReTr(U,) a\/o amg
16.98 10316 | 0.5454873(28)  0.3033(8)  0.8241(68)
1722 12316 | 0.5587002(18)  0.2546(6)  0.7517(51)
17.43 14320 | 0.5685281(10) 0.22217(37) 0.6751(44)
17.63 16320 | 0.5769707(9) 0.19636(35) 0.5961(79)
18.04 20324 | 0.5924012(6) 0.15622(38) 0.4783(44)
18.375 24330 | 0.6036547(4) 0.13106(30) 0.4078(38)

Table 4. Parameters of the main SU(5) calculations: the inverse coupling, 3, the lattice size, the
average plaquette, the string tension, o, and the mass gap, mg.

SU(6) ; I\/o ~ 3.1
B Bl tReTr(U,) a\/o amg
24.67 10°16 | 0.5409011(28) 0.30658(34) 0.8240(41)
25.05 12316 | 0.5557062(13) 0.25177(23) 0.7395(50)
95.32 14320 | 0.5646185(10) 0.22208(35) 0.6673(32)
25.55 1620 | 0.5715585(9) 0.20153(34) 0.6112(41)
26.22 20724 | 0.5804540(4) 0.15480(36) 0.4751(53)
26.71 24330 | 0.6009861(3) 0.12867(27) 0.3886(37)

Table 5. Parameters of the main SU(6) calculations: the inverse coupling, 3, the lattice size, the
average plaquette, the string tension, o, and the mass gap, mq.

SU(8) ; I\/o ~ 2.6
A3 Bl tReTr(Up) a\/o amg
44.10 8316 | 0.5318034(31) 0.32589(62) 0.8246(66)
44.85 10316 | 0.5497960(15) 0.25791(40) 0.7461(53)
45.50 12320 | 0.5622253(9) 0.21851(45) 0.6409(38)
46.10 14320 | 0.5723242(8) 0.18932(38) 0.5617(43)
46.70 16324 | 0.5815072(5) 0.16557(38) 0.4909(43)
47.75 20330 | 0.5959878(3)  0.13253(26) 0.4075(28)

Table 6. Parameters of the main SU(8) calculations: the inverse coupling, 3, the lattice size, the
average plaquette, the string tension, o, and the mass gap, mq.
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SU(10) ; I\/o ~ 2.6
g 3l LReTr(Up) a\/o amg
60.20 8316 | 0.5292025(29) 0.33024(35) 0.8282(60)
70.38 10316 | 0.5478565(13) 0.25987(30) 0.7435(42)
71.38 12320 | 0.5602903(9) 0.21988(32) 0.6451(44)
72.40 14320 | 0.5713707(6) 0.18845(20) 0.5549(59)
73.35 1624 | 0.5807004(4) 0.16399(19) 0.4952(44)

Table 7. Parameters of the main SU(10) calculations: the inverse coupling, 8, the lattice size, the
average plaquette, the string tension, o, and the mass gap, mq.

SU(12) ; I\/o ~ 2.6

B Bl SReTr(U,) av/o amg
99.86 8316 | 0.5275951(27)  0.33341(40) (52)
101.55 10%16 | 0.5464461(12) 0.26162(32) (51)
103.03 12320 | 0.55936304(61) 0.21915(25) 0.6432(32)
(38) (42)

(27) (37)

104.55 14320 | 0.57087665(49) 0.18663(38
105.95 16324 | 0.58043063(32) 0.16197(27

Table 8. Parameters of the main SU(12) calculations: the inverse coupling, g, the lattice size, the
average plaquette, the string tension, o, and the mass gap, mqg.
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aEer(t = 2a) : SU(8) at B = 45.50 on 14320

R | a1Q | Q=0 [[r"]| a1@ | @=o0

AfT | 0.6512(21) | 0.6497(25) || A7 | 1.119(8) 1.098(9)
1.199(9) 1.209(9) 1.581(23) | 1.587(21)
1.243(12) | 1.236(11) 1.908(43) | 1.937(51)
1.565(21) | 1.551(23)

AT 1.668(27) | 1.642(25) || AT 2.21(8) 2.51(11)
1.983(48) | 2.037(48) 2.30(9) 2.23(11)

EtT | 1.020(4) 1.020(5) E~T | 1.354(9) 1.356(11)
1.230(8) 1.233(8) 1.757(24) | 1.765(25)
1.435(10) 1.424(9) 2.060(51) | 2.157(50)

T | 1.670(14) | 1.673(18) || 77" | 1.841(25) | 1.861(24)
1.728(20) | 1.708(19) 1.976(27) | 1.950(26)
2.011(27) | 2.041(35) 1.925(28) | 1.928(28)
2.053(35) | 2.037(31)

TF | 1.032(4) 1.033(3) T, | 1.360(8) 1.356(9)
1.460(9) 1.447(8) 1.727(15) | 1.714(17)
1.670(15) | 1.648(18) 1.881(20) | 1.900(24)
1.692(14) | 1.691(17)

AFT 2.10(7) 2.10(8) AT 2.10(7) 2.10(8)
2.33(9) 2.41(12) 2.41(12) 2.40(13)

AF~ | 1.557(18) | 1.577(21) || A5~ 2.00(5) 2.06(7)
1.852(29) | 1.754(26) 2.15(8) 2.25(9)
2.13(6) 2.27(10)

E*t~ | 1.980(35) | 1.981(33) || E~~ | 1.690(18) | 1.686(21)
2.155(48) | 2.119(41) 2.072(39) | 1.998(42)
2.198(54) | 2.087(50) 2.198(57) | 2.204(66)

T~ | 1.266(5) 1.271(6) T7~ | 1.738(18) | 1.734(18)
1.542(9) 1.557(10) 1.973(29) | 1.920(26)
1.656(13) | 1.648(11) 2.088(32) | 2.001(31)
1.859(18) | 1.860(19)

T;r~ | 1.571(11) | 1.543(11) || 75~ | 1.721(15) | 1.715(21)
1.880(19) | 1.881(20) 1.888(23) | 1.889(28)
1.900(20) | 1.915(27) 2.043(27) | 2.006(26)
1.996(34) | 1.994(30)

lk=1 | 0.5963(11) | 0.5932(14) || lk—2 | 1.1204(33) | 1.1235(28)
1.2954(33) | 1.2918(42) 1.3876(57) | 1.3810(64)

Table 9. Comparison of glueball and flux tube energies obtained on fields with topological charge
Q = 0 against fields with a ‘normal’ distribution of Q. In SU(8) on a 14320 lattice at 3 = 45.50.
Energies extracted from best (variationally selected) correlators between ¢ = a and ¢ = 2a. Glueballs
labelled by representation of cubic rotation symmetry R, parity P and charge conjugation C. Flux

tubes are fundamental, l—1, and k = 2, [—o.
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SU(2) B =2.427 | SUBB) B=06.235 | SU(6) B =25.35
l a\/o l a\/o l a\/o

12 0.2380(3) |18  0.1491(5) |12  0.2196(5)

14 0.2387(4) |26 0.1499(4) |14  0.2200(7)

16 0.2390(8) |34  0.1506(6) |18 0.2181(17)
20 0.2399(10)

24 0.2396(16)

SU(4) B=11.02 | SUM4) B=11.60 | SU(8) 3 =45.50
l a\/o l a\/o l a\/o

18 0.2143(3) |24  0.1301(5) |12 0.2187(4)

22 0.2142(6) |30  0.1307(3) |14  0.2189(4)

SU(10) 8 = 71.38 | SU(12) 8 = 103.03

l av/o l a/o

12 02199(4) | 12 0.2198(2)

14 02195(5) |14 0.2202(7)

Table 10. String tensions obtained using eq. (3.3), for (fundamental) flux tubes of length [ for
various groups. A test of finite volume corrections.

SU(4) 6 =11.02 | SU) B =11.60 | SU(6) 5 = 25.35

l a\/Op—2 l a\/Op—2 l a\/Op—2

18 0.2490(12) | 24 0.1523(5) |12 0.2779(9)

22 0.2480(24) | 30  0.1534(5) | 14  0.2846(6)
18 0.2841(8)

SU(8) 6 = 45.50 | SU(10) B = 71.38 | SU(12) § = 103.03

l a\/UkZQ l a\/O'kZQ l G\/UkZQ

12 0.2833(9) |12 0.2001(10) | 12 0.2925(11)

14 0.2885(24) | 14 0.2946(22) 14 0.2987(23)

Table 11. String tensions obtained using eq. (3.3) for k = 2 flux tubes of length [ for various groups.
Testing finite volume corrections.
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SU(2)

B lattice | SReTr(Up) aEy a\/o
22086 8316 | 0.6018323(78) 0.9310(55) 0.36590(93)
23714 10%16 | 0.6227129(41) 0.7159(41) 0.28779(71)
2.427 12316 | 0.6364205(26) 0.5831(32) 0.23750(56)
2452 14320 | 0.6420346(28) 0.5852(51) 0.21791(83)
2500 16320 | 0.6537206(12) 0.4399(15) 0.17857(26)

2.60 22330 | 0.6700085(8) 0.3370(17) 0.13279(29)
2.65 26334 | 0.6780431(5) 0.2914(15) 0.11342(26)
2.70 28340 | 0.6855710(4) 0.2228(13) 0.09698(24)
2.75 34346 | 0.6926656(2) 0.2048(16) 0.08375(21)
2.80 40354 | 0.6993804(2) 0.1817(16) 0.07242(28)

Table 12. Energies of periodic flux tubes of length [ in SU(2) and derived string tensions at the
couplings 8 = 4/g? on the lattices [3l;.

02}

U(3)
6 lattice | 3ReTr(Up)
5.6024 8316 0.547503(7)
580  10%16 | 0.567642(5)  0.8862(26
5.8941 12316 | 0.581069(4)
5.99 14320 | 0.5925655(13)  0.5984(26
(
(

aFEy a\/o
) 0.4010(23)
) 0.31603(84)
) 0.2613(14)
) 0.21959(76)
) 0.19509(65)
26)  0.14899(59)
) 0.12048(44)
) 0.10319(41)
) (26)
) (28)

6.0625 14320 | 0.6003331(21) 0.4517(25
6.235 18326 | 0.6167715(13) 0.3369
6.338 22330 | 0.6255948(8
6.50 26338 | 0.6383532(5

6.60 32340 | 0.64566194(21) 0.2255(15
6.70 36344 | 0.65260033(18) 0.1933(16

0.09024(26
0.07898(28

Table 13. Energies of periodic flux tubes of length ! in SU(3) and derived string tensions at the
couplings 3 = 6/g* on the lattices I3[;.
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continuum k = 2 string tensions
group || op/0p:NG | op/0p:l = oo || Casimir scaling
SUM) | 1.381(14) | 1.381(14 1.333
SU(5) || 1.551(11) | 1.551(11 1.500
SU(6) || 1.654(13) | 1.654(13 1.600
SU(S) || 1.731(11) | 1.794(28 1.714
SU(10) || 1.733(15) | 1.796(29 1.778
SU(12) || 1.792(16) | 1.857(29 1.818

Table 14. Ratio of the k = 2 string tension to the fundamental for various SU(N
Values labelled NG are obtained using eq. (3.3
that limit. The values corresponding to ‘Casimir scaling’ are shown for comparison.

) gauge theories.
). Values labelled [ — co denote our best estimates in

N a7 € 5/ A?loop e Jng | o/ A2100p ASloop Nz

2 1[0.133,0.072] 4.535(16)  0.42 | 4.914(16) | 0.5806(21)[570]
3 1[0.195,0.079] 4.855(11)  1.40 | 5.210(20) | 0.5424(13)[185]
4 [[0.254,0.131] 5.043(10)  0.48 | 5.532(11) | 0.5222(11)[230]
5 | [0.255,0.131] 5.090(14)  0.31 | 5.622(15) | 0.5174(15)[245]
6 |[0.252,0.120] 5.105(11)  1.62 | 5.664(48)* | 0.5158(11)[250]
8 |[0.258,0.133] 5.148(17)  0.13 | 5.727(20) | 0.5115(17)[250]
10 | [0.260,0.164] 5.221(40)*  3.30 | 5.845(44)* | 0.5044(20)[270]
12 | [0.262,0.162] 5.193(13)  0.45 | 5.823(15) | 0.5071(13)[270]

Table 15. Results for A; in units of the string tension using the exact 3-loop S-function, with the
2-loop result for comparison. Poor fits denoted by *. Resulting A5z is shown with statistical errors

and an estimate of the (correlated) systematic error in square brackets.

N co Co a\/o € B e X2 /naf | nar
2 | 4.510(15) | 4.98(25) | [0.133,0.072] | [2.60,2.80] 040 | 3
3 | 4.827(12) | 2.48(11) | [0.195,0.079] |  [5.99,6.70] 129 | 4
4 | 5.017(8) | 1.622(40) | [0.302,0.131] | [10.70,11.60] | 0.98 | 4
5 | 5.068(11) | 1.435(56) | [0.303,0.131] | [16.98,18.375] | 0.38 | 4
6 | 5.064(12) | 1.541(68) | [0.252,0.129] [25.05,26.71] 1.45 3
8 | 5.143(9) | 1.265(34) | [0.326,0.133] | [44.1047.75] | 1.75 | 4
10 | 5.176(10) | 1.285(35) | [0.260,0.164] | [70.38,73.35] | 3.06 | 2
12 | 5.148(12) | 1.387(43) | [0.262,0.162] | [101.55,105.95] | 0.41 | 2

Table 16. Fitted values of the coefficients ¢y and ¢, that determine the interpolation function in

eq. (4.12) for each of our SU(N

) lattice gauge theories. In each case the range in ay/o and of § of

the fit is shown as is the x? per degree of freedom and the number of degrees of freedom.
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aEeg(t = 2a) : SU(2) at § = 2.427
RP 12316 14316 20316
AT | 0.840(11) | 0.854(8) 0.847(8)

1.225(26)
1.418(17) | 1.367(15) | 1.408(19)
1.593(27)
1.611(36) | 1.721(51) | 1.780(45)
1.871(40) | 1.839(46) | 1.872(46)
A3 | 1.680(40) | 1.805(38) | 1.942(72)
ET | 1.220(9) | 1.254(14) | 1.284(13)
1.317(17)
1.549(20)
1.632(30) | 1.672(33) | 1.672(40)
1.774(31) | 1.820(39) | 1.832(42)
T | 1.925(42) | 1.875(27) | 1.855(37)
1.977(48) | 1.972(34) | 1.916(50)
T | 1.297(12) | 1.278(14) | 1.289(11)
1.739(20) | 1.701(30) | 1.672(21)
1.774(34) | 1.849(22) | 1.877(30)
A7 | 1.471(30) | 1.540(30) | 1.526(36)
1.71(4) 1.87(9) 1.94(9)
Ay | 2.31(16) 2.21(17) 2.04(12)
E~ | 1.585(31) | 1.680(28) | 1.652(34)
2.00(6) 2.04(7) 2.02(7)
T 2.18(6) 2.15(6) 2.09(7)
T, | 1.665(25) | 1.632(33) | 1.620(21)
2.04(5) 2.00(4) 2.01(6)
lp—1 | 0.5804(38) | 0.7140(41) | 1.0996(39)
1.367(23) | 1.428(32) | 1.677(9)

Table 17. Comparison of glueball effective energies from ¢ = 2a and flux tube energies (1) obtained
on 12316, 14316 and 20%16 lattices at 3 = 2.427 in SU(2). Unmatched states are ditorelons. Glueballs
labelled by representation of cubic rotation symmetry R and parity P. Fundamental flux tube
energies, lp—1, are ground and first excited states.

— 61 —



aFe(t = 2a) : SU(12) at 5 =103.03
RPC | 12%20 | 14%20 || RPO[ 12820 [ 14%20
ATT | 0.6434(32) | 0.6499(50) || Ay | 1.079(8) | 1.097(12)
1.190(9) | 1.200(14) 1.567(22) | 1.591(33)
1.495(19) | 1.579(25) 1.859(38) | 2.037(91)
1.604(26) | 1.585(33)
1.660(26) | 1.687(43)
AFT | 1.629(30) | 1.639(39) || Ay T | 2.14(10) | 2.21(11)
1.91(5) 2.11(10) 2.20(9) | 2.30(13)
Ett | 1.021(5) 1.026(7) || E~F | 1.346(10) | 1.355(15)
1.429(14) | 1.464(16) 1.723(21) | 1.747(32)
1.610(19) | 1.632(28) 2.105(33) | 2.178(74)
T | 1.635(17) | 1.692(21) || 77 | 1.865(21) | 1.885(39)
1.712(19) | 1.776(26) 1.945(30) | 1.930(36)
2.090(32) | 2.062(47) 2.012(28) | 2.026(49)
T,rT | 1.040(4) 1.031(7) || T, 7 | 1.357(8) | 1.366(12)
1.465(9) | 1.473(16) 1.730(16) | 1.748(23)
1.597(14) | 1.659(21) 1.891(26) | 1.905(44)
1.652(14) | 1.676(25) 1.932(29) | 1.975(40)
AT~ | 2.001(52) | 2.06(11) || A7~ | 2.18(8) | 2.09(11)
2.12(8) 2.23(13) 2.23(10) | 2.30(12)
AT | 1.564(22) | 1.603(30) || Ay~ | 1.932(52) | 2.026(70)
1.823(36) | 1.882(53) 2.209(85) | 2.33(17)
1.97(8) 2.19(10)
Et= | 1.903(29) | 2.011(43) || E~— | 1.682(17) | 1.677(30)
2.140(51) | 2.044(70) 2.053(44) | 2.087(54)
2.11(5) 2.26(9)
T | 1.269(6) 1.268(8) || 77~ | 1.696(18) | 1.693(22)
1.543(12) | 1.546(16) 1.921(25) | 1.897(44)
1.678(16) | 1.690(18) 1.976(33) | 2.023(45)
1.850(21) | 1.880(27) 2.21(6) 2.18(6)
T~ | 1.534(13) | 1.541(15) || T, ~ | 1.719(20) | 1.766(27)
1.878(24) | 1.870(27) 1.893(29) | 1.935(31)
1.850(22) | 1.896(36) 2.014(32) | 2.035(37)
1.988(32) | 1.987(43) 2.19(5) 2.19(6)
| =1 | 0.4812(13) | 0.5993(40) || ly—s | 0.935(8) | 1.172(18) |

Table 18. Comparison of glueball effective energies from ¢ = 2a and flux tube energies (I1,12)
obtained on 12320 and 14320 lattices at 8 = 103.03 in SU(12). Glueballs labelled by representation of
cubic rotation symmetry R, parity P and charge conjugation C'. Flux tube energies are fundamental,
lkzl, and k = 2, lkzg.
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aFeg(t = 2a) : SU(12) at 3 = 103.03
RPC 12320 14320
bl=1-4 bl=1-5 | bl=1-4 bl=1-5
AT 0.6434(32) 0.6432(32) | 0.6499(50) 0.6497(50)
1.172(10)
1.190(9) 1.179(14) | 1.200(14)  1.200(14)
1.424(23)
1.462(20) 1.495(19) | 1.588(23)  1.433(29)
1.604(26) 1.601(29) | 1.585(33)  1.571(35)
1.660(26) 1.666(30) | 1.687(43)  1.659(40)
1.753(25) 1.780(31) | 1.786(54)  1.780(52)
E*+ 1.021(5) 1.019(5) 1.026(7) 1.026(7)
1.525(13)[1.01(14)]  1.118(7)
1.273(20)
1.429(14) 1,373(12) | 1.464(16)  1.446(16)
1.610(19) 1.610(18) | 1.635(29)  1.632(28)
1.657(19) 1.650(18) | 1.663(24)  1.666(25)

Table 19. Comparison of A} and E** glueball effective energies from ¢ = 2a obtained on 12320
and 14320 lattices at 8 = 103.03 in SU(12). Using operators up to blocking levels 4 and 5 respectively,

as shown.

Table 20. Number of operators in rotational representation, R, with parity, P, and charge
conjugation, C, as used in our various SU(N) calculations, at each blocking level. Some numbers

number of operators: N € [4,12]
R | P=+4,C=+ | P=-C=+ | P=+,C=- | P=-,C=-
Ay 12 7 6 8
As 7 5 7 7
E 36 24 24 30
T 48 54 66 51
T, 60 60 60 54
number of operators: N = 2,3
R | P=+,C=+ | P=-,C=+ | P=+,C=- | P=-,C=-
Ay 27 9 8 11
Ao 14 6 13 11
E 80 30 40 44
T 78 84(75) 132 81
T, 108 96(87) 108 84

for SU(2) differ from SU(3) and are in brackets; also no C' = — for SU(2).
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operator loops

loop RPC
{2,3,-2-3} AT BT
M
{1,2,2-1-2,-2} AT AT BT
T, Ty
{1,2,3,-1,-2,-3} AT T
Ay T
{1’3’2,_3’_1,_2} A1++,E++,T2++,Tf+,TE+

T T AT BT T,
{1,2,2,-1,3,-2,-3,-2} AT AT BT T T AT AT BT T T, T
AT AT BT T T AT AT BT T T Ty

{1,3,-1,-3,-1,-2,1,2} AT BN T T AT B T T,
A BT T T AT BT T Ty
{1,2,3,-1,-3,-3,-2,3} AT BT T T AT B T T,

A BT T T T AT BT T Ty
{1,3,1,2,-3-1,-1,-2} | AT AF T EY It T AT AT B T T,
Al AT BT T T T AT AT BT T T Ty
{1,2,2,2-1,3,-2,-3-2-2} | AT, AJ T EXH T T AT AT B T Ty
Al AT BT T T T AT AT BT T T Ty
{1,2,2,2-1,-2,3,-2,-3 -2} AT AT BT T T T Ty

T Ty AT AT BT T T Ty
{-3,1,3,1,2-3-1,3-1-2} | AT, AJ T B+ T T AT AT B T Ty
Af AT BT T TS AT AT BT T T Ty
{-3,1,3,1,23-1,-3-2-1} | AT, AJ T EXH T TS0 AT AT B H 101 Ty
AT AT BT T T T T AT AT BT T Ty

Table 21. The 12 loops used as the basis of our glueball calculations for N > 4. These generate
contributions to the representations as shown.
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SU(8) : aMg
RFC | B=4410 | B=4485 | 3=4550 | B =46.10 | 3 =46.70 | B =47.75
8316 10%16 12320 14320 16324 20230
AT | 0.8246(66) | 0.7461(53) | 0.6409(38) | 0.5617(43) | 0.4909(43) | 0.4075(28)
1.615(26) | 1.191(50) | 1.112(37) | 1.081(22) | 0.930(13) | 0.755(10)
2.01(6) 1.764(39) 1.42(9) 1.252(41) | 1.146(27) | 0.936(18)

AT 2.42(11) 1.828(46) | 1.615(25) | 1.408(26) | 1.180(27) | 0.969(16)
ETT | 1.504(13) 1.184(8) | 1.0063(51) | 0.8813(48) | 0.7676(67) | 0.6192(69)

2.145(41) | 1.689(18) | 1.442(11) | 1.299(34) | 1.070(16) 0.831(8)
1.855(28) | 1.579(15) | 1.393(13) | 1.184(22) | 0.954(11)

Tt 2.50(8) 1.970(29) | 1.517(27) | 1.397(40) | 1.204(21) 0.982(7)
1.932(29) | 1.536(90) | 1,392(43) | 1.238(29) | 0.996(10)
VNS 1.536(12) | 1.191(22) | 1.033(10) | 0.8795(58) | 0.7725(64) | 0.6195(22)
2.092(41) | 1.689(15) | 1.428(39) | 1.188(21) | 1.101(12) | 0.870(16)

2.41(8) 1.875(28) | 1.621(76) | 1.357(34) | 1.162(14) 0.963(8)

1.889(30) 1.52(8) 1.344(35) | 1.201(18) | 0.975(24)
A7t | 1.618(33) | 1.256(13) | 1.009(20) | 0.902(17) | 0.8021(95) | 0.6365(81)
2.21(10) 1.75(5) 1.42(8) 1.23(5) 1.074(82) | 0.963(35)

Ayt 2.27(13) 2.07(6) 1.857(38) | 1.588(32) | 1.257(33)
E-T | 1.994(56) | 1.573(17) | 1.295(41) | 1.131(21) | 1.013(11) | 0.8082(65)
2.72(14) 2.019(54) | 1.734(20) | 1.498(14) 1.320(9) 1.101(15)

" 2.29(15) 1.844(23) | 1.571(65) | 1.324(32) | 1.108(11)
c 1.990(24) | 1.639(12) | 1.447(39) | 1.142(18)
T, 7 | 1.959(26) 1.47(5) 1.271(24) | 1.146(16) | 0.982(10) | 0.807(10)
2.62(11) 2.043(43) | 1.741(18) | 1.506(11) | 1.298(25) | 1.065(11)

A~ 2.47(16) 2.103(73) | 1.831(40) | 1.552(19) | 1.209(32)
A~ 2.25(10) 1.834(37) | 1.529(18) | 1.275(44) | 1.176(26) | 0.928(13)
ET- 2.196(52) | 1.921(33) | 1.659(26) | 1.463(38) | 1.117(18)
T | 1.898(26) | 1.510(12) 1.281(7) 1.102(6) | 0.9556(82) | 0.7706(46)
2.23(6) 1.812(27) | 1.539(13) 1.328(6) | 1.1724(41) | 0.9269(78)

1.914(21) | 1.648(14) | 1.437(10) | 1.221(16) 0.980(8)

T 2.33(6) 1.781(21) | 1.544(15) | 1.294(30) | 1.133(14) 0.922(7)
2.53(12) 2.237(46) | 1.811(22) 1.50(6) 1.327(32) | 1.093(15)

2.53(10) 2.265(50) | 1.815(20) | 1,618(18) | 1.343(33) | 1.119(13)

AT™ 2.62(18) 2.05(7) 1.888(35) | 1.633(23) | 1.254(36)
Ay~ 2.22(10) 1.94(6) 1.74(17) 1.368(67) | 1.114(24)
E~~ 2.42(9) 2.012(40) | 1.663(19) | 1.441(11) | 1.250(31) | 1.009(14)
7~ 2.55(9) 1.906(30) | 1.564(69) | 1.414(42) | 1.186(22) | 0.974(29)
Ty~ 2.48(7) 1.981(32) | 1.709(16) | 1.473(10) | 1.2920(56 1.037(9)

2.24(5) 1.896(22) | 1.601(13) | 1.4108(81) | 1.109(14)

(56)
(81)
aB; | 0.7067(33) | 0.5506(21) | 0.4778(24) | 0.4204(20) | 0.3674(20) | 0.2943(14)
aBy—s | 1.268(20) | 0.9948(85) | 0.8716(61) | 0.7923(69) | 0.6735(46) | 0.5483(29)

Table 22. SU(8) lattice glueball masses for all RPC representations, with the fundamental, ally,
and k = 2, aFE—2, flux tube energies.
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SU(2): Mg/+/o continuum limit
R [ P=1,C=+ | P=C—1t
A | 3.781(23) | 6.017(61)

6.126(38) 8.00(15)
7.54(10)

Ay | 7.77(18) 9.50(18)*
8.56(21)

E | 5.343(30) 7.037(67)
6.967(62) 8.574(83)

7.722(82) 9.58(16)

Ty | 8.14(10) 9.06(13)
8.46(12) 9.40(13)
9.67(9) 9.83(16)

T, | 5.353(23) 6.997(65)
7.218(52) 8.463(86)
8.23(10) 9.47(10)

Table 23. SU(2) continuum limit of glueball masses in units of the string tension, for all represen-
tations, R, of the rotation symmetry of a cube, for both values of parity, P. Ground states and
some excited states. Stars indicate poor fits (see text).
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SU(3): M¢g/+/o continuum limit

R | P=+,C=+ | P=-C=+ | P=+,C=- | P=,C=-

Ay | 3.405(21) | 5.276(45) | 9.32(28) | 9.93(49)
5.855(41) | 7.29(13) 10.03(47)
7.38(11) | 9.18(26)

7.515(50) | 9.37(22)

Ay | 7.705(85) | 9.80(22) | 7.384(90) | 8.96(15)

8.61(20) | 11.17(30) | 8.94(10) | 10.21(20)
8.90(21)

E | 4.904(20) | 6.211(56) | 8.77(12) | 7.91(10)

6.728(47) | 8.23(9) | 9.03(23) | 9.39(18)
7.49(9) | 9.47(16) | 10.39(21) | 10.40(22)
7.531(60)

Ty | 7.698(80) | 8.48(12) | 6.065(40) | 8.31(10)
7.72(11 8.57(13) | 7.21(8) | 9.30(14)**
9.31(11)* | 8.66(15) | 7.824(56) | 9.72(15)

9.56(28) | 8.92(10)

Ty | 4.884(19) | 6.393(45) | 7.220(86) | 8.198(80)

6.814(31) | 8.15(7) | 8.72(11) | 8.99(11)*
7.716(70)* | 9.23(12)* | 9.060(80) | 9.69(13)
7.677(71)

Table 24. SU(3) continuum limit of glueball masses in units of the string tension, for all represen-
tations, R, of the rotation symmetry of a cube, for both values of parity, P, and charge conjugation,

C. Ground states and some excited states. Stars indicate poor fits (see text).
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SU(4): Mg/+/o continuum limit

R | P=+4,C=+ | P=-C=+ | P=4,C=- | P=-,C=

Ay | 3.271(27) | 5.020(46) | 9.22(22)* | 10.27(28)
5.827(62) | 7.33(11) | 10.43(21) | 9.95(29)
7.50(11) | 8.98(23)

7.73(8)

Ay | 7.32(12) | 9.67(19) | 6.87(26) | 8.89(13)

8.42(22) | 10.69(45)* | 8.66(16) | 10.99(35)
9.57(19)

E | 4721(27) | 6.130(52) | 8.73(20) | 7.80(11)
6.702(45) | 7.91(13) | 9.28(19) | 9.55(13)*
7.271(86) | 9.13(22) | 9.58(20) | 10.06(26)
7.586(84)

Ty | 7.42(12) | 847(11) | 5.956(42) | 7.603(84)
7.5009) | 8.59(16) | T.11(8) | 8.92(12)*
9.10(18) | 8.62(17)** | 7.508(74) | 9.86(22)
9.54(23) 8.91(13)

Ty | 4.750(16) | 6.203(33) | 7.010(68) | 7.787(96)
6.687(51) | 8.05(10)* | 8.53(11) | 8.42(14)
7.411(81) | 8.25(16) | 8.86(8) | 9.80(17)
7.492(68) 8.94(20)

Table 25. SU(4) continuum limit of glueball masses in units of the string tension, for all represen-
tations, R, of the rotation symmetry of a cube, for both values of parity, P, and charge conjugation,

C. Ground states and some excited states. Stars indicate poor fits (see text).
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SU(5): Mg/+/o continuum limit

R | P=+,C=+ | P=—,C=+ | P=4,C— | P=,0—

A7 | 3.156(31) | 4.832(40) | 9.04(22) | 10.36(18)
5.680(53) | 7.38(11) | 9.48(30) | 9.70(36)
7.36(14) | 8.03(30)*

7.53(14)

A | 7.31(14) | 9.80(20) | 7.333(59) | 8.05(23)
8.85(32) | 9.93(57) | 8.75(19) | 11.03(37)

E | 4.692(22) | 6.152(60) | 8.54(19) | 8.000(51)
6.500(62) | 8.19(23) | 9.45(18) | 9.02(22)
7.31(10) | 9.51(17) | 9.53(20) | 10.22(13)**
7.28(10)

T. | 7.396(73) | 8.29(13) | 5.915(45) | 7.62(15)
719(12) | 856(15) | 7.018(62) | 8.53(17)**
8.99(22) | 8.59(16) | 7.624(74) | 9.91(26)

8.36(14)

Tp | 4.686(30) | 6.208(47) | 7.051(72) | 7.87(11)
6.621(55) | 7.97(11) | 8.28(15)* | 8.52(9)
7.338(84) | 8.45(16) | 8.44(16) | 10.17(9)*
7.53(10) 9.18(13)

Table 26. SU(5) continuum limit of glueball masses in units of the string tension, for all represen-
tations, R, of the rotation symmetry of a cube, for both values of parity, P, and charge conjugation,

C'. Ground states and some excited states. Stars indicate poor fits (see text).
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SU(6): Mg/+/o continuum limit

R | P=+,C=+ | P=-,C=+ | P=+,C= | P=-,C=

A; | 3.102(32) | 4.967(43) | 9.37(22) | 10.46(17)
6.020(57) | 7.14(13) | 10.58(21) | 10.53(20)**
751(12) | 8.72(31)

7.59(13)*

Ay | T46(13) | 9.37(25) | 7.169(96) | S8.71(16)*

0.58(24) | 10.48(43) | 9.00(11) | 10.87(38)
9.12(20)

E | 4.706(30) | 6.098(55) | 8.80(11) | 8.106(50)
6.43(11) | 7.93(15) | 8.95(17) | 9.48(33)
7.06(13) | 9.58(19) | 9.34(19) | 9.88(11)
7.19(17)

Ty | 7.435(30) | 8.405(88) | 5.847(43) | 7.41(13)
7.57(10) | 8.75(11) | 7.066(80) | 8.90(11)
9.17(19) | 9.23(11)* | 7.552(85) | 9.86(26)*

8.46(11)

Ty | 4.649(28) | 6.157(50) | 6.997(80) | 7.64(14)
6.577(71) | 7.92(14) | 8.20(19) | 8.51(9)
7.180(72) | 8.25(11)* | 8.864(61) | 10.20(9)
7.02(10)* 9.15(11)

Table 27. SU(6) continuum limit of glueball masses in units of the string tension, for all represen-
tations, R, of the rotation symmetry of a cube, for both values of parity, P, and charge conjugation,

C. Ground states and some excited states. Stars indicate poor fits (see text).
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SU(8): Mg/+/o continuum limit

R | P=+C=+ | P= C=+ | P=+,C= | P=C=

A | 3.099(26) | 4.755(58) | 8.97(31) | 9.69(35)
5.87(7) | 6.90(24) | 10.06(24) | 9.50(39)
718(13) | 8.25(26)

7.61(7)

A | 7.28(14) | 9.80(29) | 7.00(12) | 8.26(28)

9.06(34) | 11.28(25) | 8.60(18) | 11.40(23)
8.87(48)

E | 4.658(32) | 6.091(59) | 8.53(19) | 7.60(11)
6.32(7)" | 8.23(13) | 8.94(24)™ | 9.18(25)
726(11) | 9.46(24) | 8.81(35) | 9.57(29)

T, | 7.318(74) | 8.24(15) | 5.801(38) | 7.09(17)
751(11) | 8.60(27) | 7.089(55) | 8.35(18)
0.21(22) | 8.46(22) | 7.43(9)* | 9.60(25)
9.21(25) 8.43(12)

Ty | 4.661(21) | 5.995(61) | 6.908(67) | 7.863(66)
6.509(84) | 8.00(11) | 8.01(16) | 8.31(12)
7.16(8) | 8.38(16) | 8.51(12)* | 9.40(24)
7.23(16) 8.92(15)

Table 28. SU(8) continuum limit of glueball masses in units of the string tension, for all represen-
tations, R, of the rotation symmetry of a cube, for both values of parity, P, and charge conjugation,

C'. Ground states and some excited states. Stars indicate poor fits (see text).
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SU(10): Mg/+/o continuum limit

R | P=f.O—1 | P=—.C— | P=4.C— | P=—,C—

A | 3.102(37) | 4.835(60) | 8.92(37) | 10.04(36)
5.99(13) | 7.03(14) | 8.73(60) | 9.79(55)
7.15(17) | 8.90(68)

7.87(13)

Ay | 7.20(18) | 8.99(35) | 6.78(15) | 9.06(44)

8.35(50) | 11.74(70) | 7.83(44) | 10.70(70)
8.29(103)?

E | 4587(27) | 6.12(10) | 8.64(20) | 7.60(14)
6.49(9) | 8.03(12) | 9.04(30) | 9.59(33)
7.34(12) | 9.36(46) | 9.05(30) | 9.92(22)

Ty | 7.14(17) | 8.49(28) | 5.776(41) | 7.27(17)
7.84(27) | 8.11(62) | 7.039(62) | 9.00(24)*

9.32(18)** | 9.53(100)* | 7.79(13) | 10.17(52)
9.69(22)** 8.75(21)*

T | 4.600(30) | 5.94(8) | 7.071(55) | 7.89(16)
6.638(82) | 7.52(17) | 7.60(24) | 7.82(26)*
7.00(18) | 7.88(30)* | 8.60(13) | 9.26(36)
7.19(22) 8.77(28)

Table 29. SU(10) continuum limit of glueball masses in units of the string tension, for all
representations, R, of the rotation symmetry of a cube, for both values of parity, P, and charge
conjugation, C'. Ground states and some excited states. Stars indicate poor fits (see text).
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SU(12): Mg/+/o continuum limit

R | P=+,C=+ | P=-,C=+ | P=+,C= | P=-,C=

A | 3.151(33) | 4.696(65) | 9.63(25) | 9.57(32)
5.914(82) | 6.94(19) | 10.50(51) | 9.90(58)
7.07(18) | 9.56(44)*

7.61(19)

Ay | 7.74(22) | 10.16(26) | 6.49(17) | 9.03(22)

9.64(26) | 12.09(74) | 8.90(22) | 10.66(60)
9.46(46)

E | 4.647(33) | 6.22(10) | 8.52(22) | 7.80(14)
6.613(30) | 8.28(12)* | 9.56(43) | 9.88(20)
7.67(13) 10.24(29)

Ti | 6.64(27) | 8.59(12) | 5.741(60) | 7.50(17)*
7.59(21) 8.95(16) | 7.005(78) 8.83(14)
9.34(18)* | 9.30(30) | 7.48(14) | 9.51(48)

8.80(23)

T | 4.645(33) | 5.97(7) | 6.88(10) | 8.20(13)
6.764(57) | 8.05(15) | 8.16(25) | 8.27(31)*
7.35(15)* | 8.89(22) | 8.48(25) | 10.52(21)*
7.20(19) 8.21(30)

Table 30. SU(12) continuum limit of glueball masses in units of the string tension, for all
representations, R, of the rotation symmetry of a cube, for both values of parity, P, and charge
conjugation, C'. Ground states and some excited states. Stars indicate poor fits (see text).
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SU(c0): Mg/+/o

R | P=+,C=+ | P=C=+ | P=+,C=- | P=,C=

Ay | 3.072(14) | 4.711(25) | 9.26(16) 10.10(18)
5.805(31)* | 7.050(68) 10.14(23)
7.294(63)

Ay | 7.40(12)T | 9.73(12) | 7.142(75)™* | 8.61(13)*
9.14(14)* | 11.12(24) | 8.77(10) 11.38(21)

E | 4.582(14) | 6.108(44) | 8.63(10) | 7.951(53)**
6.494(33)* | 8.051(60) | 9.14(15) 9.55(13)
7.266(50)* 9.84(12)

Ty | 7.250(47) | 8.412(76) | 5.760(25) | 7.134(86)
7.337(60)* | 8.79(10) | 7.020(39) 8.65(9)
9.142(82) | 9.08(12)** | 7.470(55) | 9.81(17)

8.422(84)

T | 4.578(11) | 5.965(28) | 6.957(41) 7.96(8)1
6.579(30) | 7.883(57) | 7.93(11) 8.22(8)
7.121(45) | 8.45(14)T | 8.63(7)x | 10.26(10)**
7.122(76)

Table 31. Continuum glueball masses in units of the string tension, in the limit N — oco. Fits are
to N > 2 or N > 3 except for values labelled with a }, and x indicates a poor fit, as explained in
the text. Labels are R for the representations of the rotation symmetry of a cube, P for parity and
C for charge conjugation.

continuum J ~ cubic R
J cubic R
0 ~ Aq
1 ~ T
2 ~ E+1T5
3 ~ Ay +Th + 15
4 ~ A+ E+Ti+ T
5 ~ E+2T1+ Ty
6 ~ Ai+A+E+T+20
7T o~ Ao+ E+ 2T + 275
8 ~ A1+2E+2T1—|-2T2

Table 32. Projection of continuum spin J states onto the cubic representations R.
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continuum J¢ from cubic R
Jre cubic RF¢
0FTgs ~ A Tgs
0FFtexl ~ AfTex1
2TTgs  ~ Ettegs + Ty tgs
2Ftexl ~ EtFexl 4+ Ty Texl
Jttgs  ~F* A Tes + Ty Tes(ex1) + Ty Tex3(ex2)
4ttes  ~* AfTex2 + Ettex2 +T7 Texl(gs) + Ty Tex2(ex3)
0" Fgs ~ AT Tgs
0~ Fexl ~ A7 Tex1
27tgs  ~ E~tgs + Ty Tgs
27 Fexl ~ E~Texl + T, Texl
17 Tgs ~ T Tes
2T gs ~ Et=gs + Ty "ex2
1t7gs ~ T gs
1T exl ~ T~ ex2
3t~gs  ~ A gs + Ti exl + Ty gs
277gs o~ E~7gs + T, " gs
177gs  ~ T " gs

Table 33. Identification of continuum J¥¢ states from the results for the cubic representations in
tables 23-31. Ground state denoted by gs, i’th excited state by exi. Where there is some ambiguity,
a single star denotes ‘likely’ while two stars indicate ‘significant uncertainty’.

— 75 —



M(JPC)/\/o continuum limit

Jre SU(2) SU(3) SU(4) SU(5)

0FF gs | 3.781(23) | 3.405(21) | 3.271(27) | 3.156(31)
0+F ex1 | 6.126(38) | 5.855(41) | 5.827(62) | 5.689(53)
27+ gs | 5.349(20) | 4.894(22) | 4.742(15) | 4.690(20)
2+ + ex1 | 7.22(6)F | 6.788(40) | 6.694(40) | 6.607(45)
3P+t gs | 8.13(8)* | 7.71(9)* 7.29(9)

4+ gs 7.60(12)* | 7.36(9)* | 7.41(10)
0~F gs | 6.017(61) | 5.276(45) | 5.020(46) | 4.832(40)
0" exl | 8.00(15) | 7.29(13) | 7.33(11) | 7.38(11)
2=t gs | 7.017(50) | 6.32(9) | 6.182(33) | 6.187(50)
2= % ex1 | 8.521(65) | 8.18(8) | 7.91(13)* | 8.02(11)
17" gs | 9.06(13) | 8.48(12) | 8.47(11) | 8.29(13)
2+~ gs 8.91(15) | 8.84(11) | 8.49(15)
1t~ gs 6.065(40) | 5.956(42) | 5.915(45)
1t~ exl 7.82(6) 7.51(8) 7.62(8)

3t~ gs 7.27(12) | 7.03(7) 7.13(7)

27" gs 8.08(15) | 7.79(9) 7.97(6)

17~ gs 8.31(10) | 7.60(9) | 7.62(15)

Table 34. Continuum limit of glueball masses, in units of the string tension, for those J¢
representations we can identify. Ground state denoted by gs, i’th excited state by exi. Stars

explained in text.

— 76 —




M(J*Y)/\/o continuum limit
Jre SU(6) SU(8) SU(10) SU(12)
0T gs | 3.102(32) | 3.099(26) | 3.102(37) | 3.151(33)
0T+ ex1 | 6.020(57) | 5.87(7) | 5.99(13) | 5.914(82)
21+ gs | 4.678(30) | 4.660(20) | 4.594(25) | 4.646(30)
2t ex1 | 6.54(7) | 6.60(9)* | 6.57(9) | 6.71(6)
3T+ gs | 7.44(8)" | 7.34(11)* | 7.14(18)
AT gs 7.20(7)* | 7.32(15)
0~ gs | 4.967(43) | 4.755(58) | 4.835(60) | 4.696(65)
0~texl | 7.14(13) | 6.90(24) | 7.03(14) | 6.94(19)
2T gs | 6.148(50) | 6.043(55) | 6.01(8) | 6.05(7)
2=t ex1 | 7.92(14) | 8.10(11) | 7.86(12)* | 8.16(15)
1=t gs | 8.41(9) | 8.24(15) | 8.49(28) | 8.59(12)
2t~ gs | 8.83(9) | 8.52(12) | 8.62(12) | 8.50(17)
17~ gs | 5.847(43) | 5.801(38) | 5.776(41) | 5.741(60)
17~ ex1 | 7.55(9) | 7.43(9)* | 7.79(13) | 7.48(14)
3t~ gs | 7.067(70) | 6.999(70) | 7.035(50) | 6.89(10)
27" gs | 8.05(5)* | 7.78(7) | 7.74(15) | 8.00(15)
17~ gs | 7.41(13) | 7.09(17) | 7.27(17) | 7.50(17)

Table 35. Continuum limit of glueball masses, in units of the string tension, for those J¢
representations we can identify. Ground state denoted by gs, i’th excited state by exi. Stars

explained in text.

Table 36. Lower bounds on masses of some of the low-J ground states not appearing in tables 34, 35.

M(JFC)/\/o lower bounds

1+t

3—t

0t

2+-

0—

3——

>90 >97 >92 >86 >100 >86
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Mg GeV SU(3)
J P=+,C=+ | P=-,C=+ | P=+,C= | P=-,C=-
Ogs | 1.653(26) | 2.561(40) | > 4.52(15) | > 4.81(24)
0exl | 2.842(40) | 3.54(8)
2gs | 2.376(32) | 3.07(6) 4.24(8)% | 3.92(9)
2 ex1 | 3.30(5) 3.97(7) > 4.38(13) | > 4.55(11)
lgs | >4.52(6) | 4.12(8) 2.044(42) | 4.03(7)
1 exl 4.16(8)* | 3.80(6) > 4.51(9)
1 ex2 4.20(9)*
3gs | 3.74(T)* | >4.75(13) | 3.53(8) > 4.35(9)
Ags | 3.60(8)% | >4.45(14) | 4.38(8)* | > 4.81(24)

Table 37. Continuum limit of SU(3) glueball masses, in physical GeV units for those JF¢
representations we can identify, with lower bounds in those cases where this is not possible. Ground
state denoted by gs, first excited state by ex. Stars denote ambiguity.

M;/+/o ; SU(c0)

J | P=4,C=+ [ P=-C=+ | P=4,C= | P=-C=
0gs | 3.072(14) | 4.711(26) | >9.26(16) | > 10.10(18)
0ex | 5.845(50) | 7.050(68)
2.gs | 4.599(14) | 6.031(38) | 8.566(76) | 7.910(56)
2 ex | 6.582(36) | 7.936(54) | >9.14(15) | > 9.55(13)
1gs | >09.14(9) | 8.415(76) | 5.760(25) | 7.26(11)

1 ex 7.473(57) | > 8.65(9)
3gs | 7.263(56) | >9.73(12) | 6.988(41) | >8.61(13)
4gs | 7.182(71) | >8.79(10) | >9.26(16) | > 10.10(18)

Table 38. Large N extrapolation of continuum glueball masses, in units of the string tension,
for those JPC representations we can identify, with lower bounds in those cases where this is not
possible. Ground state denoted by gs, first excited state by ex.

M/+/o ; continuum SU(3)
paper ot+ AN 0+ 2=+ 1t 3t 27~
this work | 3.405(21) | 4.894(22) | 5.276(45) | 6.32(9) | 6.065(40) | 7.27(12) | 8.08(15)
2005: ref. [9] | 3.347(68) | 4.891(65) | 5.11(14) | 6.32(11) | 6.06(15) | 7.43(20) | 8.32(29)
2005: ref. [10]* | 3.59(15) | 5.03(11) | 5.39(11) | 6.40(14) | 6.27(11) | 7.58(12) | 8.42(14)
2004: ref. [2] 3.55(7) 4.78(9)
2001: ref. [1] | 3.61(9) | 5.13(22)

Table 39. Some glueball masses in units of the string tension in the continuum limit of the SU(3)
gauge theory: a comparison between this work and some earlier work. The starred calculation
includes our tansformation of the units from the Sommer scale to the string tension.
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M/+/o ; continuum SU(8)
o+t 2t++ ot 92—t 1+ 3t+- 2——

paper
this work | 3.099(26) | 4.660(20) | 4.755(58) | 6.043(55) | 5.801(38) | 7.00(7) | 7.78(7)
2005: ref. [9] | 3.32(15) | 4.65(19) | 4.72(32) | 5.67(40) | 5.70(29) | 7.74(79) | 7.3(1.4)
2004: ref. [2] | 3.55(12) | 4.73(22)

Table 40. Some glueball masses in units of the string tension in the continuum limit of the SU(8)
gauge theory: a comparison between this work and some earlier work.

Qr(ne) : SUMB), Q =2

B =45.50,12320 | B =46.70,16324 | B = 47.75,20330
ne | Qr oq, | QL oq, | QL oQ,
0 | 0.275(21) 0.836 | 0.333(23) 1.282 | 0.410(35) 1.956
1| 1.199(6) 0.202 | 1.286(5)  0.265 | 1.345(7)  0.351
2 | 1.575(3)  0.070 | 1.631(2)  0.082 | 1.665(3)  0.103
3 [ 1.699(2)  0.041 | 1.7465(7) 0.044 | 1.7743(9) 0.053
4 | 1.7576(7) 0.030 | 1.8005(6) 0.030 | 1.8254(6) 0.035
8 | 1.8437(3) 0.016 | 1.8781(3) 0.014 | 1.8970(2) 0.014
12 | 1.8744(3) 0.013 | 1.9046(2) 0.010 | 1.9212(1) 0.009
16 | 1.8912(3) 0.011 | 1.9186(2) 0.008 | 1.9339(1) 0.007
20 | 1.9021(3) 0.010 | 1.9275(1) 0.007 | 1.9418(1) 0.006

Table 41. Lattice topological charge @)1, as function of number of cooling sweeps, n., for fields
which have @ ~ 2 after 20 cooling sweeps: the average value, with error, and standard deviation.
For small, intermediate and large 3, in SU(8), all with similar volumes in physical units.
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topology tunnelling time

B Q 7Q B Q Q
SU(3) SU(4)
6.235 100(2) 112(2) 11.20 499(9) 520(9)
6.338 247(6) 283(6) 11.40 2173(42) 2275(45)
6.50 1056(44) 1236(50) 11.60  12674(636) 13371(690)
6.60 3399(188) 3731(190)
6.70 7973(674) 8973(744)
SU(5) SU(6)
17.22 189(4) 196(4) 25.05 1158(31) 1177(31)
17.43 695(13) 721(13) 25.32 5992(262) 6105(272)
17.63 2686(90) 2749(93) 25.55 23.6(1.8) x 103  24.4(1.8) x 103

18.04  35.7(3.7) x 103 37.0(3.7) x 103 | 26.22  1.43(99) x 10°  1.43(99) x 10°
18.375  40(17) x 10* 44(19) x 10*
SU(8)

44.10 514(10) 528(10)

44.85  26.3(3.5) x 103 26.3(3.5) x 103

45.50  7.1(3.5) x 10°  7.1(3.5) x 10°

45.50  12.5(5.1) x 105 12.5(5.1) x 10°
SU(10) SU(12)

69.20 4793(211) 4831(214) 99.86 4.83(58) x 10*  4.83(58) x 10*

Table 42. Average number of sweeps, 7, between AQ = £1 changes normalised to a standard
space-time volume of (3/,/0)%, with 7¢ including a correction for ‘near-dislocations’

In{rg} =b—c(N)In{a\/o}
N c 11N/3 -5
3| 6.82(7) 6.0
4 | 9.27(12) 9.66
5 | 11.13(20) 13.33
6

8

13.50(30) 17.0
17.58(43) 24.33

Table 43. Fitted values of ¢(N) from figure 27 compared to the asymptotic dilute gas prediction in
eq. (6.5).
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Table 44. Average values of 2, after 20 cooling sweeps, in SU(2) for various values of 3 and lattice

SU(2) topology
B | lattice | (Q7) (Q7)

2.2986 | 8316 | 2.266(9) | 3.057(12)
12316 | 7.694(42) | 9.600(49)

2.3714 | 10%16 | 2.705(9) | 3.544(12)
14316 | 7.343(61) | 9.220(77)

2427 | 12316 | 2.824(7) | 3.551(8)
16 | 6.635(56) | 8.066(64)

20316 | 13.09(19) | 15.41(22)

24316 | 22.56(20) | 26.18(23)

2.509 | 16320 | 3.411(13) | 4.067(16)
22320 | 8.822(58) | 10.137(65)

2.60 | 22330 | 4.491(31) | 5.109(33)
301 | 11.48(10) | 12.65(12)

2.65 | 26334 | 4.702(41) | 5.268(45)
2.70 | 28340 | 3.786(36) | 4.181(39)
40 | 11.07(14) | 12.09(14)

2.75 | 34346 | 4.328(88) | 4.711(94)

2.80 | 40354 | 4.43(12) | 4.76(12)

sizes. @ is the projection of @y, to an integer value.

SU(3) topology SU(4) topology
g | lattice | (Q7) (Q7 g | lattice | (Q7) (@Q7)

5.6024 | 8316 | 4.034(21) | 5.452(29) || 10.70 | 12316 | 5.813(37) | 7.084(48)
5.80 | 10316 | 4.021(13) | 5.111(16) || 10.85 | 14320 | 5.718(45) | 6.674(53)
5.8041 | 12316 | 3.570(35) | 4.352(43) || 11.02 | 18320 | 6.010(95) | 6.78(11)
5.99 | 14320 | 3.790(48) | 4.428(56) || 11.20 | 22* | 5.97(33) | 6.57(36)
6.0625 | 14320 | 2.312(22) | 2.649(26) || 11.40 | 26* | 6.19(67) | 6.68(73)
6.235 | 18326 | 2.32(12) | 2.55(13) || 11.60 | 30* | 5.52(73) | 5.80(78)
6.3380 | 22330 | 2.72(13) | 2.94(14)

6.50 | 26338 | 2.09(20) | 2.23(21)

6.60 | 32340 | 2.60(35) | 2.74(37)

6.70 | 36344 | 1.54(30) | 1.61(31)

Table 45. Average values of Q2 after 20 cooling sweeps, in SU(3) and in SU(4) for the values of 3
and lattices shown. @ is the projection of @7, to an integer value.
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SU(5) topology SU(6) topology

g lattice (Q7) (Q7) lattice | (Q7) (Q7)
16.98 | 10316 | 3.273(25) | 3.906(30) || 24.67 | 10316 | 3.178(45) | 3.747(53)
17.22 | 12316 | 2.682((60) | 3.073(68) || 25.05 | 12316 | 2.50(13) | 2.83(15)
17.43 | 14320 | 2.95(13) | 3.30(14) || 25.32 | 14320 | 2.76(32) | 3.07(35)
17.63 | 16320 | 2.86(31) | 3.15(35) || 25.35 | 14320 | 2.91(60) | 3.24(67)
18.04 | 20324 | 3.44(1.27) | 3.71(1.36) || 25.35 | 18318 | 5.83(78) | 6.48(87)
18.375 | 24330 | 2.21(86) | 2.35(92)

Table 46. Average values of Q%, after 20 cooling sweeps, in SU(5) and in SU(6) for the values of 3

and lattices shown. @7 is the projection of Q)1 to an integer value.

continuum topological susceptibility
group | x;/*/\/o Be g | xi e Be X2 /nay
SU(2) | 0.4773(14)  [2.509,2.75] 0.46 | 0.4857(14)  [2.509,2.75] 0.55
SU(3) | 0.4196(35) [5.8941,6.60] 0.85 | 0.4246(36) [5.8941,6.60] 0.89
SU(4) | 0.3925(25) [10.70,11.60] 0.19 | 0.3964(27) [10.70,11.60] 0.26
SU(5) | 0.3786(59) [16.98,18.375]  0.44 | 0.3818(60) [16.98,18.375]  0.45
SU(6) | 0.386(13)  [24.67,25.35] 0.29 0.390(12)  [24.67,25.35] 0.30
SU(o0) | 0.3655(27) 0.92 | 0.3681(28) 0.93

Table 47. Continuum limit of the topological susceptibility in units of the string tension for the
gauge groups shown; x, is from Q% and x; is from Q7. Fitted range of 3 also shown, as is the
chi-squared per degree of freedom, x?/ns.

(@Qnot) =0, = ZQ(B)Qr
SU(2) SU(3) SU(4) SU(5)

B Zq(B) B Zq(B) B Zq(B) B Zq(B)
2.452 0.1386(23) | 5.6924 0.0646(9) | 10.70 0.0948(14) | 16.98  0.0992(15)
2.65 0.233(12) | 5.80  0.0877(10) | 10.85 0.1146(20) | 17.22  0.1137(20)
270 0.239(17) | 5.99  0.1306(26) | 11.02 0.1347(35) | 17.43  0.1348(26)
2.75  0.258(18) | 6.0625 0.1462(31) | 11.02 0.1397(29) | 17.63  0.1476(31)
2.80  0.239(22) | 6.235  0.1808(54) | 11.20 0.1524(46) | 18.04  0.1587(48)

6.338  0.2044(65) | 11.40 0.1710(66) | 18.375 0.190(11)

6.50  0.231(10) | 11.60 0.184(10)

6.60  0.232(19)

6.70  0.241(28)

Table 48. Multiplicative renormalisation factor, Zg(3), relating the average lattice topological
charge, Qnot, calculated on the rough Monte Carlo fields, and the integer valued topological charge
Q71 calculated after 20 ‘cooling’ sweeps of those fields. For the gauge groups and 3 shown.
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<Qhot>Q=Q1 = ZQ (B)QI
SU(6) SU(8) SU(10) SU(12)

B Zq(B) B Zq(B) B Zq(B) B Zq(B)
24.67 0.0976(20) | 44.10 0.0912(19) | 69.20 0.0930(19) | 99.86  0.0899(17)
25.05 0.1132(29) | 44.85 0.1194(31) | 70.38 0.1165(27) | 101.55 0.1129(26)
925.32  0.1316(40) | 45.50 0.1254(35) | 71.38 0.1283(37) | 103.03 0.1292(33)
25.55 0.1444(56) | 46.10 0.1491(50) | 72.40 0.1525(41) | 104.55 0.1566(46)
26.22  0.1716(75) | 46.70 0.1617(54) | 73.35 0.1731(52) | 105.95 0.1561(66)
26.71 0.170(12) | 47.75 0.1866(88)

Table 49. Multiplicative renormalisation factor, Zg(3), relating the average lattice topological
charge, Qnot, calculated on the rough Monte Carlo fields, and the integer valued topological charge
@ calculated after 20 ‘cooling’ sweeps of those fields. For the gauge groups and S shown.

Z3 =1 — 29°N — 21(¢>°N)?
N 20 21 XQ/ndf
2 | 0.100(30) | 0.023(9) | L.17
3 | 0.162(10) | 0.0425(31) | 0.62
4| 0.156(20) | 0.047(7) | 1.32
5 | 0.203(21) | 0.035(7) | 2.76
6 | 0.205(30) | 0.036(11) | 1.37
8 | 0.187(24) | 0.043(9) | 1.71
10 | 0.141(44) | 0.060(16) | 1.05
12 | 0.182(24) | 0.071(22) | 2.22

Table 50. Interpolating funtions for the multiplicative renormalisation factor, Zg (), for our SU(N)
calculations, with g? N = 2N?/3.
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Figure 1. Effective energies of the ground state of a fundamental k¥ = 1 flux tube winding around a
spatial torus, extracted from the best correlator C(t) between ¢t = an; and ¢t = a(n; + 1). For SU(8)
and at 8 = 44.10,44.85,45.50,46.10,46.70,47.75 in descending order. Lines are our estimates of the
t — oo asymptotic energies. The nearly invisible bands around those lines denote the errors on
those estimates.
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Figure 2. Effective energy of the ground state of a fundamental k£ = 1 flux tube winding around a
spatial torus, as in figure 1, for 8 = 47.75 in SU(8), with a rescaling sufficient to expose the errors.
The solid line is the best estimate from a fit to the correlation function, and the dashed lines show
the £1 standard deviation fits.
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Figure 3. k = 2 string tensions, o, in SU(IV) gauge theories for N =4,5,6,8,10,12 in ascending
order, in units of the £ = 1 fundamental string tension, oy. Lines are extrapolations to the continuum
limits.
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Figure 4. Continuum limit of k£ = 2 string tension, oy, in units of the £ = 1 fundamental string
tension, oy, for our SU(NV) gauge theories. Solid line is the best fit in powers of 1/N and dashed
line is the best fit in powers of 1/N?, with the constraint that the ratio is 2 at N = oo.
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Figure 5. Running (mean-field improved) 't Hooft coupling on the lattice scale a, expressed in units
of the string tension, for SU(2), e, SU(3), o, SU(4), B, SU(5), O, SU(6), 4, SU(8), O, SU(10), A,
SU(12), A. Solid and dashed lines are (improved) perturbative fits to SU(8) and SU(3) respectively.
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Figure 6. Values of the scale parameter Az in units of the string tension in our SU(N) gauge
theories.
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Figure 7. Effective masses for the lightest three AT" (o) and the lightest two AT (o) glueball
states, as well as the main A" ditorelon state (x). Lines are our best glueball mass estimates, with
bands corresponding to +1 standard deviations. All on a 20330 lattice at 3 = 47.75 in SU(8). In the
continuum limit the lightest two glueball states in each sector become the lightest two JF¢ = 0+
and JP¢ = 0=+ glueballs. The ditorelon disappears in the thermodynamic limit.
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Figure 8. Effective mass plot for the ground state A7 ™ () on a 20330 lattice at 3 = 47.75 in SU(8),
as in figure 7, but rescaled so as to expose the errors on the effective masses. The straight line is the
best estimate for the mass obtained by fitting the correlation function, and the two dashed lines
bound the +1 standard deviation error band on this mass.
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Figure 9. Effective masses for the lightest two E+* () and 75" (o) glueballs; the lightest two
E~* (W) and T, " (O) glueballs; the lightest ET~ (¥) and 75"~ (V) glueballs; and the lightest
E~~ (A) and Ty ~ (A) glueballs. The state labelled by * is, mainly, the ET1 ditorelon. Lines are
mass estimates. All on a 20230 lattice at 8 = 47.75 in SU(8). In the continuum limit each of the £
doublets and corresponding 75 triplets will pair up to give the five states of a J = 2 glueball.
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Figure 10. Lightest two glueball masses in the A7 (o), ET+ (#) and T, " (0) sectors, in units of
the string tension. Lines are linear extrapolations to the continuum limit. In that limit the Af+
states become the lightest two JP¢ = 0%+ scalar glueballs while the doublet E+* and triplet 75,
pair up to give the five components of each of the lightest two J'¢ = 2++ glueballs. All in SU(4).
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Figure 11. Lightest two glueball masses in the A; " (o), E~F (#) and T, " () sectors, in units of
the string tension. Lines are linear extrapolations to the continuum limit. In that limit the AIJF
states become the lightest two JP¢ = 0~F pseudoscalar glueballs while the doublet E~~% and
triplet T, © pair up to give the five components of each of the lightest two JFC = 2=F glueballs.
All in SU(4).
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Figure 12. Lightest two glueball masses in the T, ~ (e) representation and the lightest ones in the
T; " (#) and T}~ (Q) representations, in units of the string tension. Lines are linear extrapolations
to the continuum limit. In that limit the T1+ ~ states become the lightest two J¢ = 17~ glueballs
while the other two becomes the 17" and 17~ ground state glueballs. All in SU(4).
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Figure 13. Continuum masses of the lightest (o) and first excited (W) J©¢ = 07+ scalars and of
the lightest (o) and first excited (J) 0~ " pseudoscalars, in units of the string tension. The state
denoted by ¢ is either the 47 ground state or the second excited 07+. With extrapolations from
values in the range N € [2,12] to N = oo.
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Figure 14. Continuum masses of the lightest (o) and first excited (o) J¥¢ = 27+ tensors, the
lightest (M) and first excited ((J) 2~ pseudotensors, the lightest 27~ (%), and the lightest 27~ (#),
all in units of the string tension. With extrapolations to N = oo from N < 12.
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Figure 15. Continuum masses of the lightest (o) and first excited (o) JPC = 11~ glueballs, as well
as the lightest 17F (x) and 17~ (#) glueballs. in units of the string tension, with extrapolations
to N = oo.
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Figure 16. Effective masses for the lightest few glueballs in the ‘scalar’ AiH' representation, for
the single trace operators (o) and for the same set augmented with double trace operators (filled
points), with points shifted for clarity. The extra ‘scattering’ state amongst the latter is shown as ¢.
Horizontal line indicates twice the mass of the lightest glueball. On the 26326 lattice at 5 = 6.235
in SU(3).
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Figure 17. Effective masses for the lightest three states in the ‘scalar’ AT representation, for the
double trace operators. Lower horizontal line indicates the mass of the lightest glueball, and upper
horizontal line indicates twice the mass of the lightest glueball. On the 26326 lattice at 3 = 6.235
in SU(3).
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Figure 18. Effective masses for the lightest few glueballs in the ‘pseudoscalar’ A] T representation,
for the single trace operators (o) and for the same set augmented with double trace operators (filled
points), with points shifted for clarity. The likely extra ‘scattering’ state amongst the latter is shown
as 4. Horizontal line indicates the sum of the lightest AT and A7t glueball masses. On the 26326
lattice at 8 = 6.235 in SU(3).
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Figure 19. Effective masses for the lightest three states in the ‘pseudoscalar’ A7 T representation,
for the double trace operators. Lower horizontal line indicates the mass of the lightest A1_+ glueball,
and upper horizontal line indicates the sum of the masses of the lightest A7" and A] " glueballs.
On the 26326 lattice at 8 = 6.235 in SU(3).
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Figure 20. The number of lattice fields with topological charge Qp, after 2 (o) and after 20 (o)
cooling sweeps, from sequences of SU(5) fields generated at 8 = 17.63. N(Qr) = 0 points suppressed.
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Figure 21. The number of lattice fields with topological charge Qp, after 2 (o) and after 20 (o)
cooling sweeps, from sequences of SU(8) fields generated at 8 = 47.75. N(Qr) = 0 points suppressed.
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Figure 22. The lattice topological charge @1, for two sequences of SU(8) lattice fields, calculated

after 2 (o,0) and 20 (e, M) cooling sweeps. Calculations of @, made every 100 Monte Carlo sweeps
for each sequence of 50000 sweeps, at 3 = 47.75 on a 20230 lattice.
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Figure 23. The lattice topological charge @, for a sequence of SU(5) lattice fields after 2 (o) and

20 (e) cooling sweeps. Calculations of Qp, every 100 Monte Carlo sweeps over a sequence of 50000
sweeps, at 3 = 17.63 on a 16320 lattice.
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Figure 24. The distribution in the topological charge @ as obtained after 2 cooling sweeps, for
fields that after 20 cooling sweeps have topological charges @ =0 (o), @ =1 (W) and @ = 2 (0O).
N(QL) = 0 points suppressed. From the same sequences of SU(8) fields generated at § = 47.75
plotted in figure 21.
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Figure 25. The distribution in the topological charge Q) as obtained after only 1 cooling sweep,
for fields that after 20 cooling sweeps have topological charges @ =0 (o), @ =1 (W) and Q = 2
(). N(Qpr) = 0 points suppressed. From the same sequence of SU(8) fields generated at § = 47.75
plotted in figure 21.
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Figure 26. Correlation length 7o, the average number of sweeps between changes of @) by £1,
measured for the SU(NV) lattice topological charge for a\/o ~ 0.15 (@) and for a\/o ~ 0.33 (o). Lines
are fits 7o = bexp{cN}.
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Figure 27. Variation of 7g, the average number of sweeps between changes of () by %1, against
the lattice spacing and normalised to our standard space-time volume V = (3/y/c)*. For SU(3)
(o), SU(4) (o), SU(5) (M), SU(6) (O), SU(8) (#). The two pairs of points nearly overlapping are
obtained at same a but from different volumes. Lines are fits 7o = b{1/a+/c}°.
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Figure 28. Continuum extrapolations of the topological susceptibility in units of the string tension
for continuum SU(2), o, SU(3), e, SU(4), ¢, and SU(5), ¢, gauge theories.
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Figure 29. Topological susceptibility in units of the string tension for continuum SU(N) gauge
theories with N = 2,3,4,5,6. For integer valued charge, e, and for non-integer lattice charge, o.
Points shifted slightly for clarity. Lines are extrapolations to N = oc.
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Figure 30. Average value of topological charge on lattice fields that have charge @ after 20
cooling sweeps. In SU(8) at § = 44.10, B, 5 = 45.50, o, and 8 = 46.70, e. Slope of fits gives the
renormalisation factor Zg(f).

- 113 -



Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] B. Lucini and M. Teper, SU(N) gauge theories in four-dimensions: Exploring the approach to
N = oo, JHEP 06 (2001) 050 [hep-1at/0103027] [NSPIRE].

[2] B. Lucini, M. Teper and U. Wenger, Glueballs and k-strings in SU(N) gauge theories:
Calculations with improved operators, JHEP 06 (2004) 012 [hep-1at/0404008] [INSPIRE].

[3] B. Lucini, A. Rago and E. Rinaldi, Glueball masses in the large N limit, JHEP 08 (2010) 119
[arXiv:1007.3879] [INSPIRE].

[4] E. Bennett et al., Glueballs and strings in Sp(2N) Yang-Mills theories, Phys. Rev. D 103
(2021) 054509 [arXiv:2010.15781] INSPIRE].

[6] C. Michael and M. Teper, The Glueball Spectrum in SU(3), Nucl. Phys. B 314 (1989) 347
[INSPIRE].

[6] UKQCD collaboration, A Comprehensive lattice study of SU(3) glueballs, Phys. Lett. B 309
(1993) 378 [hep-1at/9304012] [INSPIRE].

[7] C.J. Morningstar and M.J. Peardon, The Glueball spectrum from an anisotropic lattice study,
Phys. Rev. D 60 (1999) 034509 [hep-1at/9901004] [INSPIRE].

[8] H.B. Meyer and M.J. Teper, Glueball Regge trajectories and the Pomeron: A Lattice study,
Phys. Lett. B 605 (2005) 344 [hep-ph/0409183] [INSPIRE].

[9] H.B. Meyer, Glueball Regge trajectories, other thesis, 2004 [hep-1lat/0508002] [INSPIRE].

[10] Y. Chen et al., Glueball spectrum and matriz elements on anisotropic lattices, Phys. Rev. D 73
(2006) 014516 [hep-1at/0510074] [INSPIRE].

[11] A. Athenodorou and M. Teper, The glueball spectrum of SU(3) gauge theory in 3+ 1
dimensions, JHEP 11 (2020) 172 [arXiv:2007.06422] NSPIRE].

[12] M.G. Pérez, A. Gonzalez-Arroyo and M. Okawa, Meson spectrum in the large N limit, JHEP
04 (2021) 230 [arXiv:2011.13061] [INSPIRE].

[13] M. Garcia Pérez, A. Gonzélez-Arroyo, M. Koren and M. Okawa, The spectrum of 2 + 1
dimensional Yang-Mills theory on a twisted spatial torus, JHEP 07 (2018) 169
[arXiv:1807.03481] [INSPIRE].

[14] B. Lucini, M. Teper and U. Wenger, The High temperature phase transition in SU(N) gauge
theories, JHEP 01 (2004) 061 [hep-1at/0307017] [INSPIRE].

[15] B. Lucini, M. Teper and U. Wenger, Properties of the deconfining phase transition in SU(N)
gauge theories, JHEP 02 (2005) 033 [hep-1at/0502003] [INSPIRE].

[16] N. Husung, P. Marquard and R. Sommer, Asymptotic behavior of cutoff effects in Yang-Mills
theory and in Wilson’s lattice QCD, Eur. Phys. J. C' 80 (2020) 200 [arXiv:1912.08498]
[INSPIRE].

[17] M. Teper, An Improved Method for Lattice Glueball Calculations, Phys. Lett. B 183 (1987)

345 [INSPIRE].

- 114 -


https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/1126-6708/2001/06/050
https://arxiv.org/abs/hep-lat/0103027
https://inspirehep.net/search?p=find+EPRINT%2Bhep-lat%2F0103027
https://doi.org/10.1088/1126-6708/2004/06/012
https://arxiv.org/abs/hep-lat/0404008
https://inspirehep.net/search?p=find+EPRINT%2Bhep-lat%2F0404008
https://doi.org/10.1007/JHEP08(2010)119
https://arxiv.org/abs/1007.3879
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1007.3879
https://doi.org/10.1103/PhysRevD.103.054509
https://doi.org/10.1103/PhysRevD.103.054509
https://arxiv.org/abs/2010.15781
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.15781
https://doi.org/10.1016/0550-3213(89)90156-9
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB314%2C347%22
https://doi.org/10.1016/0370-2693(93)90948-H
https://doi.org/10.1016/0370-2693(93)90948-H
https://arxiv.org/abs/hep-lat/9304012
https://inspirehep.net/search?p=find+EPRINT%2Bhep-lat%2F9304012
https://doi.org/10.1103/PhysRevD.60.034509
https://arxiv.org/abs/hep-lat/9901004
https://inspirehep.net/search?p=find+EPRINT%2Bhep-lat%2F9901004
https://doi.org/10.1016/j.physletb.2004.11.036
https://arxiv.org/abs/hep-ph/0409183
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0409183
https://arxiv.org/abs/hep-lat/0508002
https://inspirehep.net/search?p=find+EPRINT%2Bhep-lat%2F0508002
https://doi.org/10.1103/PhysRevD.73.014516
https://doi.org/10.1103/PhysRevD.73.014516
https://arxiv.org/abs/hep-lat/0510074
https://inspirehep.net/search?p=find+EPRINT%2Bhep-lat%2F0510074
https://doi.org/10.1007/JHEP11(2020)172
https://arxiv.org/abs/2007.06422
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.06422
https://doi.org/10.1007/JHEP04(2021)230
https://doi.org/10.1007/JHEP04(2021)230
https://arxiv.org/abs/2011.13061
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.13061
https://doi.org/10.1007/JHEP07(2018)169
https://arxiv.org/abs/1807.03481
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.03481
https://doi.org/10.1088/1126-6708/2004/01/061
https://arxiv.org/abs/hep-lat/0307017
https://inspirehep.net/search?p=find+EPRINT%2Bhep-lat%2F0307017
https://doi.org/10.1088/1126-6708/2005/02/033
https://arxiv.org/abs/hep-lat/0502003
https://inspirehep.net/search?p=find+EPRINT%2Bhep-lat%2F0502003
https://doi.org/10.1140/epjc/s10052-020-7685-4
https://arxiv.org/abs/1912.08498
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.08498
https://doi.org/10.1016/0370-2693(87)90976-2
https://doi.org/10.1016/0370-2693(87)90976-2
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB183%2C345%22

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[29]

[30]

[31]

32]

[33]

[34]

[35]

[36]

[37]

[38]

M. Teper, The Scalar and Tensor Glueball Masses in Lattice Gauge Theory, Phys. Lett. B 185
(1987) 121 [INSPIRE].

M. Liischer, Volume Dependence of the Energy Spectrum in Massive Quantum Field Theories.
1. Stable Particle States, Commun. Math. Phys. 104 (1986) 177 [iNSPIRE].

G. 't Hooft, Computation of the Quantum Effects Due to a Four-Dimensional Pseudoparticle,
Phys. Rev. D 14 (1976) 3432 [Erratum ibid. 18 (1978) 2199] INSPIRE].

S. Coleman, The uses of instantons, in Aspects of Symmetry. Selected Erice Lectures,

chapter 7, pp. 265-350, Cambridge University Press (1985) [DOI].

G. ’t Hooft, A Planar Diagram Theory for Strong Interactions, Nucl. Phys. B 72 (1974) 461
[INSPIRE].

S. Coleman, 1/N, in Aspects of Symmetry. Selected Erice Lectures, chapter 8, pp. 351-402,
Cambridge University Press (1985) [DOI].

E. Witten, Baryons in the 1/n Ezpansion, Nucl. Phys. B 160 (1979) 57 iNnSPIRE].

E. Witten, Instantons, the Quark Model, and the 1/n Ezpansion, Nucl. Phys. B 149 (1979)
285 [INSPIRE].

M.J. Teper, Instantons and the 1/N Ezpansion, Z. Phys. C'5 (1980) 233 [INSPIRE].

L. Del Debbio, H. Panagopoulos, P. Rossi and E. Vicari, k string tensions in SU(N) gauge
theories, Phys. Rev. D 65 (2002) 021501 [hep-th/0106185] [INSPIRE].

E. Witten, Theta dependence in the large N limit of four-dimensional gauge theories, Phys.
Rev. Lett. 81 (1998) 2862 [hep-th/9807109] [INSPIRE].

L. Del Debbio, H. Panagopoulos and E. Vicari, 6 dependence of SU(N) gauge theories, JHEP
08 (2002) 044 [hep-th/0204125] [INSPIRE].

S. Aoki, H. Fukaya, S. Hashimoto and T. Onogi, Finite volume QCD at fixed topological
charge, Phys. Rev. D 76 (2007) 054508 [arXiv:0707.0396] [INSPIRE].

O. Aharony and Z. Komargodski, The Effective Theory of Long Strings, JHEP 05 (2013) 118
[arXiv:1302.6257] [INSPIRE].

S. Dubovsky, R. Flauger and V. Gorbenko, Flux Tube Spectra from Approximate Integrability
at Low Energies, J. Exp. Theor. Phys. 120 (2015) 399 [arXiv:1404.0037] [INSPIRE].

M. Liischer and P. Weisz, String excitation energies in SU(N) gauge theories beyond the
free-string approxzimation, JHEP 07 (2004) 014 [hep-th/0406205] [INSPIRE].

J.M. Drummond, Universal subleading spectrum of effective string theory, hep-th/0411017
[INSPIRE].

A. Athenodorou, B. Bringoltz and M. Teper, Closed flux tubes and their string description in
D =3+1 SU(N) gauge theories, JHEP 02 (2011) 030 [arXiv:1007.4720] [INSPIRE].

B. Lucini and M. Teper, Confining strings in SU(N) gauge theories, Phys. Rev. D 64 (2001)
105019 [hep-1at/0107007] [INSPIRE].

A. Hasenfratz and P. Hasenfratz, The Connection Between the Lambda Parameters of Lattice
and Continuum QCD, Phys. Lett. B 93 (1980) 165 [INSPIRE].

R.F. Dashen and D.J. Gross, The Relationship Between Lattice and Continuum Definitions of
the Gauge Theory Coupling, Phys. Rev. D 23 (1981) 2340 [nSPIRE].

- 115 -


https://doi.org/10.1016/0370-2693(87)91540-1
https://doi.org/10.1016/0370-2693(87)91540-1
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB185%2C121%22
https://doi.org/10.1007/BF01211589
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C104%2C177%22
https://doi.org/10.1103/PhysRevD.14.3432
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD14%2C3432%22
https://doi.org/10.1017/CBO9780511565045.008
https://doi.org/10.1016/0550-3213(74)90154-0
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB72%2C461%22
https://doi.org/10.1017/CBO9780511565045.009
https://doi.org/10.1016/0550-3213(79)90232-3
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB160%2C57%22
https://doi.org/10.1016/0550-3213(79)90243-8
https://doi.org/10.1016/0550-3213(79)90243-8
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB149%2C285%22
https://doi.org/10.1007/BF01421781
https://inspirehep.net/search?p=find+J%20%22Z.Phys.%2CC5%2C233%22
https://doi.org/10.1103/PhysRevD.65.021501
https://arxiv.org/abs/hep-th/0106185
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0106185
https://doi.org/10.1103/PhysRevLett.81.2862
https://doi.org/10.1103/PhysRevLett.81.2862
https://arxiv.org/abs/hep-th/9807109
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9807109
https://doi.org/10.1088/1126-6708/2002/08/044
https://doi.org/10.1088/1126-6708/2002/08/044
https://arxiv.org/abs/hep-th/0204125
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0204125
https://doi.org/10.1103/PhysRevD.76.054508
https://arxiv.org/abs/0707.0396
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0707.0396
https://doi.org/10.1007/JHEP05(2013)118
https://arxiv.org/abs/1302.6257
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1302.6257
https://doi.org/10.1134/S1063776115030188
https://arxiv.org/abs/1404.0037
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1404.0037
https://doi.org/10.1088/1126-6708/2004/07/014
https://arxiv.org/abs/hep-th/0406205
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0406205
https://arxiv.org/abs/hep-th/0411017
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0411017
https://doi.org/10.1007/JHEP02(2011)030
https://arxiv.org/abs/1007.4720
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1007.4720
https://doi.org/10.1103/PhysRevD.64.105019
https://doi.org/10.1103/PhysRevD.64.105019
https://arxiv.org/abs/hep-lat/0107007
https://inspirehep.net/search?p=find+EPRINT%2Bhep-lat%2F0107007
https://doi.org/10.1016/0370-2693(80)90118-5
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB93%2C165%22
https://doi.org/10.1103/PhysRevD.23.2340
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD23%2C2340%22

[39]

[40]

[51]

J. Ambjgrn, P. Olesen and C. Peterson, Stochastic Confinement and Dimensional Reduction. 1.
Four-Dimensional SU(2) Lattice Gauge Theory, Nucl. Phys. B 240 (1984) 189 [INSPIRE].

G.P. Lepage, Redesigning lattice QCD, Lect. Notes Phys. 479 (1997) 1 [hep-1at/9607076|
[INSPIRE].

G. Parisi, Recent Progresses in Gauge Theories, AIP Conf. Proc. 68 (1980) 1531 [INSPIRE].

C. Allton, M. Teper and A. Trivini, On the running of the bare coupling in SU(N) lattice
gauge theories, JHEP 07 (2008) 021 [arXiv:0803.1092] [InSPIRE].

M. Liischer, R. Sommer, P. Weisz and U. Wolff, A Precise determination of the running
coupling in the SU(3) Yang-Mills theory, Nucl. Phys. B 413 (1994) 481 [hep-1at/9309005]
[INSPIRE].

S. Capitani, M. Liischer, R. Sommer and H. Wittig, Non-perturbative quark mass
renormalization in quenched lattice QCD, Nucl. Phys. B 544 (1999) 669 [Erratum ibid. 582
(2000) 762] [hep-1at/9810063] [INSPIRE].

C.R. Allton, Lattice Monte Carlo data versus perturbation theory, hep-1at/9610016 [INSPIRE].

R. Sommer, A New way to set the energy scale in lattice gauge theories and its applications to
the static force and o in SU(2) Yang-Mills theory, Nucl. Phys. B 411 (1994) 839
[hep-1at/9310022] [INSPIRE].

R. Sommer, Scale setting in lattice QCD, PoS LATTICE2013 (2014) 015
[arXiv:1401.3270] [iNSPIRE].

K.-I. Ishikawa, I. Kanamori, Y. Murakami, A. Nakamura, M. Okawa and R. Ueno,
Non-perturbative determination of the A-parameter in the pure SU(3) gauge theory from the
twisted gradient flow coupling, JHEP 12 (2017) 067 [arXiv:1702.06289] [INSPIRE].

N. Husung, M. Koren, P. Krah and R. Sommer, SU(3) Yang-Mills theory at small distances
and fine lattices, EPJ Web Conf. 175 (2018) 14024 [arXiv:1711.01860] [INSPIRE].

K. Ishikawa, G. Schierholz and M. Teper, Calculation of the Glueball Mass Spectrum of SU(2)
and SU(3) Nonabelian Lattice Gauge Theories I: Introduction and SU(2), Z. Phys. C' 19
(1983) 327 [INSPIRE].

K. Ishikawa, A. Sato, G. Schierholz and M. Teper, Calculation of the Glueball Mass Spectrum
of SU(2) and SU(3) Nonabelian Lattice Gauge Theories II: SU(3), Z. Phys. C' 21 (1983) 167
[INSPIRE].

U.M. Heller, SU(3) lattice gauge theory in the fundamental adjoint plane and scaling along the
Wilson axis, Phys. Lett. B 362 (1995) 123 [hep-1at/9508009] [INSPIRE].

P. Weisz, Renormalization and lattice artifacts, in Les Houches Summer School: Session 93:
Modern perspectives in lattice QCD: Quantum field theory and high performance computing,
pp. 93-160 (2010) [arXiv:1004.3462] [INSPIRE].

P. Conkey, S. Dubovsky and M. Teper, Glueball spins in D = 3 Yang-Mills, JHEP 10 (2019)
175 [arXiv:1909.07430] [NSPIRE].

P. Di Vecchia, K. Fabricius, G.C. Rossi and G. Veneziano, Preliminary Evidence for U4(1)
Breaking in QCD from Lattice Calculations, Nucl. Phys. B 192 (1981) 392 [INSPIRE].

M. Campostrini, A. Di Giacomo and H. Panagopoulos, The Topological Susceptibility on the
Lattice, Phys. Lett. B 212 (1988) 206 [INSPIRE].

- 116 —


https://doi.org/10.1016/0550-3213(84)90475-9
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB240%2C189%22
https://doi.org/10.1007/BFb0104288
https://arxiv.org/abs/hep-lat/9607076
https://inspirehep.net/search?p=find+EPRINT%2Bhep-lat%2F9607076
https://doi.org/10.1063/1.2948626
https://inspirehep.net/search?p=find+J%20%22AIP%20Conf.Proc.%2C68%2C1531%22
https://doi.org/10.1088/1126-6708/2008/07/021
https://arxiv.org/abs/0803.1092
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0803.1092
https://doi.org/10.1016/0550-3213(94)90629-7
https://arxiv.org/abs/hep-lat/9309005
https://inspirehep.net/search?p=find+EPRINT%2Bhep-lat%2F9309005
https://doi.org/10.1016/S0550-3213(98)00857-8
https://arxiv.org/abs/hep-lat/9810063
https://inspirehep.net/search?p=find+EPRINT%2Bhep-lat%2F9810063
https://arxiv.org/abs/hep-lat/9610016
https://inspirehep.net/search?p=find+EPRINT%2Bhep-lat%2F9610016
https://doi.org/10.1016/0550-3213(94)90473-1
https://arxiv.org/abs/hep-lat/9310022
https://inspirehep.net/search?p=find+EPRINT%2Bhep-lat%2F9310022
https://doi.org/10.22323/1.187.0015
https://arxiv.org/abs/1401.3270
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1401.3270
https://doi.org/10.1007/JHEP12(2017)067
https://arxiv.org/abs/1702.06289
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1702.06289
https://doi.org/10.1051/epjconf/201817514024
https://arxiv.org/abs/1711.01860
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.01860
https://doi.org/10.1007/BF01577189
https://doi.org/10.1007/BF01577189
https://inspirehep.net/search?p=find+J%20%22Z.Phys.%2CC19%2C327%22
https://doi.org/10.1007/BF01648794
https://inspirehep.net/search?p=find+J%20%22Z.Phys.%2CC21%2C167%22
https://doi.org/10.1016/0370-2693(95)01186-T
https://arxiv.org/abs/hep-lat/9508009
https://inspirehep.net/search?p=find+EPRINT%2Bhep-lat%2F9508009
https://arxiv.org/abs/1004.3462
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1004.3462
https://doi.org/10.1007/JHEP10(2019)175
https://doi.org/10.1007/JHEP10(2019)175
https://arxiv.org/abs/1909.07430
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.07430
https://doi.org/10.1016/0550-3213(81)90432-6
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB192%2C392%22
https://doi.org/10.1016/0370-2693(88)90526-6
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB212%2C206%22

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

M. Teper, Instantons in the Quantized SU(2) Vacuum: A Lattice Monte Carlo Investigation,
Phys. Lett. B 162 (1985) 357 [INSPIRE].

UKQCD collaboration, Topological structure of the SU(3) vacuum, Phys. Rev. D 58 (1998)
014505 [hep-1at/9801008] [INSPIRE].

M. Liischer, Properties and uses of the Wilson flow in lattice QCD, JHEP 08 (2010) 071
[Erratum bid. 03 (2014) 092] [arXiv:1006.4518] [INSPIRE].

M. Liischer and P. Weisz, Perturbative analysis of the gradient flow in non-abelian gauge
theories, JHEP 02 (2011) 051 [arXiv:1101.0963] [INSPIRE].

M. Liischer, Future applications of the Yang-Mills gradient flow in lattice QCD, PoS
LATTICE2013 (2014) 016 [arXiv:1308.5598] [NSPIRE].

C. Bonati and M. D’Elia, Comparison of the gradient flow with cooling in SU(3) pure gauge
theory, Phys. Rev. D 89 (2014) 105005 [arXiv:1401.2441] [InSPIRE].

C. Alexandrou, A. Athenodorou and K. Jansen, Topological charge using cooling and the
gradient flow, Phys. Rev. D 92 (2015) 125014 [arXiv:1509.04259] InSPIRE].

C. Alexandrou et al., Comparison of topological charge definitions in Lattice QCD, Eur. Phys.
J. C 80 (2020) 424 [arXiv:1708.00696] INSPIRE].

G. Cossu, D. Lancastera, B. Lucini, R. Pellegrini and A. Rago, Ergodic sampling of the
topological charge using the density of states, Eur. Phys. J. C' 81 (2021) 375
[arXiv:2102.03630] [iNSPIRE].

G. Veneziano, U(1) Without Instantons, Nucl. Phys. B 159 (1979) 213 [INSPIRE].

E. Witten, Current Algebra Theorems for the U(1) Goldstone Boson, Nucl. Phys. B 156
(1979) 269 [INSPIRE].

C. Bonanno, C. Bonati and M. D’Elia, Large-N SU(N) Yang-Mills theories with milder
topological freezing, JHEP 03 (2021) 111 [arXiv:2012.14000] [INSPIRE].

M. Hasenbusch, Fighting topological freezing in the two-dimensional CPN-1 model, Phys. Rev.
D 96 (2017) 054504 [arXiv:1706.04443] [INSPIRE].

M. Liischer and F. Palombi, Universality of the topological susceptibility in the SU(3) gauge
theory, JHEP 09 (2010) 110 [arXiv:1008.0732] [INSPIRE].

C. Bonati, M. D’Elia, P. Rossi and E. Vicari, § dependence of 4D SU(N) gauge theories in the
large-N limit, Phys. Rev. D 94 (2016) 085017 [arXiv:1607.06360] [INSPIRE].

T. van Ritbergen, J.A.M. Vermaseren and S.A. Larin, The Four loop B-function in quantum
chromodynamics, Phys. Lett. B 400 (1997) 379 [hep-ph/9701390] [INSPIRE].

C. Christou, A. Feo, H. Panagopoulos and E. Vicari, The three loop 5-function of SU(N)
lattice gauge theories with Wilson fermions, Nucl. Phys. B 525 (1998) 387 [Erratum ibid. 608
(2001) 479] [hep-1at/9801007] [INSPIRE].

B. Alles, A. Feo and H. Panagopoulos, Asymptotic scaling corrections in QCD with Wilson
fermions from the three loop average plaquette, Phys. Lett. B 426 (1998) 361 [Erratum ibid.
553 (2003) 337] [hep-1at/9801003] [INSPIRE].

- 117 -


https://doi.org/10.1016/0370-2693(85)90939-6
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB162%2C357%22
https://doi.org/10.1103/PhysRevD.58.014505
https://doi.org/10.1103/PhysRevD.58.014505
https://arxiv.org/abs/hep-lat/9801008
https://inspirehep.net/search?p=find+EPRINT%2Bhep-lat%2F9801008
https://doi.org/10.1007/JHEP08(2010)071
https://arxiv.org/abs/1006.4518
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1006.4518
https://doi.org/10.1007/JHEP02(2011)051
https://arxiv.org/abs/1101.0963
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1101.0963
https://doi.org/10.22323/1.187.0016
https://doi.org/10.22323/1.187.0016
https://arxiv.org/abs/1308.5598
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1308.5598
https://doi.org/10.1103/PhysRevD.89.105005
https://arxiv.org/abs/1401.2441
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1401.2441
https://doi.org/10.1103/PhysRevD.92.125014
https://arxiv.org/abs/1509.04259
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1509.04259
https://doi.org/10.1140/epjc/s10052-020-7984-9
https://doi.org/10.1140/epjc/s10052-020-7984-9
https://arxiv.org/abs/1708.00696
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1708.00696
https://doi.org/10.1140/epjc/s10052-021-09161-1
https://arxiv.org/abs/2102.03630
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2102.03630
https://doi.org/10.1016/0550-3213(79)90332-8
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB159%2C213%22
https://doi.org/10.1016/0550-3213(79)90031-2
https://doi.org/10.1016/0550-3213(79)90031-2
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB156%2C269%22
https://doi.org/10.1007/JHEP03(2021)111
https://arxiv.org/abs/2012.14000
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.14000
https://doi.org/10.1103/PhysRevD.96.054504
https://doi.org/10.1103/PhysRevD.96.054504
https://arxiv.org/abs/1706.04443
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1706.04443
https://doi.org/10.1007/JHEP09(2010)110
https://arxiv.org/abs/1008.0732
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1008.0732
https://doi.org/10.1103/PhysRevD.94.085017
https://arxiv.org/abs/1607.06360
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1607.06360
https://doi.org/10.1016/S0370-2693(97)00370-5
https://arxiv.org/abs/hep-ph/9701390
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9701390
https://doi.org/10.1016/S0550-3213(98)00248-X
https://arxiv.org/abs/hep-lat/9801007
https://inspirehep.net/search?p=find+EPRINT%2Bhep-lat%2F9801007
https://doi.org/10.1016/S0370-2693(98)00295-0
https://arxiv.org/abs/hep-lat/9801003
https://inspirehep.net/search?p=find+EPRINT%2Bhep-lat%2F9801003

	Introduction
	Calculating on a lattice
	Lattice setup
	Energies and correlators
	Systematic errors
	Topological freezing

	String tensions
	Finite volume corrections
	Fundamental (k = 1) string tensions
	k = 2 string tensions
	N –> infty extrapolations

	Running coupling
	Scaling with N
	Perturbative running and Lambda(overlineMS)
	Interpolating and extrapolating functions for a(beta)

	Glueball masses
	Quantum numbers
	Finite volume effects
	Lattice masses
	Strong-to-weak coupling transition
	Continuum masses
	N –> infty extrapolation
	Continuum spins
	Scattering states
	Some comparisons

	Topological fluctuations
	Topology and cooling
	Tunneling between topological sectors
	Topological susceptibility
	Z(Q)(beta) and lattice theta parameter

	Conclusions
	Lattice running couplings
	Scattering states

