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We derive dynamics of the entanglement wedge cross section directly from the two-dimensional 
holographic CFTs with a local operator quench. This derivation is based on the reflected entropy, a 
correlation measure for mixed states. We further compare these results with the mutual information and 
ones for integrable systems. This comparison directly suggests the classical correlation plays an important 
role in chaotic systems, unlike integrable ones. Besides a local operator quench, we study the reflected 
entropy in heavy primary states and find a breaking of the subsystem ETH. We checked the above results 
also hold for the odd entanglement entropy, which is another measure for mixed states related to the 
entanglement wedge cross section.
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1. Introduction and summary

The strongly coupled many-body systems, which are typically 
chaotic, attract a lot of attention in the physics community. One 
useful tool to capture the dynamics and the thermalization in such 
systems is the entanglement entropy (EE), which is defined by

S(A) = −trρA logρA, (1)

where ρA is a reduced density matrix for a subsystem A, obtained 
by tracing out its complement Ac . This quantity measures entan-
glement between subsystem A and its complement Ac if a pure 
state describes the entire system. The EE also plays a significant 
role in quantum gravity via the AdS/CFT correspondence [1–4]. 
Note that the systems with gravity dual (called holographic CFTs) 
are sometimes referred as “the most chaotic system” [5].

If one focuses mixed states ρAB associated with a subsystem 
AB ≡ A ∪ B and wishes to measure the correlation between A
and B , however, we have many measures in the literature and no 
unique choice as opposed to the EE for pure states. Therefore, from 
both conceptual and practical viewpoints, we should use the one(s) 
which have a clear meaning in the setup under consideration.

In this letter, we will focus on the reflected entropy (RE) S R [6]
which has a sharp (conjectured) interpretation in the context of 
AdS/CFT. We expect that
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S R(A : B) = 2EW (A : B) (2)

where EW is area of the minimal cross section of the entangle-
ment wedge [7,8] dual to the reduced density matrix [9–11]. (See 
also [12–30] for further developments in this direction.) We will 
give the definition of the RE in the next section. This bulk ob-
ject, called entanglement wedge cross section (EWCS), is a natural 
generalization of the minimal surfaces. In particular, if B = Ac and 
ρAB is a pure state, EW (A : B) reduces to the area of the mini-
mal surfaces associated with the S(A)(= S(Ac)). In the same way, 
S R(A : B) reduces to the 2S(A) for pure states.

The point is that the RE is expected to be more sensitive 
to classical correlations than the mutual information I(A : B) =
S(A) + S(B) − S(AB), therefore, the RE would be a refined tool to 
investigate the chaoticity in the light of classical correlations. Thus, 
it naturally motives us to study entanglement in non-equilibrium 
situations by both the RE and the EE (the mutual information), and 
to compare these two measures. This is one of the main interests 
in the present letter.

Let us summarize the results of the present letter. First, we have 
studied the time evolution of the RE by a local operator quench 
and see a perfect agreement with the EWCS for a falling parti-
cle geometry [31]. Comparing with the mutual information and 
results for rational conformal field theories (RCFTs), our results 
directly show that in the dynamical process for chaotic systems, 
classical correlations play an important role, unlike integrable sys-
tems. From this observation, we can conclude that the compar-
ison between the RE and the mutual information allows us to 
provide more information about chaotic nature of a given theory 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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than mutual information itself. Second, our analysis clarifies the 
bulk dual of the heavy primary state. Remarkably, we find that 
in holographic CFTs, nevertheless very chaotic systems, such state 
does not satisfy the subsystem eigenstate thermalization hypothe-
sis [32,33].

We have to mention that the above analysis also holds for the 
odd entanglement entropy [24], which is another generalization of 
the EE for mixed states. These results can be achieved by using 
the fusion kernel approach in two-dimensional CFT [34–36]. We 
will report the detail of technical parts (for both CFT and gravity) 
in our upcoming paper [37].

2. Reflected entropy

Here we review the definition of the reflected entropy (RE). We 
consider the following mixed state,

ρAB =
∑

n

pnρ
(n)
AB , (3)

where each ρ(n)
AB represents a pure state as

ρ
(n)
AB =

∑
i, j

√
λi

nλ
j
n |in〉A |in〉B 〈 jn|A 〈 jn|B , (4)

where |in〉A ∈ HA , |in〉B ∈ HB and λi
n is a positive number such 

that 
∑

i λ
i
n = 1. The real number pn is the corresponding probabil-

ity associated with its appearance in the ensemble. For this mixed 
state, we can provide the simplest purification as

|√ρAB〉 =
∑
i, j,n

√
pnλ

i
nλ

j
n |in〉A |in〉B | jn〉A∗ | jn〉B∗ , (5)

where |in〉A∗ ∈ H∗
A and |in〉B∗ ∈ H∗

B are just copies of HA and HB . 
Then, the RE is defined by

S R(A : B) ≡ −trρA A∗ logρA A∗ , (6)

where ρA A∗ is the reduced density matrix of ρA A∗ B B∗ =
|√ρAB〉 〈√ρAB | after tracing over HB ⊗H∗

B .

3. Setup

Our interest in this letter is to study a local operator quench 
state [38,39], which is created by acting a local operator O (x) on 
the vacuum in a given CFT at t = 0,

|�(t)〉 = √
Ne−εH−iHt O (x) |0〉 , (7)

where x represents the position of insertion of the operator, ε is a 
UV regularization of the local operator and N is a normalization 
factor so that 〈�(t)|�(t)〉 = 1.

The RE can be evaluated in the path integral formalism [6]. For 
example, the Renyi RE in the vacuum can be computed by a path 
integral on m × n copies as shown in Fig. 1. Here, we would view 
this manifold as a correlator with twist operators as in the lower 
of Fig. 1, where we define the twist operators σg A and σgB . Here, 
we focus on the following mixed state,

ρAB = tr(AB)c |�(t)〉 〈�(t)| , (8)

where �(t) is a time-dependent pure state as |�(t)〉 =√
N e−εH−iHt O (0) |0〉. Then, in a similar manner to the method 

in [38], the replica partition function in this state can be obtained 
by a correlator as

1

1 − n
log

Zn,m

Zn
1,m

, (9)
2

Fig. 1. The path integral representation of the Renyi reflected entropy (for vacuum). 
Edges labeled with the same number get glued together. We can instead view it as 
a correlator with four twist operators 

〈
σg A (u1)σg−1

A
(v1)σgB (u2)σg−1

B
(v2)

〉
CFT⊗mn

.

Fig. 2. We study the setup 0 < u2 < −v1 < −u1 < v2. We excite the vacuum by 
acting an local operator on x = 0 at t = 0.

where

Zn,m =
〈
σg A (u1)σg−1

A
(v1)O ⊗mn(w1, w̄1)

O ⊗mn†
(w2, w̄2)σgB (u2)σg−1

B
(v2)

〉
CFT⊗mn

. (10)

Here we abbreviate V (z, ̄z) ≡ V (z) if z ∈ R and the operators O
are inserted at

w1 = t + iε, w̄1 = −t + iε, w2 = t − iε, w̄2 = −t − iε. (11)

To avoid unnecessary technicalities, we do not show the precise 
definition of the twist operators σg A and σgB (which can be found 
in [6]) because in this letter, we only use the scaling dimension of 
the twist operators,

hσg A
= hσ

g−1
A

= hσgB
= hσ

g−1
B

= cn

24

(
m − 1

m

)
(= nhm),

hσ
g−1

A gB
= hσ

g−1
B g A

= c

12

(
n − 1

n

)
(= 2hn).

(12)

Here O ⊗N ≡ O  ⊗ O  ⊗· · ·⊗ O is an abbreviation of the operator on 
N copies of CFT (CFT⊗N ). We will take n, m → 1 limit so that the 
(9) reduces to the original RE.

4. Holographic CFT

As a concrete example, we consider the setup described in 
Fig. 2. Namely, we set our subregion A = [u1, v1], B = [u2, v2] and 
assume 0 < ε � u2 < −v1 < −u1 < v2.

In this setup, we can summarize our results as follows (see also 
Fig. 3): For t < −v1 or −u1 < t , we have

S R(A : B)[O ] = c
log

1 + √
x√ + c

log
1 + √

x̄√ , (13)

6 1 − x 6 1 − x̄
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Fig. 3. Reflected entropy (blue) and mutual information (yellow) for a state locally quenched outside two intervals. Here we have set (u1, v1, u2, v2) = (−10, −3, 1, 20), 
ε = 10−3, γ = 2 and we remove the prefactor c

6 . Each blue dot shows a transition of itself or its first derivative.
where (x, ̄x) is given by

(x, x̄) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
(v1−u1)(v2−u2)
(u2−u1)(v2−v1)

,
(v1−u1)(v2−u2)
(u2−u1)(v2−v1)

)
, (t < u2),(

(v1−u1)(v2−t)
(t−u1)(v2−v1)

(v1−u1)(v2−u2)
(u2−u1)(v2−v1)

)
, (u2 < t <

√−v1u2),(
(v1−u1)(v2+t)
(u1+t)(v1−v2)

,
(v1−u1)(v2−u2)
(u2−u1)(v2−v1)

)
, (

√−v1u2 < t < −v1),(
(v1−u1)(t+u2)
(u2−u1)(t+v1)

,
(v1−u1)(v2−u2)
(u2−u1)(v2−v1)

)
, (−u1 < t <

√−u1 v2),(
(v1−u1)(t−u2)
(u2−u1)(t−v1)

,
(v1−u1)(v2−u2)
(u2−u1)(v2−v1)

)
, (

√−u1 v2 < t < v2),(
(v1−u1)(v2−u2)
(u2−u1)(v2−v1)

,
(v1−u1)(v2−u2)
(u2−u1)(v2−v1)

)
, (v2 < t).

(14)

On the other hand, for −v1 < t < −u1, we have obtained

S R(A : B)[O ] = c

6
log

[
4(t + u1)(t + u2)(t + v1)(t + v2)

ε2(u2 − v1)(u1 − v2)(
sinhπγ̄

γ̄

)2
]

+ c

6
log

1 +
√

(v1−u1)(v2−u2)
(u2−u1)(v2−v1)

1 −
√

(v1−u1)(v2−u2)
(u2−u1)(v2−v1)

. (15)

Here we defined γ =
√

24
c hO − 1 and γ̄ =

√
24
c h̄O − 1, where hO

(h̄O ) are the conformal dimension of the operator O . The above 
results are perfectly consistent with the EWCS in the falling par-
ticle geometry [37]. In what follows, first we discuss which type 
of correlation is dominant in each time region. Second, we com-
pare the results for holographic CFTs with ones for RCFTs. Finally 
we comment on the origin and importance of classical correlation 
for chaotic systems.

The time region t /∈ [−v1, −u1] includes neither UV cutoff ε
nor the information of local operators. This implies that we have 
only classical correlations between A and B . In fact, the RE is 
3

more sensitive to classical correlations than the mutual informa-
tion.1 Furthermore, this is consistent with the growth of RE and 
mutual information. In the lower two plots in Fig. 3, we show the 
difference between the local quench state and the vacuum state,

	S R(A : B) = S R(A : B)[O ] − S R(A : B)[I], (16)

	I(A : B) = I(A : B)[O ] − I(A : B)[I], (17)

which measure a growth of correlations after a local quench. We 
find the following inequalities for the mutual information and RE,{

	S R(A : B) ≥ 	I(A : B), if t /∈ [−v1,−u1],
	S R(A : B) ≤ 	I(A : B), if t ∈ [−v1,−u1].

(18)

On the other hand, the time region t ∈ [−v1, −u1] mainly con-
sists of quantum correlations. This can be understood from the 
well-known fact that the mutual information for holographic CFTs 
measure mostly the quantum correlation [41]. Indeed, (18) shows 
that growth of the mutual information is greater than one of the 
RE in this region.

Finally we discuss the origin and importance of classical corre-
lations by comparing with the results for RCFTs. It turns out that 
the same analysis for RCFTs can be understood from the quasi-
particle picture (left-right propagation of “EPR pair”) just as the 
same as the mutual information in RCFTs. Importantly, we have 
	S R(A : B) = 	I(A : B) = 0 for t /∈ [−v1, −u1], whereas we have 

1 The RE is always greater than the mutual information. Since our analysis in 
CFT is consistent with the entanglement wedge cross section, we can also relate 
the above discussion to original conjecture, the holographic entanglement of pu-
rification (EoP) E P (A : B) [7,8]. In particular, the EoP is more sensitive to the clas-
sical correlation than the RE, thus the importance of classical correlation becomes 
more remarkable. (For example, we have the lower bound of EoP for any states 
E P (A : B) ≥ I(A : B)/2, whereas we have the stronger lower bound for separable 
states E P (A : B) ≥ I(A : B) [40].)
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Fig. 4. The non-trivial entanglement wedge cross section in the BTZ blackhole has 
two phases. We can also see this transition from the evaluation of pure state in (19). 
An important point is that if we evaluate the usual EE for thermal state, the similar 
phase as right panel never appears, whereas the pure state does. The existence of 
second phase in our pure state result means that after this transition, we cannot 
approximate pure state as thermal one.

some classical correlations for chaotic theories, at least holographic 
ones which is (in some sense) the most chaotic systems. This clas-
sical correlation basically comes from the process for creating our 
local operator quench state. In the strict sense, we cannot create 
our local excitation via the local operation at t = 0. This should 
give rise to additional correlations. Furthermore, our chaotic sys-
tems, where we have large amounts of degrees of freedom and 
strong interactions, enhance any correlations significantly. In sum-
mary, the existence of classical correlations directly suggests the
chaotic nature of a given system in the light of RE and the mu-
tual information. Since the former is more sensitive to the classical 
correlations, we can expect the RE is a more sensitive criteria for 
whether a given system is chaotic or not.

5. Heavy state and subsystem ETH

We consider a CFT on a circle with length L. Then, the RE for a 
heavy primary state can be obtained from

Zn,m = 〈O ⊗mn|σg A (u1)σg−1
A

(v1)σgB (u2)σg−1
B

(v2)|O ⊗mn〉. (19)

Here, this correlator is defined on a cylinder. This can be mapped 
to the plane (z, ̄z) by

z = e
2π iw

L , z̄ = e− 2π iw
L . (20)

For a sufficiently large subsystem, under the large-c limit, we 
have obtained

S R(A : B) = c

6
log

(
coth

πγ (u2 − v1)

2L

)

+ c

6
log

(
coth

πγ̄ (v2 − u1)

2L

)
. (21)

This result perfectly matches the entanglement wedge cross 
section in the BTZ metric [7], namely the cross section described 
in the right panel of the Fig. 4. It means that the thermalization in 
the large c limit [42–46] can also be found in the RE. (For a suf-
ficiently small subsystem, we can also obtain one for left panel of 
the same figure.)

On the other hand, we have shown that the surface ends at the 
horizon of the black hole. This can be explained by considering the 
horizon as an end of the world brane [47–49]. In this case, the sur-
face can end at the horizon even if we consider a pure state black 
hole. We stress that this is also the case for EE in a heavy primary 
state because the RE (21) should reproduce the double of the EE 
in the pure state limit.2 Notice that this phase transition does not 

2 Note that the pure state limit of the (21) does not match the result in [50]. 
This is because their derivation implicitly assumes that the change of the dominant 
channel (i.e., the transition shown in Fig. 4) does not happen. However, the result 
under such an assumption contradicts the pure state limit, and basically there is no 
reason to remove the possibility of the transition even in the EE.
4

appear in the holographic EE for BTZ blackhole, namely the true 
thermal state. Therefore, the transition point tells us how large 
subsystem (the reduced density matrix) can pretend the thermal 
system. Such imitation is called subsystem eigenstate thermaliza-
tion hypothesis (subsystem ETH) [32,33]. Previously, we expected 
this transition point would happen at the half of the subsystem, 
whereas our result did prove this is actually not the case for heavy 
primary states. Now the transition length for single-interval EE 
turns out to be (2π/γ ) log(1 + √

2) < π where we took L = 2π
and γ = γ̄ , for simplicity. We can easily derive it from the pure 
state limit of the two phases. In particular, under the high-energy 
limit 2π/γ → 0, this transition does happen quickly. Such distin-
guishability can be also seen from the Holevo information [51,52], 
for example.

6. Discussion

One can also reproduce the above results from the odd entan-
glement entropy [24] by replacing S R(A : B)/2 with the odd EE 
minus von-Neumann entropy for the above results (In fact, this is 
also the case for RCFTs). This coincidence can happen because we 
are considering large c limit and/or Regge limit which give us quite 
universal consequences. In more general parameter regimes, these 
two quantities should behave differently. It is very interesting to 
study further such regimes.

We gave a counterexample of the subsystem ETH, a heavy pri-
mary state in two-dimensional holographic CFTs. One possibility 
might be that such state is not typical. Since this is still counter-
intuitive, we should deepen our understanding of this fact as this 
state has been often discussed as an explicit example of typical 
state in literature.

Finally, there are several interesting future directions which can 
be accomplished in a similar manner. For example, it would be 
interesting to understand a relation to negativity [21], to study dy-
namics in other irrational CFTs [53,54], to investigate information 
spreading by using the RE [55], and evaluate the Renyi RE, in par-
ticular, its replica transition [34,36,56].
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